Science.gov

Sample records for ambient pressure dried

  1. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  2. Synthesis of Silica Aerogel from Bagasse Ash by Ambient Pressure Drying

    NASA Astrophysics Data System (ADS)

    Setyawan, Nazriati Heru; Winardi, Sugeng

    2011-12-01

    Silica aerogels having very high surface area and pore volume have been succesfully synthesized from bagasse ash by ambient pressure drying (APD) method. Silica in bagasse ash was extracted by alkali extraction to produce sodium silicate solution. This is done by boiling bagasse ash in 2 N NaOH solution under continuous stirring for 1 h. To avoid the collapse of gel structure during drying at ambient pressure condition, the silica surface was modified with alkyl functional groups by a single step sol-gel process. Silicic acid produced by exchanging Na+ ions in dilute sodium silicate solution with H+ ions from cation resin was added with trimethylchlorosilane (TMCS) and let the reaction of TMCS with water pore proceeds for several minutes to produce hexamethyldisilazane (HMDS) and HCl. Then, HMDS was added to allow the modification of silica surface in which the silanol groups were exchanged with alkyl groups originating from HMDS. The solution pH was then adjusted to 8-9 by adding NH4OH solution to induce gel formation. The hydrogel was aged at 40 °C for 18 h and at 60 °C for 1 h. Then, it was dried at 80 °C at ambient pressure condition. The silica aerogels obtained have specific surface, as measured by BET method, ranging from 450.2 to 1360.4 m2/g depending on the synthesis condition. The pore volume was ranging from 0.7 to 1.9 cm3/g. It seems that silica aerogels with very high surface area and pore volume can be obtained if the silanols group in the silica surface was exchanged succesfully with alkyl groups from HMDS.

  3. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  4. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  5. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  6. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  7. Real-time observation of the dry oxidation of the Si (100) surface with ambient pressure x-ray photoelectron spectroscopy

    SciTech Connect

    Enta, Y.; Mun, B.S.; Rossi, M.; Ross Jr, P.N.; Hussain, Zahid; Fadley, C.S.; Lee, K.-S.; Kim, S.-K.

    2007-09-20

    We have applied ambient-pressure x-ray photoelectron spectroscopy with Si 2p chemical shifts to study the real-time dry oxidation of Si(100), using pressures in the range of 0.01-1 Torr and temperatures of 300-530 oC, and examining the oxide thickness range from 0 to ~;;25 Angstrom. The oxidation rate is initially very high (with rates of up to ~;;225 Angstrom/h) and then, after a certain initial thickness of the oxide in the range of 6-22 Angstrom is formed, decreases to a slow state (with rates of ~;;1.5-4.0 Angstrom/h). Neither the rapid nor the slow regime is explained by the standard Deal-Grove model for Si oxidation.

  8. Preparation of the monolith of hierarchical macro-/mesoporous calcium silicate ultrathin nanosheets with low thermal conductivity by means of ambient-pressure drying.

    PubMed

    Bai, Jilin; Li, Yuanzhi; Xiang, Jiwei; Ren, Lu; Mao, Mingyang; Zeng, Min; Zhao, Xiujian

    2015-06-01

    Calcium silicate monolith was prepared by the hydrothermal reaction of a slurry of SiO2 , calcium hydroxide, and surfactant (OP-10) obtained by high-energy ball milling, followed by drying at ambient pressure. By using this strategy, the shrinkage due to the collapse of pores during the drying of porous materials, which is a commonly observed phenomena, was successfully avoided. It has a unique microstructure of hierarchical macro-/mesoporous ultrathin calcium silicate nanosheets with a layered gyrolite crystalline structure. Very interestingly, the calcium silicate nanosheets can be peeled off to give a single-layer nanosheet (1.23 nm) of gyrolite by ultrasonication. The monolith has a low apparent density (0.073 g cm(-3) ) and low thermal conductivity (0.0399 W K(-1)  m(-1) ). The reasons behind why the formation of the unique hierarchical macro-/mesoporous ultrathin nanosheets avoids shrinkage during the hydrothermal reaction and drying, and considerably decreases the thermal conductivity, is discussed.

  9. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  10. Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol-gel process and dried at ambient pressure

    NASA Astrophysics Data System (ADS)

    Mahadik, D. B.; Lee, Yoon Kwang; Park, Chang-Sun; Chung, Hee-Yoon; Hong, Min-Hee; Jung, Hae-Noo-Ree; Han, Wooje; Park, Hyung-Ho

    2015-12-01

    High-surface-area tin oxide aerogels have been synthesized by an ambient-pressure drying method, using a non-alkoxide tin precursor and a hybrid sol-gel technique. The tin precursor was dissolved in different volume ratios of mixed water and ethanol solvents, and gelation was attained by means of an epoxide-initiated gelation process. The solvent in the gel was successively replaced with low-surface-tension solvents, and finally the gels were dried at ambient pressure in an oven. It was observed that solvent combinations significantly altered the textural properties of tin oxide aerogels. The solvent exchange process used prior to ambient-pressure drying helped to minimize impurities originating from the tin precursor. The tin oxide aerogels had the maximum specific surface area of 209 m2/g and small crystallite size (<6.5 nm) after an annealing treatment at 500 °C for 2 h. The sensitivity of a SnO2 sensor to CO gas was found to be strongly affected as the specific surface area of its constituent tin oxide aerogel was increased from 121 m2/g to 209 m2/g. This study offers evidence of the effects of tin oxide aerogel's specific surface area upon its gas sensing performance.

  11. Effect of ambient pressure on Leidenfrost temperature

    NASA Astrophysics Data System (ADS)

    Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki

    2014-11-01

    The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.

  12. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  13. Effect of ambient-pressure reduction on multibubble sonochemiluminescence

    NASA Astrophysics Data System (ADS)

    Tuziuti, Toru; Hatanaka, Shin-ichi; Yasui, Kyuichi; Kozuka, Teruyuki; Mitome, Hideto

    2002-04-01

    The effect of ambient-pressure reduction on multibubble sonochemiluminescence (MBSCL) is studied experimentally with a luminol solution through measurements of MBSCL intensity as a function of ultrasound irradiation time, applied voltage to a transducer and ultrasonic frequencies to accomplish high efficiency in chemical reactions. From the measurement of ambient-pressure dependence, it is shown that there is an ambient pressure that produces the maximum intensity of the MBSCL and the maximum intensity appears at higher ambient pressure as the applied voltage to the transducer increases. The highest intensity of MBSCL is obtained by appropriate reduction of ambient pressure both for various applied voltages and frequencies. This is caused by both the number of bubbles induced with supersaturation of the gas in a luminol solution and the variation in bubble dynamics.

  14. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  15. Blast wave parameters at diminished ambient pressure

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  16. Effect of ambient pressure on liquid swirl injector flow dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yang, Vigor

    2014-10-01

    In this paper, a combined theoretical and numerical analysis is performed to study the internal and external flowfields of a liquid swirl injector. The effect of ambient pressure on the injector dynamics is explored systematically over a range of 1-50 atm. An increase in the ambient pressure increases the liquid film thickness, but decreases the spreading angle. This phenomenon can be attributed to the modification of the velocity profiles within the liquid film near the gas-liquid interface due to the alteration of the gas-phase shear stresses with pressure. The friction force at the interface plays a minor role. The generation and existence of stationary waves in the injector nozzle is also considered. At a higher ambient pressure, the pressure drop across the liquid sheet downstream of the injector exit increases, thereby suppressing the spreading of the liquid sheet. This in turn increases the thickness of the liquid sheet, and subsequently increases the breakup length at higher pressure. A semi-empirical model is developed to relate the velocity and pressure distributions near the surface of the liquid sheet. Good agreement is achieved between the measured and predicted shape and spreading angle of the liquid sheet.

  17. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes. PMID:6679851

  18. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  19. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements.

    PubMed

    Feng, Junzong; Zhang, Changrui; Feng, Jian; Jiang, Yonggang; Zhao, Nan

    2011-12-01

    Carbon fiber-reinforced carbon aerogel composites (C/CAs) for thermal insulators were prepared by copyrolysis of resorcinol-formaldehyde (RF) aerogels reinforced by oxidized polyacrylonitrile (PAN) fiber felts. The RF aerogel composites were obtained by impregnating PAN fiber felts with RF sols, then aging, ethanol exchanging, and drying at ambient pressure. Upon carbonization, the PAN fibers shrink with the RF aerogels, thus reducing the difference of shrinkage rates between the fiber reinforcements and the aerogel matrices, and resulting in C/CAs without any obvious cracks. The three point bend strength of the C/CAs is 7.1 ± 1.7 MPa, and the thermal conductivity is 0.328 W m(-1) K(-1) at 300 °C in air. These composites can be used as high-temperature thermal insulators (in inert atmospheres or vacuum) or supports for phase change materials in thermal protection system.

  20. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  1. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    SciTech Connect

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  2. Impact of ambient pressure on performance of desiccant cooling systems

    SciTech Connect

    Pesaran, A.A.

    1991-12-01

    The impact of ambient pressure on the performance of the ventilation cycle desiccant cooling system and its components was studied using computer simulations. The impact of ambient pressure depended on whether the system was designed for fixed-mass flow rate or fixed-volume flow rate operation. As ambient pressure decreased from 1.0 to 0.8 atm, the system thermal coefficient of performance increased by 8% for both fixed-mass and fixed-volume flow rate, the cooling capacity of the system (in kW) was decreased by 14% for the fixed-volume flow rate system and increased by 7% for the fixed-mass flow rate system, the electric power requirements for the system with fixed-volume flow rate did not change, and the electric power requirement for the fixed-mass flow rate system increased by 44%. The overall coefficient of performance increased up to 5% for the fixed-volume flow rate systems, and decreased up to 4% for the fixed-mass flow rate system. 16 refs.

  3. Stable Calcium Nitrides at Ambient and High Pressures.

    PubMed

    Zhu, Shuangshuang; Peng, Feng; Liu, Hanyu; Majumdar, Arnab; Gao, Tao; Yao, Yansun

    2016-08-01

    The knowledge of stoichiometries of alkaline-earth metal nitrides, where nitrogen can exist in polynitrogen forms, is of significant interest for understanding nitrogen bonding and its applications in energy storage. For calcium nitrides, there were three known crystalline forms, CaN2, Ca2N, and Ca3N2, at ambient conditions. In the present study, we demonstrated that there are more stable forms of calcium nitrides than what is already known to exist at ambient and high pressures. Using a global structure searching method, we theoretically explored the phase diagram of CaNx and discovered a series of new compounds in this family. In particular, we found a new CaN phase that is thermodynamically stable at ambient conditions, which may be synthesized using CaN2 and Ca2N. Four other stoichiometries, namely, Ca2N3, CaN3, CaN4, and CaN5, were shown to be stable under high pressure. The predicted CaNx compounds contain a rich variety of polynitrogen forms ranging from small molecules (N2, N4, N5, and N6) to extended chains (N∞). Because of the large energy difference between the single and triple nitrogen bonds, dissociation of the CaNx crystals with polynitrogens is expected to be highly exothermic, making them as potential high-energy-density materials. PMID:27428707

  4. Phase State and Saturation Vapor Pressure of Submicron Particles of meso-Erythritol at Ambient Conditions.

    PubMed

    Emanuelsson, Eva U; Tschiskale, Morten; Bilde, Merete

    2016-09-15

    meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states. PMID:27525492

  5. Phase State and Saturation Vapor Pressure of Submicron Particles of meso-Erythritol at Ambient Conditions.

    PubMed

    Emanuelsson, Eva U; Tschiskale, Morten; Bilde, Merete

    2016-09-15

    meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states.

  6. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  7. Live Pups from Evaporatively Dried Mouse Sperm Stored at Ambient Temperature for up to 2 Years

    PubMed Central

    Liu, Jie; Lee, Gloria Y.; Lawitts, Joel A.; Toner, Mehmet; Biggers, John D.

    2014-01-01

    The purpose of this study is to develop a mouse sperm preservation method based on evaporative drying. Mouse sperm were evaporatively dried and stored at 4°C and ambient temperature for 3 months to 2 years. Upon rehydration, a single sperm was injected into a mature oocyte to develop into a blastocyst after culture or a live birth after embryo transfer to a recipient female. For the samples stored at 4°C for 3, 6, 12, 18, and 24 months, the blastocyst formation rate was 61.5%, 49.1%, 31.5%, 32.2%, and 41.4%, respectively. The blastocyst rate for those stored at ambient temperature (∼22°C) for 3, 6, 12, and 18 months was 57.8%, 36.2%, 33.6%, and 34.4%, respectively. Fifteen, eight and three live pups were produced from sperm stored at room temperature for 12, 18, and 24 months, respectively. This is the first report of live offspring produced from dried mouse sperm stored at ambient temperature for up to 2 years. Based on these results, we suggest that evaporative drying is a potentially useful method for the routine preservation of mouse sperm. PMID:24924588

  8. Bridging the pressure gap: Can we get local quantitative structural information at 'near-ambient' pressures?

    NASA Astrophysics Data System (ADS)

    Woodruff, D. P.

    2016-10-01

    In recent years there have been an increasing number of investigations aimed at 'bridging the pressure gap' between UHV surface science experiments on well-characterised single crystal surfaces and the much higher (ambient and above) pressures relevant to practical catalyst applications. By applying existing photon-in/photon-out methods and developing instrumentation to allow photoelectron emission to be measured in higher-pressure sample environments, it has proved possible to obtain surface compositions and spectroscopic fingerprinting of chemical and molecular states of adsorbed species at pressures up to a few millibars. None of these methods, however, provide quantitative structural information on the local adsorption sites of isolated atomic and molecular adsorbate species under these higher-pressure reaction conditions. Methods for gaining this information are reviewed and evaluated.

  9. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    NASA Astrophysics Data System (ADS)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  10. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  11. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields. PMID:27083705

  12. The effect of ambient pressure on the spray characteristics of a twin-fluid atomizer

    NASA Astrophysics Data System (ADS)

    Drennan, S. A.; Sowa, W. A.; Samuelsen, G. S.

    1990-06-01

    A combined simplex/air-assist atomizer with swirl is characterized in an isothermal high-pressure spray-characterization chamber, with optical access, under various ambient pressures. A single-component, phase Doppler laser interferometer is used to obtain spatially resolved droplet size and velocity information. Data are obtained at atmospheric pressure as well as 3 and 6 atmospheres for conditions of constant fuel and atomizing air flow rates. Two different nozzle air flow rates and, hence, two different air-to-liquid ratios are considered. Increasing ambient pressure decreases the air-to-liquid momentum ratio and thereby decreases droplet mean axial velocity and increases the droplet size. The response of a spray to increasing ambient pressure is sensitive to the parameters which are held constant while increasing ambient pressure.

  13. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent

  14. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  15. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through the sample filter, measured in actual volume units at the temperature and pressure of the air as.... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... air pressure to which the candidate sampler is subjected. (f) Procedure. (1) Set up the sampler...

  16. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... through the sample filter, measured in actual volume units at the temperature and pressure of the air as.... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... air pressure to which the candidate sampler is subjected. (f) Procedure. (1) Set up the sampler...

  17. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... through the sample filter, measured in actual volume units at the temperature and pressure of the air as.... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... air pressure to which the candidate sampler is subjected. (f) Procedure. (1) Set up the sampler...

  18. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... through the sample filter, measured in actual volume units at the temperature and pressure of the air as.... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... air pressure to which the candidate sampler is subjected. (f) Procedure. (1) Set up the sampler...

  19. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean M.

    2002-01-01

    Three aspects of nanocrystalline ceramic body formation are examined in this work: permeability, drying stress, and sintering behavior. The permeabilities of nanocrystalline 3 mol% yttria-stabilized zirconia (3Y-TZP), silica, and boehmite powder compacts are measured during their formation by constant rate pressure filtration. The classic Carman-Kozeny equation with no account for the effect of adsorbed water often overestimates by a factor of 2 or more the measured permeabilities, with increasing deviation with decreasing permeability. A permeability equation from the literature and one derived here, both taking into account the effect of adsorbed water, show significant improvement over the classic Carman-Kozeny equation for predicting measured permeabilities. The equation derived here allows straightforward predictions to be made of how permeability will change as the critical point of drying (when shrinkage stops) is approached. An approximate expression for the maximum tensile stress occurring in an elastic finite cylinder during drying from all sides is derived. Numerical calculations of the exact state of stress during drying show that for cylinder length-to-diameter ratios up to 2/3, the present expression is more accurate than equations from the literature for an infinite plate and an infinite cylinder. For cylinders with length-to-diameter ratios greater than 2/3, numerical calculations show an equation from the literature for the drying stress in an infinite cylinder to be more accurate. To test the validity of the present expression, the drying rates above which fracture occurs are determined for disk-shaped samples of pressure filtered nanocrystalline 3Y-TZP, boehmite, and silica powders. These maximum safe drying rates are used with the present expression to calculate the maximum drying stresses that can be sustained without fracture, and these stresses are compared to diametral compression-measured strengths of similar samples dried to the critical

  20. Simulation of Low-density Nozzle Plumes in Non-zero Ambient Pressures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; Dewitt, Kenneth J.; Stubbs, Robert M.; Penko, Paul F.

    1994-01-01

    The direct simulation Monte-Carlo (DSMC) method was applied to the analysis of low-density nitrogen plumes exhausting from a small converging-diverging nozzle into finite ambient pressures. Two cases were considered that simulated actual test conditions in a vacuum facility. The numerical simulations readily captured the complicated flow structure of the overexpanded plumes adjusting to the finite ambient pressures, including Mach disks and barrel shaped shocks. The numerical simulations compared well to experimental data of Rothe.

  1. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration

    PubMed Central

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P. C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (“OWB-D”), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec (“OWB-R”), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions. PMID:27066038

  2. Pressure cycle rheology of nanofluids at ambient temperature

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza; Yrac, Rommel; Amani, Mahmood

    2015-11-01

    Colloidal suspensions of particles dispersed in a base fluid (or drilling fluid) are commonly used in oil industry to aid the drilling of oil well into the ground. Nanofluids, the colloidal suspensions of nano-sized particles dispersed in a basefluid, have also shown potentials as cooling and abrasive fluids. Utilizing them along with drilling fluids under cyclic high-pressure loadings have not been investigated so far. In the present work, rheological characteristics of silicon oil based nanofluids (prepared with alumina nanoparticles) under pressures up to 1000 bar are investigated using a high-pressure viscometer. The rheological characteristics of nanofluids are measured and are compared with that of the basefluid under increasing and decreasing pressures. Relative viscosity variations of nanofluids were observed to have influenced by the shear rate. In addition, under cyclic high-pressure loading viscosity values of nanofluids are observed to have reduced. This reduction in viscosity at the second pressure cycle could have been caused by the de-agglomeration of particles in the first cycle while working a high-pressure and high-shear condition.

  3. Textile dry cleaning in high pressure CO2

    NASA Astrophysics Data System (ADS)

    Sutanto, Stevia; van der Kamp, Maaike; Witkamp, Geert-Jan

    2013-06-01

    High-pressure carbon dioxide (CO2) is one of the most suitable replacements for perchloroethylene (PER), a common but harmful textile dry cleaning solvent. Previous studies have indicated that the particulate soil removal with CO2 is lower compared to that with PER, because of the lesser amount of mechanical action in CO2. Furthermore, there is a lack of understanding of textile-dirt-CO2 interaction. It is the objective of this study to get an insight in the mechanical forces that play a role in CO2 dry cleaning and to use this information to improve the CO2 washing performance. Various mechanical actions were investigated with the experiments in an in-situ high pressure observation cell. Textiles stained with different kinds of particulate soils were washed in CO2. The washing results show that the combination of rotating and vertical action gives the highest cleaning performance and liquid CO2 spray may be a suitable additional mechanism to increase the cleaning performance. Authors thank the scientific foundation STW for the financial support.

  4. The discharge of fine silica sand in a silo under different ambient air pressures

    NASA Astrophysics Data System (ADS)

    Hsiau, Shu-San; Liao, Chun-Chung; Lee, Jie-Hsien

    2012-04-01

    Silos are widely used for the industrial scale handling and transportation of powdered and granular materials. The process of discharging powder in a silo involves the flow of both solid particles and an interstitial fluid, usually air. In this study, we experimentally investigate the effects of particle size and ambient pressure on the discharge process in open- and closed-top silos. The discharge rate, pressure drop, and pressure recovery rate are measured and discussed. The results show that the particle size, the diameter of the orifice, and the ambient pressure significantly influence the process of discharge. The effect of air flow is stronger on fine-powdered flow in a closed-top silo. The results indicate that the effects of air flow could be reduced by lowering the ambient pressure. In addition, a normalized critical pressure can be defined beyond which the discharge rate increases dramatically. With reduced ambient pressure, this normalized critical pressure decreases with increasing particle size. Finally, the experimental results are compared with results calculated using the Beverloo equation and Darcy's law.

  5. Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine systems

    NASA Astrophysics Data System (ADS)

    Park, S. K.; Kim, T. S.

    Design performances of the hybrid solid oxide fuel cell (SOFC)-gas turbine (GT) system have been investigated. A pressurized system and an indirectly heated ambient pressure system were analyzed and their performances were compared. In the baseline layout, the basic performance characteristics of the two system configurations were analyzed, with the cell operation temperature and the pressure ratio as the main design parameters. The pressurized system exhibits a better efficiency owing to not only the higher cell voltage but also more effective utilization of gas turbine, i.e., a larger GT power contribution due to a higher turbine inlet temperature. Independent setting of the turbine inlet temperature was simulated by using the additional fuel supply as well as the air bypass. Increasing the pressure ratio of the gas turbine hardly improves the system efficiency, but the efficiency becomes less sensitive to the turbine inlet temperature. In the ambient pressure system, the available design parameter range is much reduced due to the limit on the recuperator temperature. In particular, design of the ambient pressure hybrid system with a gas turbine of a high pressure ratio does not seem quite feasible because the system efficiency that can be achieved at the possible design conditions is even lower than the efficiency of the SOFC only system.

  6. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6 ns, 1064 nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ∼300 Torr, while the electron density showed a maximum ∼100 Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  7. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect

    Urbaniec, K.; Malczewski, J.

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  8. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  9. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  10. Novel lithium-nitrogen compounds at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing; Oganov, Artem R.; Qian, Guangri; Zhang, Jin; Dong, Huafeng; Zhu, Qiang; Zhou, Zhongxiang

    2015-09-01

    Using ab initio evolutionary simulations, we predict the existence of five novel stable Li-N compounds at pressures from 0 to 100 GPa (Li13N, Li5N, Li3N2, LiN2, and LiN5). Structures of these compounds contain isolated N atoms, N2 dimers, polyacetylene-like N chains and N5 rings, respectively. The structure of Li13N consists of Li atoms and Li12N icosahedra (with N atom in the center of the Li12 icosahedron) - such icosahedra are not described by Wade-Jemmis electron counting rules and are unique. Electronic structure of Li-N compounds is found to dramatically depend on composition and pressure, making this system ideal for studying metal-insulator transitions. For example, the sequence of lowest-enthalpy structures of LiN3 shows peculiar electronic structure changes with increasing pressure: metal-insulator-metal-insulator. This work also resolves the previous controversies of theory and experiment on Li2N2.

  11. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  12. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  13. Selective hydrogen purification through graphdiyne under ambient temperature and pressure.

    PubMed

    Cranford, Steven W; Buehler, Markus J

    2012-08-01

    Graphdiyne, a recently synthesized one-atom-thick carbon allotrope, is atomistically porous - characterized by a regular "nanomesh"- and suggests application as a separation membrane for hydrogen purification. Here we report a full atomistic reactive molecular dynamics investigation to determine the selective diffusion properties of hydrogen (H(2)) amongst carbon monoxide (CO) and methane (CH(4)), a mixture otherwise known as syngas, a product of the gasification of renewable biomass (such as animal wastes). Under constant temperature simulations, we find the mass flux of hydrogen molecules through a graphdiyne membrane to be on the order of 7 to 10 g cm(-2) s(-1) (between 300 K and 500 K), with carbon monoxide and methane remaining isolated. Using a simple Arrhenius relation, we determine the energy required for permeation on the order of 0.11 ± 0.03 eV for single H(2) molecules. We find that addition of marginal applied force (approximately 1 to 2 pN per molecule, representing a controlled pressure gradient, ΔP, on the order of 100 to 500 kPa) can successfully enhance the separation of hydrogen gas. Addition of larger driving forces (50 to 100 pN per molecule) is required to selectively filter carbon monoxide or methane, suggesting that, under near-atmospheric conditions, only hydrogen gas will pass such a membrane. Graphdiyne provides a unique, chemically inert and mechanically stable platform facilitating selective gas separation at nominal pressures using a homogeneous material system, without a need for chemical functionalization or the explicit introduction of molecular pores.

  14. Effects of ethanol on body temperature of rats at high ambient pressure.

    PubMed

    Berge, O G; Garcia-Cabrera, I

    1991-05-01

    Separately, ethanol and high ambient pressure cause hypothermia in laboratory animals. However, ethanol and high pressure have mutually antagonistic effects on several biological functions and the present experiments investigate their combined action on body temperature. Rats given saline, 1.5 g/kg ethanol or 3.5 g/kg ethanol were exposed to 1 bar air at 25-26 degrees C, 1 bar helium-oxygen at 30-31 degrees C, or 48 bar helium-oxygen at 33.5-34.5 degrees C. Ambient, colonic and tail-skin temperatures were monitored for 60 min. There were no significant differences in mean ambient or tail-skin temperatures between groups belonging to the same ambient condition. Colonic temperatures under the 1 bar conditions were 1.5-2 degrees C lower in the 3.5 g/kg ethanol group than in the saline and 1.5 g/kg ethanol groups, while no significant differences were observed between the groups at 48 bar. Comparisons of the colonic temperatures at the end of the observation period, i.e., 60 min after administration of ethanol, demonstrated that their values at 48 bar were significantly lower than at 1 bar after saline, significantly higher after 3.5 g/kg ethanol and identical across conditions in the 1.5 g/kg groups. The results suggest that high ambient pressure may counteract rather than potentiate the hypothermic effect of ethanol.

  15. Dry and clean age hardening of aluminum alloys by high-pressure gas quenching

    NASA Astrophysics Data System (ADS)

    Irretier, A.; Kessler, O.; Hoffmann, F.; Mayr, P.

    2004-10-01

    When precipitation-hardenable aluminum parts are water quenched, distortion occurs due to thermal stresses. Thereby, a costly reworking is necessary, and for this reason polymer quenchants are often used to reduce distortion, with the disadvantage that the quenched parts have to be cleaned after quenching. In opposition to liquid quenchants, gas quenching may decrease distortion due to the better temperature uniformity during quenching. Furthermore, cleaning of the quenched parts can be avoided because it is a dry process. For this purpose, a heat-treating process was evaluated that included a high-pressure gasquenching step. Gas quenching was applied to different aluminum alloys (i.e., 2024, 6013, 7075, and A357.0), and tensile tests have been carried out to determine the mechanical properties after solution annealing, gas quenching, and aging. Besides high-pressure gas quenching, alloy 2024 was quenched at ambient pressure in a gas nozzle field. The high velocity at the gas outlet leads to an accelerated cooling of the aluminum alloy in this case. Aluminum castings and forgings can be classified as an interesting field of application of these quenching methods due to their near-net shape before the heat treatment. Cost savings would be possible due to the reduced distortion, and therefore, less reworking after the precipitation hardening.

  16. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    SciTech Connect

    Newberg, John T. Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia; Åhlund, John

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  17. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    NASA Astrophysics Data System (ADS)

    Song, Jian; Tang, Jingfeng; Wang, Youyin; Wei, Liqiu; Ren, Chunsheng; Yu, Daren

    2015-05-01

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  18. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  19. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  20. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to exceed 5 minutes. (5) Flow measurement adaptor (40 CFR part 50, appendix L, figure L-30) or... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test for effect of variations in... Equivalent Methods for PM2.5 or PM10â2.5 § 53.56 Test for effect of variations in ambient pressure....

  1. Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions.

    PubMed

    Mody, Karishma T; Mahony, Donna; Cavallaro, Antonino S; Stahr, Frances; Qiao, Shi Zhang; Mahony, Timothy J; Mitter, Neena

    2014-04-25

    Amino functionalised mesoporous silica nanoparticles (AM-41) have been identified as a promising vaccine delivery material. The capacity of AM-41 to stabilise vaccine components at ambient temperature (23-27°C) was determined by adsorbing the model antigen ovalbumin (OVA) to AM-41 particles (OVA-41). The OVA-41 was successfully freeze-dried using the excipients 5% trehalose and 1% PEG8000. The immunological activity of OVA and the nanoparticle structure were maintained following two months storage at ambient temperature. The results of immunisation studies in mice with reconstituted OVA-41 demonstrated the induction of humoral and cell-meditated immune responses. The capacity of AM-41 particles to facilitate ambient storage of vaccine components without the loss of immunological potency will underpin the further development of this promising vaccine delivery platform. PMID:24583208

  2. Automated Measurements of Ambient Aerosol Chemical Composition and its Dry and Wet Size Distributions at Pittsburgh Supersite

    NASA Astrophysics Data System (ADS)

    Khlystov, A. Y.; Stanier, C.; Chun, W.; Vayenas, D.; Mandiro, M.; Pandis, S. N.

    2001-12-01

    Ambient aerosol particles change size with changes in ambient relative humidity. The magnitude of the size change depends on the hygroscopic properties of the particles, which is determined by their chemical composition. Hygroscopic properties of particles influence many environmentally important aerosol qualities, such as light scattering and partitioning between the gas and particle phases of semivolitile compounds. Studying the hygroscopic growth of ambient particles is thus of paramount importance. The highroscopic growth of ambient particles and their chemical composition are measured continuously within the Pittsburgh Air Quality Study (EPA supersite program). The hygroscopic size changes are measured using an automated system built for this study. The system consists of two Scanning Mobility Particle Sizers (SMPS, TSI Inc.) and an Aerodynamic Particle Sizer (APS, TSI Inc.). The three instruments measure aerosol size distribution between 5 nanometers and 10 micrometers in diameter. The inlets of the instruments and the sheath air lines of the SMPS systems are equipped with computer controlled valves that direct air through Nafion dryers (PermaPure Inc.) or bypass them. The Nafion dryers are drying the air stream below 40% RH at which point ambient particles are expected to lose most or all water and thus be virtually dry. To avoid changes in relative humidity and evaporation of volatile particles due to temperature differences the system is kept at ambient temperature. The system measures alternatively dry (below 40% RH) and wet (actual ambient RH) aerosol size distributions every 6 minutes. The hygroscopic growth observed with the size-spectrometer system is compared with theoretic predictions based on the chemical composition of aerosol particles. A modified semi-continuous Steam-Jet Aerosol Collector provides the total available budget (particles and gas) of water-soluble species, which is used as an input to the thermodynamic model. The model calculates

  3. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    NASA Astrophysics Data System (ADS)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  4. Measurement of thoracic gas volume by low-frequency ambient pressure changes.

    PubMed

    Peslin, R; Duvivier, C; Hannhart, B; Gallina, C

    1987-01-01

    When the whole body is exposed to sinusoidal variations of ambient pressure (delta Pam) at very low frequencies (f), the resulting compression and expansion of alveolar gas is almost entirely achieved by gas flow through the airways (Vaw). As a consequence thoracic gas volume (TGV) may be computed from the imaginary part (Im) of the delta Pam/Vaw relationship: TGV = PB/[2 pi f X Im(delta Pam/Vaw)], where PB is barometric minus alveolar water vapor pressure. The method was tested in 35 normal subjects and compared with body plethysmography. The subjects sat in a chamber connected to a large-stroke-volume reciprocating pump that brought about pressure swings of 40 cmH2O at 0.05 Hz. delta Pam and Vaw were digitally processed by fast Fourier transform to extract the low-frequency component from the much larger respiratory flow. Total lung capacities (TLC) obtained by ambient pressure changes and by plethylsmography were highly correlated (r = 0.959, p less than 0.001) and not significantly different (6.96 +/- 1.38 l vs. 6.99 +/- 1.38). TLC obtained by ambient pressure changes were not influenced by lowering the frequency to 0.03 Hz, adding an external resistance at the mouth, or increasing abdominal gas volume. We conclude that the method is practical and in agreement with body plethysmography in normal subjects. PMID:3558194

  5. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    SciTech Connect

    Ma, Dakang; Munday, Jeremy N.; Garrett, Joseph L.

    2015-03-02

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  6. Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures

    NASA Astrophysics Data System (ADS)

    Zhang, L. C.; Zhu, X. L.; Huang, Y. F.; Liu, Z.; Yan, K.

    2016-07-01

    In this paper, a simple model was developed to predict the dynamics of a spark-induced bubble under different ambient pressures. This work helps in developing a deep-towed plasma sparker, as the model can predict the dynamics of bubbles subjected to very high ambient pressures (about 20 MPa) which normally are difficult to obtain experimentally. Experimental results indicate that the maximum bubble radius for a fixed discharge energy decreases as a power-law function of the ambient pressure up to 1.0 MPa; the bubble period also decreases quickly with increasing ambient pressure. For a constant value of the ratio of bubble energy to discharge energy, the modeling results for both maximum radius and bubble period are in good agreement with the experimental results. Both sets of results indicate that the bubble period is proportional to the maximum radius under different ambient pressures.

  7. Ambient Pressure Microbes Taken to Extreme: an Update on Their Survival and Growth

    NASA Astrophysics Data System (ADS)

    Sharma, A.

    2005-12-01

    What is the base of the biosphere? What are the various niches life as we know can persist? These are few of the questions that need to be addressed to constrain the extent of biological activity within the deep subsurface. Not unlike any other scientific inquiry, along with extensive field and theoretical studies, these geomicrobiological questions need an experiment-based evaluation that can help constrain the geochemical parameters relevant to life's survival. Recently, Sharma et al. (2002, Science) have taken a direct approach in constraining the microbial activity at extreme conditions by making observations within diamond anvil cells. Specific chemical component (formate) was used to constrain the metabolic activity of ambient pressure microbes at high pressures. This study opened up the possibility of life in radically extreme environments, often deficient of liquid water and showed that microbial life can find niches within the organic rich veins and inclusions, such as in (dense phase) ice. High resolution imaging within the diamond cell has provided a better insight into the state of the ambient pressure microbes. The author will present new results on microbial survival at high pressures that show high hydrostatic pressure affects some microbes differently such that they do perish, while others remain largely viable. By monitoring microbial growth upon decompression, these experiments show the viability of the microbes at high pressures and hence the feasibility of a deep biosphere.

  8. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    PubMed

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  9. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  10. Spectroscopic studies of surface gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther; Weilach, Christian

    2008-05-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH3OH, CH4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions.

  11. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    NASA Astrophysics Data System (ADS)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  12. Do Weather-Related Ambient Atmospheric-Pressure Changes Influence Sleep Disordered Breathing?

    PubMed Central

    Doherty, Michael John; Youn, Clover E.; Haltiner, Alan Matthew; Watson, Nathaniel Fletcher

    2010-01-01

    Objective: High-altitude studies of sleep disordered breathing (SDB) show increases in apnea hypopnea indices with elevation gains. Hypoxic changes, rather than reductions in atmospheric pressure (AP), are thought to be the driving factor. Ambient pressure-related changes in SDB have not been extensively studied at low altitude. We performed a cross-sectional study of weather-related AP effects on measures of SDB at the University of Washington Medicine Sleep Institute, a Seattle, Washington-based polysomnography lab located 200 feet above sea level. Method: Obstructive, central, and apnea-hypopnea indices from 537 patients were retrospectively correlated to mean 8-hour date-matched overnight AP data. Linear regression analysis and interquartile comparison of AP-related respiratory indices were performed and adjusted for age, sex, and body mass index. Results: The obstructive apnea index increased with lower weather-related APs (p = 0.01 for linear trend), interquartile analysis showed significant worsening with lowered mean, minimum, and maximum nightly APs. Similar changes were not seen with central or apnea-hypopnea indices. Conclusions: The obstructive apnea index is altered by changes in weather-related AP during diagnostic polysomnography performed at 200 feet above sea level. Small changes in ambient atmospheric pressure due to weather systems may be important in the pathophysiology and diagnosis of obstructive sleep apnea. Citation: Doherty MJ; Youn CE; Haltiner AM; Watson NF. Do weather-related ambient atmospheric-pressure changes influence sleep disordered breathing? J Clin Sleep Med 2010;6(2):152-156. PMID:20411692

  13. Collaborative processing of wearable and ambient sensor system for blood pressure monitoring.

    PubMed

    Nakamura, Masayuki; Nakamura, Jiro; Lopez, Guillaume; Shuzo, Masaki; Yamada, Ichiro

    2011-01-01

    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person's vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user's presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user's location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution.

  14. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    PubMed Central

    Nakamura, Masayuki; Nakamura, Jiro; Lopez, Guillaume; Shuzo, Masaki; Yamada, Ichiro

    2011-01-01

    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution. PMID:22163984

  15. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  16. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  17. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    PubMed Central

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7–1.1 Å−1 corresponding to real space dimensions of 6–9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures. PMID:26738409

  18. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å-1 corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.

  19. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7–1.1 Å‑1 corresponding to real space dimensions of 6–9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.

  20. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    PubMed

    Ehlert, Sven; Walte, Andreas; Zimmermann, Ralf

    2013-11-19

    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown.

  1. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering.

    PubMed

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures. PMID:26738409

  2. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  3. Influence of ambient pressure on drop-size and velocity distributions in dense sprays

    SciTech Connect

    Jasuja, A.K.; Lefebvre, A.H.

    1994-12-31

    The primary aim of the research is to determine the capabilities of modern noninvasive diagnostics for characterizing the sprays produced by a practical gas turbine atomizer when operating at realistic engine conditions of pressure, fuel type, and fuel-air throughput. A single-velocity-component Phase Doppler Particle Analyzer is used to measure local variations of drop-size distributions and drop velocities along three spray radii at downstream distances from the atomizer of 50 and 70 mm. In the 50-mm plane, excessive signal rejection rates limit measurements to a maximum air pressure of 9 bar and a maximum kerosene flow rate of 18.6 g/s. At the 70-mm measurement plane, satisfactory results are obtained at air pressures up to 12 bar and fuel-flow rates up to 24.8 g/s. The results show that increases in ambient air pressure lead to larger mean drop sizes and lower mean drop velocities in the spray. This is attributed to the fact that the beneficial effect of an increase in air pressure in raising Weber number is more than offset by several adverse factors, all of which are related to the increase in fuel-flow rate that accompanies an increase in air pressure at constant fuel/air ratio.

  4. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  5. Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures.

    PubMed

    Eren, Baran; Weatherup, Robert S; Liakakos, Nikos; Somorjai, Gabor A; Salmeron, Miquel

    2016-07-01

    Ambient-pressure X-ray photoelectron spectroscopy (APXPS) and high-pressure scanning tunneling microscopy (HPSTM) were used to study the structure and chemistry of model Cu(100) and Cu(111) catalyst surfaces in the adsorption and dissociation of CO2. It was found that the (100) face is more active in dissociating CO2 than the (111) face. Atomic oxygen formed after the dissociation of CO2 poisons the surface by blocking further adsorption of CO2. This "self-poisoning" mechanism explains the need to mix CO into the industrial feed for methanol production from CO2, as it scavenges the chemisorbed O. The HPSTM images show that the (100) surface breaks up into nanoclusters in the presence of CO2 at 20 Torr and above, producing active kink and step sites. If the surface is precovered with atomic oxygen, no such nanoclustering occurs. PMID:27280375

  6. A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach

    NASA Astrophysics Data System (ADS)

    Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim

    2016-04-01

    During the past one and a half decades ambient pressure x-ray photoelectron spectroscopy (APXPS) has grown to become a mature technique for the real-time investigation of both solid and liquid surfaces in the presence of a gas or vapour phase. APXPS has been or is being implemented at most major synchrotron radiation facilities and in quite a large number of home laboratories. While most APXPS instruments operate using a standard vacuum chamber as the sample environment, more recently new instruments have been developed which focus on the possibility of custom-designed sample environments with exchangeable ambient pressure cells (AP cells). A particular kind of AP cell solution has been driven by the development of the APXPS instrument for the SPECIES beamline of the MAX IV Laboratory: the solution makes use of a moveable AP cell which for APXPS measurements is docked to the electron energy analyser inside the ultrahigh vacuum instrument. Only the inner volume of the AP cell is filled with gas, while the surrounding vacuum chamber remains under vacuum conditions. The design enables the direct connection of UHV experiments to APXPS experiments, and the swift exchange of AP cells allows different custom-designed sample environments. Moreover, the AP cell design allows the gas-filled inner volume to remain small, which is highly beneficial for experiments in which fast gas exchange is required. Here we report on the design of several AP cells and use a number of cases to exemplify the utility of our approach.

  7. Lung diffusing capacity for nitric oxide at lowered and raised ambient pressures.

    PubMed

    Linnarsson, Dag; Hemmingsson, Tryggve E; Frostell, Claes; Van Muylem, Alain; Kerckx, Yannick; Gustafsson, Lars E

    2013-12-01

    Lung diffusing capacity for NO (DLNO) was determined in eight subjects at ambient pressures of 505, 1015, and 4053hPa (379, 761 and 3040mmHg) as they breathed normoxic gases. Mean values were 116.9±11.1 (SEM), 113.4±11.1 and 99.3±10.1mlmin(-1)hPa(-1)at 505, 1015, and 4053hPa, with a 13% difference between the two higher pressures (P=0.017). The data were applied to a model with two serially coupled conductances; the gas phase (DgNO, variable with pressure), and the alveolo-capillary membrane (DmNO, constant). The data fitted the model well and we conclude that diffusive transport of NO in the peripheral lung is inversely related to gas density. At normal pressure DmNO was approximately 5% larger than DLNO, suggesting that the Dg factor then is not negligible. We also conclude that the density of the breathing gas is likely to impact the backdiffusion of naturally formed NO from conducting airways to the alveoli.

  8. Thoracic gas volume in rabbits by low-frequency ambient pressure changes.

    PubMed

    Lyttle, B D; Duvivier, C; Glass, G M; Wohl, M E; Fredberg, J J

    1988-09-01

    R. Peslin et al. measured thoracic gas volume (TGV) in adults using a new method employing low-frequency ambient pressure changes (APC) (J. Appl. Physiol. 62: 359-363, 1987). We extended that methodology and then tested the hypothesis that this technique was applicable to small mammals. TGV [at functional residual capacity (FRC)] by APC and by conventional Boyle's law was compared in 12 rabbits. The rabbits were anesthetized, tracheostomized, intubated, and placed in a pressure plethysmograph. Although in the method of Peslin et al. box pressure was oscillated at a single frequency, in our extension box pressure was oscillated simultaneously at two frequencies (0.1 and 0.2 Hz). Flow at the airway opening consisted of rapid events due to spontaneous breathing, superposed on slower events due to the alveolar gas compression. The slower events were analyzed to yield alveolar gas compliance and, by Boyle's law, FRC. FRC by APC was highly correlated to FRC by conventional plethysmography (r = 0.85). Compared with the methodology of Peslin et al., our extension relaxes a key limitation and yields systematically higher estimates of FRC. We conclude that this method is applicable to small mammals, despite an inherently more compliant chest wall, and that the methodological extension improves the estimate of FRC. PMID:3182512

  9. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGESBeta

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  10. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  11. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy.

    PubMed

    Newberg, John T; Bluhm, Hendrik

    2015-09-28

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10(-5) to 2 × 10(-3) Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 10(3) Torr(-1). The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors. PMID:26299301

  12. Raman scattering spectroscopic study of n-tetradecane under high pressure and ambient temperature

    NASA Astrophysics Data System (ADS)

    Jian, Xing; Zheng, Haifei

    2009-02-01

    The Raman spectroscopy of n-tetradecane was investigated in a Moissanite anvil cell at pressure from 0.1 MPa to 1.4 GPa and ambient temperature. The result shows that the liquid-solid phase transition of n-tetradecane takes place at around 302.8 MPa and the corresponding Δ Vm obtained is about -9.6 cm -3/mol. Above 302.8 MPa, the frequencies of CH 2 and CH 3 symmetric stretching and asymmetric stretching vibration shift to higher wave numbers in a linear manner with increasing pressure, which can be expressed as: νs(CH 3) = 0.013 P + 2882.0; νas(CH 3) = 0.014 P + 2961.6; νs(CH 2) = 0.013 P + 2850.8; νas(CH 2) = 0.009 P + 2923.2. This relationship indicates that n-tetradecane can be a reliable pressure gauge for the experimental study within the pressure range of 0.3-1.4 GPa.

  13. The Role of Inspiratory Pressures in Determining the Flow Rates Though Dry Powder Inhalers; A Review.

    PubMed

    Clark, Andrew R

    2015-01-01

    Dry powder inhalers are one of the most popular devices for delivering medication directly to the lungs of patients. Both for local action and when using the lungs as a portal of entry into the systemic circulation. Dry powder inhalers rely on the patient's inspiratory effort to supply the energy for the device to effectively deliver medication. In this respect they are limited by the airway pressures that a patient can generate with their respiratory muscles. In this review we focus on a simple model outlining the variables influencing respiratory pressure and review the literature on inspiratory flow rates in patients with respiratory disease. The main determinants of the capability to generate the pressure necessary to effectively use a dry powder inhaler are shown to be age and gender, not disease or disease severity.

  14. Reaction of Small Insects to an Ambient Pressure Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Gray, Travis; Bourham, Mohamed; Roe, R. Michael; Long, Shengyou; Donohue, Kevin

    2003-10-01

    Ambient Pressure Dielectric Barrier Discharges (DBD's) are commonly studied for rapid sterilization of surfaces. In an effort to expand the application of DBD's to larger biological species, small insect species are directly exposed to a large gap(5 cm) DBD composed primarily of helium gas. In order to control the temperature, the electrodes are actively cooled and the current density remains low (<1 mA/cm^2). A direct measurement of the gas temperature by electrically insulated thermocouples shows that the ambient temperature in the discharge volume is below the threshold for thermal damage to the insect (40 ^oC). A microwave interferometer is used to measure the line average, time average, electron density. The electron density is between 10^8 and 10^10 cm-3 for the operating conditions of interest. Under these operating conditions, optical emission spectroscopy shows only a significant emission of helium lines with some emission of molecular nitrogen lines. Under these operational conditions green peach aphids and western flower thrips show a reduction in population by at least 50% with a 60 s exposure time. The goal of this research is to replace currently existing chemical and thermal insect control techniques with the more rapid plasma techniques for quarantine applications.

  15. Small Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeffrey

    2011-01-01

    A principle concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has long been evaluated for use in this application and several programs are evaluating it for use in both a cabin as well as space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of small scale SA9T testing that was performed over a variety of test conditions and with a variety of trace contaminants. Testing evaluated the ability of SA9T media to sufficiently remove CO2 and H2O after exposure to a fully saturated trace contaminant at ambient conditions. Testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures during cyclic operation with a constant inlet contaminant load. In addition, testing evaluated the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream.

  16. Bench-Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeff

    2011-01-01

    A principal concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has been evaluated for use in this application and several programs are evaluating it for use in both cabin and space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of bench-scale SA9T testing that was performed under a variety of test conditions and with several different trace contaminants. Tests were conducted to determine if the capacity of the SA9T media to sufficiently remove CO2 and H2O is compromised after exposure to a fully saturated trace contaminant at ambient conditions. Tests also were conducted to evaluate the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream. In addition, testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures (29.6 KPa/4.3 psia) during cyclic operation with a constant inlet contaminant load.

  17. Formation of Hydroxyl and Water Layers on MgO Films Studied with Ambient Pressure XPS

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak, E.R.; Porsgaard, S.; Salmeron, M.B.; Brown Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H{sub 2}O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H{sub 2}O, OH and Ox thickness changes as a function of relative humidity.

  18. The effect of ambient pressure on ejecta sheets from free-surface ablation

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Mansoor, M. M.; Thoroddsen, S. T.; Truscott, T. T.

    2016-05-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at 5 × 106 fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness.

  19. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway.

    PubMed

    Jeremias, Felix; Henninger, Stefan K; Janiak, Christoph

    2016-05-17

    Micro- to mesoporous iron(iii) trimesate MIL-100(Fe) is a MOF of high interest for numerous applications. With regard to large-scale synthesis, e.g., by continuous flow or the in situ deposition of coatings, a replacement for the conventional, hydrothermal low-yield fluoride-containing synthesis is desirable. In this contribution, we present a method to synthesize crystalline fluoride-free MIL-100(Fe) from iron(iii) nitrate and trimesic acid in zeotropic DMSO/water solution at normal ambient pressure involving a DMSO-nitrate redox pathway. Yields of 72%, surface areas of SBET = 1791 m(2) g(-1) and pore volumes of Vpore = 0.82 cm(3) g(-1) were achieved. PMID:27143562

  20. Thermal Insulation Composite Prepared from Carbon Foam and Silica Aerogel Under Ambient Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Heguang; Li, Tiehu; Shi, Yachun; Zhao, Xing

    2015-10-01

    Carbon foam/silica aerogel composite as a promising thermal insulation material was prepared under ambient pressure successfully in the present work. Carbon foam was prepared by pretreatment, foaming, and carbonization process, while silica aerogel was synthesized by sol-gel method. The microstructure, morphology characteristics, compression strength, and thermal properties of composite were characterized by infrared spectroscopy, x-ray diffraction, scanning electron microscope, universal testing machine, and laser flash thermal detector, respectively. Results showed that silica aerogel was successfully synthesized in the surface foam cells of carbon foam due to the closed cell structure of carbon foam. Moreover, the compressive strength of the carbon foam was not affected by the silica aerogel in the cell structure of carbon foam, while its thermal insulation property at room temperature was improved.

  1. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  2. Ambient-Pressure Bulk Superconductivity Deep in the Magnetic State of CeRhIn5

    SciTech Connect

    Paglione,J.; Ho, P.; Maple, M.; Tanatar, M.; Taillefer, L.; Lee, Y.; Petrovic, C.

    2008-01-01

    Specific heat, magnetic susceptibility and electrical transport measurements were performed at ambient pressure on high-quality single crystal specimens of CeRhIn5 down to ultra-low temperatures. We report signatures of an anomaly observed in all measured quantities consistent with a bulk phase transition to a superconducting state at T{sub c}=110 mK. Occurring far below the onset of antiferromagnetism at T{sub N}=3.8 K, this transition appears to involve a significant portion of the available low-temperature density of electronic states, exhibiting an entropy change in line with that found in other members of the 115 family of superconductors tuned away from quantum criticality.

  3. Static and dynamic fatigue behavior of glass filament-wound pressure vessels at ambient and cryogenic temperatures.

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1972-01-01

    Investigation of the pressure load carrying capacity and fatigue strength of filament-wound glass-reinforced plastic pressure vessels subjected to static and cyclic loading at ambient and cryogenic (liquid nitrogen) temperature environments. The results indicate that the static fatigue problem is not critical at cryogenic temperatures. Under static loading at liquid nitrogen temperature, a reinforced plastic cylinder sustained pressurization for 88 days without failure at about 90% of the single cycle burst strength. At ambient temperature, the static life at 90% of the burst strength was about 7 min. Under cyclic loading in liquid nitrogen, no failure resulted after 1509 cycles at 55% of the single cycle burst strength. Under the same cyclic loading at ambient temperature, the test results would predict failure in the reinforced plastic. The results of similar tests upon adhesively bonded polyimide aluminum-foil lined cylinders are also reviewed.-

  4. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry.

    PubMed

    Forbes, Thomas P; Brewer, Tim M; Gillen, Greg

    2013-10-01

    Desorption electro-flow focusing ionization (DEFFI), a desorption-based ambient ion source, was developed, characterized, and evaluated as a possible source for field deployable ambient pressure mass spectrometry (APMS). DEFFI, based on an electro-flow focusing system, provides a unique configuration for the generation of highly charged energetic droplets for sample analysis and ionization. A concentrically flowing carrier gas focuses the liquid emanating from a capillary through a small orifice, generating a steady fluid jet. An electric field is applied across this jet formation region, producing high velocity charged droplets that impinge on an analyte laden surface. This configuration separates the jet charging region from the external environment, eliminating detrimental effects from droplet space charge or target surface charging. The sample desorption and ionization processes operate similar to desorption electrospray ionization (DESI). DEFFI demonstrated strong signal intensities and improved signal-to-noise ratios in both positive and negative mode mass spectrometry for narcotics, i.e., cocaine, and explosives, i.e., cyclotrimethylenetrinitramine (RDX), respectively. A characterization of DEFFI ionization mechanisms identified operation regimes of both electrospray and corona discharge based analyte ionization, as well as limitations in overall signal. In addition, the DEFFI response was directly compared to DESI-MS under similar operating conditions. This comparison established a wider and more stable optimal operating range, while requiring an order of magnitude lower applied gas pressure and applied potential for DEFFI than DESI. These reductions are due to the physical mode of jet formation and geometric configuration differences between DEFFI and DESI, pointing to a potential benefit of DEFFI-MS for field implementation.

  5. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.

    PubMed

    He, Chuanjiu; Davies, Fred T

    2012-03-01

    Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO(2)). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure).

  6. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  7. Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia.

    PubMed

    Hanson, D R; McMurry, P H; Jiang, J; Tanner, D; Huey, L G

    2011-10-15

    An instrument to detect gaseous amines and ammonia is described, and representative data from an urban site and a laboratory setting are presented. The instrument, an Ambient pressure Proton transfer Mass Spectrometer (AmPMS), consists of a chemical ionization and drift region at atmospheric pressure coupled to a standard quadrupole mass spectrometer. Calibrations show that AmPMS sensitivity is good for amines, and AmPMS backgrounds were suitably determined by diverting sampled air through a catalytic converter. In urban air at a site in Atlanta, amines were detected at subpptv levels for methyl and dimethyl amine which were generally at a low abundance of <1 and ∼3 pptv, respectively. Trimethyl amine (or isomers) was on average about 4 pptv in the morning and increased to 15 pptv in the afternoon, while triethyl amine (or isomers or amides) increased to 25 pptv on average in the late afternoon. The background levels for the 4 and 5 carbon amines and ammonia were high, and data are very limited for these species. Improvements in detecting amines and ammonia from a smog chamber were evident due to improvements in AmPMS background determination; notably dimethyl amine and its OH oxidation products were followed along with impurity ammonia and other species. Future work will focus on accurate calibration standards and on improving the sample gas inlet.

  8. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  9. A geospatial model of ambient sound pressure levels in the contiguous United States.

    PubMed

    Mennitt, Daniel; Sherrill, Kirk; Fristrup, Kurt

    2014-05-01

    This paper presents a model that predicts measured sound pressure levels using geospatial features such as topography, climate, hydrology, and anthropogenic activity. The model utilizes random forest, a tree-based machine learning algorithm, which does not incorporate a priori knowledge of source characteristics or propagation mechanics. The response data encompasses 270 000 h of acoustical measurements from 190 sites located in National Parks across the contiguous United States. The explanatory variables were derived from national geospatial data layers and cross validation procedures were used to evaluate model performance and identify variables with predictive power. Using the model, the effects of individual explanatory variables on sound pressure level were isolated and quantified to reveal systematic trends across environmental gradients. Model performance varies by the acoustical metric of interest; the seasonal L50 can be predicted with a median absolute deviation of approximately 3 dB. The primary application for this model is to generalize point measurements to maps expressing spatial variation in ambient sound levels. An example of this mapping capability is presented for Zion National Park and Cedar Breaks National Monument in southwestern Utah.

  10. Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures

    SciTech Connect

    Glascoe, E A; Zaug, J M; Armstrong, M R; Crowhurst, J C; Grant, C D; Fried, L E

    2009-03-05

    The timescale and/or products of photo-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at elevated pressure (i.e. 8 GPa). Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO{sub 2}, an observed decomposition product, is complete within 30-40 s. Proof of principle time resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

  11. Vapor pressure deficit effects on leaf area expansion and transportation of soybean subjected to soil drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of leaf-to-air vapor pressure difference (VPD) and soil water deficit on transpiration rate (TR) of plants are well understood but their effects on plant leaf area expansion (PLAE) are less defined. Both PLAE and TR are unaffected by soil drying until the fraction transpirable soil water (FT...

  12. UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)2 Surface Analysis

    NASA Astrophysics Data System (ADS)

    Head, Ashley R.; Schnadt, Joachim

    2016-10-01

    The surface sensitivity of x-ray photoelectron spectroscopy (XPS) has positioned the technique as a routine analysis tool for chemical and electronic structure information. Samples ranging from ideal model systems to industrial materials can be analyzed. Instrumentational developments in the past two decades have popularized ambient pressure XPS, with pressures in the tens of mbar now commonplace. Here, we briefly review the technique, including a discussion of developments that allow data collection at higher pressures. We illustrate the information XPS can provide by using examples from the literature, including MgO studies. We hope to illustrate the possibilities of ambient pressure XPS to Mg, MgO, and Mg(OH)2 systems, both in fundamental and applied studies.

  13. Understanding the Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source through Optical Means

    NASA Astrophysics Data System (ADS)

    Shelley, Jacob T.; Chan, George C.-Y.; Hieftje, Gary M.

    2012-02-01

    The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H2O vapor, N2, and O2 diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (Trot) and electron number density (ne), were also measured in the APGD. Maximum values for Trot and ne were found to be ~1100 K and ~4 × 1019 m-3, respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N{2/+} yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N{2/+} temperature is believed to be caused by charge-transfer ionization of N2 by He{2/+}. These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source.

  14. Inactivation of Serratia liquefaciens on dry-cured ham by high pressure processing.

    PubMed

    Belletti, N; Garriga, M; Aymerich, T; Bover-Cid, S

    2013-08-01

    To quantify the inactivation of Serratia liquefaciens exerted by high pressure processing (HPP), slices of dry-cured ham were inoculated and processed combining different levels of technological parameters: pressure (347-852 MPa), time (2.3-15.8 min) and temperature (7.6-24.4 °C) according to a central composite design. Bacterial inactivation, as logarithmic reduction, indicated that S. liquefaciens was relatively sensitive to HPP. Six log reductions were achieved in a total of 10 trials combining pressures of 600 MPa or above with different holding times and temperatures. The inactivation of S. liquefaciens was analysed through the multiple regression analysis to generate a second order polynomial equation. Pressure and time were the two factors which significantly determined the inactivation of S. liquefaciens on dry-cured ham. Temperature did not significantly affect the lethality of the process. The response surface methodology was used to determine optimum process conditions to maximize the inactivation of S. liquefaciens in the experimental range tested. The maximum inactivation of S. liquefaciens in dry-cured ham was achieved by combining a pressure of 650 MPa with a holding time of 8 min. Combinations above these values (i.e. 750 MPa for 13 min) would not significantly improve the lethality of the process.

  15. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    PubMed

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  16. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  17. Equation of State of CAS Phase to Pressure of the Uppermost Lower Mantle at Ambient Temperature

    SciTech Connect

    X Liu; Q He; L Deng; S Zhai; X Hu; B Li; L Zhang; Z Chen; L Qiong

    2011-12-31

    The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related to slab subduction. Its equation of state has been investigated here at ambient temperature up to about 25 GPa by using a diamond-anvil cell and synchrotron X-ray radiation. Its P-V data, fitted to the third-order Birch-Murnaghan equation, yield an isothermal bulk modulus (K'{sub T}) of 185 (9) GPa and first pressure derivative (K'{sub T} ) of 7.2 (12). If K'{sub T} is fixed at 4, the derived K{sub T} is 212 (4) GPa. Additionally, the CAS phase is strongly elastically anisotropic, with its a-axis direction much less compressible than c-axis direction: K{sub T-a}:K{sub T-c} = 2.19.

  18. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  19. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  20. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.

    PubMed

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm(2) V(-1) s(-1), respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  1. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGESBeta

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the averagemore » structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  2. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    SciTech Connect

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.

  3. Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure

    PubMed Central

    Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun

    2013-01-01

    A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1−xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl2) atmosphere. Therefore, our finding, the direct transformation of a-Si1−xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349

  4. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    SciTech Connect

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F.; Strauss, M.A.; Cao, S.; Pedraza, A.J.; Puretzky, A.A.

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  5. Light-induced catalyst and solvent-free high pressure synthesis of high density polyethylene at ambient temperature.

    PubMed

    Ceppatelli, Matteo; Bini, Roberto

    2014-04-01

    The combined effect of high pressure and electronic photo-excitation has been proven to be very efficient in activating extremely selective polymerisations of small unsaturated hydrocarbons in diamond anvil cells (DAC). Here we report an ambient temperature, large volume synthesis of high density polyethylene based only on high pressure (0.4-0.5 GPa) and photo-excitation (~350 nm), without any solvent, catalyst or radical initiator. The reaction conditions are accessible to the current industrial technology and the laboratory scale pilot reactor can be scaled up to much larger dimensions for practical applications. FTIR and Raman spectroscopy, and X-ray diffraction, indicate that the synthesised material is of comparable quality with respect to the outstanding crystalline material obtained in the DAC. The polydispersity index is comparable to that of IV generation Ziegler-Natta catalysts. Moreover the crystalline quality of the synthesised material can be further enhanced by a thermal annealing at 373 K and ambient pressure.

  6. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  7. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    SciTech Connect

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  8. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments.

    PubMed

    Murakami, Chiho; Ohmae, Eiji; Tate, Shin-ichi; Gekko, Kunihiko; Nakasone, Kaoru; Kato, Chiaki

    2011-03-01

    To examine whether dihydrofolate reductase (DHFR) from deep-sea bacteria has undergone molecular evolution to adapt to high-pressure environments, we cloned eight DHFRs from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, and subsequently purified six proteins to compare their structures, stabilities, and functions. The DHFRs showed 74-90% identity in primary structure to DHFR from S. violacea, but only 55% identity to DHFR from Escherichia coli (ecDHFR). Far-ultraviolet circular dichroism and fluorescence spectra suggested that the secondary and tertiary structures of these DHFRs were similar. In addition, no significant differences were found in structural stability as monitored by urea-induced unfolding and the kinetic parameters, K(m) and k(cat); although the DHFRs from Shewanella species were less stable and more active (2- to 4-fold increases in k(cat)/K(m)) than ecDHFR. Interestingly, the pressure effects on enzyme activity revealed that DHFRs from ambient-atmospheric species are not necessarily incompatible with high pressure, and DHFRs from deep-sea species are not necessarily tolerant of high pressure. These results suggest that the DHFR molecule itself has not evolved to adapt to high-pressure environments, but rather, those Shewanella species with enzymes capable of retaining functional activity under high pressure migrated into the deep-sea.

  9. Dynamic response of berea sandstone shock-loaded under dry, wet and water-pressurized conditions

    SciTech Connect

    Carney, T C; Hagelberg, C R; Hilt, M; Nellis, W J; Swift, R P

    1999-09-03

    A single-stage light-gas gun was used to perform shock-recovery experiments on Berea sandstone under dry, wet and hydrostatically water-pressurized conditions. The samples were impacted by flyer-plates to achieve stress levels in the range 1.3 to 9.8 GPa. The microstructure of the shocked samples was analyzed using scanning electron microscopy (SEM), laser particle analysis and X-ray computed microtomography (XCMT). The dry samples show strongly fragmented and irregularly fractured quartz grains with a considerably reduced porosity, whereas the wet and water-pressurized specimens show less grain damage and less porosity reduction. During shock compression the water in the pores distributes the stresses and therefore the contact force between the grains is reduced. The interaction between the grains during the shock process was modeled by explicitly treating the grain-pore structure using Smooth Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM).

  10. What Is the Opposite of Pandora's Box? Direct Analysis, Ambient Ionization, and a New Generation of Atmospheric Pressure Ion Sources.

    PubMed

    B Cody, Robert

    2013-01-01

    The introduction of DART and DESI sources approximately seven years ago led to the development of a new series of atmospheric pressure ion sources referred to as "ambient ionization" sources. These fall into two major categories: spray techniques like DESI or plasma techniques like DART. The selectivity of "direct ionization," meaning analysis without chromatography and with little or no sample preparation, depends on the mass spectrometer selectivity. Although high resolution and tandem mass spectrometry are valuable tools, rapid and simple sample preparation methods can improve the utility of ambient ionization methods. The concept of ambient ionization has led to the realization that there are many more ways to form ions than might be expected. An interesting example is the use of a flint-and-steel spark source to generate ions from compounds such as phenolphthalein and Gramicidin S. PMID:24349926

  11. Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies.

    PubMed

    Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A

    2012-03-01

    The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.

  12. Tricalcium silicate (C{sub 3}S) hydration under high pressure at ambient and high temperature (200 deg. C)

    SciTech Connect

    Meducin, F.; Zanni, H.; Noik, C.; Hamel, G.; Bresson, B.

    2008-03-15

    The hydration of a tricalcium silicate paste at ambient temperature and at 200 deg. C under high pressure (up to 1000 bar) has been studied. Two high pressure cells have been used, one allows in-situ electrical conductivity measurements during hydration under high pressure. The hydration products were characterized by thermal analysis, X-ray diffraction and {sup 29}Si NMR measurements. The pressure has a large kinetic effect on the hydration of a C{sub 3}S paste at room temperature. The pressure was seen to affect drastically the hydration of a C{sub 3}S paste at 200 deg. C and this study evidences the competition between the different high temperature phases during the hydration.

  13. Formation of the –N(NO)N(NO)– polymer at high pressure and stabilization at ambient conditions

    PubMed Central

    Xiao, Hai; An, Qi; Goddard, William A.; Liu, Wei-Guang; Zybin, Sergey V.

    2013-01-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  14. Formation of the -N(NO)N(NO)- polymer at high pressure and stabilization at ambient conditions.

    PubMed

    Xiao, Hai; An, Qi; Goddard, William A; Liu, Wei-Guang; Zybin, Sergey V

    2013-04-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  15. Magnetic, electrical, and thermodynamic properties of NpIr: Ambient and high-pressure measurements, and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Walker, H. C.; McEwen, K. A.; Griveau, J.-C.; Eloirdi, R.; Amador, P.; Maldonado, P.; Oppeneer, P. M.; Colineau, E.

    2015-05-01

    We present bulk property measurements of NpIr, a newly synthesized member of the Np-Ir binary phase diagram, which is isostructural to the noncentrosymmetric pressure-induced ferromagnetic superconductor UIr. Magnetic susceptibility, electronic transport properties at ambient and high pressure, and heat capacity measurements have been performed for temperatures T =0.55 -300 K in a range of magnetic fields up to 14 T and under pressure up to 17.3 GPa. These reveal that NpIr is a moderately heavy fermion Kondo system with strong antiferromagnetic interactions, but there is no evidence of any phase transition down to 0.55 K or at the highest pressure achieved. Experimental results are compared with ab initio calculations of the electronic band structure and lattice heat capacity. An extremely low lattice thermal conductivity is predicted for NpIr at temperatures above 300 K.

  16. Sequential Coordination between Lingual and Pharyngeal Pressures Produced during Dry Swallowing

    PubMed Central

    Yano, Jitsuro; Aoyagi, Yoichiro; Ono, Takahiro; Hori, Kazuhiro; Yamaguchi, Wakami; Fujiwara, Shigehiro; Kumakura, Isami; Minagi, Shogo; Tsubahara, Akio

    2014-01-01

    The aim of this study was to investigate oropharyngeal pressure flow dynamics during dry swallowing in ten healthy subjects. Tongue pressure (TP) was measured using a sensor sheet system with five measuring points on the hard palate, and pharyngeal pressure (PP) was measured using a manometric catheter with four measuring points. The order and correlations of sequential events, such as onset, peak, and offset times of pressure production, at each pressure measuring point were analyzed on the synchronized waveforms. Onset of TP was earlier than that of PP. The peak of TP did not show significant differences with the onset of PP, and it was earlier than that of PP. There was no significant difference between the offset of TP and PP. The onset of PP was temporally time-locked to the peak of TP, and there was an especially strong correlation between the onset of PP and TP at the posterior-median part on the hard palate. The offset of PP was temporally time-locked to that of TP. These results could be interpreted as providing an explanation for the generation of oropharyngeal pressure flow to ensure efficient bolus transport and safe swallowing. PMID:25580436

  17. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure

    NASA Astrophysics Data System (ADS)

    Kaminska, E.; Kaminski, K.; Paluch, M.; Ngai, K. L.

    2006-04-01

    Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature Tg, the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the α relaxation and an additional faster γ process at the megahertz frequency range. By decreasing temperature below Tg at ambient pressure or by elevating pressure above Pg, the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary β-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the β-relaxation time τβ to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary β relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the β relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their γ relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and γ relaxation are further demonstrated by the nearly perfect superposition of the α-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same α-peak frequency), but not the γ-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the β-loss peak shifts to lower frequencies, but not the γ relaxation. Basing on these experimental facts, the faster γ relaxation is a local intramolecular process involving a side group and the slower β relaxation

  18. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation.

    PubMed

    Ren, Yan; Zhao, Xian; Hagley, Edward W; Deng, Lu

    2016-08-01

    Noncentrosymmetric potassium dihydrogen phosphate (KH2PO4 or KDP) in the tetragonal crystal phase is arguably the most extensively studied nonlinear optical crystal in history. It has prolific applications ranging from simple laser pointers to laser inertial confinement fusion systems. Recently, type IV high-pressure KDP crystal sheets with a monoclinic crystal phase having centrosymmetric properties have been observed. However, it was found that this new crystal phase is highly unstable under ambient conditions. We report ambient-condition growth of one-dimensional, self-assembled, single-crystalline KDP hexagonal hollow/solid-core microstructures that have a molecular structure and symmetry identical to the type IV KDP monoclinic crystal that was previously found to exist only at extremely high pressures (>1.6 GPa). Furthermore, we report highly efficient bulk optical second harmonic generation (SHG) from these ambient condition-grown single-crystalline microstructures, even though they have a highly centrosymmetric crystal phase. However, fundamental physics dictates that a bulk optical medium with a significant second-order nonlinear susceptibility supporting SHG must have noncentrosymmetric properties. Laue diffraction analysis reveals a weak symmetry-breaking twin-crystal lattice that, in conjunction with tight confinement of the light field by the tubular structure, is attributed to the significant SHG even with sample volumes <0.001 mm(3). A robust polarization-preserving effect is also observed, raising the possibility of advanced optical technological applications. PMID:27574703

  19. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation

    PubMed Central

    Ren, Yan; Zhao, Xian; Hagley, Edward W.; Deng, Lu

    2016-01-01

    Noncentrosymmetric potassium dihydrogen phosphate (KH2PO4 or KDP) in the tetragonal crystal phase is arguably the most extensively studied nonlinear optical crystal in history. It has prolific applications ranging from simple laser pointers to laser inertial confinement fusion systems. Recently, type IV high-pressure KDP crystal sheets with a monoclinic crystal phase having centrosymmetric properties have been observed. However, it was found that this new crystal phase is highly unstable under ambient conditions. We report ambient-condition growth of one-dimensional, self-assembled, single-crystalline KDP hexagonal hollow/solid-core microstructures that have a molecular structure and symmetry identical to the type IV KDP monoclinic crystal that was previously found to exist only at extremely high pressures (>1.6 GPa). Furthermore, we report highly efficient bulk optical second harmonic generation (SHG) from these ambient condition–grown single-crystalline microstructures, even though they have a highly centrosymmetric crystal phase. However, fundamental physics dictates that a bulk optical medium with a significant second-order nonlinear susceptibility supporting SHG must have noncentrosymmetric properties. Laue diffraction analysis reveals a weak symmetry-breaking twin-crystal lattice that, in conjunction with tight confinement of the light field by the tubular structure, is attributed to the significant SHG even with sample volumes <0.001 mm3. A robust polarization-preserving effect is also observed, raising the possibility of advanced optical technological applications. PMID:27574703

  20. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    SciTech Connect

    Steimke, J

    2005-07-29

    are included to allow variation of the operating pressure in the range of 1 to 2 bar. Hydrogen generated at the cathode of the cell can be collected for the purpose of flow measurement and composition analysis. The test facility proved to be easy to operate, versatile, and reliable. Two slightly different SDE's were designed, procured and tested. The first electrolyzer was based on a commercially available PEM water electrolyzer manufactured by Proton Energy Systems, Inc. (PES). The PES electrolyzer was built with Hastelloy B and Teflon wetted parts, a PEM electrolyte, and porous titanium electrodes. The second electrolyzer was assembled for SRNL by the University of South Carolina (USC). It was constructed with platinized carbon cloth electrodes, a Nafion 115 PEM electrolyte, carbon paper flow fields, and solid graphite back plates. Proof-of-concept testing was performed on each electrolyzer at near-ambient pressure and room temperature under various feed conditions. SDE operation was evidenced by hydrogen production at the cathode and sulfuric acid production at the anode (witnessed by the absence of oxygen generation) and with cell voltages substantially less than the theoretical reversible voltage for simple water electrolysis (1.23 V). Cell performance at low currents equaled or exceeded that achieved in the two-compartment cells built by Westinghouse Electric Corporation during the original development of the HyS Process. Performance at higher currents was less efficient due to mass transfer and hydraulic issues associated with the use of cells not optimized for liquid feed. Test results were analyzed to determine performance trends, improvement needs, and long-term SDE potential. The PES cell failed after several days of operation due to internal corrosion of the titanium electrodes in the presence of sulfuric acid. Although it was anticipated that the titanium would react in the presence of acid, the rapid deterioration of the electrodes was unexpected. The

  1. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  2. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  3. Distributed sensing of Composite Over-wrapped Pressure Vessel using Fiber-Bragg Gratings at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.

  4. Distributed Sensing of Composite Over-wrapped Pressure Vessel Using Fiber-Bragg Gratings at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2004-01-01

    Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.

  5. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  6. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    SciTech Connect

    Zhu, Zhongwei

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  7. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  8. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.

    1987-01-01

    A stable and reproducible superconductivity transition between 80 and 93 K has been achieved and maintained in a Y-Ba-Cu-O compound system at ambient pressure in a simple liquid-nitrogen Dewar. An upper critical field Hc2(0) estimate of between 80 and 180 T is obtained, and the paramagnetic limiting field at 0 K for a sample with a T(c) of about 90 K is 165 T. It is suggested that the lattice parameters, the valence ratio, and the sample treatments all play a role in achieving superconductivity above 77 K.

  9. In-Situ observation of wet oxidation kinetics on Si (100) via ambient pressure x-ray photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Rossi, Massimiliano; Mun, Bongjin S.; Enta, Yoshiharu; Fadley, Charles S.; Lee, Ki-Suk; Kim, Sang-Koog; Shin, Hyun-Joon; Hussain, Zahid; Ross, Jr., Philip N.

    2007-08-24

    The initial stages of wet thermal oxidation of Si(100)-(2x1) have been investigated by in-situ ambient pressure x-ray photoemission spectroscopy (APXPS), including chemical-state resolution via Si 2p core-level spectra. Real-time growth rates of silicon dioxide have been monitored at 100 mTorr of water vapor. This pressure is considerably higher than in any prior study using XPS. Substrate temperatures have been varied between 250 and 500 C. Above a temperature of {approx} 400 C, two distinct regimes, a rapid and a quasi-saturated one, are identified and growth rates show a strong temperature dependence which cannot be explained by the conventional Deal-Grove model.

  10. Synthetic Lead Bromapatite: X-ray Structure at Ambient Pressure and Compressibility up to about 20 GPa

    SciTech Connect

    X Liu; M Fleet; S Shieh; Q He

    2011-12-31

    Lead bromapatite [Pb{sub 10}(PO{sub 4}){sub 6}Br{sub 2}] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO{sub 4} tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite (P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K{sub T}) of 49.8(16) GPa and first pressure derivative (K{sub T}) of 10.1(10). If K{sub T} is fixed at 4, the derived K{sub T} is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli ({approx}5%) of the calcium apatites fluorapatite [Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}], chlorapatite [Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}] and hydroxylapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.

  11. Impact of Ambient Pressure on Titania Nanoparticle Formation During Spray-Flame Synthesis.

    PubMed

    Hardt, Sebastian; Wlokas, Irenäus; Schulz, Christof; Wiggers, Hartmut

    2015-12-01

    Nanocrystalline titania was synthesized via liquid-fed spray-flame synthesis in a hermetically closed system at various pressures. Titanium tetraisopropoxide dissolved in isopropanol was used as precursor. The size, crystal structure, degree of agglomeration, morphology and the band gap of the as-prepared particles were investigated ex situ by nitrogen adsorption, transmission electron microscopy, X-ray diffraction, and UV-VIS absorption spectroscopy. In comparison to synthesis at atmospheric pressure it was found that decreasing pressure has a significant influence on the particle size distribution leading to smaller particles with reduced geometric standard deviation while particle morphology and crystal structure are not affected. Computational fluid dynamics simulations support the experimental findings also indicating a significant decrease in particle size at reduced pressure. Although it is well known that decreasing pressure leads to smaller particle sizes, it is (to our knowledge) the first time that this relation was investigated for spray-flame synthesis. PMID:26682365

  12. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  13. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  14. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    SciTech Connect

    Hendricks, R.C.; Braun, M.J.; Mullen, R.L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  15. Atmospheric Pressure Liquefaction of Dried Distillers Grains (DDG and Making Polyurethane Foams from Liquefied DDG

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Le, Zhiping; Chen, Paul; Liu, Yuhuan; Lin, Xiangyang; Ruan, Roger

    In this study, dried distillers grains (DDG) was liquefied in acidic conditions at atmospheric pressure, and polyurethane foams were subsequently prepared from the liquefied DDG. Liquefaction was examined over a range of conditions including liquefaction time of 1-3 h, temperature of 150-170 °C, sulfuric acid (as catalyst) concentration of 1.0-3.0 wt%, and liquefaction solvent (ethylene carbonate) to DDG ratio of 3:1-5:1. The bio-polyols in the liquefied DDG were rich in hydroxyl groups, which can react with methylene diphenyl diisocyanate (MDI) to form cross-linked polyurethane networks. The biodegradability of the prepared polyurethane foams was also evaluated. This study strives to broaden the application of DDG as a feedstock for bio-polyurethane preparation.

  16. Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG.

    PubMed

    Yu, Fei; Le, Zhiping; Chen, Paul; Liu, Yuhuan; Lin, Xiangyang; Ruan, Roger

    2008-03-01

    In this study, dried distillers grains (DDG) was liquefied in acidic conditions at atmospheric pressure, and polyurethane foams were subsequently prepared from the liquefied DDG. Liquefaction was examined over a range of conditions including liquefaction time of 1-3 h, temperature of 150-170 degrees C, sulfuric acid (as catalyst) concentration of 1.0-3.0 wt%, and liquefaction solvent (ethylene carbonate) to DDG ratio of 3:1-5:1. The bio-polyols in the liquefied DDG were rich in hydroxyl groups, which can react with methylene diphenyl diisocyanate (MDI) to form cross-linked polyurethane networks. The biodegradability of the prepared polyurethane foams was also evaluated. This study strives to broaden the application of DDG as a feedstock for bio-polyurethane preparation. PMID:18418755

  17. Monitoring ambient air pollutants and apply Woods' model in the prediction seasonal dry deposition at Chang-Hua (urban) and Kao-Mei (wetland) county, Taiwan.

    PubMed

    Fang, Guor-Cheng; Chang, Chia-Ying

    2014-09-01

    The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) in total suspended particulate (TSP) concentration and dry deposition. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) were evaluated using Woods' model at urban and wetland areas for the 2009-2010 period. The results indicated that the mean highest concentrations of metallic elements Mn, Fe, Zn, Cr, Cu and Pb in TSP were found in Chang-Hua (urban) sampling site. And as for the two characteristic sampling sites, the Woods' model exhibits better dry deposition of particulates of 18 µm particle size than the rest of the other particle sizes at any sampling site in this study. The average calculated/measured flux ratios for two seasons (summer and fall) by using Woods model at 2.5, 10 and 18 µm particles sizes were also studied. The results indicated that the average calculated/measured flux ratios orders for two seasons of various particles sizes were all displayed as Fe > Mn > Zn > Cu > Cr > Pb > particle. And these calculated/measured flux ratios orders were Fe > Mn > Cu > Zn > Cr > Pb > particle and were Fe > Mn > Zn > Cu > Cr > particle > Pb, during spring and winter seasons, respectively. Finally, in the spring and summer seasons of Gao-Mei (wetland) sampling site, the average calculated/measured flux ratios using Woods' model was found to be 2.5, 10 and 18 µm, showing the order of the calculated/measured flux ratios to be Fe > Cu > Zn > Mn > Cr > Pb > particle. And the calculated/measured flux ratio orders were Fe > Zn > Mn > Cu > Cr > particle > Pb and were Fe > Cu > Zn > Mn > Cr > particle > Pb for fall and winter season, respectively.

  18. High-pressure hand injection injuries caused by dry cleaning solvents: case reports, review of the literature, and treatment guidelines.

    PubMed

    Gutowski, Karol A; Chu, Jason; Choi, Mihye; Friedman, David W

    2003-01-01

    A previously unreported subset of high-pressure injection injuries, namely those involving solvents used in the garment dry cleaning industry, is presented. Dry cleaning solutions contain isoparaffinic hydrocarbons, methoxypropanol, and dichlorofluoroethane. Although these solvents have limited potential for systemic toxicity, severe local toxicity causing tissue necrosis often results in loss of the injured digit. Proper treatment includes prompt surgical exploration, careful débridement and irrigation, intravenous antibiotics, and in selected cases, high-dose systemic corticosteroids. PMID:12496578

  19. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment. PMID:26856301

  20. Heart rate and blood pressure time courses during prolonged dry apnoea in breath-hold divers.

    PubMed

    Perini, Renza; Tironi, Adelaide; Gheza, Alberto; Butti, Ferdinando; Moia, Christian; Ferretti, Guido

    2008-09-01

    To define the dynamics of cardiovascular adjustments to apnoea, beat-to-beat heart rate (HR) and blood pressure and arterial oxygen saturation (SaO(2)) were recorded during prolonged breath-holding in air in 20 divers. Apnoea had a mean duration of 210 +/- 70 s. In all subjects, HR attained a value 14 beats min(-1) lower than control within the initial 30 s (phase I). HR did not change for the following 2-2.5 min (phase II). Then, nine subjects interrupted the apnoea (group A), whereas 11 subjects (group B) could prolong the breath-holding for about 100 s, during which HR continuously decreased (phase III). In both groups, mean blood pressure was 8 mmHg above control at the end of phase I; it then further increased by additional 12 mmHg at the end of the apnoea. In both groups, SaO(2) did not change in the initial 100-140 s of apnoea; then, it decreased to 95% at the end of phase II. In group B, SaO(2) further diminished to 84% at the end of phase III. A typical pattern of cardiovascular readjustments was identified during dry apnoea. This pattern was not compatible with a role for baroreflexes in phase I and phase II. Further readjustment in group B may imply a role for both baroreflexes and chemoreflexes. Hypothesis has been made that the end of phase II corresponds to physiological breakpoint.

  1. Influence of peak inspiratory flow rates and pressure drops on inhalation performance of dry powder inhalers.

    PubMed

    Hira, Daiki; Okuda, Tomoyuki; Ichihashi, Mika; Mizutani, Ayano; Ishizeki, Kazunori; Okada, Toyoko; Okamoto, Hirokazu

    2012-01-01

    The aim of this study was to reveal the relationship between human inspiratory flow patterns and the concomitant drops in pressure in different inhalation devices, and the influence of the devices on inhalation performance. As a model formulation for inhalers, a physically mixed dry powder composed of salbutamol sulfate and coarse lactose monohydrate was selected. The drops in pressure at 28.3 L/min of three inhalation devices, Single-type, Dual-type, and Reverse-type, was 1.0, 5.1, and 8.7 kPa, respectively. Measurements of human inspiratory patterns revealed that although the least resistant device (Single) had large inter- and intra-individual variation of peak flow rate (PFR), the coefficients of variation of PFR of the three devices were almost the same. In tests with a human inspiratory flow simulator in vitro, inhalation performance was higher, but the variation in inhalation performance in the range of human flow patterns was wider, for the more resistant device. To minimize the intra- and inter-individual variation in inhalation performance for the model formulation in this study, a formulation design that allows active pharmaceutical ingredient to detach from the carrier with a lower inhalation flow rate is needed.

  2. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  3. Molecular dynamics at ambient and elevated pressure of the amorphous pharmaceutical: Nonivamide (pelargonic acid vanillylamide)

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Hawelek, L.; Paluch, M.; Sawicki, W.; Ngai, K. L.

    2011-01-01

    Broadband dielectric spectroscopy was employed to investigate the relaxation dynamics of supercooled and glassy nonivamide—the synthetic form of capsaicin being the most spicy-hot substance known to man. The material is of great importance in the pharmaceutical industry because it has wide usage in the medical field for relief of pain, and more recently it has been shown to be effective in fighting cancers. Dielectric measurements carried out at various isobaric and isothermal conditions (pressure up to 400 MPa) revealed very narrow α-loss peak and unresolved secondary relaxations appearing in the form of an excess wing on the high frequency flank. Moreover, our studies have shown the shape of dielectric loss spectrum at any fixed loss peak frequency is invariant to different combinations of temperature and pressure, i.e., validity of the time-temperature-pressure superpositioning. We also found the fragility index is nearly constant on varying pressure. This property is likely due to the unusual structure of nonivamide, which has a part characteristic of van der Waals glass-former and another part characteristic of hydrogen-bonded glass-former.

  4. Characterization of Ultrafast Laser-Ablation Plasma Plumes at Various Ar Ambient Pressures

    SciTech Connect

    Diwakar, P. K.; Harilal, S. S.; Phillips, Mark C.; Hassanein, A.

    2015-07-28

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plume species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. Possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.

  5. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  6. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Feng Tao, Franklin; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ˜10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  7. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ~10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  8. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified. PMID:23556828

  9. Laser-induced breakdown spectroscopy on metallic samples at very low temperature in different ambient gas pressures

    NASA Astrophysics Data System (ADS)

    El-Saeid, R. H.; Abdelhamid, M.; Harith, M. A.

    2016-02-01

    Analysis of metals at very low temperature adopting laser-induced breakdown spectroscopy (LIBS) is greatly beneficial in space exploration expeditions and in some important industrial applications. In the present work, the effect of very low sample temperature on the spectral emission intensity of laser-induced plasma under both atmospheric pressure and vacuum has been studied for different bronze alloy samples. The sample was cooled down to liquid nitrogen (LN) temperature 77 K in a special vacuum chamber. Laser-induced plasma has been produced onto the sample surface using the fundamental wavelength of Nd:YAG laser. The optical emission from the plasma is collected by an optical fiber and analyzed by an echelle spectrometer combined with an intensified CCD camera. The integrated intensities of certain spectral emission lines of Cu, Pb, Sn, and Zn have been estimated from the obtained LIBS spectra and compared with that measured at room temperature. The laser-induced plasma parameters (electron number density Ne and electron temperature Te) were investigated at room and liquid nitrogen temperatures for both atmospheric pressure and vacuum ambient conditions. The results suggest that reducing the sample temperature leads to decrease in the emission line intensities under both environments. Plasma parameters were found to decrease at atmospheric pressure but increased under vacuum conditions.

  10. Stabilization of HfB12 in Y1-xHfxB12 under Ambient Pressure.

    PubMed

    Akopov, Georgiy; Yeung, Michael T; Turner, Christopher L; Li, Rebecca L; Kaner, Richard B

    2016-05-16

    Alloys of metal dodecaborides-YB12 with HfB12-were prepared via arc-melting in order to stabilize the metastable HfB12 high-pressure phase under ambient pressure. Previously, HfB12 had been synthesized only under high-pressure (6.5 GPa). Powder X-ray diffraction (PXRD) and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the purity and phase composition of the prepared samples. The solubility limit for HfB12 in Y1-xHfxB12 (cubic UB12 structure type) was determined to be ∼35 at. % Hf by PXRD and EDS analysis. The value of the cubic unit cell parameter (a) changed from 7.505 Å (pure YB12) to 7.454 Å across the solid solution range. Vickers hardness increased from 40.9 ± 1.6 GPa for pure YB12 to 45.0 ± 1.9 GPa under an applied load of 0.49 N for the Y1-xHfxB12 solid solution composition with ∼28 at. % Hf, suggesting both solid solution hardening and extrinsic hardening due to the formation of secondary phases of hafnium. PMID:27115173

  11. Pressure-induced collapsed-tetragonal phase in SrCo2As2 at ambient temperature

    NASA Astrophysics Data System (ADS)

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, A.; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'Ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; Fabbris, G.; Feng, Y.; Veiga, L. S. I.; Dos Santos, A. M.

    Our recent high-energy (HE) high-pressure (HP) x-ray powder diffraction measurements on tetragonal (T) SrCo2As2 have revealed a first-order pressure-induced structural phase transition to a collapsed tetragonal (cT) phase with a reduction in c by -7.9% and the c / a ratio by -9.9%. The T and cT phases coexist for applied pressures 6 GPa to 18 GPa at 7 K. Resistance measurements up to 5.9 GPa and down to 1.8 K signatures likely associated with the cT phase above 5.5 GPa and found no evidence for superconductivity. Neutron diffraction data show no evidence of magnetic order up to 1.1 GPa. Here, we show that the T to cT transition occurs around 6.8 GPa at ambient temperature, and that the transition is nearly temperature-independent from 300 K down to 7 K, which indicates a steep p - T phase line. Work at Ames Lab. was supported by US DOE, BES, DMSE under DE-AC02-07CH11358. This research used resources at the APS and ORNL, US DOE, SC, User Facilities.

  12. A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Ehernberger, L. J.

    1985-01-01

    The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

  13. Ice phases under ambient and high pressure: Insights from density functional theory

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Xiao, Bing; Tao, Jianmin; Sun, Jianwei; Perdew, John P.

    2013-06-01

    Water is common and plays a crucial role in biological, chemical, and physical processes, but its crystalline or ice state has a complicated structure. In this work, we study the lattice mismatch challenge for ice nucleation on silver iodide, the sublimation energy for different ice phases, and the structural phase-transition pressures of ice, with various density functionals. Our calculations show that the recently developed meta-generalized gradient approximation made simple (MGGA_MS) yields a lattice mismatch (3%) of hexagonal ice (ice Ih) with β-AgI in good agreement with experiment (2%), significantly better than the Perdew-Burke-Ernzerhof (PBE) GGA mismatch (6%). MGGA_MS is a computationally efficient semilocal functional that incorporates intermediate-range van der Waals (vdW) interaction, which, overall, performs well for ice and may be expected to improve upon PBE for liquid water. While MGGA_MS predicts the most realistic volumes and volume changes in the phase transitions of ice Ih to trigonal ice (ice II) and tetragonal ice (ice VIII), a more accurate description of some other properties of the higher-pressure phases (ice II and ice VIII) is provided by some functionals that include long-range vdW corrections (e.g., revised Tao-Perdew-Staroverov-Scuseria+vdW for sublimation energy and optB88-vdW for transition pressure).

  14. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed

    Muller, F L

    1995-09-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses.

  15. Impacts of Ambient Temperature and Pressure on PM2.5 Emission Profiles of Light-Duty Diesel Vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Chenyu; Wu, Ye; Li, Zhenhua; Hao, Jiming

    2012-01-01

    The impact of the environmental factors on the emissions of particulate matter (PM) number, size distribution and mass size distribution from diesel passenger cars was evaluated. Particle measurements from five modern light-duty diesel vehicles (LDDV) were performed in June and November 2011. Commercial low sulfur diesel fuel (less than 50 ppm) was used during the testing of these vehicles which were not equipped with after-treatment devices. The dynamometer test was based on the Economic Commission of Europe (ECE) 15 cycles. The results indicate that PM2.5 emissions from LDDV are significantly affected by ambient temperature and pressure. A comparison of the emissions concentration of PM2.5 in these two different months showed that the number concentration in June was (3.8 ± 0.69) × 107 cm-3 and (2.5 ± 0.66) × 107 cm-3 in November. The PM concentration of about 30 nm diameter was 25 ± 6% of the total emissions in November while only 14 ± 3% of total emissions in June. In the 60 nm to 2.5 μm test range, November data shows less of a contribution for number than data from June testing. The concentration of mass emissions in June was (325 ± 44) mg/m3 and (92 ± 30) mg/m3 in November. The contribution of the number of PM particles in November testing is lower than testing in June by 34% and the mass concentration in November is 70% lower than that in June. With the decrease of ambient temperature and the increase of ambient pressure, both the oxygen concentration in cylinder and air-fuel ratio are increased, which caused lower particle number and mass emissions during November testing. The size distribution is also altered by these changes: the more efficient in-cylinder combustion resulted in a higher proportion of particles in the 30 nm and smaller range than for other particle sizes.

  16. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  17. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  18. Comparison of Surfactant Distributions in Pressure-Sensitive Adhesive Films Dried from Dispersion under Lab-Scale and Industrial Drying Conditions.

    PubMed

    Baesch, S; Siebel, D; Schmidt-Hansberg, B; Eichholz, C; Gerst, M; Scharfer, P; Schabel, W

    2016-03-01

    Film-forming latex dispersions are an important class of material systems for a variety of applications, for example, pressure-sensitive adhesives, which are used for the manufacturing of adhesive tapes and labels. The mechanisms occurring during drying have been under intense investigations in a number of literature works. Of special interest is the distribution of surfactants during the film formation. However, most of the studies are performed at experimental conditions very different from those usually encountered in industrial processes. This leaves the impact of the drying conditions and the resulting influence on the film properties unclear. In this work, two different 2-ethylhexyl-acrylate (EHA)-based adhesives with varying characteristics regarding glass transition temperature, surfactants, and particle size distribution were investigated on two different substrates. The drying conditions, defined by film temperature and mass transfer in the gas phase, were varied to emulate typical conditions encountered in the laboratory and industrial processes. Extreme conditions equivalent to air temperatures up to 250 °C in a belt dryer and drying rates of 12 g/(m(2)·s) were realized. The surfactant distributions were measured by means of 3D confocal Raman spectroscopy in the dry film. The surfactant distributions were found to differ significantly with drying conditions at moderate film temperatures. At elevated film temperatures the surfactant distributions are independent of the investigated gas side transport coefficients: the heat and mass transfer coefficient. Coating on substrates with significantly different surface energies has a large impact on surfactant concentration gradients, as the equilibrium between surface and bulk concentration changes. Dispersions with higher colloidal stability showed more homogeneous lateral surfactant distributions. These results indicate that the choice of the drying conditions, colloidal stability, and substrates is crucial

  19. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.

    PubMed

    Keefe, Douglas H; Hunter, Lisa L; Feeney, M Patrick; Fitzpatrick, Denis F

    2015-12-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function.

  20. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    SciTech Connect

    Starr, David E.; Wong, Ed K.; Worsnop, Douglas R.; Wilson, Kevin R.; Bluhm, Hendrik

    2008-05-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50...150 {micro}m is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100...1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a {chi} = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  1. Boron: a frustrated element. Physical properties at ambient conditions and under pressure from ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Gygi, Francois; Galli, Giulia

    2004-03-01

    Boron is the only low-Z element in the periodic table whose atomic ground state structure has not yet been fully determined. For example, it is yet unclear whether perfectly pure elemental Boron is stable in an ordered crystalline form and the number of atoms in the unit cell (varying from 315 to about 325) is still the subject of debate. Using ab-initio calculations and supercells with 1260-1280 atoms, we have studied the physical properties of Boron at ambient conditions and under pressure (P). Results about the ionic and electronic structure will be presented, in particular the role of interstitial atoms and the presence of localized states right above the Fermi level will be discussed in detail. The computed equation of state under pressure is in agreement with recent experimental data. At about 120 GPa we observe amorphization, consistent with the results of Ref. [1] at l00 GPa. Amorphization occurs by random deformation of icosahedral units which remain intact; it is accompanied by a delocalization of states near the Fermi level yielding a poorly conducting system. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48. [1] Sanz et al. Phys. Rev. Lett. 89, 245501 (2002)

  2. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces.

    PubMed

    Starr, David E; Wong, Ed K; Worsnop, Douglas R; Wilson, Kevin R; Bluhm, Hendrik

    2008-06-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50-150 mum is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100-1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a chi = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  3. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  4. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  5. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    PubMed

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  6. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  7. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGESBeta

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  8. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga. PMID:27421419

  9. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-01

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  10. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    SciTech Connect

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  11. Investigating the effect of additional gases in an atmospheric-pressure helium plasma jet using ambient mass spectrometry

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu; Bradley, James W.

    2015-01-01

    Using ambient mass spectrometry, positive and negative ions created in an atmospheric-pressure plasma jet have been detected for a variation of different traces gases (Ar, N2, and O2) added to the flow, downstream of the main helium discharge plasma. We find that such additions can change the chemistry in the outflow plasma plume. For instance, small amounts of O2 increases the formation of positive ion clusters, e.g., water clusters H+(H2O)n (with n up to 5) through hydration reactions, but decreases the intensity of heavy negative ions detected. With the addition of Ar and N2 we see a marked decrease in the intensity of negative ions in the plume but with increased Ar+ and nitrous oxide ions (e.g., N2O+) for the two cases respectively. From broadband optical emission measurements of the glowing plasma we see that the relative emission intensity of OH radical were changed with addition of the four different gases but the emission spectra were not changed. A calculation of rotational temperature of OH radicals, indicates that the gas temperatures is about 290 K for the four different gas mixture cases.

  12. Reverse Water-Gas Shift or Sabatier Methanation on Ni(110)? Stable Surface Species at Near-Ambient Pressure.

    PubMed

    Roiaz, Matteo; Monachino, Enrico; Dri, Carlo; Greiner, Mark; Knop-Gericke, Axel; Schlögl, Robert; Comelli, Giovanni; Vesselli, Erik

    2016-03-30

    The interaction of CO, CO2, CO + H2, CO2 + H2, and CO + CO2 + H2 with the nickel (110) single crystal termination has been investigated at 10(-1) mbar in situ as a function of the surface temperature in the 300-525 K range by means of infrared-visible sum frequency generation (IR-vis SFG) vibrational spectroscopy and by near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). Several stable surface species have been observed and identified. Besides atomic carbon and precursors for graphenic C phases, five nonequivalent CO species have been distinguished, evidencing the role of coadsorption effects with H and C atoms, of H-induced activation of CO, and of surface reconstruction. At low temperature, carbonate species produced by the interaction of CO2 with atomic oxygen, which stems from the dissociation of CO2 into CO + O, are found on the surface. A metastable activated CO2(-) species is also detected, being at the same time a precursor state toward dissociation into CO and O in the reverse water-gas shift mechanism and a reactive species that undergoes direct conversion in the Sabatier methanation process. Finally, the stability of ethylidyne is deduced on the basis of our spectroscopic observations. PMID:26954458

  13. Dry and Wet Friction of Plagioclase: Pure Cataclastic Flow(CF) vs. CF with Concurrent Pressure Solution

    NASA Astrophysics Data System (ADS)

    He, C.; Tan, W.

    2015-12-01

    To distinguish different deformation mechanisms at hydrothermal conditions, friction experiments of plagioclase under nominally dry conditions were compared with that at hydrothermal conditions documented in a previous study[He et al.,2013]. Preliminary result[Tan and He, 2008] shows that the rate dependence of plagioclase under confining pressure of 150MPa and nominally dry conditions is velocity strengthening at temperatures of 50-600oC, in contrast to the full velocity weakening at hydrothermal conditions. Here a) we conducted data fitting to the rate and state friction law to compare with the hydrothermal case; b) microstructural comparison was performed to understand the difference between the dry and wet conditions in the operative deformation mechanisms. The evolution effect (b value) under dry conditions exhibits much smaller values than that at wet conditions, and in contrast to the increasing trend at wet conditions, b values under dry conditions have a decreasing trend as temperature increases, from ~0.007 at 300oC down to 0 at 600oC. The direct effect (a value) at dry conditions has a peak of ~0.01 at 300oC and decreases to a level of 0.007-0.008 at higher temperatures, in contrast to the increasing trend seen at hydrothermal conditions. In the dry case, microstructure at temperatures of 300-600oC transitions gradually from a fabric characterized by localized Riedel shear zones to pervasive shear deformation, with the grain size reduced to a level of 1-3 micron in a submicron matrix in the latter case, corresponding to a lower porosity. The close association between porosity evolution and that of state variable revealed in previous studies[Morrow and Byerlee, 1989; Marone et al.,1990] suggests that the porosity change contributes largely to the evolution effect in addition to plasticity at intergranular contacts, probably due to gradual switching between different densities of packing. Our dry experiments indicate a cataclastic flow where the evolution

  14. First-principles calculations of solid and liquid aluminum optical absorption spectra near the melting curve: Ambient and high-pressure results

    SciTech Connect

    Ogitsu, Tadashi; Benedict, Lorin X.; Schwegler, Eric; Draeger, Erik W.; Prendergast, David

    2009-12-04

    Here, we present ab initio calculations of the linear optical conductivity of heated Al at ambient pressure and at the conditions relevant for shock melting (P~125 GPa, T~5000 K). It is shown that the visible and near-UV optical spectrum is very sensitive to the phase (fcc solid versus liquid) of Al for both P=0 and 125 GPa. The ambient-P results confirm an earlier prediction and the results of a recent experiment while the high-(P,T) results allow us to conclude that in situ measurements of optical constants should be able to diagnose the shock melting of Al.

  15. First-principles calculations of solid and liquid aluminum optical absorption spectra near the melting curve: Ambient and high-pressure results

    DOE PAGESBeta

    Ogitsu, Tadashi; Benedict, Lorin X.; Schwegler, Eric; Draeger, Erik W.; Prendergast, David

    2009-12-04

    Here, we present ab initio calculations of the linear optical conductivity of heated Al at ambient pressure and at the conditions relevant for shock melting (P~125 GPa, T~5000 K). It is shown that the visible and near-UV optical spectrum is very sensitive to the phase (fcc solid versus liquid) of Al for both P=0 and 125 GPa. The ambient-P results confirm an earlier prediction and the results of a recent experiment while the high-(P,T) results allow us to conclude that in situ measurements of optical constants should be able to diagnose the shock melting of Al.

  16. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  17. EFFECTS OF LASER RADIATION ON MATTER: Influence of the ambient air pressure on short-wavelength radiation from a laser plasma

    NASA Astrophysics Data System (ADS)

    Golovin, A. F.; Zemtsov, S. S.; Fedyushin, B. T.

    1991-12-01

    A detailed experimental investigation was made of the radiation from a plasma created on an aluminum target by a pulsed CO2 laser at different ambient gas pressures. Measurements were made of the energy and angular distribution of the radiation and of the efficiency of conversion of laser energy into reemitted plasma radiation. The intensity of this radiation was found to exhibit pressure-dependent pulsations. The maximum reflection of the laser radiation from the plasma was recorded at a pressure of ~ 40 Torr. An interpretation is given of the experimental data.

  18. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    SciTech Connect

    Butcher, Derek Robert

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  19. Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic, Airport, Park (T.A.P.) areas during years of 2011-2012.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng

    2016-02-01

    The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.

  20. What Is the Opposite of Pandora’s Box? Direct Analysis, Ambient Ionization, and a New Generation of Atmospheric Pressure Ion Sources

    PubMed Central

    B. Cody, Robert

    2013-01-01

    The introduction of DART and DESI sources approximately seven years ago led to the development of a new series of atmospheric pressure ion sources referred to as “ambient ionization” sources. These fall into two major categories: spray techniques like DESI or plasma techniques like DART. The selectivity of “direct ionization,” meaning analysis without chromatography and with little or no sample preparation, depends on the mass spectrometer selectivity. Although high resolution and tandem mass spectrometry are valuable tools, rapid and simple sample preparation methods can improve the utility of ambient ionization methods. The concept of ambient ionization has led to the realization that there are many more ways to form ions than might be expected. An interesting example is the use of a flint-and-steel spark source to generate ions from compounds such as phenolphthalein and Gramicidin S. PMID:24349926

  1. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    SciTech Connect

    Roper, T.R.; Williams, L.E. Kearney Agricultural Center, Parlier, CA )

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  2. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.

    PubMed

    Qadir, Kamran; Joo, Sang Hoon; Mun, Bongjin S; Butcher, Derek R; Renzas, J Russell; Aksoy, Funda; Liu, Zhi; Somorjai, Gabor A; Park, Jeong Young

    2012-11-14

    Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.

  3. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.

    PubMed

    Wojnarowska, Z; Swiety-Pospiech, A; Grzybowska, K; Hawelek, L; Paluch, M; Ngai, K L

    2012-04-28

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M(")(f) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across T(g). The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below T(g). At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  4. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Swiety-Pospiech, A.; Grzybowska, K.; Hawelek, L.; Paluch, M.; Ngai, K. L.

    2012-04-01

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M″(f ) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across Tg. The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below Tg. At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  5. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  6. One-Pot Template-Free Synthesis of Cu-MOR Zeolite toward Efficient Catalyst Support for Aerobic Oxidation of 5-Hydroxymethylfurfural under Ambient Pressure.

    PubMed

    Zhang, Wei; Xie, Jingyan; Hou, Wei; Liu, Yangqing; Zhou, Yu; Wang, Jun

    2016-09-01

    Supported catalysts are widely studied, and exploring new promising supports is significant to access more applications. In this work, novel copper-containing MOR-type zeolites Cu-MOR were synthesized in a one-pot template-free route and served as efficient supports for vanadium oxide. In the heterogeneous oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) with molecular oxygen (O2) under ambient pressure, the obtained catalyst demonstrated high yield (91.5%) and good reusability. Even under the ambient air pressure, it gave a DFF yield of 72.1%. Structure-activity relationship analysis indicated that the strong interaction between the framework Cu species and the guest V sites accounted for the remarkable performance. This work reveals that the Cu-MOR zeolite uniquely acts as the robust support toward well-performed non-noble metal heterogeneous catalyst for biomass conversion. PMID:27523255

  7. Effects of leg activity and ambient barometric pressure on foot swelling and lower-limb skin temperature during 8 h of sitting.

    PubMed

    Noddeland, H; Winkel, J

    1988-01-01

    Prolonged immobilization in an upright position often leads to discomfort and oedema in the feet of otherwise healthy subjects. To determine the significance of leg activity and ambient pressure on oedema formation, skin temperature (Tsk) and discomfort, 6 volunteers sat for 8 h with one leg immobilized and the other spontaneously active; one day at "sea level" (750 mmHg) and one day at reduced barometric pressure (540 mmHg). Foot swelling was measured by water plethysmography. Leg movements were continuously monitored by a Vitalog computer, and foot discomfort was estimated by analog-visual scales. The 8 hour swelling averaged 5.7% in the inactive foot, and 2.7% in the active foot (p less than 0.001). Tsk of the inactive foot levelled off towards ambient temperature (21 degrees C) within 4 h. For the active foot this fall was reduced by 2-3 degrees C (p less than 0.025). The increase in foot discomfort during the day was lowest in the active foot (p less than 0.005). High foot Tsk was associated with a high foot swelling rate. Reduced ambient barometric pressure had no effects on foot swelling or Tsk. It is concluded that modest leg activity during 8 h of sitting has several effects on the circulation in the feet: some effects promote and some prevent oedema formation. However, the net result is a reduction in foot swelling.

  8. Ambient pressure structural quantum critical point in the phase diagram of (Ca(x)Sr(1-x))(3)Rh(4)Sn(13).

    PubMed

    Goh, S K; Tompsett, D A; Saines, P J; Chang, H C; Matsumoto, T; Imai, M; Yoshimura, K; Grosche, F M

    2015-03-01

    The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138  K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures. PMID:25793843

  9. Daytime variation in ambient temperature affects skin temperatures and blood pressure: Ambulatory winter/summer comparison in healthy young women.

    PubMed

    Martinez-Nicolas, Antonio; Meyer, Martin; Hunkler, Stefan; Madrid, Juan Antonio; Rol, Maria Angeles; Meyer, Andrea H; Schötzau, Andy; Orgül, Selim; Kräuchi, Kurt

    2015-10-01

    It is widely accepted that cold exposure increases peripheral vascular resistance and arterial blood pressure (BP) and, hence, increases cardiovascular risk primarily in the elderly. However, there is a lack of concomitantly longitudinal recordings at personal level of environmental temperature (PET) and cardiophysiological variables together with skin temperatures (STs, the “interface-variable” between the body core and ambient temperature). To investigate the intra-individual temporal relationships between PET, STs and BP 60 healthy young women (52 completed the entire study) were prospectively studied in a winter/summer design for 26 h under real life conditions. The main hypothesis was tested whether distal ST (Tdist)mediates the effect of PET-changes on mean arterial BP (MAP). Diurnal profiles of cardiophysiological variables (including BP), STs and PET were ambulatory recorded. Daytime variations between 0930 and 2030 h were analyzed in detail by intra-individual longitudinal path analysis. Additionally, time segments before, during and after outdoor exposure were separately analyzed. In both seasons short-term variations in PET were positively associated with short-term changes in Tdist (not proximal ST, Tprox) and negatively with those in MAP. However, long-term seasonal differences in daytime mean levels were observed in STs but not in BP leading to non-significant inter-individual correlation between STs and BP. Additionally, higher individual body mass index (BMI) was significantly associated with lower daytime mean levels of Tprox and higher MAP suggesting Tprox as potential mediator variable for the association of BMI with MAP. In healthy young women the thermoregulatory and BP-regulatory systems are closely linked with respect to short-term, but not long-term changes in PET. One hypothetical explanation could serve recent findings that thermogenesis in brown adipose tissue is activated in a cool environment, which could be responsible for the

  10. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  11. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  12. Evaluation of the high pressure oxidizer turbopump (HPOTP) vacuum drying procedures

    NASA Technical Reports Server (NTRS)

    Fears, S. D.

    1991-01-01

    Tests carried out on the HPOTP to determine the effects of surface finish on the rate at which water vapor could be removed from the bearing/spacer cavity are described. Data from these tests are used to evaluate the effects of a lower drying temperature on the flow rate of water vapor from the bearing/spacer cavity as well. It was found that, if the normality nut is torqued, there is no evidence of moisture entering the bearing/spacer cavity from external sources.

  13. Dry-Weight: A Concept Revisited in an Effort to Avoid Medication-Directed Approaches for Blood Pressure Control in Hemodialysis Patients

    PubMed Central

    Weir, Matthew R.

    2010-01-01

    Background and objectives: Achieving and maintaining dry-weight appears to be an effective but forgotten strategy in controlling and maintaining normotension among hypertensive patients on hemodialysis. Methods: Qualitative review of literature to define dry-weight and its utility in achieving blood pressure control. Results: The concept of dry-weight has evolved over time and its definition has changed. One such definition defines dry-weight as the lowest tolerated postdialysis weight achieved via gradual change in postdialysis weight at which there are minimal signs or symptoms of hypovolemia or hypervolemia. Although clinical examination does not perform well in detecting latent increase in dry-weight, several technologies such as relative plasma volume monitoring and body impedance analysis are emerging that may help in assessing dry-weight in the future. Sodium restriction is a modifiable risk factor that can lead to better blood pressure (BP) control. However, dietary sodium restriction requires lifestyle modifications that are difficult to implement and even harder to sustain over the long term. Restricting dialysate sodium is a simpler but underexplored strategy that can reduce thirst, limit interdialytic weight gain, and assist the achievement of dry-weight. Achievement of dry-weight can improve interdialytic BP, reduce pulse pressure, and limit hospitalizations. Conclusions: Avoiding medication-directed control of BP may enhance the opportunity to probe dry-weight, facilitate removal of volume, and limit the risk for pressure-volume overload, which may be a significant concern leading to myocardial remodeling in the hemodialysis patient. Probing dry-weight among patients with ESRD has the potential to improve dismal cardiovascular outcomes. PMID:20507951

  14. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    SciTech Connect

    Lie, Zener Sukra; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  15. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Pardede, Marincan; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-08-01

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO2 ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO2 ambient gas. Meanwhile the considerably weaker carbon emission from the CO2 gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO2 gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO2 ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  16. Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure.

    PubMed

    Ting, Siu-Wa; Cheng, Shaoan; Tsang, Kwok-Ying; van der Laak, Nicole; Chan, Kwong-Yu

    2009-12-21

    Highly selective dehydrogenation of formic acid in water was observed at near ambient temperature on a metal/metal oxide catalyst composed of platinum ruthenium and bismuth with a low activation energy of 37.3 kJ mol(-1). PMID:20024219

  17. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Hu, Haiying; Li, Heping; Wu, Lei; Hui, Keshi; Jiang, Jianjun; Sun, Wenqing

    2016-06-01

    The electrical conductivity of eclogite was measured at temperatures of 873-1173 K and pressures of 1.0-3.0 GPa within a frequency range of 0.1-106 Hz using a YJ-3000t multianvil press and Solartron-1260 impedance/gain-phase analyzer. Three solid-state oxygen buffers (Cu + CuO, Ni + NiO, and Mo + MoO2) were employed to control the oxygen fugacity. Experimental results indicate that the electrical conductivity of the samples tended to increase with increasing temperature, conforming to an Arrhenius relation. Under the control of a Cu + CuO oxygen buffer, the electrical conductivity of the eclogite decreased with a rise in pressure, and its corresponding activation volume and activation energy at atmospheric pressure were calculated as -2.51 ± 0.29 cm3/mole and 0.86 ± 0.12 eV, respectively. At 2.0 GPa, the electrical conductivity of the eclogite increased with increasing oxygen fugacity, and the preexponential factor increased while the activation enthalpy decreased. The observed positive exponential factor for the dependence of electrical conductivity on oxygen fugacity, as well as the negative activation volume, confirm that the hopping of small polarons is the dominant conduction mechanism in eclogite at high temperatures and pressures. Our results suggest that the electrical conductivity of dry eclogite under various redox conditions cannot explain the high anomalies in conductivity under stable midlower continental crust and under the Dabie-Sulu ultrahigh-pressure metamorphic belt of eastern China.

  18. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised.

  19. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised. PMID:25065794

  20. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    PubMed

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation. PMID:27607957

  1. Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces

    SciTech Connect

    Mysak, Erin R.; Starr, David E.; Wilson, Kevin R.; Bluhm, Hendrik

    2010-01-15

    We discuss a new approach for the measurement of the surfaces of free aerosol particles with diameters from 50 to 1000 nm. Particles in this size range have significant influence on the heterogeneous chemistry in the atmosphere and affect human health. Interfacing an aerodynamic lens to an ambient pressure x-ray photoelectron spectrometer permits measurement of the surface chemical composition of unsupported aerosol particles in real time. We discuss the basic considerations for the design of such an instrument, its current limitations and potentials for improvement. Results from a proof-of-principle experiment on silicon oxide particles with average diameters of 270 nm are shown.

  2. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    PubMed

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation.

  3. Transport properties and structural features of the ambient-pressure superconductor κ'-(BEDT-TTF)2Cu[N(CN)2]Cl

    NASA Astrophysics Data System (ADS)

    Zverev, V. N.; Manakov, A. I.; Khasanov, S. S.; Shibaeva, R. P.; Kushch, N. D.; Kazakova, A. V.; Buravov, L. I.; Yagubskii, E. B.; Canadell, E.

    2006-09-01

    The crystal structure and low-temperature transport properties of the recently synthesized κ'-(BEDT-TTF)2Cu[N(CN)2]Cl radical cation salt are investigated. The crystals exhibit metallic conductivity and are ambient-pressure superconductors with critical temperature in the range (11.3-11.9)K . The crystals show some distinctions in structure as compared to that of the Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl : smaller size of the unit cell and deficiency in the occupancy of the copper positions. Anisotropy of superconducting properties as well as a nontrivial temperature dependence of the upper critical field were observed.

  4. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  5. Damage-Free Dry Polishing of 4H-SiC Combined with Atmospheric-Pressure Water Vapor Plasma Oxidation

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Takiguchi, Tatsuya; Ueda, Masaki; Hattori, Azusa N.; Zettsu, Nobuyuki; Yamamura, Kazuya

    2011-08-01

    A dry polishing technique combined with the atmospheric-pressure water vapor plasma oxidation has been proposed for the high-integrity smoothing of SiC materials. Optical emission spectra revealed the composition of the plasma, and strong emission from OH, which has a high oxidation-reduction potential (ORP), was observed. X-ray photoelectron spectroscopy (XPS) measurements indicated that the irradiation of water vapor plasma efficiently oxidized the surface of SiC because of the reactive species in plasma such as OH radicals. Swell-like structures were also observed along scratches on the SiC surface. Plasma-assisted polishing using CeO2 abrasive enabled us to reduce the surface roughness of SiC without introducing crystallographical subsurface damage, and an atomically flat scratch-free surface with an rms roughness of less than 0.1 nm was obtained.

  6. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized.

  7. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    NASA Astrophysics Data System (ADS)

    Shyamkumar, Prashanth

    Cardiovascular Diseases (CVDs) have been a major cause for deaths in both men and women in United States. Cerebrovascular Diseases like Strokes are known to have origins in CVDs as well. Moreover, nearly 18 Million Americans have a history of myocardial infarction and are currently undergoing cardiac rehabilitation. Consequently, CVDs are the highest costing disease groups and cost more than all types of cancer combined. However, significant cost reduction is possible through the effective use of the vast advances in embedded and pervasive electronic devices for healthcare. These devices can automate and move a significant portion of disease management to the patient's home through cyber connectivity, a concept known as point-of-care (POC) diagnostics and healthcare services. POC can minimize hospital visits and potentially avoid admission altogether with prognostic tools that give advanced notice of any abnormalities or chronic illnesses so that the treatment can be planned in advance. The POC concept requires continuous remote health monitoring. Therefore, the various sensors needed for comprehensive monitoring need to be worn daily and throughout the day. Moreover, true "roaming" capability is necessary so that it does not restrict the user's travel or his/her quotidian activities. Two biomedical signals namely, Electrocardiogram (ECG) and Blood Pressure are important diagnostic tests in assessing the cardiac health of a person. To that end, the research presented in this thesis: First , describes the development of a remote monitoring solution based on Bluetooth(TM), smartphones and cyber infrastructure for cardiac care called e-nanoflex. Second, Sensors for ECG that are compatible with everyday life style namely, (a) dry, gel-less vertically aligned gold nanowire electrodes, (b) dry textile-based conductive sensor electrodes to address the need for this technology to monitor cardiovascular diseases in women are tested with e-nanoflex and discussed. Third, non

  8. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions.

    PubMed

    Bartis, Elliot A J; Luan, Pingshan; Knoll, Andrew J; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb S

    2015-01-01

    An atmospheric pressure plasma jet (APPJ) was used to treat polystyrene (PS) films under remote conditions where neither the plume nor visible afterglow interacts with the film surface. Carefully controlled conditions were achieved by mounting the APPJ inside a vacuum chamber interfaced to a UHV surface analysis system. PS was chosen as a model system as it contains neither oxygen nor nitrogen, has been extensively studied, and provides insight into how the aromatic structures widespread in biological systems are modified by atmospheric plasma. These remote treatments cause negligible etching and surface roughening, which is promising for treatment of sensitive materials. The surface chemistry was measured by X-ray photoelectron spectroscopy to evaluate how ambient chemistry, feed gas chemistry, and plasma-ambient interaction impact the formation of specific moieties. A variety of oxidized carbon species and low concentrations of NOx species were measured after APPJ treatment. In the remote conditions used in this work, modifications are not attributed to short-lived species, e.g., O atoms. It was found that O3 does not correlate with modifications, suggesting that other long-lived species such as singlet delta oxygen or NOx are important. Indeed, surface-bound NO3 was observed after treatment, which must originate from gas phase NOx as neither N nor O are found in the pristine film. By varying the ambient and feed gas chemistry to produce O-rich and O-poor conditions, a possible correlation between the oxygen and nitrogen composition was established. When oxygen is present in the feed gas or ambient, high levels of oxidation with low concentrations of NO3 on the surface were observed. For O-poor conditions, NO and NO2 were measured, suggesting that these species contribute to the oxidation process, but are easily oxidized when oxygen is present. That is, surface oxidation limits and competes with surface nitridation. Overall, surface oxidation takes place easily

  9. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water. PMID:24160528

  10. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Klimeš, Jiří; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-01

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  11. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  12. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    SciTech Connect

    Dawood, Mahmoud S.; Hamdan, Ahmad E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  13. Electronic properties and the nature of metal-insulator transition in NdNiO3 prepared at ambient oxygen pressure

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2016-06-01

    We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m*~8me) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2-20 K) is governed by the variable range hopping of the charge carriers.

  14. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes.

    PubMed

    Hereu, Anna; Bover-Cid, Sara; Garriga, Margarita; Aymerich, Teresa

    2012-03-15

    This work aimed to evaluate the effect of nisin application (biopreservation) combined with high hydrostatic pressure processing (HHP) on the behavior of Listeria monocytogenes CTC1034 intentionally inoculated (at ca. 10(7)cells/g) onto the surface of ready-to-eat (RTE) sliced dry-cured ham. Two types of dry-cured ham, which had different water activities and fat contents were studied (a(w) of 0.92 and 14.25% fat and a(w) of 0.88 and 33.26% fat). Three batches were prepared for each type of product: (C) control, without nisin; (N) nisin directly applied (200 AU/cm(2)) and (F) nisin applied through active packaging, polyvinyl alcohol films with 200 AU/cm(2). Half of the samples were pressurized at 600 MPa for 5min. Counts of L. monocytogenes were periodically monitored throughout 60 days of storage at 8°C. The physico-chemical characteristics of the products enabled the survival of L. monocytogenes, but it was significantly reduced by the presence of nisin. The effect of biopreservation was greater when applied directly to the surface and in the product with lower water activity in comparison with the active packaging and the high water activity products, respectively. The immediate inactivation of L. monocytogenes by HHP ranged from 1.82 to 3.85 Log units, depending on the type of dry-cured ham. The lower the water activity, the less was the inactivation induced by HHP, both immediately and during storage. The reduction of L. monocytogenes immediately after HHP and during storage was more evident in batches with nisin applied directly to the surface of the product. The pathogen was not detected in some samples from day 5 of storage in the product with higher water activity. The effect of nisin applied through active packaging was lower than the direct application. The results of the present study indicated that HHP, as post-processing listericidal treatment, is more effective (both immediately and long term) than the use of nisin as an antimicrobial measure

  15. In situ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy

    SciTech Connect

    Takagi, Yasumasa Uemura, Yohei; Yokoyama, Toshihiko; Wang, Heng; Ikenaga, Eiji; Ohashi, Haruhiko; Senba, Yasunori; Yumoto, Hirokatsu; Yamazaki, Hiroshi; Goto, Shunji; Sekizawa, Oki; Iwasawa, Yasuhiro; Uruga, Tomoya; Tada, Mizuki

    2014-09-29

    We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticles in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.

  16. Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission

    NASA Astrophysics Data System (ADS)

    Nemšák, Slavomír; Shavorskiy, Andrey; Karslioglu, Osman; Zegkinoglou, Ioannis; Rattanachata, Arunothai; Conlon, Catherine S.; Keqi, Armela; Greene, Peter K.; Burks, Edward C.; Salmassi, Farhad; Gullikson, Eric M.; Yang, See-Hun; Liu, Kai; Bluhm, Hendrik; Fadley, Charles S.

    2014-11-01

    Heterogeneous processes at solid/gas, liquid/gas and solid/liquid interfaces are ubiquitous in modern devices and technologies but often difficult to study quantitatively. Full characterization requires measuring the depth profiles of chemical composition and state with enhanced sensitivity to narrow interfacial regions of a few to several nm in extent over those originating from the bulk phases on either side of the interface. We show for a model system of NaOH and CsOH in an ~1-nm thick hydrated layer on α-Fe2O3 (haematite) that combining ambient-pressure X-ray photoelectron spectroscopy and standing-wave photoemission spectroscopy provides the spatial arrangement of the bulk and interface chemical species, as well as local potential energy variations, along the direction perpendicular to the interface with sub-nm accuracy. Standing-wave ambient-pressure photoemission spectroscopy is thus a very promising technique for measuring such important interfaces, with relevance to energy research, heterogeneous catalysis, electrochemistry, and atmospheric and environmental science.

  17. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  18. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham.

    PubMed

    Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Nuñez, Manuel; Picon, Antonia

    2016-01-01

    The volatile fraction of 30 Serrano dry-cured hams with different salt and intramuscular fat contents was investigated. In addition, the effect of high pressure processing (HPP) at 600 MPa for 6 min at 21°C on the volatile compounds of those hams was studied. One hundred volatile compounds were identified and their levels subjected to analysis of variance with ham chemical composition (aw, salt content, intramuscular fat content and salt in lean ratio) and HPP treatment as main effects. Chemical composition mainly affected the relative abundance of acids, alcohols, branched-chain aldehydes, ketones, benzene compounds, sulfur compounds and some miscellaneous compounds. Salt content and fat content influenced a greater number of volatile compounds than aw. High pressure processing had a significant effect on only 8 volatile compounds, with higher levels of methanethiol and sulfur dioxide in HPP-treated samples and higher levels of ethyl acetate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, dimethyl disulfide and dimethyl trisulfide in control untreated samples. PMID:26398007

  19. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham.

    PubMed

    Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Nuñez, Manuel; Picon, Antonia

    2016-01-01

    The volatile fraction of 30 Serrano dry-cured hams with different salt and intramuscular fat contents was investigated. In addition, the effect of high pressure processing (HPP) at 600 MPa for 6 min at 21°C on the volatile compounds of those hams was studied. One hundred volatile compounds were identified and their levels subjected to analysis of variance with ham chemical composition (aw, salt content, intramuscular fat content and salt in lean ratio) and HPP treatment as main effects. Chemical composition mainly affected the relative abundance of acids, alcohols, branched-chain aldehydes, ketones, benzene compounds, sulfur compounds and some miscellaneous compounds. Salt content and fat content influenced a greater number of volatile compounds than aw. High pressure processing had a significant effect on only 8 volatile compounds, with higher levels of methanethiol and sulfur dioxide in HPP-treated samples and higher levels of ethyl acetate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, dimethyl disulfide and dimethyl trisulfide in control untreated samples.

  20. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship.

    PubMed

    Kanabuchi, Kazuo; Kondo, Tetsuri; Tanigaki, Toshimori; Tajiri, Sakurako; Hayama, Naoki; Takahari, Yoko; Iwao, Kayoko

    2011-04-20

    Inhalation therapy using the dry powder inhaler (DPI) is now the first choice for obstructive pulmonary diseases. We previously measured relationships between inspiratory pressure (PI) and flow rate of almost all of the DPIs available in Japan, and described an importance of inspiratory efforts. In the present study, we further analyzed the data obtained in the previous study. Although there were linear relationships between PI and flow2, the slope became steeper when PI was less than a certain value (critical PI, existed between 15-20 cmH2O). When PI was less than critical PI, linear rather than parabolic regression between PI and flow yielded better fits (r > 0.90, p < 0.001). Inspiratory flows at the critical PI were 53.9 (Diskus), 65.8 (Diskhaler), 45.9 (Turbuhaler for Pulmincort), 48.6 (Turbuhaler for Symbicort) and 38.0 l/min (Twisthaler). These findings suggested that flow through the DPI becomes laminar rather than turbulent flow in the range below critical PIs. We suggest that patients should inhale from the DPIs with inspiratory pressure higher than critical PI.

  1. Ambient Pressure Structural Quantum Critical Point in the Phase Diagram of (CaxSr1-x)3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Goh, Swee K.; Tompsett, D. A.; Saines, P. J.; Chang, H. C.; Matsumoto, T.; Imai, M.; Yoshimura, K.; Grosche, F. M.

    The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity at T* ~ 138 K. The anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T* as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (xc=0.9). This establishes the (CaxSr1-x)3Rh4Sn13 series as an important system for exploring the physics of structural quantum criticality and its interplay with the superconductivity, without the need of applying high pressures. This work was supported by CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Trinity College (Cam- bridge), Grants-in-Aid from MEXT (No. 22350029 and 23550152) and Glasstone Bequest (Oxford).

  2. A study of the O/Ag(111) system with scanning tunneling microscopy and x-ray photoelectron spectroscopy at ambient pressures

    NASA Astrophysics Data System (ADS)

    Heine, Christian; Eren, Baran; Lechner, Barbara A. J.; Salmeron, Miquel

    2016-10-01

    The interaction of O2 with the Ag(111) surface was studied with scanning tunneling microscopy (STM) in the pressure range from 10- 9 Torr to 1 atm at room temperature and with X-ray photoelectron spectroscopy (XPS) up to 0.3 Torr O2 in the temperature range from RT to 413 K. STM images show that the Ag(111) surface topography is little affected in regions with large flat terraces, except for the appearance of mobile features due to oxygen atoms at pressures above 0.01 Torr. In regions where the step density is high, the surface became rough under 0.01 Torr of O2, due to the local oxidation of Ag. Various chemical states of oxygen due to chemisorbed, oxide and subsurface species were identified by XPS as a function of pressure and temperature. The findings from the STM images and XPS measurements indicate that formation of an oxide phase, the thermodynamically stable form at room temperature under ambient O2 pressure, is kinetically hindered in the flat terrace areas but proceeds readily in regions with high-step density.

  3. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  4. Electronic transport properties of MFe2As2 (M = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa

    NASA Astrophysics Data System (ADS)

    Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.

    2015-12-01

    We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to

  5. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry.

    PubMed

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R

    2013-09-01

    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

  6. Experimental study of void space, permeability and elastic anisotropy in crustal rocks under ambient and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Benson, Philip Michael

    Anisotropy in the physical and transport properties of crustal rocks is a key influence on crustal evolution and energy resource management. Data from deep seismic soundings, borehole logging and laboratory measurement all show that the physical properties of the earth are anisotropic. Such anisotropy generally results from the superposition of fabric development during diagenesis and/or petrogenesis, and the application of anisotropic tectonic stresses. This leads to an aligned crack and pore fabric in crustal rocks that, in turn, leads to seismic velocity anisotropy and permeability anisotropy. This thesis describes an experimental study which aims to investigate the relationships between pressure, pore fabric geometry and seismic and permeability anisotropy under hydrostatic pressures from room pressure to ~4km depth equivalence within the Earth's crust. Firstly, pore fabric analyses of three representative crustal rock types is presented. These rock types represent a range of crack and pore fabrics. The average void space shape and orientation is determined 3-D using the methods of anisotropy of magnetic susceptibility and velocity anisotropy. Scanning electron microscopy and fluorescent-dye crack imaging techniques further aid in the void space characterisation. Secondly, the development and application of an apparatus capable of contemporaneously measuring elastic wave velocity, porosity and permeability at effective pressures of up to 100 MPa is described. Results are analysed in terms of applied effective pressure and the rock pore fabric type and orientation. Finally, the laboratory data are used to test models that attempt to predict geophysical parameters such as permeability and elastic wave velocity from microstructural attributes. This multi-facetted analysis allows a number of conclusions to be drawn, expanding the state-of-the-art in how the pore fabric microstructure of crustal rock is represented by the methods of elastic wave velocity and

  7. The first MEMIN shock recovery experiments at low shock pressure (5-12.5 GPa) with dry, porous sandstone

    NASA Astrophysics Data System (ADS)

    Kowitz, Astrid; Schmitt, Ralf T.; Uwe Reimold, W.; Hornemann, Ulrich

    2013-01-01

    As part of the MEMIN research program this project is focused on shock deformation experimentally generated in dry, porous Seeberger sandstone in the low shock pressure range from 5 to 12.5 GPa. Special attention is paid to the influence of porosity on progressive shock metamorphism. Shock recovery experiments were carried out with a high-explosive set-up that generates a planar shock wave, and using the shock impedance method. Cylinders of sandstone of average grain size of 0.17 mm and porosity of about 19 vol%, and containing some 96 wt% SiO2, were shock deformed. Shock effects induced with increasing shock pressure include: (1) Already at 5 GPa the entire pore space is closed; quartz grains show undulatory extinction. On average, 134 fractures per mm are observed. Dark vesicular melt (glass) of the composition of the montmorillonitic phyllosilicate component of this sandstone occurs at an average amount of 1.6 vol%. (2) At 7.5 GPa, quartz grains show weak but prominent mosaicism and the number of fractures increases to 171 per millimeter. Two additional kinds of melt, both based on phyllosilicate precursor, could be observed: a light colored, vesicular melt and a melt containing large iron particles. The total amount of melt (all types) increased in this experiment to 2.4 vol%. Raman spectroscopy confirmed the presence of shock-deformed quartz grains near the surface. (3) At 10 and 12.5 GPa, quartz grains also show weak but prominent mosaicism, the number of fractures per mm has reached a plateau value of approximately 200, and the total amount of the different melt types has increased to 4.8 vol%. Diaplectic quartz glass could be observed locally near the impacted surface. In addition, local shock effects, most likely caused by multiple shock wave reflections at sandstone-container interfaces, occur throughout the sample cylinders and include locally enhanced formation of PDF, as well as shear zones associated with cataclastic microbreccia, diaplectic quartz

  8. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    NASA Astrophysics Data System (ADS)

    Kratzer, Jan; Mester, Zoltán; Sturgeon, Ralph E.

    2011-08-01

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  9. Hydration and reduction of molecular beam epitaxy grown VO[subscript x]/a-Fe[subscript 2]O[subscript 3] (0001): Ambient pressure study

    SciTech Connect

    Kim, C.-Y.; Klug, J.A.; Stair, P.C.; Bedzyk, M.J.

    2009-02-10

    Supported vanadium oxides processed under ambient environments have been studied by using X-ray standing wave (XSW) analysis of X-ray fluorescence spectroscopy and X-ray photoelectron spectroscopy (XPS). For the VO{sub x}/{alpha}-Fe{sub 2}O{sub 3}(0001) system, hydration and hydrogen annealing have been carried out under ambient pressure. Vanadium in the hydrated oxide phase occupies two high-symmetry surface adsorption sites with distinct adsorption heights, which resembles the adsorption geometry of fully oxidized vanadium. Reduction by the hydrogen annealing enhanced the V overlayer ordering by relocating a portion of the disordered V to high-symmetry sites. The V atoms located closer to the substrate oxygen layer in the hydrated phase moved toward the substrate after hydrogen reduction, while the V in the higher adsorption site stayed at the same height. The different responses of two adsorption sites to the reduction process are discussed and related to activities of the two sites.

  10. Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure

    SciTech Connect

    Bai Xueshi; Ma Qianli; Motto-Ros, Vincent; Yu Jin; Sabourdy, David; Nguyen, Luc; Jalocha, Alain

    2013-01-07

    We studied the behavior of the plasma induced by a nanosecond infrared (1064 nm) laser pulse on a metallic target (Al) during its propagation into argon ambient gas at the atmospheric pressure and especially over the delay interval ranging from several hundred nanoseconds to several microseconds. In such interval, the plasma is particularly interesting as a spectroscopic emission source for laser-induced plasma spectroscopy (LIBS). We show a convoluted effect between laser fluence and pulse duration on the structure and the emission property of the plasma. With a relatively high fluence of about 160 J/cm{sup 2} where a strong plasma shielding effect is observed, a short pulse of about 4 ns duration is shown to be significantly more efficient to excite the optical emission from the ablation vapor than a long pulse of about 25 ns duration. While with a lower fluence of about 65 J/cm{sup 2}, a significantly more efficient excitation is observed with the long pulse. We interpret our observations by considering the post-ablation interaction between the generated plume and the tailing part of the laser pulse. We demonstrate that the ionization of the layer of ambient gas surrounding the ablation vapor plays an important role in plasma shielding. Such ionization is the consequence of laser-supported absorption wave and directly dependent on the laser fluence and the pulse duration. Further observations of the structure of the generated plume in its early stage of expansion support our explanations.

  11. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Prosvirin, Igor P.; Bukhtiyarov, Andrey V.; Bluhm, Hendrik; Bukhtiyarov, Valerii I.

    2016-02-01

    Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  12. Radical modification of the wetting behavior of textiles coated with ZnO thin films and nanoparticles when changing the ambient pressure in the pulsed laser deposition process

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Duta, L.; Dorcioman, G.; Mihailescu, I. N.; Stan, G. E.; Pasuk, I.; Zgura, I.; Beica, T.; Enculescu, I.; Ianculescu, A.; Dumitrescu, I.

    2011-09-01

    Cotton/polyester woven fabrics were functionalized with ZnO thin films or nanoparticles by pulsed laser deposition, using a KrF* excimer laser source. Depending on the number of applied laser pulses, well-separated nanoparticles (for 10 pulses) or compact thin films (for 100 pulses) were deposited. The synthesized nanostructures were evaluated morphologically by scanning electron microscopy and atomic force microscopy, physico-chemically by x-ray diffraction and functionally by the contact angle method. By modifying the ambient gas nature and pressure in the deposition chamber, hydrophilic or hydrophobic surfaces were obtained. When using an oxygen flux, both the deposited thin films and nanoparticles were hydrophilic. After deposition in vacuum, the nanoparticles were hydrophobic, but the thin films were super-hydrophobic. This radical modification of wetting behavior was assigned to the differences in microstructure features and surface electrical charging in the two cases.

  13. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    SciTech Connect

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-09-15

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  14. The nature of the water nucleation sites on TiO2(110) surfacesrelvealed by ambient pressure x-ray photoelectron spectroscopy

    SciTech Connect

    Ketteler, Guido; Yamamoto, Susumu; Bluhm, Hendrik; Andersson,Klas; Starr, David E.; Ogletree, D. Frank; Ogasawara, Hirohito; Nilsson,Anders; Salmeron, Miquel

    2007-05-01

    X-ray photoelectron spectroscopy at ambient conditions of pressure (up to 1.5 Torr) and temperature (265K

  15. Halo-shaped Flowing Atmospheric Pressure Afterglow – a Heavenly New Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry

    PubMed Central

    Pfeuffer, Kevin P.; Schaper, J. Niklas; Shelley, Jacob T.; Ray, Steven J.; Chan, George C.-Y.; Bings, Nicolas H.; Hieftje, Gary M.

    2013-01-01

    The flowing atmospheric pressure afterglow (FAPA) is a promising new source for atmospheric pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, applied current of 30 mA at 200 V for 6 watts of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (< 3% change at 450K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M+H+). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer. PMID:23808829

  16. Cyclic-load crack growth in ASME SA-105 grade II steel in high-pressure hydrogen at ambient temperature

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chandler, W. T.

    1976-01-01

    ASME SA-105 Grade II steel, which is used in high-pressure hydrogen compressor systems, is similar to steels used or considered for use in high-pressure hydrogen storage vessels and pipelines. This paper summarizes the results of a program conducted to provide cyclic-load crack growth rate (da/dN) data for a fracture mechanics analysis of a 15,000 psi hydrogen compressor facility which contains pulse quieter and after-cooler separator vessels constructed of the ASME SA-105 Grade II steel. Included in the program were tests performed to assist in establishing operating procedures that could minimize the effect of hydrogen on crack growth rates during operation.

  17. Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure.

    PubMed

    Lv, Bing; Deng, Liangzi; Gooch, Melissa; Wei, Fengyan; Sun, Yanyi; Meen, James K; Xue, Yu-Yi; Lorenz, Bernd; Chu, Ching-Wu

    2011-09-20

    We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe(2)As(2) via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at 49 K, which has a low critical field < 4 Oe, and the other at 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe(2)As(2) (or Ae122), where Ae = Ca, Sr, or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (T(c)) only up to 38 K and pressurization has been reported to produce superconductivity with a T(c) up to 30 K. The unusual 49 K phase detected will be discussed. PMID:21911404

  18. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    SciTech Connect

    Ren, X. D. Yang, H. M.; Zheng, L. M.; Tang, S. X.; Ren, N. F.; Xu, S. D.; Yuan, S. Q.

    2014-07-14

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  19. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Tamburini, Christian; Garcin, Jean; Ragot, Michel; Bianchi, Armand

    Kinetic parameters for aminopeptidase, phosphatase, and bacterial production rates were studied during spring and fall through a 2000 m water column in the NW Mediterranean. Bacterial production ranged from 60.4 ng at 30 m to 0.2 ng C l -1 h -1 at 2000 m. For both ectoenzymatic activities, the Km values ranged from 0.44 to 1.13 μM for aminopeptidase activity and from 0.05 to 1.23 μM for phosphatase activity. Depth profiles of the potential activity of aminopeptidase and phosphatase activity drastically decreased below depths of 100 m. At 1000 m, hydrolytic activities were one order of magnitude lower than the maximal rate measured in the surface layer. Despite this decrease, depth-integrated rates through the thickness of different water masses showed that the potential hydrolysis fluxes within the productive surface layer (10-200 m), through the twilight zone (200-1000 m depth), and through the deep water mass (1000-2000 m) were roughly the same order of magnitude. This study used the first assay for measuring ectoenzymatic activities of deep-sea microbial populations where pressure stresses were eliminated during sampling and incubation. The results showed that prokaryotic induced ectoenzymatic activities are affected by pressure conditions. Generally, aminopeptidase and phosphatase rates measured in samples maintained under in situ pressure conditions were 2.3 times higher than those measured in their decompressed counterparts.

  20. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  1. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  2. Study of dynamics and crystallization kinetics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile at ambient and elevated pressure

    NASA Astrophysics Data System (ADS)

    Adrjanowicz, K.; Kaminski, K.; Paluch, M.; Ngai, K. L.; Yu, Lian

    2012-06-01

    The organic liquid ROY, i.e., 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, has been a subject of detailed study in the last few years. One interest in ROY lies in its polymorph-dependent fast crystal growth mode below and above the glass transition temperature. This growth mode is not diffusion controlled, and the possibility that it is enabled by secondary relaxation had been suggested. However, a previous study by dielectric relaxation spectroscopy had not been able to find any resolved secondary relaxation. The present paper reports new dielectric measurements of ROY in the liquid and glassy states at ambient pressure and elevated pressure, which were performed to provide more insight into the molecular dynamics as well as the crystallization tendency of ROY. In the search of secondary relaxation, a special glassy state of ROY was prepared by applying high pressure to the liquid state, from which secondary relaxation was possibly resolved. Thus, the role of secondary relaxation in crystallization of ROY remains to be clarified. Notwithstanding, the secondary relaxation present is not necessarily the sole enabler of crystallization. In an effort to search for possible cause of crystallization other than secondary relaxation, we also performed crystallization kinetics studies of ROY at different T and P combinations while keeping the structural relaxation time constant. The results show that crystallization of ROY speeds up with pressure, opposite to the trend found in the crystallization of ibuprofen studied up to 1 GPa. The dielectric relaxation and thermodynamic properties of ROY with phenolphthalein dimethylether (PDE) are similar in many respects, but PDE does not crystallize. Taking all the above into account, besides the secondary relaxation, the specific chemical structure, molecular interactions and packing of the molecules are additional factors that could affect the kinetics of crystallization found in ROY.

  3. High strength air-dried aerogels

    SciTech Connect

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  4. Electronic properties of Fe1-xVxBO3 at ambient conditions and at high pressure

    NASA Astrophysics Data System (ADS)

    Kazak, N. V.; Ovchinnikov, S. G.; Abd-Elmeguid, M. M.; Ivanova, N. B.

    2005-03-01

    We present the results of an in-plane resistivity study of the solid solutions Fe1-xVxBO3. The measurements were made on single crystals with concentration x = 0.02, 0.13, 0.18, 0.3, 0.95, 1.0 in the temperature range 220-600 K. Semiconducting behaviour for samples with x \\ge 0.13 was found. Mott variable-range-hopping transport ρ(T) = ρ0exp(T*/T)α has been observed with α = 1/4 at T<290 K, suggesting carrier localization. Above this temperature the activation-type conductivity, with activation energies, Ea, about 1 eV for all samples, is observed. The possible electronic states and band structure of Fe1-xVxBO3 crystals are discussed in the different pressure ranges: P< PcFe, PcFe< P< PcV, P> PcV, where PcFe, PcV are the critical pressure values for FeBO3 and V BO3, respectively.

  5. In-situ spectroscopic monitoring of the ambient pressure hydrogenation of C2 to ethane on Pt(111)

    NASA Astrophysics Data System (ADS)

    Krooswyk, Joel D.; Kruppe, Christopher M.; Trenary, Michael

    2016-10-01

    The hydrogenation of C2 molecules formed on the Pt(111) surface through acetylene exposure at 750 K was monitored in-situ with reflection absorption infrared spectroscopy (RAIRS) in the presence of up to 10 Torr of H2. The coverage of post-reaction surface carbon was measured with Auger electron spectroscopy. The RAIR spectra show that C2 is hydrogenated to an ethylidyne intermediate. The hydrogenation of ethylidyne was also monitored at 400 K for H2(g) pressures of 1.0 × 10- 2 to 10 Torr. At H2(g) pressures greater than 1.0 Torr, ethylidyne is completely hydrogenated. In an attempt to probe the nature of the C2 adsorption sites, RAIR spectra of coadsorbed CO were obtained. It is found that while C2 does not block CO adsorption, the spectra indicate that the surface carbon is free of hydrogen. In contrast, ethylidyne blocks CO adsorption sites. In the presence of coadsorbed CO, complete hydrogenation of ethylidyne occurs at 450 K versus 400 K in the absence of CO.

  6. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Sakaraboina, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem Collaboration; Cad Collaboration

    2015-06-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure is developed. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport and e-i thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The radius of SW (2 - 5 mm) and its pressure (40 - 80 MPa) observed in the experiments over 0.2 μs-10 μs time scales were comparable with the numerical results for laser intensities ranging from 2.0 × 1010 to 1.4 × 1011 W/cm2. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  7. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    SciTech Connect

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  8. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    PubMed Central

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-01-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry. PMID:25950241

  9. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGESBeta

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; et al

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  10. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure.

    PubMed

    Grzybowska, Katarzyna; Capaccioli, Simone; Paluch, Marian

    2016-05-01

    In recent years, there is a growing interest in improving the physicochemical stability of amorphous pharmaceutical solids due to their very promising applications to manufacture medicines characterized by a better water solubility, and consequently by a higher dissolution rate than those of their crystalline counterparts. In this review article, we show that the molecular mobility investigated both in the supercooled liquid and glassy states is the crucial factor required to understand molecular mechanisms that govern the physical stability of amorphous drugs. We demonstrate that pharmaceuticals can be thoroughly examined by means of the broadband dielectric spectroscopy, which is a very useful experimental technique to explore different relaxation processes and crystallization kinetics as well. Such studies conducted in the wide temperature and pressure ranges provide data needed in searching correlations between properties of molecular dynamics and crystallization process, which are aimed at developing effective and efficient methods for stabilizing amorphous drugs. PMID:26705851

  11. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated. PMID:22063550

  12. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    PubMed

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed.

  13. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    PubMed

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  14. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    PubMed

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  15. A molecular dynamics study of ambient and high pressure phases of silica: Structure and enthalpy variation with molar volume

    NASA Astrophysics Data System (ADS)

    Rajappa, Chitra; Sringeri, S. Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J.

    2014-06-01

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume—for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  16. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  17. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  18. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  19. Reduction of Listeria Innocua Contamination in Vacuum-Packaged Dry-Cured Italian Pork Products After High Hydrostatic Pressure Treatment

    PubMed Central

    Merialdi, Giuseppe; Ramini, Mattia; Ravanetti, Emanuela; Gherri, Giorgio

    2015-01-01

    The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP) on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i) TH group, samples treated with HHP; ii) group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied), and analyzed for the determination of the surface (1st trial) and deep (2nd trial) quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test) with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01). In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of this study

  20. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  1. Gas-to-particle conversion of sulfur in power plant plumes—I. Parametrization of the conversion rate for dry, moderately polluted ambient conditions

    NASA Astrophysics Data System (ADS)

    Gillani, Noor V.; Kohli, Sanjai; Wilson, William E.

    Our previous work has shown that, under relatively dry summertime conditions (r.h. < 75 %), the conversion rate k1 (%h -1) of SO 2 to aerosol sulfates in the coal-fired Labadie power plant plume near St. Louis is largely governed by photochemically driven gas-phase reactions involving primary SO 2 and NO x and reactive species entrained from the background. Sunlight, plume dilution and background reactivity are then the principal factors influencing sulfate as well as ozone formation in the plume. In this paper, the aircraft data of five days of Labadie plume transport (Project MISTT 1976) and five days of transport of TVA's coal-fired Cumberland and Johnsonville power plants (Project STATE/Tennessee Plume Study 1978) are analyzed to formulate and test a new parametrization of the conversion rate of sulfur under "dry" summertime conditions (r.h. < 75 %). The parametrization, given by kt = (0.03 ± 0.01) ( RΔzpO 3), is found to provide a good match to the previously published observed conversion rates on both 9 and 18 July, 1976, for daytime Labadie plume transport up to 200km ( R = solar radiation, Δzp = vertical spread of plume, O 3 = background ozone; hourly-averaged data of St. Louis RAPS). A test of this parametrization against the observed rates in the ten days of MISTT and STATE data of all three plumes yielded very satisfying verification for all data collected under "dry", cloud-free conditions. Under such conditions, 90 % or more of the conversion is believed to occur by the gas-phase mechanism. The parametrization does not apply to liquid phase and heterogeneous conversions in more humid conditions. Also, it does not have the spatial resolution to distinguish between plume core rates and the much enhanced rates in plume edges. Examples of local conversion rates up to 10 % h -1 with liquid phase reactions and 7.5 % h -1 in plume edges are also presented. Otherwise, the conversion rates are generally under 3% h -1. The new parametrization is consistent

  2. Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

    2010-03-31

    The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

  3. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    NASA Astrophysics Data System (ADS)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  4. Adsorption of acetic acid on ice studied by ambient-pressure XPS and partial-electron-yield NEXAFS spectroscopy at 230-240 K.

    PubMed

    Křepelová, Adéla; Bartels-Rausch, Thorsten; Brown, Matthew A; Bluhm, Hendrik; Ammann, Markus

    2013-01-17

    Ice plays a key role in the environment, and the ice-air interface influences heterogeneous chemical reactions between snowpack or cirrus clouds and the surrounding air. Soluble gases have been suspected to affect the topmost, disordered layer on ice (often referred to as a quasiliquid layer, QLL). Changes are especially expected in the hydrogen-bonding structure of water in the presence of solutes at the ice surface. Here, we used ambient-pressure X-ray photoelectron spectroscopy (XPS) to detect acetic acid at the ice surface at 230-240 K under atmospheric conditions for the first time. Electron-kinetic-energy-dependent C 1s spectra indicate that acetic acid remains confined to the topmost ice surface layers. Spectral analysis provides information about the protonation state of acetate at the ice surface. Surface-sensitive Auger-electron-yield C-edge near-edge X-ray absorption fine structure (NEXAFS) spectra were recorded to probe the molecular state of the adsorbed species. The O-edge NEXAFS spectra show only minor differences between clean ice and ice with adsorbed acetic acid and thus indicate that acetic acid does not lead to an extended disordered layer on the ice surface between 230 and 240 K.

  5. Nonhomogeneous surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Yang, Bin; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng; Liu, Jingquan

    2016-10-01

    Surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air were investigated. The morphologies and chemical compositions of the etched surface were analyzed by optical microscopy, SEM, EDS, XPS and ATR-FTIR. The microscopy and SEM images showed the etched surface was nonhomogeneous with six discernable ring patterns from the center to the outside domain, which were composed of (I) a central region; (II) an effective etching region, where almost all of the parylene-C film was removed by the plasma jet with only a little residual parylene-C being functionalized with carboxyl groups (Cdbnd O, Osbnd Cdbnd O-); (III) an inner etching boundary; (IV) a middle etching region, where the film surface was smooth and partially removed; (V) an outer etching boundary, where the surface was decorated with clusters of debris, and (VI) a pristine parylene-C film region. The analysis of the different morphologies and chemical compositions illustrated the different localized etching process in the distinct regions. Besides, the influence of O2 flow rate on the surface properties of the etched parylene-C film was also investigated. Higher volume of O2 tended to weaken the nonhomogeneous characteristics of the etched surface and improve the etched surface quality.

  6. Water-gas shift reaction on metal nanoclusters encapsulated in mesoporous ceria studied with ambient-pressure X-ray photoelectron spectroscopy.

    PubMed

    Wen, Cun; Zhu, Yuan; Ye, Yingchun; Zhang, Shiran; Cheng, Fang; Liu, Yi; Wang, Paul; Tao, Franklin Feng

    2012-10-23

    Metal nanoclusters (Au, Pt, Pd, Cu) encapsulated in channels of mesoporous ceria (mp-CeO(2)) were synthesized. The activation energies of water-gas shift (WGS) reaction performed at oxide-metal interfaces of metal nanoclusters encapsulated in mp-CeO(2) (M@mp-CeO(2)) are lower than those of metal nanoclusters impregnated on ceria nanorods (M/rod-CeO(2)). In situ studies using ambient-pressure XPS (AP-XPS) suggested that the surface chemistry of the internal concave surface of CeO(2) pores of M@mp-CeO(2) is different from that of external surfaces of CeO(2) of M/rod-CeO(2) under reaction conditions. AP-XPS identified the metallic state of the metal nanoclusters of these WGS catalysts (M@mp-CeO(2) and M/rod-CeO(2)) under a WGS reaction condition. The lower activation energy of M@mp-CeO(2) in contrast to M/rod-CeO(2) is related to the different surface chemistry of the two types of CeO(2) under the same reaction condition.

  7. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca

    2015-04-01

    According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.

  8. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca

    2015-04-01

    According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results. PMID:25694147

  9. Endotoxin and β-1,3-d-Glucan in Concentrated Ambient Particles Induce Rapid Increase in Blood Pressure in Controlled Human Exposures.

    PubMed

    Zhong, Jia; Urch, Bruce; Speck, Mary; Coull, Brent A; Koutrakis, Petros; Thorne, Peter S; Scott, James; Liu, Ling; Brook, Robert D; Behbod, Behrooz; Gibson, Heike; Silverman, Frances; Mittleman, Murray A; Baccarelli, Andrea A; Gold, Diane R

    2015-09-01

    Short-term exposure to particulate matter (PM) is associated with increased blood pressure (BP) in epidemiological studies. Understanding the impact of specific PM components on BP is essential in developing effective risk-reduction strategies. We investigated the association between endotoxin and β-1,3-d-Glucan-two major biological PM components-and BP. We also examined whether vascular endothelial growth factor, a vasodilatory inflammatory marker, modified these associations. We conducted a single-blind, randomized, crossover trial of controlled human exposure to concentrated ambient particles with 50 healthy adults. Particle-associated-endotoxin and β-1,3-d-Glucan were sampled using polycarbonate-membrane-filters. Supine resting systolic BP and diastolic BP were measured pre-, 0.5-hour post-, and 20-hour postexposure. Urine vascular endothelial growth factor concentration was determined using enzyme-linked immunosorbant assay and creatinine-corrected. Exposures to endotoxin and β-1,3-d-Glucan for 130 minutes were associated with increases in BPs: at 0.5-hour postexposure, every doubling in endotoxin concentration was associated with 1.73 mm Hg higher systolic BP (95% confidence interval, 0.28, 3.18; P=0.02) and 2.07 mm Hg higher diastolic BP (95% confidence interval, 0.74, 3.39; P=0.003); every doubling in β-1,3-d-Glucan concentration was associated with 0.80 mm Hg higher systolic BP (95% confidence interval, -0.07, 1.67; P=0.07) and 0.88 mm Hg higher diastolic BP (95% confidence interval, 0.09, 1.66; P=0.03). Vascular endothelial growth factor rose after concentrated ambient particle endotoxin exposure and attenuated the association between endotoxin and 0.5-hour postexposure diastolic BP (Pinteraction=0.02). In healthy adults, short-term endotoxin and β-1,3-d-Glucan exposures were associated with increased BP. Our findings suggest that the biological PM components contribute to PM-related cardiovascular outcomes, and postexposure vascular endothelial

  10. The effect of NaCl-free processing and high pressure on the fate of Listeria monocytogenes and Salmonella on sliced smoked dry-cured ham.

    PubMed

    Stollewerk, Katharina; Jofré, Anna; Comaposada, Josep; Arnau, Jacint; Garriga, Margarita

    2012-02-01

    NaCl is an important multifunctional ingredient applied in dry-cured ham elaboration. However, its excessive intake has been linked to serious cardiovascular diseases causing a recent increase in the development of reduced salt products. In the present study Listeria monocytogenes and Salmonella, food-borne pathogens which can cross-contaminate post processed products, were spiked with <100 CFU/g on slices of both standard (S) and NaCl-free processed (F) (elaborated with KCl+potassium lactate instead of NaCl) smoked dry-cured ham. Although L. monocytogenes and Salmonella counts decreased faster in S ham, pathogens were present in both types of non-pressure treated ham during the entire refrigerated storage period (112 days). Pressurisation at 600 MPa for 5 min caused the elimination of both pathogens in S ham after 14 days. In contrast, Salmonella and L. monocytogenes were present in F ham until days 28 and 56, respectively, indicating that the NaCl-free processed dry-cured ham had lower stability than standard smoked dry-cured ham.

  11. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  12. Ambient-pressure organic superconductor

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  13. Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials

    PubMed Central

    2015-01-01

    In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam—serving as a model structure for bulk Ni in cermet materials such as Ni/YSZ—and Ni foil. The growth mechanism of graphene/graphite species was found to be closely related to that previously described for ethylene-induced graphene growth on Ni(111). After a sufficiently long “incubation” period of the Ni foam in methane at 0.2 mbar and temperatures around 400 °C, cooling down to ∼250 °C, and keeping the sample at this temperature for 50–60 min, initial formation of a near-surface carbide phase was observed, which exhibited the same spectroscopic fingerprint as the C2H4 induced Ni2C phase on Ni(111). Only in the presence of this carbidic species, subsequent graphene/graphite nucleation and growth was observed. Vice versa, the absence of this species excluded further graphene/graphite formation. At temperatures above 400 °C, decomposition/bulk dissolution of the graphene/graphite phase was observed on the rather “open” surface of the Ni foam. In contrast, Ni foil showed—under otherwise identical conditions—predominant formation of unreactive amorphous carbon, which can only be removed at ≥500 °C by oxidative clean-off. Moreover, the complete suppression of carbide and subsequent graphene/graphite formation by Cu-alloying of the Ni foam and by addition of water to the methane atmosphere was verified. PMID:26692914

  14. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    NASA Astrophysics Data System (ADS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core-shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core-shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  15. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  16. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  17. Pressurized pyrolysis of dried distillers grains with solubles and canola seed press cake in a fixed-bed reactor.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Saricaoğlu, Beyza

    2015-02-01

    Pressurized pyrolysis of biomasses was carried in a fixed bed reactor to obtain gases, bio-oils and chars at elevated temperatures. The products were characterized by GC-MS, FTIR, viscometer, SEM, BET and EDXRFS methods. Experiments were performed at 1, 5 and 10 bar pressure and 400, 500 and 600°C temperatures. The experimental results show that in all the experimental condition the yield of bio-oil from DDGS as higher than that of canola. Yield of non-condensable gases and chars increased, while that of liquid products decreased by pressure. Increasing pressure favoured the formation of low molecular weight gas, such as H2. Maximum surface area of chars was obtained at atmospheric pressure and the surface areas decreased rapidly with increasing pressure. GC/MS results shows that the amount of fatty acids in bio-oils was increased by increasing pressure and bio-oils showed non-Newtonian behavior. Based on EDXRFS results, bio-oils and char contained lots of elements. PMID:25484126

  18. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  19. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  20. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  1. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  2. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    PubMed

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  3. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  4. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  5. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  6. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat

    NASA Astrophysics Data System (ADS)

    Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc

    2013-05-01

    The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either

  7. Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma

    SciTech Connect

    Yamamoto, Toshiaki; Newsome, J.R.; Ensor, D.S.

    1995-05-01

    A laboratory-scale atmospheric-pressure plasma reactor, using a nanosecond pulsed corona, was constructed to demonstrate potential applications ranging from modification of surface energy to removal of surface organic films. For surface modification studies, three different substrates were selected to evaluate the surface energies: bare aluminum, polyurethane, and silicon coated with photoresist. The critical surface energy for all materials studied significantly increased after the plasma treatment. The effects of gas composition and plasma treatment time were also investigated. Photoresist, ethylene glycol, and Micro surfactant were used as test organic films. The etching rate of a photoresist coating on silicon was 9 nm/min. Organic film removal using atmospheric pressure plasma technology was shown to be feasible.

  8. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  9. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.

    PubMed

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-08-01

    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation.

  10. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  11. Vibration-to-translation energy transfer in atmospheric-pressure streamer discharge in dry and humid air

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takahashi, Kazunori; Ando, Akira

    2015-10-01

    Vibration-to-translation (V-T) energy transfer in atmospheric-pressure streamer discharge is numerically simulated using a two-dimensional electro-hydrodynamic model. The model includes state-to-state vibrational kinetics in humid air and is coupled with the compressible flow equation of the gas fluid. The vibrational distribution of {{\\text{O}}2}(v) reaches equilibrium more quickly than that of {{\\text{N}}2}(v) , whereas the energy released from {{\\text{O}}2}(v) does not increase the gas temperature. In humid air, the decay rate of the vibrational energy of {{\\text{N}}2}(v) is accelerated by the V-T energy transfer through water molecules and the energy heats the gas. However, the increase in gas temperature due to V-T energy transfer is not always seen because it competes with thermal diffusion.

  12. Stress fluctuations in drying polymer dispersions.

    PubMed

    König, Alexander M; Johannsmann, Diethelm

    2010-06-15

    Drying polymer dispersions usually experience tensile stress, induced by the reduction in volume and by the rigid substrate. Due to edge-in drying, the stress is usually heterogeneous over the film. Stress peaks play a decisive role in the formation of cracks. This work relies on membrane bending, a technique that provides spatially resolved stress maps. In the experiments reported here, stress fluctuations on the order of 10% on the time scale of a few seconds were found. The stress fluctuations occur coherently over the entire drying front. Fluctuations go back to slight fluctuations in humidity of the environment (as opposed to local stress relaxations due to reorganizations of the particle network). The stress fluctuations disappear when covering the sample with a lid. They can be enhanced by blowing humid or dry air across the sample surface. Modeling builds on the assumption that all stresses go back to capillary pressure created at the menisci in between different spheres at the film-air interface. The local radius of curvature changes in response to slight variations in ambient humidity according to the Kelvin equation. The fluctuations are observed under a wide variety of drying conditions and should be included in film formation models.

  13. Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study

    SciTech Connect

    Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

    2008-09-03

    In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

  14. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  15. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  16. Imaging with ambient noise

    SciTech Connect

    Snieder, Roel; Wapenaar, Kees

    2010-09-15

    Recent developments in seismology, ultrasonics, and underwater acoustics have led to a radical change in the way scientists think about ambient noise--the diffuse waves generated by pressure fluctuations in the atmosphere, the scattering of water waves in the ocean, and any number of other sources that pervade our world. Because diffuse waves consist of the superposition of waves propagating in all directions, they appear to be chaotic and random. That appearance notwithstanding, diffuse waves carry information about the medium through which they propagate.

  17. β-RE1-xBixB3O6 (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Y): Bi(3+) Substitution Induced Formation of Metastable Rare Earth Borates at Ambient Pressure.

    PubMed

    Sun, Xiaorui; Yang, Ruirui; Song, Rixiang; Leng, Song; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2016-09-19

    There emerge great interests in the syntheses of metastable polyborates; however, most are involved with the high-pressure technique. A facile method to synthesize metastable rare earth borates at ambient pressure is eagerly required for the large-scale production and property investigation. Here we demonstrate the critical role of Bi(3+) substitutions in the stabilization of metastable β-REB3O6 (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, and Y) at ambient pressure, where the Bi(3+)-to-RE(3+) substitutions would efficiently reduce the synthetic temperatures to 735-820 °C, well below the upper limit of thermodynamically stable window (840-980 °C). Partial solid solutions of β-RE1-xBixB3O6 were prepared, and the ranges of the solution were also studied experimentally. The thermal behaviors of β-RE0.8Bi0.2B3O6 were investigated by differential thermal analyses and powder X-ray diffraction, and they were divided into two categories; that is, β-RE0.8Bi0.2B3O6 (RE = Sm, Eu, Gd) transfers to α-RE0.8Bi0.2B3O6 with further increasing the temperature to 950 °C, while β-RE0.8Bi0.2B3O6 (RE = Tb, Dy, Ho, Er, and Y) decomposes into hexagonal REBO3 and B2O3. In particular, the allowed concentration of Bi(3+) in β-Gd1-xBixB3O6 was 0.10 ≤ x ≤ 0.25, and these samples show bright blue emissions under UV excitation, which suggests the high efficiency of light absorption and high potential as phosphors with further doping of other activators.

  18. β-RE1-xBixB3O6 (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Y): Bi(3+) Substitution Induced Formation of Metastable Rare Earth Borates at Ambient Pressure.

    PubMed

    Sun, Xiaorui; Yang, Ruirui; Song, Rixiang; Leng, Song; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2016-09-19

    There emerge great interests in the syntheses of metastable polyborates; however, most are involved with the high-pressure technique. A facile method to synthesize metastable rare earth borates at ambient pressure is eagerly required for the large-scale production and property investigation. Here we demonstrate the critical role of Bi(3+) substitutions in the stabilization of metastable β-REB3O6 (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, and Y) at ambient pressure, where the Bi(3+)-to-RE(3+) substitutions would efficiently reduce the synthetic temperatures to 735-820 °C, well below the upper limit of thermodynamically stable window (840-980 °C). Partial solid solutions of β-RE1-xBixB3O6 were prepared, and the ranges of the solution were also studied experimentally. The thermal behaviors of β-RE0.8Bi0.2B3O6 were investigated by differential thermal analyses and powder X-ray diffraction, and they were divided into two categories; that is, β-RE0.8Bi0.2B3O6 (RE = Sm, Eu, Gd) transfers to α-RE0.8Bi0.2B3O6 with further increasing the temperature to 950 °C, while β-RE0.8Bi0.2B3O6 (RE = Tb, Dy, Ho, Er, and Y) decomposes into hexagonal REBO3 and B2O3. In particular, the allowed concentration of Bi(3+) in β-Gd1-xBixB3O6 was 0.10 ≤ x ≤ 0.25, and these samples show bright blue emissions under UV excitation, which suggests the high efficiency of light absorption and high potential as phosphors with further doping of other activators. PMID:27585404

  19. Dry hair

    MedlinePlus

    Some causes of dry hair are: Anorexia nervosa Excessive hair washing, or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive parathyroid ( ...

  20. Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage.

    PubMed

    Martínez-Onandi, N; Rivas-Cañedo, A; Picon, A; Nuñez, M

    2016-12-01

    One hundred and three volatile compounds were detected by solid-phase microextraction followed by gas chromatography-mass spectrometry in 30 ripened Serrano dry-cured hams, submitted or not to high pressure processing (HPP) and afterwards held for 5months at 4°C. The effect of ham physicochemical parameters and HPP (600MPa for 6min) on volatile compounds was assessed. Physicochemical parameters primarily affected the levels of acids, alcohols, alkanes, esters, benzene compounds, sulfur compounds and some miscellaneous compounds. Intramuscular fat content was the physicochemical parameter with the most pronounced effect on the volatile fraction of untreated Serrano ham after refrigerated storage, influencing the levels of 38 volatile compounds while aw, salt content and salt-in-lean ratio respectively influenced the levels of 4, 4 and 5 volatile compounds. HPP treatment affected 21 volatile compounds, resulting in higher levels of alkanes and ketones and lower levels of esters and secondary alcohols, what might affect Serrano ham odor and aroma after 5months of refrigerated storage. PMID:27513944

  1. Variation of bandgap with oxygen ambient pressure in Mg xZn 1- xO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Misra, P.; Bhattacharya, P.; Mallik, K.; Rajagopalan, S.; Kukreja, L. M.; Rustagi, K. C.

    2001-03-01

    Thin films of Mg xZn 1- xO were grown by pulsed laser deposition technique at various oxygen background pressures in the range of 10 -2-10 -5 Torr on single crystal (0001) alumina substrates. The films were found to be c-axis oriented with a high crystalline quality having FWHM of rocking curve of about 0.16°. The bandgap of Mg xZn 1- xO thin films was found to increase from 3.45 to 3.78 eV with decrease of oxygen pressure from 10 -2 to 10 -5 Torr during the deposition. This has been attributed to the increase in the Mg concentration in the films on decreasing the O 2 pressure.

  2. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    PubMed

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives.

  3. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    PubMed

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives. PMID:27468303

  4. Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko; Sugenoya, Junichi

    2013-05-01

    The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32 ± 5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10' N and longitude 136°57.9' E. The average environmental temperature was 29 ± 1 °C in summer and 3 ± 1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.

  5. Effects of altered ambient pressure on the volume and distribution of gas within the swimbladder of the adult zebrafish, Danio rerio.

    PubMed

    Stoyek, Matthew R; Smith, Frank M; Croll, Roger P

    2011-09-01

    Many teleosts use gas-filled swimbladders to control buoyancy and influence three-dimensional orientation (pitch and roll). However, swimbladder volume, and its contributions to these functions, varies with depth-related pressure according to Boyle's law. Moreover, the swimbladder volume at a given depth also depends on the compliance of the swimbladder wall, but this latter factor has been investigated in only a limited number of species. In this study, changes in the volume of the zebrafish swimbladder were observed both in vitro and in situ in pressure chambers that allowed simulations of movements within the water column to and from depths of >300 cm. Results show the anterior chamber to be highly compliant, varying ±38% from its initial volume over the range of simulated depths. This large volume change was accomplished, at least in part, by a series of regular corrugations running along the ventral aspect of the chamber wall and another set of pleats radiating from around the communicating duct in the caudal aspect of the chamber wall. The posterior chamber, in contrast, was found to be minimally compliant, varying only a fraction of a percent from its initial volume over the same pressure range. The different volumetric responses of the chambers caused a significant shift in the distribution of gas within the swimbladder system, but only resulted in a change in the whole-body pitch angle of ±2 deg over the range of pressures tested. Together, our findings provide new insights into the control of buoyancy and trim within teleosts and suggest novel mechanisms that may contribute to swimbladder performance. PMID:21832139

  6. Nd2K2IrO7 and Sm2K2IrO7: Iridium(VI) Oxides Prepared under Ambient Pressure

    SciTech Connect

    Mugavero, III, S.; Smith, M; Yoon, W; zur Loye, H

    2009-01-01

    The most-oxidized iridium oxides known to date are prepared in a hydroxide flux under normal pressure. They contain iridium centers exclusively in the +VI oxidation state and are characterized crystallographically. The picture shows the structure of the Ln2K2IrO7 (Ln=Nd, Sm) and its structural components: IrO6 octahedra (black), KO10 polyhedra (beige), LnO10 polyhedra (blue).

  7. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    NASA Astrophysics Data System (ADS)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  8. The effect of dry needling on pain, pressure pain threshold and disability in patients with a myofascial trigger point in the upper trapezius muscle.

    PubMed

    Ziaeifar, Maryam; Arab, Amir Massoud; Karimi, Noureddin; Nourbakhsh, Mohammad Reza

    2014-04-01

    Dry needling (DN) has been used recently by physical therapists as a therapy of choice for patients with myofascial trigger points (TrP). The purpose of this randomized controlled trial was to investigate the effect of DN in the treatment of TrPs in the upper trapezius (UT) muscle. A sample of convenience of 33 patients with TrP in the UT muscle participated in this study. Patients were randomly assigned to a standard (N = 17) or experimental group (N = 16). The treatment protocol for the standard group consisted of trigger point compression technique (TCT) on MTP, while the patients in the experimental group received DN. Pain intensity and pressure pain thresholds were assessed for both groups before and after the treatment sessions. In addition, the Disability of Arm, Hand, and Shoulder (DASH) was administered. Statistical analysis (paired t-test) revealed a significant improvement in pain, PPT and DASH scores after treatment in the experimental (DN) and standard (TCT) group compared with before treatment (P < 0.05). The ANCOVA revealed significant differences between the DN and TCT groups on the post-measurement VAS score (P = 0.01). There was, however, no significant difference between the two groups on the post-measurement score of the PPT (P = 0.08) and DASH (P = 0.34). DN produces an improvement in pain intensity, PPT and DASH and may be prescribed for subjects with TrP in UT muscles especially when pain relief is the goal of the treatment.

  9. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    from ozone mode to nitrogen oxides mode occurs as the discharge power increases. One prominent example of plasma biotechnology is the use of plasma-derived reactive species as a novel disinfectant. Ambient-air plasma is an attractive means of disinfection because it is non-thermal, expends a small amount of power, and requires only air and electricity to operate. Both solid surfaces and liquid volumes can be effectively and efficiently decontaminated by the reactive oxygen and nitrogen species that plasma generates. Dry surfaces are decontaminated most effectively by the plasma operating in NOx mode and less effectively in ozone mode, with the weakest antibacterial effects in the transition region, and neutral reactive species are more influential in surface disinfection than charged particles. Aqueous bacterial inactivation correlates well with ozone concentration, suggesting that ozone is the dominant species for bacterial inactivation under the condition of a low-power discharge. Alternatively, air plasma operating in the higher-power, nitrogen oxides-rich mode can create a persistently antibacterial solution. Finally, when near-UV (UVA) treatment follows plasma treatment of bacterial suspension, the antimicrobial effect exceeds the effect predicted from the two treatments alone, and addition of nitrite to aqueous solution, followed by photolysis of nitrite by UVA photons, is hypothesized as the primary mechanism of synergy. The results presented in this dissertation underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications. The complexity of atmospheric pressure plasma devices, and their sensitivity to subtle differences in design and operation, can lead to different results with different mechanisms.

  10. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-01

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  11. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-01

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h). PMID:27444263

  12. Potential tuning in the S–W system. (i) Bringing T c,2 to ambient pressure, and (ii) colliding T c,2 with the liquid–vapor spinodal

    NASA Astrophysics Data System (ADS)

    Angell, C. Austen; Kapko, Vitaliy

    2016-09-01

    Following Vasisht et al’s identification of the second critical point (T c2, P c2) for liquid silicon in the Stillinger–Weber (S–W) model for silicon, we study the variation of T c2, P c2 with tetrahedral repulsion parameter in an extension of the earlier ‘potential tuning’ study of this system. We use the simple isochore crossing approach to identify the location of the second critical point (before any crystallization can occur) as a function of the ‘tuning’ or ‘tetrahedrality’, parameter λ, and identify two phenomena of high interest content. The first is that the second critical point pressure P c2, becomes less negative as λ decreases from the silicon value (meaning the drive to high tetrahedrality is decreased) and reaches zero pressure at the same value of lambda found to mark the onset of glassforming ability in an earlier study of this tunable system. The second is that, as the T c,2 approaches the temperature of the liquid–gas spinodal, λ  >  22, the behavior of the temperature of maximum density (TMD) switches from the behavior seen in most current water pair potential models (locus of TMDs has a maximum), to the behavior seen in empirical engineering multiparameter equations of state (EoS) (and also by two parameter Speedy isothermal expansion EoS) for water, according to which the locus of TMDs of HDL phase has no maximum, and the EoS for HDL has no second critical point. At λ  =  23 the behavior is isomorphic with that of the mW model of water, which is now seen to conform, at least closely, to the ‘critical point free’ scenario for water.

  13. Stripping with dry ice

    NASA Astrophysics Data System (ADS)

    Malavallon, Olivier

    1995-04-01

    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  14. Ambient Rabbits Likeability of Embodied Ambient Displays

    NASA Astrophysics Data System (ADS)

    Mirlacher, Thomas; Buchner, Roland; Förster, Florian; Weiss, Astrid; Tscheligi, Manfred

    This paper discusses the possibility of using embodied Ambient Displays for presenting information in a public setting. For embodying an Ambient Display, a Nabaztag rabbit was used, the information displayed was a weather forecast. Throughout four weeks of alternating traditional visual Ambient Displays and Nabaztag testing, differences and commonalities in terms of perceived usability and likeability have been investigated. Special focus has been put on the likeability and comprehension differences. Results show a correlation between perceived usability and likeability for the traditional Ambient Display as well as a better comprehension over time for both Ambient Displays. However, significant differences in terms of perceived usability and likeability could only be revealed for the traditional Ambient Displays.

  15. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  16. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  17. Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source.

    PubMed

    Cheng, Sy-Chyi; Jhang, Siou-Sian; Huang, Min-Zong; Shiea, Jentaie

    2015-02-01

    A dual ionization source combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was developed to simultaneously ionize both polar and nonpolar compounds. The source was constructed by inserting a fused silica capillary into a stainless steel column enclosed in a glass tube. A high dc voltage was applied to a methanol solution flowing in the fused silica capillary to generate an ESI plume at the capillary tip. A high ac voltage was applied to a ring electrode attached to the glass tube to generate plasma from the nitrogen gas flowing between the glass tube and the stainless steel column. The concentric arrangement of the ESI plume and the APCI plasma in the source ensured that analytes entering the ionization region interacted with both ESI and APCI primary ion species generated in the source. Because the high voltages required for ESI and APCI were independently applied and controlled, the dual ion source could be operated in ESI-only, APCI-only, or ESI+APCI modes. Analytes were introduced into the ESI and/or APCI plumes by irradiating sample surfaces with a continuous-wavelength laser or a pulsed laser beam. Analyte ions could also be produced by directing the dual ESI+APCI source toward sample surfaces for desorption and ionization. The ionization mechanisms involved in the dual ion source include Penning ionization, ion molecule reactions, and fused-droplet electrospray ionization. Standards of polycyclic aromatic hydrocarbons, angiotensin I, lidocaine, ferrocene, diesel, and rosemary oils were used for testing. Protonated analyte ions were detected in ESI-only mode, radical cations were detected in APCI-only mode, and both types of ions were detected in ESI+APCI mode. PMID:25562530

  18. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    NASA Astrophysics Data System (ADS)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-09-01

    In a recent paper in TPT, DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of an NFL football. We focus on the rate of pressure recovery that occurs when a cold football (either wet or dry) is returned to the warm locker room environment where the pressure was initially measured. Both studies stem from the so-called NFL "Deflategate" controversy in which footballs that initially met a minimum internal pressure requirement were rechecked at halftime of the AFC Championship game, and in some cases were reported to have fallen below the minimum pressure requirement. The question is whether the pressure changes were due to environmental exposure or rather to some air being released from the balls, or both.

  19. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  20. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample. PMID:22397643

  1. Decoupling the Influence of Leaf and Root Hydraulic Conductances on Stomatal Conductance and its Sensitivity to Vapor Pressure Deficit as Soil Dries in a Drained Loblolly Pine Plantation

    NASA Astrophysics Data System (ADS)

    Domec, J.; Noormets, A.; King, J. S.; McNulty, S. G.; Sun, G.; Gavazzi, M. J.; Boggs, J. L.

    2008-12-01

    The conversion of wetlands to intensively managed forest lands in eastern North Carolina is widespread and the consequences on plant hydraulic properties and water balances are not well studied. Precipitation and soil moisture in North America will be modified in the future and forest trees in the US will be challenged by warmer temperature, higher leaf-to-air water vapor pressure deficit (D), and more frequent summer droughts. Many studies have examined the relationships between whole tree hydraulic conductance (Ktree) and stomatal conductance (gs), but Ktree remains an ill-defined quantity because it depends on a series of resistances, mainly controlled by the conductance in roots (Kroot) and leaves (Kleaf). To explain the variation in Ktree, we characterized Kroot and Kleaf and how they responded to environmental drivers such as soil moisture availability and D. In addition, the role of dynamic variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to D was studied. The 2007 summer drought was used as a means to challenge the hydraulic system, allowing testing how broadly predictions about its behaviour hold outside the range of typical conditions. Roots and leaves were the weakest points in the whole tree hydraulic system, and contributed for more than 75% of the total tree hydraulic resistance. Effects of drought on Ktree altered the partitioning of the resistance between roots and leaves and as soil moisture declined below 50% relative extractable water (REW), Kroot declined faster than Kleaf and became the dominant hydraulic fuse regulating Ktree. Although Ktree depended on soil moisture, its dynamics was tempered by current-year needle elongation that increased significantly Kleaf during the dry months when REW was below 50%. To maintain the integrity of the xylem hydraulic continuum from roots to leaves, stomata were highly responsive in coordinating transpiration with dynamic variation in Ktree. Daily maximum gs and

  2. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO2 ambient gas

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suyanto, Hery; Ramli, Muliadi; Lahna, Kurnia; Marpaung, Alion Mangasi; Hedwig, Rinda; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Idris, Nasrullah; Tjia, May On; Kagawa, Kiichiro

    2016-04-01

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO2 ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

  3. Observation of superconductivity ( Tc = 50 K) in a new tetragonal alkaline-earth cuprate Sr 0.8Ba 1.2CuO 3+δ, synthesised at ambient pressure

    NASA Astrophysics Data System (ADS)

    Hodges, J. P.; Slater, P. R.; Edwards, P. P.; Greaves, C.; Slaski, M.; Van Tendeloo, G.; Amelinckx, S.

    1996-02-01

    The ambient-pressure synthesis of a new tetragonal alkaline-earth superconducting cuprate, Sr 0.8Ba 1.2CuO 3+δ, from a cupro-oxycarbonate is reported. Magnetic-susceptibility measurements show the presence of a superconducting transition ˜50 K in a post-annealed sample. The crystal structure, refined from time-of-flight powder neutron-diffraction data was found to have an oxygen-deficient La 2CuO 4-type tetragonal T structure ( a = 3.8988(3) Å and c = 12.815(3) Å) with oxygen vacancies located within the CuO 2 planes. Ordering of these oxygen vacancies is responsible for the observation of a superlattice in both neutron- and electron-diffraction measurements. An interpretation of the electron-diffraction patterns suggests that the superlattice in Sr 0.8Ba 1.2CuO 3+δ and also in the isostructural superconductor Sr 2CuO 3+δ are of an identical nature.

  4. Pressure-induced superconducting transition of {gamma}-(BETS){sub 2}FeCl{sub 4} with {pi}-d coupled antiferromagnetic insulating ground state at ambient pressure [BETS = bis(ethylenedithio)tetraselenafulvalene

    SciTech Connect

    Tanaka, Hisashi; Adachi, Takafumi; Ojima, Emiko; Fujiwara, Hideki; Kato, Kiyonori; Kobayashi, Hayao; Kobayashi, Akiko; Cassoux, P.

    1999-12-08

    In the present paper, the discovery of the superconductivity in this unique {pi}-d electron system {gamma}-(BETS){sub 2}FeCl{sub 4} is reported. Thin needle crystals of {lambda}-(BETS){sub 2}FeCl{sub 4} were prepared by the electrochemical oxidation according to the reported conditions. The {gamma}-type BETS crystal has a triclinic lattice. The needle axis of the crystal is almost parallel to the c axis, which corresponds to the magnetic easy axis of the antiferromagnetic spin structure. The conduction layer composed of BETS molecules is parallel to the ac plane. The electrical resistivities were measured using the clump-type high-pressure cell from room temperature to about 0.55 K. The electrical resistivities were also measured under the magnetic field applied almost parallel and perpendicular to the conduction layer.

  5. Effect of drying time, ambient temperature and pre-soaks on prion-infected tissue contamination levels on surgical stainless steel: concerns over prolonged transportation of instruments from theatre to central sterile service departments.

    PubMed

    Lipscomb, I P; Pinchin, H; Collin, R; Keevil, C W

    2007-01-01

    Iatrogenic transmission of prions through use of surgical instruments has been shown both experimentally and clinically. In addition, recent discoveries of prion protein accumulation in peripheral tissues such as appendix and muscle, and evidence suggesting human-to-human blood-borne transmission, have led to a concern that any residual soiling containing this agent may remain infectious even after sterile service processing. Removal of all proteinaceous material from surgical devices is extremely important for effective sterilization. This removal can be severely hampered if the contaminant is allowed to dry onto the instrument surface for any length of time. The current move to centralize sterile service centres and the inevitable lengthening of transport time between theatres and re-processing makes it necessary to minimize the amount of residual soiling adhering to an instrument before sterilization. This investigation simulates the period between the application of surgical instruments in theatre and their initial pre-wash by a washer/disinfector. The aim was to investigate the kinetics of drying at different temperatures, and the application of different commercially available pre-soak solutions in situ. The findings show that all pre-soaks significantly reduce (by up to 96%) the prion-infected tissue contamination, and that controlling the temperature whilst in transit between theatres and cleaning facilities may allow an increase in time before high protein adsorption levels occur. PMID:17145104

  6. Parallel ultra high pressure liquid chromatography-mass spectrometry for the quantification of HIV protease inhibitors using dried spot sample collection format.

    PubMed

    Watanabe, Kyoko; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-08-15

    An assay was developed and validated for the quantification of eight protease inhibitors (indinavir (IDV), ritonavir (RTV), lopinavir (LPV), saquinavir (SQV), amprenavir (APV), nelfinavir (NFV), atazanavir (AZV) and darunavir (DRV)) in dried plasma spots using parallel ultra-high performance liquid chromatography and mass spectrometry detection in the multiple reaction monitoring mode. For each analyte an isotopically labeled internal standard was used and the assay based on liquid-solid extraction the area response ratio (analyte/IS) was found to be linear; from 0.025 μg/ml to 20 μg/ml for IDV, SQV, DRV, AZV, LPV, from 0.025 μg/ml to 10 μg/ml for NFV, APV and from 0.025 μg/ml to 5 μg/ml for RTV using 15 μl of plasma spotted on filter paper placed in a sample tube. The total analysis time was of 4 min and inter-assay accuracies and precisions were in the range of 87.7-109% and 2.5-11.8%, respectively. On dried plasma spots all analytes were found to be stable for at least 7 days. Practicability of the assay to blood was also demonstrated. The sample drying process could be reduced to 5 min using a commercial microwave system without any analyte degradation. Together with quantification, confirmatory analysis was performed on representative clinical samples.

  7. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi M. N.; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools. PMID:26539203

  8. High temperature and vapor pressure deficit aggravate architectural effects but ameliorate non-architectural effects of salinity on dry mass production of tomato.

    PubMed

    Chen, Tsu-Wei; Nguyen, Thi M N; Kahlen, Katrin; Stützel, Hartmut

    2015-01-01

    Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools. PMID:26539203

  9. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C-C and O-H bond scission.

    PubMed

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Grinter, David C; Waluyo, Iradwikanari; Zhou, Jing; Liu, Qiang; Jeong, Beomgyun; Crumlin, Ethan J; Matolín, Vladimír; Stacchiola, Dario J; Rodriguez, José A; Senanayake, Sanjaya D

    2016-06-22

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke. PMID:27095305

  10. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C-C and O-H bond scission.

    PubMed

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Grinter, David C; Waluyo, Iradwikanari; Zhou, Jing; Liu, Qiang; Jeong, Beomgyun; Crumlin, Ethan J; Matolín, Vladimír; Stacchiola, Dario J; Rodriguez, José A; Senanayake, Sanjaya D

    2016-06-22

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.

  11. Improvement in storage stability of infrared dried rough rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  12. Real-time monitoring of peanut drying parameters in semitrailers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of peanut drying parameters such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts and kernel moisture content is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to...

  13. Investigation of drop impact on dry and wet surfaces with consideration of surrounding air

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng; Sussman, Mark

    2016-07-01

    Numerical simulations were conducted to investigate drop impingement and splashing on both dry and wet surfaces at impact velocities greater than 50 m/s with the consideration of the effect of surrounding air. The Navier-Stokes equations were solved using the variable density pressure projection method on a dynamic block structured adaptive grid. The moment of fluid method was used to reconstruct interfaces separating different phases. A dynamic contact angle model was used to define the boundary condition at the moving contact line. Simulations showed that lowering the ambient gas density can suppress dry surface splashing, which is in agreement with the experiments. A recirculation zone was observed inside the drop after contact: a larger recirculation zone was formed earlier in the higher gas density case than in the lower gas density case. Increasing gas density also enhances the creation of secondary droplets from the lamella breakup. For high speed impact on a dry surface, lowering ambient gas density attenuates splashing. However, ambient air does not significantly affect splashing on a wet surface. Simulations showed that the splashed droplets are primarily from the exiting liquid film.

  14. Investigation of Peanut Drying Parameters near the Front and Back of Semitrailers with Drying Monitoring Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficiency with which peanuts are dried is dependent upon controllable drying parameters. While atmospheric conditions such as temperature and relative humidity of the ambient air cannot be controlled, temperature and relative humidity of the air being blown into the peanuts can be controlled. I...

  15. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  16. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying.

    PubMed

    Kantrong, Hataichanok; Tansakul, Ampawan; Mittal, Gauri S

    2014-12-01

    Shiitake mushrooms were dehydrated by two different drying methods, i.e., microwave-vacuum drying (MVD) and microwave-vacuum combined with infrared drying (MVD + IR). MVD was operated at microwave powers of 56, 143, 209 and 267 W under absolute pressures of 18.66, 29.32, 39.99 and 50.65 kPa, whereas infrared radiation was added in MVD + IR at 100 and 200 W. The effects of microwave power, absolute pressure and infrared power on drying characteristics, qualities and specific energy consumption were investigated. It was found that drying rate increased with lower absolute pressure, higher microwave power and higher infrared power. In particular, the results also indicated that drying undergoing MVD + IR could provide better qualities in terms of color of dried shiitake mushroom, rehydration ratio and texture of rehydrated ones. Furthermore, the drying characteristics were described by fitting data to six different drying models. Based on their coefficient of determination, root mean square error, residual of sum square and chi-square, Modified Page model could accurately predict moisture ratio for all drying conditions. Within the range of this study, the suitable drying condition with respect to the product qualities and energy consumption was MVD + IR drying at 267 W of microwave power, 18.66 kPa of absolute pressure and 200 W of infrared power.

  17. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  18. Hydrodynamic model for drying emulsions.

    PubMed

    Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper

    2015-08-01

    We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.

  19. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  20. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  1. rf-generated ambient-afterglow plasma

    SciTech Connect

    Shakir, Shariff; Mynampati, Sandhya; Pashaie, Bijan; Dhali, Shirshak K.

    2006-04-01

    Atmospheric pressure plasmas have gained importance due to their potential application in polymer surface treatment, surface cleaning of metals, thin film deposition, and destruction of biological hazards. In this paper a radio-frequency driven atmospheric pressure afterglow plasma source in argon and helium is discussed. The light intensity measurement shows that the radio-frequency discharge is continuous in time unlike the intermittent nature of a low frequency dielectric-barrier discharge. The discharge, under ambient conditions, can be generated in argon, helium, and nitrogen. Spectroscopic measurements show that metastables are capable of producing oxygen atoms and other excited species. The argon afterglow, in particular, is capable of dissociating oxygen molecules in the ambient gas. An afterglow model has been developed to study the interaction of the plasma with the ambient gas. Results from applications of the plasma to surface treatment of metals and polymers, and bacterial decontamination are briefly discussed.

  2. The corrosion of etched magnox Al-80 in dry steam at ˜ 10 5 Pa pressure in the temperature range 373-573 K

    NASA Astrophysics Data System (ADS)

    Friskney, C. A.

    1981-09-01

    The corrosion of magnox in dry steam has been studied isothermally in the temperature range 373-573 K. Within this range different products dominate the process and there are corresponding rate changes. At ~520 K and above the product is magnesium oxide, whilst below ~ 393 K magnesium hydroxide is produced, the corrosion rate increasing with temperature in both regimes. Although magnesium hydroxide remains the dominant reaction product from 395 to 497 K, the rate of corrosion passes through a maximum at ~ 409 K and then falls rapidly as temperature is increased to ~ 520 K. Above 440 K magnesium hydride is detectable in the corrosion product, the amount increasing with temperature. It is suggested that hydrogen is built up in traps near the metal surface to form hydride and the hydride/hydrogen slows the hydroxide production. Formation of magnesium oxide appears to be a relatively slow process compared with hydroxide formation.

  3. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    PubMed

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s).

  4. Freeze-dried microarterial allografts

    SciTech Connect

    Raman, J.; Hargrave, J.C.

    1990-02-01

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic.

  5. Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in california-style black ripe olives and dry salt-cured olives.

    PubMed

    Melliou, Eleni; Zweigenbaum, Jerry A; Mitchell, Alyson E

    2015-03-11

    The chemical composition of finished table olive products is influenced by the olive variety and the processing method used to debitter or cure table olives. Herein, a rapid ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry method, using dynamic multiple reaction monitoring, was developed for the quantitation of 12 predominant phenolic and secoiridoid compounds in olive fruit, including hydroxytyrosol, oleuropein, hydroxytyrosol-4-O-glucoside, luteolin-7-O-glucoside, rutin, verbascoside, oleoside-11-methyl ester, 2,6-dimethoxy-p-benzoquinone, phenolic acids (chlorogenic and o-coumaric acids), oleuropein aglycone, and ligstroside aglycone. Levels of these compounds were measured in fresh and California-style black ripe processed Manzanilla olives and two dry salt-cured olive varieties (Mission from California and Throuba Thassos from Greece). Results indicate that the variety and debittering processing method have strong impact on the profile of phenolic and secoiridoid compounds in table olives. The dry salt-cured olives contained higher amounts of most compounds studied, especially oleuropein (1459.5 ± 100.1 μg/g), whereas California-style black ripe olives had a significant reduction or loss of these bioactive compounds (e.g., oleuropein level at 36.7 ± 3.1 μg/g). PMID:25668132

  6. Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in california-style black ripe olives and dry salt-cured olives.

    PubMed

    Melliou, Eleni; Zweigenbaum, Jerry A; Mitchell, Alyson E

    2015-03-11

    The chemical composition of finished table olive products is influenced by the olive variety and the processing method used to debitter or cure table olives. Herein, a rapid ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry method, using dynamic multiple reaction monitoring, was developed for the quantitation of 12 predominant phenolic and secoiridoid compounds in olive fruit, including hydroxytyrosol, oleuropein, hydroxytyrosol-4-O-glucoside, luteolin-7-O-glucoside, rutin, verbascoside, oleoside-11-methyl ester, 2,6-dimethoxy-p-benzoquinone, phenolic acids (chlorogenic and o-coumaric acids), oleuropein aglycone, and ligstroside aglycone. Levels of these compounds were measured in fresh and California-style black ripe processed Manzanilla olives and two dry salt-cured olive varieties (Mission from California and Throuba Thassos from Greece). Results indicate that the variety and debittering processing method have strong impact on the profile of phenolic and secoiridoid compounds in table olives. The dry salt-cured olives contained higher amounts of most compounds studied, especially oleuropein (1459.5 ± 100.1 μg/g), whereas California-style black ripe olives had a significant reduction or loss of these bioactive compounds (e.g., oleuropein level at 36.7 ± 3.1 μg/g).

  7. Reactions of organic ions at ambient surfaces in a solvent-free environment.

    PubMed

    Badu-Tawiah, Abraham K; Cyriac, Jobin; Cooks, R Graham

    2012-05-01

    Solvent-free ion/surface chemistry is studied at atmospheric pressure, specifically pyrylium cations, are reacted at ambient surfaces with organic amines to generate pyridinium ions. The dry reagent ions were generated by electrospraying a solution of the organic salt and passing the resulting electrosprayed droplets pneumatically through a heated metal drying tube. The dry ions were then passed through an electric field in air to separate the cations from anions and direct the cations onto a gold substrate coated with an amine. This nontraditional way of manipulating polyatomic ions has provided new chemical insights, for example, the surface reaction involving dry isolated 2,4,6-triphenylpyrylium cations and condensed solid-phase ethanolamine was found to produce the expected N-substituted pyridinium product ion via a pseudobase intermediate in a regiospecific fashion. In solution however, ethanolamine was observed to react through its N-centered and O-centered nucleophilic groups to generate two isomeric products via 2H-pyran intermediates. The O-centered nucleophile reacted less rapidly to give the minor product. The surface reaction product was characterized in situ by surface enhanced Raman spectroscopy, and ex situ using mass spectrometry and H/D exchange, and found to be chemically the same as the major pyridinium solution-phase reaction product. PMID:22290484

  8. Drying apparatus for photographic sheet material

    NASA Technical Reports Server (NTRS)

    Epstein, P.; Donovan, G.; Lawhite, E. (Inventor)

    1973-01-01

    An elongated drying chamber is provided with transport means for carrying photographic sheet material edgewise with the sheets in end-to-end relationship past a plurality of tubes that issue drying air streams. The tubes are slotted a distance equal to substantially the full width of the sheet material for complete, gentle drying by sheets of air. A common plenum supplies the tubes with heated air; the air is directed from the tube slots at a pronounced angle to the sheet surface to provide for arraying the tubes close to the surface for maximum drying effect while minimizing the danger of mechanical interference between the edges of the sheets and the slots in the tubes. The driver for the transport is housed in an enclosure between the plenum and the drying chamber; an air return duct is provided along another side to complete insulation of the drying chamber from ambient conditions.

  9. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  10. A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: the QUENCH trial.

    PubMed

    Wright, Olivia R L; Netzel, Gabriele A; Sakzewski, Amy R

    2013-06-01

    Obesity is a significant health issue worldwide and is associated with chronic, low-grade inflammation predisposing the individual to cardiovascular disease and impaired blood glucose homeostasis. Anthocyanins and phenolic acids from purple carrots are effective at reversing inflammation and metabolic alterations in animal models, potentially through inhibition of inflammatory pathways. The effects of dried purple carrot on body mass, body composition, blood pressure, lipids, inflammatory markers, liver function tests, and appetite were investigated in 16 males (aged 53.1 ± 7.6 years and with a mean BMI of 32.8 ± 4.6 kg/m(2)) with normal lipid and inflammatory markers. There was no evidence that 118.5 mg/day of anthocyanins and 259.2 mg/day of phenolic acids for 4 weeks resulted in statistically significant changes in body mass, body composition, appetite, dietary intake, low density lipoprotein, total cholesterol, blood pressure, or C-reactive protein in these obese participants at the dose and length of intervention used in this trial. High density lipoprotein cholesterol was lower in the intervention group (p < 0.05). Aspartate amino transferase and alanine amino transferase did not change, indicating that the intervention was safe. More studies are required to establish the bioavailability and pharmacokinetic effects of purple carrot anthocyanins and phenolic acids prior to further trials of efficacy with respect to treating inflammation and metabolic alterations.

  11. Drying Thermoplastics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    In searching for an improved method of removing water from polyester type resins without damaging the materials, Conair Inc. turned to the NASA Center at the University of Pittsburgh for assistance. Taking an organized, thorough look at existing technology before beginning research has helped many companies save significant time and money. They searched the NASA and other computerized files for microwave drying of thermoplastics. About 300 relevant citations were retrieved - eight of which were identified as directly applicable to the problem. Company estimates it saved a minimum of a full year in compiling research results assembled by the information center.

  12. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  13. Dry Mouth or Xerostomia

    MedlinePlus

    ... or Xerostomia Request Permissions Print to PDF Dry Mouth or Xerostomia Approved by the Cancer.Net Editorial ... a dry mouth. Signs and symptoms of dry mouth The signs and symptoms of dry mouth include ...

  14. Pressurized hopper

    SciTech Connect

    Densley, P.J.; Goldmann, L.H. Jr.

    1980-04-01

    A Secure Automated Fuel Fabrication Line is being developed to reduce personnel exposure and to improve safeguards. Fertile and fissile fuel powders are blended in the line for making fuel pellets. A pressurized hopper was developed for use not only as a blender, but also as a storage and feeding device. It works with or without injection tubes to produce a well-blended powder with reduced agglomerate population. Results of blending experiments using dry Kaolin clay and Tempra pigment are given. (DLC)

  15. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  16. High silicon self-diffusion coefficient in dry forsterite

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.

    2012-12-01

    Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 μg/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5

  17. Dry sump crankcase

    SciTech Connect

    Berger, A.H.; Dichi, R.E.

    1987-06-23

    A dry sump type crankcase is described for an automotive type internal combustion engine having an intake manifold and a positive crankcase ventilation (PCV) system for automatically and continuously ventilating the crankcase. The system includes an essentially atmospheric pressure fresh air inlet to the engine passing air through to the crankcase and a connection from the oil pan to the vacuum in the intake manifold establishing a constant flow of crankcase vapors. The oil pan has a baffle partitioning it into an inner oil collecting funnel-like crankcase cavity and an outer oil reservoir. The inner cavity has an opening at its lower-most point for communication of oil with the reservoir. The opening is of a controlled vertical height for creating a pressure differential across the baffle during operation of the engine. Means connects the inner cavity to the air inlet pressure side of the PCV System while connecting the reservoir to the vacuum side of the PCV system for establishing a constant pressure differential across the baffle sufficient to displace the oil against gravity and maintain the oil level in the crankcase during operation of the engine at the height of the opening in the baffle. Gravity causes the oil to seek a level higher than the opening upon shutdown of the engine and the consequential decay of vacuum in the intake manifold.

  18. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  19. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  20. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  1. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  2. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  3. Dry gas operation of proton exchange membrane fuel cells with parallel channels: Non-porous versus porous plates

    NASA Astrophysics Data System (ADS)

    Litster, Shawn; Santiago, Juan G.

    We present a study of proton exchange membrane (PEM) fuel cells with parallel channel flow fields for the cathode, dry inlet gases, and ambient pressure at the outlets. The study compares the performance of two designs: a standard, non-porous graphite cathode plate design and a porous hydrophilic carbon plate version. The experimental study of the non-porous plate is a control case and highlights the significant challenges of operation with dry gases and non-porous, parallel channel cathodes. These challenges include significant transients in power density and severe performance loss due to flooding and electrolyte dry-out. Our experimental study shows that the porous plate yields significant improvements in performance and robustness of operation. We hypothesize that the porous plate distributes water throughout the cell area by capillary action; including pumping water upstream to normally dry inlet regions. The porous plate reduces membrane resistance and air pressure drop. Further, IR-free polarization curves confirm operation free of flooding. With an air stoichiometric ratio of 1.3, we obtain a maximum power density of 0.40 W cm -2, which is 3.5 times greater than that achieved with the non-porous plate at the same operating condition.

  4. Dry ice blasting

    NASA Astrophysics Data System (ADS)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  5. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  6. High-intensity drying processes-impulse drying. Yearly report

    SciTech Connect

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  7. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  8. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  9. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  10. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  11. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  12. CO2 (dry ice) cleaning system

    NASA Astrophysics Data System (ADS)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  13. Thermodynamic Pressure/Temperature Transducer Health Check

    NASA Technical Reports Server (NTRS)

    Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)

    2004-01-01

    A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.

  14. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  15. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  16. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.).

    PubMed

    Díaz-Maroto, M Consuelo; Pérez-Coello, M Soledad; Cabezudo, M Dolores

    2002-07-31

    The effect of different drying treatments on the volatiles in bay leaf (Laurus nobilis L.) was studied. Simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) were compared by gas chromatography-mass spectrometry (GC-MS) of the volatile components in bay leaves. SDE yielded better quantitative analysis results. Four drying treatments were employed: air-drying at ambient temperature, oven-drying at 45 degrees C, freezing, and freeze-drying. Oven drying at 45 degrees C and air-drying at ambient temperature produced quite similar results and caused hardly any loss in volatiles as compared to the fresh herb, whereas freezing and freeze-drying brought about substantial losses in bay leaf aroma and led to increases in the concentration levels of certain components, e.g., eugenol, elemicin, spathulenol, and beta-eudesmol.

  17. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries.

    PubMed

    Meda, Venkatesh; Gupta, Mohit; Opoku, Anthony

    2008-01-01

    Saskatoon berry (Amelanchier alnifolia) is a high moisture content fruit crop, harvested at 75-80% moisture content (w.b.) and dried to lower moisture contents for a safe, extended shelf-life and for further usage in food applications. Saskatoon berries were dried from an initial moisture content of 75.5% to around 25% (w.b.) using microwave-vacuum drying. In this study, saskatoon berries were dried at different microwave power levels P10 (745 W), P7 (514 W) and P5 (374 W) and vacuum pressure levels V20 (67.0 kPa) and V10 (33.5 kPa). The vacuum pressure levels did not greatly influence the drying time of the saskatoon berries compared to the microwave power levels. Increasing the microwave power level produced faster drying times for the samples. After 12 min of drying at power level P10, the moisture contents of the samples at vacuum pressures of 33.5 and 67.0 kPa were 29.74 and 31.24%, respectively. However after drying for 12 min at vacuum pressure of 33.5 kPa, the moisture contents at power levels P10, P7 and P5 were 29.74, 51.41 and 61.95%, respectively. Polynomial and exponential models were fitted to the drying data. The exponential model provided a better fit for the drying data at the lower vacuum pressure, with higher R2 and lower SE compared to the polynomial model. On the other hand, the polynomial model provided a better fit for the drying data at the higher vacuum pressure. The vacuum pressure and the microwave power levels did not significantly change the yellowness of the samples at indicated by the deltab values. However microwave-vacuum drying produced significant color changes in the L (white = 100 to black = 0) and a (green = -a to red = +a) values as indicated by deltaL and deltaa. Total color difference was dependent on microwave power and vacuum pressure levels. Water activity of the samples after drying ranged from 0.61 to 0.75 for moisture content range of 15.68 to 29.03%.

  18. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  19. The importance of the poikilohydric nature of lichens as natural tracers for delta18O of ambient vapour

    NASA Astrophysics Data System (ADS)

    Hartard, Britta; Cuntz, Matthias; Lakatos, Michael; Máguas, Cristina

    2010-05-01

    The stable isotope composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in poikilohydric organisms (i.e. lichens and bryophytes), where relative water content equilibrate with the surrounding humidity conditions and that are able to use distinct water sources such as precipitation, dew, fog and also water vapour. Moreover, lichens are ubiquitous organisms, and on a global scale, they are found in nearly all terrestrial ecosystems and also within these ecosystems they inhabit many microhabitats. As poikilohydric. especially green algal lichens are known to photosynthetically reactivate solely upon uptake of atmospheric moisture, even at non-saturated ambient humidity conditions. To understand basic isotope exchange processes on non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrates with the isotopic composition of surrounding water vapour. We found that the thallus water of lichens exposed to high relative humidity shows fast isotopic equilibration with the surrounding vapour regardless of whether the lichen experiences water loss or vapour uptake. The time until isotopic equilibrium is achieved depends on the initial water status as well as on the lichen's specific morphology. It ranged from 5 to 12h in previously dried lichens to approximately 40h in lichens previously rehydrated with liquid water of distinct isotopic composition. Even though markedly slower, isotopic equilibration between leaf water and ambient vapour may also occur in homoiohydric plants exposed to high relative humidity. At low relative humidity, however, the apparent vapour pressure deficit between the evaporative sites and the ambient air and the increased stomatal diffusion resistance generally causes leaf water enrichment. In contrast, poikilohydric lichens lack

  20. National Ambient Radiation Database

    SciTech Connect

    Dziuban, J.; Sears, R.

    2003-02-25

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  1. UV photochemistry of DNA in vitro and in Bacillus subtilis spores at earth-ambient and low atmospheric pressure: implications for spore survival on other planets or moons in the solar system.

    PubMed

    Nicholson, Wayne L; Setlow, Barbara; Setlow, Peter

    2002-01-01

    Two major parameters influencing the survival of Bacillus subtilis spores in space and on bodies within the Solar System are UV radiation and vacuum, both of which induce inactivating damage to DNA. To date, however, spore survival and DNA photochemistry have been explored only at the extremes of Earth-normal atmospheric pressure (101.3 kPa) and at simulated space vacuum (10(-3)-10(-6) Pa). In this study, wild-type spores, mutant spores lacking alpha/beta-type small, acid-soluble spore proteins (SASP), naked DNA, and complexes between SASP SspC and DNA were exposed simultaneously to UV (254 nm) at intermediate pressure (1-2 Pa), and the UV photoproducts cis,syn-thymine-thymine cyclobutane dimer (c,sTT), trans,syn-thymine-thymine cyclobutane dimer (t,sTT), and "spore photoproduct" (SP) were quantified. At 101.3 kPa, UV-treated wild-type spores accumulated only SP, but spores treated with UV radiation at 1-2 Pa exhibited a spectrum of DNA damage similar to that of spores treated at 10(-6) Pa, with accumulation of SP, c,sTT, and t,sTT. The presence or absence of alpha/beta-type SASP in spores was partly responsible for the shift observed between levels of SP and c,sTT, but not t,sTT. The changes observed in spore DNA photochemistry at 1-2 Pa in vivo were not reproduced by irradiation of naked DNA or SspC:DNA complexes in vitro, suggesting that factors other than SASP are involved in spore DNA photochemistry at low pressure.

  2. Simulations of high and low viscosity micro-scale droplets splashing on a dry surface

    NASA Astrophysics Data System (ADS)

    Boelens, Arnout; Latka, Andrzej; de Pablo, Juan

    When a droplet hits a dry surface at atmospheric pressure with a high enough impact velocity, it splashes and breaks apart into many smaller droplet. However, when the ambient gas pressure is reduced, splashing is suppressed. This is contrary to intuition, which suggest a more violent splash should occur at lower gas densities due to reduced drag forces. Although splashes of high and low viscosity liquids visually look very different, they also obey the pressure effect. In this study the effect of viscosity on splashing is investigated, to get a better understanding of the pressure effect in general. Simulation results are presented comparing splashing of low viscosity ethanol with high viscosity silicone oil in air. The droplets are several hundred microns large. The simulations are 2D, and are performed using a Volume Of Fluid approach. The contact line is described using the Generalized Navier Boundary Condition. Both the gas phase and the liquid phase are assumed to be incompressible. The results of the simulations show good agreement with experiments, including reproduction of the pressure effect, and suggest that the same scaling laws that apply to lamella formation in simple drop deposition, also apply to splashing droplets.

  3. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  4. Ambient plasma for metal surface treatment

    NASA Astrophysics Data System (ADS)

    Nuamatha, Prasad; Dhali, Shirshak

    2003-10-01

    The results of using ambient plasma for cleaning and treating metal surfaces are presented. Metal surfaces are cleaned with atmospheric pressure argon/hydrogen or argon/oxygen plasma. The cleaned surface was characterized by XPS and was found to consist of exposed metal with very low carbon content. Profilometry and optical imaging results show that plasma are very effective in removing oil and paint coatings from the surface of metals. This technique is a non-polluting alternative to surface treatments that currently use chemicals/solvents. In addition the plasma has been shown to improve the binding properties by uniformly hydroxylating the surface.

  5. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy.

    PubMed

    Eren, Baran; Heine, Christian; Bluhm, Hendrik; Somorjai, Gabor A; Salmeron, Miquel

    2015-09-01

    The chemical structure of a Cu(111) model catalyst during the CO oxidation reaction in the CO+O2 pressure range of 10-300 mTorr at 298-413 K was studied in situ using surface sensitive X-ray photoelectron and adsorption spectroscopy techniques [X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS)]. For O2:CO partial pressure ratios below 1:3, the surface is covered by chemisorbed O and by a thin (∼1 nm) Cu2O layer, which covers completely the surface for ratios above 1:3 between 333 and 413 K. The Cu2O film increases in thickness and exceeds the escape depth (∼3-4 nm) of the XPS and NEXAFS photoelectrons used for analysis at 413 K. No CuO formation was detected under the reaction conditions used in this work. The main reaction intermediate was found to be CO2(δ-), with a coverage that correlates with the amount of Cu2O, suggesting that this phase is the most active for CO oxidation.

  6. Acute cardiopulmonary effects induced by the inhalation of concentrated ambient particles during seasonal variation in the city of São Paulo.

    PubMed

    Brito, Jôse Mára de; Macchione, Mariângela; Yoshizaki, Kelly; Toledo-Arruda, Alessandra Choqueta; Saraiva-Romanholo, Beatriz Mangueira; Andrade, Maria de Fátima; Mauad, Thaís; Rivero, Dolores Helena Rodriguez Ferreira; Saldiva, Paulo Hilário Nascimento

    2014-09-01

    Ambient particles may undergo modifications to their chemical composition as a consequence of climatic variability. The determination of whether these changes modify the toxicity of the particles is important for the understanding of the health effects associated with particle exposure. The objectives were to determine whether low levels of particles promote cardiopulmonary effects, and to assess if the observed alterations are influenced by season. Mice were exposed to 200 μg/m(3) concentrated ambient particles (CAPs) and filtered air (FA) in cold/dry and warm/humid periods. Lung hyperresponsiveness, heart rate, heart rate variability, and blood pressure were evaluated 30 min after each exposure. After 24 h, blood and tissue samples were collected. During both periods (warm/humid and cold/dry), CAPs induced alterations in red blood cells and lung inflammation. During the cold/dry period, CAPs reduced the mean corpuscular volume levels and increased erythrocytes, hemoglobin, mean corpuscular hemoglobin concentration, and red cell distribution width coefficient variation levels compared with the FA group. Similarly, CAPs during the warm/humid period decreased mean corpuscular volume levels and increased erythrocytes, hemoglobin, hematocrit, and red cell distribution width coefficient variation levels compared with the FA group. CAPs during the cold/dry period increased the influx of neutrophils in the alveolar parenchyma. Short-term exposure to low concentrations of CAPs elicited modest but significant pulmonary inflammation and, to a lesser extent, changes in blood parameters. In addition, our data support the concept that changes in climate conditions slightly modify particle toxicity because equivalent doses of CAPs in the cold/dry period produced a more exacerbated response.

  7. CCN activation of ambient and "synthetic ambient" urban aerosol

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Reischl, Georg; Steiner, Gerhard; Bauer, Heidi; Leder, Klaus; Kistler, Magda; Puxbaum, Hans; Hitzenberger, R.

    2013-05-01

    In this study, the Cloud Condensation Nuclei (CCN) activation properties of the urban aerosol in Vienna, Austria, were investigated in a long term (11 month) field study. Filter samples of the aerosol below 100 nm were taken in parallel to these measurements, and later used to generate "synthetic ambient" aerosols. Activation parameters of this "synthetic ambient" aerosol were also obtained. Hygroscopicity parameters κ [1] were calculated both for the urban and the "synthetic ambient" aerosol and also from the chemical composition. Average κ for the "synthetic ambient" aerosol ranged from 0.20 to 0.30 with an average value of 0.24, while the κ from the chemical composition of this "synthetic ambient" aerosol was significantly higher (average 0.43). The full results of the study are given elsewhere [2,3].

  8. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2016-08-01

    Green bean (Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly (P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  9. Impact of extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin.

    PubMed

    Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann

    2012-01-11

    The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.

  10. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  11. Ambient pyrite in precambrian chert: new evidence and a theory.

    PubMed

    Knoll, A H; Barghoorn, E S

    1974-06-01

    Ambient pyrites of two distinct types were described from middle Precambrian rocks of the Lake Superior area. A new class of this phenomenon is here described from middle Precambrian chert from western Australia. The newly found ambient pyrites are quite minute and characteristically occur in groups forming a "starburst" pattern. All three types of ambient pyrite may be explained in terms of pressure solution initiated by gas evolution from organic material attached to the pyrite. Thermal degradation of the kerogen produces the gases which, due to the impermeability of the encompassing chert, build up the pressures necessary to initiate solution. Pyrite appendages bear a striking resemblance to micro-organisms and, thus, constitute the smallest pseudofossils known. PMID:16592159

  12. Ambient pyrite in precambrian chert: new evidence and a theory.

    PubMed

    Knoll, A H; Barghoorn, E S

    1974-06-01

    Ambient pyrites of two distinct types were described from middle Precambrian rocks of the Lake Superior area. A new class of this phenomenon is here described from middle Precambrian chert from western Australia. The newly found ambient pyrites are quite minute and characteristically occur in groups forming a "starburst" pattern. All three types of ambient pyrite may be explained in terms of pressure solution initiated by gas evolution from organic material attached to the pyrite. Thermal degradation of the kerogen produces the gases which, due to the impermeability of the encompassing chert, build up the pressures necessary to initiate solution. Pyrite appendages bear a striking resemblance to micro-organisms and, thus, constitute the smallest pseudofossils known.

  13. Ambient Pyrite in Precambrian Chert: New Evidence and a Theory

    PubMed Central

    Knoll, Andrew H.; Barghoorn, Elso S.

    1974-01-01

    Ambient pyrites of two distinct types were described from middle Precambrian rocks of the Lake Superior area. A new class of this phenomenon is here described from middle Precambrian chert from western Australia. The newly found ambient pyrites are quite minute and characteristically occur in groups forming a “starburst” pattern. All three types of ambient pyrite may be explained in terms of pressure solution initiated by gas evolution from organic material attached to the pyrite. Thermal degradation of the kerogen produces the gases which, due to the impermeability of the encompassing chert, build up the pressures necessary to initiate solution. Pyrite appendages bear a striking resemblance to micro-organisms and, thus, constitute the smallest pseudofossils known. Images PMID:16592159

  14. Drying of a coffee drop: differences between dry and wet tables?

    NASA Astrophysics Data System (ADS)

    Boulogne, François; Ingremeau, François; Stone, Howard

    2015-11-01

    We have all experienced that a coffee drop drying on a table leaves a ring stain. The radial flow in the drop coupled with a larger drying flux at its edge are the reasons for the particle accumulation in the liquid wedge. However, if the substrate is wet, the liquid surrounding the drop modifies the vapor distribution, and thus the drop evaporation dynamics. Our experimental observations show that the drying kinetics and the particle motion are affected by the ambient conditions. We rationalize our experimental findings with a model that describes the spatially varying evaporation as well as the temporal evolution of the particles forming the ring. We believe that these results are of practical interest for printing applications involving multiple drop systems or drying surfaces. F.B. acknowledges that the research leading to these results received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 623541.

  15. Estuarine ambient toxicity assessment

    SciTech Connect

    Hartwell, S.I.; Dawson, C.E.; Jordahl, D.M.

    1994-12-31

    This study was to determine if sediment and water column ambient toxicity bioassay results correlate with fish community IBI assessments in tributaries of the Chesapeake Bay watersheds that are impacted by industrial, urban and agricultural land use patterns. A battery of water column and sediment toxicity tests were conducted monthly in coordination with fish community sampling in four sub estuaries of the Chesapeake Bay. Fish were sampled with seines and bottom trawls. An association was found between dissolved oxygen and species richness in the trawls. Water column bioassays indicated mild toxicological contamination in industrial watershed estuaries. Results varied by month and species. Water quality in the rural and agricultural watershed estuaries was generally good. Sediment bioassays demonstrated significant toxicity in the industrialized area. Effects were seen in the urbanized estuary, but to a lesser extent. Fish egg survival effects were observed in the agricultural watershed estuary. The rural estuary sediment produced variable, but non-significant results. The industrial and urban sites were contaminated with heavy metals and organics.

  16. Using solar dryers to dry clay bricks

    SciTech Connect

    Bernal, J.A.; Wicker, R.B.

    1996-12-31

    Experiments using a small-scale solar dryer have been performed to determine the effect of incorporating solar dryers in the pre-firing stage of clay brick production. A comparison of brick moisture content over time is presented for dry bricks that underwent additional drying either naturally through direct exposure, in convection ovens set at 65.6 C and 104 C, in the solar dryer, or sealed in plastic bags. The ambient temperature and relative humidity were monitored along with the solar dryer temperature. Results indicated the solar dryer removed from one to two percent more moisture than natural drying, but removed less moisture than did the ovens. A similar comparison of wet bricks naturally dried, oven dried, and placed in the solar dryer for periods of five and seven days is also presented. The solar dryer reduced the amount of time required for bricks to be dried to a specified moisture content and increased the amount of moisture removed for a given amount of time.

  17. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance.

    PubMed

    Jiang, Bin; Liang, Yongmei; Xu, Chunming; Zhang, Jingyi; Hu, Miao; Shi, Quan

    2014-05-01

    Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (SIMDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O1, O2, N1, and S1 class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs. PMID:24702199

  18. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  19. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F)....

  20. Dry Mouth (Xerostomia)

    MedlinePlus

    ... Gum Disease TMJ Disorders Oral Cancer Dry Mouth Burning Mouth Tooth Decay See All Oral Complications of Systemic ... mouth trouble chewing, swallowing, tasting, or speaking a burning feeling in the mouth a dry feeling in the throat cracked lips ...

  1. Dry Skin (Xerosis)

    MedlinePlus

    ... skin, which may bleed if severe. Chapped or cracked lips. When dry skin cracks, germs can get ... cause the skin to become dry, raw, and cracked. Swimming : Some pools have high levels of chlorine, ...

  2. Influence of drying on the flavor quality of spearmint (Mentha spicata L.).

    PubMed

    Díaz-Maroto, M Consuelo; Pérez-Coello, M Soledad; González Viñas, M A; Cabezudo, M Dolores

    2003-02-26

    Spearmint (Mentha spicata L.) was dried using three different drying methods: oven-drying at 45 degrees C, air-drying at ambient temperature, and freeze-drying. The effect of the drying method on the volatile compounds and on the structural integrity and sensory characteristics of the spice was evaluated. The volatile components from fresh and dried spearmint samples were isolated by simultaneous distillation-extraction (SDE) and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 28 compounds were identified, carvone, limonene, and 1,8-cineole, in that order, being the main components in all of the samples. Oven-drying at 45 degrees C and air-drying at ambient temperature were the methods that produced the best results. An increase in monoterpenes was observed in all of the dried samples, except in the freeze-dried samples that underwent freezing at -198 degrees C. Freeze-drying resulted in substantial losses in oxygenated terpenes and sesquiterpenes. The effect of each drying method on leaf structure was observed by scanning electron microscopy. From a sensory standpoint, drying the spearmint brought about a decrease in herbaceous and floral notes together with an increase in minty odor.

  3. Coupled motion in proteins revealed by pressure perturbation

    PubMed Central

    Fu, Yinan; Kasinath, Vignesh; Moorman, Veronica R.; Nucci, Nathaniel V.; Hilser, Vincent J.; Wand, A. Joshua

    2012-01-01

    The cooperative nature of protein substructure and internal motion is a critical aspect of their functional competence about which little is known experimentally. NMR relaxation is used here to monitor the effects of high-pressure on fast internal motion in the protein ubiquitin. In contrast to the main chain, the motions of the methyl-bearing side chains have a large and variable pressure dependence. Within the core, this pressure sensitivity correlates with the magnitude of motion at ambient pressure. Spatial clustering of the dynamic response to applied hydrostatic pressure is also seen indicating localized cooperativity of motion on the sub-nanosecond time scale and suggesting regions of variable compressibility. These and other features indicate that the native ensemble contains a significant fraction of members with characteristics ascribed to the recently postulated “dry molten globule.” The accompanying variable side chain conformational entropy helps complete our view of the thermodynamic architecture underlying protein stability, folding and function. PMID:22452540

  4. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen B

    2013-01-14

    An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2). PMID:23172123

  5. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  6. Microbial activity in deep marine sediments: does pressure make the difference?

    NASA Astrophysics Data System (ADS)

    Picard, Aude; Ferdelman, Timothy G.

    2012-07-01

    We attempted to evaluate the effects of high hydrostatic pressure on microbial heterotrophic activity in deep marine sediments from the Atlantic Ocean. We investigated the potential respiration rates (acetate/glucose oxidation to CO2) in oxic sediments recovered from up to ~4500 m water depth. Incubations were performed at ambient pressure and at near in situ pressure (~40-45 MPa) with sediments stored at ambient pressure and at in situ pressure. Potential respiration rates in sediments stored at ambient pressure were lower when measured at in situ pressure than when measured at ambient pressure, independently of the substrate used. It appears that the pressure of storage is critical since potential respiration rates of sediments stored at in situ pressure were higher than in the counterpart sediments stored at ambient pressure.

  7. Viewpoint-based ambient occlusion.

    PubMed

    González, Francisco; Sbert, Mateu; Feixas, Miquel

    2008-01-01

    A new ambient occlusion technique builds a channel between various viewpoints and an object's polygons, providing the information needed to create an occlusion map with multiple application possibilities. PMID:18350932

  8. Artifacts in ambient toxicity testing

    SciTech Connect

    Kszos, L.A.; Stewart, A.J.

    1992-01-01

    Short-term toxicity tests with fathead minnow (Pimephales promelas) larvae and Ceriodaphnia dubia can be used to estimate the acute or chronic toxicity of effluents or receiving water. The results of effluent toxicity tests may need to be interpreted differently from the results of ambient toxicity tests. In this paper we provide examples of common artifacts, which can cause either false positives or false negatives, that we have encountered when these tests are used in ambient assessments. The examples we provide are drawn from diverse effluent and ambient water toxicity tests conducted at the Oak Ridge National Laboratory from March, 1985 through November, 1991. Three types of artifacts which have been encountered when using these tests in ambient applications are explored here. One type involves unusual replicate-specific variance in survival of fathead minnow larvae. The second and third types of artifacts affect the C. dubia test and appear to be related to food availability.

  9. Artifacts in ambient toxicity testing

    SciTech Connect

    Kszos, L.A.; Stewart, A.J.

    1992-10-01

    Short-term toxicity tests with fathead minnow (Pimephales promelas) larvae and Ceriodaphnia dubia can be used to estimate the acute or chronic toxicity of effluents or receiving water. The results of effluent toxicity tests may need to be interpreted differently from the results of ambient toxicity tests. In this paper we provide examples of common artifacts, which can cause either false positives or false negatives, that we have encountered when these tests are used in ambient assessments. The examples we provide are drawn from diverse effluent and ambient water toxicity tests conducted at the Oak Ridge National Laboratory from March, 1985 through November, 1991. Three types of artifacts which have been encountered when using these tests in ambient applications are explored here. One type involves unusual replicate-specific variance in survival of fathead minnow larvae. The second and third types of artifacts affect the C. dubia test and appear to be related to food availability.

  10. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...

  11. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system. PMID:11859192

  12. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system.

  13. Measuring barometric pressure with a manifold pressure sensor in a microprocessor based engine control system

    SciTech Connect

    Pauwels, M.A.; Wright, D.O.

    1986-07-15

    A microprocessor based electronic engine control system is described for an internal combustion engine, a method for updating the stored ambient pressure signal by measuring the ambient barometric pressure during engine operation using a manifold pressure sensor. The method consists of: generating timing signals indicating the rotational position of an engine member and including a signal indicating a predetermined rotational position in the rotation of the engine member; generating a pressure signal from the manifold pressure sensor representing the pressure surrounding the sensor in response to the predetermined rotational position; reading the value of ambient barometric pressure stored in the memory of the microprocessor; comparing the value of the barometric pressure stored in the memory of the microprocessor and the value of the pressure signal; increasing the value of the barometric pressure by one unit to generate a new barometric pressure value when the value of the pressure signal is greater than the value of the barometric pressure; comparing the new barometric pressure value with a predetermined fixed constant representing the maximum barometric pressure; and storing in the memory of the microprocessor either the new barometric pressure value if equal to or less than the fixed constant or the value of the maximum barometric pressure if the new barometric pressure value is greater than the fixed constant.

  14. Ambient Noise in an Urbanized Tidal Channel

    NASA Astrophysics Data System (ADS)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  15. Studies on drying and storage of chilgoza (Pinus gerardiana) nuts.

    PubMed

    Thakur, N S; Sharma, Somesh; Gupta, Rakesh; Gupta, Atul

    2014-09-01

    Present studies were undertaken with the aim of screening a suitable mode of drying and packaging material for storage of chilgoza nuts. A temperature of 55 °C was found most suitable for the drying of nuts in cabinet drier. Cabinet drier was found the best drying mode among four for drying of chilgoza nuts on the basis of quality characteristics such as moisture, water activity and sensory attributes. Further, out of five packaging materials selected in the study, glass jar followed by aluminium laminate pouch was found to be suitable for the packing and storage of dried nuts in ambient conditions for 6 months on the basis of retention of better physico-chemical and sensory attributes. PMID:25190868

  16. Effect of far-infrared radiation assisted microwave-vacuum drying on drying characteristics and quality of red chilli.

    PubMed

    Saengrayap, Rattapon; Tansakul, Ampawan; Mittal, Gauri S

    2015-05-01

    Fresh red chilli (Capsicum frutescens L.) was dried using microwave-vacuum drying (MVD) and the far-infrared radiation assisted microwave-vacuum drying (FIR-MVD) method. The MVD was operated using the microwave power of 100, 200 and 300 W under absolute pressure of 21.33, 28.00 and 34.66 kPa. In terms of FIR-MVD, far-infrared power was applied at 100, 200 and 300 W. The effect of drying conditions, i.e., microwave power, absolute pressure and FIR power, on drying characteristics and qualities of dried product were investigated. It was observed that an increase in microwave power and FIR power with a decrease in absolute pressure could accelerate the drying rate. It was also found that FIR-MVD method required shorter drying time than MVD. Moreover, qualities, i.e., color changes, texture, rehydration ability and shrinkage, of FIR-MVD chilli were found to be better than those of MVD. Consequently, the optimum drying condition of FIR-MVD within this study was microwave power of 300 W under absolute pressure of 21.33 kPa with FIR power of 300 W.

  17. Fuel distributions from pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Lefebvre, A. H.; Ortman, J.

    1985-02-01

    Measurements are made of the radial fuel distributions obtained with various types of pressure-swirl (simplex) atomizers, using a 'patternator' which comprises 29 sampling tubes placed 4.5 deg apart on an arc of 10 cm. The patternator is mounted in a pressure vessel 10 cm below the fuel nozzle with the nozzle axis located at the center of curvature. The volume of fuel collected in each tube is proportional to the fuel flow at the sampling point. The results of tests performed over wide ranges of fuel injection pressure and ambient pressure show that spray angles diminish with increases in ambient gas pressure up to around 0.69 MPa (100 psia), above which they remain sensibly constant. Changes in the fuel injection pressure have differing effects on spray-cone angle depending on the ambient pressure. At normal atmospheric pressure an increase in fuel injection pressure causes the spray angle to first widen and then contract. At ambient pressures above around 2 atm the spray contracts continuously with increase in fuel injection pressure. Measurements of circumferential fuel distribution show that some nozzle designs possess a high degree of uniformity, while others exhibit significant deviations from the mean value.

  18. Dephosphorization when using DRI

    SciTech Connect

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon University’s Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  19. Monoclinic deformation of calcite crystals at ambient conditions

    NASA Astrophysics Data System (ADS)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  20. To Dry Or Not To Dry

    ERIC Educational Resources Information Center

    Oaks, Audrey E.

    1977-01-01

    Perhaps one of the most frustrating problems which confront many teachers is lack of adequate drying space or facilities for prints, paintings and three-dimensional art activities. Suggests requirements necessary for an adequate storage unit and how to construct one. (Author/RK)

  1. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2011-01-01

    The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crewmembers to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crewmember. Over a two year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. After four years on-orbit, this paper will review failures that have occurred and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.

  2. Dynamic Stratification in Drying Films of Colloidal Mixtures

    NASA Astrophysics Data System (ADS)

    Fortini, Andrea; Martín-Fabiani, Ignacio; De La Haye, Jennifer Lesage; Dugas, Pierre-Yves; Lansalot, Muriel; D'Agosto, Franck; Bourgeat-Lami, Elodie; Keddie, Joseph L.; Sear, Richard P.

    2016-03-01

    In simulations and experiments, we study the drying of films containing mixtures of large and small colloidal particles in water. During drying, the mixture stratifies into a layer of the larger particles at the bottom with a layer of the smaller particles on top. We developed a model to show that a gradient in osmotic pressure, which develops dynamically during drying, is responsible for the segregation mechanism behind stratification.

  3. Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications

    NASA Astrophysics Data System (ADS)

    Ouertani, Sahbi; Koubaa, Ahmed; Azzouz, Soufien; Hassini, Lamine; Dhib, Kamel Ben; Belghith, Ali

    2014-12-01

    Wood can be dried rapidly using combined contact heating and low vacuum. However, the impact on Jack pine wood drying and its mechanical strength remains unclear. The aim of this paper was to determine the kinetics of vacuum contact drying of Jack pine (Pinus banksiana) wood boards (dimensions 50 × 100 × 2480 mm3) under various drying temperatures and vacuum pressures at a pilot scale. Drying temperatures and vacuum pressures ranged from 65 to 95 °C and from 169.32 to 507.96 mbar, respectively. Dried samples were subjected to flexural loading to determine mechanical strength. Results indicated that drying time decreased with higher drying temperature and vacuum pressure, where as decreased vacuum pressure increased the temperature of wood samples at a constant drying temperature. Results also indicated that the mechanical properties of dried samples were affected by drying temperature, vacuum pressure, and lumber grade. Mechanical test results were then compared to those for a conventional drying process, revealing that vacuum contact drying do not have a negative impact on the wood mechanical properties.

  4. Tray Drying of Solids.

    ERIC Educational Resources Information Center

    Afacan, Artin; Masliyah, Jacob

    1984-01-01

    Describes a drying experiment useful in presenting the concept of simultaneous heat and mass transfer. Background information, equipment requirements, experimental procedures, and results are provided. The reasonably good agreement in the calculated rate of drying and that observed experimentally makes students feel confident in applying…

  5. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing.

    PubMed

    Pompach, Petr; Benada, Oldřich; Rosůlek, Michal; Darebná, Petra; Hausner, Jiří; Růžička, Viktor; Volný, Michael; Novák, Petr

    2016-09-01

    We present a technology that allows the preparation of matrix-assisted laser desorption/ionization (MALDI)-compatible protein chips by ambient ion landing of proteins and successive utilization of the resulting protein chips for the development of bioanalytical assays. These assays are based on the interaction between the immobilized protein and the sampled analyte directly on the protein chip and subsequent in situ analysis by MALDI mass spectrometry. The electrosprayed proteins are immobilized on dry metal and metal oxide surfaces, which are nonreactive under normal conditions. The ion landing of electrosprayed protein molecules is performed under atmospheric pressure by an automated ion landing apparatus that can manufacture protein chips with a predefined array of sample positions or any other geometry of choice. The protein chips prepared by this technique are fully compatible with MALDI ionization because the metal-based substrates are conductive and durable enough to be used directly as MALDI plates. Compared to other materials, the nonreactive surfaces show minimal nonspecific interactions with chemical species in the investigated sample and are thus an ideal substrate for selective protein chips. Three types of protein chips were used in this report to demonstrate the bioanalytical applications of ambient ion landing. The protein chips with immobilized proteolytic enzymes showed the usefulness for fast in situ peptide MALDI sequencing; the lectin-based protein chips showed the ability to enrich glycopeptides from complex mixtures with subsequent MALDI analysis, and the protein chips with immobilized antibodies were used for a novel immunoMALDI workflow that allowed the enrichment of antigens from the serum followed by highly specific MALDI detection. PMID:27478994

  6. Packaged kiln dried firewood

    SciTech Connect

    Cutrara, A.

    1986-07-01

    A process is described for kiln drying firewood consisting of essentially uniform lengths of split firewood pieces, the process comprising splitting essentially uniform lengths of green tree logs to form firewood pieces, placing the firewood pieces in open mesh bags to provide a plurality of bags of firewood, placing the plurality of bags of green firewood pieces in a kiln drying oven, kiln drying the pieces at temperatures in excess of 150/sup 0/F. by moving heated air over the pieces until the pieces have an overall moisture content ranging from 15% up to 30% by weight, operating the kiln at a temperature below a level which would render the structural characteristics of the bag useless and removing the kiln dried firewood pieces in the plurality of bags from the kiln drying oven.

  7. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  8. Ambient acceleration dependence of single-bubble sonoluminescence.

    PubMed

    Thomas, Charles R; Roy, Ronald A; Holt, R Glynn

    2011-11-01

    Much of the research performed to study SBSL deals with the influence of external parameters (e.g., the host water temperature, the ambient pressure, the type and amount of dissolved gas in the liquid, to name a few) on the bubble dynamics and light emission. In the current paper, work carried out to study the influence of another external parameter-ambient acceleration-is described. The experiments described here were performed on the NASA KC-135 which provided both periods of reduced gravity (10(-3) g) and increased gravity (1.8 g) by flying repeated parabolic maneuvers. The resulting measurements are compared with the predictions of a numerical model and can be understood in the context of the changing hydrostatic head pressure and buoyant force acting on the bubble.

  9. Ambient curing fire resistant foams

    NASA Technical Reports Server (NTRS)

    Hamermesh, C. L.; Hogenson, P. A.; Tung, C. Y.; Sawko, P. M.; Riccitiello, S. R.

    1979-01-01

    The feasibility of development of an ambient curing foam is described. The thermal stability and flame spread index of the foams were found to be comparable to those of the high-temperature cured polyimide foams by Monsanto two-foot tunnel test and NASA T-3 Fire test. Adaptation of the material to spray in place applications is described

  10. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  11. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  12. Influence of factors on the drying of cassava in a solar simulator

    SciTech Connect

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    In tropical countries, sun drying is still the most popular method used for processing root and tuber crops like cassava and yam. Relatively very little has been done on studying the kinetics of sun drying a bed of chips of cassava and similar crops, but this information is invaluable in finding options for reducing drying time and costs, and increasing tonnage produced. This project studied some factors that have an effect on the sun drying rate of cassava chips. The factors were ambient temperature, relative humidity, radiation intensity, air velocity, and loading density. A solar simulation chamber was constructed so that drying could be achieved under controllable conditions similar to those obtained in sun drying. Experiments carried out in the simulator revealed that temperature had the most significant effect on drying rate, followed by air velocity, and radiation intensity. Regression equations were developed relating the drying rate with the factors studied.

  13. LASIK and dry eye.

    PubMed

    Toda, Ikuko

    2007-01-01

    Dry eye is one of the most common complications after laser-assisted in situ keratomileusis (LASIK). The clinical signs of post-LASIK dry eye include positive vital staining of ocular surface, decreased tear film breakup time and Schirmer test, reduced corneal sensitivity, and decreased functional visual acuity. The symptoms and signs last at least 1 month after LASIK. Although the mechanisms for developing post-LASIK dry eye are not completely understood, loss of corneal innervation by flap-making may affect the reflex loops of the corneal-lacrimal gland, corneal-blinking, and blinking-meibomian gland, and blinking-meibomian gland, resulting in decreased aqueous and lipid tear secretion and mucin expression. As LASIK enhancement by flap-lifting induces less dry eye symptoms and signs than first surgery, it is suggested that other factors rather than loss of neurotrophic effect may be involved in the mechanisms of post-LASIK dry eye. The treatments of dry eye include artificial tears, topical cyclosporine, hot compress, punctal plugs, and autologous serum eye drops. For patients with severe preoperative dry eye, a combination of punctal plugs and serum eye drops is required to be used before surgery.

  14. Ambient air metallic pollutant study at HAF areas during 2013-2014

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie

    2015-05-01

    This study characterized diurnal variations of the total suspended particulate (TSP) concentrations, dry deposition flux and dry deposition velocity of metallic elements at Taichung Harbor (Harbor), Gong Ming Junior High School (Airport) and Sha lu Farmland (Farmland) sampling sites in central Taiwan between August, 2013 and July, 2014 in this study. The result indicated that: 1) the ambient air particulate concentrations, dry depositions were displayed as Harbor > Farmland > Airport during the day time sampling period. However, dry deposition velocities were shown as Airport > Harbor > Farmland for this study. 2) The ambient air particulate concentrations, dry depositions were displayed as Airport > Harbor > Farmland during the night time sampling period. However, dry deposition velocities were shown as Farmland > Harbor > Airport for this study. 3) The metallic element Zn has the average highest concentrations at Airport, Harbor and Farmland among all the metallic elements during the day time sampling period in this study. 4) There were significant differences for the metallic elements (Cr, Cu, Zn and Pb) in dry depositions at these three characteristic sampling sites (HAF) for the night time sampling period. The only exception is metallic element Cd. It displayed that there were no significant differences for the metallic element Cd at the Airport and Farmland sampling sites during the night time sampling period. 5) The average highest values for the metallic element Cu in TSP among the three characteristic sampling sites occurred during the fall and winter seasons for this study. As for the dry depositions, the average highest values in dry deposition among the three characteristic sampling sites occurred during the spring and summer seasons for this study. 6) The average highest values for the metallic element Cd in TSP among the three characteristic sampling sites occurred during the spring and summer seasons for this study. As for the dry depositions, the

  15. 2. INTERIOR OF SAND DRAINING & DRYING BUILDING WITH DRYING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR OF SAND DRAINING & DRYING BUILDING WITH DRYING BINS TO THE RIGHT, LOOKING SOUTHWEST - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  16. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  17. Ambient Noise in an Urbanized Tidal Channel

    NASA Astrophysics Data System (ADS)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  18. Drying a tuberculosis vaccine without freezing.

    PubMed

    Wong, Yun-Ling; Sampson, Samantha; Germishuizen, Willem Andreas; Goonesekera, Sunali; Caponetti, Giovanni; Sadoff, Jerry; Bloom, Barry R; Edwards, David

    2007-02-20

    With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present bacillus Calmette-Guérin (BCG) vaccine. We demonstrate that BCG vaccine can be dried without traditional freezing and maintained with remarkable refrigerated and room-temperature stability for months through spray drying. Studies with a model Mycobacterium (Mycobacterium smegmatis) revealed that by removing salts and cryoprotectant (e.g., glycerol) from bacterial suspensions, the significant osmotic pressures that are normally produced on bacterial membranes through droplet drying can be reduced sufficiently to minimize loss of viability on drying by up to 2 orders of magnitude. By placing the bacteria in a matrix of leucine, high-yield, free-flowing, "vial-fillable" powders of bacteria (including M. smegmatis and M. bovis BCG) can be produced. These powders show relatively minor losses of activity after maintenance at 4 degrees C and 25 degrees C up to and beyond 4 months. Comparisons with lyophilized material prepared both with the same formulation and with a commercial formulation reveal that the spray-dried BCG has better overall viability on drying.

  19. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... called diastole. Normal blood pressure is considered to be a systolic blood pressure of 115 millimeters of ... pressure reading of 140 over 90, he would be evaluated for having high blood pressure. If left ...

  20. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment.

    PubMed

    Naghshineh, Mahsa; Olsen, Karsten; Georgiou, Constantinos A

    2013-01-15

    The application of high hydrostatic pressure technology for enzymatic extraction of pectin was evaluated. Cellulase and xylanase under five different combinations (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel. Extraction yield, galacturonic acid (GalA) content, average molecular weight (M(w,ave)), intrinsic viscosity [η](w), and degree of esterification (DE) were compared to those parameters obtained for pectins extracted using acid and aqueous processes. Pressure level, type and concentration of enzyme significantly (p<0.05) influenced yield and DE of pectin. Enzyme and high pressure extraction resulted in yields which were significantly (p<0.05) higher than those using acid and aqueous extraction. Although pressure-induced enzymatic treatment improves pectin yield, it does not have any significant effect on M(w,ave) and [η](w) of pectin extracts indicating the potential of high pressure treatment for enzymatic pectin production as a novel and sustainable process.

  1. Dry Skin (Xerosis)

    MedlinePlus

    ... by medical conditions, such as atopic dermatitis and malnutrition. Dry skin develops due to a decrease in ... Diabetes Hypothyroidism Down syndrome Liver or kidney disease Malnutrition HIV/AIDS Lymphoma Signs and Symptoms The most ...

  2. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  3. Dry electrodes for electrocardiography.

    PubMed

    Meziane, N; Webster, J G; Attari, M; Nimunkar, A J

    2013-09-01

    Patient biopotentials are usually measured with conventional disposable Ag/AgCl electrodes. These electrodes provide excellent signal quality but are irritating for long-term use. Skin preparation is usually required prior to the application of electrodes such as shaving and cleansing with alcohol. To overcome these difficulties, researchers and caregivers seek alternative electrodes that would be acceptable in clinical and research environments. Dry electrodes that operate without gel, adhesive or even skin preparation have been studied for many decades. They are used in research applications, but they have yet to achieve acceptance for medical use. So far, a complete comparison and evaluation of dry electrodes is not well described in the literature. This work compares dry electrodes for biomedical use and physiological research, and reviews some novel systems developed for cardiac monitoring. Lastly, the paper provides suggestions to develop a dry-electrode-based system for mobile and long-term cardiac monitoring applications.

  4. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Hydrogen Confinement in Carbon Nanopores: Extreme Densification at Ambient Temperature

    SciTech Connect

    Gallego, Nidia C; He, Lilin; Saha, Dipendu; Contescu, Cristian I; Melnichenko, Yuri B

    2011-01-01

    In-situ small angle neutron scattering (SANS) studies of hydrogen confined in small pores of polyfurfuryl alcohol-derived activated carbon (PFAC) at room-temperature provided for the first time its phase behavior in equilibrium with external H2 at pressures up to 200 bar. The data was used to evaluate the density of the adsorbed fluid, which appears to be a function of both pore size and pressure, and approaches the liquid hydrogen density in narrow nanopores at 200 bar. The surface-molecule interactions responsible for densification of hydrogen within the pores create internal pressures which exceed by a factor of up to ~ 60 the external gas pressures, confirming the benefits of adsorptive over compressive storage. These results can be utilized to guide the development of new carbon adsorbents tailored for maximum hydrogen storage capacities at near ambient temperatures.

  6. Pharmaceutical spray freeze drying.

    PubMed

    Wanning, Stefan; Süverkrüp, Richard; Lamprecht, Alf

    2015-07-01

    Pharmaceutical spray-freeze drying (SFD) includes a heterogeneous set of technologies with primary applications in apparent solubility enhancement, pulmonary drug delivery, intradermal ballistic administration and delivery of vaccines to the nasal mucosa. The methods comprise of three steps: droplet generation, freezing and sublimation drying, which can be matched to the requirements given by the dosage form and route of administration. The objectives, various methods and physicochemical and pharmacological outcomes have been reviewed with a scope including related fields of science and technology.

  7. Acoustoconvection Drying of Meat

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2016-03-01

    The dynamics of moisture extraction from meat samples by the acoustoconvection and thermoconvection methods has been investigated. To describe the dynamics of moisture extraction from meat, we propose a simple relaxation model with a relaxation time of 8-10 min in satisfactorily describing experimental data on acoustoconvection drying of meat. For thermoconvection drying the relaxation time is thereby 30 and 45 min for the longitudinal and transverse positions of fibers, respectively.

  8. Structural lubricity under ambient conditions

    PubMed Central

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  9. Structural lubricity under ambient conditions

    NASA Astrophysics Data System (ADS)

    Cihan, Ebru; Ipek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-06-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (~4,000-130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions.

  10. Structural lubricity under ambient conditions.

    PubMed

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000-130,000 nm(2)) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  11. Characterization and Application of Microplasma Devices for Ambient Mass Spectrometry and Surface Analysis

    NASA Astrophysics Data System (ADS)

    Symonds, Joshua; Gann, Reuben; Fernández, Facundo; Orlando, Thomas

    2012-10-01

    In ambient mass spectrometry, ionization sources with broad chemical compatibility, low fragmentation, and high reliability are one of the keys necessary to enable effective and rapid analysis of unknown samples. One such approach, employing a variety of ambient-pressure microplasma discharges, has demonstrated itself to be a promising technique with a variety of successful applications and results. This class of devices holds a competitive edge over alternative ambient ionization methods when cost and portability are a concern: microplasmas typically require only modest electrical power and minimal gas flows to operate. We have developed our own such devices and methods, and look more closely into the physical nature of what makes particular designs successful. We focus on the development of these devices to perform mass spectrometry imaging in tandem with optical microscope imaging of samples at ambient pressure. Additionally, we investigate the use of microplasma devices for production of VUV photons, another highly effective ionization source.

  12. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.

  13. Device for drying and preheating coking coal

    SciTech Connect

    Petrovic, V.; Durselen, H.

    1984-11-13

    In order to preserve the quality of treated coking coal, the drying and preheating operation is performed in consecutive stages. For this purpose, a set of superimposed containers is provided with vertically oriented pipes for a heating medium, the pipes in each container having separate inlets and outlets. The bottom region of each container is further provided with horizontally directed pipes having separate inlet and outlet for receiving a pressure medium which is discharged into the bottom region of each container to produce a whirling bed of the coal. In this manner, the coal is preliminarily dried in the uppermost container, then additionally dried and preheated in the intermediate container, and heated to the desired final temperature in the lowermost container.

  14. Ambient resonance of rock arches

    NASA Astrophysics Data System (ADS)

    Starr, Alison Margaret

    Resonant frequencies of structural elements are related to fundamental material properties of mass and stiffness, and monitoring over time can thus serve as an indirect indictor of internal mechanical change. Until now, however, this methodology has not been applied to natural rock structures such as arches and towers. We evaluated the resonance characteristics of four rock arches in southeastern Utah, combining in-situ ambient vibration measurements with numerical modal analysis. At each location, we measured the spectral and polarization attributes of ambient vibrations using up to two broadband seismometers. Ambient vibration spectra measured on the arches showed clear peaks at distinct frequencies (typically between 1-10 Hz), which we interpret as resonant frequencies, as opposed to the relatively flat spectra recorded on nearby bedrock. Polarization analysis helped us identify the orientations of vibration and explore resonant mode shapes. We then verified the measured resonant frequencies through 3D finite-element numerical modal analysis, and in most cases we were able to match the fundamental along with several higher-order modes. Repeat occupation and short-term continuous ambient vibration monitoring were aimed at assessing daily and seasonal changes in resonant frequencies, which in turn may provide evidence of internal mechanical change; Mesa Arch in Canyonlands National Park served as the main focus for our repeat measurements. Results revealed that minor, reversible changes in resonant frequencies can be created by thermal effects, i.e., changes in bulk material stiffness as the arch expands and contracts on daily and seasonal time scales. No irreversible change in the resonant frequency of Mesa Arch was detected over the period of this study. Our research provides the first step towards monitoring the long-term structural health of natural rock arches as they change through time or in the wake of a damaging event. We have shown that the resonance

  15. Effect of ambient temperature and humidity on emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.

    1977-01-01

    The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions.

  16. Ocean ambient sound south of Bermuda and Panama Canal traffic.

    PubMed

    Širović, Ana; Hildebrand, John A; McDonald, Mark A

    2016-05-01

    Comparisons of current and historic ocean ambient noise levels are rare, especially in the North Atlantic. Recent (2013-2014) monthly patterns in ocean ambient sound south of Bermuda were compared to those recorded at the same location in 1966. Additionally, trends in ocean traffic, in particular, Panama Canal traffic, over this time were also investigated. One year of ocean ambient noise measurements were collected in 1966 using cabled, omnidirectional hydrophones at the U.S. Navy Tudor Hill Laboratory in Bermuda, and repeat measurements were collected at the same location from June 2013-May 2014 using a High-frequency Acoustic Recording Package. Average monthly pressure spectrum levels at 44 Hz increased 2.8 ± 0.8 dB from 1966 to 2013, indicating an average increase of 0.6 dB/decade. This low level of increase may be due to topographic shielding at this site, limiting it to only southern exposure, and the limit in the number of ship transits through the Panama Canal, which did not change substantially during this time. The impending expansion of the Canal, which will enable the transit of larger ships at twice the current rate, is likely to lead to a substantial increase in ocean ambient sound at this location in the near future. PMID:27250138

  17. Ocean ambient sound south of Bermuda and Panama Canal traffic.

    PubMed

    Širović, Ana; Hildebrand, John A; McDonald, Mark A

    2016-05-01

    Comparisons of current and historic ocean ambient noise levels are rare, especially in the North Atlantic. Recent (2013-2014) monthly patterns in ocean ambient sound south of Bermuda were compared to those recorded at the same location in 1966. Additionally, trends in ocean traffic, in particular, Panama Canal traffic, over this time were also investigated. One year of ocean ambient noise measurements were collected in 1966 using cabled, omnidirectional hydrophones at the U.S. Navy Tudor Hill Laboratory in Bermuda, and repeat measurements were collected at the same location from June 2013-May 2014 using a High-frequency Acoustic Recording Package. Average monthly pressure spectrum levels at 44 Hz increased 2.8 ± 0.8 dB from 1966 to 2013, indicating an average increase of 0.6 dB/decade. This low level of increase may be due to topographic shielding at this site, limiting it to only southern exposure, and the limit in the number of ship transits through the Panama Canal, which did not change substantially during this time. The impending expansion of the Canal, which will enable the transit of larger ships at twice the current rate, is likely to lead to a substantial increase in ocean ambient sound at this location in the near future.

  18. Dry Dock No. 3. View of head of Dry Dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dry Dock No. 3. View of head of Dry Dock with stair to right of shot. View facing west - U.S. Naval Base, Pearl Harbor, Dry Dock No. 3, On northern shoreline of shipyard, west of Dry Dock Nos. 1 & 2, near the intersection of Avenue G and Sixth Street, Pearl City, Honolulu County, HI

  19. Simple sperm preservation by freeze-drying for conserving animal strains.

    PubMed

    Kaneko, Takehito

    2015-01-01

    Freeze-drying spermatozoa is the ultimate method for the maintenance of animal strains, in that the gametes can be preserved for a long time in a refrigerator at 4 °C. Furthermore, it is possible to realize easy and safe transportation of spermatozoa at an ambient temperature that requires neither liquid nitrogen nor dry ice. Freeze-drying spermatozoa has been established as a new method for storing genetic resources instead of cryopreservation using liquid nitrogen. This chapter introduces our latest protocols for freeze-drying of mouse and rat spermatozoa, and the anticipated results of the fertilizing ability of these gametes following long-term preservation or transportation. PMID:25408416

  20. Dynamics of cracking in drying colloidal sheets.

    PubMed

    Sengupta, Rajarshi; Tirumkudulu, Mahesh S

    2016-04-01

    Colloidal dispersions are known to display a fascinating network of cracks on drying. We probe the fracture mechanics of free-standing films of aqueous polymer-particle dispersions. Thin films of the dispersion are cast between a pair of plain steel wires and allowed to dry under ambient conditions. The strain induced on the particle network during drying is relieved by cracking. The stress which causes the films to crack has been calculated by measuring the deflection of the wires. The critical cracking stress varied inversely to the two-thirds' power of the film thickness. We also measure the velocity of the tip of a moving crack. The motion of a crack has been modeled as a competition between the release of the elastic energy stored in the particle network, the increase in surface energy as a result of the growth of a crack, the rate of viscous dissipation of the interstitial fluid and the kinetic energy associated with a moving crack. There is fair agreement between the measured crack velocities and predictions.

  1. Dynamics of cracking in drying colloidal sheets.

    PubMed

    Sengupta, Rajarshi; Tirumkudulu, Mahesh S

    2016-04-01

    Colloidal dispersions are known to display a fascinating network of cracks on drying. We probe the fracture mechanics of free-standing films of aqueous polymer-particle dispersions. Thin films of the dispersion are cast between a pair of plain steel wires and allowed to dry under ambient conditions. The strain induced on the particle network during drying is relieved by cracking. The stress which causes the films to crack has been calculated by measuring the deflection of the wires. The critical cracking stress varied inversely to the two-thirds' power of the film thickness. We also measure the velocity of the tip of a moving crack. The motion of a crack has been modeled as a competition between the release of the elastic energy stored in the particle network, the increase in surface energy as a result of the growth of a crack, the rate of viscous dissipation of the interstitial fluid and the kinetic energy associated with a moving crack. There is fair agreement between the measured crack velocities and predictions. PMID:26924546

  2. Nonlinear Elasticity in a Deforming Ambient Space

    NASA Astrophysics Data System (ADS)

    Yavari, Arash; Ozakin, Arkadas; Sadik, Souhayl

    2016-07-01

    In this paper, we formulate a nonlinear elasticity theory in which the ambient space is evolving. For a continuum moving in an evolving ambient space, we model time dependency of the metric by a time-dependent embedding of the ambient space in a larger manifold with a fixed background metric. We derive both the tangential and the normal governing equations. We then reduce the standard energy balance written in the larger ambient space to that in the evolving ambient space. We consider quasi-static deformations of the ambient space and show that a quasi-static deformation of the ambient space results in stresses, in general. We linearize the nonlinear theory about a reference motion and show that variation of the spatial metric corresponds to an effective field of body forces.

  3. Magnetically responsive dry fluids.

    PubMed

    Sousa, Filipa L; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J O

    2013-08-21

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. PMID:23831769

  4. Magnetically responsive dry fluids

    NASA Astrophysics Data System (ADS)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  5. Energy-saving drying and its application

    NASA Astrophysics Data System (ADS)

    Kovbasyuk, V. I.

    2015-09-01

    Superheated steam is efficiently applied as a coolant for the intensification of drying, which is an important component of many up-to-date technologies. However, traditional drying is extremely energy consuming, and many drying apparatus are environmentally unfriendly. Thus, it is important to implement the proposed drying technique using superheated steam under pressure significantly higher than the atmospheric one with subsequent steam transfer for use in a turbine for electric power generation as a compensation of energy costs for drying. This paper includes a brief thermodynamic analysis of such a technique, its environmental advantages, and possible benefits of the use of wet wastes and obtaining high-quality fuels from wet raw materials. A scheme is developed for the turbine protection from impurities that can occur in the steam at drying. Potential advantage of the technique are also the absence of heating surfaces that are in contact with wet media, the absence of the emissions to the atmosphere, and the use of low potential heat for desalination and the purification of water. The new drying technique can play an extremely important part in the implementation in the field of thermal destruction of anthropogenic wastes. In spite of the promotion of waste sorting to obtain valuable secondary raw materials, the main problem of big cities is nonutilizable waste, which makes not less than 85% of the starting quantity of waste. This can only be totally solved by combustion, which even more relates to the sewage sludge utilization. The wastes can be safely and efficiently combusted only provided that they are free of moisture. Combustion temperature optimization makes possible full destruction of dioxins and their toxic analogues.

  6. Combined infrared-vacuum drying of pumpkin slices.

    PubMed

    Ghaboos, Seyyed Hossein Hosseini; Ardabili, Seyed Mahdi Seyedain; Kashaninejad, Mahdi; Asadi, Gholamhassan; Aalami, Mehran

    2016-05-01

    Infrared-vacuum dehydration characteristics of pumpkin (Cucurbita moschata) were evaluated in a combined dryer system. The effects of drying parameters, infrared radiation power (204-272 W), system pressure (5-15 kPa), slice thickness (5 and 7 mm) and time (0-220 min) on the drying kinetics and characteristics of pumpkin slices were investigated. The vacuum pressure, lamp power and slice had significant effect on the drying kinetics and various qualities of the dried pumpkin. Moisture ratios were fitted to 10 different mathematical equations using nonlinear regression analysis. The quadratic equation satisfactorily described the drying behavior of pumpkin slices with the highest r value and the lowest SE values. The effective moisture diffusivity increased with power and ranged between 0.71 and 2.86 × 10(-9) m(2)/s. With increasing in infrared radiation power from 204 to 272 W, β-carotene content of dried pumpkins decreased from 30.04 to 24.55 mg/100 g. The rise in infrared power has a negative effect on the color changes (ΔE). The optimum condition was determined as power, 238W, pressure, 5 kPa and slice thickness, 5mm. These conditions resulted into dried pumpkin slices with maximum B-carotene retention.

  7. Combined infrared-vacuum drying of pumpkin slices.

    PubMed

    Ghaboos, Seyyed Hossein Hosseini; Ardabili, Seyed Mahdi Seyedain; Kashaninejad, Mahdi; Asadi, Gholamhassan; Aalami, Mehran

    2016-05-01

    Infrared-vacuum dehydration characteristics of pumpkin (Cucurbita moschata) were evaluated in a combined dryer system. The effects of drying parameters, infrared radiation power (204-272 W), system pressure (5-15 kPa), slice thickness (5 and 7 mm) and time (0-220 min) on the drying kinetics and characteristics of pumpkin slices were investigated. The vacuum pressure, lamp power and slice had significant effect on the drying kinetics and various qualities of the dried pumpkin. Moisture ratios were fitted to 10 different mathematical equations using nonlinear regression analysis. The quadratic equation satisfactorily described the drying behavior of pumpkin slices with the highest r value and the lowest SE values. The effective moisture diffusivity increased with power and ranged between 0.71 and 2.86 × 10(-9) m(2)/s. With increasing in infrared radiation power from 204 to 272 W, β-carotene content of dried pumpkins decreased from 30.04 to 24.55 mg/100 g. The rise in infrared power has a negative effect on the color changes (ΔE). The optimum condition was determined as power, 238W, pressure, 5 kPa and slice thickness, 5mm. These conditions resulted into dried pumpkin slices with maximum B-carotene retention. PMID:27407204

  8. High-intensity drying processes: Impulse drying modeling of fluid flow and heat transfer in a crown compensated impulse drying press roll, The lubrication problem. Annual report

    SciTech Connect

    Orloff, D.I.; Hojjatie, B.; Bloom, F.

    1994-08-01

    Although evaporative drying is currently used to dry paper, research has showed that significant energy savings could be realized with the newer impulse drying technology in drying heavy weight grades of paper. This report analyzes the lubrication problem which arises in modeling impulse drying employing a crown compensated roll. The geometry for the associated steady flow problem is constructed and expressions are derived for the relevant velocity fields, mass flow rates, and normal and tangential forces acting on both the bottom surface of an internal hydrostatic shoe and the inside surface of the crown-compensated roll. Results from the analytical model agreed well with experimental data from Beloit Corp. for the small shoe/roll configuration. The model can be used to predict effect of design and physical parameters on the performance of the press roll (lubricant thickness, pressure distributions, mechanical power required to operate the roll, etc.) and to determine optimal performance under various operating conditions.

  9. Dry-season ultraviolet radiation primes litter for wet season decomposition in a Mediterranean grassland

    NASA Astrophysics Data System (ADS)

    Baker, N. R.; Allison, S. D.

    2013-12-01

    -lignin, ambient UV samples was 85.9 μmol/hr*g during the wet season, compared to 44.1 μmol/hr*g in attenuated UV samples (p < 0.028). This increased potential cellulase activity under attenuated UV may indicate that dry season photodegradation primes low-lignin litter for wet season decomposition, reducing the selective pressure for microbial decomposers to invest in costly extracellular enzyme production. Similarly, the reduced potential oxidative enzyme activity in high-lignin samples exposed to attenuated UV may indicate that photodegradation is necessary to facilitate the breakdown of more complex compounds such as lignin by microbial decomposers. We conclude that while abiotic factors such as photodegradation can have a significant effect on the mechanisms of plant matter decomposition in semiarid ecosystems, these effects are not only restricted to the dry season and may also facilitate wet season decomposition.

  10. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  11. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  12. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study

    PubMed Central

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S.

    2016-01-01

    Background Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. Methods INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150–220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Results Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99–1.91) for 10°C, 1.92 (1.31–2.81) for 0°C, 3.13 (1.89–5.19) for -10°C, and 5.76 (2.30–14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Conclusions Exposure to low ambient temperature within several hours increases the risk of ICH. Trial Registration ClinicalTrials.gov NCT00716079 PMID:26859491

  13. Quality of dry ginger (Zingiber officinale) by different drying methods.

    PubMed

    E, Jayashree; R, Visvanathan; T, John Zachariah

    2014-11-01

    Ginger rhizomes sliced to various lengths of 5, 10, 15, 20, 30, 40, 50 mm and whole rhizomes were dried from an initial moisture content of 81.3 % to final moisture content of less than 10 % by various drying methods like sun drying, solar tunnel drying and cabinet tray drying at temperatures of 50, 55, 60 and 65 °C. Slicing of ginger rhizomes significantly reduced the drying time of ginger in all the drying methods. It was observed that drying of whole ginger rhizomes under sun took the maximum time (9 days) followed by solar tunnel drying (8 days). Significant reduction in essential oil and oleoresin content of dry ginger was found as the slice length decreased. The important constituents of ginger essential oil like zingiberene, limonene, linalool, geraniol and nerolidol as determined using a gas chromatography was also found to decrease during slicing and as the drying temperature increased. The pungency constituents in the oleoresin of ginger like total gingerols and total shogoals as determined using a reverse phase high performance liquid chromatography also showed a decreasing trend on slicing and with the increase in drying temperature. It was observed from the drying studies that whole ginger rhizomes dried under sun drying or in a solar tunnel drier retained the maximum essential oil (13.9 mg/g) and oleoresin content (45.2 mg/g) of dry ginger. In mechanical drying, the drying temperature of 60 °C was considered optimum however there was about 12.2 % loss in essential oil at this temperature.

  14. Computer tracks pigs to speed gas drying

    SciTech Connect

    Ashburner, M.

    1984-04-01

    Advanced pipeline drying techniques have been used to commission a 27-mile, 30-in. undersea natural gas pipeline in Malaysia's Luconia field. After first sending a series of torpedo-shape foam and rubber cup pigs through the line to force out some 4 million gal of seawater, a new technique combines a vacuum drying process with a sophisticated computer program to keep track of the pigs, thereby enabling the job to be completed in just 4 weeks. The program simulates pipeline conditions at the pig air/water interface under constant propelling flow conditions. The computer produces a pressure profile, calculates the overall time along the pipe, and then uses the resultant time-pressure model to interpret the actual results from the flow measurement-pressure plot for the pig's progress. The program was developed primarily to forecast the effects of changes in propelling capacity in deepwater conditions to ensure that adequate pressure capacity was available to maintain pig speeds above minimum self-cleaning velocities.

  15. Isothermal vapour flow in extremely dry soils

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapour flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapour pressure of the surrounding air, thus temperature or solute gradients can drive vapour flows. However, in extremely dry soils where water is retained by adsorptive forces rather than capillarity, vapour flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapour pressure in the soil, and hence small differences in water content can initiate vapour pressure gradients. In many field conditions this effect may be negligible compared to vapour flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapour phase. Experiments were performed in laboratory conditions using marine sand that had previously been oven dried and cooled. This dry sand was used to represent the desert conditions in which this irrigation system is intended for use. Experimental results show that isothermal vapour flows can significantly affect the performance of such irrigation systems due to the rapid transport of water through the soil via the vapour phase. When the irrigation pipe was buried at a depth of 10cm a vapour flow from the soil surface was observed in less than 2 hours. These flows therefore affect the loss of mass into the atmosphere and thus must be considered when evaluating the availability of water for the irrigated crop. The experiments also provide a rare opportunity to observe isothermal vapour flows initiating from a subsurface source. Such experiments allow the significance of these flows to be quantified and potentially applied to other areas of arid zone hydrology.

  16. Internal pressure distributions for a two-dimensional thrust-reversing nozzle operating at a free-stream Mach number of zero

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.; Strong, E. G.

    1983-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to measure static pressure distributions inside a nonaxisymmetric thrust reversing nozzle. The tests were made at nozzle total pressures ranging from ambient to about eight times ambient pressure at a free stream Mach number of zero. Tabulated pressure data are presented.

  17. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  18. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  19. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  20. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    NASA Astrophysics Data System (ADS)

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-07-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.