Science.gov

Sample records for ambient pressure dried

  1. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  2. Respiratory effects of warm and dry air at increased ambient pressure.

    PubMed

    Thorsen, E; Rønnestad, I; Segadal, K; Hope, A

    1992-03-01

    We have measured in 7 divers forced vital capacity (FVC), forced expired volume in 1 s (FEV1), and forced midexpiratory flow rate (FEF25-75%) before and after exposure to dry or humid breathing gas of 35.3 degrees-36.8 degrees C (air) when diving to pressures of 117-600 kPa. The response was compared with the subjects' reactivity to pharmacologic bronchoprovocation with methacholine. Baseline FEV1 and FEF25-75% decreased in accordance with increasing gas density. Relative to baseline, there was a significant reduction after the dives in FEV1 of 4.0 +/- 6.1% (P less than 0.05) and in FEF25-75% of 8.6 +/- 9.7% (P less than 0.01) with exposure to dry breathing gas. By analysis of variance the reduction in the lung function variables below baseline were related to the breathing gas characteristic (dry/humid) (P less than 0.01), bronchial hyperreactivity (P less than 0.02), and ambient pressure (P less than 0.02) independently of each other. There was no significant change in FVC after the exposures. Humid breathing gas was considered more comfortable than dry breathing gas, and the upper comfort limit for breathing gas temperature was higher with humid breathing gas. Convective respiratory heat loss was negligible in these experiments, indicating that dry gas itself had a significant bronchoconstrictive effect. Bronchial hyperreactivity may cause increased risk of development of bronchial obstruction and air trapping during diving.

  3. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  4. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  5. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  6. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  7. Real-time observation of the dry oxidation of the Si (100) surface with ambient pressure x-ray photoelectron spectroscopy

    SciTech Connect

    Enta, Y.; Mun, B.S.; Rossi, M.; Ross Jr, P.N.; Hussain, Zahid; Fadley, C.S.; Lee, K.-S.; Kim, S.-K.

    2007-09-20

    We have applied ambient-pressure x-ray photoelectron spectroscopy with Si 2p chemical shifts to study the real-time dry oxidation of Si(100), using pressures in the range of 0.01-1 Torr and temperatures of 300-530 oC, and examining the oxide thickness range from 0 to ~;;25 Angstrom. The oxidation rate is initially very high (with rates of up to ~;;225 Angstrom/h) and then, after a certain initial thickness of the oxide in the range of 6-22 Angstrom is formed, decreases to a slow state (with rates of ~;;1.5-4.0 Angstrom/h). Neither the rapid nor the slow regime is explained by the standard Deal-Grove model for Si oxidation.

  8. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  9. Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol-gel process and dried at ambient pressure

    NASA Astrophysics Data System (ADS)

    Mahadik, D. B.; Lee, Yoon Kwang; Park, Chang-Sun; Chung, Hee-Yoon; Hong, Min-Hee; Jung, Hae-Noo-Ree; Han, Wooje; Park, Hyung-Ho

    2015-12-01

    High-surface-area tin oxide aerogels have been synthesized by an ambient-pressure drying method, using a non-alkoxide tin precursor and a hybrid sol-gel technique. The tin precursor was dissolved in different volume ratios of mixed water and ethanol solvents, and gelation was attained by means of an epoxide-initiated gelation process. The solvent in the gel was successively replaced with low-surface-tension solvents, and finally the gels were dried at ambient pressure in an oven. It was observed that solvent combinations significantly altered the textural properties of tin oxide aerogels. The solvent exchange process used prior to ambient-pressure drying helped to minimize impurities originating from the tin precursor. The tin oxide aerogels had the maximum specific surface area of 209 m2/g and small crystallite size (<6.5 nm) after an annealing treatment at 500 °C for 2 h. The sensitivity of a SnO2 sensor to CO gas was found to be strongly affected as the specific surface area of its constituent tin oxide aerogel was increased from 121 m2/g to 209 m2/g. This study offers evidence of the effects of tin oxide aerogel's specific surface area upon its gas sensing performance.

  10. Ambient pressure and single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Kondic, Ljubinko; Yuan, Chi; Chan, C. K.

    1998-01-01

    We present a theoretical analysis of the influence of ambient pressure on single-bubble sonoluminescence (SBSL). By combining simulations of gas dynamics, mass diffusion theory, and stability analysis we find a narrow region of the parameter space where stable SBSL is possible. In particular, the theory predicts a 200% increase in SL radiation if ambient pressure is decreased only 5%. The results are compared with preliminary experimental data, and a good agreement is found. Variation of ambient pressure provides a simple and interesting test for the validity of various SL theories, diffusive or nondiffusive mass flow ideas, and stability analyses.

  11. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  12. Dry deposition of polycyclic aromatic hydrocarbons in ambient air

    SciTech Connect

    Sheu, H.L.; Lee, W.J.; Su, C.C.; Chao, H.R.; Fan, Y.C.

    1996-12-01

    Dry deposition and air sampling were undertaken, simultaneously, in the ambient air of an urban site and a petrochemical-industry (PCI) plant by using several dry deposition plates and PS-1 samplers from January to May 1994 in southern Taiwan. The dry deposition plate with a smooth surface was always pointed into the wind. Twenty-one polycyclic aromatic hydrocarbons (PAHs) were analyzed by a gas chromatography/mass spectrometer (GC/MSD). The dry deposition flux of total-PAHs in urban and PCI sites averaged 166 and 211 {micro}g/m{sup 2}{center_dot}d, respectively. In general, the PAH dry deposition flux increased with increases in the PAH concentration in the ambient air. The PAH pattern of dry deposition flux in both urban and PCI sites were similar to the pattern measured by the filter of the PS-1 sampler and completely different from the PAH pattern in the gas phase. The higher molecular weight PAHs have higher dry deposition velocities. This is due to the fact that higher molecular weight PAHs primarily associated with the particle phase are deposited mostly by gravitational settling, while the gas phase PAHs were between 0.001 and 0.010 cm/s, only the lower molecular-weight PAHs--Nap and AcPy--had a significant fraction of dry deposition flux contributed by the gas phase. All the remaining higher molecular-weight PAHs had more than 94.5% of their dry deposition flux resulting from the particle phase. This is due to the fact that higher molecular weight PAHs have a greater fraction in the particle phase and the dry deposition velocities of particulates are much higher than those of the gas phase.

  13. Bacterial decontamination using ambient pressure nonthermal discharges

    SciTech Connect

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  14. Ambient pressure photoemission spectroscopy of metal surfaces

    NASA Astrophysics Data System (ADS)

    Baikie, Iain D.; Grain, Angela C.; Sutherland, James; Law, Jamie

    2014-12-01

    We describe a novel photoemission technique utilizing a traditional Kelvin probe as a detector of electrons/atmospheric ions ejected from metallic surfaces (Au, Ag, Cu, Fe, Ni, Ti, Zn, Al) illuminated by a deep ultra-violet (DUV) source under ambient pressure. To surmount the limitation of electron scattering in air the incident photon energy is rastered rather than applying a variable retarding electric field as is used with UPS. This arrangement can be applied in several operational modes: using the DUV source to determine the photoemission threshold (Φ) with 30-50 meV resolution and also the Kelvin probe, under dark conditions, to measure contact potential difference (CPD) between the Kelvin probe tip and the metallic sample with an accuracy of 1-3 meV. We have studied the relationship between the photoelectric threshold and CPD of metal surfaces cleaned in ambient conditions. Inclusion of a second spectroscopic visible source was used to confirm a semiconducting oxide, possibly Cu2O, via surface photovoltage measurements with the KP. This dual detection system can be easily extended to controlled gas conditions, relative humidity control and sample heating/cooling.

  15. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  16. Dependence of single-bubble sonoluminescence on ambient pressure

    PubMed

    Dan; Cheeke; Kondic

    2000-03-01

    Kondic et al.'s theory makes several specific predictions on the dependence of single-bubble sonoluminescence (SBSL) on ambient pressure. We have carried out experiments to verify these predictions for air bubbles in a water-glycerine mixture at about 17.5 kHz. The results show an increase in SBSL with reduced ambient pressure down to a critical value below which SBSL is extinguished. The results are all in good agreement with Kondic et al.'s theory and are also compatible with the dissociation hypothesis of Lohse et al.

  17. Measurement of Radiation Pressure in an Ambient Environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Munday, Jeremy

    2015-03-01

    Light has momentum and thus exerts ``radiation pressure'' when it is reflected or absorbed due to the conservation of momentum. Micromechanical transducers and oscillators are suitable for measurement and utilization of radiation pressure due to their high sensitivities. However, other light-induced mechanical deformations such as photothermal effects often obscure accurate measurements of radiation pressure in these systems. In this work, we investigate the radiation pressure and photothermal force on an uncoated silicon nitride microcantilever under illumination by a 660 nm laser in an ambient environment. To magnify the mechanical effects, the cantilever is driven optically from dc across its resonance frequency, and the amplitude and phase of its oscillation are acquired by an optical beam deflection method and a lockin amplifier. We show that radiation pressure and photothermal effects can be distinguished through the cantilever's frequency response. Furthermore, in a radiation pressure dominant regime, our measurement of the radiation force agrees quantitatively with the theoretical calculation.

  18. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    SciTech Connect

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  19. Ambient noise interferes with auscultatory blood pressure measurement during exercise.

    PubMed

    Lightfoot, J T; Tuller, B; Williams, D F

    1996-04-01

    This study was designed to investigate whether the acoustical characteristics of the Korotkoff sounds (K-sounds) were altered during exercise and/or masked by the ambient noise. After signing informed consent, 11 subjects (8 females, 3 males; 27 +/- 2 yr; 166.2 +/- 3.2 cm; 62 +/- 5 kg; means +/- SD) underwent a cycle ergometer exercise test that increased in workload by 30 W every 3 min until volitional fatigue. Heart rate, auscultatory systolic (SBP) and diastolic blood pressure (DBP), and oxygen consumption were monitored 1 and 2 min into each work stage. The auscultatory K-sounds were recorded with a microphone mounted in a stethoscope tube for later frequency (Hz) and sound pressure level (dB SPL) analysis. Frequency and SPL of ambient noise (99 +/- 13 Hz and 64 +/- 1 db at maximum, respectively) increased during the exercise test to magnitudes similar to the SBP and DBP K-sounds (166 Hz, 66 db; and 128 Hz, 69 db, respectively). Additionally, the ambient noise was responsible for a significant damping of the frequency and SPL of the measured blood pressure K-sounds and a rise in the measured frequency of the SBP K-sounds. Furthermore, we observed "inaudible" K-sounds at lower frequencies than adjoining audible K-sounds (100 Hz vs 126 Hz), supporting the known underestimation of SBP by auscultation. The increase in ambient noise during exercise testing dampens and may mask the auscultatory K-sounds, thus making detection of the proper K-sounds during exercise difficult at best. Furthermore, the presence of inaudible K-sounds may further explain the published discrepancies between auscultatory and intraarterial blood pressure measurements during exercise.

  20. [Research on Raman spectra of isooctane at ambient temperature and ambient pressure to 1. 2 GPa].

    PubMed

    Zhang, Fei-fei; Zheng, Hai-fei

    2012-03-01

    The experimental study of the Raman spectral character for liquid isooctane (2,2,4-trimethylpentane, ATM) was con ducted by moissanite anvil cell at the pressure of 0-1.2 GPa and the ambient temperature. The results show that the Raman peaks of the C-H stretching vibration shift to higher frenquencies with increasing pressures. The relations between the system pressure and peaks positions is given as following: v2 873 = 0.002 8P+2 873.3; v2 905 = 0.004 8P+2 905.4; v2 935 = 0.002 7P+ 2 935.0; v2 960 = 0.012P+2 960.9. The Raman spectra of isooctane abruptly changed at the pressure about 1.0 GPa and the liquid-solid phase transition was observed by microscope. With the freezing pressure at ambient temperature and the melting temperature available at 1 atm, the authors got the liquid-solid phase diagram of isooctane. According to Clapeyron equation, the authors obtained the differences of volume and entropy for the liquid-solid phase transition of isooctane: deltaV(m) = 4.46 x 10(-6) m3 x mol-1 and deltaS = -30.32 J x K(-1) x mol(-1).

  1. Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers

    NASA Astrophysics Data System (ADS)

    Trotochaud, Lena; Head, Ashley R.; Karslıoğlu, Osman; Kyhl, Line; Bluhm, Hendrik

    2017-02-01

    Over the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS. We also provide a critical evaluation of the persistent limitations and challenges of APXPS, as well as the current experimental frontiers.

  2. Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu.

    PubMed

    Wang, Qinxin; Chen, Anmin; Li, Suyu; Qi, Hongxia; Qi, Ying; Hu, Zhan; Jin, Mingxing

    2015-09-20

    The holes were drilled by femtosecond laser pulse (800 nm, 100 fs) on Cu sheets at different ambient pressures. The pressure range was from 1 Pa to atmospheric pressure. The number of pulses to drill through the target, the stable photodiode signal, and the hole diameter were obtained as functions of ambient pressure. The morphology of the hole was observed by a scanning electron microscope (SEM). The result showed that the ambient pressure had significant influence on the morphology of the hole.

  3. Phase State and Saturation Vapor Pressure of Submicron Particles of meso-Erythritol at Ambient Conditions.

    PubMed

    Emanuelsson, Eva U; Tschiskale, Morten; Bilde, Merete

    2016-09-15

    meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states.

  4. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  5. CO oxidation on Pt(111) at near ambient pressures

    SciTech Connect

    Krick Calderón, S.; Grabau, M.; Kress, B.; Papp, C.; Óvári, L.; Steinrück, H.-P.

    2016-01-28

    The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O{sub 2} reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

  6. CO oxidation on Pt(111) at near ambient pressures

    NASA Astrophysics Data System (ADS)

    Krick Calderón, S.; Grabau, M.; Ã`vári, L.; Kress, B.; Steinrück, H.-P.; Papp, C.

    2016-01-01

    The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O2 reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

  7. Molecular dynamics of itraconazole at ambient and high pressure.

    PubMed

    Tarnacka, M; Adrjanowicz, K; Kaminska, E; Kaminski, K; Grzybowska, K; Kolodziejczyk, K; Wlodarczyk, P; Hawelek, L; Garbacz, G; Kocot, A; Paluch, M

    2013-12-21

    Comprehensive molecular dynamics studies of vitrified and cryogrounded itraconazole (Itr) were performed at ambient and elevated pressure. DSC measurements yielded besides melting and glass transition observed during heating and cooling of both samples two further endothermic events at around T = 363 K and T = 346 K. The nature of these transitions was investigated using X-ray diffraction, broadband dielectric spectroscopy and Density Functional Theory calculations. The X-ray measurements indicated that extra ordering in itraconazole is likely to occur. Based on calculations and theory derived by Letz et al. the transition observed at T = 363 K was discussed in the context of formation of the nematic mesophase. In fact, additional FTIR measurements revealed that order parameter variation in Itr shows a typical sequence of liquid crystal phases with axially symmetric orientational order; i.e. a nematic phase in the temperature range 361.7 K to 346.5 K and a smectic A phase below 346.5. Moreover, dielectric measurements demonstrated that except for the structural relaxation process, there is also slower mode above the glass transition temperature in both vitrified and cryogrounded samples. We considered the origin of this mode taking into account DFT calculations, rod like shape of itraconazole and distribution of its dipole moment vectors. For the dielectric data collected at elevated pressure, evolution of the steepness index versus pressure was determined. Finally, the pressure coefficient of the glass transition temperature was evaluated to be equal to 190 K GPa(-1).

  8. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium

    NASA Astrophysics Data System (ADS)

    Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom; Akram, Mahreen; Mahmood, Khaliq

    2013-04-01

    Surface and structural properties of the laser irradiated titanium targets have been investigated under dry and wet ambient environments. For this purpose KrF Excimer laser of wavelength 248 nm, pulse duration of 20 ns and repetition rate of 20 Hz has been employed. The targets were exposed for various number of laser pulses ranging from 500 to 2000 in the ambient environment of air, de-ionized water and propanol at a fluence of 3.6 J/cm2. The surface morphology, chemical composition and crystallographical analysis were performed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. For both central and peripheral ablated areas, significant difference in surface morphology has been observed in case of dry and wet ambient conditions. Large sized and diffused grains are observed in case of dry ablation. Whereas, in case of wet ablation, small sized, and well defined grains with distinct grain boundaries and significantly enhanced density are revealed. This difference is ascribed to the confinement effects of the liquid. The peripheral ablated area shows redeposition in case of dry ablation whereas small sized grain like structures are formed in case of wet ablation. EDS analysis exhibits variation in chemical composition under both ambient conditions. When the targets are treated in air environment, enhancement of the oxygen as well as nitrogen content is observed while in case of de-ionized water and propanol only increase in content of oxygen is observed. X-ray diffraction analysis exhibits formation of oxides and nitrides in case of air, whereas, in case of de-ionized water and propanol only oxides along with hydrides are formed. For various number of laser pulses the variation in the peak intensity, crystallinity and d-spacing is observed under both ambient conditions.

  9. Atomic-scale electron microscopy at ambient pressure.

    PubMed

    Creemer, J F; Helveg, S; Hoveling, G H; Ullmann, S; Molenbroek, A M; Sarro, P M; Zandbergen, H W

    2008-08-01

    We demonstrate a novel nanoreactor for performing atomic-resolution environmental transmission electron microscopy (ETEM) of nanostructured materials during exposure to gases at ambient pressures and elevated temperatures. The nanoreactor is a microelectromechanical system (MEMS) and is functionalized with a micrometer-sized gas-flow channel, electron-transparent windows and a heating device. It fits into the tip of a dedicated sample holder that can be used in a normal CM microscope of Philips/FEI Company. The nanoreactor performance was demonstrated by ETEM imaging of a Cu/ZnO catalyst for methanol synthesis during exposure to hydrogen. Specifically, the nanoreactor facilitated the direct observation of Cu nanocrystal growth and mobility on a sub-second time scale during heating to 500 degrees C and exposure to 1.2 bar of H(2). For the same gas reaction environment, ETEM images show atomic lattice fringes in the Cu nanocrystals with spacing of 0.18 nm, attesting the spatial resolution limit of the system. The nanoreactor concept opens up new possibilities for in situ studies of nanomaterials and the ways they interact with their ambient working environment in diverse areas, such as heterogeneous catalysis, electrochemistry, nanofabrication, materials science and biology.

  10. Bridging the pressure gap: Can we get local quantitative structural information at 'near-ambient' pressures?

    NASA Astrophysics Data System (ADS)

    Woodruff, D. P.

    2016-10-01

    In recent years there have been an increasing number of investigations aimed at 'bridging the pressure gap' between UHV surface science experiments on well-characterised single crystal surfaces and the much higher (ambient and above) pressures relevant to practical catalyst applications. By applying existing photon-in/photon-out methods and developing instrumentation to allow photoelectron emission to be measured in higher-pressure sample environments, it has proved possible to obtain surface compositions and spectroscopic fingerprinting of chemical and molecular states of adsorbed species at pressures up to a few millibars. None of these methods, however, provide quantitative structural information on the local adsorption sites of isolated atomic and molecular adsorbate species under these higher-pressure reaction conditions. Methods for gaining this information are reviewed and evaluated.

  11. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  12. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  13. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  14. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean M.

    2002-01-01

    Three aspects of nanocrystalline ceramic body formation are examined in this work: permeability, drying stress, and sintering behavior. The permeabilities of nanocrystalline 3 mol% yttria-stabilized zirconia (3Y-TZP), silica, and boehmite powder compacts are measured during their formation by constant rate pressure filtration. The classic Carman-Kozeny equation with no account for the effect of adsorbed water often overestimates by a factor of 2 or more the measured permeabilities, with increasing deviation with decreasing permeability. A permeability equation from the literature and one derived here, both taking into account the effect of adsorbed water, show significant improvement over the classic Carman-Kozeny equation for predicting measured permeabilities. The equation derived here allows straightforward predictions to be made of how permeability will change as the critical point of drying (when shrinkage stops) is approached. An approximate expression for the maximum tensile stress occurring in an elastic finite cylinder during drying from all sides is derived. Numerical calculations of the exact state of stress during drying show that for cylinder length-to-diameter ratios up to 2/3, the present expression is more accurate than equations from the literature for an infinite plate and an infinite cylinder. For cylinders with length-to-diameter ratios greater than 2/3, numerical calculations show an equation from the literature for the drying stress in an infinite cylinder to be more accurate. To test the validity of the present expression, the drying rates above which fracture occurs are determined for disk-shaped samples of pressure filtered nanocrystalline 3Y-TZP, boehmite, and silica powders. These maximum safe drying rates are used with the present expression to calculate the maximum drying stresses that can be sustained without fracture, and these stresses are compared to diametral compression-measured strengths of similar samples dried to the critical

  15. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    PubMed

    Chen, Qing; Wang, Jinwei; Tian, Jun; Tang, Xun; Yu, Canqing; Marshall, Roger J; Chen, Dafang; Cao, Weihua; Zhan, Siyan; Lv, Jun; Lee, Liming; Hu, Yonghua

    2013-01-01

    Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05) respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range) was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  16. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent

  17. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration

    PubMed Central

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P. C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (“OWB-D”), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec (“OWB-R”), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions. PMID:27066038

  18. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration.

    PubMed

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P C

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the "elevated partial pressure of oxygen" (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom ("OWB-D"), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec ("OWB-R"), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions.

  19. Ambient pressure, low-temperature synthesis and characterization of colloidal InN nanocrystals

    PubMed Central

    Hsieh, Jennifer C.; Yun, Dong Soo; Hu, Evelyn

    2014-01-01

    Highly soluble, non-aggregated colloidal wurtzite InN nanocrystals were obtained through an ambient pressure, low-temperature method followed by post-synthesis treatment with nitric acid. PMID:25484524

  20. Responses of spring wheat (Triticum aestivum L.) to ozone produced by either electric discharge and dry air or by UV-lamps and ambient air.

    PubMed

    Mortensen, L; Jørgensen, H E

    1996-01-01

    The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.

  1. Simulation of Low-density Nozzle Plumes in Non-zero Ambient Pressures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; Dewitt, Kenneth J.; Stubbs, Robert M.; Penko, Paul F.

    1994-01-01

    The direct simulation Monte-Carlo (DSMC) method was applied to the analysis of low-density nitrogen plumes exhausting from a small converging-diverging nozzle into finite ambient pressures. Two cases were considered that simulated actual test conditions in a vacuum facility. The numerical simulations readily captured the complicated flow structure of the overexpanded plumes adjusting to the finite ambient pressures, including Mach disks and barrel shaped shocks. The numerical simulations compared well to experimental data of Rothe.

  2. Textile dry cleaning in high pressure CO2

    NASA Astrophysics Data System (ADS)

    Sutanto, Stevia; van der Kamp, Maaike; Witkamp, Geert-Jan

    2013-06-01

    High-pressure carbon dioxide (CO2) is one of the most suitable replacements for perchloroethylene (PER), a common but harmful textile dry cleaning solvent. Previous studies have indicated that the particulate soil removal with CO2 is lower compared to that with PER, because of the lesser amount of mechanical action in CO2. Furthermore, there is a lack of understanding of textile-dirt-CO2 interaction. It is the objective of this study to get an insight in the mechanical forces that play a role in CO2 dry cleaning and to use this information to improve the CO2 washing performance. Various mechanical actions were investigated with the experiments in an in-situ high pressure observation cell. Textiles stained with different kinds of particulate soils were washed in CO2. The washing results show that the combination of rotating and vertical action gives the highest cleaning performance and liquid CO2 spray may be a suitable additional mechanism to increase the cleaning performance. Authors thank the scientific foundation STW for the financial support.

  3. Irradiation Maintains Functional Components of Dry Hot Peppers (Capsicum annuum L.) under Ambient Storage

    PubMed Central

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Nawaz, Aamir; Khan, Samiya Mahmood; Ariño, Agustin; Ahmad, Tanveer

    2016-01-01

    Hot peppers used as natural flavoring and coloring agents are usually irradiated in prepacked form for decontamination. The effects of gamma radiation on the stability of functional components such as capsaicinoids and antioxidant compounds (carotenoids, ascorbic acid and total phenolics) were investigated in hot peppers (Capsicum annuum). Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and subsequently stored at 25 °C for 90 days. The irradiation dose did not substantially affect the initial contents of capsaicinoids, ascorbic acid and total phenolics, though the concentration of carotenoids declined by 8% from the control (76.9 mg/100 g) to 6 kGy radiation dose (70.7 mg/100 g). Similarly, during storage for 90 days at ambient temperature the concentrations of capsaicinoids and total phenolics remained fairly stable with mean percent reductions from 3.3% to 4.2%, while the levels of total carotenoids and ascorbic acid significantly (p < 0.05) declined by 12% and 14%, respectively. Overall, neither irradiation nor subsequent ambient storage could appreciably influence the contents of functional components in hot peppers. These results revealed that gamma irradiation up to 6 kGy can be safely used for decontamination to meet the needs for overseas markets without compromising product quality. PMID:28231158

  4. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect

    Urbaniec, K.; Malczewski, J.

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  5. A process to recover plastics from obsolete automobiles by using solvents at ambient pressure

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

    1993-08-01

    Recycling of the metal content of obsolete vehicles has been actively pursued since the 1950s; today, obsolete automobiles are the single largest source of scrap iron. They contribute over 25% of the 36 metric tonnes (40 million short tons) of ferrous scrap recovered annually by the secondary metals industry and used in the production of finished steel products. They also contribute over one million metric tonnes (1.1 million short tons) of nonferrous metallic scrap a year for recycling. For each ton of metals recovered, about 500 lb of nonmetallic residue or waste is co-produced. Auto shredder residue (ASR) is a very heterogeneous mixture of solids and liquids. Table I lists most of the materials that are commonly present in the ASR are listed. We have developed and tested in the laboratory a three-step process to separate thermoplastics, and other potentially recyclable products, from ASR. The process involves a drying step followed by a mechanical separation step to concentrate the thermoplastics by separating the polyurethane foam and the fines, which are mostly metal oxides and other inert materials that are smaller than 0.62 cm (0.25 in.) in size. The concentrated plastics stream is then treated with organic solvents at ambient pressure and elevated temperatures to dissolve the desired plastics. The salient features of the process are described.

  6. Structure and dynamics of liquid CS2: Going from ambient to elevated pressure conditions

    NASA Astrophysics Data System (ADS)

    Skarmoutsos, Ioannis; Mossa, Stefano; Samios, Jannis

    2016-10-01

    Molecular dynamics simulation studies were performed to investigate the structural and dynamic properties of liquid carbon disulfide (CS2) from ambient to elevated pressure conditions. The results obtained have revealed structural changes at high pressures, which are related to the more dense packing of the molecules inside the first solvation shell. The calculated neutron and X-ray structure factors have been compared with available experimental diffraction data, also revealing the pressure effects on the short-range structure of the liquid. The pressure effects on the translational, reorientational, and residence dynamics are very strong, revealing a significant slowing down when going from ambient pressure to 1.2 GPa. The translational dynamics of the linear CS2 molecules have been found to be more anisotropic at elevated pressures, where cage effects and librational motions are reflected on the shape of the calculated time correlation functions and their corresponding spectral densities.

  7. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6 ns, 1064 nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ∼300 Torr, while the electron density showed a maximum ∼100 Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  8. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  9. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  10. Novel lithium-nitrogen compounds at ambient and high pressures

    PubMed Central

    Shen, Yanqing; Oganov, Artem R.; Qian, Guangri; Zhang, Jin; Dong, Huafeng; Zhu, Qiang; Zhou, Zhongxiang

    2015-01-01

    Using ab initio evolutionary simulations, we predict the existence of five novel stable Li-N compounds at pressures from 0 to 100 GPa (Li13N, Li5N, Li3N2, LiN2, and LiN5). Structures of these compounds contain isolated N atoms, N2 dimers, polyacetylene-like N chains and N5 rings, respectively. The structure of Li13N consists of Li atoms and Li12N icosahedra (with N atom in the center of the Li12 icosahedron) – such icosahedra are not described by Wade-Jemmis electron counting rules and are unique. Electronic structure of Li-N compounds is found to dramatically depend on composition and pressure, making this system ideal for studying metal-insulator transitions. For example, the sequence of lowest-enthalpy structures of LiN3 shows peculiar electronic structure changes with increasing pressure: metal-insulator-metal-insulator. This work also resolves the previous controversies of theory and experiment on Li2N2. PMID:26374272

  11. An Exploratory Investigation of Jet Blast Effects on a Dust Covered Surface at Low Ambient Pressure

    NASA Technical Reports Server (NTRS)

    1961-01-01

    An Exploratory Investigation of Jet Blast Effects on a Dust Covered Surface at Low Ambient Pressure. A preliminary investigation has been conducted to determine the effects of jet blast, at low ambient pressures, on a surface covered with loose particles. Tests were conducted on configurations having from one to four nozzles at 0, 10, 20, and 30 degree cant angles and heights of 2 and 4 inches above the particle-covered surface. [Entire movie available on DVD from CASI as Doc ID 20070030966. Contact help@sti.nasa.gov

  12. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  13. Interfacial Rheological Properties of Contrast Microbubble Targestar P as a Function of Ambient Pressure.

    PubMed

    Kumar, Krishna N; Sarkar, Kausik

    2016-04-01

    In this Technical Note, we determine the interfacial rheological parameters of the encapsulation of the contrast agent Targestar P using ultrasound attenuation. The characteristic parameters are obtained according to two interfacial rheological models. The properties-surface dilatational elasticity (0.09 ± 0.01 N/m) and surface dilatational viscosity (8 ± 0.1E-9 N·s/m)-are found to be of similar magnitude for both models. Contrast microbubbles experience different ambient pressure in different organs. We also measure these parameters as functions of ambient pressure using attenuation measured at different overpressures (0, 100 and 200 mm Hg). For each value of ambient hydrostatic pressure, we determine the rheological properties, accounting for changes in the size distribution caused by the pressure change. We discuss different models of size distribution change under overpressure: pure adiabatic compression or gas exchange with surrounding medium. The dilatational surface elasticity and viscosity are found to increase with increasing ambient pressure.

  14. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  15. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    SciTech Connect

    Newberg, John T. Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia; Åhlund, John

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  16. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    NASA Astrophysics Data System (ADS)

    Newberg, John T.; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  17. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers.

    PubMed

    Newberg, John T; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  18. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  19. Ambient Air Pollution and Increases in Blood Pressure: Role ...

    EPA Pesticide Factsheets

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies consistently show that exposure to PM in urban areas across the globe is associated with increases in short- and long-term cardiovascular mortality and morbidity, most notably for myocardial infarction, heart failure and ischemic stroke.1 The range in strength of these associations is likely related to variation in PM sources and composition across space and time, and attests to the need to understand the contribution of specific sources to ultimately inform regulatory, public health and clinical strategies to reduce risk. Commentary: In 2014 a systematic review and meta-analysis published in this journal reported a positive association between short-term exposure to PM2.5 and blood pressure.2 The paper discussed potential mechanisms including PM-induced activation of pulmonary nociceptive receptors, pulmonary inflammatory responses and release of endothelin-1, and suggested that activation of pulmonary receptors and vagal afferents could lead to shifts in autonomic balance and vasoconstriction. Other effects including oxidative stress and decreased NO availability, as well as systemic inflammation and endothelial dysfunction have also been widely reported in association with PM compo

  20. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    SciTech Connect

    Brinker, C.J.; Prakash, S.S.

    1999-09-07

    A method for preparing aerogel thin films by an ambient-pressure, continuous process is disclosed. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  1. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  2. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  3. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.; Scaillet, B.

    2008-05-01

    Quantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mount Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, at both ambient pressure in air and high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt % H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three investigated compositions, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three investigated compositions have similar activation volumes (ΔV = 16-24 cm3 mol-1). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semiempirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modeled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV being fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mount Vesuvius and also satisfactorily predicts the electrical response of other melt compositions

  4. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    NASA Astrophysics Data System (ADS)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  5. Ambient Pressure Evaluation Through Sub-Harmonic Response of Chirp-Sonicated Microbubbles.

    PubMed

    Liu, Siyu; Wu, Jun; Gu, Yuyang; Guo, Xiasheng; Tu, Juan; Xu, Di; Zhang, Dong

    2017-01-01

    The sub-harmonic response generated by oscillating ultrasound contrast microbubbles has been proven to be a potentially efficient and effective measure for non-invasive blood pressure evaluation. In this work, an improved approach to ambient pressure measurement is proposed, and the general principle underlying this approach is the combination of sub-harmonic responses of microbubbles with a chirp excitation technique. Agreement between theoretical and experimental studies indicates that compared with sinusoidal excitation, the chirp technique is beneficial in that it produces bubble sub-harmonics with higher amplitudes and lower generation thresholds and thus offers better sensitivity for ambient pressure evaluations. Studies that took the chirp parameters (e.g., central frequency, bandwidth and pulse length) into account were also carried out to determine an optimized routine for the proposed method.

  6. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph L.; Munday, Jeremy N.

    2015-03-01

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  7. Ambient pressure dependence of the ultra-harmonic response from contrast microbubbles.

    PubMed

    Sun, Tao; Jia, Nan; Zhang, Dong; Xu, Di

    2012-06-01

    Sub-harmonic response from ultrasound contrast agent microbubbles has been demonstrated to be an effective modality for noninvasive pressure measurement. In the present study, the dependence of ultra-harmonic response on the ambient overpressure was investigated by both experimental measurements and simulations. In the measurements, the microbubbles were exposed to Gaussian pulses with varied driving frequencies and pulse lengths, at an acoustic pressure of 0.3 MPa. The amplitudes of sub- and ultra-harmonic components were measured when the ambient overpressures varied from 0-25 kPa. At the driving frequency of 1.33 MHz, the ultra-harmonic energy decreased but the sub-harmonic energy increased with the increasing overpressure; while at the driving frequency of 4 MHz, both the sub- and ultra-harmonic components showed the same tendency that the corresponding energy decreased as the overpressure was increased. A 4-MHz Gaussian pulse with 64 cycles could provide an ultra-harmonic response with both good ambient pressure sensitivity and high linearity. Furthermore, the effects of shell parameters of a microbubble on the generation of ultra- and sub-harmonic responses were discussed based on simulations using Marmottant's model. This study suggests that the ultra-harmonic response from contrast microbubbles might be applicable for noninvasive pressure measurement.

  8. Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

    NASA Astrophysics Data System (ADS)

    Atif, Hussain; Xun, Gao; Qi, Li; Zuoqiang, Hao; Jingquan, Lin

    2017-01-01

    In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.

  9. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure.

    PubMed

    Prakash, Om; Kumar, Anil; Thamizhavel, A; Ramakrishnan, S

    2017-01-06

    At ambient pressure, bulk rhombohedral bismuth is a semimetal that remains in the normal state down to at least 10 millikelvin. Superconductivity in bulk bismuth is thought to be unlikely because of the extremely low carrier density. We observed bulk superconductivity in pure bismuth single crystals below 0.53 millikelvin at ambient pressure, with an estimated critical magnetic field of 5.2 microteslas at 0 kelvin. Superconductivity in bismuth cannot be explained by the conventional Bardeen-Cooper-Schrieffer theory because its adiabatic approximation does not hold true for bismuth. Future theoretical work will be needed to understand superconductivity in the nonadiabatic limit in systems with low carrier densities and unusual band structures, such as bismuth.

  10. Superconducting state of Ca xMo 6S 8 at ambient pressure

    NASA Astrophysics Data System (ADS)

    Geantet, Christophe; Horyn, Roman; Padiou, Jean; Pen˜a, Octavio; Sergent, Marcel

    1988-06-01

    Experimental evidence is given for superconductivity of Ca xMo 6S 8 at ambient pressure. Crystal structure, susceptibility, magnetization and resistivity measurements on single crystals for x≦ 1.0 are reported. Calcium deficiencies stabilize the rhombohedral structure and inhibit the structural transition which ordinarily suppresses the superconducting state indivalent M(2+)Mo 6S 8 Chevrel phases; M(2+) =Eu, Ba, Ca, Sr.

  11. The role of an ambient pressure oxygen source during one-lung ventilation for thoracoscopic surgery.

    PubMed

    Pfitzner, J

    2016-01-01

    Video-assisted thoracoscopic surgery is facilitated by prompt collapse of the non-ventilated ('operated') lung, and interrupted and impeded if there is a need for oxygen (O2) delivery by continuous positive airways pressure in order to manage hypoxaemia. It has been proposed that connecting an ambient pressure O2 source to the airway of the non-ventilated lung at the time one-lung ventilation is initiated and before the chest is opened will, by avoiding entrainment of ambient nitrogen, serve to facilitate lung collapse. It has also been proposed that leaving the O2 source connected will enable, not only ongoing apnoeic oxygenation before the chest is opened, but also the thoracoscopic procedure to commence with the operated lung fully pre-oxygenated (with an inspired oxygen fraction of 1), and apnoeic oxygenation to continue throughout the operative procedure in those patients who exhibit a degree of small airways patency at ambient pressure. In reality, several factors can influence the speed of collapse of the operated lung, and very many factors can influence the incidence of hypoxaemia during one-lung ventilation. It therefore appears unlikely that the necessary evidence to support these proposals will be forthcoming from randomised clinical studies on large numbers of patients. Rather, the necessary evidence may only be provided by specifically designed within-patient clinical measurement studies. Nevertheless, it is argued that, in the meantime, there is already sufficient rationale for an ambient pressure O2 source to be connected to the airway of the non-ventilated lung, and for it to remain connected for the duration of one-lung ventilation.

  12. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  13. Processing of subharmonic signals from ultrasound contrast agents to determine ambient pressures.

    PubMed

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Forsberg, Flemming

    2012-04-01

    Subharmonic-aided pressure estimation (SHAPE) is a technique that utilizes the subharmonic emissions, occurring at half the insonation frequency, from ultrasound contrast agents to estimate ambient pressures. The purpose of this work was to compare the performance of different processing techniques for the raw radiofrequency (rf) data acquired for SHAPE. A closed loop flow system was implemented circulating reconstituted Sonazoid (GE Healthcare, Oslo, Norway; 0.2 ml for 750 ml diluent) and the beam-formed unprocessed rf data were obtained from a 4 mm diameter lumen of a Doppler flow phantom (ATS Laboratories, Inc., Bridgeport, CT) using a SonixRP scanner (Ultrasonix, Richmond, BC, Canada). The transmit frequency and incident acoustic pressures were set to 2.5 MHz and 0.22 MPa, respectively, in order to elicit Sonazoid subharmonic emissions that are ambient-pressure sensitive. The time-varying ambient pressures within the flow phantom were recorded by a Millar pressure catheter. Four techniques for extracting the subharmonic amplitude from the rf data were tested along with two noise filtering techniques to process this data. Five filter orders were tested for the noise removing filters. The performance was evaluated based on the least root-mean-square errors reported after linear least-square regression analyses of the subharmonic data and the pressure catheter data and compared using a repeated ANOVA. When the subharmonic amplitudes were extracted as the mean value within a 0.2 MHz bandwidth about 1.25 MHz and when the resulting temporally-varying subharmonic signal was median filtered with an order of 500, the filtered subharmonic signal significantly predicted the ambient pressures (r2 = 0.90; p < 0.001) with the least error. The resulting root mean square and mean absolute errors were 8.16 +/- 0.26 mmHg and 6.70 +/- 0.17 mmHg, respectively. Thus, median processing the subharmonic data extracted as the mean value within a 0.2 MHz bandwidth about the theoretical

  14. Effects of ambient hydrostatic pressure on the material properties of the encapsulation of an ultrasound contrast microbubble.

    PubMed

    Kumar, Krishna N; Sarkar, Kausik

    2015-08-01

    Ultrasound contrast microbubbles experience widely varying ambient blood pressure in different organs, which can also change due to diseases. Pressure change can alter the material properties of the encapsulation of these microbubbles. Here the characteristic rheological parameters of contrast agent Definity are determined by varying the ambient pressure (in a physiologically relevant range 0-200 mm Hg). Four different interfacial rheological models are used to characterize the microbubbles. Effects of gas diffusion under excess ambient pressure are investigated in detail accounting for size decrease of contrast microbubbles. Definity contrast agent show a change in their interfacial dilatational viscosity (3.6 × 10(-8) Ns/m at 0 mm Hg to 4.45 × 10(-8) Ns/m at 200 mm Hg) and interfacial dilatational elasticity (0.86 N/m at 0 mm Hg to 1.06 N/m at 200 mm Hg) with ambient pressure increase. The increase results from material consolidation, similar to such enhancement in bulk properties under pressure. The model that accounts for enhancement in material properties with increasing ambient pressure matches with experimentally measured subharmonic response as a function of ambient pressure, while assuming constant material parameters does not.

  15. Spectroscopic studies of surface gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther; Weilach, Christian

    2008-05-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH3OH, CH4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions.

  16. Exploring novel phases of Cd-O system at ambient pressure

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Ferhat, M.

    2017-02-01

    First-principles evolutionary searches are used to explore stable Cd-O compounds at ambient pressure. Besides the well-known rock-salt CdO, a new cubic thermodynamically stable phase CdO2 with space group Pa3 and two metastable compounds: zinc-blende and wurtzite phases of CdO have been discovered at ambient pressure. Among these, CdO2 was successfully synthesized with perfect structural agreement to our theoretical predictions. The global stability of the well known rock-salt phase of CdO, our calculations of elastic constants and phonon dispersion curves demonstrate that the Pa3, zinc-blende and wurtzite structures are mechanically and dynamically stable. Finally, the state-of-the-art LDA-1/2 methods reveal that at ambient conditions, zinc-blende and wurtzite phases are semiconducting with a direct band gap (Γ- Γ) of 0.89 eV and 0.97 eV respectively; whereas the semiconducting cubic-Pa3 structure shows direct band gap (Γ- Γ) of ∼2.93 eV and an indirect band gap of ∼2.58 eV agreeing well with the experimental value of ∼2.4 eV.

  17. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  18. Influence of ambient pressure on the hole formation in laser deep drilling

    NASA Astrophysics Data System (ADS)

    Döring, S.; Richter, S.; Heisler, F.; Ullsperger, T.; Tünnermann, A.; Nolte, S.

    2013-09-01

    We investigate the temporal evolution of the hole depth and shape for percussion drilling at different ambient pressure conditions. Deep drilling is performed in silicon as target material by ultrashort laser pulses at 1030 nm and a duration of 8 ps. Simultaneously, the backlit silhouette of the hole is imaged perpendicular to the drilling direction. While typical process phases like depth development and shape evolution are very similar for atmospheric pressure down to vacuum conditions (10-2 mbar), the ablation rate in the initial process phase is significantly increased for reduced pressure. The number of pulses till the stop of the drilling process also increases by a pressure reduction and exceeds drilling at atmospheric conditions by two orders of magnitude for a pressure of ca. 10-2 mbar. Accordingly, the maximum achievable hole depth is more than doubled. We attribute this behavior to an enlarged mean free path for ablation products at reduced pressure and therefore lower or no deposition of particles inside the hole capillary under vacuum conditions while debris fills the hole already after a few thousand pulses at atmospheric pressure. This is supported by scanning electron cross section images of the holes.

  19. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    PubMed Central

    Nakamura, Masayuki; Nakamura, Jiro; Lopez, Guillaume; Shuzo, Masaki; Yamada, Ichiro

    2011-01-01

    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution. PMID:22163984

  20. Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China.

    PubMed

    Wang, Huanbo; Yang, Fumo; Shi, Guangming; Tian, Mi; Zhang, Leiming; Zhang, Liuyi; Fu, Chuan

    2016-12-01

    To assess pollution levels of major inorganic nitrogen species and their atmospheric deposition input to sensitive ecosystems in Sichuan Basin, southwest China, ambient concentrations of oxidized (NOy ∼ NO2, HNO3, NO3(-)) and reduced (NHx = NH3, NH4(+)) nitrogen species were collected at two urban sites during four one-month periods, each in a different season from July 2014 to April 2015. Estimated annual mean concentration of NOy was 20.3 and 13.5 μg N m(-3) in Chengdu and Wanzhou, respectively, and NHx was 16.9 and 13.6 μg N m(-3), respectively. Back trajectory cluster analysis indicated that high levels of NOy and NHx in Chengdu were mainly caused by local emissions while those in Wanzhou were caused by both the local emissions and long-range transport of pollutants. On annual basis, NO2 contributed the most to NOy, followed by NO3(-) and HNO3, accounting for 87.5%, 10.5% and 2.0%, respectively, of NOy in Chengdu, and 91.4%, 6.9% and 1.7%, respectively, in Wanzhou. NH3 was the predominant contributor to NHx, contributing 65.6% and 72.2% in Chengdu and Wanzhou, respectively. Dry deposition fluxes were estimated using the inferential method with measured ambient concentrations and modelled dry deposition velocities. The total inorganic nitrogen dry deposition flux was estimated to be 21.4 and 8.5 kg N ha(-1) yr(-1), with 44.3% and 41.4% from NOy in Chengdu and Wanzhou, respectively. NO2 and NH3 each contributed about 80% of NOy and NHx dry deposition, respectively. Wet deposition was only collected in Wanzhou, where the annual wet deposition of NO3(-) and NH4(+) was 4.5 and 15.7 kg N ha(-1) yr(-1), respectively. The total wet plus dry deposition was 28.7 kg N ha(-1) yr(-1) in Wanzhou with 72.2% from reduced nitrogen. Therefore, controlling NH3 emissions from agricultural, traffic, waste containers and sewage system sources would be effective to reduce the total nitrogen deposition in the Sichuan Basin area.

  1. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    PubMed Central

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7–1.1 Å−1 corresponding to real space dimensions of 6–9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures. PMID:26738409

  2. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering.

    PubMed

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F

    2016-01-07

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.

  3. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  4. Effect of ambient pressure on a femtosecond laser induced titanium plasma

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Chuansong; Gao, Xun; Lin, Jingquan; Man, Baoyuan; Sun, Yanna; Li, Feifei

    2016-11-01

    Femtosecond laser induced Ti plasma has been characterized as a function of pressure by means of femtosecond laser induced breakdown spectroscopy (fs-LIBS). Experiments were performed with a Ti: sapphire laser system (100 fs, 800 nm), in an air pressure from 10 Pa to 104 Pa. The time-resolved spectrum has been acquired and the spectral intensities of different plasma species have been investigated with a changing ambient pressure. The Ti atomic lines decay while the ionic ones grow with an increasing pressure. The enhancement of nitrogen ionic line has also been observed. The time of flight spectroscopy is adopted to measure the expanding velocity of the plasma plume. The increasing pressure slows the plasma expansion along both axial and radial directions. The electron density and temperature are measured by means of Boltzmann plot method and Stark width method, respectively. It is concluded that higher pressure will increase the energy absorption and retard the plasma expansion, leading to larger electron density and temperature.

  5. A novel approach to scanning electron microscopy at ambient atmospheric pressure.

    PubMed

    Ominami, Yusuke; Kawanishi, Shinsuke; Ushiki, Tatsuo; Ito, Sukehiro

    2015-04-01

    Scanning electron microscopy (SEM) for observing samples at ambient atmospheric pressure is introduced in this study. An additional specimen chamber with a small window is inserted in the main specimen chamber, and the window is separated with a thin membrane or diaphragm allowing electron beam propagation. Close proximity of the sample to the membrane enables the detection of back-scattered electrons sufficient for imaging. In addition to the empirical imaging data, a probability analysis of the un-scattered fraction of the incident electron beam further supports the feasibility of atmospheric SEM imaging over a controlled membrane-sample distance.

  6. Variation of output with atmospheric pressure and ambient temperature for Therac-20 linear accelerator.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1983-01-01

    The Therac-20 (a linear accelerator manufactured by the Atomic Energy of Canada, Ltd.) employs an unsealed monitor chamber to control the dose output. Daily fluctuations in machine output for both x rays and electron beams were observed to vary with ambient temperature and atmospheric pressure. These variations were not related to any other machine parameters. Variations as large as 3.5% were seen by monitoring 18-MV x-ray output over several months. We recommend that the manufacturers take steps to eliminate the atmospheric dependence of dose rate.

  7. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  8. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    PubMed

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances.

  9. A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach

    NASA Astrophysics Data System (ADS)

    Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim

    2016-04-01

    During the past one and a half decades ambient pressure x-ray photoelectron spectroscopy (APXPS) has grown to become a mature technique for the real-time investigation of both solid and liquid surfaces in the presence of a gas or vapour phase. APXPS has been or is being implemented at most major synchrotron radiation facilities and in quite a large number of home laboratories. While most APXPS instruments operate using a standard vacuum chamber as the sample environment, more recently new instruments have been developed which focus on the possibility of custom-designed sample environments with exchangeable ambient pressure cells (AP cells). A particular kind of AP cell solution has been driven by the development of the APXPS instrument for the SPECIES beamline of the MAX IV Laboratory: the solution makes use of a moveable AP cell which for APXPS measurements is docked to the electron energy analyser inside the ultrahigh vacuum instrument. Only the inner volume of the AP cell is filled with gas, while the surrounding vacuum chamber remains under vacuum conditions. The design enables the direct connection of UHV experiments to APXPS experiments, and the swift exchange of AP cells allows different custom-designed sample environments. Moreover, the AP cell design allows the gas-filled inner volume to remain small, which is highly beneficial for experiments in which fast gas exchange is required. Here we report on the design of several AP cells and use a number of cases to exemplify the utility of our approach.

  10. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  11. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  12. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    PubMed

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  13. Pressure induced ionic-superionic transition in silver iodide at ambient temperature

    NASA Astrophysics Data System (ADS)

    Han, Y. H.; Wang, H. B.; Troyan, I. A.; Gao, C. X.; Eremets, M. I.

    2014-01-01

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω-1cm-1 could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag+ ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ˜3.4 × 10-4-8.6 × 10-4 cm2/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag+ ions, have been determined and it was suggested that Ag+ ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω-1cm-1. Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  14. Structural and dynamical properties of water under ambient and high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric

    2005-03-01

    The structural and dynamical properties of water are investigated with ab initio molecular dynamics. A series of density functional theory based simulations is presented where the effect of temperature at ambient density is explored in order to demonstrate the level of accuracy that can be achieved, and the open challenges that remain in describing liquid water [1,2]. In addition to water at ambient density, the effect of high-pressures, in a regime where molecular dissociation plays a dominant role, is explored for both liquid water and the high-pressure phases of ice. In particular, large-scale two phase simulations of water are used to determine the melting temperature of water in the range of 10 to 50 GPa [3]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. * In collaboration with Jeffery C. Grossman, Francois Gygi and Giulia Galli. [1] ``Towards an assessment of the accuracy of density functional theory for first principles simulations of water'', J. Grossman, E. Schwegler, E. Draeger, F. Gygi and G. Galli, J. Chem. Phys. 120, 300 (2004); and ``Towards an assessment of the accuracy of density functional theory for first principles simulations of water II'', E. Schwegler, J. Grossman, F. Gygi and G. Galli, J. Chem. Phys. 121, 5400 (2004). [2] ``First principles simulations of rigid water'', M. Allesch, E. Schwegler, F. Gygi and G.Galli, J. Chem. Phys. 120, 5192 (2004). [3] ``Dissociation of water under pressure'', E. Schwegler, G. Galli, F. Gygi, and R. Hood, Phys. Rev. Lett. 87, 265501 (2001); and E. Schwegler, F. Gygi and G. Galli (manuscript in preparation).

  15. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  16. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  17. Vapor pressure deficit effects on leaf area expansion and transportation of soybean subjected to soil drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of leaf-to-air vapor pressure difference (VPD) and soil water deficit on transpiration rate (TR) of plants are well understood but their effects on plant leaf area expansion (PLAE) are less defined. Both PLAE and TR are unaffected by soil drying until the fraction transpirable soil water (FT...

  18. The effect of ambient pressure on ejecta sheets from free-surface ablation

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Mansoor, M. M.; Thoroddsen, S. T.; Truscott, T. T.

    2016-05-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at 5 × 106 fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness.

  19. Formation of hydroxyl and water layers on MgO films studied with ambient pressure XPS

    NASA Astrophysics Data System (ADS)

    Newberg, John T.; Starr, David E.; Yamamoto, Susumu; Kaya, Sarp; Kendelewicz, Tom; Mysak, Erin R.; Porsgaard, Soeren; Salmeron, Miquel B.; Brown, Gordon E., Jr.; Nilsson, Anders; Bluhm, Hendrik

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H 2O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH) 2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H 2O, OH and Ox thickness changes as a function of relative humidity.

  20. Reaction of Small Insects to an Ambient Pressure Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Gray, Travis; Bourham, Mohamed; Roe, R. Michael; Long, Shengyou; Donohue, Kevin

    2003-10-01

    Ambient Pressure Dielectric Barrier Discharges (DBD's) are commonly studied for rapid sterilization of surfaces. In an effort to expand the application of DBD's to larger biological species, small insect species are directly exposed to a large gap(5 cm) DBD composed primarily of helium gas. In order to control the temperature, the electrodes are actively cooled and the current density remains low (<1 mA/cm^2). A direct measurement of the gas temperature by electrically insulated thermocouples shows that the ambient temperature in the discharge volume is below the threshold for thermal damage to the insect (40 ^oC). A microwave interferometer is used to measure the line average, time average, electron density. The electron density is between 10^8 and 10^10 cm-3 for the operating conditions of interest. Under these operating conditions, optical emission spectroscopy shows only a significant emission of helium lines with some emission of molecular nitrogen lines. Under these operational conditions green peach aphids and western flower thrips show a reduction in population by at least 50% with a 60 s exposure time. The goal of this research is to replace currently existing chemical and thermal insect control techniques with the more rapid plasma techniques for quarantine applications.

  1. Formation of Hydroxyl and Water Layers on MgO Films Studied with Ambient Pressure XPS

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak, E.R.; Porsgaard, S.; Salmeron, M.B.; Brown Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H{sub 2}O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H{sub 2}O, OH and Ox thickness changes as a function of relative humidity.

  2. First-principles study of liquid gallium at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jianjun; Tse, John S.; Iitaka, Toshiaki

    2011-07-01

    The static and dynamic properties of liquid Ga close to the melting line have been studied by first-principles molecular dynamics simulations at ambient and elevated pressure up to 5.8 GPa. Below 2.5 GPa, the nearest neighbor Ga-Ga separation shows little change, while the second and third coordination shells are compressed to shorter distances. This behavior is attributed to the gradual occupation of the interstitial sites. Detail analysis of the local geometry and dynamical behavior refutes the proposed existence of Ga2 dimers in the liquid state. In fact, both the structure and electronic properties of the liquid are found to closely resemble that of the underlying Ga-II and Ga-III crystalline phases.

  3. Ambient-Pressure Bulk Superconductivity Deep in the Magnetic State of CeRhIn5

    SciTech Connect

    Paglione,J.; Ho, P.; Maple, M.; Tanatar, M.; Taillefer, L.; Lee, Y.; Petrovic, C.

    2008-01-01

    Specific heat, magnetic susceptibility and electrical transport measurements were performed at ambient pressure on high-quality single crystal specimens of CeRhIn5 down to ultra-low temperatures. We report signatures of an anomaly observed in all measured quantities consistent with a bulk phase transition to a superconducting state at T{sub c}=110 mK. Occurring far below the onset of antiferromagnetism at T{sub N}=3.8 K, this transition appears to involve a significant portion of the available low-temperature density of electronic states, exhibiting an entropy change in line with that found in other members of the 115 family of superconductors tuned away from quantum criticality.

  4. Ceramic coating of metal by laser heat treatment at ambient pressure and temperature

    NASA Astrophysics Data System (ADS)

    Picouet, Pierre A.; McStay, Daniel; Hunter, Catherine; Tonge, Kenneth

    2000-02-01

    Initial results for a new laser based procedure to make ceramic coatings on ferrous metals are described. The procedure is performed at ambient temperature and pressure to avoid the use of a vacuum chamber. An Nd:YAG laser beam (1064 nm) coupled to a mechanical scanner is used to produce coating. The coating precursor materials are sprayed onto the metal sample before the laser-generated heat treatment. A jet of argon gas is used to avoid oxidation of the metallic substrate. The principal ingredients of the coating precursor are sodium tetraborate and a natural clay mineral. The product is a glassy ceramic. The product has been characterized by scanning electron microscopy, optical microscopy and hardness and adhesion tests. The results indicate that the surface material is a micrometric, single layer which adheres to the metal surface.

  5. Ambient pressure oxygen reservoir apparatus for use during one-lung anaesthesia.

    PubMed

    Pfitzner, J; Peacock, M J; Daniels, B W

    1999-05-01

    An ambient pressure oxygen reservoir bag apparatus for connecting to the nonventilated lung as soon as single-lung ventilation is initiated is described. The theoretical benefits are the facilitation of collapse of the lung on the side of surgery and a reduced likelihood of arterial desaturation. Although these main benefits are yet to be proven, the authors believe that the weight of theoretical argument and practical observation serves to justify the use of the apparatus while the outcome of suitably designed clinical trials is awaited. It can be used for all one-lung anaesthetics and is especially recommended for thoracoscopic surgery, where temporary re-expansion of the nonventilated lung is either counter-productive or contraindicated, and where there is a possibility that lung collapse may be delayed.

  6. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  7. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  8. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.; Giurgiu, Liviu C.; Stan, Cristina; Vişan, Gina T.; Ganciu, Mihai; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-03-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  9. Improvements on APTC (Ambient Pressure Thermal Cycling) Chamber Regarding Temperature Homogeneity and Energy Consumption

    NASA Astrophysics Data System (ADS)

    Sollner, B.; Doring, D.

    2014-06-01

    This paper describes the working principles of IABG's Ambient Pressure Thermal Cycling chamber (an alternative to thermal-vacuum tests for some cases) and our activities to characterize and improve the system. For example a 3D grid of 64 temperature sensors was installed inside the test volume, in order to determine reliable temperature distribution data for standard operating conditions. Camera monitoring inside the temperature control / fan box allowed us to study the processes. A modification of the direct injection of liquid nitrogen (for efficient cooling) by installation of defined spray nozzles improved the temperature distribution. The characteristics of the original LN2 injection valve caused enormous consumption of liquid nitrogen and electrical power even at constant chamber temperatures. A new valve with a different control characteristic reduced this standby consumption remarkably.

  10. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry.

    PubMed

    Forbes, Thomas P; Brewer, Tim M; Gillen, Greg

    2013-10-07

    Desorption electro-flow focusing ionization (DEFFI), a desorption-based ambient ion source, was developed, characterized, and evaluated as a possible source for field deployable ambient pressure mass spectrometry (APMS). DEFFI, based on an electro-flow focusing system, provides a unique configuration for the generation of highly charged energetic droplets for sample analysis and ionization. A concentrically flowing carrier gas focuses the liquid emanating from a capillary through a small orifice, generating a steady fluid jet. An electric field is applied across this jet formation region, producing high velocity charged droplets that impinge on an analyte laden surface. This configuration separates the jet charging region from the external environment, eliminating detrimental effects from droplet space charge or target surface charging. The sample desorption and ionization processes operate similar to desorption electrospray ionization (DESI). DEFFI demonstrated strong signal intensities and improved signal-to-noise ratios in both positive and negative mode mass spectrometry for narcotics, i.e., cocaine, and explosives, i.e., cyclotrimethylenetrinitramine (RDX), respectively. A characterization of DEFFI ionization mechanisms identified operation regimes of both electrospray and corona discharge based analyte ionization, as well as limitations in overall signal. In addition, the DEFFI response was directly compared to DESI-MS under similar operating conditions. This comparison established a wider and more stable optimal operating range, while requiring an order of magnitude lower applied gas pressure and applied potential for DEFFI than DESI. These reductions are due to the physical mode of jet formation and geometric configuration differences between DEFFI and DESI, pointing to a potential benefit of DEFFI-MS for field implementation.

  11. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  12. Behavior of Supported Palladium Oxide Nanoparticles under Reaction Conditions, Studied with near Ambient Pressure XPS.

    PubMed

    Jürgensen, Astrid; Heutz, Niels; Raschke, Hannes; Merz, Klaus; Hergenröder, Roland

    2015-08-04

    Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is a promising method to close the "pressure gap", and thus, study the surface composition during heterogeneous reactions in situ. The specialized spectrometers necessary for this analytical technique have recently been adapted to operate with a conventional X-ray source, making it available for routine quantitative analysis in the laboratory. This is shown in the present in situ study of the partial oxidation of 2-propanol catalyzed with PdO nanoparticles supported on TiO2, which was investigated under reaction conditions as a function of gas composition (alcohol-to-oxygen ratio) and temperature. Exposure of the nanoparticles to 2-propanol at 30 °C leads to immediate partial reduction of the PdO, followed by a continuous reduction of the remaining PdO during heating. However, gaseous oxygen inhibits the reduction of PdO below 90 °C, and the oxidation of 2-propanol to carboxylates only occurs in the presence of oxygen above 90 °C. These results support the theory that metallic palladium is the active catalyst material, and they show that environmental conditions affect the nanoparticles and the reaction process significantly. The study also revealed challenges and limitations of this analytical method. Specifically, the intensity and fixed photon energy of a conventional X-ray source limit the spectral resolution and surface sensitivity of lab-based NAP-XPS, which affect precision and accuracy of the quantitative analysis.

  13. Stripe order in La2-xBaxCuO4 at ambient and high pressure.

    NASA Astrophysics Data System (ADS)

    Huecker, M.; Wen, J. S.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.; Zimmermann, M. V.

    2009-03-01

    The pronounced stability of the charge and spin stripe order in La2-xBaxCuO4 at x=1/8 doping still is a poorly understood peculiarity. A combination of electronic and structural interactions is likely, however it has been difficult to clearly separate the involved mechanisms. One approach is to explore how stripe order fades away for dopings x !=1/8. We have performed high energy (100 keV) x-ray diffraction and static magnetization experiments on single crystals between x=0.095 and 0.155. To our surprise, at ambient pressure stripes exist in a much broader range of doping around x=1/8 than expected. In the underdoped region charge stripe order always coincides with a structural transition associated with a rotation of the octahedral tilt axis. However, for x=1/8 and high pressure we have been able to show that stripe order also occurs in the absence of this structural phase, which motivates us to discuss stripes in terms of an electronic liquid crystal phase.

  14. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  15. Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures

    SciTech Connect

    Glascoe, E A; Zaug, J M; Armstrong, M R; Crowhurst, J C; Grant, C D; Fried, L E

    2009-03-05

    The timescale and/or products of photo-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at elevated pressure (i.e. 8 GPa). Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO{sub 2}, an observed decomposition product, is complete within 30-40 s. Proof of principle time resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

  16. Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ito, Joyo; Asahara, Ryohei; Watanabe, Kenta; Nozaki, Mikito; Nakazawa, Satoshi; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    Initial oxidation of gallium nitride (GaN) (0001) epilayers and subsequent growth of thermal oxides in dry oxygen ambient were investigated by means of x-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and x-ray diffraction measurements. It was found that initial oxide formation tends to saturate at temperatures below 800 °C, whereas the selective growth of small oxide grains proceeds at dislocations in the epilayers, followed by noticeable grain growth, leading to a rough surface morphology at higher oxidation temperatures. This indicates that oxide growth and its morphology are crucially dependent on the defect density in the GaN epilayers. Structural characterizations also reveal that polycrystalline α- and β-phase Ga2O3 grains in an epitaxial relation with the GaN substrate are formed from the initial stage of the oxide growth. We propose a comprehensive model for GaN oxidation mediated by nitrogen removal and mass transport and discuss the model on the basis of experimental findings.

  17. UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)2 Surface Analysis

    NASA Astrophysics Data System (ADS)

    Head, Ashley R.; Schnadt, Joachim

    2016-12-01

    The surface sensitivity of x-ray photoelectron spectroscopy (XPS) has positioned the technique as a routine analysis tool for chemical and electronic structure information. Samples ranging from ideal model systems to industrial materials can be analyzed. Instrumentational developments in the past two decades have popularized ambient pressure XPS, with pressures in the tens of mbar now commonplace. Here, we briefly review the technique, including a discussion of developments that allow data collection at higher pressures. We illustrate the information XPS can provide by using examples from the literature, including MgO studies. We hope to illustrate the possibilities of ambient pressure XPS to Mg, MgO, and Mg(OH)2 systems, both in fundamental and applied studies.

  18. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Singh, G. P.; Ram, S.; Fecht, H.-J.

    2013-08-01

    Stable anisotropic nanorods of surface modified CrO2 (˜18 nm diameter) with a correlated diamagnetic layer (2-3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr4+ ions by Ag atoms on the CrO2 surface (topotactic surface layer) via an etching reaction of a CrO2-polymer complex with Ag+ ions in hot water followed by heating the dried sample at 300-400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO2 such that it no longer converts to Cr2O3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d5/2 and 3d3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (-) 7.6% at 77 K, than reported values in compacted CrO2 powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO2 nanorods.

  19. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  20. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    SciTech Connect

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.

  1. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  2. Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure

    PubMed Central

    Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun

    2013-01-01

    A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1−xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl2) atmosphere. Therefore, our finding, the direct transformation of a-Si1−xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349

  3. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  4. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the averagemore » structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  5. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  6. Equation of State of CAS Phase to Pressure of the Uppermost Lower Mantle at Ambient Temperature

    SciTech Connect

    X Liu; Q He; L Deng; S Zhai; X Hu; B Li; L Zhang; Z Chen; L Qiong

    2011-12-31

    The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related to slab subduction. Its equation of state has been investigated here at ambient temperature up to about 25 GPa by using a diamond-anvil cell and synchrotron X-ray radiation. Its P-V data, fitted to the third-order Birch-Murnaghan equation, yield an isothermal bulk modulus (K'{sub T}) of 185 (9) GPa and first pressure derivative (K'{sub T} ) of 7.2 (12). If K'{sub T} is fixed at 4, the derived K{sub T} is 212 (4) GPa. Additionally, the CAS phase is strongly elastically anisotropic, with its a-axis direction much less compressible than c-axis direction: K{sub T-a}:K{sub T-c} = 2.19.

  7. Synthesis of phosphorous-doped graphene by ambient pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ghosh, Anupama; Lv, Ruitao; Perera Lopez, Nestor; Berkdemir, Ayse; Elías, Ana Laura; Terrones, Humberto; Terrones, Mauricio

    2013-03-01

    Although theoretical calculations have demonstrated that phosphorous (P) doping of graphene could open the largest band gap and could possess excellent properties to become an ideal toxic gas sensor, it has not been synthesized experimentally. We have successfully synthesized large-area, monolayered P-doped graphene by an ambient pressure chemical vapor deposition (AP-CVD). In particular, triphenyl phosphene (TPP) dissolved in hexane with different concentrations of TPP has been used as phosphorous-carbon precursor. Raman spectroscopy is used extensively for characterizing the different synthesized materials. The intensity ratio of D, D', 2D and G bands and their associated shifts provide information related the nature and doping levels. The strong D-band and a prominent D'-band confirms the occurrence of doping by P-substitution. The doped graphene sheets have also been characterized by high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). In addition, results on the use of these P-doped graphene in molecular sensing will be discussed.

  8. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    SciTech Connect

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F.; Strauss, M.A.; Cao, S.; Pedraza, A.J.; Puretzky, A.A.

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  9. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  10. Light-induced catalyst and solvent-free high pressure synthesis of high density polyethylene at ambient temperature.

    PubMed

    Ceppatelli, Matteo; Bini, Roberto

    2014-04-01

    The combined effect of high pressure and electronic photo-excitation has been proven to be very efficient in activating extremely selective polymerisations of small unsaturated hydrocarbons in diamond anvil cells (DAC). Here we report an ambient temperature, large volume synthesis of high density polyethylene based only on high pressure (0.4-0.5 GPa) and photo-excitation (~350 nm), without any solvent, catalyst or radical initiator. The reaction conditions are accessible to the current industrial technology and the laboratory scale pilot reactor can be scaled up to much larger dimensions for practical applications. FTIR and Raman spectroscopy, and X-ray diffraction, indicate that the synthesised material is of comparable quality with respect to the outstanding crystalline material obtained in the DAC. The polydispersity index is comparable to that of IV generation Ziegler-Natta catalysts. Moreover the crystalline quality of the synthesised material can be further enhanced by a thermal annealing at 373 K and ambient pressure.

  11. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    SciTech Connect

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  12. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments.

    PubMed

    Murakami, Chiho; Ohmae, Eiji; Tate, Shin-ichi; Gekko, Kunihiko; Nakasone, Kaoru; Kato, Chiaki

    2011-03-01

    To examine whether dihydrofolate reductase (DHFR) from deep-sea bacteria has undergone molecular evolution to adapt to high-pressure environments, we cloned eight DHFRs from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, and subsequently purified six proteins to compare their structures, stabilities, and functions. The DHFRs showed 74-90% identity in primary structure to DHFR from S. violacea, but only 55% identity to DHFR from Escherichia coli (ecDHFR). Far-ultraviolet circular dichroism and fluorescence spectra suggested that the secondary and tertiary structures of these DHFRs were similar. In addition, no significant differences were found in structural stability as monitored by urea-induced unfolding and the kinetic parameters, K(m) and k(cat); although the DHFRs from Shewanella species were less stable and more active (2- to 4-fold increases in k(cat)/K(m)) than ecDHFR. Interestingly, the pressure effects on enzyme activity revealed that DHFRs from ambient-atmospheric species are not necessarily incompatible with high pressure, and DHFRs from deep-sea species are not necessarily tolerant of high pressure. These results suggest that the DHFR molecule itself has not evolved to adapt to high-pressure environments, but rather, those Shewanella species with enzymes capable of retaining functional activity under high pressure migrated into the deep-sea.

  13. Sequential Coordination between Lingual and Pharyngeal Pressures Produced during Dry Swallowing

    PubMed Central

    Yano, Jitsuro; Aoyagi, Yoichiro; Ono, Takahiro; Hori, Kazuhiro; Yamaguchi, Wakami; Fujiwara, Shigehiro; Kumakura, Isami; Minagi, Shogo; Tsubahara, Akio

    2014-01-01

    The aim of this study was to investigate oropharyngeal pressure flow dynamics during dry swallowing in ten healthy subjects. Tongue pressure (TP) was measured using a sensor sheet system with five measuring points on the hard palate, and pharyngeal pressure (PP) was measured using a manometric catheter with four measuring points. The order and correlations of sequential events, such as onset, peak, and offset times of pressure production, at each pressure measuring point were analyzed on the synchronized waveforms. Onset of TP was earlier than that of PP. The peak of TP did not show significant differences with the onset of PP, and it was earlier than that of PP. There was no significant difference between the offset of TP and PP. The onset of PP was temporally time-locked to the peak of TP, and there was an especially strong correlation between the onset of PP and TP at the posterior-median part on the hard palate. The offset of PP was temporally time-locked to that of TP. These results could be interpreted as providing an explanation for the generation of oropharyngeal pressure flow to ensure efficient bolus transport and safe swallowing. PMID:25580436

  14. Ambient ion soft landing.

    PubMed

    Badu-Tawiah, Abraham K; Wu, Chunping; Cooks, R Graham

    2011-04-01

    Ambient ion soft landing, a process in which polyatomic ions are deposited from air onto a surface at a specified location under atmospheric pressure, is described. Ions generated by electrospray ionization are passed pneumatically through a heated metal drying tube, their ion polarity is selected using ion deflectors, and the dry selected ions are soft-landed onto a selected surface. Unlike the corresponding vacuum soft-landing experiment, where ions are mass-selected and soft-landed within a mass spectrometer, here the ions to be deposited are selected through the choice of a compound that gives predominantly one ionic species upon ambient ionization; no mass analysis is performed during the soft landing experiment. The desired dry ions, after electrical separation from neutrals and counterions, are deposited on a surface. Characterization of the landed material was achieved by dissolution and analysis using mass spectrometry or spectrofluorimetry. The treated surface was also characterized using fluorescence microscopy, which allowed surfaces patterned with fluorescent compounds to be imaged. The pure dry ions were used as reagents in heterogeneous ion/surface reactions including the reaction of pyrylium cations with d-lysine to form the N-substituted pyridinium cation. The charged microdroplets associated with incompletely dried ions could be selected for soft landing or surface reaction by choice of the temperature of a drying tube inserted between the ion source and the electrical ion deflectors.

  15. Tricalcium silicate (C{sub 3}S) hydration under high pressure at ambient and high temperature (200 deg. C)

    SciTech Connect

    Meducin, F.; Zanni, H.; Noik, C.; Hamel, G.; Bresson, B.

    2008-03-15

    The hydration of a tricalcium silicate paste at ambient temperature and at 200 deg. C under high pressure (up to 1000 bar) has been studied. Two high pressure cells have been used, one allows in-situ electrical conductivity measurements during hydration under high pressure. The hydration products were characterized by thermal analysis, X-ray diffraction and {sup 29}Si NMR measurements. The pressure has a large kinetic effect on the hydration of a C{sub 3}S paste at room temperature. The pressure was seen to affect drastically the hydration of a C{sub 3}S paste at 200 deg. C and this study evidences the competition between the different high temperature phases during the hydration.

  16. Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies.

    PubMed

    Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A

    2012-03-07

    The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.

  17. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    PubMed

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO3:La,Rh/C/BiVO4:Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H(+) and OH(-) concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  18. Formation of the -N(NO)N(NO)- polymer at high pressure and stabilization at ambient conditions.

    PubMed

    Xiao, Hai; An, Qi; Goddard, William A; Liu, Wei-Guang; Zybin, Sergey V

    2013-04-02

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature).

  19. Formation of the –N(NO)N(NO)– polymer at high pressure and stabilization at ambient conditions

    PubMed Central

    Xiao, Hai; An, Qi; Goddard, William A.; Liu, Wei-Guang; Zybin, Sergey V.

    2013-01-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  20. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  1. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  2. A novel dry coal feeding concept for high-pressure gasifiers

    NASA Technical Reports Server (NTRS)

    Trumbull, H. E.; Davis, H. C.

    1977-01-01

    A novel dry coal feeding concept was developed for injecting ground coal into high-pressure gasifiers. Significant power savings are projected because the coal is injected directly with a ram and there is no requirement for pumping large volumes of gas or fluid against pressure. A novel feature of the concept is that a new seal zone is formed between the ram and injection tube each cycle. The seal zone comprises a mixture of a small quantity of finely ground coal and a fluid. To demonstrate the feasibility of the concept, coal was injected into a 1000-psi chamber with an experimental device having a 7-1/2-inch-diameter ram and a 28-inch-long stroke.

  3. Low temperature passivation of Si1-xGex alloys by dry high pressure oxidation

    NASA Astrophysics Data System (ADS)

    Caragianis, C.; Shigesato, Y.; Paine, D. C.

    1994-09-01

    Thermal passivation of Si1-xGex using high pressure (70 MPa) oxidation was studied for potential use in MOS-device applications. Alloys of CVD-grown Si1-xGex (x = 10 and 15 at.%, 200 and 150 nm thick, respectively), were oxidized at 500 and 550°C using high purity dry oxygen at a pressure of 70 MPa. For comparative purposes, a second set of alloys were oxidized using conventional wet atmospheric pressure oxidation at 800°C. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and metal-oxide semiconductor capacitance-voltage (C-V) measurements were used to characterize the as-grown oxides. Chemical analysis by XPS confirmed that under high pressure conditions compositionally congruent oxides are grown from these alloys. High resolution TEM and Raman spectroscopy show that the as-grown oxide/semiconductor interface is planar and free of Ge enrichment on a scale of 1-2 monolayers. A midgap interface state density for both the 10 and 15 at.% samples of 1 × 1012 cm-2 eV-1 was estimated based on 1 MHz C-V measurement.

  4. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  5. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure

    NASA Astrophysics Data System (ADS)

    Kaminska, E.; Kaminski, K.; Paluch, M.; Ngai, K. L.

    2006-04-01

    Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature Tg, the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the α relaxation and an additional faster γ process at the megahertz frequency range. By decreasing temperature below Tg at ambient pressure or by elevating pressure above Pg, the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary β-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the β-relaxation time τβ to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary β relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the β relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their γ relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and γ relaxation are further demonstrated by the nearly perfect superposition of the α-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same α-peak frequency), but not the γ-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the β-loss peak shifts to lower frequencies, but not the γ relaxation. Basing on these experimental facts, the faster γ relaxation is a local intramolecular process involving a side group and the slower β relaxation

  6. Optimisation of the round window opening in cochlear implant surgery in wet and dry conditions: impact on intracochlear pressure changes.

    PubMed

    Mittmann, Philipp; Ernst, A; Mittmann, M; Todt, I

    2016-11-01

    To preserve residual hearing in cochlear implant candidates, the atraumatic insertion of the cochlea electrode has become a focus of cochlea implant research. In a previous study, intracochlear pressure changes during the opening of the round window membrane were investigated. In the current study, intracochlear pressure changes during opening of the round window membrane under dry and transfluid conditions were investigated. Round window openings were performed in an artificial cochlear model. Intracochlear pressure changes were measured using a micro-optical pressure sensor, which was placed in the apex. Openings of the round window membrane were performed under dry and wet conditions using a cannula and a diode laser. Statistically significant differences in the intracochlear pressure changes were seen between the different methods used for opening of the round window membrane. Lower pressure changes were seen by opening the round window membrane with the diode laser than with the cannula. A significant difference was seen between the dry and wet conditions. The atraumatic approach to the cochlea is assumed to be essential for the preservation of residual hearing. Opening of the round window under wet conditions produce a significant advantage on intracochlear pressure changes in comparison to dry conditions by limiting negative outward pressure.

  7. Radiation of X-rays using polarized LiNbO3 single crystal in low-pressure ambient gas.

    PubMed

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Yoshikado, Shinzo

    2009-09-01

    The dependence of X-ray intensity on the pressure and type of ambient gas was investigated for LiNbO(3) single crystals polarized in the c-axis direction at pressures of approximately 1 to 30 Pa. Ionization of surrounding gas molecules by the electric field generated by the crystal led to the production of both positive ions and free electrons. The electrons were accelerated toward a Cu target, radiating both white X-rays and X-rays specific to the crystal or target material by bremsstrahlung. The integrated X-ray intensity per cycle in the energy range 1 to 20 keV showed a local maximum value at a pressure P(max). The logarithm of P(max) was proportional to the Boltzmann factor using the first ionization energy of each ambient gas molecule. The value of P(max) was found to be independent of the electrical surface area of the crystal. The integrated X-ray intensity was approximated qualitatively by a quadratic function with pressure, which was upwardly convex. It was found that one of the causes of the reduction in X-ray intensity at pressures P > P(max) is the adsorption of positive ions generated by the ionization of gas molecules on the negative electric surface. It was also discovered that the lifetime of the X-ray radiation device could be improved when the X-ray radiation case was covered with another hermetically sealed decompression case. The gas with the smallest first ionization energy, with a partial pressure of P(max), was enclosed inside the X-ray radiation case (inner case) and the gas with the largest first ionization energy was enclosed at a suitable pressure between the inner and outer cases.

  8. Stream ambient noise, spectrum and propagation of sounds in the goby Padogobius martensii: sound pressure and particle velocity.

    PubMed

    Lugli, Marco; Fine, Michael L

    2007-11-01

    The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.

  9. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation

    PubMed Central

    Ren, Yan; Zhao, Xian; Hagley, Edward W.; Deng, Lu

    2016-01-01

    Noncentrosymmetric potassium dihydrogen phosphate (KH2PO4 or KDP) in the tetragonal crystal phase is arguably the most extensively studied nonlinear optical crystal in history. It has prolific applications ranging from simple laser pointers to laser inertial confinement fusion systems. Recently, type IV high-pressure KDP crystal sheets with a monoclinic crystal phase having centrosymmetric properties have been observed. However, it was found that this new crystal phase is highly unstable under ambient conditions. We report ambient-condition growth of one-dimensional, self-assembled, single-crystalline KDP hexagonal hollow/solid-core microstructures that have a molecular structure and symmetry identical to the type IV KDP monoclinic crystal that was previously found to exist only at extremely high pressures (>1.6 GPa). Furthermore, we report highly efficient bulk optical second harmonic generation (SHG) from these ambient condition–grown single-crystalline microstructures, even though they have a highly centrosymmetric crystal phase. However, fundamental physics dictates that a bulk optical medium with a significant second-order nonlinear susceptibility supporting SHG must have noncentrosymmetric properties. Laue diffraction analysis reveals a weak symmetry-breaking twin-crystal lattice that, in conjunction with tight confinement of the light field by the tubular structure, is attributed to the significant SHG even with sample volumes <0.001 mm3. A robust polarization-preserving effect is also observed, raising the possibility of advanced optical technological applications. PMID:27574703

  10. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    SciTech Connect

    Steimke, J

    2005-07-29

    are included to allow variation of the operating pressure in the range of 1 to 2 bar. Hydrogen generated at the cathode of the cell can be collected for the purpose of flow measurement and composition analysis. The test facility proved to be easy to operate, versatile, and reliable. Two slightly different SDE's were designed, procured and tested. The first electrolyzer was based on a commercially available PEM water electrolyzer manufactured by Proton Energy Systems, Inc. (PES). The PES electrolyzer was built with Hastelloy B and Teflon wetted parts, a PEM electrolyte, and porous titanium electrodes. The second electrolyzer was assembled for SRNL by the University of South Carolina (USC). It was constructed with platinized carbon cloth electrodes, a Nafion 115 PEM electrolyte, carbon paper flow fields, and solid graphite back plates. Proof-of-concept testing was performed on each electrolyzer at near-ambient pressure and room temperature under various feed conditions. SDE operation was evidenced by hydrogen production at the cathode and sulfuric acid production at the anode (witnessed by the absence of oxygen generation) and with cell voltages substantially less than the theoretical reversible voltage for simple water electrolysis (1.23 V). Cell performance at low currents equaled or exceeded that achieved in the two-compartment cells built by Westinghouse Electric Corporation during the original development of the HyS Process. Performance at higher currents was less efficient due to mass transfer and hydraulic issues associated with the use of cells not optimized for liquid feed. Test results were analyzed to determine performance trends, improvement needs, and long-term SDE potential. The PES cell failed after several days of operation due to internal corrosion of the titanium electrodes in the presence of sulfuric acid. Although it was anticipated that the titanium would react in the presence of acid, the rapid deterioration of the electrodes was unexpected. The

  11. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  12. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    SciTech Connect

    Zhu, Zhongwei

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  13. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    PubMed

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  14. Ambient temperature and air pressure modulate hormones and behaviour in Greylag geese (Anser anser) and Northern bald ibis (Geronticus eremita).

    PubMed

    Dorn, Sebastian; Wascher, Claudia A F; Möstl, Erich; Kotrschal, Kurt

    2014-10-01

    Ambient temperature and air pressure are relevant stimuli that can elicit hormonal responses in alignment with adjusting individuals' physiology and behaviour. This study investigated possible changes in corticosterone (C) and testosterone (T) and contingencies with behaviour in response to ambient temperature and air pressure, and it evaluated the temporal response dynamics of these hormones in 12 individual Greylag geese (Anser anser) over 26 and 12 individual Northern bald ibis (Geronticus eremita) over 27 days, during late winter. Immunoreactive metabolites of C and T were analysed non-invasively from 626 fecal samples by means of group-specific antibodies and correlated to behaviour and weather factors. In both species, high C levels correlated with low temperatures 24h before sampling, but low C levels correlated with high air pressure 6-12h before sampling. In both species, C levels and behavioural activity were negatively correlated. In addition, temperature had a positive influence on T levels in both species 12-24h before sampling. The fact that weather conditions influenced changes in levels of C, while social interactions did not, is indicative of a general mechanism of graduated physiological adjustment to environmental variations affecting metabolism, stress responses and behaviour.

  15. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions.

    PubMed

    Bäumer, Marcus; Libuda, Jörg; Neyman, Konstantin M; Rösch, Notker; Rupprechter, Günther; Freund, Hans-Joachim

    2007-07-21

    We investigated the decomposition and (partial) oxidation of methanol on Pd based catalysts in an integrated attempt, simultaneously bridging both the pressure and the materials gap. Combined studies were performed on well-defined Pd model catalysts based on ordered Al(2)O(3) and Fe(3)O(4) thin films, on well-defined particles supported on powders and on Pd single crystals. The interaction of Pd nanoparticles and Pd(111) with CH(3)OH and CH(3)OH/O(2) mixtures was examined from ultrahigh vacuum conditions up to ambient pressures, utilizing a broad range of surface specific vibrational spectroscopies which included IRAS, TR-IRAS, PM-IRAS, SFG, and DRIFTS. Detailed kinetic studies in the low pressure region were performed by molecular beam methods, providing comprehensive insights into the microkinetics of the reaction system. The underlying microscopic processes were studied theoretically on the basis of specially designed 3-D nanocluster models containing approximately 10(2) metal atoms. The efficiency of this novel modelling approach was demonstrated by rationalizing and complementing pertinent experimental results. In order to connect these results to the behavior under ambient conditions, kinetic and spectroscopic investigations were performed in reaction cells and lab reactors. Specifically, we focused on (1) particle size and structure dependent effects in methanol oxidation and decomposition, (2) support effects and their relation to activity and selectivity, (3) the influence of poisons such as carbon, and (4) the role of oxide and surface oxide formation on Pd nanoparticles.

  16. The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature

    SciTech Connect

    Delle Site, A.

    1997-01-01

    The experimental techniques and the prediction procedures for the determination or evaluation of the vapor pressure of environmentally relevant organic compounds are described; with 259 references examined. For each of them the characteristics of precision and accuracy are given, when available from the literature. The experimental methods are classified as {open_quotes}direct{close_quotes} and {open_quotes}indirect.{close_quotes} The first class includes all those which can measure directly the vapor pressure, while the second concerns those which need {open_quotes}known{close_quotes} vapor pressures of reference compounds for the calibration. Prediction methods are based on the application of the Clapeyron{endash}Clausius equation or on the quantitative structure-property relationships. Also correlation methods require a suitable calibration. The vapor pressures at ambient temperature for several polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and furans, selected pesticides, and some reference compounds are tabulated together with the vapor pressure equations and the enthalpy values in the temperature range of measurement. A critical comparison, based on a statistical analysis of the data obtained with different methods and derived from 152 references, is also carried out. {copyright} {ital 1996 American Institute of Physics and American Chemical Society.}{ital Key words:} chlorinated biphenyls; chlorinated dioxins; critically reviewed data; critically reviewed methods; pesticides; polynuclear aromatics; vapor pressure. {copyright} {ital 1996} {ital American Institute of Physics and American Chemical Society}

  17. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.

    1987-01-01

    A stable and reproducible superconductivity transition between 80 and 93 K has been achieved and maintained in a Y-Ba-Cu-O compound system at ambient pressure in a simple liquid-nitrogen Dewar. An upper critical field Hc2(0) estimate of between 80 and 180 T is obtained, and the paramagnetic limiting field at 0 K for a sample with a T(c) of about 90 K is 165 T. It is suggested that the lattice parameters, the valence ratio, and the sample treatments all play a role in achieving superconductivity above 77 K.

  18. The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Delle Site, Alessandro

    1997-01-01

    The experimental techniques and the prediction procedures for the determination or evaluation of the vapor pressure of environmentally relevant organic compounds are described; with 259 references examined. For each of them the characteristics of precision and accuracy are given, when available from the literature. The experimental methods are classified as "direct" and "indirect." The first class includes all those which can measure directly the vapor pressure, while the second concerns those which need "known" vapor pressures of reference compounds for the calibration. Prediction methods are based on the application of the Clapeyron-Clausius equation or on the quantitative structure-property relationships. Also correlation methods require a suitable calibration. The vapor pressures at ambient temperature for several polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and furans, selected pesticides, and some reference compounds are tabulated together with the vapor pressure equations and the enthalpy values in the temperature range of measurement. A critical comparison, based on a statistical analysis of the data obtained with different methods and derived from 152 references, is also carried out.

  19. Prediction of Solids Circulation Rate of Cork Particles in an Ambient-Pressure Pilot-Scale Circulating Fluidized Bed

    SciTech Connect

    Huang, Yue; Turton, Richard; Famouri, Parviz; Boyle, Edward J.

    2009-01-07

    Circulating fluidized beds (CFB) are currently used in many industrial processes for noncatalytic and catalytic because its effective control is the key to smooth operation of a CFB system. This paper presents a method for solids flow metering from pressure drop measurements in the standpipe dense phase. A model based on the Ergun equation is developed to predict the solids flow rate and voidage in the dense phase of the standpipe. The profile of the solids flow rate under unsteady state is also presented. With the use of this method, the dynamic response time at different locations along the standpipe of a pilot-scale fluidized bed operating at ambient conditions with 812 mu m cork particles is estimated successfully. Through the use of a pressure balance analysis, solids flow models for the standpipe, riser, and other sections of the flow loop are combined to give an integrated CFB model.

  20. Monitoring ambient air pollutants and apply Woods' model in the prediction seasonal dry deposition at Chang-Hua (urban) and Kao-Mei (wetland) county, Taiwan.

    PubMed

    Fang, Guor-Cheng; Chang, Chia-Ying

    2014-09-01

    The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) in total suspended particulate (TSP) concentration and dry deposition. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) were evaluated using Woods' model at urban and wetland areas for the 2009-2010 period. The results indicated that the mean highest concentrations of metallic elements Mn, Fe, Zn, Cr, Cu and Pb in TSP were found in Chang-Hua (urban) sampling site. And as for the two characteristic sampling sites, the Woods' model exhibits better dry deposition of particulates of 18 µm particle size than the rest of the other particle sizes at any sampling site in this study. The average calculated/measured flux ratios for two seasons (summer and fall) by using Woods model at 2.5, 10 and 18 µm particles sizes were also studied. The results indicated that the average calculated/measured flux ratios orders for two seasons of various particles sizes were all displayed as Fe > Mn > Zn > Cu > Cr > Pb > particle. And these calculated/measured flux ratios orders were Fe > Mn > Cu > Zn > Cr > Pb > particle and were Fe > Mn > Zn > Cu > Cr > particle > Pb, during spring and winter seasons, respectively. Finally, in the spring and summer seasons of Gao-Mei (wetland) sampling site, the average calculated/measured flux ratios using Woods' model was found to be 2.5, 10 and 18 µm, showing the order of the calculated/measured flux ratios to be Fe > Cu > Zn > Mn > Cr > Pb > particle. And the calculated/measured flux ratio orders were Fe > Zn > Mn > Cu > Cr > particle > Pb and were Fe > Cu > Zn > Mn > Cr > particle > Pb for fall and winter season, respectively.

  1. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser).

    PubMed

    Frigerio, Didone; Dittami, John; Möstl, Erich; Kotrschal, Kurt

    2004-05-15

    In many species, seasonal activities such as reproduction or migration need to be fine-tuned with weather conditions. Air pressure and temperature changes are the best parameters for such conditions. Adapting to climatic changes invariably involves physiological and behavioral reactions associated with the adrenals. In the present study, we investigated the effects of ambient temperature and air pressure on excreted immuno-reactive metabolites of corticosterone (BM) and androgens (AM). Focal individuals were 14 paired male greylag geese (Anser anser) from a semi-tame, unrestrained flock. BM and AM were measured in individual fecal samples over 25 days in November and December. Two different ACTH-validated assays were used for the assessment of BM: the first one cross-reacting with 11beta,21-diol-20-one structures ("old assay") and the second one with 5beta,3alpha,11beta-diol structures ("new assay"). With the "new assay," BM correlated negatively with the minimum ambient temperature of the night before, which may reflect corticosterone involvement in thermoregulation. BM also correlated positively with the minimum air pressure of the previous afternoon, which supports the value of air pressure for predicting weather conditions. Together, these reactions suggest a role of the adrenals in responding behaviorally and physiologically to changes in weather. Preliminary analysis indicated a higher sensitivity to the excreted glucocorticosteroid metabolites in the "new assay." As expected for outside the mating season, no relationships were found between excreted AM and the weather parameters considered. The gradual changes in BM excretion in parallel with weather conditions may be part of the fine-tuning of physiology and behavior by environmental clues.

  2. Synthetic Lead Bromapatite: X-ray Structure at Ambient Pressure and Compressibility up to about 20 GPa

    SciTech Connect

    X Liu; M Fleet; S Shieh; Q He

    2011-12-31

    Lead bromapatite [Pb{sub 10}(PO{sub 4}){sub 6}Br{sub 2}] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO{sub 4} tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite (P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K{sub T}) of 49.8(16) GPa and first pressure derivative (K{sub T}) of 10.1(10). If K{sub T} is fixed at 4, the derived K{sub T} is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli ({approx}5%) of the calcium apatites fluorapatite [Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}], chlorapatite [Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}] and hydroxylapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.

  3. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  4. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  5. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  6. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  7. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    NASA Astrophysics Data System (ADS)

    Sarawade, Pradip B.; Shao, Godlisten N.; Quang, Dang Viet; Kim, Hee Taik

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as a silica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400 °C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silica aerogels.

  8. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  9. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  10. Characterization of Ultrafast Laser-Ablation Plasma Plumes at Various Ar Ambient Pressures

    SciTech Connect

    Diwakar, P. K.; Harilal, S. S.; Phillips, Mark C.; Hassanein, A.

    2015-07-28

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plume species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. Possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.

  11. Molecular dynamics at ambient and elevated pressure of the amorphous pharmaceutical: Nonivamide (pelargonic acid vanillylamide)

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Hawelek, L.; Paluch, M.; Sawicki, W.; Ngai, K. L.

    2011-01-01

    Broadband dielectric spectroscopy was employed to investigate the relaxation dynamics of supercooled and glassy nonivamide—the synthetic form of capsaicin being the most spicy-hot substance known to man. The material is of great importance in the pharmaceutical industry because it has wide usage in the medical field for relief of pain, and more recently it has been shown to be effective in fighting cancers. Dielectric measurements carried out at various isobaric and isothermal conditions (pressure up to 400 MPa) revealed very narrow α-loss peak and unresolved secondary relaxations appearing in the form of an excess wing on the high frequency flank. Moreover, our studies have shown the shape of dielectric loss spectrum at any fixed loss peak frequency is invariant to different combinations of temperature and pressure, i.e., validity of the time-temperature-pressure superpositioning. We also found the fragility index is nearly constant on varying pressure. This property is likely due to the unusual structure of nonivamide, which has a part characteristic of van der Waals glass-former and another part characteristic of hydrogen-bonded glass-former.

  12. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  13. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  14. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  15. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... over two 6-hour time periods during which reference pressure and flow rate measurements shall be made... quantitative volumetric flow rate of the air stream caused by the sampler to enter the sampler inlet and pass... this test, an alternative certified flow measurement device may be used as long as...

  16. Observation of in situ oxidation dynamics of vanadium thin film with ambient pressure X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Geonhwa; Yoon, Joonseok; Yang, Hyukjun; Lim, Hojoon; Lee, Hyungcheol; Jeong, Changkil; Yun, Hyungjoong; Jeong, Beomgyun; Crumlin, Ethan; Lee, Jouhahn; Lee, Jaeyoung; Ju, Honglyoul; Mun, Bongjin Simon

    2016-11-01

    The evolution of oxidation/reduction states of vanadium oxide thin film was monitored in situ as a function of oxygen pressure and temperature via ambient pressure X-ray photoemission spectroscopy. Spectra analysis showed that VO2 can be grown at a relatively low temperature, T ˜ 523 K, and that V2O5 oxide develops rapidly at elevated oxygen pressure. Raman spectroscopy was applied to confirm the formation of VO2 oxide inside of the film. In addition, the temperature-dependent resistivity measurement on the grown thin film, e.g., 20 nm exhibited a desirable metal-insulator transition of VO2 with a resistivity change of ˜1.5 × 103 times at 349.3 K, displaying typical characteristics of thick VO2 film, e.g., 100 nm thick. Our results not only provide important spectroscopic information for the fabrication of vanadium oxides, but also show that high quality VO2 films can be formed at relatively low temperature, which is highly critical for engineering oxide film for heat-sensitive electronic devices.

  17. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    PubMed

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  18. Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line

    SciTech Connect

    Lee, Chi Young; Lee, Sang Yong

    2010-01-15

    In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air-water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%. (author)

  19. A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Ehernberger, L. J.

    1985-01-01

    The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

  20. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed Central

    Muller, F L

    1995-01-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses. PMID:8800853

  1. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  2. Nitric acid dihydrate at ambient and high pressure: An experimental and computational study

    SciTech Connect

    Walker, Martin; Pulham, Colin R.; Morrison, Carole A.; Allan, David R.; Marshall, William G.

    2006-06-01

    The high pressure structural behavior of nitric acid dihydrate ([H{sub 3}O]{sup +}{center_dot}[NO{sub 3}]{sup -}{center_dot}H{sub 2}O) has been investigated up to 3.8 GPa using single crystal x-ray diffraction and neutron powder diffraction techniques. A new structural phase has been identified above 1.33 GPa and this has been further studied by ab initio quantum mechanical calculations. These have guided the refinement by neutron powder diffraction.

  3. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  4. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.

    PubMed

    Deshmukh, Sanket; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2014-06-06

    Understanding the phase behavior of confined water is central to fields as diverse as heterogeneous catalysis, corrosion, nanofluidics, and to emerging energy technologies. Altering the state points (temperature, pressure, etc.) or introduction of a foreign surface can result in the phase transformation of water. At room temperature, ice nucleation is a very rare event and extremely high pressures in the GPa-TPa range are required to freeze water. Here, we perform computer experiments to artificially alter the balance between electrostatic and dispersion interactions between water molecules, and demonstrate nucleation and growth of ice at room temperature in a nanoconfined environment. Local perturbations in dispersive and electrostatic interactions near the surface are shown to provide the seed for nucleation (nucleation sites), which lead to room temperature liquid-solid phase transition of confined water. Crystallization of water occurs over several tens of nanometers and is shown to be independent of the nature of the substrate (hydrophilic oxide vs. hydrophobic graphene and crystalline oxide vs. amorphous diamond-like carbon). Our results lead us to hypothesize that the freezing transition of confined water can be controlled by tuning the relative dispersive and electrostatic interaction.

  5. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure.

    PubMed

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-31

    The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a "nanoreactor" is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  6. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    PubMed Central

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  7. Real-time studies of the atomic layer deposition of metal oxides using Ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnadt, Joachim; Head, Ashley R.; Chaudhary, Shilpi; Yngman, Sofie; Johansson, Niclas; Snezhkova, Olesia; Knudsen, Jan; Andersen, Jesper N.; Bluhm, Hendrik; Mikkelsen, Anders; Timm, Rainer

    2014-03-01

    Performing atomic layer deposition (ALD) of metal oxides at pressures around 0.01 mbar slows the half reactions of the process to allow in situ real-time probing of changes in the surface electronic structure using Ambient pressure x-ray photoelectron spectroscopy (APXPS). By monitoring the ALD process as it occurs, new details on the mechanisms of interface formation and thin film growth can be obtained. The deposition of HfO2 on InAs and the deposition of TiO2 on rutile titania from transition metal complexes and water were studied with APXPS. Predictable, cyclic chemical shifts of ligand and substrate ionizations are seen in the growth of the films, but the kinetics of the film growth differs for the two systems. Upon exposure to the titania surface, the titanium precursor reacts straightaway and gradually proceeds to completion. In contrast, the hafnium precursor does not interact with the surface immediately. Once an activation barrier is surpassed, the reaction occurs instantaneously. By understanding the reactivity of different precursors, the ALD process can be more easily optimized in applications that require thin films of metal oxides such as metal-oxide-semiconductor devices and catalytic surfaces. Support by the Swedish Research Council (grant no. 2010-5080) is gratefully acknowledged.

  8. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    SciTech Connect

    Starr, David E.; Wong, Ed K.; Worsnop, Douglas R.; Wilson, Kevin R.; Bluhm, Hendrik

    2008-05-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50...150 {micro}m is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100...1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a {chi} = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  9. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 plus.

    PubMed

    Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A

    2005-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction

  10. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  11. Concentrations of particulates in ambient air, gaseous elementary mercury (GEM), and particulate-bound mercury (Hg(p)) at a traffic sampling site: a study of dry deposition in daytime and nighttime.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Chang, Chia-Ying; Zheng, Yu-Cheng

    2014-08-01

    In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m(3), 3.17, and 0.024 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m(2) min and 0.022 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m(3), 2.74, and 0.018 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m(2) min and 0.016 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.

  12. Dry and Wet Friction of Plagioclase: Pure Cataclastic Flow(CF) vs. CF with Concurrent Pressure Solution

    NASA Astrophysics Data System (ADS)

    He, C.; Tan, W.

    2015-12-01

    To distinguish different deformation mechanisms at hydrothermal conditions, friction experiments of plagioclase under nominally dry conditions were compared with that at hydrothermal conditions documented in a previous study[He et al.,2013]. Preliminary result[Tan and He, 2008] shows that the rate dependence of plagioclase under confining pressure of 150MPa and nominally dry conditions is velocity strengthening at temperatures of 50-600oC, in contrast to the full velocity weakening at hydrothermal conditions. Here a) we conducted data fitting to the rate and state friction law to compare with the hydrothermal case; b) microstructural comparison was performed to understand the difference between the dry and wet conditions in the operative deformation mechanisms. The evolution effect (b value) under dry conditions exhibits much smaller values than that at wet conditions, and in contrast to the increasing trend at wet conditions, b values under dry conditions have a decreasing trend as temperature increases, from ~0.007 at 300oC down to 0 at 600oC. The direct effect (a value) at dry conditions has a peak of ~0.01 at 300oC and decreases to a level of 0.007-0.008 at higher temperatures, in contrast to the increasing trend seen at hydrothermal conditions. In the dry case, microstructure at temperatures of 300-600oC transitions gradually from a fabric characterized by localized Riedel shear zones to pervasive shear deformation, with the grain size reduced to a level of 1-3 micron in a submicron matrix in the latter case, corresponding to a lower porosity. The close association between porosity evolution and that of state variable revealed in previous studies[Morrow and Byerlee, 1989; Marone et al.,1990] suggests that the porosity change contributes largely to the evolution effect in addition to plasticity at intergranular contacts, probably due to gradual switching between different densities of packing. Our dry experiments indicate a cataclastic flow where the evolution

  13. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  14. Strong ferromagnetic exchange interaction under ambient pressure in BaFe2S3

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Jin, S. J.; Yi, Ming; Song, Yu; Jiang, H. C.; Zhang, W. L.; Sun, H. L.; Luo, H. Q.; Christianson, A. D.; Bourret-Courchesne, E.; Lee, D. H.; Yao, Dao-Xin; Birgeneau, R. J.

    2017-02-01

    Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe2S3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351; T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015), 10.1103/PhysRevLett.115.246402]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (S JR=-71 ±4 meV) along the rung direction, an antiferromagnetic S JL=49 ±3 meV along the leg direction, and a ferromagnetic S J2=-15 ±2 meV along the diagonal direction. Our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.

  15. Surface analysis of all elements with isotopic resolution at high ambient pressures using ion spectroscopic techniques

    SciTech Connect

    Smentkowski, V.S.; Krauss, A.R.; Gruen, D.M.; Holecek, J.C.; Schultz, J.A.

    1997-09-01

    The authors have developed a mass spectrometer capable of surface analysis using the techniques of secondary ion mass spectroscopy (SIMS) and mass spectroscopy of recoiled ions (MSRI). For SIMS, an energetic ion beam creates a collision cascade which results in the ejection of low kinetic energy secondary ions from the surface being analyzed. The low kinetic energy SIMS ions are very susceptible to charge neutralization with the surface, and as a result, the SIMS ion yield varies by orders of magnitude depending on the chemical state of the surface. SIM spectra contain elemental ions, and molecular ions. For MSRI, a pulsed ion beam induces a binary collision with the surface being analyzed and the surface species are recoiled into the forward scattering direction with a large kinetic energy. The violence of the binary collision results in complete molecular decomposition, and only elemental ions are detected. The high kinetic energy MSRI ions are much less susceptible to charge neutralization with the surface than the low kinetic energy SIMS ions. In MSRI, the ion yield typically varies by less than a factor of ten as the chemical state of the surface changes--simplifying quantitative analysis vs. SIMS. In this paper, they authors will demonstrate that the high kinetic energy MSRI ions are able to transverse high pressure paths with only a reduction in peak intensity--making MSRI an ideal tool for real-time, in-situ film growth studies. The use of a single analyzer for both MSRI and SIMS is unique and provides complimentary information.

  16. ZK-5: a CO₂-selective zeolite with high working capacity at ambient temperature and pressure.

    PubMed

    Liu, Qingling; Pham, Trong; Porosoff, Marc D; Lobo, Raul F

    2012-11-01

    The increased carbon dioxide concentration in the atmosphere caused by combustion of fossil fuels has been a leading contributor to global climate change. The adsorption-driven pressure or vacuum swing (PSA/VSA) processes are promising as affordable means for the capture and separation of CO₂. Herein, an 8-membered-ring zeolite ZK-5 (Framework Type Code: KFI) exchanged with different cations (H⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺) was synthesized as novel CO₂ adsorbent. The samples were characterized by SEM, energy-dispersive X-ray spectroscopy (EDAX), XRD, and gas adsorption (CO₂ and N₂). The Toth adsorption model was used to describe the CO₂ adsorption isotherms, and the isosteric heats of adsorption were calculated. CO₂ capture adsorbent evaluation criteria such as working capacity, regenerability and CO₂/N₂ selectivity were applied to evaluate the zeolite adsorbents for PSA/VSA applications. The in situ FTIR CO₂ adsorption spectra show that physisorption accounts for the largest fraction of the total CO₂ adsorbed. The CO₂ adsorption analysis shows that Mg-ZK-5 is the most promising adsorbent for PSA applications with the highest working capacity (ΔN(CO₂)=2.05 mmol g⁻¹), excellent selectivity (α(CO₂/N₂)=121), and low isosteric heat. Li-, Na- and K-ZK-5 with good working capacity (ΔN(CO₂)=1.55-2.16 mmol g⁻¹) and excellent selectivity (α(CO₂/N₂)=103-128) are promising CO₂ adsorbents for the VSA working region.

  17. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    PubMed Central

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-01-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation. PMID:28240300

  18. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    PubMed

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  19. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-01

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  20. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    SciTech Connect

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  1. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGES

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; ...

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  2. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-02-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

  3. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  4. Tetrahedrally bonded dense C2N3H with a defective wurtzite structure: X-ray diffraction and Raman scattering results at high pressure and ambient conditions

    NASA Astrophysics Data System (ADS)

    Salamat, Ashkan; Woodhead, Katherine; McMillan, Paul F.; Cabrera, Raul Quesada; Rahman, Aisha; Adriaens, Davy; Corà, Furio; Perrillat, Jean-Philippe

    2009-09-01

    Synchrotron x-ray diffraction and Raman scattering data supported by ab initio calculations are reported for the dense tetrahedrally bonded phase (C2N3H) with a defective wurtzite (dwur) structure synthesized by laser heating from dicyandiamide (C2N4H4) at high pressure in a diamond anvil cell. This work confirms the structure deduced in previous work from electron diffraction experiments. The phase (Cmc21) is recoverable to ambient conditions. The ambient pressure volume (V0=137.9Å3) and bulk modulus (K0=258±21GPa) are in excellent agreement with density functional calculations (V0=134.7Å3;K0=270GPa) . The calculated Raman frequencies and pressure shifts are also in good agreement with experiment. Ammonia (P212121) was identified among the reaction products as expected from the synthesis reaction.

  5. Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic, Airport, Park (T.A.P.) areas during years of 2011-2012.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng

    2016-02-01

    The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.

  6. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  7. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  8. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    SciTech Connect

    Butcher, Derek Robert

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  9. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    SciTech Connect

    Roper, T.R.; Williams, L.E. Kearney Agricultural Center, Parlier, CA )

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  10. Age-related effects of increased ambient pressure on discrimination reaction time: A study in 105 professional divers at 6.0 atm abs.

    PubMed

    Tikkinen, Janne; Siimes, Martti A

    2015-01-01

    We investigated 105 professional divers using a computerized visual discrimination trial (Cognitrone) to measure the effects of ambient pressure on reaction times. The possible improvement in performance due to practice was anticipated, and the trials were carried out four times prior to pressurization in a hyperbaric chamber. The effect of increased ambient pressure was measured at 6.0 and 1.9 atm abs, and the potential for residual effects was tested after decompression. The results of our study indicate that repeated testing had a systematic influence on the measured time values. The effects of learning, which were independent of diver age, may have independently influenced response times. Exposure to 6.0 atm abs modified the systematic pattern of learning and was associated with increased reaction times. There were also age-related differences in response times associated with exposure to increased ambient pressures. Younger divers were more susceptible to elevated ambient pressure, evidenced by increased response times at 6 atm abs relative to their older colleagues. One out of every four of the younger divers could be considered susceptible to inert gas narcosis (ION) when an increase of one standard deviation/1SD (> 19%) or more in discrimination reaction time is used as an indicator. ION susceptibility appears independent of body composition and physical fitness. The slowed response speed experienced at 6.0 atm abs was of short duration and returned to baseline immediately with decompression. Our results suggest that IGN is demonstrated by an impaired learning process and decreased response speed and that some younger divers appear more susceptible.

  11. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    PubMed

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-02-16

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (<10 l×) from 17:00 to 09:00 next morning; CR-LL, n = 81, lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (<10 l×) during the whole experiment. Systolic (SBP) and diastolic (DBP) BP, HR and BT were measured every 2 h. For comparison, the results of the former studies performed under conditions of regular life with an activity period from 07:00 to 23:00 h and sleep from 23:00 till 07:00 h (Control) were reanalyzed. Seven-day Ambulatory Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former

  12. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.

    PubMed

    Qadir, Kamran; Joo, Sang Hoon; Mun, Bongjin S; Butcher, Derek R; Renzas, J Russell; Aksoy, Funda; Liu, Zhi; Somorjai, Gabor A; Park, Jeong Young

    2012-11-14

    Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.

  13. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    SciTech Connect

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.

  14. Structural phase transitions and superconductivity in Fe(1+delta)Se0.57Te0.43 at ambient and elevated pressures.

    PubMed

    Gresty, Nathalie C; Takabayashi, Yasuhiro; Ganin, Alexey Y; McDonald, Martin T; Claridge, John B; Giap, Duong; Mizuguchi, Yoshikazu; Takano, Yoshihiko; Kagayama, Tomoko; Ohishi, Yasuo; Takata, Masaki; Rosseinsky, Matthew J; Margadonna, Serena; Prassides, Kosmas

    2009-11-25

    The ternary iron chalcogenide, Fe(1.03)Se(0.57)Te(0.43) is a member of the recently discovered family of Fe-based superconductors with an ambient pressure T(c) of 13.9 K and a simple structure comprising layers of edge-sharing distorted Fe(Se/Te)(4) tetrahedra separated by a van der Waals gap. Here we study the relationship between its structural and electronic responses to the application of pressure. T(c) depends sensitively on applied pressure attaining a broad maximum of 23.3 K at approximately 3 GPa. Further compression to 12 GPa leads to a metallic but nonsuperconducting ground state. High-resolution synchrotron X-ray diffraction shows that the superconducting phase is metrically orthorhombic at ambient pressure but pressurization to approximately 3 GPa leads to a structural transformation to a more distorted structure with monoclinic symmetry. The exact coincidence of the crystal symmetry crossover pressure with that at which T(c) is maximum reveals an intimate link between crystal and electronic structures of the iron chalcogenide superconductors.

  15. The rapid solid-state synthesis of group III and transition metal nitrides at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Wallace, Charles Henry

    The development and improvement of new and existing technologies requires the synthesis of ultra-pure, crystalline materials. To meet this need, new ways of synthesizing materials with specific properties that are difficult or impossible to produce using traditional methods must be developed. The research presented herein outlines various new techniques that can be effectively used to produce high quality, crystalline materials using a novel time and energy efficient process called solid-state metathesis. This process combines two or more solid, molecular precursors that react exothermically to rapidly produce crystalline refractory ceramic and electronic materials, such as binary and ternary metal carbides, nitrides, phosphides, sulfides and oxides. Several important materials, including graphite, gallium nitride, indium nitride, tantalum nitride, silicon nitride and cubic boron nitride, which had been difficult or impossible to synthesize using standard solid-state metathesis reactions, can now be synthesized using modified metathesis methods. One of the new techniques described in this thesis for the successful synthesis of materials, such as gallium nitride, is the use of high pressures (up to 80,000 atm) before initiating a solid-state reaction. New nitrogen precursors were investigated, such as lithium amide and ammonium chloride, which when combined in the proper ratios, aid in the formation of gallium and indium nitride at ambient pressures. The major focus of this work is on new synthetic techniques that rapidly produce pure, crystalline materials. Since gallium nitride is an important direct wide-bandgap semiconductor of interest for high brightness, blue light-emitting diodes, lasers and flat panel displays, a large majority of the research described has been devoted to developing more efficient methods for synthesizing and purifying high quality products. Also discussed is the importance of controlling the temperature by the addition of less reactive

  16. Microautoradiography of Water-Soluble Compounds in Plant Tissue after Freeze-Drying and Pressure Infiltration with Epoxy Resin

    PubMed Central

    Vogelmann, Thomas C.; Dickson, Richard E.

    1982-01-01

    It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible. Images Fig. 2 PMID:16662542

  17. Comparative Study of the Oxidation of NiAl(100) by Molecular Oxygen and Water Vapor Using Ambient-Pressure X-ray Photoelectron Spectroscopy.

    PubMed

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; Zhou, Guangwen

    2016-11-08

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. These results demonstrate that the O2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barring the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.

  18. High gas pressure: an innovative method for the inactivation of dried bacterial spores.

    PubMed

    Colas de la Noue, A; Espinasse, V; Perrier-Cornet, J-M; Gervais, P

    2012-08-01

    In this article, an original non-thermal process to inactivate dehydrated bacterial spores is described. The use of gases such as nitrogen or argon as transmission media under high isostatic pressure led to an inactivation of over 2 logs CFU/g of Bacillus subtilis spores at 430 MPa, room temperature, for a 1 min treatment. A major requirement for the effectiveness of the process resided in the highly dehydrated state of the spores. Only a water activity below 0.3 led to substantial inactivation. The solubility of the gas in the lipid components of the spore and its diffusion properties was essential to inactivation. The main phenomenon involved seems to be the sorption of the gas under pressure by the spores' structures such as residual pores and plasma membranes, followed by a sudden drop in pressure. Observation by phase-contrast microscopy suggests that internal structures have been affected by the treatment. Some parallels with polymer permeability to gas and rigidity at various water activities offer a few clues about the behavior of the outer layers of spores in response to this parameter and provide a good explanation for the sensitivity of spores to high gas pressure discharge at low hydration levels. Specificity of microorganisms such as size, organization, and composition could help in understanding the differences between spores and yeast regarding the parameters required for inactivation, such as pressure or maintenance time.

  19. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  20. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  1. Ambient pressure structural quantum critical point in the phase diagram of (Ca(x)Sr(1-x))(3)Rh(4)Sn(13).

    PubMed

    Goh, S K; Tompsett, D A; Saines, P J; Chang, H C; Matsumoto, T; Imai, M; Yoshimura, K; Grosche, F M

    2015-03-06

    The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138  K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures.

  2. A Dry Process for Polymer Nano-Microfibers Prepared by Electrospinning under Pressurized CO2

    NASA Astrophysics Data System (ADS)

    Wahyudiono; Murakami, Kanako; Machmudah, Siti; Sasaki, Mitsuru; Goto, Motonobu

    2012-08-01

    Electrospinning is known as an efficient technique for the fabrication of polymer nanoparticles and nanofibers. Various polymers have been successfully electrospun into ultrafine particles and fibers in recent years, mostly in solvent solution and some in melt form. In this study, electrospinning was conducted under pressurized carbon dioxide (CO2) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ˜8.0 MPa. Poly(vinyl pyrrolidone) (PVP) in dichloromethane (DCM) was used as a polymer solution with 4 wt % of concentration. The applied voltage was 17 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO2, PVP electrospun was produced without bead formation with diameter ranges of 608.50-7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes.

  3. High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage

    PubMed Central

    Utama, Dicky Tri; Lee, Seung Gyu; Baek, Ki Ho; Chung, Woon Si; Chung, In Ae; Jeon, Jung Tae; Lee, Sung Ki

    2017-01-01

    Objective Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. Methods The longissimus lumborum muscles obtained from Friesian Holstein steers (33±0.5 months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at 15°C±2°C; the samples were then stored for 9 days at 4°C±1°C and compared with control (0.1 MPa). Results HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Conclusion Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased L* and a* values with less discoloration and oxidative deterioration during storage. PMID:27383811

  4. Atmospheric Pressure Plasma Jet as a Dry Alternative to Inkjet Printing in Flexible Electronics

    NASA Technical Reports Server (NTRS)

    Gandhiraman, Ram Prasad; Lopez, Arlene; Koehne, Jessica; Meyyappan, M.

    2016-01-01

    We have developed an atmospheric pressure plasma jet printing system that works at room temperature to 50 deg C unlike conventional aerosol assisted techniques which require a high temperature sintering step to obtain desired thin films. Multiple jets can be configured to increase throughput or to deposit multiple materials, and the jet(s) can be moved across large areas using a x-y stage. The plasma jet has been used to deposit carbon nanotubes, graphene, silver nanowires, copper nanoparticles and other materials on substrates such as paper, cotton, plastic and thin metal foils.

  5. Interaction of atmospheric pressure plasmas with dry and wet wounded skin

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kushner, Mark

    2010-11-01

    Non-equilibrium plasmas in direct contact with living tissue can produce therapeutic effects. Dielectric barrier discharge (DBD) devices used for this purpose contain the powered electrode while the tissue being treated is usually the floating electrode. The plasma produces beneficial effects through: (i) electric fields, (ii) production of radicals and charged species, (iii) photons and (iv) energetic ions impinging onto wounds and tissue surfaces. Using a 2-d plasma hydrodynamics model, we discuss the interaction of DBD filaments with human skin. We model the propagation of the streamer across the gap, its intersection with skin, the charging of cell surfaces and the generation of conduction and displacement currents, and electric fields in the cells. The cellular structure in the first few mm of human skin is incorporated into the computational mesh with permittivity and conductivity to represent the electrical properties of the intra- and inter-cell structures. In this talk, we concentrate on the effects of plasmas on open wounds which are either dry or filled with blood serum. We will discuss the penetration of electric fields through the blood serum and into the underlying cells, including the possible interactions with blood platelets, and the distribution of ion energies onto the liquid and cellular surfaces.

  6. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized.

  7. High-Temperature Phase Transitions in CsH2PO4 Under Ambient and High-Pressure Conditions: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Botez,C.; Hermosillo, J.; Zhang, J.; Qian, J.; Zhao, Y.; Majzlan, J.; Chianelli, R.; Pantea, C.

    2007-01-01

    To clarify the microscopic origin of the temperature-induced three-order-of-magnitude jump in the proton conductivity of CsH2PO4 (superprotonic behavior), we have investigated its crystal structure modifications within the 25-300 C temperature range under both ambient- and high-pressure conditions using synchrotron x-ray diffraction. Our high-pressure data show no indication of the thermal decomposition/polymerization at the crystal surface recently proposed as the origin of the enhanced proton conductivity. Instead, we found direct evidence that the superprotonic behavior of the title material is associated with a polymorphic structural transition to a high-temperature cubic phase. Our results are in excellent agreement with previous high-pressure ac impedance measurements.

  8. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    NASA Astrophysics Data System (ADS)

    Shyamkumar, Prashanth

    Cardiovascular Diseases (CVDs) have been a major cause for deaths in both men and women in United States. Cerebrovascular Diseases like Strokes are known to have origins in CVDs as well. Moreover, nearly 18 Million Americans have a history of myocardial infarction and are currently undergoing cardiac rehabilitation. Consequently, CVDs are the highest costing disease groups and cost more than all types of cancer combined. However, significant cost reduction is possible through the effective use of the vast advances in embedded and pervasive electronic devices for healthcare. These devices can automate and move a significant portion of disease management to the patient's home through cyber connectivity, a concept known as point-of-care (POC) diagnostics and healthcare services. POC can minimize hospital visits and potentially avoid admission altogether with prognostic tools that give advanced notice of any abnormalities or chronic illnesses so that the treatment can be planned in advance. The POC concept requires continuous remote health monitoring. Therefore, the various sensors needed for comprehensive monitoring need to be worn daily and throughout the day. Moreover, true "roaming" capability is necessary so that it does not restrict the user's travel or his/her quotidian activities. Two biomedical signals namely, Electrocardiogram (ECG) and Blood Pressure are important diagnostic tests in assessing the cardiac health of a person. To that end, the research presented in this thesis: First , describes the development of a remote monitoring solution based on Bluetooth(TM), smartphones and cyber infrastructure for cardiac care called e-nanoflex. Second, Sensors for ECG that are compatible with everyday life style namely, (a) dry, gel-less vertically aligned gold nanowire electrodes, (b) dry textile-based conductive sensor electrodes to address the need for this technology to monitor cardiovascular diseases in women are tested with e-nanoflex and discussed. Third, non

  9. Copper dry etching by sub-atmospheric-pressure pure hydrogen glow plasma

    NASA Astrophysics Data System (ADS)

    Ohmi, Hiromasa; Sato, Jumpei; Hirano, Tatsuya; Kubota, Yusuke; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2016-11-01

    Copper (Cu) dry etching is demonstrated using a narrow-gap hydrogen plasma generated at 13.3 kPa (100 Torr) for applications in the Cu wiring technology of integrated circuits. A localized hydrogen plasma is generated around the apex of a fine pipe electrode. The Cu etching can be observed only when the process gas contains hydrogen, and the etching rates decrease with decreased hydrogen concentration. The plasma heating effect owing to plasma localization is negligible for the Cu etching because no etching occurs in the presence of pure N2 plasma whose volume is almost equal to that of the pure H2 plasma. Furthermore, the influences of physical sputtering and vacuum ultraviolet irradiation on the Cu etching are confirmed to be insignificant by exposing the samples to rare-gas plasma. The maximum Cu etching rate of 500 nm/min can be achieved at a stage temperature of 0 °C. However, the Cu etching rate has no obvious dependence on the stage temperature in a range from -20 to 330 °C. In contrast, the etching rates for Si and SiO2 at a stage temperature of 0 °C are 100 μm/min and 50 nm/min, respectively. The Cu etching rate is 10 times higher than that of SiO2, which implies that this etching technique has potential applications for Cu wiring on an SiO2 layer. The Cu surface etched by the hydrogen plasma is roughened and exhibits many round pits and bumps, which seems to be owing to excessive incorporation of the diffused hydrogen in the Cu bulk.

  10. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Pardede, Marincan; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-08-01

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO2 ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO2 ambient gas. Meanwhile the considerably weaker carbon emission from the CO2 gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO2 gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO2 ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  11. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    SciTech Connect

    Lie, Zener Sukra; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  12. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes.

    PubMed

    Hereu, Anna; Bover-Cid, Sara; Garriga, Margarita; Aymerich, Teresa

    2012-03-15

    This work aimed to evaluate the effect of nisin application (biopreservation) combined with high hydrostatic pressure processing (HHP) on the behavior of Listeria monocytogenes CTC1034 intentionally inoculated (at ca. 10(7)cells/g) onto the surface of ready-to-eat (RTE) sliced dry-cured ham. Two types of dry-cured ham, which had different water activities and fat contents were studied (a(w) of 0.92 and 14.25% fat and a(w) of 0.88 and 33.26% fat). Three batches were prepared for each type of product: (C) control, without nisin; (N) nisin directly applied (200 AU/cm(2)) and (F) nisin applied through active packaging, polyvinyl alcohol films with 200 AU/cm(2). Half of the samples were pressurized at 600 MPa for 5min. Counts of L. monocytogenes were periodically monitored throughout 60 days of storage at 8°C. The physico-chemical characteristics of the products enabled the survival of L. monocytogenes, but it was significantly reduced by the presence of nisin. The effect of biopreservation was greater when applied directly to the surface and in the product with lower water activity in comparison with the active packaging and the high water activity products, respectively. The immediate inactivation of L. monocytogenes by HHP ranged from 1.82 to 3.85 Log units, depending on the type of dry-cured ham. The lower the water activity, the less was the inactivation induced by HHP, both immediately and during storage. The reduction of L. monocytogenes immediately after HHP and during storage was more evident in batches with nisin applied directly to the surface of the product. The pathogen was not detected in some samples from day 5 of storage in the product with higher water activity. The effect of nisin applied through active packaging was lower than the direct application. The results of the present study indicated that HHP, as post-processing listericidal treatment, is more effective (both immediately and long term) than the use of nisin as an antimicrobial measure

  13. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised.

  14. Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals.

    PubMed

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu

    2016-11-15

    Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T-cT transition, which is sensitive to lattice strain, and the T-O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction.

  15. Interface-induced superconductivity at ˜25 K at ambient pressure in undoped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu

    2016-11-01

    Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ˜25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T-cT transition, which is sensitive to lattice strain, and the T-O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction.

  16. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship.

    PubMed

    Kanabuchi, Kazuo; Kondo, Tetsuri; Tanigaki, Toshimori; Tajiri, Sakurako; Hayama, Naoki; Takahari, Yoko; Iwao, Kayoko

    2011-04-20

    Inhalation therapy using the dry powder inhaler (DPI) is now the first choice for obstructive pulmonary diseases. We previously measured relationships between inspiratory pressure (PI) and flow rate of almost all of the DPIs available in Japan, and described an importance of inspiratory efforts. In the present study, we further analyzed the data obtained in the previous study. Although there were linear relationships between PI and flow2, the slope became steeper when PI was less than a certain value (critical PI, existed between 15-20 cmH2O). When PI was less than critical PI, linear rather than parabolic regression between PI and flow yielded better fits (r > 0.90, p < 0.001). Inspiratory flows at the critical PI were 53.9 (Diskus), 65.8 (Diskhaler), 45.9 (Turbuhaler for Pulmincort), 48.6 (Turbuhaler for Symbicort) and 38.0 l/min (Twisthaler). These findings suggested that flow through the DPI becomes laminar rather than turbulent flow in the range below critical PIs. We suggest that patients should inhale from the DPIs with inspiratory pressure higher than critical PI.

  17. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  18. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  19. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  20. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    SciTech Connect

    Dawood, Mahmoud S.; Hamdan, Ahmad E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  1. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Klimeš, Jiří; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-01

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  2. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  3. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2.

    PubMed

    Bobich, Edward G; Barron-Gafford, Greg A; Rascher, Katherine G; Murthy, Ramesh

    2010-07-01

    The means by which growth CO(2) concentration ([CO(2)]) affects anatomy and water relations responses to drought and vapour pressure deficit (VPD) were studied for yearly coppiced, 4-year-old Populus deltoides clones that were grown in either 400 mumol mol(-1) (ambient) or 800 mumol mol(-1) (elevated) CO(2) for 3 years. It was hypothesized that, during drought, trees growing in elevated [CO(2)] would have a lower volume flux density of water (J(V)), stomatal conductance (g(s)) and transpiration per leaf area (E), as well as a lower stomatal density and a greater stomatal response to drought and changes in VPD than would trees in ambient [CO(2)]. Trees in elevated [CO(2)] actually had higher J(V) values throughout the study, but did not differ from trees in ambient [CO(2)] with respect to g(s) or E under saturating light or E scaled from J(V) (E(scaled)), all of which indicates that the higher J(V) in elevated [CO(2)] resulted from those trees having greater leaf area and not from differences in g(s). Furthermore, although plants in elevated [CO(2)] had greater absolute leaf loss during the drought, the percentage of leaf area lost was similar to that of trees in ambient [CO(2)]. g(s) and E under saturating light were affected by changes in VPD after the first 9 days of the experiment, which coincided with a large decrease in water potential at a soil depth of 0.1 m. Trees in elevated [CO(2)] had a greater stomatal density and a lower wood density than trees in ambient [CO(2)], both traits that may make the trees more susceptible to xylem cavitation in severe drought. Drought and VPD effects for the P. deltoides clone were not ameliorated by long-term growth in elevated [CO(2)] compared with ambient [CO(2)], and plants in elevated [CO(2)] possessed anatomical traits that may result in greater stress associated with long-term drought.

  4. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions.

    PubMed

    Bartis, Elliot A J; Luan, Pingshan; Knoll, Andrew J; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb S

    2015-06-30

    An atmospheric pressure plasma jet (APPJ) was used to treat polystyrene (PS) films under remote conditions where neither the plume nor visible afterglow interacts with the film surface. Carefully controlled conditions were achieved by mounting the APPJ inside a vacuum chamber interfaced to a UHV surface analysis system. PS was chosen as a model system as it contains neither oxygen nor nitrogen, has been extensively studied, and provides insight into how the aromatic structures widespread in biological systems are modified by atmospheric plasma. These remote treatments cause negligible etching and surface roughening, which is promising for treatment of sensitive materials. The surface chemistry was measured by X-ray photoelectron spectroscopy to evaluate how ambient chemistry, feed gas chemistry, and plasma-ambient interaction impact the formation of specific moieties. A variety of oxidized carbon species and low concentrations of NOx species were measured after APPJ treatment. In the remote conditions used in this work, modifications are not attributed to short-lived species, e.g., O atoms. It was found that O3 does not correlate with modifications, suggesting that other long-lived species such as singlet delta oxygen or NOx are important. Indeed, surface-bound NO3 was observed after treatment, which must originate from gas phase NOx as neither N nor O are found in the pristine film. By varying the ambient and feed gas chemistry to produce O-rich and O-poor conditions, a possible correlation between the oxygen and nitrogen composition was established. When oxygen is present in the feed gas or ambient, high levels of oxidation with low concentrations of NO3 on the surface were observed. For O-poor conditions, NO and NO2 were measured, suggesting that these species contribute to the oxidation process, but are easily oxidized when oxygen is present. That is, surface oxidation limits and competes with surface nitridation. Overall, surface oxidation takes place easily

  5. Electronic properties and the nature of metal-insulator transition in NdNiO3 prepared at ambient oxygen pressure

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2016-06-01

    We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m*~8me) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2-20 K) is governed by the variable range hopping of the charge carriers.

  6. Synthesis of Ca-substituted Y1-xCaxBa2Cu4O8 at ambient pressure using CuI

    NASA Astrophysics Data System (ADS)

    Zheng, X. G.; Suzuki, M.; Xu, C.; Kuriyaki, H.; Hirakawa, K.

    1996-02-01

    Ca-substituted Y124 superconductors Y 1- xCa xBa 2Cu 4O 8 ( x = 0.05, 0.1) were synthesized at ambient oxygen pressure by a solid-state reaction method which used CuI instead of the conventional CuO. Experimental results showed a promoting effect of copper iodide on the formation of the 124 phase at normal oxygen pressure. Tc determined from the Meissner effect was 88 K for x = 0.05 and 90 K for x = 0.1. For the same Ca-substitution rates Tc(zero-resistance) of 80.5 K and 82.0 K was obtained respectively.

  7. Normal impingement loads due to small air jets issuing from a base plate and reflecting off a platform for various jet Mach numbers, separation distances, and ambient pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1972-01-01

    An investigation was conducted in a 12.5-meter-diameter vacuum sphere to determine the impingement loads due to air jets issuing from and perpendicular to a circular base and reflecting off a square platform, that is, a simulation of rendezvous maneuvering, docking, launch, impact dampers etc. The nozzles had exit Mach numbers of 1, 3, 5, and 7. The ambient pressures were 0.0006, 5, 225, and 760 torr. Under near-field separation distances and at 0.0006 torr, reflections were significant; and ratios of the impingement force to thrust on both plates in the biplane arrangement varied from about 750 for exit Mach number 1 to 120 for exit Mach number 7. The far-field force ratios were near unity for the platform and zero for the base and indicated few, if any, reflections. Some reversals and rapid changes in loads were obtained at transition distances between the near and far fields. In general, increasing the exit Mach number or ambient pressure reduced the impingement loads.

  8. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barringmore » the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  9. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; Zhou, Guangwen

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barring the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.

  10. Preliminary study on atmospheric-pressure plasma-based chemical dry figuring and finishing of reaction-sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Deng, Hui; Zhang, Xiaonan; Peng, Kang; Yamamura, Kazuya

    2016-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a research focus in the field of optical manufacturing. Atmospheric-pressure plasma-based chemical dry figuring and finishing, which consist of plasma chemical vaporization machining (PCVM) and plasma-assisted polishing (PAP), were applied to improve material removal rate (MRR) in rapid figuring and ameliorate surface quality in fine finishing. Through observing the processed RS-SiC sample in PCVM by scanning white-light interferometer (SWLI), the calculated peak-MRR and volume-MRR were 0.533 μm/min and 2.78×10-3 mm3/min, respectively. The comparisons of surface roughness and morphology of the RS-SiC samples before and after PCVM were obtained by the scanning electron microscope and atomic force microscope. It could be found that the processed RS-SiC surface was deteriorated with surface roughness rms 382.116 nm. The evaluations of surface quality of the processed RS-SiC sample in PAP corresponding to different collocations of autorotation speed and revolution speed were obtained by SWLI measurement. The optimal surface roughness rms of the processed RS-SiC sample in PAP was 2.186 nm. There were no subsurface damages, scratches, or residual stresses on the processed sample in PAP. The results indicate that parameters in PAP should be strictly selected, and the optimal parameters can simultaneously obtain high MRR and smooth surface.

  11. A study of the O/Ag(111) system with scanning tunneling microscopy and x-ray photoelectron spectroscopy at ambient pressures

    NASA Astrophysics Data System (ADS)

    Heine, Christian; Eren, Baran; Lechner, Barbara A. J.; Salmeron, Miquel

    2016-10-01

    The interaction of O2 with the Ag(111) surface was studied with scanning tunneling microscopy (STM) in the pressure range from 10- 9 Torr to 1 atm at room temperature and with X-ray photoelectron spectroscopy (XPS) up to 0.3 Torr O2 in the temperature range from RT to 413 K. STM images show that the Ag(111) surface topography is little affected in regions with large flat terraces, except for the appearance of mobile features due to oxygen atoms at pressures above 0.01 Torr. In regions where the step density is high, the surface became rough under 0.01 Torr of O2, due to the local oxidation of Ag. Various chemical states of oxygen due to chemisorbed, oxide and subsurface species were identified by XPS as a function of pressure and temperature. The findings from the STM images and XPS measurements indicate that formation of an oxide phase, the thermodynamically stable form at room temperature under ambient O2 pressure, is kinetically hindered in the flat terrace areas but proceeds readily in regions with high-step density.

  12. Ambient Pressure Structural Quantum Critical Point in the Phase Diagram of (CaxSr1-x)3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Goh, Swee K.; Tompsett, D. A.; Saines, P. J.; Chang, H. C.; Matsumoto, T.; Imai, M.; Yoshimura, K.; Grosche, F. M.

    The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity at T* ~ 138 K. The anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T* as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (xc=0.9). This establishes the (CaxSr1-x)3Rh4Sn13 series as an important system for exploring the physics of structural quantum criticality and its interplay with the superconductivity, without the need of applying high pressures. This work was supported by CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Trinity College (Cam- bridge), Grants-in-Aid from MEXT (No. 22350029 and 23550152) and Glasstone Bequest (Oxford).

  13. Phase formation in the (1-y)BiFeO3-yBiScO3 system under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Salak, A. N.; Khalyavin, D. D.; Pushkarev, A. V.; Radyush, Yu. V.; Olekhnovich, N. M.; Shilin, A. D.; Rubanik, V. V.

    2017-03-01

    Formation and thermal stability of perovskite phases in the BiFe1-yScyO3 system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO3) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO3-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi2O3. Single-phase perovskite ceramics of the BiFe1-yScyO3 composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2ap×√2ap×2√3ap superstructure (ap 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2ap×4ap×2√2ap) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6ap×√2ap×√6ap) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe1-yScyO3 phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively.

  14. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  15. Flow rate/pressure drop data gathered from testing a sample of the Space Shuttle Strain Isolation Pad (SIP): Effects of ambient pressure combined with tension and compression conditions

    NASA Technical Reports Server (NTRS)

    Springfield, R. D.; Lawing, P. L.

    1983-01-01

    Tests were conducted on a sample of strain isolation pad (SIP) typical of that used in the shuttle orbiter thermal protection system to determine the characteristics of SIP internal flow. Data obtained were pressure drop as a function of flow rate for a range of ambient pressures representing various points along the Shuttle trajectory and for stretched and compressed conditions of the SIP. Flow was in the direction of the weave parallel to most of the fibers. The data are plotted in several standard engineering formats in order to be of maximum utility to the user. In addition to providing support to the Space Shuttle Program, these data are a source of experimental information on flow through fiberous (rather than the more usual sand bed type) porous media.

  16. Effect of H2S and COS in the fuel gas on the performance of ambient pressure phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Ross, P. N., Jr.

    1985-04-01

    The objective of this project was to determine in laboratory cells the tolerance of phosphoric acid fuel cells (PAFC) to hydrogen sulfide and carbonyl sulphide impurities in the anode feed gas. The study was conducted in three phases: the first was testing in a small (1 sq cm) free electrolyte cell to examine the effect of electrode structure on cell tolerance and to determine the order of magnitude of sulfur causing failure in cells at zero utilization; the second was testing in standard 2' x 2' PAFC laboratory hardware at ambient pressure to examine the effect of hydrogen utilization on tolerance and the possible effect of fuel impurities on cathode performance; the final phase was testing with a 2' x 2' cell in a pressure vessel to determine the effect of pressurized operation on cell tolerance. The poisoning effect of hydrogen sulfide was characteristically different from the effects of carbon monoxide, in that it was not manifested by a marginal (e.g., 0 to 50 mV) increase in anode potential but either had no effect or caused catastrophic polarization. Critical levels were derived for hydrogen sulfide as related to cell operating conditions.

  17. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Prosvirin, Igor P.; Bukhtiyarov, Andrey V.; Bluhm, Hendrik; Bukhtiyarov, Valerii I.

    2016-02-01

    Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  18. The nature of the water nucleation sites on TiO2(110) surfacesrelvealed by ambient pressure x-ray photoelectron spectroscopy

    SciTech Connect

    Ketteler, Guido; Yamamoto, Susumu; Bluhm, Hendrik; Andersson,Klas; Starr, David E.; Ogletree, D. Frank; Ogasawara, Hirohito; Nilsson,Anders; Salmeron, Miquel

    2007-05-01

    X-ray photoelectron spectroscopy at ambient conditions of pressure (up to 1.5 Torr) and temperature (265K

  19. Full-Scale Testing of the Ambient Pressure, Acid-Dissolution Front-End Process for the Current 99Mo Recovery Processes

    SciTech Connect

    Jerden, James L.; Bailey, James; Hafenrichter, Lohman; Vandegrift, George F.

    2013-01-31

    The Global Threat Reduction Initiative (GTRI) Conversion Program is actively developing technologies for converting civilian facilities that use high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The conversion of conventional HEU targets to LEU for the production of 99Mo production requires approximately five times the uranium in a target to maintain the 99Mo yield on a per-target basis. Under GTRI, Argonne National Laboratory (Argonne) is developing two frontend options for current 99Mo production processes to allow the use of LEU-foil targets. In both processes, the aim is to produce a frontend product that is compatible with current 99Mo purification operations and will provide the same or a higher yield of 99Mo for the same number of irradiated targets. The two frontend processes under development as part of this project are (1) the dissolution of irradiated LEU foil (up to 250 g in a single batch) and nickel fission recoil barrier in nitric acid at ambient pressure; and (2) the electrochemical dissolution of LEU foil in series of steps that produces an alkaline (basic) solution feed for 99Mo purification. This report describes results from performance tests and design optimization of the ambient pressure, nitric-acid-dissolver system. The design, fabrication, and performance test planning for this system are described in more detail in previous reports (Jerden et al. 2011a,b, 2012). Full-scale demonstrations of both of the frontend processes using irradiated uranium foils are planned to be performed at Oak Ridge National Laboratory this fiscal year.

  20. The fcc-bcc Bain path in In-Sn and related alloys at ambient and high pressure.

    PubMed

    Degtyareva, Valentina F

    2009-03-04

    Experimental high-pressure structural studies on an In-Sn alloy containing 8 at.% Sn reveal an isostructural transition of a face-centered tetragonal phase at pressures above 15 GPa with a switch of the axial ratio from c/a>1 to c/a<1. Such tetragonal phases in binary alloys based on In and Sn are analyzed in relation to the Bain path, i.e. a transformation between a face-centered cubic (fcc) and a body-centered cubic (bcc) structure. Variation of the axial ratio c/a in these phases correlates with the average number of valence electrons per atom in an alloy. A common Bain path from fcc to bcc is discussed within a nearly-free-electron model of Brillouin-zone-Fermi-sphere interactions.

  1. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    SciTech Connect

    Ren, X. D. Yang, H. M.; Zheng, L. M.; Tang, S. X.; Ren, N. F.; Xu, S. D.; Yuan, S. Q.

    2014-07-14

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  2. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  3. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated.

  4. Evaluation of nucleic acid stabilization products for ambient temperature shipping and storage of viral RNA and antibody in a dried whole blood format.

    PubMed

    Dauner, Allison L; Gilliland, Theron C; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C; Hontz, Robert D; Wu, Shuenn-Jue L

    2015-07-01

    Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6-97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing.

  5. Study of dynamics and crystallization kinetics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile at ambient and elevated pressure

    NASA Astrophysics Data System (ADS)

    Adrjanowicz, K.; Kaminski, K.; Paluch, M.; Ngai, K. L.; Yu, Lian

    2012-06-01

    The organic liquid ROY, i.e., 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, has been a subject of detailed study in the last few years. One interest in ROY lies in its polymorph-dependent fast crystal growth mode below and above the glass transition temperature. This growth mode is not diffusion controlled, and the possibility that it is enabled by secondary relaxation had been suggested. However, a previous study by dielectric relaxation spectroscopy had not been able to find any resolved secondary relaxation. The present paper reports new dielectric measurements of ROY in the liquid and glassy states at ambient pressure and elevated pressure, which were performed to provide more insight into the molecular dynamics as well as the crystallization tendency of ROY. In the search of secondary relaxation, a special glassy state of ROY was prepared by applying high pressure to the liquid state, from which secondary relaxation was possibly resolved. Thus, the role of secondary relaxation in crystallization of ROY remains to be clarified. Notwithstanding, the secondary relaxation present is not necessarily the sole enabler of crystallization. In an effort to search for possible cause of crystallization other than secondary relaxation, we also performed crystallization kinetics studies of ROY at different T and P combinations while keeping the structural relaxation time constant. The results show that crystallization of ROY speeds up with pressure, opposite to the trend found in the crystallization of ibuprofen studied up to 1 GPa. The dielectric relaxation and thermodynamic properties of ROY with phenolphthalein dimethylether (PDE) are similar in many respects, but PDE does not crystallize. Taking all the above into account, besides the secondary relaxation, the specific chemical structure, molecular interactions and packing of the molecules are additional factors that could affect the kinetics of crystallization found in ROY.

  6. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  7. In-situ spectroscopic monitoring of the ambient pressure hydrogenation of C2 to ethane on Pt(111)

    NASA Astrophysics Data System (ADS)

    Krooswyk, Joel D.; Kruppe, Christopher M.; Trenary, Michael

    2016-10-01

    The hydrogenation of C2 molecules formed on the Pt(111) surface through acetylene exposure at 750 K was monitored in-situ with reflection absorption infrared spectroscopy (RAIRS) in the presence of up to 10 Torr of H2. The coverage of post-reaction surface carbon was measured with Auger electron spectroscopy. The RAIR spectra show that C2 is hydrogenated to an ethylidyne intermediate. The hydrogenation of ethylidyne was also monitored at 400 K for H2(g) pressures of 1.0 × 10- 2 to 10 Torr. At H2(g) pressures greater than 1.0 Torr, ethylidyne is completely hydrogenated. In an attempt to probe the nature of the C2 adsorption sites, RAIR spectra of coadsorbed CO were obtained. It is found that while C2 does not block CO adsorption, the spectra indicate that the surface carbon is free of hydrogen. In contrast, ethylidyne blocks CO adsorption sites. In the presence of coadsorbed CO, complete hydrogenation of ethylidyne occurs at 450 K versus 400 K in the absence of CO.

  8. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGES

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  9. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    SciTech Connect

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  10. Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface.

    PubMed

    Axnanda, Stephanus; Crumlin, Ethan J; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G; Edwards, Mårten O M; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a "dip &pull" method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, "dip &pull" approach, with a "tender" X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt(2+) and Pt(4+) interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of "tender" AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  11. Reduction of Listeria Innocua Contamination in Vacuum-Packaged Dry-Cured Italian Pork Products After High Hydrostatic Pressure Treatment.

    PubMed

    Merialdi, Giuseppe; Ramini, Mattia; Ravanetti, Emanuela; Gherri, Giorgio; Bonilauri, Paolo

    2015-05-28

    The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP) on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i) TH group, samples treated with HHP; ii) group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied), and analyzed for the determination of the surface (1st trial) and deep (2nd trial) quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test) with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01). In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of this study

  12. Direct carbide synthesis by multipulse excimer laser treatment of Ti samples in ambient CH4 gas at superatmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mihailescu, I. N.; Chitica, N.; Teodorescu, V. S.; Popescu, M.; De Giorgi, M. L.; Luches, A.; Perrone, A.; Boulmer-Leborgne, Ch.; Hermann, J.; Dubreuil, B.; Udrea, S.; Barborica, A.; Iova, I.

    1994-05-01

    Successful carbidation of Ti in a layer forming on the surface of a Ti sample submitted to multipulse excimer (λ=308 nm) laser treatment in CH4 at a slightly superatmospheric pressure is reported. The layer is only surface contaminated with oxygen while its main part consists of fcc TiC. The layer apparently ends with a tail of carbides with low C content, extending deeper into the sample's bulk. The characteristics of the synthesized layer are suggested to be related to the peculiarities of the chemical synthesis which are enhanced by gas propulsion into a melted layer under the recoil action of a plasma evolving in front of the sample. A cavitation mechanism inside the melted surface layer in order to account for plasma initiation is proposed. This mechanism also facilitates the strong substance propulsion into the sample's bulk.

  13. Dueling Mechanisms for Dry Zones around Frozen Droplets

    NASA Astrophysics Data System (ADS)

    Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan

    2016-11-01

    Ice acts as a local humidity sink, due to its depressed saturation pressure relative to that of supercooled water. Hygroscopic chemicals typically exhibit annular dry zones of inhibited condensation; however, dry zones do not tend to form around ice because of inter-droplet frost growth to nearby liquid droplets that have already condensed on the chilled surface. Here, we use a humidity chamber with an embedded Peltier stage to initially suppress the growth of condensation on a chilled surface containing a single frozen droplet, in order to characterize the dry zone around ice for the first time. The length of the dry zone was observed to vary by at least two orders of magnitude as a function of surface temperature, ambient humidity, and the size of the frozen droplet. The surface temperature and ambient humidity govern the magnitudes of the in-plane and out-of-plane gradients in vapor pressure, while the size of the frozen droplet effects the local thickness of the concentration boundary layer. We develop an analytical model that reveals two different types of dry zones are possible: one in which nucleation is inhibited and one where the net growth of condensate is inhibited. Finally, a phase map was developed to predict the parameter space in which nucleation dry zones versus flux dry zones are dominant.

  14. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  15. Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures

    PubMed Central

    Piskorska, M; Soule, T; Gosse, J L; Milliken, C; Flickinger, M C; Smith, G W; Yeager, C M

    2013-01-01

    Summary To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. PMID:23331993

  16. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    DOE PAGES

    Piskorska, M.; Soule, T.; Gosse, J. L.; ...

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts the recovery and subsequent rates ofmore » H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  17. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  18. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  19. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    PubMed

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM10 (50.0 μg/m(3)) and O3 (53.0 μg/m(3)) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM10 and 2.77 (95% CI, 1.94-3.95) for O3. Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM10 and O3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China.

  20. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    PubMed

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  1. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics.

    PubMed

    Zang, Xiaoling; Pérez, José J; Jones, Christina M; Monge, María Eugenia; McCarty, Nael A; Stecenko, Arlene A; Fernández, Facundo M

    2017-03-31

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy. Graphical Abstract ᅟ.

  2. A molecular dynamics study of ambient and high pressure phases of silica: Structure and enthalpy variation with molar volume

    NASA Astrophysics Data System (ADS)

    Rajappa, Chitra; Sringeri, S. Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J.

    2014-06-01

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume—for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  3. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    PubMed

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  4. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca

    2015-04-01

    According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.

  5. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  6. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  7. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  8. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization.

    PubMed

    Nenning, Andreas; Opitz, Alexander K; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Klötzer, Bernhard; Fleig, Jürgen

    2016-01-28

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as Fe(III) in oxidizing atmosphere and as mixed Fe(II/III) in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe(0) phase.

  9. Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy.

    PubMed

    Heine, Christian; Lechner, Barbara A J; Bluhm, Hendrik; Salmeron, Miquel

    2016-10-12

    Using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we studied the adsorption and reactions of CO2 and CO2 + H2 on the Ni(111) surface to identify the surface chemical state and the nature of the adsorbed species during the methanation reaction. In 200 mTorr CO2, we found that NiO is formed from CO2 dissociation into CO and atomic oxygen. Additionally, carbonate (CO3(2-)) is present on the surface from further reaction of CO2 with NiO. The addition of H2 into the reaction environment leads to reduction of NiO and the disappearance of CO3(2-). At temperatures >160 °C, CO adsorbed on hollow sites, and atomic carbon and OH species are present on the surface. We conclude that the methanation reaction proceeds via dissociation of CO2, followed by reduction of CO to atomic carbon and its hydrogenation to methane.

  10. Nonhomogeneous surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Yang, Bin; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng; Liu, Jingquan

    2016-10-01

    Surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air were investigated. The morphologies and chemical compositions of the etched surface were analyzed by optical microscopy, SEM, EDS, XPS and ATR-FTIR. The microscopy and SEM images showed the etched surface was nonhomogeneous with six discernable ring patterns from the center to the outside domain, which were composed of (I) a central region; (II) an effective etching region, where almost all of the parylene-C film was removed by the plasma jet with only a little residual parylene-C being functionalized with carboxyl groups (Cdbnd O, Osbnd Cdbnd O-); (III) an inner etching boundary; (IV) a middle etching region, where the film surface was smooth and partially removed; (V) an outer etching boundary, where the surface was decorated with clusters of debris, and (VI) a pristine parylene-C film region. The analysis of the different morphologies and chemical compositions illustrated the different localized etching process in the distinct regions. Besides, the influence of O2 flow rate on the surface properties of the etched parylene-C film was also investigated. Higher volume of O2 tended to weaken the nonhomogeneous characteristics of the etched surface and improve the etched surface quality.

  11. Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

    2010-03-31

    The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

  12. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    NASA Astrophysics Data System (ADS)

    Shiva, S. Sai; Leela, Ch.; Chaturvedi, S.; Sijoy, C. D.; Kiran, P. Prem

    2017-01-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model was developed to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport due e-i and e-n thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The velocity of SW observed in the experiments over 0.2 µs-8 µs time scales was compared with the numerical results to understand the SW transition from planar to spherical evolution.

  13. Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.).

    PubMed

    Rosseler, Olivier; Sleiman, Mohamad; Montesinos, V Nahuel; Shavorskiy, Andrey; Keller, Valerie; Keller, Nicolas; Litter, Marta I; Bluhm, Hendrik; Salmeron, Miquel; Destaillats, Hugo

    2013-02-07

    Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3(-), adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3(-) conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3(-) in the vicinity of coadsorbed K(+) cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

  14. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    NASA Astrophysics Data System (ADS)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  15. Endotoxin and β-1,3-d-Glucan in Concentrated Ambient Particles Induce Rapid Increase in Blood Pressure in Controlled Human Exposures.

    PubMed

    Zhong, Jia; Urch, Bruce; Speck, Mary; Coull, Brent A; Koutrakis, Petros; Thorne, Peter S; Scott, James; Liu, Ling; Brook, Robert D; Behbod, Behrooz; Gibson, Heike; Silverman, Frances; Mittleman, Murray A; Baccarelli, Andrea A; Gold, Diane R

    2015-09-01

    Short-term exposure to particulate matter (PM) is associated with increased blood pressure (BP) in epidemiological studies. Understanding the impact of specific PM components on BP is essential in developing effective risk-reduction strategies. We investigated the association between endotoxin and β-1,3-d-Glucan-two major biological PM components-and BP. We also examined whether vascular endothelial growth factor, a vasodilatory inflammatory marker, modified these associations. We conducted a single-blind, randomized, crossover trial of controlled human exposure to concentrated ambient particles with 50 healthy adults. Particle-associated-endotoxin and β-1,3-d-Glucan were sampled using polycarbonate-membrane-filters. Supine resting systolic BP and diastolic BP were measured pre-, 0.5-hour post-, and 20-hour postexposure. Urine vascular endothelial growth factor concentration was determined using enzyme-linked immunosorbant assay and creatinine-corrected. Exposures to endotoxin and β-1,3-d-Glucan for 130 minutes were associated with increases in BPs: at 0.5-hour postexposure, every doubling in endotoxin concentration was associated with 1.73 mm Hg higher systolic BP (95% confidence interval, 0.28, 3.18; P=0.02) and 2.07 mm Hg higher diastolic BP (95% confidence interval, 0.74, 3.39; P=0.003); every doubling in β-1,3-d-Glucan concentration was associated with 0.80 mm Hg higher systolic BP (95% confidence interval, -0.07, 1.67; P=0.07) and 0.88 mm Hg higher diastolic BP (95% confidence interval, 0.09, 1.66; P=0.03). Vascular endothelial growth factor rose after concentrated ambient particle endotoxin exposure and attenuated the association between endotoxin and 0.5-hour postexposure diastolic BP (Pinteraction=0.02). In healthy adults, short-term endotoxin and β-1,3-d-Glucan exposures were associated with increased BP. Our findings suggest that the biological PM components contribute to PM-related cardiovascular outcomes, and postexposure vascular endothelial

  16. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  17. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  18. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  19. Ambient-pressure organic superconductor

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  20. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    NASA Astrophysics Data System (ADS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core⿿shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core⿿shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  1. Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials.

    PubMed

    Rameshan, Raffael; Mayr, Lukas; Klötzer, Bernhard; Eder, Dominik; Knop-Gericke, Axel; Hävecker, Michael; Blume, Raoul; Schlögl, Robert; Zemlyanov, Dmitry Y; Penner, Simon

    2015-12-03

    In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam-serving as a model structure for bulk Ni in cermet materials such as Ni/YSZ-and Ni foil. The growth mechanism of graphene/graphite species was found to be closely related to that previously described for ethylene-induced graphene growth on Ni(111). After a sufficiently long "incubation" period of the Ni foam in methane at 0.2 mbar and temperatures around 400 °C, cooling down to ∼250 °C, and keeping the sample at this temperature for 50-60 min, initial formation of a near-surface carbide phase was observed, which exhibited the same spectroscopic fingerprint as the C2H4 induced Ni2C phase on Ni(111). Only in the presence of this carbidic species, subsequent graphene/graphite nucleation and growth was observed. Vice versa, the absence of this species excluded further graphene/graphite formation. At temperatures above 400 °C, decomposition/bulk dissolution of the graphene/graphite phase was observed on the rather "open" surface of the Ni foam. In contrast, Ni foil showed-under otherwise identical conditions-predominant formation of unreactive amorphous carbon, which can only be removed at ≥500 °C by oxidative clean-off. Moreover, the complete suppression of carbide and subsequent graphene/graphite formation by Cu-alloying of the Ni foam and by addition of water to the methane atmosphere was verified.

  2. Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials

    PubMed Central

    2015-01-01

    In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam—serving as a model structure for bulk Ni in cermet materials such as Ni/YSZ—and Ni foil. The growth mechanism of graphene/graphite species was found to be closely related to that previously described for ethylene-induced graphene growth on Ni(111). After a sufficiently long “incubation” period of the Ni foam in methane at 0.2 mbar and temperatures around 400 °C, cooling down to ∼250 °C, and keeping the sample at this temperature for 50–60 min, initial formation of a near-surface carbide phase was observed, which exhibited the same spectroscopic fingerprint as the C2H4 induced Ni2C phase on Ni(111). Only in the presence of this carbidic species, subsequent graphene/graphite nucleation and growth was observed. Vice versa, the absence of this species excluded further graphene/graphite formation. At temperatures above 400 °C, decomposition/bulk dissolution of the graphene/graphite phase was observed on the rather “open” surface of the Ni foam. In contrast, Ni foil showed—under otherwise identical conditions—predominant formation of unreactive amorphous carbon, which can only be removed at ≥500 °C by oxidative clean-off. Moreover, the complete suppression of carbide and subsequent graphene/graphite formation by Cu-alloying of the Ni foam and by addition of water to the methane atmosphere was verified. PMID:26692914

  3. Design of an in-house ambient pressure AP-XPS using a bench-top X-ray source and the surface chemistry of ceria under reaction conditions.

    PubMed

    Tao, Franklin Feng

    2012-04-21

    A new in-house ambient pressure XPS (AP-XPS) was designed for the study of surfaces of materials under reaction conditions and during catalysis. Unique features of this in-house AP-XPS are the use of monochromated Al Kα and integration of a minimized reaction cell, and working conditions of up to 500 °C in gases of tens of Torr. Generation of oxygen vacancies on ceria and filling them with oxygen atoms were characterized in operando.

  4. Leaf conductance in relation to rate of CO/sub 2/ assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO/sub 2/ during ontogeny. [Zea mays

    SciTech Connect

    Wong, S.C.; Cowan, I.R.; Farquhar, G.D.

    1985-01-01

    Plants of Zea mays were grown with different concentrations of nitrate (0.6, 4, 12, and 24 millimolar) and phosphate (0.04, 0.13, 0.53, and 1.33 millimolar) supplied to the roots, photon flux densities (0.04, 0.13, 0.53, and 1.33 millimolar) supplied to the roots, photon flux densities (0.12, 0.5, and 2 millimoles per square meter per second), and ambient partial pressures of CO/sub 2/ (305 and 610 microbars). Differences in mineral nutrition and irradiance led to a large variation in rate of CO/sub 2/ assimilation per unit leaf area (A, 11 to 58 micromoles per square meter per second) when measured under standard conditions. The variation was shown, with the plants that had received different amounts of nitrate, to be related to variations in the nitrogen and chlorophyll contents, and phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylase activities per unit leaf area. Irrespective of growth treatment, A and leaf conductance to CO/sub 2/ transfer (g), measured under standard conditions were in almost constant proportion, implying that intercellular partial pressure of CO/sub 2/ (p/sub i/), was almost constant at 95 microbars. The same proportionality was maintained as A and g increased in an initially nitrogen-deficient plant that had been supplied with abundant nitrate. It was shown that p/sub i/ measured at a given ambient partial pressure was not affected by the ambient partial pressure at which the plants had been grown, although it was different when measured at different ambient partial pressures. This suggests that the close coupling between A and g in these experiments is not associated with sensitivity of stomata to change in p/sub i/. Similar, though less comprehensive, experiments were done with Gosypium hirsutum, and yielded similar conclusions, except that the proportionality between A and g at normal ambient partial pressure of CO/sub 2/ implied p/sub i/ approx. = 200 microbars. 11 references, 6 figures, 1 table.

  5. Moisture swing sorbent for carbon dioxide capture from ambient air.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen

    2011-08-01

    An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.

  6. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  7. The Effect of the Dried-Bonito Broth on Blood Pressure, 8-Hydroxydeoxyguanosine (8-OHdG), an Oxidative Stress Marker, and Emotional States in Elderly Subjects.

    PubMed

    Umeki, Youko; Hayabuchi, Hitomi; Hisano, Manami; Kuroda, Motonaka; Honda, Masashi; Ando, Bunei; Ohta, Masanori; Ikeda, Masaharu

    2008-11-01

    Dried-bonito broth (DBB, katsuo-bushi dashi) is commonly used in Japanese cuisine, and is also used as a traditional remedy for recovery from fatigue and improvement of blood circulation. To clarify the effect of DBB on blood pressure, oxidative stress and emotional states, a randomized crossover human trial was performed. Twenty-seven elderly Japanese subjects ingested DBB or water for one month. Measurement of blood pressure and urinary 8-hydroxydeoxyguanosine (8-OHdG) and evaluation of emotional states were performed before and after the ingestion periods. The changes in systolic blood pressure (SBP) during DBB ingestion was significantly lower than that during water ingestion (p = 0.037). Urinary 8-OHdG significantly decreased during DBB ingestion (p = 0.0002). Evaluation of emotional states indicated that composure significantly improved during DBB ingestion (p = 0.034). These results suggest that the daily ingestion of DBB lower SBP, reduce urinary 8-OHdG and might improve emotional states in elderly subjects.

  8. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik; Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver; Hertlein, Marcus P.; Tyliszczak, Tolek; Huse, Nils; and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  9. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    NASA Astrophysics Data System (ADS)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S.; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Zegkinoglou, Ioannis; Fraund, Matthew W.; Khurmi, Champak; Hertlein, Marcus P.; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.; Rude, Bruce S.; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ˜0.1 mm spatial resolution and ˜150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy Ep = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ˜9 ns at a pass energy of 50 eV and ˜1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  10. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  11. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    PubMed

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  12. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  13. In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy.

    PubMed

    Takagi, Yasumasa; Wang, Heng; Uemura, Yohei; Nakamura, Takahiro; Yu, Liwei; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki; Samjeské, Gabor; Iwasawa, Yasuhiro; Yokoyama, Toshihiko

    2017-02-22

    We performed in situ hard X-ray photoelectron spectroscopy (HAXPES) measurements of the electronic states of platinum nanoparticles on the cathode electrocatalyst of a polymer electrolyte fuel cell (PEFC) using a near ambient pressure (NAP) HAXPES instrument having an 8 keV excitation source. We successfully observed in situ NAP-HAXPES spectra of the Pt/C cathode catalysts of PEFCs under working conditions involving water, not only for the Pt 3d states with large photoionization cross-sections in the hard X-ray regime but also for the Pt 4f states and the valence band with small photoionization cross-sections. Thus, this setup allowed in situ observation of a variety of hard PEFC systems under operating conditions. The Pt 4f spectra of the Pt/C electrocatalysts in PEFCs clearly showed peaks originating from oxidized Pt(ii) at 1.4 V, which unambiguously shows that Pt(iv) species do not exist on the Pt nanoparticles even at such large positive voltages. The water oxidation reaction might take place at that potential (the standard potential of 1.23 V versus a standard hydrogen electrode) but such a reaction should not lead to a buildup of detectable Pt(iv) species. The voltage-dependent NAP-HAXPES Pt 3d spectra revealed different behaviors with increasing voltage (0.6 → 1.0 V) compared with decreasing voltage (1.0 → 0.6 V), showing a clear hysteresis. Moreover, quantitative peak-fitting analysis showed that the fraction of non-metallic Pt species matched the ratio of the surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation only takes place at the surface of the Pt nanoparticles on the PEFC cathode, and the inner Pt atoms do not participate in the reaction. In the valence band spectra, the density of electronic states near the Fermi edge reduces with decreasing particle size, indicating an increase in the electrocatalytic activity. Additionally, a change in the valence band structure due to the oxidation of platinum atoms was also

  14. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.

    PubMed

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-08-01

    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation.

  15. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  16. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat

    NASA Astrophysics Data System (ADS)

    Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc

    2013-05-01

    The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either

  17. Vibration-to-translation energy transfer in atmospheric-pressure streamer discharge in dry and humid air

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takahashi, Kazunori; Ando, Akira

    2015-10-01

    Vibration-to-translation (V-T) energy transfer in atmospheric-pressure streamer discharge is numerically simulated using a two-dimensional electro-hydrodynamic model. The model includes state-to-state vibrational kinetics in humid air and is coupled with the compressible flow equation of the gas fluid. The vibrational distribution of {{\\text{O}}2}(v) reaches equilibrium more quickly than that of {{\\text{N}}2}(v) , whereas the energy released from {{\\text{O}}2}(v) does not increase the gas temperature. In humid air, the decay rate of the vibrational energy of {{\\text{N}}2}(v) is accelerated by the V-T energy transfer through water molecules and the energy heats the gas. However, the increase in gas temperature due to V-T energy transfer is not always seen because it competes with thermal diffusion.

  18. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  19. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere

    NASA Astrophysics Data System (ADS)

    Ficklin, Darren L.; Novick, Kimberly A.

    2017-02-01

    Via air temperature increases and relative humidity changes, climate change will modify vapor pressure deficit (VPD), which is an important determinant of water vapor and CO2 exchange between the land surface and atmosphere. VPD is the difference between the water vapor the air can hold at saturation (es) and the actual amount of water vapor (ea). Here we assess changes in VPD, es, and ea in the United States (U.S.) for the recent past (1979-2013) and the future (2065-2099) using gridded, observed climate data and output from general circulation models. Historically, VPD has increased for all seasons, driven by increases in es and declines in ea. The spring, summer, and fall seasons exhibited the largest areal extent of significant increases in VPD, which was largely concentrated in the western and southern portions of the U.S. The changes in VPD stemmed from recent air temperature increases and relative humidity decreases. Projections indicate similar, amplified patterns into the future. For the summer, the general circulation model ensemble median showed a 51% projected increase (quartile range of 39 and 64%) in summer VPD for the U.S., reflecting temperature-driven increases in es but decreases or minimal changes in relative humidity that promotes negligible changes in ea. Using a simple model for plant hydraulic functioning, we also show that in the absence of stomatal acclimation, future changes in VPD can reduce stomatal conductance by 9-51%, which is a magnitude comparable to the expected decline in stomatal conductance from rising CO2.

  20. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  1. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  2. Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study

    SciTech Connect

    Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

    2008-09-03

    In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

  3. Evaluation of the scattered pressure due to infinite rigid cylinders, infinite elastic cylindrical shells, and rigid spheres in the presence of an ambient noise field

    NASA Astrophysics Data System (ADS)

    Honeycutt, Rebecca L.; Johnson, Steven J.

    1993-04-01

    The sound scattering due to an ambient noise field, approximated by a squared cosine function, is considered for infinite rigid and elastic cylinders and rigid spheres. For the cylinders, it is assumed that the acoustic wave front is parallel to the axis of the cylinder (informally incident). For this assumption, a closed form expression for the scattered sound field-to-incident ambient noise field (signal-to-noise) ratio is obtained not only for the cosine squared directivity, but for any arbitrary directivity which can be expressed in terms of a Fourier series. For the sphere, it is assumed that the noise is circumferentially symmetric which leads to a closed form expression for the signal-to-noise ratio due to a cosine squared directivity.

  4. Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage.

    PubMed

    Martínez-Onandi, N; Rivas-Cañedo, A; Picon, A; Nuñez, M

    2016-12-01

    One hundred and three volatile compounds were detected by solid-phase microextraction followed by gas chromatography-mass spectrometry in 30 ripened Serrano dry-cured hams, submitted or not to high pressure processing (HPP) and afterwards held for 5months at 4°C. The effect of ham physicochemical parameters and HPP (600MPa for 6min) on volatile compounds was assessed. Physicochemical parameters primarily affected the levels of acids, alcohols, alkanes, esters, benzene compounds, sulfur compounds and some miscellaneous compounds. Intramuscular fat content was the physicochemical parameter with the most pronounced effect on the volatile fraction of untreated Serrano ham after refrigerated storage, influencing the levels of 38 volatile compounds while aw, salt content and salt-in-lean ratio respectively influenced the levels of 4, 4 and 5 volatile compounds. HPP treatment affected 21 volatile compounds, resulting in higher levels of alkanes and ketones and lower levels of esters and secondary alcohols, what might affect Serrano ham odor and aroma after 5months of refrigerated storage.

  5. Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Pi, Dong-Hai; Guo, Jing; Kato, Hidemi; Lee, Sunghak; Kim, Hyoung Seop

    2016-05-01

    Wear properties of bulk metallic glasses (BMGs) are important for industrial applications as much as strength and ductility. Free volume of BMGs is a significant factor which decides wear mechanism and resistance. Increased free volume of a Zr55Al10Ni5Cu30 BMG processed by high-pressure torsion (HPT) affected wear resistance under dry reciprocating conditions. Two- and three-body abrasive wear as well as the delamination of oxide layers simultaneously operated during the wear tests of both as-cast and HPT-processed BMG (HPT-BMG). However, the HPT- BMG had a larger area of the oxide layers on a worn surface compared to the as-cast BMG at the early stage of the wear tests. The increased free volume by the HPT process resulted in ductile plastic deformation, prohibited crack propagation, and delayed delamination of the oxide layers. Therefore, the HPT-BMG had thicker oxide layers, which acted as an adequate protection and increased wear properties of the Zr-based BMG.

  6. Imaging with ambient noise

    SciTech Connect

    Snieder, Roel; Wapenaar, Kees

    2010-09-15

    Recent developments in seismology, ultrasonics, and underwater acoustics have led to a radical change in the way scientists think about ambient noise--the diffuse waves generated by pressure fluctuations in the atmosphere, the scattering of water waves in the ocean, and any number of other sources that pervade our world. Because diffuse waves consist of the superposition of waves propagating in all directions, they appear to be chaotic and random. That appearance notwithstanding, diffuse waves carry information about the medium through which they propagate.

  7. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    NASA Astrophysics Data System (ADS)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  8. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  9. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    PubMed

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives.

  10. Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko; Sugenoya, Junichi

    2013-05-01

    The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32 ± 5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10' N and longitude 136°57.9' E. The average environmental temperature was 29 ± 1 °C in summer and 3 ± 1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.

  11. The metered delivery of solids into pressure: A radically new machine concept

    SciTech Connect

    Winston, M.M.; Hay, A.G.

    1992-12-31

    This is the second report on the development of a machine concept for the continuous movement and accurately metered delivery of particulate solids (e.g., coal), wet or dry, into environments of ambient or differential fluid or mechanical pressure. It includes the first disclosure of continuous, direct delivery of US power plant coal into 26 psi gas pressure. The pump has only one moving part and is self-cleaning.

  12. Dry Mouth

    MedlinePlus

    ... or chewing tobacco can increase dry mouth symptoms. Methamphetamine use. Methamphetamine use can cause severe dry mouth and damage to teeth, a condition also known as "meth mouth." If you don't have enough saliva ...

  13. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  14. Nd2K2IrO7 and Sm2K2IrO7: Iridium(VI) Oxides Prepared under Ambient Pressure

    SciTech Connect

    Mugavero, III, S.; Smith, M; Yoon, W; zur Loye, H

    2009-01-01

    The most-oxidized iridium oxides known to date are prepared in a hydroxide flux under normal pressure. They contain iridium centers exclusively in the +VI oxidation state and are characterized crystallographically. The picture shows the structure of the Ln2K2IrO7 (Ln=Nd, Sm) and its structural components: IrO6 octahedra (black), KO10 polyhedra (beige), LnO10 polyhedra (blue).

  15. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  16. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    from ozone mode to nitrogen oxides mode occurs as the discharge power increases. One prominent example of plasma biotechnology is the use of plasma-derived reactive species as a novel disinfectant. Ambient-air plasma is an attractive means of disinfection because it is non-thermal, expends a small amount of power, and requires only air and electricity to operate. Both solid surfaces and liquid volumes can be effectively and efficiently decontaminated by the reactive oxygen and nitrogen species that plasma generates. Dry surfaces are decontaminated most effectively by the plasma operating in NOx mode and less effectively in ozone mode, with the weakest antibacterial effects in the transition region, and neutral reactive species are more influential in surface disinfection than charged particles. Aqueous bacterial inactivation correlates well with ozone concentration, suggesting that ozone is the dominant species for bacterial inactivation under the condition of a low-power discharge. Alternatively, air plasma operating in the higher-power, nitrogen oxides-rich mode can create a persistently antibacterial solution. Finally, when near-UV (UVA) treatment follows plasma treatment of bacterial suspension, the antimicrobial effect exceeds the effect predicted from the two treatments alone, and addition of nitrite to aqueous solution, followed by photolysis of nitrite by UVA photons, is hypothesized as the primary mechanism of synergy. The results presented in this dissertation underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications. The complexity of atmospheric pressure plasma devices, and their sensitivity to subtle differences in design and operation, can lead to different results with different mechanisms.

  17. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  18. Potential tuning in the S-W system. (i) Bringing T c,2 to ambient pressure, and (ii) colliding T c,2 with the liquid-vapor spinodal

    NASA Astrophysics Data System (ADS)

    Angell, C. Austen; Kapko, Vitaliy

    2016-09-01

    Following Vasisht et al’s identification of the second critical point (T c2, P c2) for liquid silicon in the Stillinger-Weber (S-W) model for silicon, we study the variation of T c2, P c2 with tetrahedral repulsion parameter in an extension of the earlier ‘potential tuning’ study of this system. We use the simple isochore crossing approach to identify the location of the second critical point (before any crystallization can occur) as a function of the ‘tuning’ or ‘tetrahedrality’, parameter λ, and identify two phenomena of high interest content. The first is that the second critical point pressure P c2, becomes less negative as λ decreases from the silicon value (meaning the drive to high tetrahedrality is decreased) and reaches zero pressure at the same value of lambda found to mark the onset of glassforming ability in an earlier study of this tunable system. The second is that, as the T c,2 approaches the temperature of the liquid-gas spinodal, λ  >  22, the behavior of the temperature of maximum density (TMD) switches from the behavior seen in most current water pair potential models (locus of TMDs has a maximum), to the behavior seen in empirical engineering multiparameter equations of state (EoS) (and also by two parameter Speedy isothermal expansion EoS) for water, according to which the locus of TMDs of HDL phase has no maximum, and the EoS for HDL has no second critical point. At λ  =  23 the behavior is isomorphic with that of the mW model of water, which is now seen to conform, at least closely, to the ‘critical point free’ scenario for water.

  19. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  20. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    NASA Astrophysics Data System (ADS)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-09-01

    In a recent paper in TPT, DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of an NFL football. We focus on the rate of pressure recovery that occurs when a cold football (either wet or dry) is returned to the warm locker room environment where the pressure was initially measured. Both studies stem from the so-called NFL "Deflategate" controversy in which footballs that initially met a minimum internal pressure requirement were rechecked at halftime of the AFC Championship game, and in some cases were reported to have fallen below the minimum pressure requirement. The question is whether the pressure changes were due to environmental exposure or rather to some air being released from the balls, or both.

  1. Influence of drying methods and agronomic variables on the chemical composition of mate tea leaves (Ilex paraguariensis A. St.-Hil) obtained from high-pressure CO2 extraction.

    PubMed

    Jacques, Rosângela Assis; Krause, Laiza Canielas; Freitas, Lisiane dos Santos; Dariva, Cláudio; Oliveira, J Vladimir; Caramão, Elina Bastos

    2007-12-12

    The main objective of this work is to assess the influence of two drying methods (microwave and vacuum oven) and some agronomic variables (plant fertilization conditions and sunlight intensity) on the characteristics of mate tea (Ilex paraguariensis) leaves extracts obtained from high-pressure carbon dioxide extractions performed in the temperature range from 20 to 40 degrees C and from 100 to 250 bar. Samples of mate were collected in an experiment conducted under agronomic control at Ervateira Barão LTDA, Brazil. Chemical distribution of the extracts was evaluated by gas chromatography coupled with a mass spectrometer detector (GC/MS). In addition to extraction variables, results showed that both sample drying methods and agronomic conditions exert a pronounced influence on the extraction yield and on the chemical distribution of the extracts.

  2. Normal Atmospheric Preparation of YBa2Cu4O8 Superconductor from Nitrate Solution by Freeze-Drying Method

    NASA Astrophysics Data System (ADS)

    Takahashi, Katsumasa; Ito, Toshimichi; Yoshikawa, Hiroaki; Hiraki, Akio

    1993-09-01

    A homogeneous superconducting material of YBa2Cu4O8 has been successfully prepared under normal O2 pressures from nitrate solution by means of a freeze-drying method without any catalyst. Thermal decomposition of freeze-dried powders and subsequent sintering under 1-atm oxygen ambient resulted in the YBa2Cu4O8 superconductor. Among the experimental parameters, temperatures during the decomposition and sintering have been studied in detail. X-ray diffraction analysis and dc-susceptibility measurements revealed the optimum conditions of the present preparation method.

  3. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    SciTech Connect

    Piskorska, M.; Soule, T.; Gosse, J. L.; Milliken, C.; Flickinger, M. C.; Smith, G. W.; Yeager, C. M.

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  4. Effect of drying time, ambient temperature and pre-soaks on prion-infected tissue contamination levels on surgical stainless steel: concerns over prolonged transportation of instruments from theatre to central sterile service departments.

    PubMed

    Lipscomb, I P; Pinchin, H; Collin, R; Keevil, C W

    2007-01-01

    Iatrogenic transmission of prions through use of surgical instruments has been shown both experimentally and clinically. In addition, recent discoveries of prion protein accumulation in peripheral tissues such as appendix and muscle, and evidence suggesting human-to-human blood-borne transmission, have led to a concern that any residual soiling containing this agent may remain infectious even after sterile service processing. Removal of all proteinaceous material from surgical devices is extremely important for effective sterilization. This removal can be severely hampered if the contaminant is allowed to dry onto the instrument surface for any length of time. The current move to centralize sterile service centres and the inevitable lengthening of transport time between theatres and re-processing makes it necessary to minimize the amount of residual soiling adhering to an instrument before sterilization. This investigation simulates the period between the application of surgical instruments in theatre and their initial pre-wash by a washer/disinfector. The aim was to investigate the kinetics of drying at different temperatures, and the application of different commercially available pre-soak solutions in situ. The findings show that all pre-soaks significantly reduce (by up to 96%) the prion-infected tissue contamination, and that controlling the temperature whilst in transit between theatres and cleaning facilities may allow an increase in time before high protein adsorption levels occur.

  5. Pulmonary Effects of Six-Hour Dives: In-Water or Dry Chamber Exposure to an Oxygen Partial Pressure of 1.6 ATM

    DTIC Science & Technology

    2005-10-01

    dives: After the dives: Vision changes Inspiratory burning Ringing or roaring in ears Cough Nausea Chest pain or tightness Tingling or twitching...Rapid shallow breathing Ear problems Burning on inspiration I Cough EQUIPMENT AND INSTRUMENTATION The Collins CPL and Collins GS Modular Pulmonary...after surfacing from his wet dive when he did not have measurable changes in pulmonary function. Subject C had a cough immediately after the dry dive

  6. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi M. N.; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools. PMID:26539203

  7. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato.

    PubMed

    Chen, Tsu-Wei; Nguyen, Thi M N; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.

  8. Parallel ultra high pressure liquid chromatography-mass spectrometry for the quantification of HIV protease inhibitors using dried spot sample collection format.

    PubMed

    Watanabe, Kyoko; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-08-15

    An assay was developed and validated for the quantification of eight protease inhibitors (indinavir (IDV), ritonavir (RTV), lopinavir (LPV), saquinavir (SQV), amprenavir (APV), nelfinavir (NFV), atazanavir (AZV) and darunavir (DRV)) in dried plasma spots using parallel ultra-high performance liquid chromatography and mass spectrometry detection in the multiple reaction monitoring mode. For each analyte an isotopically labeled internal standard was used and the assay based on liquid-solid extraction the area response ratio (analyte/IS) was found to be linear; from 0.025 μg/ml to 20 μg/ml for IDV, SQV, DRV, AZV, LPV, from 0.025 μg/ml to 10 μg/ml for NFV, APV and from 0.025 μg/ml to 5 μg/ml for RTV using 15 μl of plasma spotted on filter paper placed in a sample tube. The total analysis time was of 4 min and inter-assay accuracies and precisions were in the range of 87.7-109% and 2.5-11.8%, respectively. On dried plasma spots all analytes were found to be stable for at least 7 days. Practicability of the assay to blood was also demonstrated. The sample drying process could be reduced to 5 min using a commercial microwave system without any analyte degradation. Together with quantification, confirmatory analysis was performed on representative clinical samples.

  9. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  10. Real-time monitoring of peanut drying parameters in semitrailers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of peanut drying parameters such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts and kernel moisture content is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to...

  11. Improvement in storage stability of infrared dried rough rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  12. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  13. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO2(111) catalysts: An in situ study of C–C and O–H bond scission

    SciTech Connect

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; Grinter, David C.; Waluyo, Iradwikanari; Zhou, Jing; Liu, Qiang; Jeong, Beomgyun; Crumlin, Ethan J.; Matolin, Vladimir; Stacchiola, Dario J.; Rodriguez, Jose A.; Senanayake, Sanjaya D.

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni0 is the active phase leading to both C–C and C–H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce3+(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni0 and Ce3+(OH)x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.

  14. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO2(111) catalysts: An in situ study of C–C and O–H bond scission

    DOE PAGES

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; ...

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni0 is the active phase leading to both C–C and C–H bondmore » cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce3+(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni0 and Ce3+(OH)x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.« less

  15. No Heat Spray Drying Technology

    SciTech Connect

    Beetz, Charles

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  16. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies.

  17. The future is 'ambient'

    NASA Astrophysics Data System (ADS)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  18. Foam-mat Drying Technology: A Review.

    PubMed

    Hardy, Z; Jideani, V A

    2015-07-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method which allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40 -90°C) at atmospheric pressure. Methyl cellulose (0.25 - 2%), egg white (3 - 20%), maltodextrin (0.5 - 05%) and gum Arabic (2 - 9%) are the commonly utilised additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous and sticky products which cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying and improved product quality it provides.

  19. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    PubMed

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s).

  20. Impact of ambient conditions on evaporation from porous media

    NASA Astrophysics Data System (ADS)

    Ben Neriah, Asaf; Assouline, Shmuel; Shavit, Uri; Weisbrod, Noam

    2014-08-01

    The complexity of soil evaporation, depending on the atmospheric conditions, emphasizes the importance of its quantification under potential changes in ambient air temperature, Ta, and relative humidity, RH. Mass loss, soil matric tension, and meteorological measurements, carried out in a climate-controlled laboratory, were used to study the effect of ambient conditions on the drying rates of a porous medium. A set of evaporation experiments from initially saturated sand columns were carried out under constant Ta of 6, 15, 25, and 35°C and related RH (0.66, 0.83, 1.08, and 1.41 kPa, respectively). The results show that the expected increase of the stage 1 (S1) evaporation rate with Ta but also revealed an exponential-like reduction in the duration of S1, which decreased from 29 to 2.3 days (at Ta of 6 and 35°C, respectively). The evaporation rate, e(t), was equal to the potential evaporation, ep(t), under Ta = 6°C, while it was always smaller than ep(t) under higher Ta. The cumulative evaporation during S1 was higher under Ta = 6°C than under the higher temperatures. Evaporation rates during S2 were practically unaffected by ambient conditions. The results were analyzed using a mass transfer formulation linking e(t) with the vapor pressure deficit through a resistance coefficient r. It was shown that rS1 (the resistance during S1) is constant, indicating that the application of such an approach is straightforward during S1. However, for evaporation from a free water surface and S2, the resistances, rBL and rS2, were temperature-dependent, introducing some complexity for these cases.

  1. Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in california-style black ripe olives and dry salt-cured olives.

    PubMed

    Melliou, Eleni; Zweigenbaum, Jerry A; Mitchell, Alyson E

    2015-03-11

    The chemical composition of finished table olive products is influenced by the olive variety and the processing method used to debitter or cure table olives. Herein, a rapid ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry method, using dynamic multiple reaction monitoring, was developed for the quantitation of 12 predominant phenolic and secoiridoid compounds in olive fruit, including hydroxytyrosol, oleuropein, hydroxytyrosol-4-O-glucoside, luteolin-7-O-glucoside, rutin, verbascoside, oleoside-11-methyl ester, 2,6-dimethoxy-p-benzoquinone, phenolic acids (chlorogenic and o-coumaric acids), oleuropein aglycone, and ligstroside aglycone. Levels of these compounds were measured in fresh and California-style black ripe processed Manzanilla olives and two dry salt-cured olive varieties (Mission from California and Throuba Thassos from Greece). Results indicate that the variety and debittering processing method have strong impact on the profile of phenolic and secoiridoid compounds in table olives. The dry salt-cured olives contained higher amounts of most compounds studied, especially oleuropein (1459.5 ± 100.1 μg/g), whereas California-style black ripe olives had a significant reduction or loss of these bioactive compounds (e.g., oleuropein level at 36.7 ± 3.1 μg/g).

  2. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  3. Dry-heat resistance of Bacillus subtilis var. niger spores on mated surfaces.

    PubMed

    Simko, G J; Devlin, J D; Wardle, M D

    1971-10-01

    Bacillus subtilis var. niger spores were placed on the surfaces of test coupons manufactured from typical spacecraft materials (stainless steel, magnesium, titanium, and aluminum). These coupons were then juxtaposed at the inoculated surfaces and subjected to test pressures of 0, 1,000, 5,000, and 10,000 psi. Tests were conducted in ambient, nitrogen, and helium atmospheres. While under the test pressure condition, the spores were exposed to 125 C for intervals of 5, 10, 20, 50, or 80 min, with survivor data being subjected to a linear regression analysis that calculated decimal reduction times. Differences in the dry-heat resistance of the test organism resulting from pressure, atmosphere, and material were observed.

  4. Reactions of organic ions at ambient surfaces in a solvent-free environment.

    PubMed

    Badu-Tawiah, Abraham K; Cyriac, Jobin; Cooks, R Graham

    2012-05-01

    Solvent-free ion/surface chemistry is studied at atmospheric pressure, specifically pyrylium cations, are reacted at ambient surfaces with organic amines to generate pyridinium ions. The dry reagent ions were generated by electrospraying a solution of the organic salt and passing the resulting electrosprayed droplets pneumatically through a heated metal drying tube. The dry ions were then passed through an electric field in air to separate the cations from anions and direct the cations onto a gold substrate coated with an amine. This nontraditional way of manipulating polyatomic ions has provided new chemical insights, for example, the surface reaction involving dry isolated 2,4,6-triphenylpyrylium cations and condensed solid-phase ethanolamine was found to produce the expected N-substituted pyridinium product ion via a pseudobase intermediate in a regiospecific fashion. In solution however, ethanolamine was observed to react through its N-centered and O-centered nucleophilic groups to generate two isomeric products via 2H-pyran intermediates. The O-centered nucleophile reacted less rapidly to give the minor product. The surface reaction product was characterized in situ by surface enhanced Raman spectroscopy, and ex situ using mass spectrometry and H/D exchange, and found to be chemically the same as the major pyridinium solution-phase reaction product.

  5. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  6. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  7. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  8. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  9. Dry removal of asbestos.

    PubMed

    Elias, J D

    1981-08-01

    A method for the dry removal of friable asbestos has been developed. The Workplace Safety and Health Branch in Manitoba's Limited have co-operated in the production of an improved procedure. It was employed for the first time in the fall of 1979 when the Industrial Hygiene Section was asked for advice about removal of asbestos from a Winnipeg School Division warehouse. Fans were used to maintain the work area under negative pressure to prevent the spread of asbestos throughout the building. The exhaust air was filtered to prevent environmental contamination, and special precautions were taken to protect workers.

  10. Pressure passivation of mild pyrolysis char

    SciTech Connect

    Ochs, T.; Summers, C.; Schroeder, K.; Sands, W.

    1999-07-01

    Low-rank coals that have been thermally dried in the mild pyrolysis process have a tendency to spontaneously combust. The spontaneous combustion of coals and chars has been linked to their affinity for oxygen. The USDOE has developed a method for the passivation of mild pyrolysis char derived from a low-rank coal using pressure differentials to control the oxidation of the active sites in the char rapidly and safely. Initial experiments performed by the USDOE show that the affinity of the coal for oxygen uptake (residual oxygen demand, ROD) is reduced by exposure of the coal-char to high-pressure gas mixtures including air or oxygen-enriched air. Laboratory-scale tests have shown that the ROD can be rapidly reduced by cycling the active coals between low-pressure (atmospheric pressure or less) and high-pressure (500 psi to 1,500 psi) regimes. Cycling the pressure of the treatment gas provides rapid passivation resulting from two effects: The high-pressure cycle forces fresh oxygen into the pores which have been purged of adsorbed gases and reaction products. The pores of coal are small enough to prohibit free convection and force oxygen exchange to take place by way of diffusion under ambient conditions. The forced introduction of fresh process gas under high pressure overcomes the restrictions due to diffusion limits while the removal of adsorbed products clears the way to active surface sites. The high pressure increases the number of oxygen molecules with sufficient energy to overcome the activation barrier of the passivation reaction, due to the increased number of molecules per unit volume of the high-pressure gas. Combined, the two effects rapidly produce a coal with a significantly reduced ROD.

  11. Skin (Pressure) Sores

    MedlinePlus

    ... Treatments and Side Effects Managing Cancer-related Side Effects Skin Problems Pressure Sores A skin or pressure sore ... Content Usage Policy . Skin Problems Dry Skin Itching Skin Color Changes Pressure Sores Scars ... and Paying for Treatment Treatments and Side Effects Survivorship: During and After Treatment Caregivers and Family ...

  12. Drying of thin colloidal films

    NASA Astrophysics Data System (ADS)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  13. High silicon self-diffusion coefficient in dry forsterite

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.

    2012-12-01

    Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 μg/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5

  14. Pressurized hopper

    SciTech Connect

    Densley, P.J.; Goldmann, L.H. Jr.

    1980-04-01

    A Secure Automated Fuel Fabrication Line is being developed to reduce personnel exposure and to improve safeguards. Fertile and fissile fuel powders are blended in the line for making fuel pellets. A pressurized hopper was developed for use not only as a blender, but also as a storage and feeding device. It works with or without injection tubes to produce a well-blended powder with reduced agglomerate population. Results of blending experiments using dry Kaolin clay and Tempra pigment are given. (DLC)

  15. The abbreviated impactor measurement (AIM) concept: part 1--Influence of particle bounce and re-entrainment-evaluation with a "dry" pressurized metered dose inhaler (pMDI)-based formulation.

    PubMed

    Mitchell, J P; Nagel, M W; Avvakoumova, V; MacKay, H; Ali, R

    2009-01-01

    The abbreviated impactor measurement concept is a potential improvement to the labor-intensive full-resolution cascade impactor methodology for inhaler aerosol aerodynamic particle size distribution (APSD) measurement by virtue of being simpler and therefore quicker to execute. At the same time, improved measurement precision should be possible by eliminating stages upon which little or no drug mass is collected. Although several designs of abbreviated impactor systems have been developed in recent years, experimental work is lacking to validate the technique with aerosols produced by currently available inhalers. In part 1 of this two-part article that focuses on aerosols produced by pressurized metered dose inhalers (pMDIs), the evaluation of two abbreviated impactor systems (Copley fast screening Andersen impactor and Trudell fast screening Andersen impactor), based on the full-resolution eight-stage Andersen nonviable cascade impactor (ACI) operating principle, is reported with a formulation producing dry particles. The purpose was to investigate the potential for non-ideal collection behavior associated with particle bounce in relation to internal losses to surfaces from which particles containing active pharmaceutical ingredient are not normally recovered. Both abbreviated impactors were found to be substantially equivalent to the full-resolution ACI in terms of extra-fine and fine particle and coarse mass fractions used as metrics to characterize the APSD of these pMDI-produced aerosols when sampled at 28.3 L/min, provided that precautions are taken to coat collection plates to minimize bounce and entrainment.

  16. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  17. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following methods: (A) The gauge pressure (pressure in the IBC above ambient atmospheric pressure) measured...); (B) If absolute pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used... atmospheric pressure) is used, 1.75 multiplied by the vapor pressure of the hazardous material at 50......

  18. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  19. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  20. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  1. Dry MJO

    NASA Astrophysics Data System (ADS)

    Zhang, Chidong; Zermeno, David

    2015-04-01

    The Madden-Julian Oscillation (MJO) has always been perceived as a phenomenon resulted from coupling between atmospheric convection and circulations. In this presentation, a different perspective of the MJO is introduced. Diagnoses of tropical sounding observations and global reanalysis products have revealed intraseasonal, slow eastward moving signals in temperature, geopotential height or pressure, and wind that exist over the equatorial Indian and eastern Pacific Oceans without any accompanying precipitation or deep convection. Even at locations where MJO convection is vigorous, associated MJO perturbations in these fields cannot be explained by diabatic heating along. These observations lead to a hypothesis that the intrinsic nature of the MJO eastward propagation is dynamically determined and independent of deep convection. Deep convection acts as an effective source of energy for the dynamical signals of the MJO. Other processes, such as lateral and upstream forcing, stochastic convection, may also act to supply energy to the MJO. Other implications of this hypothesis and possible ways to falsify this hypothesis are discussed.

  2. Dry Macular Degeneration

    MedlinePlus

    Dry macular degeneration Overview By Mayo Clinic Staff Dry macular degeneration is a common eye disorder among people over 65. ... vision in your direct line of sight. Dry macular degeneration may first develop in one eye and then ...

  3. Dry-heat resistance of selected psychrophiles.

    PubMed

    Winans, L; Pflug, I J; Foster, T L

    1977-08-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min.

  4. Terrestrial Planets Accreted Dry

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  5. Dry gas operation of proton exchange membrane fuel cells with parallel channels: Non-porous versus porous plates

    NASA Astrophysics Data System (ADS)

    Litster, Shawn; Santiago, Juan G.

    We present a study of proton exchange membrane (PEM) fuel cells with parallel channel flow fields for the cathode, dry inlet gases, and ambient pressure at the outlets. The study compares the performance of two designs: a standard, non-porous graphite cathode plate design and a porous hydrophilic carbon plate version. The experimental study of the non-porous plate is a control case and highlights the significant challenges of operation with dry gases and non-porous, parallel channel cathodes. These challenges include significant transients in power density and severe performance loss due to flooding and electrolyte dry-out. Our experimental study shows that the porous plate yields significant improvements in performance and robustness of operation. We hypothesize that the porous plate distributes water throughout the cell area by capillary action; including pumping water upstream to normally dry inlet regions. The porous plate reduces membrane resistance and air pressure drop. Further, IR-free polarization curves confirm operation free of flooding. With an air stoichiometric ratio of 1.3, we obtain a maximum power density of 0.40 W cm -2, which is 3.5 times greater than that achieved with the non-porous plate at the same operating condition.

  6. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  7. Dry mouth during cancer treatment

    MedlinePlus

    Chemotherapy - dry mouth; Radiation therapy - dry mouth; Transplant - dry mouth; Transplantation - dry mouth ... National Cancer Institute. Chemotherapy and you: support for people with cancer. Updated May 2007. ... ...

  8. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  9. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  10. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  11. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  12. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  13. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  14. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  15. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  16. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  17. Fast imaging of laser-blow-off plume: Lateral confinement in ambient environment

    SciTech Connect

    George, Sony; Nampoori, V. P. N.; Kumar, Ajai; Singh, R. K.

    2009-04-06

    The dynamics of plasma plume, formed by the laser-blow-off of multicomponent LiF-C thin film under various ambient pressures ranging from high vacuum to argon pressure of 3 Torr, has been studied using fast imaging technique. In vacuum, the plume has ellipsoidal shape. With the increase in the ambient pressure, sharp plume boundary is developed showing a focusing-like (confinement in the lateral space) behavior in the front end, which persists for long times. At higher ambient pressure (>10{sup -1} Torr), structures are developed in the plasma plume due to hydrodynamic instability/turbulences.

  18. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  19. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.).

    PubMed

    Díaz-Maroto, M Consuelo; Pérez-Coello, M Soledad; Cabezudo, M Dolores

    2002-07-31

    The effect of different drying treatments on the volatiles in bay leaf (Laurus nobilis L.) was studied. Simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) were compared by gas chromatography-mass spectrometry (GC-MS) of the volatile components in bay leaves. SDE yielded better quantitative analysis results. Four drying treatments were employed: air-drying at ambient temperature, oven-drying at 45 degrees C, freezing, and freeze-drying. Oven drying at 45 degrees C and air-drying at ambient temperature produced quite similar results and caused hardly any loss in volatiles as compared to the fresh herb, whereas freezing and freeze-drying brought about substantial losses in bay leaf aroma and led to increases in the concentration levels of certain components, e.g., eugenol, elemicin, spathulenol, and beta-eudesmol.

  20. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  1. Thermodynamic Pressure/Temperature Transducer Health Check

    NASA Technical Reports Server (NTRS)

    Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)

    2004-01-01

    A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.

  2. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2016-08-01

    Green bean (Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly (P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  3. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  4. Impact of extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin.

    PubMed

    Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann

    2012-01-11

    The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.

  5. Drying of a coffee drop: differences between dry and wet tables?

    NASA Astrophysics Data System (ADS)

    Boulogne, François; Ingremeau, François; Stone, Howard

    2015-11-01

    We have all experienced that a coffee drop drying on a table leaves a ring stain. The radial flow in the drop coupled with a larger drying flux at its edge are the reasons for the particle accumulation in the liquid wedge. However, if the substrate is wet, the liquid surrounding the drop modifies the vapor distribution, and thus the drop evaporation dynamics. Our experimental observations show that the drying kinetics and the particle motion are affected by the ambient conditions. We rationalize our experimental findings with a model that describes the spatially varying evaporation as well as the temporal evolution of the particles forming the ring. We believe that these results are of practical interest for printing applications involving multiple drop systems or drying surfaces. F.B. acknowledges that the research leading to these results received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 623541.

  6. Using solar dryers to dry clay bricks

    SciTech Connect

    Bernal, J.A.; Wicker, R.B.

    1996-12-31

    Experiments using a small-scale solar dryer have been performed to determine the effect of incorporating solar dryers in the pre-firing stage of clay brick production. A comparison of brick moisture content over time is presented for dry bricks that underwent additional drying either naturally through direct exposure, in convection ovens set at 65.6 C and 104 C, in the solar dryer, or sealed in plastic bags. The ambient temperature and relative humidity were monitored along with the solar dryer temperature. Results indicated the solar dryer removed from one to two percent more moisture than natural drying, but removed less moisture than did the ovens. A similar comparison of wet bricks naturally dried, oven dried, and placed in the solar dryer for periods of five and seven days is also presented. The solar dryer reduced the amount of time required for bricks to be dried to a specified moisture content and increased the amount of moisture removed for a given amount of time.

  7. UV photochemistry of DNA in vitro and in Bacillus subtilis spores at earth-ambient and low atmospheric pressure: implications for spore survival on other planets or moons in the solar system.

    PubMed

    Nicholson, Wayne L; Setlow, Barbara; Setlow, Peter

    2002-01-01

    Two major parameters influencing the survival of Bacillus subtilis spores in space and on bodies within the Solar System are UV radiation and vacuum, both of which induce inactivating damage to DNA. To date, however, spore survival and DNA photochemistry have been explored only at the extremes of Earth-normal atmospheric pressure (101.3 kPa) and at simulated space vacuum (10(-3)-10(-6) Pa). In this study, wild-type spores, mutant spores lacking alpha/beta-type small, acid-soluble spore proteins (SASP), naked DNA, and complexes between SASP SspC and DNA were exposed simultaneously to UV (254 nm) at intermediate pressure (1-2 Pa), and the UV photoproducts cis,syn-thymine-thymine cyclobutane dimer (c,sTT), trans,syn-thymine-thymine cyclobutane dimer (t,sTT), and "spore photoproduct" (SP) were quantified. At 101.3 kPa, UV-treated wild-type spores accumulated only SP, but spores treated with UV radiation at 1-2 Pa exhibited a spectrum of DNA damage similar to that of spores treated at 10(-6) Pa, with accumulation of SP, c,sTT, and t,sTT. The presence or absence of alpha/beta-type SASP in spores was partly responsible for the shift observed between levels of SP and c,sTT, but not t,sTT. The changes observed in spore DNA photochemistry at 1-2 Pa in vivo were not reproduced by irradiation of naked DNA or SspC:DNA complexes in vitro, suggesting that factors other than SASP are involved in spore DNA photochemistry at low pressure.

  8. The importance of the poikilohydric nature of lichens as natural tracers for delta18O of ambient vapour

    NASA Astrophysics Data System (ADS)

    Hartard, Britta; Cuntz, Matthias; Lakatos, Michael; Máguas, Cristina

    2010-05-01

    The stable isotope composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in poikilohydric organisms (i.e. lichens and bryophytes), where relative water content equilibrate with the surrounding humidity conditions and that are able to use distinct water sources such as precipitation, dew, fog and also water vapour. Moreover, lichens are ubiquitous organisms, and on a global scale, they are found in nearly all terrestrial ecosystems and also within these ecosystems they inhabit many microhabitats. As poikilohydric. especially green algal lichens are known to photosynthetically reactivate solely upon uptake of atmospheric moisture, even at non-saturated ambient humidity conditions. To understand basic isotope exchange processes on non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrates with the isotopic composition of surrounding water vapour. We found that the thallus water of lichens exposed to high relative humidity shows fast isotopic equilibration with the surrounding vapour regardless of whether the lichen experiences water loss or vapour uptake. The time until isotopic equilibrium is achieved depends on the initial water status as well as on the lichen's specific morphology. It ranged from 5 to 12h in previously dried lichens to approximately 40h in lichens previously rehydrated with liquid water of distinct isotopic composition. Even though markedly slower, isotopic equilibration between leaf water and ambient vapour may also occur in homoiohydric plants exposed to high relative humidity. At low relative humidity, however, the apparent vapour pressure deficit between the evaporative sites and the ambient air and the increased stomatal diffusion resistance generally causes leaf water enrichment. In contrast, poikilohydric lichens lack

  9. Dry eye syndrome

    MedlinePlus

    ... of dry eyes include: Dry environment or workplace (wind, air conditioning) Sun exposure Smoking or second-hand ... NOT smoke and avoid second-hand smoke, direct wind, and air conditioning. Use a humidifier, especially in ...

  10. Acute cardiopulmonary effects induced by the inhalation of concentrated ambient particles during seasonal variation in the city of São Paulo.

    PubMed

    Brito, Jôse Mára de; Macchione, Mariângela; Yoshizaki, Kelly; Toledo-Arruda, Alessandra Choqueta; Saraiva-Romanholo, Beatriz Mangueira; Andrade, Maria de Fátima; Mauad, Thaís; Rivero, Dolores Helena Rodriguez Ferreira; Saldiva, Paulo Hilário Nascimento

    2014-09-01

    Ambient particles may undergo modifications to their chemical composition as a consequence of climatic variability. The determination of whether these changes modify the toxicity of the particles is important for the understanding of the health effects associated with particle exposure. The objectives were to determine whether low levels of particles promote cardiopulmonary effects, and to assess if the observed alterations are influenced by season. Mice were exposed to 200 μg/m(3) concentrated ambient particles (CAPs) and filtered air (FA) in cold/dry and warm/humid periods. Lung hyperresponsiveness, heart rate, heart rate variability, and blood pressure were evaluated 30 min after each exposure. After 24 h, blood and tissue samples were collected. During both periods (warm/humid and cold/dry), CAPs induced alterations in red blood cells and lung inflammation. During the cold/dry period, CAPs reduced the mean corpuscular volume levels and increased erythrocytes, hemoglobin, mean corpuscular hemoglobin concentration, and red cell distribution width coefficient variation levels compared with the FA group. Similarly, CAPs during the warm/humid period decreased mean corpuscular volume levels and increased erythrocytes, hemoglobin, hematocrit, and red cell distribution width coefficient variation levels compared with the FA group. CAPs during the cold/dry period increased the influx of neutrophils in the alveolar parenchyma. Short-term exposure to low concentrations of CAPs elicited modest but significant pulmonary inflammation and, to a lesser extent, changes in blood parameters. In addition, our data support the concept that changes in climate conditions slightly modify particle toxicity because equivalent doses of CAPs in the cold/dry period produced a more exacerbated response.

  11. Modeling multi-phase transport in deformable, hygroscopic porous media: Applications to convective drying of lumber

    SciTech Connect

    Asensio, C.M.; Seyed-Yagoobi, J.

    1999-07-01

    A fundamental model of multi-phase flow in deformable, hygroscopic porous media has been developed through application of macroscopic energy and mass conservation equations. Microscopic effects are included via volume-averaging techniques for the three phases present in the porous media: liquid, gas, and solid. The model includes convective and capillary transport of free water, convective and diffusive transport of water vapor and air, and diffusive transport of bound water. Porosity variations in deformable media have been included during development of the governing equations. The model is applied to convective drying of lumber via appropriate boundary conditions and transport parameters which are available in the literature. The governing coupled, non-linear equations are rewritten and solved in terms of three governing variables: moisture content, temperature, and gas phase pressure. The conservation equations presented in vector notation have been simplified to one spatial dimension for solution here. Control-volume formulations are used to discretize the governing partial differential equations and boundary conditions with a power-law scheme used to proportion the diffusive and convective flux contributions across the control volume interfaces. An uncoupled solution strategy is employed although each conservation equation is solved implicitly. Presented model results include predictions of moisture, temperature, and gas phase pressure during drying both as averages over time for convective drying at two different ambient conditions and as distributions within the board at any time for high temperature air drying. Flows of individual moisture species (liquid/free water, water vapor, and bound water) within the board are also presented.

  12. Design and Application of Variable Temperature Setup for Scanning Electron Microscopy in Gases and Liquids at Ambient Conditions.

    PubMed

    Al-Asadi, Ahmed S; Zhang, Jie; Li, Jianbo; Potyrailo, Radislav A; Kolmakov, Andrei

    2015-06-01

    Scanning electron microscopy (SEM) of nanoscale objects in dry and fully hydrated conditions at different temperatures is of critical importance in revealing details of their interactions with an ambient environment. Currently available WETSEM capsules are equipped with thin electron-transparent membranes and allow imaging of samples at atmospheric pressure, but do not provide temperature control over the sample. Here, we developed and tested a thermoelectric cooling/heating setup for WETSEM capsules to allow ambient pressure in situ SEM studies with a temperature range between -15 and 100°C in gaseous, liquid, and frozen conditions. The design of the setup also allows for correlation of the SEM with optical microscopy and spectroscopy. As a demonstration of the possibilities of the developed approach, we performed real-time in situ microscopy studies of water condensation on a surface of Morpho sulkowskyi butterfly wing scales. We observed that initial water nucleation takes place on top of the scale ridges. These results confirmed earlier discovery of a preexisting polarity gradient of the ridges of Morpho butterflies. Our developed thermoelectric cooling/heating setup for environmental capsules meets the diverse needs for in situ nanocharacterization in material science, catalysis, microelectronics, chemistry, and biology.

  13. National Ambient Radiation Database

    SciTech Connect

    Dziuban, J.; Sears, R.

    2003-02-25

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  14. Laboratory/bench scale testing and evaluation of A. P. T. dry plate scrubber. Sixth quarterly progress report, June 1-August 31, 1981

    SciTech Connect

    Not Available

    1981-09-17

    The objective of this project is to conduct a bench scale experimental evaluation of the dry plate scrubber (DPS) at high temperature and pressure to determine its potential for controlling particulates and alkali vapor emissions from a pressurized fluidized bed combustion (PFBC) process. Progress reports are presented from the following tasks: high temperature and pressure (HTP) experiments; and preliminary alkali experiments on sorbent capacity and efficiency, and sorbent attrition. Some of the highlights are: of the five sorbents (diatomaceous earth MP-94, activated bauxite, dolomite, alumina spheres, and zirconia spheres) evaluated, diatomaceous earth and activated bauxite showed a higher sodium capture efficiency than the other three sorbents; the attrition of diatomaceous earth and activated bauxite is higher at 900/sup 0/C than at ambient temperatures; detailed mechanical design of the HTP DPS system continued; alkali vapor generator and the fly ash particle generator were built; the bench scale DPS was built and installed.

  15. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  16. Influence of drying on the flavor quality of spearmint (Mentha spicata L.).

    PubMed

    Díaz-Maroto, M Consuelo; Pérez-Coello, M Soledad; González Viñas, M A; Cabezudo, M Dolores

    2003-02-26

    Spearmint (Mentha spicata L.) was dried using three different drying methods: oven-drying at 45 degrees C, air-drying at ambient temperature, and freeze-drying. The effect of the drying method on the volatile compounds and on the structural integrity and sensory characteristics of the spice was evaluated. The volatile components from fresh and dried spearmint samples were isolated by simultaneous distillation-extraction (SDE) and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 28 compounds were identified, carvone, limonene, and 1,8-cineole, in that order, being the main components in all of the samples. Oven-drying at 45 degrees C and air-drying at ambient temperature were the methods that produced the best results. An increase in monoterpenes was observed in all of the dried samples, except in the freeze-dried samples that underwent freezing at -198 degrees C. Freeze-drying resulted in substantial losses in oxygenated terpenes and sesquiterpenes. The effect of each drying method on leaf structure was observed by scanning electron microscopy. From a sensory standpoint, drying the spearmint brought about a decrease in herbaceous and floral notes together with an increase in minty odor.

  17. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  18. Structure of drying costs

    SciTech Connect

    Sztabert, Z.T.

    1996-05-01

    A knowledge of cost structure and cost behavior is necessary in the management activities, particularly in the domain of investment or production decision making, as well as in the areas of production cost planning and control. Prediction and analysis of values of cost components for different technologies of drying are important when selection of a drying method and drying equipment should be done. Cost structures of lumber and coal drying processes together with an application of the factor method for prediction of the drying cost are presented.

  19. Effect of swelling pressure on local volume change in unsaturated sand-bentonite buffer material

    SciTech Connect

    Shooshpasha, I.; Mohamed, A.M.O.; Yong, R.N.; Onofrei, C.

    1996-08-01

    This study was designed to investigate the effect of swelling pressure on local volume changes in unsaturated sand-bentonite based buffer material used in a nuclear fuel waste disposal vault. A laboratory mixture of sodium bentonite and graded silica sand in equal proportion by dry weight was used in both ambient and elevated temperatures experiments. At high water content locations within the tested specimens, the density was reduced by 3.57% from its initial values due to swelling. The swelling pressure as a function of distance was calculated by 4 different models. The calculated results have indicated that the density distribution within the specimen is affected by swelling potential distribution. The calculated swelling pressure values vary as a function of water content, reaching 1 MPa at the source of water intake, i.e., at high water content zone, and 2 MPa at the heater side, i.e., at low water content zone.

  20. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  1. Ambient pyrite in precambrian chert: new evidence and a theory.

    PubMed

    Knoll, A H; Barghoorn, E S

    1974-06-01

    Ambient pyrites of two distinct types were described from middle Precambrian rocks of the Lake Superior area. A new class of this phenomenon is here described from middle Precambrian chert from western Australia. The newly found ambient pyrites are quite minute and characteristically occur in groups forming a "starburst" pattern. All three types of ambient pyrite may be explained in terms of pressure solution initiated by gas evolution from organic material attached to the pyrite. Thermal degradation of the kerogen produces the gases which, due to the impermeability of the encompassing chert, build up the pressures necessary to initiate solution. Pyrite appendages bear a striking resemblance to micro-organisms and, thus, constitute the smallest pseudofossils known.

  2. Ambient Pyrite in Precambrian Chert: New Evidence and a Theory

    PubMed Central

    Knoll, Andrew H.; Barghoorn, Elso S.

    1974-01-01

    Ambient pyrites of two distinct types were described from middle Precambrian rocks of the Lake Superior area. A new class of this phenomenon is here described from middle Precambrian chert from western Australia. The newly found ambient pyrites are quite minute and characteristically occur in groups forming a “starburst” pattern. All three types of ambient pyrite may be explained in terms of pressure solution initiated by gas evolution from organic material attached to the pyrite. Thermal degradation of the kerogen produces the gases which, due to the impermeability of the encompassing chert, build up the pressures necessary to initiate solution. Pyrite appendages bear a striking resemblance to micro-organisms and, thus, constitute the smallest pseudofossils known. Images PMID:16592159

  3. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  4. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  5. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  6. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  7. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  8. Dry Snow Metamorphism

    DTIC Science & Technology

    2012-09-19

    REPORT Dry Snow Metamorphism Final Report Grant: 51065-EV 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this project was to characterize the...structural evolution of dry snow as it underwent metamorphism under either quasi-isothermal conditions or a temperature gradient, and to determine...Z39.18 - 5-Aug-2011 Dry Snow Metamorphism Final Report Grant: 51065-EV Report Title ABSTRACT The goal of this project was to characterize the structural

  9. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen B

    2013-01-14

    An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2).

  10. Calculation Of Pneumatic Attenuation In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  11. Studies on drying and storage of chilgoza (Pinus gerardiana) nuts.

    PubMed

    Thakur, N S; Sharma, Somesh; Gupta, Rakesh; Gupta, Atul

    2014-09-01

    Present studies were undertaken with the aim of screening a suitable mode of drying and packaging material for storage of chilgoza nuts. A temperature of 55 °C was found most suitable for the drying of nuts in cabinet drier. Cabinet drier was found the best drying mode among four for drying of chilgoza nuts on the basis of quality characteristics such as moisture, water activity and sensory attributes. Further, out of five packaging materials selected in the study, glass jar followed by aluminium laminate pouch was found to be suitable for the packing and storage of dried nuts in ambient conditions for 6 months on the basis of retention of better physico-chemical and sensory attributes.

  12. Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices

    NASA Astrophysics Data System (ADS)

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Jafarianlari, Ali

    2016-10-01

    Infrared-vacuum drying characteristics of button mushroom (Agaricus bisporus) were evaluated in a combined dryer system. The effects of drying parameters, including infrared radiation power (150-375 W), system pressure (5-15 kPa) and time (0-160 min) on the drying kinetics and characteristics of button mushroom slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of button mushroom slices. The rate constants of the nine different kinetic's models for thin layer drying were established by nonlinear regression analysis of the experimental data which were found to be affected mainly by the infrared power level while system pressure had a little effect on the moisture ratios. The regression results showed that the Page model satisfactorily described the drying behavior of button mushroom slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 0.83 and 2.33 × 10-9 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased.

  13. Superficial versus deep dry needling.

    PubMed

    Baldry, Peter

    2002-08-01

    Ninety percent of my patients with myofascial trigger point (MTrP) pain have this alone and are treated with superficial dry needling. Approximately 10% have concomitant MTrP pain and nerve root compression pain. These are treated with deep dry needling. SUPERFICIAL DRY NEEDLING (SDN): The activated and sensitised nociceptors of a MTrP cause it to be so exquisitely tender that firm pressure applied to it gives rise to a flexion withdrawal reflex (jump sign) and in some cases the utterance of an expletive (shout sign). The optimum strength of SDN at a MTrP site is the minimum necessary to abolish these two reactions. With respect to this patients are divided into strong, average and weak responders. The responsiveness of each individual is determined by trial and error. It is my practice to insert a needle (0.3mm x 30mm) into the tissues immediately overlying the MTrP to a depth of 5-10 mm and to leave it in situ long enough for the two reactions to be abolished. For an average reactor this is about 30secs. For a weak reactor it is several minutes. And for a strong reactor the insertion of the needle and its immediate withdrawal is all that is required. Following treatment muscle stretching exercises should be carried out, and any steps taken to eliminate factors that might lead to the reactivation of the MTrPs. DEEP DRY NEEDLING (DDN): This in my practice is only used either when primary MTrP activity causes shortening of muscle sufficient enough to bring about compression of nerve roots. Or when there is nerve compression pain usually from spondylosis or disc prolapse and the secondary development of MTrP activity. Unlike SDN, DDN is a painful procedure and one which gives rise to much post-treatment soreness.

  14. Indiana Corn Dry Mill

    SciTech Connect

    2006-09-01

    The goal of this project is to perform engineering, project design, and permitting for the creation and commercial demonstration of a corn dry mill biorefinery that will produce fuel-grade ethanol, distillers dry grain for animal feed, and carbon dioxide for industrial use.

  15. Tray Drying of Solids.

    ERIC Educational Resources Information Center

    Afacan, Artin; Masliyah, Jacob

    1984-01-01

    Describes a drying experiment useful in presenting the concept of simultaneous heat and mass transfer. Background information, equipment requirements, experimental procedures, and results are provided. The reasonably good agreement in the calculated rate of drying and that observed experimentally makes students feel confident in applying…

  16. Dry imaging cameras.

    PubMed

    Indrajit, Ik; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-04-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  17. Packaged kiln dried firewood

    SciTech Connect

    Cutrara, A.

    1986-07-01

    A process is described for kiln drying firewood consisting of essentially uniform lengths of split firewood pieces, the process comprising splitting essentially uniform lengths of green tree logs to form firewood pieces, placing the firewood pieces in open mesh bags to provide a plurality of bags of firewood, placing the plurality of bags of green firewood pieces in a kiln drying oven, kiln drying the pieces at temperatures in excess of 150/sup 0/F. by moving heated air over the pieces until the pieces have an overall moisture content ranging from 15% up to 30% by weight, operating the kiln at a temperature below a level which would render the structural characteristics of the bag useless and removing the kiln dried firewood pieces in the plurality of bags from the kiln drying oven.

  18. Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications

    NASA Astrophysics Data System (ADS)

    Ouertani, Sahbi; Koubaa, Ahmed; Azzouz, Soufien; Hassini, Lamine; Dhib, Kamel Ben; Belghith, Ali

    2014-12-01

    Wood can be dried rapidly using combined contact heating and low vacuum. However, the impact on Jack pine wood drying and its mechanical strength remains unclear. The aim of this paper was to determine the kinetics of vacuum contact drying of Jack pine (Pinus banksiana) wood boards (dimensions 50 × 100 × 2480 mm3) under various drying temperatures and vacuum pressures at a pilot scale. Drying temperatures and vacuum pressures ranged from 65 to 95 °C and from 169.32 to 507.96 mbar, respectively. Dried samples were subjected to flexural loading to determine mechanical strength. Results indicated that drying time decreased with higher drying temperature and vacuum pressure, where as decreased vacuum pressure increased the temperature of wood samples at a constant drying temperature. Results also indicated that the mechanical properties of dried samples were affected by drying temperature, vacuum pressure, and lumber grade. Mechanical test results were then compared to those for a conventional drying process, revealing that vacuum contact drying do not have a negative impact on the wood mechanical properties.

  19. Ambient Noise in an Urbanized Tidal Channel

    NASA Astrophysics Data System (ADS)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  20. Pseudo-dry-spinning of chitosan.

    PubMed

    Notin, Laure; Viton, Christophe; Lucas, Jean-Michel; Domard, Alain

    2006-05-01

    A pseudo-dry-spinning process of chitosan without any use of organic solvent or cross-linking agent was studied. A highly deacetylated chitosan (degree of acetylation=2.7%) from squid-pens, with a high weight-average molecular weight (M(W)=540,000 g/mol) was used. The polymer was dissolved in an acetic acid aqueous solution in order to obtain a polymer concentration of 2.4% w/w with a stoichiometric protonation of the -NH(2) sites. The coagulation method consisted of subjecting the extruded monofilament to gaseous ammonia. The alkaline coagulation bath classically used in a wet-spinning process was therefore not useful. A second innovation dealt with the absence of any aqueous washing bath after coagulation. The gaseous coagulation was then directly followed by a drying step under hot air. When the chitosan monofilament coagulated in the presence of ammonia gas, ammonium acetate produced with the fiber could be hydrolyzed into acetic acid and ammonia, easily eliminated in their gaseous form during drying. The pseudo-dry-spinning process did not give rise to any strong degradation of polymer chains. After 2 months at ambient atmosphere, chitosan fibers could then be stored without any significant decrease in the M(W), which remained at a rather high value of 350,000 g/mol. The obtained chitosan fibers showed a smooth, regular and uniformly striated surface.

  1. High-temperature and high-speed oxidation of 4H-SiC by atmospheric pressure thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Hanafusa, Hiroaki; Ishimaru, Ryosuke; Higashi, Seiichiro

    2017-04-01

    The application of atmospheric pressure thermal plasma jet (TPJ) annealing to the high-temperature and high-speed thermal oxidation of Si-face of 4H-SiC wafer is reported. A high SiO2 film growth rate of 288 nm min‑1 was obtained at an oxidation temperature of 1640 °C without intentional dry O2 gas feeding. Ambient analysis suggested that ozone generated from oxygen in the ambient air by the plasma irradiation was supplied to the SiC surface. It is implied that a mono-oxygen decomposed from ozone was diffused into the oxide growth interface. As a result, high-speed oxidation occurred by combination of high-temperature TPJ annealing and ozone feeding.

  2. Comparison between drying of timber in a solar dryer and in an electrically-heated kiln

    SciTech Connect

    Ong, K.S.

    1997-03-01

    Solar dryers have been considered for timber drying in a number of countries because of the expected savings in drying costs. From a review of past works on solar, natural, and conventional drying it was observed that while solar dryers were able to dry timber faster compared to natural drying, the difference was only marginal in some instances. The drying rates are expected to be dependent upon ambient conditions in which the dryers are operated. Solar dryers would operate more efficiently in countries with low humidity than in tropical regions. Thus the thermal performance and also the economics of solar dryers is country dependent. In the present paper, a comparison of the drying rates obtained with a solar dryer is made with that obtained with an electrically operated drying kiln.

  3. Influence of factors on the drying of cassava in a solar simulator

    SciTech Connect

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    In tropical countries, sun drying is still the most popular method used for processing root and tuber crops like cassava and yam. Relatively very little has been done on studying the kinetics of sun drying a bed of chips of cassava and similar crops, but this information is invaluable in finding options for reducing drying time and costs, and increasing tonnage produced. This project studied some factors that have an effect on the sun drying rate of cassava chips. The factors were ambient temperature, relative humidity, radiation intensity, air velocity, and loading density. A solar simulation chamber was constructed so that drying could be achieved under controllable conditions similar to those obtained in sun drying. Experiments carried out in the simulator revealed that temperature had the most significant effect on drying rate, followed by air velocity, and radiation intensity. Regression equations were developed relating the drying rate with the factors studied.

  4. Constant perfusion for dry eyes and sockets.

    PubMed Central

    Ruben, M.; Trodd, C.

    1978-01-01

    Several techniques have been used to treat dry eye, to irrigate the eye surface, or to apply drugs in solution. The commonest method is to apply drops. But a technique is needed for giving solutions over long periods either as drops or continuously. The apparatus described here consists of a replaceable plastic tank under mechanical pressure attached to capillary tubing which is kept in contact with the inner canthus of the eye. It was found to alleviate symptoms in severe dry eye conditions not alleviated by other methods. Images PMID:646987

  5. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  6. Monitoring fluidized bed drying of pharmaceutical granules.

    PubMed

    Briens, Lauren; Bojarra, Megan

    2010-12-01

    Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.

  7. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  8. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  9. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2011-01-01

    The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crewmembers to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crewmember. Over a two year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. After four years on-orbit, this paper will review failures that have occurred and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.

  10. Acoustoconvection Drying of Meat

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2016-03-01

    The dynamics of moisture extraction from meat samples by the acoustoconvection and thermoconvection methods has been investigated. To describe the dynamics of moisture extraction from meat, we propose a simple relaxation model with a relaxation time of 8-10 min in satisfactorily describing experimental data on acoustoconvection drying of meat. For thermoconvection drying the relaxation time is thereby 30 and 45 min for the longitudinal and transverse positions of fibers, respectively.

  11. Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts

    DOE PAGES

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu; ...

    2016-09-21

    Dry reforming is a potential process to convert CO2 and light alkanes into syngas (H2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce4+ to Ce3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS), X-ray Diffraction (XRD) andmore » X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  12. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  13. Effect of pressure on electrospray characteristics

    SciTech Connect

    Marginean, Ioan; Page, Jason S.; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2009-11-02

    An experimental study of sub-ambient pressure electrosprays is reported. The pressure domain that affords stable electrospray operation appears to be limited by the vapor pressure of the liquid. The voltage driving the electrospray is shown to have a logarithmic dependence on the pressure. This scaling amends the relationship currently in use to calculate the electric field at the tip of the meniscus of an electrified liquid

  14. Experimental evidence of thermo-mechanical pressurization of faults during earthquakes

    NASA Astrophysics Data System (ADS)

    Violay, Marie; Di Toro, Giulio; Nielsen, Stefan; Spagnuolo, Elena; Burg, Jean-Pierre

    2015-04-01

    Earthquakes occur while fault strength decreases with increasing slip and slip rate. Thermo-mechanical pressurization of pore fluids induced by frictional heating during seismic slip is one of the possible mechanisms responsible for fault dynamic weakening. However, has not yet been observed in the laboratory. To investigate seismic slip in the presence of pore fluids, 26 friction experiments were conducted at room temperature on hollow cylinders (50/30 mm external/internal diameter) of Etna basalt (1) under room-dry conditions or immersed in water under either (2) drained conditions (constant pore pressure, preventing fluid pressurization), and (3) undrained conditions (constant pore volume). Experiments were performed by spinning two basalt cylinders with the rotary shear machine (SHIVA, INGV Rome) at target slip rates (V) of 3 m/s, displacements (δ) from 4 m to 6 m, normal stress (σn) ranging from 15 to 35 MPa and initial pore fluid pressure (Pf) of 5 MPa.The experimental data are compared with those obtained from carbonate-bearing rocks (Carrara marble). In all the experiments, the coefficient of friction μ decayed exponentially from a peak value (μp = 0.55 ∓ 0.07) at about the initiation of slip towards a steady-state value μss of 0.1 under room-dry conditions, 0.1 under drained conditions and 0.08 under undrained conditions. The shear stress decay was about 75 percent over the first 5 cm of slip, independently of the ambient conditions. However, at a given σneff, δ and V, steady state shear stress was 20 percent lower under undrained than under drained and room dry conditions. Moreover, Pf under undrained conditions increased with displacement following a power law. Conversely, Pf and σn did not vary under drained conditions. After all experiments, a continuous, 100-200 µm thick, layer of glass (Scanning Electron Microscope investigation) separated the rock cylinders, irrespective of the ambient and hydraulic conditions. In summary, the mechanical

  15. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    PubMed

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  16. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  17. Determination for dry layer resistance of sucrose under various primary drying conditions using a novel simulation program for designing pharmaceutical lyophilization cycle.

    PubMed

    Kodama, Tatsuhiro; Sawada, Hiroyuki; Hosomi, Hiroshi; Takeuchi, Masahito; Wakiyama, Naoki; Yonemochi, Etsuo; Terada, Katsuhide

    2013-08-16

    Dry layer resistance, which is the resistance of dried cake against water vapor flow generated from sublimation, is one of the important parameters to predict maximum product temperature and drying time during primary drying in lyophilization. The purpose of this study was to develop the predictive model of dry layer resistance under various primary drying conditions using the dry layer resistance obtained from a preliminary lyophilization run. When the maximum dry layer resistance was modified under the assumption that the chamber pressure is zero, the modified dry layer resistance, which is defined as specific dry layer resistance, correlated well with the sublimation rate. From this correlation, the novel predictive model including the empirical formula of sublimation rate and specific dry layer resistance is proposed. In this model, the dry layer resistance under various conditions of shelf temperature and chamber pressure was successfully predicted based on the relationship of the sublimation rate and specific dry layer resistance of the edge and center vials obtained from the product temperature in one preliminary cycle run. It is expected that this predictive model could be a practical and useful tool to predict product temperature during primary drying.

  18. Ambient acceleration dependence of single-bubble sonoluminescence.

    PubMed

    Thomas, Charles R; Roy, Ronald A; Holt, R Glynn

    2011-11-01

    Much of the research performed to study SBSL deals with the influence of external parameters (e.g., the host water temperature, the ambient pressure, the type and amount of dissolved gas in the liquid, to name a few) on the bubble dynamics and light emission. In the current paper, work carried out to study the influence of another external parameter-ambient acceleration-is described. The experiments described here were performed on the NASA KC-135 which provided both periods of reduced gravity (10(-3) g) and increased gravity (1.8 g) by flying repeated parabolic maneuvers. The resulting measurements are compared with the predictions of a numerical model and can be understood in the context of the changing hydrostatic head pressure and buoyant force acting on the bubble.

  19. Factors affecting the stability of the performance of ambient fine-particle concentrators.

    PubMed

    Kim, S; Sioutas, C; Chang, M C; Gong, H

    2000-01-01

    This article describes a systematic evaluation of factors affecting the stability of the performance of Harvard ambient fine-particle concentrators, an essential requirement for controlled animal and human exposure studies that utilize these technologies. Phenomenological problems during the operation of the concentrator, including pressure drop increase and decrease in concentration enrichment, were statistically correlated with ambient air parameters such as temperature, relative humidity, PM2.5 mass concentration, and mass median diameter. The normalized hourly pressure drop across the concentrator was strongly associated (R2 = .81) with the product of ambient PM2.5 mass concentration and the difference between the vapor pressure downstream of the impactor nozzle and the saturation vapor pressure at the adiabatic expansion temperature (i.e., the temperature of the aerosol immediately downstream of the virtual impactors). From multiple regression analysis, the average enrichment factor was predicted reasonably well (R2 = .67) by aerosol mass median diameter and the normalized hourly pressure drop. Based on these results, we can anticipate in any given day whether an exposure study can be conducted without a considerable increase in the concentrator pressure drop, which might lead to an abrupt or premature termination of the exposure. As particle mass concentration and ambient dewpoint are the two main parameters responsible for raising the pressure drop across the concentrator, efforts should be made to either desiccate the ambient aerosol at days of high dewpoints, or to dilute the ambient PM at days of high concentrations, prior to drawing the aerosol through the virtual impactors. The latter approach is recommended on days of severe ambient pollution conditions because it is simpler and also makes it possible to maintain the appropriate concentration level delivered to the exposure chamber.

  20. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  1. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  2. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  3. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Spray process drying operations. 590.542 Section 590.542 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF...-pressure lines, high- and low-pressure pumps, homogenizers, and pasteurizers shall be cleaned by...

  4. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Spray process drying operations. 590.542 Section 590.542 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF...-pressure lines, high- and low-pressure pumps, homogenizers, and pasteurizers shall be cleaned by...

  5. Ambient curing fire resistant foams

    NASA Technical Reports Server (NTRS)

    Hamermesh, C. L.; Hogenson, P. A.; Tung, C. Y.; Sawko, P. M.; Riccitiello, S. R.

    1979-01-01

    The feasibility of development of an ambient curing foam is described. The thermal stability and flame spread index of the foams were found to be comparable to those of the high-temperature cured polyimide foams by Monsanto two-foot tunnel test and NASA T-3 Fire test. Adaptation of the material to spray in place applications is described

  6. Low ambient oxygen prevents atherosclerosis.

    PubMed

    Kang, Ju-Gyeong; Sung, Ho Joong; Amar, Marcelo J; Pryor, Milton; Remaley, Alan T; Allen, Michele D; Noguchi, Audrey C; Springer, Danielle A; Kwon, Jaeyul; Chen, Jichun; Park, Ji-hoon; Wang, Ping-yuan; Hwang, Paul M

    2016-03-01

    Large population studies have shown that living at higher altitudes, which lowers ambient oxygen exposure, is associated with reduced cardiovascular disease mortality. However, hypoxia has also been reported to promote atherosclerosis by worsening lipid metabolism and inflammation. We sought to address these disparate reports by reducing the ambient oxygen exposure of ApoE-/- mice. We observed that long-term adaptation to 10% O2 (equivalent to oxygen content at ∼5000 m), compared to 21% O2 (room air at sea level), resulted in a marked decrease in aortic atherosclerosis in ApoE-/- mice. This effect was associated with increased expression of the anti-inflammatory cytokine interleukin-10 (IL-10), known to be anti-atherogenic and regulated by hypoxia-inducible transcription factor-1α (HIF-1α). Supporting these observations, ApoE-/- mice that were deficient in IL-10 (IL10-/- ApoE-/- double knockout) failed to show reduced atherosclerosis in 10% oxygen. Our study reveals a specific mechanism that can help explain the decreased prevalence of ischemic heart disease in populations living at high altitudes and identifies ambient oxygen exposure as a potential factor that could be modulated to alter pathogenesis. Key messages: Chronic low ambient oxygen exposure decreases atherosclerosis in mice. Anti-inflammatory cytokine IL-10 levels are increased by low ambient O2. This is consistent with the established role of HIF-1α in IL10 transactivation. Absence of IL-10 results in the loss of the anti-atherosclerosis effect of low O2. This mechanism may contribute to decreased atherosclerosis at high altitudes.

  7. Trigger Point Dry Needling.

    PubMed

    2017-03-01

    Increasingly, physical therapists in the United States and throughout the world are using dry needling to treat musculoskeletal pain, even though this treatment has been a controversial addition to practice. To better generalize to physical therapy practice the findings about dry needling thus far, the authors of a study published in the March 2017 issue of JOSPT identified the need for a systematic review examining the effectiveness of dry needling performed by physical therapists on people with musculoskeletal pain. Their review offers a meta-analysis of data from several included studies and assesses the evidence for risks of bias. J Orthop Sports Phys Ther 2017;47(3):150. doi:10.2519/jospt.2017.0502.

  8. Magnetically responsive dry fluids

    NASA Astrophysics Data System (ADS)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  9. High gas pressure effects on yeast.

    PubMed

    Espinasse, V; Perrier-Cornet, J-M; Marecat, A; Gervais, P

    2008-11-01

    Dried microorganisms are particularly resistant to high hydrostatic pressure effects. However, exposure to high pressures of nitrogen proved to be effective in inactivating dried yeasts. In this study, we tried to elucidate this mechanism on Saccharomyces cerevisiae. High-pressure treatments were performed using different inert gases at 150 MPa and 25 degrees C with holding time values up to 12 months. The influence of cell hydration was also investigated. For fully hydrated cells, pressurized gases had little specific effect: cell inactivation was mainly due to compression effects. However, dried cells were sensitive to high pressure of gases. In this latter case, two inactivation kinetics were observed. For holding time up to 1 h, the inactivation rate increased to 4 log and was linked to a loss of membrane integrity and the presence of damage on the cell wall. In such case cell inactivation would be due to gas sorption and desorption phenomena which would rupture dried cells during a fast pressure release. Gas sorption would occur in cell lipid phases. For longer holding times, the inactivation rate increased more slightly due to compression effects and/or to a slower gas sorption. Water therefore played a key role in cell sensitivity to fast gas pressure release. Two hypotheses were proposed to explain this phenomenon: the rigidity of vitrified dried cells and the presence of glassy solid phases which would favor intracellular gas expansion. Our results showed that dried microorganisms can be ruptured and inactivated by a fast pressure release with gases.

  10. Energy-saving drying and its application

    NASA Astrophysics Data System (ADS)

    Kovbasyuk, V. I.

    2015-09-01

    Superheated steam is efficiently applied as a coolant for the intensification of drying, which is an important component of many up-to-date technologies. However, traditional drying is extremely energy consuming, and many drying apparatus are environmentally unfriendly. Thus, it is important to implement the proposed drying technique using superheated steam under pressure significantly higher than the atmospheric one with subsequent steam transfer for use in a turbine for electric power generation as a compensation of energy costs for drying. This paper includes a brief thermodynamic analysis of such a technique, its environmental advantages, and possible benefits of the use of wet wastes and obtaining high-quality fuels from wet raw materials. A scheme is developed for the turbine protection from impurities that can occur in the steam at drying. Potential advantage of the technique are also the absence of heating surfaces that are in contact with wet media, the absence of the emissions to the atmosphere, and the use of low potential heat for desalination and the purification of water. The new drying technique can play an extremely important part in the implementation in the field of thermal destruction of anthropogenic wastes. In spite of the promotion of waste sorting to obtain valuable secondary raw materials, the main problem of big cities is nonutilizable waste, which makes not less than 85% of the starting quantity of waste. This can only be totally solved by combustion, which even more relates to the sewage sludge utilization. The wastes can be safely and efficiently combusted only provided that they are free of moisture. Combustion temperature optimization makes possible full destruction of dioxins and their toxic analogues.

  11. High-intensity drying processes: Impulse drying modeling of fluid flow and heat transfer in a crown compensated impulse drying press roll, The lubrication problem. Annual report

    SciTech Connect

    Orloff, D.I.; Hojjatie, B.; Bloom, F.

    1994-08-01

    Although evaporative drying is currently used to dry paper, research has showed that significant energy savings could be realized with the newer impulse drying technology in drying heavy weight grades of paper. This report analyzes the lubrication problem which arises in modeling impulse drying employing a crown compensated roll. The geometry for the associated steady flow problem is constructed and expressions are derived for the relevant velocity fields, mass flow rates, and normal and tangential forces acting on both the bottom surface of an internal hydrostatic shoe and the inside surface of the crown-compensated roll. Results from the analytical model agreed well with experimental data from Beloit Corp. for the small shoe/roll configuration. The model can be used to predict effect of design and physical parameters on the performance of the press roll (lubricant thickness, pressure distributions, mechanical power required to operate the roll, etc.) and to determine optimal performance under various operating conditions.

  12. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  13. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  14. Quality of dry ginger (Zingiber officinale) by different drying methods.

    PubMed

    E, Jayashree; R, Visvanathan; T, John Zachariah

    2014-11-01

    Ginger rhizomes sliced to various lengths of 5, 10, 15, 20, 30, 40, 50 mm and whole rhizomes were dried from an initial moisture content of 81.3 % to final moisture content of less than 10 % by various drying methods like sun drying, solar tunnel drying and cabinet tray drying at temperatures of 50, 55, 60 and 65 °C. Slicing of ginger rhizomes significantly reduced the drying time of ginger in all the drying methods. It was observed that drying of whole ginger rhizomes under sun took the maximum time (9 days) followed by solar tunnel drying (8 days). Significant reduction in essential oil and oleoresin content of dry ginger was found as the slice length decreased. The important constituents of ginger essential oil like zingiberene, limonene, linalool, geraniol and nerolidol as determined using a gas chromatography was also found to decrease during slicing and as the drying temperature increased. The pungency constituents in the oleoresin of ginger like total gingerols and total shogoals as determined using a reverse phase high performance liquid chromatography also showed a decreasing trend on slicing and with the increase in drying temperature. It was observed from the drying studies that whole ginger rhizomes dried under sun drying or in a solar tunnel drier retained the maximum essential oil (13.9 mg/g) and oleoresin content (45.2 mg/g) of dry ginger. In mechanical drying, the drying temperature of 60 °C was considered optimum however there was about 12.2 % loss in essential oil at this temperature.

  15. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.

  16. Structural lubricity under ambient conditions

    PubMed Central

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  17. Structural lubricity under ambient conditions

    NASA Astrophysics Data System (ADS)

    Cihan, Ebru; Ipek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-06-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (~4,000-130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions.

  18. Intense magnetic clouds and their interactions with ambient solar wind streams

    NASA Astrophysics Data System (ADS)

    Zhang, G.-L.

    Structure characteristics of typical intense magnetic clouds are discussed for different conditions of ambient solar wind streams, with emphasis on the dynamic processes that govern the interaction between cloud and ambient stream. It is suggested that large magnetic pressure gradient forces at the expanding cloud boundaries are able to accelerate the stream ahead of cloud and decelerate that behind, building up double saw-tooth speed profiles and driving shocks.

  19. Use of gas turbine exhaust for the direct drying of food products: Final report

    SciTech Connect

    Not Available

    1988-06-01

    The objective of this program was to evaluate the merits of using natural gas-fired gas turbine exhaust to directly dry food products. A survey of drying practices utilized in the food industry and a detailed review of worldwide regulatory drying practices were completed. An investigation of the economic advantages associated with direct drying was also considered. Four drying scenarios were used as part of the analysis: Dilution - hot turbine exhaust gases were diluted with ambient air to achieve temperatures suitable for food product drying; Indirect Heat Exchanger - gas turbine exhaust was directed through an intermediate heat exchanger to avoid flue-gas contamination of the ambient air; Tri-Generation - exhaust gases from the gas turbine were first directed to a heat recovery boiler and then through the drying system to dry the food product; and Conventional Cogeneration - the most conventional simple cycle gas turbine cogeneration (this scenario served as the baseline for all evaluations). Although the economics associated with direct drying appear attractive, the principal concern of any potential use would be the extraordinarily high NO/sub x/ levels and the potential nitrate and nitrosamine (potential carcinogens and carcinogenic precursors) contamination in food products. 21 refs., 21 figs., 17 tabs.

  20. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  1. Peer Pressure

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Peer Pressure KidsHealth > For Teens > Peer Pressure A A A ... for the school play. previous continue When the Pressure's On Sometimes, though, the stresses in your life ...

  2. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  3. Isothermal vapour flow in extremely dry soils

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapour flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapour pressure of the surrounding air, thus temperature or solute gradients can drive vapour flows. However, in extremely dry soils where water is retained by adsorptive forces rather than capillarity, vapour flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapour pressure in the soil, and hence small differences in water content can initiate vapour pressure gradients. In many field conditions this effect may be negligible compared to vapour flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapour phase. Experiments were performed in laboratory conditions using marine sand that had previously been oven dried and cooled. This dry sand was used to represent the desert conditions in which this irrigation system is intended for use. Experimental results show that isothermal vapour flows can significantly affect the performance of such irrigation systems due to the rapid transport of water through the soil via the vapour phase. When the irrigation pipe was buried at a depth of 10cm a vapour flow from the soil surface was observed in less than 2 hours. These flows therefore affect the loss of mass into the atmosphere and thus must be considered when evaluating the availability of water for the irrigated crop. The experiments also provide a rare opportunity to observe isothermal vapour flows initiating from a subsurface source. Such experiments allow the significance of these flows to be quantified and potentially applied to other areas of arid zone hydrology.

  4. Ocean ambient sound south of Bermuda and Panama Canal traffic.

    PubMed

    Širović, Ana; Hildebrand, John A; McDonald, Mark A

    2016-05-01

    Comparisons of current and historic ocean ambient noise levels are rare, especially in the North Atlantic. Recent (2013-2014) monthly patterns in ocean ambient sound south of Bermuda were compared to those recorded at the same location in 1966. Additionally, trends in ocean traffic, in particular, Panama Canal traffic, over this time were also investigated. One year of ocean ambient noise measurements were collected in 1966 using cabled, omnidirectional hydrophones at the U.S. Navy Tudor Hill Laboratory in Bermuda, and repeat measurements were collected at the same location from June 2013-May 2014 using a High-frequency Acoustic Recording Package. Average monthly pressure spectrum levels at 44 Hz increased 2.8 ± 0.8 dB from 1966 to 2013, indicating an average increase of 0.6 dB/decade. This low level of increase may be due to topographic shielding at this site, limiting it to only southern exposure, and the limit in the number of ship transits through the Panama Canal, which did not change substantially during this time. The impending expansion of the Canal, which will enable the transit of larger ships at twice the current rate, is likely to lead to a substantial increase in ocean ambient sound at this location in the near future.

  5. Performance testing and analysis of vertical ambient air vaporizers

    NASA Astrophysics Data System (ADS)

    Pandey, A. S.; Singh, V. N.; Shah, M. I.; Acharya, D. V.

    2017-02-01

    Ambient air vaporizers are used to regasify cryogenic liquids at extremely low temperature (below -153°C). Frost formation occurs on it due to large temperature difference between ambient air and cryogenic fluid. Frosting induces additional load on equipment and reduces its heat transfer effectiveness. Hence, mechanical and thermal design of vaporizers account for frosting. An experimental set-up has been designed and effects of flow rate and ground clearance on the performance of ambient air vaporizers are evaluated. The flow rate is increased from the rated capacity of 500 Nm3/h to 640 Nm3/h and ground clearance is reduced from 500 mm to 175 mm. The above variations reduce the time duration for which gaseous nitrogen is delivered at temperature higher than 10.1°C (desired). Hence duty cycle reduces from eight hours to five hours. The other factors affecting performance such as fin configuration, fluid type, fluid pressure, intermittent flow nature and climatic conditions are assumed to be constant over the test duration. The decrement in outlet gas temperature (from 38 °C to 10.1°C) with corresponding increment in frost thickness leads to deterioration of performance of ambient air vaporizers.

  6. Development and Evaluation of Solar Tunnel Dryer for Commercial Fish Drying

    NASA Astrophysics Data System (ADS)

    Mohod, A. G.; Khandetod, Y. P.; Shrirame, H. Y.

    2014-01-01

    The local practice of drying fish in open sun drying poses problems such as high moisture content, uncontrolled drying and contamination. These problems can be avoided by proper use of improved methods such as the solar tunnel dryer, which results in faster drying of fish. The semi cylindrical walk-in type natural convection solar tunnel dryer, having drying area of 37.5 m2 was developed and evaluated for the drying of fish products in comparison with the conventional method of open sun drying. The experiments were conducted without fish and with fish to evaluate the performance of solar tunnel dryer. The average rise in temperature inside the solar tunnel dryer was found to be 11.24 °C and 18.29 °C over the ambient temperature during no load test in winter and summer respectively. The average 28 % saving in time was observed for selected fish drying using solar tunnel dryer over open sun drying method with average drying efficiency of 19 %. The economics was calculated for drying of prawns ( Parapaeneopsis stylifera) by solar tunnel dryer and open sun drying system on the basis of business as a whole. The economics of the solar tunnel dryer is presented in term of Net present worth, Benefit-Cost Ratio, Payback period, Profitability index and Internal rate of return. The pay back period for solar tunnel dryer was found to be 2.84 years.

  7. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  8. The questionably dry eye.

    PubMed Central

    Mackie, I. A.; Seal, D. V.

    1981-01-01

    This paper is concerned with the recognition of the dry eye when the clinical diagnosis is in doubt and other external eye diseases may be present. Papillary conjunctivitis is common to the dry eye as well as other pathological conditions and confuses the diagnosis. We have correlated the factors involved in the assessment for dryness. We have shown that particulate matter in the unstained tear film is associated with low tear lysozyme concentration. Tear flow and tear lysozyme are not necessarily interrelated, but a low lysozyme concentration (tear lysozyme ratio < 1.0) is associated with keratoconjunctivitis sicca. The Schirmer I test can produce false positive results, and we have suggested a modification to overcome this. This modified test will detect the eye with severely depleted lysozyme secretion, but it is unreliable for detecting the eye with moderately depleted secretion. We find that its lowest normal limit should be considered as 6 mm. Images PMID:7448154

  9. Ultrasonic Clothes Drying Technology

    SciTech Connect

    Patel, Viral; Momen, Ayyoub

    2016-05-09

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  10. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2016-07-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  11. Superlubricity of dry nanocontacts

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Maier, Sabine; Meyer, Ernst

    2008-09-01

    We discuss how various forms of dry superlubricity, recently observed on the nanoscale, have been interpreted by simple phenomenological models. In particular, we review the cases of static and dynamic single-contact lubricity, thermolubricity, and structural lubricity. All these phenomena have been studied by friction force microscopy and explained using the classical Prandtl-Tomlinson model and its extensions, including thermal activation, temporal and spatial variations of the surface energy corrugation, and multiple-contact effects.

  12. Craniomandibular System and Postural Balance after 3-Day Dry Immersion

    PubMed Central

    Treffel, Loïc; Dmitrieva, Liubov; Gauquelin-Koch, Guillemette; Custaud, Marc-Antoine; Blanc, Stéphane; Gharib, Claude; Millet, Catherine

    2016-01-01

    The objective of the study was to determine the influence of simulated microgravity by exposure to dry immersion on the craniomandibular system. Twelve healthy male volunteers participated in a 3-day dry immersion study. Before and immediately after exposure we measured maximal bite force using piezoresistive sensors. The mechanical properties of the jaw and cervical muscles were evaluated before, during, and after dry immersion using MyotonPRO. Because recent studies reported the effects of jaw motor activity on the postural stability of humans, stabilometric measurements of center of pressure were performed before and after dry immersion in two mandibular positions: rest position without jaw clenching, and intercuspidal position during voluntary teeth clenching. Results revealed no significant changes of maximal bite force after dry immersion. All postural parameters were significantly altered by dry immersion. There were however no significant differences in stabilometric data according to mandibular position. Moreover the masseter tonicity increased immediately after the end of dry immersion period. Dry immersion could be used as a valid model for studying the effects of microgravity on human subjects. However, 3 days appear insufficient in duration to evaluate the effects of weightlessness on maximal bite force. Our research suggests a link between postural disturbance after dry immersion and masseter tonicity. PMID:26913867

  13. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. Strength of Wet and Dry Montmorillonite

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Lockner, D. A.; Moore, D. E.

    2015-12-01

    Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal

  15. Nonlinear Elasticity in a Deforming Ambient Space

    NASA Astrophysics Data System (ADS)

    Yavari, Arash; Ozakin, Arkadas; Sadik, Souhayl

    2016-12-01

    In this paper, we formulate a nonlinear elasticity theory in which the ambient space is evolving. For a continuum moving in an evolving ambient space, we model time dependency of the metric by a time-dependent embedding of the ambient space in a larger manifold with a fixed background metric. We derive both the tangential and the normal governing equations. We then reduce the standard energy balance written in the larger ambient space to that in the evolving ambient space. We consider quasi-static deformations of the ambient space and show that a quasi-static deformation of the ambient space results in stresses, in general. We linearize the nonlinear theory about a reference motion and show that variation of the spatial metric corresponds to an effective field of body forces.

  16. Simple Solutions for Dry Eye

    MedlinePlus

    ... are more concentrated in the tear film of dry eye patients. In hot weather, sleep with the windows shut and keep cool with air conditioning. • Dry eye patients often develop or aggravate allergies. An ...

  17. Ambient Temperature Rechargeable Lithium Battery.

    DTIC Science & Technology

    1982-08-01

    AD-AI O297 EIC LA BS INC NEWTON MA F/6 10/3 AMB IENT TEMPERATURE RECHARGEABLE LITHIUM BATTERAU AG(MARHMU)L TI ARI AK IC07 UNCLASSIFIED C-655DEE TB6...036FL -T Research and Development Technical Report -N DELET-TR-81-0378-F AMBIENT TEMPERATURE RECHARGEABLE LITHIUM BATTERY K. M. Abraham D. L. Natwig...WORDS (Cenimne an revee filf Of ~"#amp Pu l41"lfr bg’ 61WA amober) Rechargeable lithium battery, CrO.5VO.5S2 positive electrode, 2Me-THF/LiAsF6, cell

  18. Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1983-02-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

  19. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  20. Extrusion energy and pressure requirements

    SciTech Connect

    Bhattacharya, M.; Hanna, M.A.

    1984-01-01

    Corn gluten meal samples at moisture contents of 14, 20 and 26% dry basis were extruded at barrel temperatures of 120, 145 and 170/sup 0/C with screw speeds of 100, 150 and 200 rpm. The specific energy requirements and specific operating pressure decreases as the moisture content and temperature were increased. The effect of screw speed on specific energy and pressure was inconclusive.