Science.gov

Sample records for ambient pressure dried

  1. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  2. Synthesis of Silica Aerogel from Bagasse Ash by Ambient Pressure Drying

    NASA Astrophysics Data System (ADS)

    Setyawan, Nazriati Heru; Winardi, Sugeng

    2011-12-01

    Silica aerogels having very high surface area and pore volume have been succesfully synthesized from bagasse ash by ambient pressure drying (APD) method. Silica in bagasse ash was extracted by alkali extraction to produce sodium silicate solution. This is done by boiling bagasse ash in 2 N NaOH solution under continuous stirring for 1 h. To avoid the collapse of gel structure during drying at ambient pressure condition, the silica surface was modified with alkyl functional groups by a single step sol-gel process. Silicic acid produced by exchanging Na+ ions in dilute sodium silicate solution with H+ ions from cation resin was added with trimethylchlorosilane (TMCS) and let the reaction of TMCS with water pore proceeds for several minutes to produce hexamethyldisilazane (HMDS) and HCl. Then, HMDS was added to allow the modification of silica surface in which the silanol groups were exchanged with alkyl groups originating from HMDS. The solution pH was then adjusted to 8-9 by adding NH4OH solution to induce gel formation. The hydrogel was aged at 40 °C for 18 h and at 60 °C for 1 h. Then, it was dried at 80 °C at ambient pressure condition. The silica aerogels obtained have specific surface, as measured by BET method, ranging from 450.2 to 1360.4 m2/g depending on the synthesis condition. The pore volume was ranging from 0.7 to 1.9 cm3/g. It seems that silica aerogels with very high surface area and pore volume can be obtained if the silanols group in the silica surface was exchanged succesfully with alkyl groups from HMDS.

  3. Respiratory effects of warm and dry air at increased ambient pressure.

    PubMed

    Thorsen, E; Rønnestad, I; Segadal, K; Hope, A

    1992-03-01

    We have measured in 7 divers forced vital capacity (FVC), forced expired volume in 1 s (FEV1), and forced midexpiratory flow rate (FEF25-75%) before and after exposure to dry or humid breathing gas of 35.3 degrees-36.8 degrees C (air) when diving to pressures of 117-600 kPa. The response was compared with the subjects' reactivity to pharmacologic bronchoprovocation with methacholine. Baseline FEV1 and FEF25-75% decreased in accordance with increasing gas density. Relative to baseline, there was a significant reduction after the dives in FEV1 of 4.0 +/- 6.1% (P less than 0.05) and in FEF25-75% of 8.6 +/- 9.7% (P less than 0.01) with exposure to dry breathing gas. By analysis of variance the reduction in the lung function variables below baseline were related to the breathing gas characteristic (dry/humid) (P less than 0.01), bronchial hyperreactivity (P less than 0.02), and ambient pressure (P less than 0.02) independently of each other. There was no significant change in FVC after the exposures. Humid breathing gas was considered more comfortable than dry breathing gas, and the upper comfort limit for breathing gas temperature was higher with humid breathing gas. Convective respiratory heat loss was negligible in these experiments, indicating that dry gas itself had a significant bronchoconstrictive effect. Bronchial hyperreactivity may cause increased risk of development of bronchial obstruction and air trapping during diving.

  4. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  5. Respiratory pattern after wet and dry chamber dives to 0.6 MPa ambient pressure in healthy males.

    PubMed

    Tetzlaff, K; Staschen, C M; Koch, A; Heine, L; Kampen, J; Neubauer, B

    1999-12-01

    The purpose of this study was to evaluate respiratory effects of wet and dry hyperbaric chamber dives to 0.6 MPa ambient pressure in healthy males. There were 19 and 22 subjects who participated in two series of dives with a bottom time of 15 min and decompression times of 28 and 17 min, respectively. Airways conductance, residual volume, forced vital capacity, forced expiratory volume in 1 sec, mid expiratory flow at 25, 50 and 75% of FVC, and diffusion capacity for CO were measured before the dives, after 3 h, and after 24 h. Multivariate analysis of covariance revealed no statistically significant effects of time or the interaction between time and dry or wet environment on the measured lung function parameters. These findings suggest first that even deep air dives may not necessarily affect pulmonary function, and second, that factors related to the particular wet environment do not seem to contribute to lung function changes after dives.

  6. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  7. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  8. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  9. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  10. Real-time observation of the dry oxidation of the Si (100) surface with ambient pressure x-ray photoelectron spectroscopy

    SciTech Connect

    Enta, Y.; Mun, B.S.; Rossi, M.; Ross Jr, P.N.; Hussain, Zahid; Fadley, C.S.; Lee, K.-S.; Kim, S.-K.

    2007-09-20

    We have applied ambient-pressure x-ray photoelectron spectroscopy with Si 2p chemical shifts to study the real-time dry oxidation of Si(100), using pressures in the range of 0.01-1 Torr and temperatures of 300-530 oC, and examining the oxide thickness range from 0 to ~;;25 Angstrom. The oxidation rate is initially very high (with rates of up to ~;;225 Angstrom/h) and then, after a certain initial thickness of the oxide in the range of 6-22 Angstrom is formed, decreases to a slow state (with rates of ~;;1.5-4.0 Angstrom/h). Neither the rapid nor the slow regime is explained by the standard Deal-Grove model for Si oxidation.

  11. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  12. Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol-gel process and dried at ambient pressure

    NASA Astrophysics Data System (ADS)

    Mahadik, D. B.; Lee, Yoon Kwang; Park, Chang-Sun; Chung, Hee-Yoon; Hong, Min-Hee; Jung, Hae-Noo-Ree; Han, Wooje; Park, Hyung-Ho

    2015-12-01

    High-surface-area tin oxide aerogels have been synthesized by an ambient-pressure drying method, using a non-alkoxide tin precursor and a hybrid sol-gel technique. The tin precursor was dissolved in different volume ratios of mixed water and ethanol solvents, and gelation was attained by means of an epoxide-initiated gelation process. The solvent in the gel was successively replaced with low-surface-tension solvents, and finally the gels were dried at ambient pressure in an oven. It was observed that solvent combinations significantly altered the textural properties of tin oxide aerogels. The solvent exchange process used prior to ambient-pressure drying helped to minimize impurities originating from the tin precursor. The tin oxide aerogels had the maximum specific surface area of 209 m2/g and small crystallite size (<6.5 nm) after an annealing treatment at 500 °C for 2 h. The sensitivity of a SnO2 sensor to CO gas was found to be strongly affected as the specific surface area of its constituent tin oxide aerogel was increased from 121 m2/g to 209 m2/g. This study offers evidence of the effects of tin oxide aerogel's specific surface area upon its gas sensing performance.

  13. Effect of ambient pressure on Leidenfrost temperature

    NASA Astrophysics Data System (ADS)

    Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki

    2014-11-01

    The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.

  14. Effect of ambient pressure on Leidenfrost temperature.

    PubMed

    Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki

    2014-11-01

    The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.

  15. Ambient pressure and single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Kondic, Ljubinko; Yuan, Chi; Chan, C. K.

    1998-01-01

    We present a theoretical analysis of the influence of ambient pressure on single-bubble sonoluminescence (SBSL). By combining simulations of gas dynamics, mass diffusion theory, and stability analysis we find a narrow region of the parameter space where stable SBSL is possible. In particular, the theory predicts a 200% increase in SL radiation if ambient pressure is decreased only 5%. The results are compared with preliminary experimental data, and a good agreement is found. Variation of ambient pressure provides a simple and interesting test for the validity of various SL theories, diffusive or nondiffusive mass flow ideas, and stability analyses.

  16. Dry deposition of polycyclic aromatic hydrocarbons in ambient air

    SciTech Connect

    Sheu, H.L.; Lee, W.J.; Su, C.C.; Chao, H.R.; Fan, Y.C.

    1996-12-01

    Dry deposition and air sampling were undertaken, simultaneously, in the ambient air of an urban site and a petrochemical-industry (PCI) plant by using several dry deposition plates and PS-1 samplers from January to May 1994 in southern Taiwan. The dry deposition plate with a smooth surface was always pointed into the wind. Twenty-one polycyclic aromatic hydrocarbons (PAHs) were analyzed by a gas chromatography/mass spectrometer (GC/MSD). The dry deposition flux of total-PAHs in urban and PCI sites averaged 166 and 211 {micro}g/m{sup 2}{center_dot}d, respectively. In general, the PAH dry deposition flux increased with increases in the PAH concentration in the ambient air. The PAH pattern of dry deposition flux in both urban and PCI sites were similar to the pattern measured by the filter of the PS-1 sampler and completely different from the PAH pattern in the gas phase. The higher molecular weight PAHs have higher dry deposition velocities. This is due to the fact that higher molecular weight PAHs primarily associated with the particle phase are deposited mostly by gravitational settling, while the gas phase PAHs were between 0.001 and 0.010 cm/s, only the lower molecular-weight PAHs--Nap and AcPy--had a significant fraction of dry deposition flux contributed by the gas phase. All the remaining higher molecular-weight PAHs had more than 94.5% of their dry deposition flux resulting from the particle phase. This is due to the fact that higher molecular weight PAHs have a greater fraction in the particle phase and the dry deposition velocities of particulates are much higher than those of the gas phase.

  17. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  18. Bacterial decontamination using ambient pressure nonthermal discharges

    SciTech Connect

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  19. Ambient pressure photoemission spectroscopy of metal surfaces

    NASA Astrophysics Data System (ADS)

    Baikie, Iain D.; Grain, Angela C.; Sutherland, James; Law, Jamie

    2014-12-01

    We describe a novel photoemission technique utilizing a traditional Kelvin probe as a detector of electrons/atmospheric ions ejected from metallic surfaces (Au, Ag, Cu, Fe, Ni, Ti, Zn, Al) illuminated by a deep ultra-violet (DUV) source under ambient pressure. To surmount the limitation of electron scattering in air the incident photon energy is rastered rather than applying a variable retarding electric field as is used with UPS. This arrangement can be applied in several operational modes: using the DUV source to determine the photoemission threshold (Φ) with 30-50 meV resolution and also the Kelvin probe, under dark conditions, to measure contact potential difference (CPD) between the Kelvin probe tip and the metallic sample with an accuracy of 1-3 meV. We have studied the relationship between the photoelectric threshold and CPD of metal surfaces cleaned in ambient conditions. Inclusion of a second spectroscopic visible source was used to confirm a semiconducting oxide, possibly Cu2O, via surface photovoltage measurements with the KP. This dual detection system can be easily extended to controlled gas conditions, relative humidity control and sample heating/cooling.

  20. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Treesearch

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  1. Effect of ambient-pressure reduction on multibubble sonochemiluminescence

    NASA Astrophysics Data System (ADS)

    Tuziuti, Toru; Hatanaka, Shin-ichi; Yasui, Kyuichi; Kozuka, Teruyuki; Mitome, Hideto

    2002-04-01

    The effect of ambient-pressure reduction on multibubble sonochemiluminescence (MBSCL) is studied experimentally with a luminol solution through measurements of MBSCL intensity as a function of ultrasound irradiation time, applied voltage to a transducer and ultrasonic frequencies to accomplish high efficiency in chemical reactions. From the measurement of ambient-pressure dependence, it is shown that there is an ambient pressure that produces the maximum intensity of the MBSCL and the maximum intensity appears at higher ambient pressure as the applied voltage to the transducer increases. The highest intensity of MBSCL is obtained by appropriate reduction of ambient pressure both for various applied voltages and frequencies. This is caused by both the number of bubbles induced with supersaturation of the gas in a luminol solution and the variation in bubble dynamics.

  2. X-ray photoelectron spectroscopy under real ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Takagi, Yasumasa; Nakamura, Takahiro; Yu, Liwei; Chaveanghong, Suwilai; Sekizawa, Oki; Sakata, Tomohiro; Uruga, Tomoya; Tada, Mizuki; Iwasawa, Yasuhiro; Yokoyama, Toshihiko

    2017-07-01

    We have developed an ambient pressure hard-X-ray photoelectron spectroscopic system equipped with a differential pumping system at BL36XU of SPring-8. Photoelectron spectra from a Au(111) surface were recorded using excitation light of 8 keV focused to 20 × 20 µm2 and adopting an aperture diameter of 30 µm at the entrance of the electron lens and a working distance of 60 µm. The Au 4f and 3d5/2 spectra were measured by increasing the ambient pressure from 1 Pa to atmospheric pressure and demonstrated that the instrument is capable of measuring the photoelectron spectrum under atmospheric pressure.

  3. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  4. Dependence of single-bubble sonoluminescence on ambient pressure

    PubMed

    Dan; Cheeke; Kondic

    2000-03-01

    Kondic et al.'s theory makes several specific predictions on the dependence of single-bubble sonoluminescence (SBSL) on ambient pressure. We have carried out experiments to verify these predictions for air bubbles in a water-glycerine mixture at about 17.5 kHz. The results show an increase in SBSL with reduced ambient pressure down to a critical value below which SBSL is extinguished. The results are all in good agreement with Kondic et al.'s theory and are also compatible with the dissociation hypothesis of Lohse et al.

  5. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements.

    PubMed

    Feng, Junzong; Zhang, Changrui; Feng, Jian; Jiang, Yonggang; Zhao, Nan

    2011-12-01

    Carbon fiber-reinforced carbon aerogel composites (C/CAs) for thermal insulators were prepared by copyrolysis of resorcinol-formaldehyde (RF) aerogels reinforced by oxidized polyacrylonitrile (PAN) fiber felts. The RF aerogel composites were obtained by impregnating PAN fiber felts with RF sols, then aging, ethanol exchanging, and drying at ambient pressure. Upon carbonization, the PAN fibers shrink with the RF aerogels, thus reducing the difference of shrinkage rates between the fiber reinforcements and the aerogel matrices, and resulting in C/CAs without any obvious cracks. The three point bend strength of the C/CAs is 7.1 ± 1.7 MPa, and the thermal conductivity is 0.328 W m(-1) K(-1) at 300 °C in air. These composites can be used as high-temperature thermal insulators (in inert atmospheres or vacuum) or supports for phase change materials in thermal protection system. © 2011 American Chemical Society

  6. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  7. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  8. Ambient-pressure thermodynamic measurements on UGe2

    NASA Astrophysics Data System (ADS)

    Hardy, F.; Meingast, C.; von Loehneysen, H.; Flouquet, J.; Huxley, A.; Lashley, J.; Fisher, R. A.; Phillips, N. E.

    2008-03-01

    The pairing interaction leading to the formation of the Cooper pairs remains unidentified in the ferromagnetic superconductor UGe2. Nevertheless, there is strong experimental evidence that superconductivity is not mediated by the magnetic fluctuations that drive TCurie (p) to zero; it rather appears closely related to another phase boundary Tx (p) that occurs at lower pressure. Theoretical works suggested that this additional phase boundary could arise either from a coupling between SDW and CDW orderings or from a peak in the electronic density of states. Although the existence of this anomaly is experimentally incontestable between 0.6 and 1.2 GPa, the situation at ambient pressure remains ambiguous. We discuss the aforementioned scenarios in the light of recent high-resolution thermal expansion and calorimetric measurements realized under high magnetic fields at ambient pressure.

  9. Measurement of Radiation Pressure in an Ambient Environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Munday, Jeremy

    2015-03-01

    Light has momentum and thus exerts ``radiation pressure'' when it is reflected or absorbed due to the conservation of momentum. Micromechanical transducers and oscillators are suitable for measurement and utilization of radiation pressure due to their high sensitivities. However, other light-induced mechanical deformations such as photothermal effects often obscure accurate measurements of radiation pressure in these systems. In this work, we investigate the radiation pressure and photothermal force on an uncoated silicon nitride microcantilever under illumination by a 660 nm laser in an ambient environment. To magnify the mechanical effects, the cantilever is driven optically from dc across its resonance frequency, and the amplitude and phase of its oscillation are acquired by an optical beam deflection method and a lockin amplifier. We show that radiation pressure and photothermal effects can be distinguished through the cantilever's frequency response. Furthermore, in a radiation pressure dominant regime, our measurement of the radiation force agrees quantitatively with the theoretical calculation.

  10. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    SciTech Connect

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  11. Ambient noise interferes with auscultatory blood pressure measurement during exercise.

    PubMed

    Lightfoot, J T; Tuller, B; Williams, D F

    1996-04-01

    This study was designed to investigate whether the acoustical characteristics of the Korotkoff sounds (K-sounds) were altered during exercise and/or masked by the ambient noise. After signing informed consent, 11 subjects (8 females, 3 males; 27 +/- 2 yr; 166.2 +/- 3.2 cm; 62 +/- 5 kg; means +/- SD) underwent a cycle ergometer exercise test that increased in workload by 30 W every 3 min until volitional fatigue. Heart rate, auscultatory systolic (SBP) and diastolic blood pressure (DBP), and oxygen consumption were monitored 1 and 2 min into each work stage. The auscultatory K-sounds were recorded with a microphone mounted in a stethoscope tube for later frequency (Hz) and sound pressure level (dB SPL) analysis. Frequency and SPL of ambient noise (99 +/- 13 Hz and 64 +/- 1 db at maximum, respectively) increased during the exercise test to magnitudes similar to the SBP and DBP K-sounds (166 Hz, 66 db; and 128 Hz, 69 db, respectively). Additionally, the ambient noise was responsible for a significant damping of the frequency and SPL of the measured blood pressure K-sounds and a rise in the measured frequency of the SBP K-sounds. Furthermore, we observed "inaudible" K-sounds at lower frequencies than adjoining audible K-sounds (100 Hz vs 126 Hz), supporting the known underestimation of SBP by auscultation. The increase in ambient noise during exercise testing dampens and may mask the auscultatory K-sounds, thus making detection of the proper K-sounds during exercise difficult at best. Furthermore, the presence of inaudible K-sounds may further explain the published discrepancies between auscultatory and intraarterial blood pressure measurements during exercise.

  12. Impact of ambient pressure on performance of desiccant cooling systems

    SciTech Connect

    Pesaran, A.A.

    1991-12-01

    The impact of ambient pressure on the performance of the ventilation cycle desiccant cooling system and its components was studied using computer simulations. The impact of ambient pressure depended on whether the system was designed for fixed-mass flow rate or fixed-volume flow rate operation. As ambient pressure decreased from 1.0 to 0.8 atm, the system thermal coefficient of performance increased by 8% for both fixed-mass and fixed-volume flow rate, the cooling capacity of the system (in kW) was decreased by 14% for the fixed-volume flow rate system and increased by 7% for the fixed-mass flow rate system, the electric power requirements for the system with fixed-volume flow rate did not change, and the electric power requirement for the fixed-mass flow rate system increased by 44%. The overall coefficient of performance increased up to 5% for the fixed-volume flow rate systems, and decreased up to 4% for the fixed-mass flow rate system. 16 refs.

  13. [Research on Raman spectra of isooctane at ambient temperature and ambient pressure to 1. 2 GPa].

    PubMed

    Zhang, Fei-fei; Zheng, Hai-fei

    2012-03-01

    The experimental study of the Raman spectral character for liquid isooctane (2,2,4-trimethylpentane, ATM) was con ducted by moissanite anvil cell at the pressure of 0-1.2 GPa and the ambient temperature. The results show that the Raman peaks of the C-H stretching vibration shift to higher frenquencies with increasing pressures. The relations between the system pressure and peaks positions is given as following: v2 873 = 0.002 8P+2 873.3; v2 905 = 0.004 8P+2 905.4; v2 935 = 0.002 7P+ 2 935.0; v2 960 = 0.012P+2 960.9. The Raman spectra of isooctane abruptly changed at the pressure about 1.0 GPa and the liquid-solid phase transition was observed by microscope. With the freezing pressure at ambient temperature and the melting temperature available at 1 atm, the authors got the liquid-solid phase diagram of isooctane. According to Clapeyron equation, the authors obtained the differences of volume and entropy for the liquid-solid phase transition of isooctane: deltaV(m) = 4.46 x 10(-6) m3 x mol-1 and deltaS = -30.32 J x K(-1) x mol(-1).

  14. Stable Calcium Nitrides at Ambient and High Pressures.

    PubMed

    Zhu, Shuangshuang; Peng, Feng; Liu, Hanyu; Majumdar, Arnab; Gao, Tao; Yao, Yansun

    2016-08-01

    The knowledge of stoichiometries of alkaline-earth metal nitrides, where nitrogen can exist in polynitrogen forms, is of significant interest for understanding nitrogen bonding and its applications in energy storage. For calcium nitrides, there were three known crystalline forms, CaN2, Ca2N, and Ca3N2, at ambient conditions. In the present study, we demonstrated that there are more stable forms of calcium nitrides than what is already known to exist at ambient and high pressures. Using a global structure searching method, we theoretically explored the phase diagram of CaNx and discovered a series of new compounds in this family. In particular, we found a new CaN phase that is thermodynamically stable at ambient conditions, which may be synthesized using CaN2 and Ca2N. Four other stoichiometries, namely, Ca2N3, CaN3, CaN4, and CaN5, were shown to be stable under high pressure. The predicted CaNx compounds contain a rich variety of polynitrogen forms ranging from small molecules (N2, N4, N5, and N6) to extended chains (N∞). Because of the large energy difference between the single and triple nitrogen bonds, dissociation of the CaNx crystals with polynitrogens is expected to be highly exothermic, making them as potential high-energy-density materials.

  15. Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers

    NASA Astrophysics Data System (ADS)

    Trotochaud, Lena; Head, Ashley R.; Karslıoğlu, Osman; Kyhl, Line; Bluhm, Hendrik

    2017-02-01

    Over the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS. We also provide a critical evaluation of the persistent limitations and challenges of APXPS, as well as the current experimental frontiers.

  16. Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu.

    PubMed

    Wang, Qinxin; Chen, Anmin; Li, Suyu; Qi, Hongxia; Qi, Ying; Hu, Zhan; Jin, Mingxing

    2015-09-20

    The holes were drilled by femtosecond laser pulse (800 nm, 100 fs) on Cu sheets at different ambient pressures. The pressure range was from 1 Pa to atmospheric pressure. The number of pulses to drill through the target, the stable photodiode signal, and the hole diameter were obtained as functions of ambient pressure. The morphology of the hole was observed by a scanning electron microscope (SEM). The result showed that the ambient pressure had significant influence on the morphology of the hole.

  17. Phase State and Saturation Vapor Pressure of Submicron Particles of meso-Erythritol at Ambient Conditions.

    PubMed

    Emanuelsson, Eva U; Tschiskale, Morten; Bilde, Merete

    2016-09-15

    meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states.

  18. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-05-17

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017

  19. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  20. CO oxidation on Pt(111) at near ambient pressures

    NASA Astrophysics Data System (ADS)

    Krick Calderón, S.; Grabau, M.; Ã`vári, L.; Kress, B.; Steinrück, H.-P.; Papp, C.

    2016-01-01

    The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O2 reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

  1. CO oxidation on Pt(111) at near ambient pressures

    SciTech Connect

    Krick Calderón, S.; Grabau, M.; Kress, B.; Papp, C.; Óvári, L.; Steinrück, H.-P.

    2016-01-28

    The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O{sub 2} reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

  2. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium

    NASA Astrophysics Data System (ADS)

    Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom; Akram, Mahreen; Mahmood, Khaliq

    2013-04-01

    Surface and structural properties of the laser irradiated titanium targets have been investigated under dry and wet ambient environments. For this purpose KrF Excimer laser of wavelength 248 nm, pulse duration of 20 ns and repetition rate of 20 Hz has been employed. The targets were exposed for various number of laser pulses ranging from 500 to 2000 in the ambient environment of air, de-ionized water and propanol at a fluence of 3.6 J/cm2. The surface morphology, chemical composition and crystallographical analysis were performed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. For both central and peripheral ablated areas, significant difference in surface morphology has been observed in case of dry and wet ambient conditions. Large sized and diffused grains are observed in case of dry ablation. Whereas, in case of wet ablation, small sized, and well defined grains with distinct grain boundaries and significantly enhanced density are revealed. This difference is ascribed to the confinement effects of the liquid. The peripheral ablated area shows redeposition in case of dry ablation whereas small sized grain like structures are formed in case of wet ablation. EDS analysis exhibits variation in chemical composition under both ambient conditions. When the targets are treated in air environment, enhancement of the oxygen as well as nitrogen content is observed while in case of de-ionized water and propanol only increase in content of oxygen is observed. X-ray diffraction analysis exhibits formation of oxides and nitrides in case of air, whereas, in case of de-ionized water and propanol only oxides along with hydrides are formed. For various number of laser pulses the variation in the peak intensity, crystallinity and d-spacing is observed under both ambient conditions.

  3. Ambient air pollution exposure and blood pressure changes during pregnancy

    PubMed Central

    Lee, Pei-Chen; Talbott, Evelyn O.; Roberts, James M.; Catov, Janet M.; Bilonick, Richard A.; Stone, Roslyn A.; Sharma, Ravi K.; Ritz, Beate

    2013-01-01

    Background Maternal exposure to ambient air pollution has been associated with adverse birth outcomes such as preterm delivery. However, only one study to date has linked air pollution to blood pressure changes during pregnancy, a period of dramatic cardiovascular function changes. Objectives We examined whether maternal exposures to criteria air pollutants, including particles of less than 10 µm (PM10) or 2.5 µm diameter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), in each trimester of pregnancy are associated with magnitude of rise of blood pressure between the first 20 weeks of gestation and late pregnancy in a prospectively followed cohort of 1684 pregnant women in Allegheny County, PA. Methods Air pollution measures for maternal ZIP code areas were derived using Kriging interpolation. Using logistic regression analysis, we evaluated the associations between air pollution exposures and blood pressure changes between the first 20 weeks of gestation and late pregnancy. Results First trimester PM10 and ozone exposures were associated with blood pressure changes between the first 20 weeks of gestation and late pregnancy, most strongly in non-smokers. Per interquartile increases in first trimester PM10 and O3 concentrations were associated with mean increases in systolic blood pressure of 1.88 mmHg (95% CI = 0.84 to 2.93) and 1.84 (95% CI = 1.05 to 4.63), respectively, and in diastolic blood pressure of 0.63 mmHg (95% CI= −0.50 to 1.76) and 1.13 (95% CI= −0.46 to 2.71) in non-smokers. Conclusions Our novel finding suggests that first trimester PM10 and O3 air pollution exposures increase blood pressure in the later stages of pregnancy. These changes may play a role in mediating the relationships between air pollution and adverse birth outcomes. PMID:22835955

  4. Molecular dynamics of itraconazole at ambient and high pressure.

    PubMed

    Tarnacka, M; Adrjanowicz, K; Kaminska, E; Kaminski, K; Grzybowska, K; Kolodziejczyk, K; Wlodarczyk, P; Hawelek, L; Garbacz, G; Kocot, A; Paluch, M

    2013-12-21

    Comprehensive molecular dynamics studies of vitrified and cryogrounded itraconazole (Itr) were performed at ambient and elevated pressure. DSC measurements yielded besides melting and glass transition observed during heating and cooling of both samples two further endothermic events at around T = 363 K and T = 346 K. The nature of these transitions was investigated using X-ray diffraction, broadband dielectric spectroscopy and Density Functional Theory calculations. The X-ray measurements indicated that extra ordering in itraconazole is likely to occur. Based on calculations and theory derived by Letz et al. the transition observed at T = 363 K was discussed in the context of formation of the nematic mesophase. In fact, additional FTIR measurements revealed that order parameter variation in Itr shows a typical sequence of liquid crystal phases with axially symmetric orientational order; i.e. a nematic phase in the temperature range 361.7 K to 346.5 K and a smectic A phase below 346.5. Moreover, dielectric measurements demonstrated that except for the structural relaxation process, there is also slower mode above the glass transition temperature in both vitrified and cryogrounded samples. We considered the origin of this mode taking into account DFT calculations, rod like shape of itraconazole and distribution of its dipole moment vectors. For the dielectric data collected at elevated pressure, evolution of the steepness index versus pressure was determined. Finally, the pressure coefficient of the glass transition temperature was evaluated to be equal to 190 K GPa(-1).

  5. Atomic-scale electron microscopy at ambient pressure.

    PubMed

    Creemer, J F; Helveg, S; Hoveling, G H; Ullmann, S; Molenbroek, A M; Sarro, P M; Zandbergen, H W

    2008-08-01

    We demonstrate a novel nanoreactor for performing atomic-resolution environmental transmission electron microscopy (ETEM) of nanostructured materials during exposure to gases at ambient pressures and elevated temperatures. The nanoreactor is a microelectromechanical system (MEMS) and is functionalized with a micrometer-sized gas-flow channel, electron-transparent windows and a heating device. It fits into the tip of a dedicated sample holder that can be used in a normal CM microscope of Philips/FEI Company. The nanoreactor performance was demonstrated by ETEM imaging of a Cu/ZnO catalyst for methanol synthesis during exposure to hydrogen. Specifically, the nanoreactor facilitated the direct observation of Cu nanocrystal growth and mobility on a sub-second time scale during heating to 500 degrees C and exposure to 1.2 bar of H(2). For the same gas reaction environment, ETEM images show atomic lattice fringes in the Cu nanocrystals with spacing of 0.18 nm, attesting the spatial resolution limit of the system. The nanoreactor concept opens up new possibilities for in situ studies of nanomaterials and the ways they interact with their ambient working environment in diverse areas, such as heterogeneous catalysis, electrochemistry, nanofabrication, materials science and biology.

  6. Bridging the pressure gap: Can we get local quantitative structural information at 'near-ambient' pressures?

    NASA Astrophysics Data System (ADS)

    Woodruff, D. P.

    2016-10-01

    In recent years there have been an increasing number of investigations aimed at 'bridging the pressure gap' between UHV surface science experiments on well-characterised single crystal surfaces and the much higher (ambient and above) pressures relevant to practical catalyst applications. By applying existing photon-in/photon-out methods and developing instrumentation to allow photoelectron emission to be measured in higher-pressure sample environments, it has proved possible to obtain surface compositions and spectroscopic fingerprinting of chemical and molecular states of adsorbed species at pressures up to a few millibars. None of these methods, however, provide quantitative structural information on the local adsorption sites of isolated atomic and molecular adsorbate species under these higher-pressure reaction conditions. Methods for gaining this information are reviewed and evaluated.

  7. [Ambient pressure synthesis and characterization of silica aerogel as adsorbent for dieldrin].

    PubMed

    Sha, Wei; Liu, Rui-ping; Liu, Hui-juan; Qu, Jiu-hui

    2008-12-01

    Hydrophobic silica aerogels were prepared from cheap waterglass precursors via surface modification of wet gels and ambient pressure drying route. Its adsorption capacity of Dieldrin, a typical of persistent organic pollutants (POPs), was examined. It is characterized via BET, FTIR, and DSC-TGA. The silica aerogels were highly hydrophobic with contact angles of 135 degrees-142 degrees, and the hydrophobicity of the aerogels could be maintained up to the temperature of 380 degrees C. The silica aerogels were porous with, pore size distribution of 17.5-23.4 nm, porosity of 94.8%-95.6%, and surface area of 444-560 m2 x g(-1). The results of adsorption experiments indicated that the hydrophobic aerogels could remove 84% of dieldrin from aqueous solution within 4 h; the adsorption process followed the pseudo-second-order kinetics process. Based on the adsorption equilibrium results, the adsorption capacity of silica aerogel was 11 times bigger than by active carbon.

  8. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  9. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  10. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  11. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  12. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  13. Bicellar mixture phase behavior examined by variable-pressure deuterium NMR and ambient pressure DSC.

    PubMed

    Uddin, Md Nasir; Morrow, Michael R

    2010-07-20

    Variable-pressure deuterium nuclear magnetic resonance ((2)H NMR) has been used to study the pressure-temperature phase diagram of bicellar mixtures containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). Spectra were obtained for DMPC-d(54)/DHPC (3:1), DMPC-d(54)/DHPC (4.4:1), DMPC/DHPC-d(22) (3:1), and DMPC/DHPC-d(22) (4.4:1) in the range 10-68 degrees C at ambient pressure, 66 MPa, 102 MPa, and 135 MPa. Isotropic-to-nematic and nematic-to-lamellar transition temperatures were found to rise with pressure at approximately 0.15 and approximately 0.14 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (3:1) and at at approximately 0.19 and approximately 0.18 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (4.4:1). Pressure had little effect on the range of DMPC-d(54) chain orientational order through the nematic phase temperature range, but the behavior of chain orientational order at the nematic-to-lamellar transition was found to vary slightly with pressure. Comparison of differential scanning calorimetry (DSC) observations with ambient-pressure (2)H NMR observations of DMPC-d(54) in the bicellar mixtures suggests that absorption of heat persists for a few degrees above the onset of axially symmetric DMPC-d(54) reorientation.

  14. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  15. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    NASA Astrophysics Data System (ADS)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  16. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming

    2011-01-01

    Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688

  17. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    PubMed

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  18. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  19. Theoretical study of the ambient-pressure dependence of sonochemical reactions

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Iida, Yasuo; Mitome, Hideto

    2003-07-01

    Computer simulations of bubble oscillations are performed for various ambient pressures in order to study the mechanism of the ambient-pressure dependence of sonochemical reactions: sonochemiluminescence of aqueous luminol solutions [T. Tuziuti et al., J. Chem. Phys. 116, 6221 (2002)] and the oxidation of iodide [A. Henglein et al., J. Phys. Chem. 97, 158 (1993)]. It is shown that for air bubbles there exists an optimal bubble temperature for the production of the oxidants such as O, OH, H2O2, and O3 inside bubbles regardless of the ambient pressure because at higher bubble temperature the oxidants are consumed inside bubbles by oxidizing nitrogen. Correspondingly there exists an optimal acoustic amplitude for each ambient pressure, which shifts toward a lower value as the ambient pressure decreases because bubbles expand more. It results in the higher rate of sonochemical reactions for lower ambient pressure at relatively low acoustic amplitude. For oxygen bubbles, the amount of the oxidants created inside bubbles is larger for higher bubble temperature because in this case the oxidants are not consumed inside bubbles due to the absence of nitrogen. Regardless of the species of the gas inside bubbles, the decrease of the ambient pressure works as if the acoustic amplitude increases because bubbles expand more.

  20. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean M.

    2002-01-01

    Three aspects of nanocrystalline ceramic body formation are examined in this work: permeability, drying stress, and sintering behavior. The permeabilities of nanocrystalline 3 mol% yttria-stabilized zirconia (3Y-TZP), silica, and boehmite powder compacts are measured during their formation by constant rate pressure filtration. The classic Carman-Kozeny equation with no account for the effect of adsorbed water often overestimates by a factor of 2 or more the measured permeabilities, with increasing deviation with decreasing permeability. A permeability equation from the literature and one derived here, both taking into account the effect of adsorbed water, show significant improvement over the classic Carman-Kozeny equation for predicting measured permeabilities. The equation derived here allows straightforward predictions to be made of how permeability will change as the critical point of drying (when shrinkage stops) is approached. An approximate expression for the maximum tensile stress occurring in an elastic finite cylinder during drying from all sides is derived. Numerical calculations of the exact state of stress during drying show that for cylinder length-to-diameter ratios up to 2/3, the present expression is more accurate than equations from the literature for an infinite plate and an infinite cylinder. For cylinders with length-to-diameter ratios greater than 2/3, numerical calculations show an equation from the literature for the drying stress in an infinite cylinder to be more accurate. To test the validity of the present expression, the drying rates above which fracture occurs are determined for disk-shaped samples of pressure filtered nanocrystalline 3Y-TZP, boehmite, and silica powders. These maximum safe drying rates are used with the present expression to calculate the maximum drying stresses that can be sustained without fracture, and these stresses are compared to diametral compression-measured strengths of similar samples dried to the critical

  1. Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure.

    PubMed

    Qin, Lei; Li, Wen-Chao; Zhu, Jia-Qing; Liang, Jing-Nan; Li, Bing-Zhi; Yuan, Ying-Jin

    2015-01-01

    Pretreatment of lignocellulosic biomass is essential to increase the cellulase accessibility for bioconversion of lignocelluloses by breaking down the biomass recalcitrance. In this work, a novel pretreatment method using ethylenediamine (EDA) was presented as a simple process to achieve high enzymatic digestibility of corn stover (CS) by heating the biomass-EDA mixture with high solid-to-liquid ratio at ambient pressure. The effect of EDA pretreatment on lignocellulose was further studied. High enzymatic digestibility of CS was achieved at broad pretreatment temperature range (40-180 °C) during EDA pretreatment. Herein, X-ray diffractogram analysis indicated that cellulose I changed to cellulose III and amorphous cellulose after EDA pretreatment, and cellulose III content increased along with the decrease of drying temperature and the increase of EDA loading. Lignin degradation was also affected by drying temperature and EDA loading. Images from scanning electron microscope and transmission electron microscope indicated that lignin coalesced and deposited on the biomass surface during EDA pretreatment, which led to the delamination of cell wall. HSQC NMR analysis showed that ester bonds of p-coumarate and ferulate units in lignin were partially ammonolyzed and ether bonds linking the phenolic monomers were broken during pretreatment. In addition, EDA-pretreated CS exhibited good fermentability for simultaneous saccharification and co-fermentation process. EDA pretreatment improves the enzymatic digestibility of lignocellulosic biomass significantly, and the improvement was caused by the transformation of cellulose allomorph, lignin degradation and relocalization in EDA pretreatment.

  2. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    PubMed

    Chen, Qing; Wang, Jinwei; Tian, Jun; Tang, Xun; Yu, Canqing; Marshall, Roger J; Chen, Dafang; Cao, Weihua; Zhan, Siyan; Lv, Jun; Lee, Liming; Hu, Yonghua

    2013-01-01

    Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05) respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range) was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  3. Responses of spring wheat (Triticum aestivum L.) to ozone produced by either electric discharge and dry air or by UV-lamps and ambient air.

    PubMed

    Mortensen, L; Jørgensen, H E

    1996-01-01

    The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.

  4. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent

  5. Irradiation Maintains Functional Components of Dry Hot Peppers (Capsicum annuum L.) under Ambient Storage

    PubMed Central

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Nawaz, Aamir; Khan, Samiya Mahmood; Ariño, Agustin; Ahmad, Tanveer

    2016-01-01

    Hot peppers used as natural flavoring and coloring agents are usually irradiated in prepacked form for decontamination. The effects of gamma radiation on the stability of functional components such as capsaicinoids and antioxidant compounds (carotenoids, ascorbic acid and total phenolics) were investigated in hot peppers (Capsicum annuum). Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and subsequently stored at 25 °C for 90 days. The irradiation dose did not substantially affect the initial contents of capsaicinoids, ascorbic acid and total phenolics, though the concentration of carotenoids declined by 8% from the control (76.9 mg/100 g) to 6 kGy radiation dose (70.7 mg/100 g). Similarly, during storage for 90 days at ambient temperature the concentrations of capsaicinoids and total phenolics remained fairly stable with mean percent reductions from 3.3% to 4.2%, while the levels of total carotenoids and ascorbic acid significantly (p < 0.05) declined by 12% and 14%, respectively. Overall, neither irradiation nor subsequent ambient storage could appreciably influence the contents of functional components in hot peppers. These results revealed that gamma irradiation up to 6 kGy can be safely used for decontamination to meet the needs for overseas markets without compromising product quality. PMID:28231158

  6. Ambient pressure, low-temperature synthesis and characterization of colloidal InN nanocrystals

    PubMed Central

    Hsieh, Jennifer C.; Yun, Dong Soo; Hu, Evelyn

    2014-01-01

    Highly soluble, non-aggregated colloidal wurtzite InN nanocrystals were obtained through an ambient pressure, low-temperature method followed by post-synthesis treatment with nitric acid. PMID:25484524

  7. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration

    PubMed Central

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P. C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (“OWB-D”), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec (“OWB-R”), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions. PMID:27066038

  8. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration.

    PubMed

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P C

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the "elevated partial pressure of oxygen" (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom ("OWB-D"), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec ("OWB-R"), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions.

  9. Simulation of Low-density Nozzle Plumes in Non-zero Ambient Pressures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; Dewitt, Kenneth J.; Stubbs, Robert M.; Penko, Paul F.

    1994-01-01

    The direct simulation Monte-Carlo (DSMC) method was applied to the analysis of low-density nitrogen plumes exhausting from a small converging-diverging nozzle into finite ambient pressures. Two cases were considered that simulated actual test conditions in a vacuum facility. The numerical simulations readily captured the complicated flow structure of the overexpanded plumes adjusting to the finite ambient pressures, including Mach disks and barrel shaped shocks. The numerical simulations compared well to experimental data of Rothe.

  10. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation

    DOE PAGES

    Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.; ...

    2017-02-03

    A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less

  11. Textile dry cleaning in high pressure CO2

    NASA Astrophysics Data System (ADS)

    Sutanto, Stevia; van der Kamp, Maaike; Witkamp, Geert-Jan

    2013-06-01

    High-pressure carbon dioxide (CO2) is one of the most suitable replacements for perchloroethylene (PER), a common but harmful textile dry cleaning solvent. Previous studies have indicated that the particulate soil removal with CO2 is lower compared to that with PER, because of the lesser amount of mechanical action in CO2. Furthermore, there is a lack of understanding of textile-dirt-CO2 interaction. It is the objective of this study to get an insight in the mechanical forces that play a role in CO2 dry cleaning and to use this information to improve the CO2 washing performance. Various mechanical actions were investigated with the experiments in an in-situ high pressure observation cell. Textiles stained with different kinds of particulate soils were washed in CO2. The washing results show that the combination of rotating and vertical action gives the highest cleaning performance and liquid CO2 spray may be a suitable additional mechanism to increase the cleaning performance. Authors thank the scientific foundation STW for the financial support.

  12. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect

    Urbaniec, K.; Malczewski, J.

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  13. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6 ns, 1064 nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ∼300 Torr, while the electron density showed a maximum ∼100 Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  14. Determination of the thermodynamic scaling exponent for relaxation in liquids from static ambient-pressure quantities.

    PubMed

    Casalini, R; Roland, C M

    2014-08-22

    An equation is derived that expresses the thermodynamic scaling exponent, γ, which superposes relaxation times τ and other measures of molecular mobility determined over a range of temperatures and densities, in terms of static physical quantities. The latter are available in the literature or can be measured at ambient pressure. We show for 13 materials, both molecular liquids and polymers, that the calculated γ are equivalent to the scaling exponents obtained directly by superpositioning. The assumptions of the analysis are that the glass transition T(g) is isochronal (i.e., τ(α) is constant at T(g), which is true by definition) and that the pressure derivative of the glass temperature is given by the first Ehrenfest relation. The latter, derived assuming continuity of the entropy at the glass transition, has been corroborated for many glass-forming materials at ambient pressure. However, we find that the Ehrenfest relation breaks down at elevated pressure; this limitation is of no consequence herein, since the appeal of the new equation is its applicability to ambient-pressure data. The ability to determine, from ambient-pressure measurements, the scaling exponent describing the high-pressure dynamics extends the applicability of this approach to a broader range of materials. Since γ is linked to the intermolecular potential, the new equation thus provides ready access to information about the forces between molecules.

  15. Structure and dynamics of liquid CS2: Going from ambient to elevated pressure conditions

    NASA Astrophysics Data System (ADS)

    Skarmoutsos, Ioannis; Mossa, Stefano; Samios, Jannis

    2016-10-01

    Molecular dynamics simulation studies were performed to investigate the structural and dynamic properties of liquid carbon disulfide (CS2) from ambient to elevated pressure conditions. The results obtained have revealed structural changes at high pressures, which are related to the more dense packing of the molecules inside the first solvation shell. The calculated neutron and X-ray structure factors have been compared with available experimental diffraction data, also revealing the pressure effects on the short-range structure of the liquid. The pressure effects on the translational, reorientational, and residence dynamics are very strong, revealing a significant slowing down when going from ambient pressure to 1.2 GPa. The translational dynamics of the linear CS2 molecules have been found to be more anisotropic at elevated pressures, where cage effects and librational motions are reflected on the shape of the calculated time correlation functions and their corresponding spectral densities.

  16. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  17. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  18. Novel lithium-nitrogen compounds at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing; Oganov, Artem R.; Qian, Guangri; Zhang, Jin; Dong, Huafeng; Zhu, Qiang; Zhou, Zhongxiang

    2015-09-01

    Using ab initio evolutionary simulations, we predict the existence of five novel stable Li-N compounds at pressures from 0 to 100 GPa (Li13N, Li5N, Li3N2, LiN2, and LiN5). Structures of these compounds contain isolated N atoms, N2 dimers, polyacetylene-like N chains and N5 rings, respectively. The structure of Li13N consists of Li atoms and Li12N icosahedra (with N atom in the center of the Li12 icosahedron) - such icosahedra are not described by Wade-Jemmis electron counting rules and are unique. Electronic structure of Li-N compounds is found to dramatically depend on composition and pressure, making this system ideal for studying metal-insulator transitions. For example, the sequence of lowest-enthalpy structures of LiN3 shows peculiar electronic structure changes with increasing pressure: metal-insulator-metal-insulator. This work also resolves the previous controversies of theory and experiment on Li2N2.

  19. Novel lithium-nitrogen compounds at ambient and high pressures

    PubMed Central

    Shen, Yanqing; Oganov, Artem R.; Qian, Guangri; Zhang, Jin; Dong, Huafeng; Zhu, Qiang; Zhou, Zhongxiang

    2015-01-01

    Using ab initio evolutionary simulations, we predict the existence of five novel stable Li-N compounds at pressures from 0 to 100 GPa (Li13N, Li5N, Li3N2, LiN2, and LiN5). Structures of these compounds contain isolated N atoms, N2 dimers, polyacetylene-like N chains and N5 rings, respectively. The structure of Li13N consists of Li atoms and Li12N icosahedra (with N atom in the center of the Li12 icosahedron) – such icosahedra are not described by Wade-Jemmis electron counting rules and are unique. Electronic structure of Li-N compounds is found to dramatically depend on composition and pressure, making this system ideal for studying metal-insulator transitions. For example, the sequence of lowest-enthalpy structures of LiN3 shows peculiar electronic structure changes with increasing pressure: metal-insulator-metal-insulator. This work also resolves the previous controversies of theory and experiment on Li2N2. PMID:26374272

  20. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    PubMed

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  1. An Exploratory Investigation of Jet Blast Effects on a Dust Covered Surface at Low Ambient Pressure

    NASA Technical Reports Server (NTRS)

    1961-01-01

    An Exploratory Investigation of Jet Blast Effects on a Dust Covered Surface at Low Ambient Pressure. A preliminary investigation has been conducted to determine the effects of jet blast, at low ambient pressures, on a surface covered with loose particles. Tests were conducted on configurations having from one to four nozzles at 0, 10, 20, and 30 degree cant angles and heights of 2 and 4 inches above the particle-covered surface. [Entire movie available on DVD from CASI as Doc ID 20070030966. Contact help@sti.nasa.gov

  2. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  3. Interfacial Rheological Properties of Contrast Microbubble Targestar P as a Function of Ambient Pressure.

    PubMed

    Kumar, Krishna N; Sarkar, Kausik

    2016-04-01

    In this Technical Note, we determine the interfacial rheological parameters of the encapsulation of the contrast agent Targestar P using ultrasound attenuation. The characteristic parameters are obtained according to two interfacial rheological models. The properties-surface dilatational elasticity (0.09 ± 0.01 N/m) and surface dilatational viscosity (8 ± 0.1E-9 N·s/m)-are found to be of similar magnitude for both models. Contrast microbubbles experience different ambient pressure in different organs. We also measure these parameters as functions of ambient pressure using attenuation measured at different overpressures (0, 100 and 200 mm Hg). For each value of ambient hydrostatic pressure, we determine the rheological properties, accounting for changes in the size distribution caused by the pressure change. We discuss different models of size distribution change under overpressure: pure adiabatic compression or gas exchange with surrounding medium. The dilatational surface elasticity and viscosity are found to increase with increasing ambient pressure.

  4. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  5. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  6. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  7. Hydrogen bonds and van der waals forces in ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimeš, Jiří; Alfè, Dario; Tkatchenko, Alexandre; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2011-10-28

    The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition pressures between the crystalline ice phases. An important consequence, likely to be of relevance to molecular crystals in general, is that transition pressures obtained from density-functional theory exchange-correlation functionals which neglect vdW forces are greatly overestimated.

  8. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    SciTech Connect

    Newberg, John T. Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia; Åhlund, John

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  9. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    NASA Astrophysics Data System (ADS)

    Newberg, John T.; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  10. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers.

    PubMed

    Newberg, John T; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  11. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  12. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    SciTech Connect

    Brinker, C.J.; Prakash, S.S.

    1999-09-07

    A method for preparing aerogel thin films by an ambient-pressure, continuous process is disclosed. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  13. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  14. Ambient-pressure specific heat of single-crystal UGe2

    NASA Astrophysics Data System (ADS)

    Lashley, J. C.; Fisher, R. A.; Flouquet, J.; Hardy, F.; Huxley, A.; Phillips, N. E.

    2006-05-01

    Measurements of the specific heat of UGe2 at ambient pressure show a feature in the 18-23 K region that is suggestive of a CDW transition. The magnetic field dependence of the specific heat shows the presence of structure in the electron density of states and an unusual nature of the ferromagnetic ordering at the Curie temperature.

  15. Ambient Air Pollution and Increases in Blood Pressure: Role ...

    EPA Pesticide Factsheets

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies consistently show that exposure to PM in urban areas across the globe is associated with increases in short- and long-term cardiovascular mortality and morbidity, most notably for myocardial infarction, heart failure and ischemic stroke.1 The range in strength of these associations is likely related to variation in PM sources and composition across space and time, and attests to the need to understand the contribution of specific sources to ultimately inform regulatory, public health and clinical strategies to reduce risk. Commentary: In 2014 a systematic review and meta-analysis published in this journal reported a positive association between short-term exposure to PM2.5 and blood pressure.2 The paper discussed potential mechanisms including PM-induced activation of pulmonary nociceptive receptors, pulmonary inflammatory responses and release of endothelin-1, and suggested that activation of pulmonary receptors and vagal afferents could lead to shifts in autonomic balance and vasoconstriction. Other effects including oxidative stress and decreased NO availability, as well as systemic inflammation and endothelial dysfunction have also been widely reported in association with PM compo

  16. Ambient Air Pollution and Increases in Blood Pressure: Role ...

    EPA Pesticide Factsheets

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies consistently show that exposure to PM in urban areas across the globe is associated with increases in short- and long-term cardiovascular mortality and morbidity, most notably for myocardial infarction, heart failure and ischemic stroke.1 The range in strength of these associations is likely related to variation in PM sources and composition across space and time, and attests to the need to understand the contribution of specific sources to ultimately inform regulatory, public health and clinical strategies to reduce risk. Commentary: In 2014 a systematic review and meta-analysis published in this journal reported a positive association between short-term exposure to PM2.5 and blood pressure.2 The paper discussed potential mechanisms including PM-induced activation of pulmonary nociceptive receptors, pulmonary inflammatory responses and release of endothelin-1, and suggested that activation of pulmonary receptors and vagal afferents could lead to shifts in autonomic balance and vasoconstriction. Other effects including oxidative stress and decreased NO availability, as well as systemic inflammation and endothelial dysfunction have also been widely reported in association with PM compo

  17. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.; Scaillet, B.

    2008-05-01

    Quantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mount Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, at both ambient pressure in air and high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt % H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three investigated compositions, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three investigated compositions have similar activation volumes (ΔV = 16-24 cm3 mol-1). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semiempirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modeled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV being fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mount Vesuvius and also satisfactorily predicts the electrical response of other melt compositions

  18. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    NASA Astrophysics Data System (ADS)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  19. Influence of ambient pressure on the hole formation process in ultrashort pulse laser deep drilling

    NASA Astrophysics Data System (ADS)

    Döring, Sven; Richter, Sören; Ullsperger, Tobias; Tünnermann, Andreas; Nolte, Stefan

    2013-03-01

    We investigate the influence of the ambient pressure on the hole formation process during percussion drilling of silicon by applying an in-situ imaging technique. In this study the pressure is varied from atmospheric conditions down to medium vacuum of 10 !bar. Drilling was performed using an ultrashort pulse system providing 8 ps pulses with up to 125 μJ at 1030 nm. At this wavelength, the ablation behavior of silicon is comparable to metals. At the beginning of the drilling process, we observe an increased drilling efficiency by 40% already for a moderate pressure decrease to 100 mbar. The formation of an ideally shaped hole lasts for approximately 200 pulses instead of only 100 as for atmospheric conditions and therefore leads to 3 times the depth at this point. The effect can be enhanced by increasing the pulse energy, but not by decreasing pressure further. However, the number of pulses till the end of the drilling process is extended by decreasing the pressure further. For a low ambient pressure of 10 μbar, this is accompanied by an increase of the maximum achievable depth of more than 100%. Simultaneously the hole shape changes from a few ends and bulges at atmospheric conditions to numerous branches over the complete lower part of the hole at low pressure. This drilling behavior can be attributed to a better removal of ablated particles from the hole capillary with decreasing pressure, which leads to lower scattering losses for the pulse propagation inside the hole.

  20. Ambient Pressure Evaluation Through Sub-Harmonic Response of Chirp-Sonicated Microbubbles.

    PubMed

    Liu, Siyu; Wu, Jun; Gu, Yuyang; Guo, Xiasheng; Tu, Juan; Xu, Di; Zhang, Dong

    2017-01-01

    The sub-harmonic response generated by oscillating ultrasound contrast microbubbles has been proven to be a potentially efficient and effective measure for non-invasive blood pressure evaluation. In this work, an improved approach to ambient pressure measurement is proposed, and the general principle underlying this approach is the combination of sub-harmonic responses of microbubbles with a chirp excitation technique. Agreement between theoretical and experimental studies indicates that compared with sinusoidal excitation, the chirp technique is beneficial in that it produces bubble sub-harmonics with higher amplitudes and lower generation thresholds and thus offers better sensitivity for ambient pressure evaluations. Studies that took the chirp parameters (e.g., central frequency, bandwidth and pulse length) into account were also carried out to determine an optimized routine for the proposed method.

  1. Dynamical stability of the cubic metallic phase of AlH3 at ambient pressure

    NASA Astrophysics Data System (ADS)

    Kim, Duck Young; Scheicher, Ralph H.; Ahuja, Rajeev

    2009-03-01

    We have characterized the high-pressure cubic phase of AlH3 using density functional theory to determine mechanical as well as electronic properties and lattice dynamics from the response function method [1]. Metallization in AlH3 under pressure has been studied, which is of great interest not only from a fundamental physics point of view for the study of phenomena related to metallic hydrogen, but also, because metallic AlH3 possesses weaker Al-H bonds than other insulating phases [2]. Our phonon calculations show the softening of a particular mode with decreasing pressure, indicating the onset of a dynamical instability that continues to persist at ambient conditions. We find from analyzing the atomic and electronic interactions using theoretical calculations that finite-temperature effects lead to the desired stabilization of metallic AlH3 at ambient conditions.[0pt] [1] PRB 78, 100102(R) (2008). [0pt] [2] APL 92, 201903 (2008).

  2. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph L.; Munday, Jeremy N.

    2015-03-01

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  3. Outcomes of the collapse of a large bubble in water at high ambient pressures

    NASA Astrophysics Data System (ADS)

    Sukovich, Jonathan R.; Anderson, Phillip A.; Sampathkumar, Ashwinkumar; Gaitan, D. Felipe; Pishchalnikov, Yuri A.; Holt, R. Glynn

    2017-04-01

    Presented here are observations of the outcomes of the collapses of large single bubbles in H2O and D2O at high ambient pressures. Experiments were carried out in a high-pressure spherical resonator at ambient pressures of up to 30 MPa and acoustic pressures up to 35 MPa. Monitoring of the collapse events and their outcomes was accomplished using multiframe high-speed photography. Among the observations to be presented are the temporal and spatial evolution of light emissions produced by the collapse events, which were observed to last on the order of 30 ns and have time independent radii on the order of 30 μ m ; the production of Rayleigh-Taylor jets which were observed to travel distances of up to 70 μ m at speeds in excess of 4500 m/s; the entrainment of the light emitting regions in the jets' remnants; the production of spheroidal objects around the collapse points of the bubbles, far from any surface of the resonator; and the traversal and emergence of the Rayleigh-Taylor jets through the spherical objects. These spheroidal objects appear to behave as amorphous solids and form at locations where hydrodynamics predicts pressures in excess of the known transition pressures of water into the high-pressure crystalline ices, Ice-VI and Ice-VII.

  4. Outcomes of the collapse of a large bubble in water at high ambient pressures.

    PubMed

    Sukovich, Jonathan R; Anderson, Phillip A; Sampathkumar, Ashwinkumar; Gaitan, D Felipe; Pishchalnikov, Yuri A; Holt, R Glynn

    2017-04-01

    Presented here are observations of the outcomes of the collapses of large single bubbles in H_{2}O and D_{2}O at high ambient pressures. Experiments were carried out in a high-pressure spherical resonator at ambient pressures of up to 30 MPa and acoustic pressures up to 35 MPa. Monitoring of the collapse events and their outcomes was accomplished using multiframe high-speed photography. Among the observations to be presented are the temporal and spatial evolution of light emissions produced by the collapse events, which were observed to last on the order of 30 ns and have time independent radii on the order of 30μm; the production of Rayleigh-Taylor jets which were observed to travel distances of up to 70μm at speeds in excess of 4500 m/s; the entrainment of the light emitting regions in the jets' remnants; the production of spheroidal objects around the collapse points of the bubbles, far from any surface of the resonator; and the traversal and emergence of the Rayleigh-Taylor jets through the spherical objects. These spheroidal objects appear to behave as amorphous solids and form at locations where hydrodynamics predicts pressures in excess of the known transition pressures of water into the high-pressure crystalline ices, Ice-VI and Ice-VII.

  5. Ambient pressure dependence of the ultra-harmonic response from contrast microbubbles.

    PubMed

    Sun, Tao; Jia, Nan; Zhang, Dong; Xu, Di

    2012-06-01

    Sub-harmonic response from ultrasound contrast agent microbubbles has been demonstrated to be an effective modality for noninvasive pressure measurement. In the present study, the dependence of ultra-harmonic response on the ambient overpressure was investigated by both experimental measurements and simulations. In the measurements, the microbubbles were exposed to Gaussian pulses with varied driving frequencies and pulse lengths, at an acoustic pressure of 0.3 MPa. The amplitudes of sub- and ultra-harmonic components were measured when the ambient overpressures varied from 0-25 kPa. At the driving frequency of 1.33 MHz, the ultra-harmonic energy decreased but the sub-harmonic energy increased with the increasing overpressure; while at the driving frequency of 4 MHz, both the sub- and ultra-harmonic components showed the same tendency that the corresponding energy decreased as the overpressure was increased. A 4-MHz Gaussian pulse with 64 cycles could provide an ultra-harmonic response with both good ambient pressure sensitivity and high linearity. Furthermore, the effects of shell parameters of a microbubble on the generation of ultra- and sub-harmonic responses were discussed based on simulations using Marmottant's model. This study suggests that the ultra-harmonic response from contrast microbubbles might be applicable for noninvasive pressure measurement.

  6. Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear

    NASA Astrophysics Data System (ADS)

    Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie

    A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.

  7. Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

    NASA Astrophysics Data System (ADS)

    Atif, Hussain; Xun, Gao; Qi, Li; Zuoqiang, Hao; Jingquan, Lin

    2017-01-01

    In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.

  8. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure.

    PubMed

    Prakash, Om; Kumar, Anil; Thamizhavel, A; Ramakrishnan, S

    2017-01-06

    At ambient pressure, bulk rhombohedral bismuth is a semimetal that remains in the normal state down to at least 10 millikelvin. Superconductivity in bulk bismuth is thought to be unlikely because of the extremely low carrier density. We observed bulk superconductivity in pure bismuth single crystals below 0.53 millikelvin at ambient pressure, with an estimated critical magnetic field of 5.2 microteslas at 0 kelvin. Superconductivity in bismuth cannot be explained by the conventional Bardeen-Cooper-Schrieffer theory because its adiabatic approximation does not hold true for bismuth. Future theoretical work will be needed to understand superconductivity in the nonadiabatic limit in systems with low carrier densities and unusual band structures, such as bismuth.

  9. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure

    NASA Astrophysics Data System (ADS)

    Prakash, Om; Kumar, Anil; Thamizhavel, A.; Ramakrishnan, S.

    2017-01-01

    At ambient pressure, bulk rhombohedral bismuth is a semimetal that remains in the normal state down to at least 10 millikelvin. Superconductivity in bulk bismuth is thought to be unlikely because of the extremely low carrier density. We observed bulk superconductivity in pure bismuth single crystals below 0.53 millikelvin at ambient pressure, with an estimated critical magnetic field of 5.2 microteslas at 0 kelvin. Superconductivity in bismuth cannot be explained by the conventional Bardeen-Cooper-Schrieffer theory because its adiabatic approximation does not hold true for bismuth. Future theoretical work will be needed to understand superconductivity in the nonadiabatic limit in systems with low carrier densities and unusual band structures, such as bismuth.

  10. Superconducting state of Ca xMo 6S 8 at ambient pressure

    NASA Astrophysics Data System (ADS)

    Geantet, Christophe; Horyn, Roman; Padiou, Jean; Pen˜a, Octavio; Sergent, Marcel

    1988-06-01

    Experimental evidence is given for superconductivity of Ca xMo 6S 8 at ambient pressure. Crystal structure, susceptibility, magnetization and resistivity measurements on single crystals for x≦ 1.0 are reported. Calcium deficiencies stabilize the rhombohedral structure and inhibit the structural transition which ordinarily suppresses the superconducting state indivalent M(2+)Mo 6S 8 Chevrel phases; M(2+) =Eu, Ba, Ca, Sr.

  11. The effect of ambient pressure on the evaporation rate of materials

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Russell, W. M.

    1972-01-01

    A simple expression is obtained using a diffusion model for the effect of ambient pressure on the outgassing or evaporation rate of materials. The correctness of the expression is demonstrated by comparing the estimates from this expression with actual weight loss measurements. It is shown that the rate of mass loss is governed by the ratio of mean free path to the characteristic dimension of the surface in question.

  12. The role of an ambient pressure oxygen source during one-lung ventilation for thoracoscopic surgery.

    PubMed

    Pfitzner, J

    2016-01-01

    Video-assisted thoracoscopic surgery is facilitated by prompt collapse of the non-ventilated ('operated') lung, and interrupted and impeded if there is a need for oxygen (O2) delivery by continuous positive airways pressure in order to manage hypoxaemia. It has been proposed that connecting an ambient pressure O2 source to the airway of the non-ventilated lung at the time one-lung ventilation is initiated and before the chest is opened will, by avoiding entrainment of ambient nitrogen, serve to facilitate lung collapse. It has also been proposed that leaving the O2 source connected will enable, not only ongoing apnoeic oxygenation before the chest is opened, but also the thoracoscopic procedure to commence with the operated lung fully pre-oxygenated (with an inspired oxygen fraction of 1), and apnoeic oxygenation to continue throughout the operative procedure in those patients who exhibit a degree of small airways patency at ambient pressure. In reality, several factors can influence the speed of collapse of the operated lung, and very many factors can influence the incidence of hypoxaemia during one-lung ventilation. It therefore appears unlikely that the necessary evidence to support these proposals will be forthcoming from randomised clinical studies on large numbers of patients. Rather, the necessary evidence may only be provided by specifically designed within-patient clinical measurement studies. Nevertheless, it is argued that, in the meantime, there is already sufficient rationale for an ambient pressure O2 source to be connected to the airway of the non-ventilated lung, and for it to remain connected for the duration of one-lung ventilation.

  13. Right Heart Pressure Increases after Acute Increases in Ambient Particulate Concentration

    PubMed Central

    Rich, David Q.; Freudenberger, Ronald S.; Ohman-Strickland, Pamela; Cho, Yong; Kipen, Howard M.

    2008-01-01

    Objectives We explored the association between acute changes in daily mean pulmonary artery (PA) and right ventricular (RV) pressures and concentrations of ambient fine particulate matter [PM with aerodynamic diameter ≤2.5 μm (PM2.5)] as an explanation for previous associations between congestive heart failure (HF) hospital admissions and PM. Materials and methods In the Chronicle Offers Management to Patients with Advanced Signs and Symptoms of Heart Failure (COMPASS-HF) trial, to see whether management of ambulatory HF could be improved by providing continuous right heart pressure monitoring to physicians, the Chronicle Implantable Hemodynamic Monitor (Medtronic, Inc., Minneapolis, MN, USA) continuously measured multiple right heart hemodynamic parameters, heart rate, and activity trends in subjects with moderate/severe HF. Using these trial data, we calculated daily mean pressures, using only those time intervals where the subject was not physically active (n = 5,807 person-days; n = 11 subjects). We then studied the association between mean daily PA/RV pressures and mean ambient PM2.5 concentrations on the same day and previous 6 days. Results Each 11.62-μg/m3 increase in same-day mean PM2.5 concentration was associated with small but significant increases in estimated PA diastolic pressure [0.19 mmHg; 95% confidence interval (CI), 0.05–0.33] and RV diastolic pressure (0.23 mmHg; 95% CI, 0.11–0.34). Although we saw considerable differences in the magnitude of response by COMPASS-HF randomization group (total data access for physicians vs. blocked clinician access), season, left ventricular ejection fraction, and obesity, these effects were not significantly different. Conclusions These pilot study findings provide a potential mechanism for previous findings of increased risk of HF associated with ambient PM. However, because of the small number of subjects, a larger study is needed for confirmation. PMID:18795158

  14. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  15. Effect of ambient pressure on the selective growth of square In2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Xia, Fan; Park, Keon Tae; Lee, Dong Hyun; Lee, Jung Min; Paik, Ungyu; Park, Won Il

    2013-05-01

    Single crystalline indium oxide (In2O3) nanowires (NWs), formed via a simple vapor transport route, were synthesized by a selective growth approach on patterned SiO2/Si substrates. The selective growth approach enabled us to have a more systematic analysis of the effects of the synthesizing parameters on the growth of the NWs. In this study, the ambient pressure in the quartz tube was controlled in the range of 250-1,000 mTorr, and the dependence of NW size and density was investigated. Statistical analyses demonstrate that the ambient pressure plays an important role in determining the nucleation and crystal growth of In2O3 NWs, thereby affects the diameter, length, and density of the NWs. Our result indicates that the interplay between the source export and the absorption import as well as the coalescence of catalyst droplets are mainly affected by ambient pressure in the quartz tube, which eventually contributes to the yield of NWs on catalytic substrates.

  16. Effects of elevated ambient pressure on the disintegration of impinged sheets

    NASA Astrophysics Data System (ADS)

    Zhang, Peiyu; Wang, Bing

    2017-04-01

    Numerical simulations that are based on the volume-of-fluid method are performed to study the atomization of impinging jets under the influence of higher steady and oscillating ambient pressures. Both the simulated flow patterns and the statistical features of the droplet size distribution and sheet wave agree well with experimental data from the literature. Then, the instability mechanism of an impinged sheet is explored. The position at which the breakup of the liquid sheet occurs is determined jointly by the velocity distribution of the sheet and aerodynamic effects. Finally, the effects of ambient pressure on the stability of atomization and spray characteristics are discussed in detail. When the ambient pressure is elevated from 0.05 MPa to 0.5 MPa, the sheet's instability increases as the gas/air density increases. During the above process, the increasing aerodynamic force that is exerted on the liquid sheet increases the impact amplitude values, thereby increasing the spray angle and decreasing the sheet breakup length. However, the breakup of large droplets during secondary atomization is suppressed under high backpressure conditions because of the deceleration of the film's movement. Additionally, the backpressure oscillation, with the frequency approximating the fundamental frequency of sheet waves, enhances the wave amplitude and the atomization angle, which accelerates the sheet's breakup and decreases the mean size of the droplets downstream of the impingement point.

  17. Processing of subharmonic signals from ultrasound contrast agents to determine ambient pressures.

    PubMed

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Forsberg, Flemming

    2012-04-01

    Subharmonic-aided pressure estimation (SHAPE) is a technique that utilizes the subharmonic emissions, occurring at half the insonation frequency, from ultrasound contrast agents to estimate ambient pressures. The purpose of this work was to compare the performance of different processing techniques for the raw radiofrequency (rf) data acquired for SHAPE. A closed loop flow system was implemented circulating reconstituted Sonazoid (GE Healthcare, Oslo, Norway; 0.2 ml for 750 ml diluent) and the beam-formed unprocessed rf data were obtained from a 4 mm diameter lumen of a Doppler flow phantom (ATS Laboratories, Inc., Bridgeport, CT) using a SonixRP scanner (Ultrasonix, Richmond, BC, Canada). The transmit frequency and incident acoustic pressures were set to 2.5 MHz and 0.22 MPa, respectively, in order to elicit Sonazoid subharmonic emissions that are ambient-pressure sensitive. The time-varying ambient pressures within the flow phantom were recorded by a Millar pressure catheter. Four techniques for extracting the subharmonic amplitude from the rf data were tested along with two noise filtering techniques to process this data. Five filter orders were tested for the noise removing filters. The performance was evaluated based on the least root-mean-square errors reported after linear least-square regression analyses of the subharmonic data and the pressure catheter data and compared using a repeated ANOVA. When the subharmonic amplitudes were extracted as the mean value within a 0.2 MHz bandwidth about 1.25 MHz and when the resulting temporally-varying subharmonic signal was median filtered with an order of 500, the filtered subharmonic signal significantly predicted the ambient pressures (r2 = 0.90; p < 0.001) with the least error. The resulting root mean square and mean absolute errors were 8.16 +/- 0.26 mmHg and 6.70 +/- 0.17 mmHg, respectively. Thus, median processing the subharmonic data extracted as the mean value within a 0.2 MHz bandwidth about the theoretical

  18. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  19. Effects of ambient hydrostatic pressure on the material properties of the encapsulation of an ultrasound contrast microbubble.

    PubMed

    Kumar, Krishna N; Sarkar, Kausik

    2015-08-01

    Ultrasound contrast microbubbles experience widely varying ambient blood pressure in different organs, which can also change due to diseases. Pressure change can alter the material properties of the encapsulation of these microbubbles. Here the characteristic rheological parameters of contrast agent Definity are determined by varying the ambient pressure (in a physiologically relevant range 0-200 mm Hg). Four different interfacial rheological models are used to characterize the microbubbles. Effects of gas diffusion under excess ambient pressure are investigated in detail accounting for size decrease of contrast microbubbles. Definity contrast agent show a change in their interfacial dilatational viscosity (3.6 × 10(-8) Ns/m at 0 mm Hg to 4.45 × 10(-8) Ns/m at 200 mm Hg) and interfacial dilatational elasticity (0.86 N/m at 0 mm Hg to 1.06 N/m at 200 mm Hg) with ambient pressure increase. The increase results from material consolidation, similar to such enhancement in bulk properties under pressure. The model that accounts for enhancement in material properties with increasing ambient pressure matches with experimentally measured subharmonic response as a function of ambient pressure, while assuming constant material parameters does not.

  20. Spectroscopic studies of surface gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther; Weilach, Christian

    2008-05-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH3OH, CH4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions.

  1. Exploring novel phases of Cd-O system at ambient pressure

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Ferhat, M.

    2017-02-01

    First-principles evolutionary searches are used to explore stable Cd-O compounds at ambient pressure. Besides the well-known rock-salt CdO, a new cubic thermodynamically stable phase CdO2 with space group Pa3 and two metastable compounds: zinc-blende and wurtzite phases of CdO have been discovered at ambient pressure. Among these, CdO2 was successfully synthesized with perfect structural agreement to our theoretical predictions. The global stability of the well known rock-salt phase of CdO, our calculations of elastic constants and phonon dispersion curves demonstrate that the Pa3, zinc-blende and wurtzite structures are mechanically and dynamically stable. Finally, the state-of-the-art LDA-1/2 methods reveal that at ambient conditions, zinc-blende and wurtzite phases are semiconducting with a direct band gap (Γ- Γ) of 0.89 eV and 0.97 eV respectively; whereas the semiconducting cubic-Pa3 structure shows direct band gap (Γ- Γ) of ∼2.93 eV and an indirect band gap of ∼2.58 eV agreeing well with the experimental value of ∼2.4 eV.

  2. Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China.

    PubMed

    Wang, Huanbo; Yang, Fumo; Shi, Guangming; Tian, Mi; Zhang, Leiming; Zhang, Liuyi; Fu, Chuan

    2016-12-01

    To assess pollution levels of major inorganic nitrogen species and their atmospheric deposition input to sensitive ecosystems in Sichuan Basin, southwest China, ambient concentrations of oxidized (NOy ∼ NO2, HNO3, NO3(-)) and reduced (NHx = NH3, NH4(+)) nitrogen species were collected at two urban sites during four one-month periods, each in a different season from July 2014 to April 2015. Estimated annual mean concentration of NOy was 20.3 and 13.5 μg N m(-3) in Chengdu and Wanzhou, respectively, and NHx was 16.9 and 13.6 μg N m(-3), respectively. Back trajectory cluster analysis indicated that high levels of NOy and NHx in Chengdu were mainly caused by local emissions while those in Wanzhou were caused by both the local emissions and long-range transport of pollutants. On annual basis, NO2 contributed the most to NOy, followed by NO3(-) and HNO3, accounting for 87.5%, 10.5% and 2.0%, respectively, of NOy in Chengdu, and 91.4%, 6.9% and 1.7%, respectively, in Wanzhou. NH3 was the predominant contributor to NHx, contributing 65.6% and 72.2% in Chengdu and Wanzhou, respectively. Dry deposition fluxes were estimated using the inferential method with measured ambient concentrations and modelled dry deposition velocities. The total inorganic nitrogen dry deposition flux was estimated to be 21.4 and 8.5 kg N ha(-1) yr(-1), with 44.3% and 41.4% from NOy in Chengdu and Wanzhou, respectively. NO2 and NH3 each contributed about 80% of NOy and NHx dry deposition, respectively. Wet deposition was only collected in Wanzhou, where the annual wet deposition of NO3(-) and NH4(+) was 4.5 and 15.7 kg N ha(-1) yr(-1), respectively. The total wet plus dry deposition was 28.7 kg N ha(-1) yr(-1) in Wanzhou with 72.2% from reduced nitrogen. Therefore, controlling NH3 emissions from agricultural, traffic, waste containers and sewage system sources would be effective to reduce the total nitrogen deposition in the Sichuan Basin area. Copyright © 2016 Elsevier Ltd

  3. Influence of ambient pressure on the hole formation in laser deep drilling

    NASA Astrophysics Data System (ADS)

    Döring, S.; Richter, S.; Heisler, F.; Ullsperger, T.; Tünnermann, A.; Nolte, S.

    2013-09-01

    We investigate the temporal evolution of the hole depth and shape for percussion drilling at different ambient pressure conditions. Deep drilling is performed in silicon as target material by ultrashort laser pulses at 1030 nm and a duration of 8 ps. Simultaneously, the backlit silhouette of the hole is imaged perpendicular to the drilling direction. While typical process phases like depth development and shape evolution are very similar for atmospheric pressure down to vacuum conditions (10-2 mbar), the ablation rate in the initial process phase is significantly increased for reduced pressure. The number of pulses till the stop of the drilling process also increases by a pressure reduction and exceeds drilling at atmospheric conditions by two orders of magnitude for a pressure of ca. 10-2 mbar. Accordingly, the maximum achievable hole depth is more than doubled. We attribute this behavior to an enlarged mean free path for ablation products at reduced pressure and therefore lower or no deposition of particles inside the hole capillary under vacuum conditions while debris fills the hole already after a few thousand pulses at atmospheric pressure. This is supported by scanning electron cross section images of the holes.

  4. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    PubMed Central

    Nakamura, Masayuki; Nakamura, Jiro; Lopez, Guillaume; Shuzo, Masaki; Yamada, Ichiro

    2011-01-01

    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution. PMID:22163984

  5. Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and elevated pressure.

    PubMed

    Glascoe, Elizabeth A; Zaug, Joseph M; Armstrong, Michael R; Crowhurst, Jonathan C; Grant, Christian D; Fried, Laurence E

    2009-05-21

    The time scale and/or products of photoinduced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at 8 GPa. Ultrafast time-resolved infrared and steady-state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO(2), an observed decomposition product, is complete within 30-40 mus. Proof of principle time-resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

  6. Synthesis of oxynitride materials for solar water splitting: investigations with ambient pressure and high pressure synthesis techniques

    NASA Astrophysics Data System (ADS)

    Dharmagunawardhane, Hingure Arachchilage Naveen

    Solar water splitting, a photocatalytic process where water is directly split into hydrogen and oxygen using sunlight absorbing semiconductor materials, is one of the most sought after methods to make hydrogen economy a reality. Oxynitrides containing d0 and d10 cations tend to have the appropriate band structure required for solar water splitting. So far, reported efficiencies are not high enough for practical use and synthesizing an oxynitride showing high enough efficiency remains necessary. In this dissertation, we discuss the synthesis of oxynitrides and studying their optical and photocatalytic properties with a particular emphasis on utilizing exploratory high pressure synthesis. High pressure synthesis is an interesting route to synthesize oxynitrides as this can stabilize reactants that tend to decompose at ambient pressure, helping to achieve the intended stoichiometry. For synthesis, we selected candidate compositions from published theoretical studies. Reactions were carried out at pressures around 1-3 GPa and at temperatures up to 1300°C in a multi-anvil large volume press. Phase changes were observed with in situ X-ray scattering. In these experiments, we found that most d0 and d10 cations tend to reduce in the high pressure reaction environment as temperature increases, but Zr4+, Hf4+ , and Ta5+ tend to retain their oxidation state. This information will be helpful in future theoretical studies to accurately predict stable oxynitrides synthesizable at high pressure. We synthesized (GaN)1-x(ZnO)x solid solution in the entire composition range at 1 GPa, 1150°C. The material showed photocatalytic H2 evolution activity even without surface modification with co catalysts, first such observed for this system. The minimum band gap of 2.65 eV and the highest H2 evolution activity of 2.31 mumol/h were observed at x = 0.51. On our initial investigation on the synthesis of gallium oxynitride spinel (Ga3O3N3) at high pressure, we found that the material could

  7. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  8. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    PubMed Central

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7–1.1 Å−1 corresponding to real space dimensions of 6–9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures. PMID:26738409

  9. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering.

    PubMed

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F

    2016-01-07

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.

  10. Effect of ambient pressure on a femtosecond laser induced titanium plasma

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Chuansong; Gao, Xun; Lin, Jingquan; Man, Baoyuan; Sun, Yanna; Li, Feifei

    2016-11-01

    Femtosecond laser induced Ti plasma has been characterized as a function of pressure by means of femtosecond laser induced breakdown spectroscopy (fs-LIBS). Experiments were performed with a Ti: sapphire laser system (100 fs, 800 nm), in an air pressure from 10 Pa to 104 Pa. The time-resolved spectrum has been acquired and the spectral intensities of different plasma species have been investigated with a changing ambient pressure. The Ti atomic lines decay while the ionic ones grow with an increasing pressure. The enhancement of nitrogen ionic line has also been observed. The time of flight spectroscopy is adopted to measure the expanding velocity of the plasma plume. The increasing pressure slows the plasma expansion along both axial and radial directions. The electron density and temperature are measured by means of Boltzmann plot method and Stark width method, respectively. It is concluded that higher pressure will increase the energy absorption and retard the plasma expansion, leading to larger electron density and temperature.

  11. Carbon coated nickel nanoparticles produced in high-frequency arc plasma at ambient pressure

    NASA Astrophysics Data System (ADS)

    Vnukova, Natalia; Dudnik, Alexander; Komogortsev, Sergey; Velikanov, Dmitry; Nemtsev, Ivan; Volochaev, Michael; Osipova, Irina; Churilov, Grigory

    2017-10-01

    The nickel particles with the mean size about 10-20 nm coated with carbon were extracted by the treatment of the carbon condensate with nitric and hydrochloric acids. The initial carbon condensate containing nickel nanoparticles with a graphite conversion was synthesized in the high-frequency carbon-helium arc plasma at ambient pressure with the nickel nanoparticles as a catalyst. The nickel content in the nanoparticles was 84.6 wt%. Magnetic properties of the nanoparticles are characterized by the high hysteresis and thermal stability. The sample of compacted nanoparticles is characterized by electrical resistance much higher than it in of compacted initial condensate.

  12. Variation of output with atmospheric pressure and ambient temperature for Therac-20 linear accelerator.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1983-01-01

    The Therac-20 (a linear accelerator manufactured by the Atomic Energy of Canada, Ltd.) employs an unsealed monitor chamber to control the dose output. Daily fluctuations in machine output for both x rays and electron beams were observed to vary with ambient temperature and atmospheric pressure. These variations were not related to any other machine parameters. Variations as large as 3.5% were seen by monitoring 18-MV x-ray output over several months. We recommend that the manufacturers take steps to eliminate the atmospheric dependence of dose rate.

  13. A novel approach to scanning electron microscopy at ambient atmospheric pressure.

    PubMed

    Ominami, Yusuke; Kawanishi, Shinsuke; Ushiki, Tatsuo; Ito, Sukehiro

    2015-04-01

    Scanning electron microscopy (SEM) for observing samples at ambient atmospheric pressure is introduced in this study. An additional specimen chamber with a small window is inserted in the main specimen chamber, and the window is separated with a thin membrane or diaphragm allowing electron beam propagation. Close proximity of the sample to the membrane enables the detection of back-scattered electrons sufficient for imaging. In addition to the empirical imaging data, a probability analysis of the un-scattered fraction of the incident electron beam further supports the feasibility of atmospheric SEM imaging over a controlled membrane-sample distance.

  14. Achieving 50% ionization efficiency in sub-ambient pressure ionization with nanoelectrospray

    PubMed Central

    Marginean, Ioan; Page, Jason S.; Tolmachev, Aleksey V.; Tang, Keqi; Smith, Richard D.

    2010-01-01

    Inefficient ionization and poor transmission of the charged species produced by an electrospray from the ambient pressure mass spectrometer source into the high vacuum region required for mass analysis significantly limits achievable sensitivity. Here we present evidence that, when operated at flow rates of 50 nL/min, a new electrospray-based ion source operated at ~20 Torr can deliver ~50% of the analyte ions initially in the solution as charged desolvated species into the rough vacuum region of mass spectrometers. The ion source can be tuned to optimize the analyte signal for readily ionized species while reducing the background contribution. PMID:21028835

  15. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    NASA Astrophysics Data System (ADS)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  16. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  17. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    PubMed

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances.

  18. A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach

    NASA Astrophysics Data System (ADS)

    Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim

    2016-04-01

    During the past one and a half decades ambient pressure x-ray photoelectron spectroscopy (APXPS) has grown to become a mature technique for the real-time investigation of both solid and liquid surfaces in the presence of a gas or vapour phase. APXPS has been or is being implemented at most major synchrotron radiation facilities and in quite a large number of home laboratories. While most APXPS instruments operate using a standard vacuum chamber as the sample environment, more recently new instruments have been developed which focus on the possibility of custom-designed sample environments with exchangeable ambient pressure cells (AP cells). A particular kind of AP cell solution has been driven by the development of the APXPS instrument for the SPECIES beamline of the MAX IV Laboratory: the solution makes use of a moveable AP cell which for APXPS measurements is docked to the electron energy analyser inside the ultrahigh vacuum instrument. Only the inner volume of the AP cell is filled with gas, while the surrounding vacuum chamber remains under vacuum conditions. The design enables the direct connection of UHV experiments to APXPS experiments, and the swift exchange of AP cells allows different custom-designed sample environments. Moreover, the AP cell design allows the gas-filled inner volume to remain small, which is highly beneficial for experiments in which fast gas exchange is required. Here we report on the design of several AP cells and use a number of cases to exemplify the utility of our approach.

  19. Observation of a Pressure-Induced First-Order Polyamorphic Transition in a Chalcogenide Glass at Ambient Temperature

    SciTech Connect

    Sen, S.; Gaudio, S.; Lesher, C. E.; Aitken, B. G.

    2006-07-14

    An apparently first-order polyamorphic transition has been observed with increasing pressure at ambient temperature in a molecular glass of composition Ge{sub 2.5}As{sub 51.25}S{sub 46.25}. Raman spectroscopic measurements on pressure-quenched samples and in situ x-ray diffraction measurements indicate that this transition corresponds to a collapse of the ambient-pressure molecular phase to a high-pressure network phase. The high-pressure phase first appears at a pressure of {approx}8-9 GPa and the transformation becomes complete at {approx}14-15 GPa. Calorimetric measurements indicate that the low- and high-pressure phases are thermodynamically distinct and that they coexist in the transition range.

  20. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  1. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  2. Structural and dynamical properties of water under ambient and high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric

    2005-03-01

    The structural and dynamical properties of water are investigated with ab initio molecular dynamics. A series of density functional theory based simulations is presented where the effect of temperature at ambient density is explored in order to demonstrate the level of accuracy that can be achieved, and the open challenges that remain in describing liquid water [1,2]. In addition to water at ambient density, the effect of high-pressures, in a regime where molecular dissociation plays a dominant role, is explored for both liquid water and the high-pressure phases of ice. In particular, large-scale two phase simulations of water are used to determine the melting temperature of water in the range of 10 to 50 GPa [3]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. * In collaboration with Jeffery C. Grossman, Francois Gygi and Giulia Galli. [1] ``Towards an assessment of the accuracy of density functional theory for first principles simulations of water'', J. Grossman, E. Schwegler, E. Draeger, F. Gygi and G. Galli, J. Chem. Phys. 120, 300 (2004); and ``Towards an assessment of the accuracy of density functional theory for first principles simulations of water II'', E. Schwegler, J. Grossman, F. Gygi and G. Galli, J. Chem. Phys. 121, 5400 (2004). [2] ``First principles simulations of rigid water'', M. Allesch, E. Schwegler, F. Gygi and G.Galli, J. Chem. Phys. 120, 5192 (2004). [3] ``Dissociation of water under pressure'', E. Schwegler, G. Galli, F. Gygi, and R. Hood, Phys. Rev. Lett. 87, 265501 (2001); and E. Schwegler, F. Gygi and G. Galli (manuscript in preparation).

  3. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    PubMed

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  4. Pressure induced ionic-superionic transition in silver iodide at ambient temperature

    NASA Astrophysics Data System (ADS)

    Han, Y. H.; Wang, H. B.; Troyan, I. A.; Gao, C. X.; Eremets, M. I.

    2014-01-01

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω-1cm-1 could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag+ ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ˜3.4 × 10-4-8.6 × 10-4 cm2/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag+ ions, have been determined and it was suggested that Ag+ ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω-1cm-1. Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  5. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  6. Formation of Hydroxyl and Water Layers on MgO Films Studied with Ambient Pressure XPS

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak, E.R.; Porsgaard, S.; Salmeron, M.B.; Brown Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H{sub 2}O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H{sub 2}O, OH and Ox thickness changes as a function of relative humidity.

  7. Reaction of Small Insects to an Ambient Pressure Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Gray, Travis; Bourham, Mohamed; Roe, R. Michael; Long, Shengyou; Donohue, Kevin

    2003-10-01

    Ambient Pressure Dielectric Barrier Discharges (DBD's) are commonly studied for rapid sterilization of surfaces. In an effort to expand the application of DBD's to larger biological species, small insect species are directly exposed to a large gap(5 cm) DBD composed primarily of helium gas. In order to control the temperature, the electrodes are actively cooled and the current density remains low (<1 mA/cm^2). A direct measurement of the gas temperature by electrically insulated thermocouples shows that the ambient temperature in the discharge volume is below the threshold for thermal damage to the insect (40 ^oC). A microwave interferometer is used to measure the line average, time average, electron density. The electron density is between 10^8 and 10^10 cm-3 for the operating conditions of interest. Under these operating conditions, optical emission spectroscopy shows only a significant emission of helium lines with some emission of molecular nitrogen lines. Under these operational conditions green peach aphids and western flower thrips show a reduction in population by at least 50% with a 60 s exposure time. The goal of this research is to replace currently existing chemical and thermal insect control techniques with the more rapid plasma techniques for quarantine applications.

  8. Formation of hydroxyl and water layers on MgO films studied with ambient pressure XPS

    NASA Astrophysics Data System (ADS)

    Newberg, John T.; Starr, David E.; Yamamoto, Susumu; Kaya, Sarp; Kendelewicz, Tom; Mysak, Erin R.; Porsgaard, Soeren; Salmeron, Miquel B.; Brown, Gordon E., Jr.; Nilsson, Anders; Bluhm, Hendrik

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H 2O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH) 2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H 2O, OH and Ox thickness changes as a function of relative humidity.

  9. Small Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeffrey

    2011-01-01

    A principle concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has long been evaluated for use in this application and several programs are evaluating it for use in both a cabin as well as space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of small scale SA9T testing that was performed over a variety of test conditions and with a variety of trace contaminants. Testing evaluated the ability of SA9T media to sufficiently remove CO2 and H2O after exposure to a fully saturated trace contaminant at ambient conditions. Testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures during cyclic operation with a constant inlet contaminant load. In addition, testing evaluated the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream.

  10. Bench-Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Sweterlitsch, Jeff

    2011-01-01

    A principal concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has been evaluated for use in this application and several programs are evaluating it for use in both cabin and space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of bench-scale SA9T testing that was performed under a variety of test conditions and with several different trace contaminants. Tests were conducted to determine if the capacity of the SA9T media to sufficiently remove CO2 and H2O is compromised after exposure to a fully saturated trace contaminant at ambient conditions. Tests also were conducted to evaluate the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream. In addition, testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures (29.6 KPa/4.3 psia) during cyclic operation with a constant inlet contaminant load.

  11. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  12. The effect of ambient pressure on ejecta sheets from free-surface ablation

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Mansoor, M. M.; Thoroddsen, S. T.; Truscott, T. T.

    2016-05-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at 5 × 106 fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness.

  13. First-principles study of liquid gallium at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jianjun; Tse, John S.; Iitaka, Toshiaki

    2011-07-01

    The static and dynamic properties of liquid Ga close to the melting line have been studied by first-principles molecular dynamics simulations at ambient and elevated pressure up to 5.8 GPa. Below 2.5 GPa, the nearest neighbor Ga-Ga separation shows little change, while the second and third coordination shells are compressed to shorter distances. This behavior is attributed to the gradual occupation of the interstitial sites. Detail analysis of the local geometry and dynamical behavior refutes the proposed existence of Ga2 dimers in the liquid state. In fact, both the structure and electronic properties of the liquid are found to closely resemble that of the underlying Ga-II and Ga-III crystalline phases.

  14. Ambient-Pressure Bulk Superconductivity Deep in the Magnetic State of CeRhIn5

    SciTech Connect

    Paglione,J.; Ho, P.; Maple, M.; Tanatar, M.; Taillefer, L.; Lee, Y.; Petrovic, C.

    2008-01-01

    Specific heat, magnetic susceptibility and electrical transport measurements were performed at ambient pressure on high-quality single crystal specimens of CeRhIn5 down to ultra-low temperatures. We report signatures of an anomaly observed in all measured quantities consistent with a bulk phase transition to a superconducting state at T{sub c}=110 mK. Occurring far below the onset of antiferromagnetism at T{sub N}=3.8 K, this transition appears to involve a significant portion of the available low-temperature density of electronic states, exhibiting an entropy change in line with that found in other members of the 115 family of superconductors tuned away from quantum criticality.

  15. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    SciTech Connect

    Mihalcea, Bogdan M. Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry Deputatova, Lidiya; Syrovatka, Roman

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  16. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  17. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  18. Ambient pressure oxygen reservoir apparatus for use during one-lung anaesthesia.

    PubMed

    Pfitzner, J; Peacock, M J; Daniels, B W

    1999-05-01

    An ambient pressure oxygen reservoir bag apparatus for connecting to the nonventilated lung as soon as single-lung ventilation is initiated is described. The theoretical benefits are the facilitation of collapse of the lung on the side of surgery and a reduced likelihood of arterial desaturation. Although these main benefits are yet to be proven, the authors believe that the weight of theoretical argument and practical observation serves to justify the use of the apparatus while the outcome of suitably designed clinical trials is awaited. It can be used for all one-lung anaesthetics and is especially recommended for thoracoscopic surgery, where temporary re-expansion of the nonventilated lung is either counter-productive or contraindicated, and where there is a possibility that lung collapse may be delayed.

  19. Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy

    DOE PAGES

    Bluhm, Hendrik; Crumlin, Ethan J.

    2016-05-03

    The Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) was held at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA, from December 7-9, 2015. It brought together more than 100 participants from 17 countries. The workshop followed the inaugural meeting at the French synchrotron SOLEIL in December 2014, which was organized by François Rochet. The strong interest in these workshops reflects the growth of the APXPS community over the last decade, with instruments now operational at more than 12 synchrotrons around the world (see SRN, Vol. 27, No. 2, pp. 14–23 (2014)), and a steady increase in themore » number of laboratory instruments. Finally, APXPS has established itself as an important method for the investigation of surfaces and interfaces under in situ and operando conditions, including liquid/vapor and liquid/solid interfaces.« less

  20. Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy

    SciTech Connect

    Bluhm, Hendrik; Crumlin, Ethan J.

    2016-05-03

    The Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) was held at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA, from December 7-9, 2015. It brought together more than 100 participants from 17 countries. The workshop followed the inaugural meeting at the French synchrotron SOLEIL in December 2014, which was organized by François Rochet. The strong interest in these workshops reflects the growth of the APXPS community over the last decade, with instruments now operational at more than 12 synchrotrons around the world (see SRN, Vol. 27, No. 2, pp. 14–23 (2014)), and a steady increase in the number of laboratory instruments. Finally, APXPS has established itself as an important method for the investigation of surfaces and interfaces under in situ and operando conditions, including liquid/vapor and liquid/solid interfaces.

  1. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway.

    PubMed

    Jeremias, Felix; Henninger, Stefan K; Janiak, Christoph

    2016-05-17

    Micro- to mesoporous iron(iii) trimesate MIL-100(Fe) is a MOF of high interest for numerous applications. With regard to large-scale synthesis, e.g., by continuous flow or the in situ deposition of coatings, a replacement for the conventional, hydrothermal low-yield fluoride-containing synthesis is desirable. In this contribution, we present a method to synthesize crystalline fluoride-free MIL-100(Fe) from iron(iii) nitrate and trimesic acid in zeotropic DMSO/water solution at normal ambient pressure involving a DMSO-nitrate redox pathway. Yields of 72%, surface areas of SBET = 1791 m(2) g(-1) and pore volumes of Vpore = 0.82 cm(3) g(-1) were achieved.

  2. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.; Giurgiu, Liviu C.; Stan, Cristina; Vişan, Gina T.; Ganciu, Mihai; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-03-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  3. Improvements on APTC (Ambient Pressure Thermal Cycling) Chamber Regarding Temperature Homogeneity and Energy Consumption

    NASA Astrophysics Data System (ADS)

    Sollner, B.; Doring, D.

    2014-06-01

    This paper describes the working principles of IABG's Ambient Pressure Thermal Cycling chamber (an alternative to thermal-vacuum tests for some cases) and our activities to characterize and improve the system. For example a 3D grid of 64 temperature sensors was installed inside the test volume, in order to determine reliable temperature distribution data for standard operating conditions. Camera monitoring inside the temperature control / fan box allowed us to study the processes. A modification of the direct injection of liquid nitrogen (for efficient cooling) by installation of defined spray nozzles improved the temperature distribution. The characteristics of the original LN2 injection valve caused enormous consumption of liquid nitrogen and electrical power even at constant chamber temperatures. A new valve with a different control characteristic reduced this standby consumption remarkably.

  4. Vapor pressure deficit effects on leaf area expansion and transportation of soybean subjected to soil drying

    USDA-ARS?s Scientific Manuscript database

    Effects of leaf-to-air vapor pressure difference (VPD) and soil water deficit on transpiration rate (TR) of plants are well understood but their effects on plant leaf area expansion (PLAE) are less defined. Both PLAE and TR are unaffected by soil drying until the fraction transpirable soil water (FT...

  5. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry.

    PubMed

    Forbes, Thomas P; Brewer, Tim M; Gillen, Greg

    2013-10-07

    Desorption electro-flow focusing ionization (DEFFI), a desorption-based ambient ion source, was developed, characterized, and evaluated as a possible source for field deployable ambient pressure mass spectrometry (APMS). DEFFI, based on an electro-flow focusing system, provides a unique configuration for the generation of highly charged energetic droplets for sample analysis and ionization. A concentrically flowing carrier gas focuses the liquid emanating from a capillary through a small orifice, generating a steady fluid jet. An electric field is applied across this jet formation region, producing high velocity charged droplets that impinge on an analyte laden surface. This configuration separates the jet charging region from the external environment, eliminating detrimental effects from droplet space charge or target surface charging. The sample desorption and ionization processes operate similar to desorption electrospray ionization (DESI). DEFFI demonstrated strong signal intensities and improved signal-to-noise ratios in both positive and negative mode mass spectrometry for narcotics, i.e., cocaine, and explosives, i.e., cyclotrimethylenetrinitramine (RDX), respectively. A characterization of DEFFI ionization mechanisms identified operation regimes of both electrospray and corona discharge based analyte ionization, as well as limitations in overall signal. In addition, the DEFFI response was directly compared to DESI-MS under similar operating conditions. This comparison established a wider and more stable optimal operating range, while requiring an order of magnitude lower applied gas pressure and applied potential for DEFFI than DESI. These reductions are due to the physical mode of jet formation and geometric configuration differences between DEFFI and DESI, pointing to a potential benefit of DEFFI-MS for field implementation.

  6. Growth Control of Dry Yeast Using Scalable Atmospheric-Pressure Dielectric Barrier Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-11-01

    We have investigated the effects of plasma irradiation on the growth of dry yeast (Saccharomyces cerevisiae) using a scalable atmospheric-pressure dielectric barrier discharge (DBD) device. NO of 380 ppm, NO2 of 10 ppm and O3 of 560 ppm were detected 1 mm below the discharges, which were produced by the DBD plasmas. DBD plasma irradiation of 10 to 100 s enhances the growth of yeast in the lag phase, whereas that of 120 and 150 s suppresses the growth. O3, NO2, photons, and heat generated by the plasma irradiation are not responsible for the growth enhancement of the dry yeast. Plasma etching has little effect on the growth of dry yeast cells. NO plays a key role in the growth enhancement of dry yeast cells.

  7. Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ito, Joyo; Asahara, Ryohei; Watanabe, Kenta; Nozaki, Mikito; Nakazawa, Satoshi; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    Initial oxidation of gallium nitride (GaN) (0001) epilayers and subsequent growth of thermal oxides in dry oxygen ambient were investigated by means of x-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and x-ray diffraction measurements. It was found that initial oxide formation tends to saturate at temperatures below 800 °C, whereas the selective growth of small oxide grains proceeds at dislocations in the epilayers, followed by noticeable grain growth, leading to a rough surface morphology at higher oxidation temperatures. This indicates that oxide growth and its morphology are crucially dependent on the defect density in the GaN epilayers. Structural characterizations also reveal that polycrystalline α- and β-phase Ga2O3 grains in an epitaxial relation with the GaN substrate are formed from the initial stage of the oxide growth. We propose a comprehensive model for GaN oxidation mediated by nitrogen removal and mass transport and discuss the model on the basis of experimental findings.

  8. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.

    PubMed

    He, Chuanjiu; Davies, Fred T

    2012-03-01

    Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO(2)). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure). Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures

    SciTech Connect

    Glascoe, E A; Zaug, J M; Armstrong, M R; Crowhurst, J C; Grant, C D; Fried, L E

    2009-03-05

    The timescale and/or products of photo-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at elevated pressure (i.e. 8 GPa). Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO{sub 2}, an observed decomposition product, is complete within 30-40 s. Proof of principle time resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

  10. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  11. A geospatial model of ambient sound pressure levels in the contiguous United States.

    PubMed

    Mennitt, Daniel; Sherrill, Kirk; Fristrup, Kurt

    2014-05-01

    This paper presents a model that predicts measured sound pressure levels using geospatial features such as topography, climate, hydrology, and anthropogenic activity. The model utilizes random forest, a tree-based machine learning algorithm, which does not incorporate a priori knowledge of source characteristics or propagation mechanics. The response data encompasses 270 000 h of acoustical measurements from 190 sites located in National Parks across the contiguous United States. The explanatory variables were derived from national geospatial data layers and cross validation procedures were used to evaluate model performance and identify variables with predictive power. Using the model, the effects of individual explanatory variables on sound pressure level were isolated and quantified to reveal systematic trends across environmental gradients. Model performance varies by the acoustical metric of interest; the seasonal L50 can be predicted with a median absolute deviation of approximately 3 dB. The primary application for this model is to generalize point measurements to maps expressing spatial variation in ambient sound levels. An example of this mapping capability is presented for Zion National Park and Cedar Breaks National Monument in southwestern Utah.

  12. Behavior of Supported Palladium Oxide Nanoparticles under Reaction Conditions, Studied with near Ambient Pressure XPS.

    PubMed

    Jürgensen, Astrid; Heutz, Niels; Raschke, Hannes; Merz, Klaus; Hergenröder, Roland

    2015-08-04

    Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is a promising method to close the "pressure gap", and thus, study the surface composition during heterogeneous reactions in situ. The specialized spectrometers necessary for this analytical technique have recently been adapted to operate with a conventional X-ray source, making it available for routine quantitative analysis in the laboratory. This is shown in the present in situ study of the partial oxidation of 2-propanol catalyzed with PdO nanoparticles supported on TiO2, which was investigated under reaction conditions as a function of gas composition (alcohol-to-oxygen ratio) and temperature. Exposure of the nanoparticles to 2-propanol at 30 °C leads to immediate partial reduction of the PdO, followed by a continuous reduction of the remaining PdO during heating. However, gaseous oxygen inhibits the reduction of PdO below 90 °C, and the oxidation of 2-propanol to carboxylates only occurs in the presence of oxygen above 90 °C. These results support the theory that metallic palladium is the active catalyst material, and they show that environmental conditions affect the nanoparticles and the reaction process significantly. The study also revealed challenges and limitations of this analytical method. Specifically, the intensity and fixed photon energy of a conventional X-ray source limit the spectral resolution and surface sensitivity of lab-based NAP-XPS, which affect precision and accuracy of the quantitative analysis.

  13. Stripe order in La2-xBaxCuO4 at ambient and high pressure.

    NASA Astrophysics Data System (ADS)

    Huecker, M.; Wen, J. S.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.; Zimmermann, M. V.

    2009-03-01

    The pronounced stability of the charge and spin stripe order in La2-xBaxCuO4 at x=1/8 doping still is a poorly understood peculiarity. A combination of electronic and structural interactions is likely, however it has been difficult to clearly separate the involved mechanisms. One approach is to explore how stripe order fades away for dopings x !=1/8. We have performed high energy (100 keV) x-ray diffraction and static magnetization experiments on single crystals between x=0.095 and 0.155. To our surprise, at ambient pressure stripes exist in a much broader range of doping around x=1/8 than expected. In the underdoped region charge stripe order always coincides with a structural transition associated with a rotation of the octahedral tilt axis. However, for x=1/8 and high pressure we have been able to show that stripe order also occurs in the absence of this structural phase, which motivates us to discuss stripes in terms of an electronic liquid crystal phase.

  14. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  15. UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)2 Surface Analysis

    NASA Astrophysics Data System (ADS)

    Head, Ashley R.; Schnadt, Joachim

    2016-12-01

    The surface sensitivity of x-ray photoelectron spectroscopy (XPS) has positioned the technique as a routine analysis tool for chemical and electronic structure information. Samples ranging from ideal model systems to industrial materials can be analyzed. Instrumentational developments in the past two decades have popularized ambient pressure XPS, with pressures in the tens of mbar now commonplace. Here, we briefly review the technique, including a discussion of developments that allow data collection at higher pressures. We illustrate the information XPS can provide by using examples from the literature, including MgO studies. We hope to illustrate the possibilities of ambient pressure XPS to Mg, MgO, and Mg(OH)2 systems, both in fundamental and applied studies.

  16. Investigation of ambient air species diffusion into the effluent of an atmospheric pressure plasma jet by measurements and modeling

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Reuter, Stephan; Winter, Jörn; Lange, Hartmut; Weltmann, Klaus-Dieter; Leibniz InstitutePlasma Science; Technology (INP) Greifswald Team

    2011-10-01

    The diffusion of ambient air species into the effluent of a cold atmospheric pressure plasma (CAP) jet operated with pure argon is quantified using both experimental methods and theoretical estimations by a convection-diffusion approach. In the effluent of CAP jets operated in ambient air, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated. ROS and RNS are believed to play a central role in biomedical applications of low temperature atmospheric pressure plasmas. The inflow of atmospheric oxygen is determined by a novel absorption technique in the VUV spectral range, where emission originating from within the discharge is used as light source. An analytic expression for the estimation of the on-axis density of ambient species was obtained assuming a stationary drift-diffusion equation and is compared to complete numerical results. The easy to use expression correlates well with the experimental results obtained.

  17. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Singh, G. P.; Ram, S.; Fecht, H.-J.

    2013-08-01

    Stable anisotropic nanorods of surface modified CrO2 (˜18 nm diameter) with a correlated diamagnetic layer (2-3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr4+ ions by Ag atoms on the CrO2 surface (topotactic surface layer) via an etching reaction of a CrO2-polymer complex with Ag+ ions in hot water followed by heating the dried sample at 300-400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO2 such that it no longer converts to Cr2O3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d5/2 and 3d3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (-) 7.6% at 77 K, than reported values in compacted CrO2 powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO2 nanorods.

  18. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  19. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  20. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  1. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.

    PubMed

    Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J

    2009-01-01

    A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.

  2. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    SciTech Connect

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F.; Strauss, M.A.; Cao, S.; Pedraza, A.J.; Puretzky, A.A.

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  3. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  4. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    SciTech Connect

    Grass, Michael E.; Karlsson, Patrik G.; Lundqvist, Maans; Aksoy, Funda; Wannberg, Bjoern; Mun, Bongjin S.; Hussain, Zahid; Liu, Zhi

    2010-05-15

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 {mu}m spatial resolution in one dimension and angle-resolved modes with simulated 0.5 deg. angular resolution at 24 deg. acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar.

  5. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  6. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  7. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    SciTech Connect

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.

  8. Direct and Selective Synthesis of Hydrogen Peroxide over Palladium-Tellurium Catalysts at Ambient Pressure.

    PubMed

    Tian, Pengfei; Xu, Xingyan; Ao, Can; Ding, Doudou; Li, Wei; Si, Rui; Tu, Weifeng; Xu, Jing; Han, Yi-Fan

    2017-09-11

    Highly selective hydrogen peroxide (H2 O2 ) synthesis directly from H2 and O2 is a strongly desired reaction for green processes. Herein a highly efficient palladium-tellurium (Pd-Te/TiO2 ) catalyst with a selectivity of nearly 100 % toward H2 O2 under mild conditions (283 K, 0.1 MPa, and a semi-batch continuous flow reactor) is reported. The size of Pd particles was remarkably reduced from 2.1 nm to 1.4 nm with the addition of Te. The Te-modified Pd surface could significantly weaken the dissociative activation of O2 , leading to the non-dissociative hydrogenation of O2 . Density functional theory calculations illuminated the critical role of Te in the selective hydrogenation of O2 , in that the active sites composed of Pd and Te could significantly restrain side reactions. This work has made significant progress on the development of high-selectivity catalysts for the direct synthesis of H2 O2 at ambient pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure

    PubMed Central

    Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun

    2013-01-01

    A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1−xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl2) atmosphere. Therefore, our finding, the direct transformation of a-Si1−xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349

  10. Equation of State of CAS Phase to Pressure of the Uppermost Lower Mantle at Ambient Temperature

    SciTech Connect

    X Liu; Q He; L Deng; S Zhai; X Hu; B Li; L Zhang; Z Chen; L Qiong

    2011-12-31

    The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related to slab subduction. Its equation of state has been investigated here at ambient temperature up to about 25 GPa by using a diamond-anvil cell and synchrotron X-ray radiation. Its P-V data, fitted to the third-order Birch-Murnaghan equation, yield an isothermal bulk modulus (K'{sub T}) of 185 (9) GPa and first pressure derivative (K'{sub T} ) of 7.2 (12). If K'{sub T} is fixed at 4, the derived K{sub T} is 212 (4) GPa. Additionally, the CAS phase is strongly elastically anisotropic, with its a-axis direction much less compressible than c-axis direction: K{sub T-a}:K{sub T-c} = 2.19.

  11. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the averagemore » structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  12. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  13. Synthesis of phosphorous-doped graphene by ambient pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ghosh, Anupama; Lv, Ruitao; Perera Lopez, Nestor; Berkdemir, Ayse; Elías, Ana Laura; Terrones, Humberto; Terrones, Mauricio

    2013-03-01

    Although theoretical calculations have demonstrated that phosphorous (P) doping of graphene could open the largest band gap and could possess excellent properties to become an ideal toxic gas sensor, it has not been synthesized experimentally. We have successfully synthesized large-area, monolayered P-doped graphene by an ambient pressure chemical vapor deposition (AP-CVD). In particular, triphenyl phosphene (TPP) dissolved in hexane with different concentrations of TPP has been used as phosphorous-carbon precursor. Raman spectroscopy is used extensively for characterizing the different synthesized materials. The intensity ratio of D, D', 2D and G bands and their associated shifts provide information related the nature and doping levels. The strong D-band and a prominent D'-band confirms the occurrence of doping by P-substitution. The doped graphene sheets have also been characterized by high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). In addition, results on the use of these P-doped graphene in molecular sensing will be discussed.

  14. Light-induced catalyst and solvent-free high pressure synthesis of high density polyethylene at ambient temperature.

    PubMed

    Ceppatelli, Matteo; Bini, Roberto

    2014-04-01

    The combined effect of high pressure and electronic photo-excitation has been proven to be very efficient in activating extremely selective polymerisations of small unsaturated hydrocarbons in diamond anvil cells (DAC). Here we report an ambient temperature, large volume synthesis of high density polyethylene based only on high pressure (0.4-0.5 GPa) and photo-excitation (~350 nm), without any solvent, catalyst or radical initiator. The reaction conditions are accessible to the current industrial technology and the laboratory scale pilot reactor can be scaled up to much larger dimensions for practical applications. FTIR and Raman spectroscopy, and X-ray diffraction, indicate that the synthesised material is of comparable quality with respect to the outstanding crystalline material obtained in the DAC. The polydispersity index is comparable to that of IV generation Ziegler-Natta catalysts. Moreover the crystalline quality of the synthesised material can be further enhanced by a thermal annealing at 373 K and ambient pressure.

  15. Ambient ion soft landing.

    PubMed

    Badu-Tawiah, Abraham K; Wu, Chunping; Cooks, R Graham

    2011-04-01

    Ambient ion soft landing, a process in which polyatomic ions are deposited from air onto a surface at a specified location under atmospheric pressure, is described. Ions generated by electrospray ionization are passed pneumatically through a heated metal drying tube, their ion polarity is selected using ion deflectors, and the dry selected ions are soft-landed onto a selected surface. Unlike the corresponding vacuum soft-landing experiment, where ions are mass-selected and soft-landed within a mass spectrometer, here the ions to be deposited are selected through the choice of a compound that gives predominantly one ionic species upon ambient ionization; no mass analysis is performed during the soft landing experiment. The desired dry ions, after electrical separation from neutrals and counterions, are deposited on a surface. Characterization of the landed material was achieved by dissolution and analysis using mass spectrometry or spectrofluorimetry. The treated surface was also characterized using fluorescence microscopy, which allowed surfaces patterned with fluorescent compounds to be imaged. The pure dry ions were used as reagents in heterogeneous ion/surface reactions including the reaction of pyrylium cations with d-lysine to form the N-substituted pyridinium cation. The charged microdroplets associated with incompletely dried ions could be selected for soft landing or surface reaction by choice of the temperature of a drying tube inserted between the ion source and the electrical ion deflectors.

  16. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    SciTech Connect

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  17. DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments.

    PubMed

    Bellavia, Andrea; Urch, Bruce; Speck, Mary; Brook, Robert D; Scott, Jeremy A; Albetti, Benedetta; Behbod, Behrooz; North, Michelle; Valeri, Linda; Bertazzi, Pier Alberto; Silverman, Frances; Gold, Diane; Baccarelli, Andrea A

    2013-06-19

    Short-term exposures to fine (<2.5 μm aerodynamic diameter) ambient particulate-matter (PM) have been related with increased blood pressure (BP) in controlled-human exposure and community-based studies. However, whether coarse (2.5 to 10 μm) PM exposure increases BP is uncertain. Recent observational studies have linked PM exposures with blood DNA hypomethylation, an epigenetic alteration that activates inflammatory and vascular responses. No experimental evidence is available to confirm those observational data and demonstrate the relations between PM, hypomethylation, and BP. We conducted a cross-over trial of controlled-human exposure to concentrated ambient particles (CAPs). Fifteen healthy adult participants were exposed for 130 minutes to fine CAPs, coarse CAPs, or HEPA-filtered medical air (control) in randomized order with ≥2-week washout. Repetitive-element (Alu, long interspersed nuclear element-1 [LINE-1]) and candidate-gene (TLR4, IL-12, IL-6, iNOS) blood methylation, systolic and diastolic BP were measured pre- and postexposure. After adjustment for multiple comparisons, fine CAPs exposure lowered Alu methylation (β-standardized=-0.74, adjusted-P=0.03); coarse CAPs exposure lowered TLR4 methylation (β-standardized=-0.27, adjusted-P=0.04). Both fine and coarse CAPs determined significantly increased systolic BP (β=2.53 mm Hg, P=0.001; β=1.56 mm Hg, P=0.03, respectively) and nonsignificantly increased diastolic BP (β=0.98 mm Hg, P=0.12; β=0.82 mm Hg, P=0.11, respectively). Decreased Alu and TLR4 methylation was associated with higher postexposure DBP (β-standardized=0.41, P=0.04; and β-standardized=0.84, P=0.02; respectively). Decreased TLR4 methylation was associated with higher postexposure SBP (β-standardized=1.45, P=0.01). Our findings provide novel evidence of effects of coarse PM on BP and confirm effects of fine PM. Our results provide the first experimental evidence of PM-induced DNA hypomethylation and its correlation to BP.

  18. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments.

    PubMed

    Murakami, Chiho; Ohmae, Eiji; Tate, Shin-ichi; Gekko, Kunihiko; Nakasone, Kaoru; Kato, Chiaki

    2011-03-01

    To examine whether dihydrofolate reductase (DHFR) from deep-sea bacteria has undergone molecular evolution to adapt to high-pressure environments, we cloned eight DHFRs from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, and subsequently purified six proteins to compare their structures, stabilities, and functions. The DHFRs showed 74-90% identity in primary structure to DHFR from S. violacea, but only 55% identity to DHFR from Escherichia coli (ecDHFR). Far-ultraviolet circular dichroism and fluorescence spectra suggested that the secondary and tertiary structures of these DHFRs were similar. In addition, no significant differences were found in structural stability as monitored by urea-induced unfolding and the kinetic parameters, K(m) and k(cat); although the DHFRs from Shewanella species were less stable and more active (2- to 4-fold increases in k(cat)/K(m)) than ecDHFR. Interestingly, the pressure effects on enzyme activity revealed that DHFRs from ambient-atmospheric species are not necessarily incompatible with high pressure, and DHFRs from deep-sea species are not necessarily tolerant of high pressure. These results suggest that the DHFR molecule itself has not evolved to adapt to high-pressure environments, but rather, those Shewanella species with enzymes capable of retaining functional activity under high pressure migrated into the deep-sea.

  19. Tricalcium silicate (C{sub 3}S) hydration under high pressure at ambient and high temperature (200 deg. C)

    SciTech Connect

    Meducin, F.; Zanni, H.; Noik, C.; Hamel, G.; Bresson, B.

    2008-03-15

    The hydration of a tricalcium silicate paste at ambient temperature and at 200 deg. C under high pressure (up to 1000 bar) has been studied. Two high pressure cells have been used, one allows in-situ electrical conductivity measurements during hydration under high pressure. The hydration products were characterized by thermal analysis, X-ray diffraction and {sup 29}Si NMR measurements. The pressure has a large kinetic effect on the hydration of a C{sub 3}S paste at room temperature. The pressure was seen to affect drastically the hydration of a C{sub 3}S paste at 200 deg. C and this study evidences the competition between the different high temperature phases during the hydration.

  20. Electronic structure of ytterbium-implanted GaN at ambient and high pressure: experimental and crystal field studies.

    PubMed

    Kaminska, A; Ma, C-G; Brik, M G; Kozanecki, A; Boćkowski, M; Alves, E; Suchocki, A

    2012-03-07

    The results of high-pressure low-temperature optical measurements in a diamond-anvil cell of bulk gallium nitride crystals implanted with ytterbium are reported in combination with crystal field calculations of the Yb(3+) energy levels. Crystal field analysis of splitting of the (2)F(7/2) and (2)F(5/2) states has been performed, with the aim of assigning all features of the experimental luminescence spectra. A thorough analysis of the pressure behavior of the Yb(3+) luminescence lines in GaN allowed the determination of the ambient-pressure positions and pressure dependence of the Yb(3+) energy levels in the trigonal crystal field as well as the pressure-induced changes of the spin-orbit coupling coefficient.

  1. Sequential Coordination between Lingual and Pharyngeal Pressures Produced during Dry Swallowing

    PubMed Central

    Yano, Jitsuro; Aoyagi, Yoichiro; Ono, Takahiro; Hori, Kazuhiro; Yamaguchi, Wakami; Fujiwara, Shigehiro; Kumakura, Isami; Minagi, Shogo; Tsubahara, Akio

    2014-01-01

    The aim of this study was to investigate oropharyngeal pressure flow dynamics during dry swallowing in ten healthy subjects. Tongue pressure (TP) was measured using a sensor sheet system with five measuring points on the hard palate, and pharyngeal pressure (PP) was measured using a manometric catheter with four measuring points. The order and correlations of sequential events, such as onset, peak, and offset times of pressure production, at each pressure measuring point were analyzed on the synchronized waveforms. Onset of TP was earlier than that of PP. The peak of TP did not show significant differences with the onset of PP, and it was earlier than that of PP. There was no significant difference between the offset of TP and PP. The onset of PP was temporally time-locked to the peak of TP, and there was an especially strong correlation between the onset of PP and TP at the posterior-median part on the hard palate. The offset of PP was temporally time-locked to that of TP. These results could be interpreted as providing an explanation for the generation of oropharyngeal pressure flow to ensure efficient bolus transport and safe swallowing. PMID:25580436

  2. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction

    SciTech Connect

    Ali-Löytty, Harri; Louie, Mary W.; Singh, Meenesh R.; Li, Lin; Sanchez Casalongue, Hernan G.; Ogasawara, Hirohito; Crumlin, Ethan J.; Liu, Zhi; Bell, Alexis T.; Nilsson, Anders; Friebel, Daniel

    2016-01-05

    Chemical analysis of solid–liquid interfaces under electrochemical conditions has recently become feasible due to the development of new synchrotron radiation techniques. In this paper, we report the use of “tender” X-ray ambient-pressure X-ray photoelectron spectroscopy (APXPS) to characterize a thin film of Ni–Fe oxyhydroxide electrodeposited on Au as the working electrode at different applied potentials in 0.1 M KOH as the electrolyte. Our results show that the as-prepared 7 nm thick Ni–Fe (50% Fe) film contains Fe and Ni in both their metallic as well as oxidized states, and undergoes further oxidation when the sample is subjected to electrochemical oxidation–reduction cycles. Metallic Fe is oxidized to Fe3+ and metallic Ni to Ni2+/3+. This work shows that it is possible to monitor the chemical nature of the Ni–Fe catalyst as a function of potential when the corresponding current densities are small. This allows for operando measurements just above the onset of OER; however, current densities as they are desired in photoelectrochemical devices (~1–10 mA cm–2) could not be achieved in this work, due to ohmic losses in the thin electrolyte film. We use a two-dimensional model to describe the spatial distribution of the electrochemical potential, current density, and pH as a function of the position above the electrolyte meniscus, to provide guidance toward enabling the acquisition of operando APXPS at high current density. Finally, the shifts in binding energy of water with applied potential predicted by the model are in good agreement with the experimental values.

  3. Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction

    DOE PAGES

    Ali-Löytty, Harri; Louie, Mary W.; Singh, Meenesh R.; ...

    2016-01-05

    Chemical analysis of solid–liquid interfaces under electrochemical conditions has recently become feasible due to the development of new synchrotron radiation techniques. In this paper, we report the use of “tender” X-ray ambient-pressure X-ray photoelectron spectroscopy (APXPS) to characterize a thin film of Ni–Fe oxyhydroxide electrodeposited on Au as the working electrode at different applied potentials in 0.1 M KOH as the electrolyte. Our results show that the as-prepared 7 nm thick Ni–Fe (50% Fe) film contains Fe and Ni in both their metallic as well as oxidized states, and undergoes further oxidation when the sample is subjected to electrochemical oxidation–reductionmore » cycles. Metallic Fe is oxidized to Fe3+ and metallic Ni to Ni2+/3+. This work shows that it is possible to monitor the chemical nature of the Ni–Fe catalyst as a function of potential when the corresponding current densities are small. This allows for operando measurements just above the onset of OER; however, current densities as they are desired in photoelectrochemical devices (~1–10 mA cm–2) could not be achieved in this work, due to ohmic losses in the thin electrolyte film. We use a two-dimensional model to describe the spatial distribution of the electrochemical potential, current density, and pH as a function of the position above the electrolyte meniscus, to provide guidance toward enabling the acquisition of operando APXPS at high current density. Finally, the shifts in binding energy of water with applied potential predicted by the model are in good agreement with the experimental values.« less

  4. Crystal growth and ambient and high pressure study of the re-entrant superconductor Tm(2)Fe(3)Si(5).

    PubMed

    Singh, Yogesh; Ramakrishnan, S

    2008-06-11

    Tm(2)Fe(3)Si(5) is known to undergo a transition to the superconducting state (at ambient or applied pressure depending on the sample) at a temperature T(c1)(∼1.8 K), and at a lower temperature T(N)(≈1 K) it undergoes a transition into a long range antiferromagnetically ordered state. Superconductivity is simultaneously destroyed and the sample re-enters the normal state at T(c2) = T(N). The conditions reported in the literature for the observation of superconductivity in Tm(2)Fe(3)Si(5) are sample dependent, but it is now accepted that stoichiometric Tm(2)Fe(3)Si(5) superconducts only under pressure. Here we report single-crystal growth of stoichiometric Tm(2)Fe(3)Si(5) which does not superconduct at ambient pressure down to 100 mK. Measurements of the anisotropic static magnetic susceptibility χ(T) and isothermal magnetization M(H), ac susceptibility χ(ac)(T), electrical resistivity ρ(T) and heat capacity C(T) at ambient pressure and χ(ac)(T) at high pressure are reported. The magnetic susceptibility along the c axis, χ(c)(T), shows a curvature over the whole temperature range and does not follow the Curie-Weiss behavior, while the magnetic susceptibility along the a axis, χ(a)(T), follows a Curie-Weiss behavior between 130 and 300 K with a Weiss temperature θ and an effective magnetic moment μ(eff) which depend on the temperature range of the fit. The easy axis of magnetization is perpendicular to the c axis and χ(a)/χ(c) = 3.2 at 1.8 K. The ambient pressure χ(ac)(T) and C(T) measurements confirm bulk antiferromagnetic ordering at T(N) = 1.1 K. The sharp drop in χ(ac)(T) below the antiferromagnetic transition is suggestive of the existence of a spin gap. We observe superconductivity only under applied pressures P≥2 kbar. The temperature-pressure phase diagram showing the non-monotonic dependence of the superconducting transition temperature T(c) on pressure P is presented.

  5. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    PubMed

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO3:La,Rh/C/BiVO4:Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H(+) and OH(-) concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  6. Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Seong; Hong, Jong-Dae; Yang, Yong-Sik; Kook, Dong-Hak

    2017-08-01

    Temperature and hoop stress limits have been used to prevent the gross rupture of spent nuclear fuel during dry storage. The stress due to rod internal pressure can induce cladding degradation such as creep, hydride reorientation, and delayed hydride cracking. Creep is a self-limiting phenomenon in a dry storage system; in contrast, hydride reorientation and delayed hydride cracking are potential degradation mechanisms activated at low temperatures when the cladding material is brittle. In this work, a conservative rod internal pressure and corresponding hoop stress were calculated using FRAPCON-4.0 fuel performance code. Based on the hoop stresses during storage, a study on the onset of hydride reorientation and delayed hydride cracking in spent nuclear fuel was conducted under the current storage guidelines. Hydride reorientation is hard to occur in most of the low burn-up fuel while some high burn-up fuel can experience hydride reorientation, but their effect may not be significant. On the other hand, delayed hydride cracking will not occur in spent nuclear fuel from pressurized water reactor; however, there is a lack of confirmatory data on threshold intensity factor for delayed hydride cracking and crack size distribution in the fuel.

  7. Formation of the -N(NO)N(NO)- polymer at high pressure and stabilization at ambient conditions.

    PubMed

    Xiao, Hai; An, Qi; Goddard, William A; Liu, Wei-Guang; Zybin, Sergey V

    2013-04-02

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature).

  8. Formation of the –N(NO)N(NO)– polymer at high pressure and stabilization at ambient conditions

    PubMed Central

    Xiao, Hai; An, Qi; Goddard, William A.; Liu, Wei-Guang; Zybin, Sergey V.

    2013-01-01

    A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature). PMID:23503849

  9. Dynamical stability of the cubic metallic phase of AlH3 at ambient pressure: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Kim, D. Y.; Scheicher, R. H.; Ahuja, R.

    2008-09-01

    We have characterized the high-pressure cubic phase of AlH3 from ab initio using density functional theory to determine mechanical as well as electronic properties and lattice dynamics (phonon-dispersion relations) from the response function method. Our zero-temperature phonon calculations show the softening of a particular mode with decreasing pressure, indicating the onset of a dynamic instability that continues to persist at ambient conditions. This instability can, however, be removed when finite electronic temperature effects are considered in the calculations. We furthermore identify a particular momentum transfer in the phonon-dispersion relation, matching a corresponding momentum transfer in the electronic band structure.

  10. Ambient-temperature high-pressure-induced ferroelectric phase transition in CaMnTi2O6

    NASA Astrophysics Data System (ADS)

    Ruiz-Fuertes, J.; Bernert, T.; Zimmer, D.; Schrodt, N.; Koch-Müller, M.; Winkler, B.; Bayarjargal, L.; Popescu, C.; MacLeod, S.; Glazyrin, K.

    2017-09-01

    The ferroelectric to paraelectric phase transition of multiferroic CaMnTi2O6 has been investigated at high pressures and ambient temperature by second-harmonic generation (SHG), Raman spectroscopy, and powder and single-crystal x-ray diffraction. We have found that CaMnTi2O6 undergoes a pressure-induced structural phase transition (P 42m c →P 42/n m c ) at ˜7 GPa to the same paraelectric structure found at ambient pressure and Tc=630 K . The continuous linear decrease of the SHG intensity that disappears at 7 GPa and the existence of a Raman active mode at 244 cm-1 that first softens up to 7 GPa and then hardens with pressure are used to discuss the nature of the phase transition of CaMnTi2O6 , for which a d Tc/d P =-48 K/GPa has been found. Neither a volume contraction nor a change in the normalized pressure on the Eulerian strain is observed across the phase transition with all the unit-cell volume data following a second-order Birch-Murnaghan equation of state with a bulk modulus of B0=182.95 (2 ) GPa .

  11. Magnetic, electrical, and thermodynamic properties of NpIr: Ambient and high-pressure measurements, and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Walker, H. C.; McEwen, K. A.; Griveau, J.-C.; Eloirdi, R.; Amador, P.; Maldonado, P.; Oppeneer, P. M.; Colineau, E.

    2015-05-01

    We present bulk property measurements of NpIr, a newly synthesized member of the Np-Ir binary phase diagram, which is isostructural to the noncentrosymmetric pressure-induced ferromagnetic superconductor UIr. Magnetic susceptibility, electronic transport properties at ambient and high pressure, and heat capacity measurements have been performed for temperatures T =0.55 -300 K in a range of magnetic fields up to 14 T and under pressure up to 17.3 GPa. These reveal that NpIr is a moderately heavy fermion Kondo system with strong antiferromagnetic interactions, but there is no evidence of any phase transition down to 0.55 K or at the highest pressure achieved. Experimental results are compared with ab initio calculations of the electronic band structure and lattice heat capacity. An extremely low lattice thermal conductivity is predicted for NpIr at temperatures above 300 K.

  12. Effect of strain amplitude on relaxation spectra of attenuation in dry and saturated sandstone under pressure

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2007-06-01

    Laboratory experiments have been carried out to investigate the amplitude-frequency dependence of compressional- and shear-wave attenuation in samples of dry and saturated sandstone. The measurements were performed using the reflection method on a pulse frequency of 1 MHz in the strain range ~(0.3-2.0) × 10-6 under a confining pressure of 20 MPa. In general, the attenuation decreases monotonically with increasing strain amplitude as Q^{-1} \\propto \\varepsilon ^{-n_{\\sim} }, where n~ = 0.003-0.045. The decrease in P-wave attenuation, Q-1p, for dry sandstone is 5%, but for saturated sandstone there is no change. The analogous decrease for Q-1s in the dry and the saturated sandstone is 8% and 4%, respectively. The P-wave relaxation spectra, Q-1p(f), in the dry and saturated sandstone are slightly different from each other but the S-wave relaxation spectra, Q-1s(f), are very different. The amplitude variation causes the change in the value of the relaxation strength Δ that leads to the displacement of the curve Q-1(f) in the Y-direction. The value of Δs in the saturated rock is four times more than the value Δp in the dry rock, and the curves Q-1s(f) are shifted relative to Q-1p(f) towards higher frequencies. The upward-downward amplitude dependence Δp(ɛ1-6-1) both in the dry and the saturated rock is represented by the descending curve. The Δs(ɛ1-6-1) curve for the saturated rock shows hysteresis, but for the dry rock hysteresis is absent. The increase in the strain amplitude gives rise to a small change in peak frequency, but stimulates considerable (up to 40%) decrease in the S-wave relaxation peak width. The unusual behaviour of attenuation is explained by a feature of the joint action of viscoelastic and microplastic mechanisms. These results can be used to improve methods of geological interpretation of acoustical and seismic data.

  13. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  14. A novel dry coal feeding concept for high-pressure gasifiers

    NASA Technical Reports Server (NTRS)

    Trumbull, H. E.; Davis, H. C.

    1977-01-01

    A novel dry coal feeding concept was developed for injecting ground coal into high-pressure gasifiers. Significant power savings are projected because the coal is injected directly with a ram and there is no requirement for pumping large volumes of gas or fluid against pressure. A novel feature of the concept is that a new seal zone is formed between the ram and injection tube each cycle. The seal zone comprises a mixture of a small quantity of finely ground coal and a fluid. To demonstrate the feasibility of the concept, coal was injected into a 1000-psi chamber with an experimental device having a 7-1/2-inch-diameter ram and a 28-inch-long stroke.

  15. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure

    NASA Astrophysics Data System (ADS)

    Kaminska, E.; Kaminski, K.; Paluch, M.; Ngai, K. L.

    2006-04-01

    Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature Tg, the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the α relaxation and an additional faster γ process at the megahertz frequency range. By decreasing temperature below Tg at ambient pressure or by elevating pressure above Pg, the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary β-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the β-relaxation time τβ to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary β relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the β relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their γ relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and γ relaxation are further demonstrated by the nearly perfect superposition of the α-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same α-peak frequency), but not the γ-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the β-loss peak shifts to lower frequencies, but not the γ relaxation. Basing on these experimental facts, the faster γ relaxation is a local intramolecular process involving a side group and the slower β relaxation

  16. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.

    PubMed

    Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie

    2017-08-01

    Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Low temperature passivation of Si1-xGex alloys by dry high pressure oxidation

    NASA Astrophysics Data System (ADS)

    Caragianis, C.; Shigesato, Y.; Paine, D. C.

    1994-09-01

    Thermal passivation of Si1-xGex using high pressure (70 MPa) oxidation was studied for potential use in MOS-device applications. Alloys of CVD-grown Si1-xGex (x = 10 and 15 at.%, 200 and 150 nm thick, respectively), were oxidized at 500 and 550°C using high purity dry oxygen at a pressure of 70 MPa. For comparative purposes, a second set of alloys were oxidized using conventional wet atmospheric pressure oxidation at 800°C. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and metal-oxide semiconductor capacitance-voltage (C-V) measurements were used to characterize the as-grown oxides. Chemical analysis by XPS confirmed that under high pressure conditions compositionally congruent oxides are grown from these alloys. High resolution TEM and Raman spectroscopy show that the as-grown oxide/semiconductor interface is planar and free of Ge enrichment on a scale of 1-2 monolayers. A midgap interface state density for both the 10 and 15 at.% samples of 1 × 1012 cm-2 eV-1 was estimated based on 1 MHz C-V measurement.

  18. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  19. Radiation of X-rays using polarized LiNbO3 single crystal in low-pressure ambient gas.

    PubMed

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Yoshikado, Shinzo

    2009-09-01

    The dependence of X-ray intensity on the pressure and type of ambient gas was investigated for LiNbO(3) single crystals polarized in the c-axis direction at pressures of approximately 1 to 30 Pa. Ionization of surrounding gas molecules by the electric field generated by the crystal led to the production of both positive ions and free electrons. The electrons were accelerated toward a Cu target, radiating both white X-rays and X-rays specific to the crystal or target material by bremsstrahlung. The integrated X-ray intensity per cycle in the energy range 1 to 20 keV showed a local maximum value at a pressure P(max). The logarithm of P(max) was proportional to the Boltzmann factor using the first ionization energy of each ambient gas molecule. The value of P(max) was found to be independent of the electrical surface area of the crystal. The integrated X-ray intensity was approximated qualitatively by a quadratic function with pressure, which was upwardly convex. It was found that one of the causes of the reduction in X-ray intensity at pressures P > P(max) is the adsorption of positive ions generated by the ionization of gas molecules on the negative electric surface. It was also discovered that the lifetime of the X-ray radiation device could be improved when the X-ray radiation case was covered with another hermetically sealed decompression case. The gas with the smallest first ionization energy, with a partial pressure of P(max), was enclosed inside the X-ray radiation case (inner case) and the gas with the largest first ionization energy was enclosed at a suitable pressure between the inner and outer cases.

  20. Pressure-induced antiferromagnetism in an ambient pressure layered organic superconductor beta-(BDA-TTP)2SbF6

    NASA Astrophysics Data System (ADS)

    Sushko, Yuri; Naumenko, Oleg; Mizutani, T.; Ishida, K.; Tokumoto, M.; Yamada, J.

    2003-03-01

    The static magnetic susceptibility of a recently discovered organic superconductor with the new donor molecule (BDA-TTP) has been studied as a function of hydrostatic pressure P and magnetic field B. Nonmonotonic pressure dependence of superconducting critical temperature Tc was observed with a wide plateau in a pressure range up to ˜ 2 kbar (Tc = 6.7K) and rapid drop of Tc at higher pressures. The susceptibility measured in the presence of slightly enhanced applied fields of about 1kG reveal that rapid suppression of Tc at high pressures is accompanied (caused?) by an occurrence of a pronounced peak in the temperature dependence of susceptibility, a clear Neel-temperature-like feature. Although a pressure-induced antiferromagnetic insulator to superconductor transition is rather typical phenomenon for the low-dimensional organic conductors, the exactly opposite effect of pressure exhibited by beta-(BDA-TTP)2SbF6 appears to be quite unique and intriguing property.

  1. Stream ambient noise, spectrum and propagation of sounds in the goby Padogobius martensii: sound pressure and particle velocity.

    PubMed

    Lugli, Marco; Fine, Michael L

    2007-11-01

    The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.

  2. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation

    PubMed Central

    Ren, Yan; Zhao, Xian; Hagley, Edward W.; Deng, Lu

    2016-01-01

    Noncentrosymmetric potassium dihydrogen phosphate (KH2PO4 or KDP) in the tetragonal crystal phase is arguably the most extensively studied nonlinear optical crystal in history. It has prolific applications ranging from simple laser pointers to laser inertial confinement fusion systems. Recently, type IV high-pressure KDP crystal sheets with a monoclinic crystal phase having centrosymmetric properties have been observed. However, it was found that this new crystal phase is highly unstable under ambient conditions. We report ambient-condition growth of one-dimensional, self-assembled, single-crystalline KDP hexagonal hollow/solid-core microstructures that have a molecular structure and symmetry identical to the type IV KDP monoclinic crystal that was previously found to exist only at extremely high pressures (>1.6 GPa). Furthermore, we report highly efficient bulk optical second harmonic generation (SHG) from these ambient condition–grown single-crystalline microstructures, even though they have a highly centrosymmetric crystal phase. However, fundamental physics dictates that a bulk optical medium with a significant second-order nonlinear susceptibility supporting SHG must have noncentrosymmetric properties. Laue diffraction analysis reveals a weak symmetry-breaking twin-crystal lattice that, in conjunction with tight confinement of the light field by the tubular structure, is attributed to the significant SHG even with sample volumes <0.001 mm3. A robust polarization-preserving effect is also observed, raising the possibility of advanced optical technological applications. PMID:27574703

  3. Optimisation of the round window opening in cochlear implant surgery in wet and dry conditions: impact on intracochlear pressure changes.

    PubMed

    Mittmann, Philipp; Ernst, A; Mittmann, M; Todt, I

    2016-11-01

    To preserve residual hearing in cochlear implant candidates, the atraumatic insertion of the cochlea electrode has become a focus of cochlea implant research. In a previous study, intracochlear pressure changes during the opening of the round window membrane were investigated. In the current study, intracochlear pressure changes during opening of the round window membrane under dry and transfluid conditions were investigated. Round window openings were performed in an artificial cochlear model. Intracochlear pressure changes were measured using a micro-optical pressure sensor, which was placed in the apex. Openings of the round window membrane were performed under dry and wet conditions using a cannula and a diode laser. Statistically significant differences in the intracochlear pressure changes were seen between the different methods used for opening of the round window membrane. Lower pressure changes were seen by opening the round window membrane with the diode laser than with the cannula. A significant difference was seen between the dry and wet conditions. The atraumatic approach to the cochlea is assumed to be essential for the preservation of residual hearing. Opening of the round window under wet conditions produce a significant advantage on intracochlear pressure changes in comparison to dry conditions by limiting negative outward pressure.

  4. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    SciTech Connect

    Steimke, J

    2005-07-29

    are included to allow variation of the operating pressure in the range of 1 to 2 bar. Hydrogen generated at the cathode of the cell can be collected for the purpose of flow measurement and composition analysis. The test facility proved to be easy to operate, versatile, and reliable. Two slightly different SDE's were designed, procured and tested. The first electrolyzer was based on a commercially available PEM water electrolyzer manufactured by Proton Energy Systems, Inc. (PES). The PES electrolyzer was built with Hastelloy B and Teflon wetted parts, a PEM electrolyte, and porous titanium electrodes. The second electrolyzer was assembled for SRNL by the University of South Carolina (USC). It was constructed with platinized carbon cloth electrodes, a Nafion 115 PEM electrolyte, carbon paper flow fields, and solid graphite back plates. Proof-of-concept testing was performed on each electrolyzer at near-ambient pressure and room temperature under various feed conditions. SDE operation was evidenced by hydrogen production at the cathode and sulfuric acid production at the anode (witnessed by the absence of oxygen generation) and with cell voltages substantially less than the theoretical reversible voltage for simple water electrolysis (1.23 V). Cell performance at low currents equaled or exceeded that achieved in the two-compartment cells built by Westinghouse Electric Corporation during the original development of the HyS Process. Performance at higher currents was less efficient due to mass transfer and hydraulic issues associated with the use of cells not optimized for liquid feed. Test results were analyzed to determine performance trends, improvement needs, and long-term SDE potential. The PES cell failed after several days of operation due to internal corrosion of the titanium electrodes in the presence of sulfuric acid. Although it was anticipated that the titanium would react in the presence of acid, the rapid deterioration of the electrodes was unexpected. The

  5. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  6. Distributed sensing of Composite Over-wrapped Pressure Vessel using Fiber-Bragg Gratings at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.

  7. Distributed Sensing of Composite Over-wrapped Pressure Vessel Using Fiber-Bragg Gratings at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2004-01-01

    Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.

  8. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    SciTech Connect

    Zhu, Zhongwei

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  9. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions.

    PubMed

    Bäumer, Marcus; Libuda, Jörg; Neyman, Konstantin M; Rösch, Notker; Rupprechter, Günther; Freund, Hans-Joachim

    2007-07-21

    We investigated the decomposition and (partial) oxidation of methanol on Pd based catalysts in an integrated attempt, simultaneously bridging both the pressure and the materials gap. Combined studies were performed on well-defined Pd model catalysts based on ordered Al(2)O(3) and Fe(3)O(4) thin films, on well-defined particles supported on powders and on Pd single crystals. The interaction of Pd nanoparticles and Pd(111) with CH(3)OH and CH(3)OH/O(2) mixtures was examined from ultrahigh vacuum conditions up to ambient pressures, utilizing a broad range of surface specific vibrational spectroscopies which included IRAS, TR-IRAS, PM-IRAS, SFG, and DRIFTS. Detailed kinetic studies in the low pressure region were performed by molecular beam methods, providing comprehensive insights into the microkinetics of the reaction system. The underlying microscopic processes were studied theoretically on the basis of specially designed 3-D nanocluster models containing approximately 10(2) metal atoms. The efficiency of this novel modelling approach was demonstrated by rationalizing and complementing pertinent experimental results. In order to connect these results to the behavior under ambient conditions, kinetic and spectroscopic investigations were performed in reaction cells and lab reactors. Specifically, we focused on (1) particle size and structure dependent effects in methanol oxidation and decomposition, (2) support effects and their relation to activity and selectivity, (3) the influence of poisons such as carbon, and (4) the role of oxide and surface oxide formation on Pd nanoparticles.

  10. Ambient temperature and air pressure modulate hormones and behaviour in Greylag geese (Anser anser) and Northern bald ibis (Geronticus eremita).

    PubMed

    Dorn, Sebastian; Wascher, Claudia A F; Möstl, Erich; Kotrschal, Kurt

    2014-10-01

    Ambient temperature and air pressure are relevant stimuli that can elicit hormonal responses in alignment with adjusting individuals' physiology and behaviour. This study investigated possible changes in corticosterone (C) and testosterone (T) and contingencies with behaviour in response to ambient temperature and air pressure, and it evaluated the temporal response dynamics of these hormones in 12 individual Greylag geese (Anser anser) over 26 and 12 individual Northern bald ibis (Geronticus eremita) over 27 days, during late winter. Immunoreactive metabolites of C and T were analysed non-invasively from 626 fecal samples by means of group-specific antibodies and correlated to behaviour and weather factors. In both species, high C levels correlated with low temperatures 24h before sampling, but low C levels correlated with high air pressure 6-12h before sampling. In both species, C levels and behavioural activity were negatively correlated. In addition, temperature had a positive influence on T levels in both species 12-24h before sampling. The fact that weather conditions influenced changes in levels of C, while social interactions did not, is indicative of a general mechanism of graduated physiological adjustment to environmental variations affecting metabolism, stress responses and behaviour.

  11. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    PubMed

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  12. The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature

    SciTech Connect

    Delle Site, A.

    1997-01-01

    The experimental techniques and the prediction procedures for the determination or evaluation of the vapor pressure of environmentally relevant organic compounds are described; with 259 references examined. For each of them the characteristics of precision and accuracy are given, when available from the literature. The experimental methods are classified as {open_quotes}direct{close_quotes} and {open_quotes}indirect.{close_quotes} The first class includes all those which can measure directly the vapor pressure, while the second concerns those which need {open_quotes}known{close_quotes} vapor pressures of reference compounds for the calibration. Prediction methods are based on the application of the Clapeyron{endash}Clausius equation or on the quantitative structure-property relationships. Also correlation methods require a suitable calibration. The vapor pressures at ambient temperature for several polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and furans, selected pesticides, and some reference compounds are tabulated together with the vapor pressure equations and the enthalpy values in the temperature range of measurement. A critical comparison, based on a statistical analysis of the data obtained with different methods and derived from 152 references, is also carried out. {copyright} {ital 1996 American Institute of Physics and American Chemical Society.}{ital Key words:} chlorinated biphenyls; chlorinated dioxins; critically reviewed data; critically reviewed methods; pesticides; polynuclear aromatics; vapor pressure. {copyright} {ital 1996} {ital American Institute of Physics and American Chemical Society}

  13. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.

    1987-01-01

    A stable and reproducible superconductivity transition between 80 and 93 K has been achieved and maintained in a Y-Ba-Cu-O compound system at ambient pressure in a simple liquid-nitrogen Dewar. An upper critical field Hc2(0) estimate of between 80 and 180 T is obtained, and the paramagnetic limiting field at 0 K for a sample with a T(c) of about 90 K is 165 T. It is suggested that the lattice parameters, the valence ratio, and the sample treatments all play a role in achieving superconductivity above 77 K.

  14. Monitoring ambient air pollutants and apply Woods' model in the prediction seasonal dry deposition at Chang-Hua (urban) and Kao-Mei (wetland) county, Taiwan.

    PubMed

    Fang, Guor-Cheng; Chang, Chia-Ying

    2014-09-01

    The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) in total suspended particulate (TSP) concentration and dry deposition. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) were evaluated using Woods' model at urban and wetland areas for the 2009-2010 period. The results indicated that the mean highest concentrations of metallic elements Mn, Fe, Zn, Cr, Cu and Pb in TSP were found in Chang-Hua (urban) sampling site. And as for the two characteristic sampling sites, the Woods' model exhibits better dry deposition of particulates of 18 µm particle size than the rest of the other particle sizes at any sampling site in this study. The average calculated/measured flux ratios for two seasons (summer and fall) by using Woods model at 2.5, 10 and 18 µm particles sizes were also studied. The results indicated that the average calculated/measured flux ratios orders for two seasons of various particles sizes were all displayed as Fe > Mn > Zn > Cu > Cr > Pb > particle. And these calculated/measured flux ratios orders were Fe > Mn > Cu > Zn > Cr > Pb > particle and were Fe > Mn > Zn > Cu > Cr > particle > Pb, during spring and winter seasons, respectively. Finally, in the spring and summer seasons of Gao-Mei (wetland) sampling site, the average calculated/measured flux ratios using Woods' model was found to be 2.5, 10 and 18 µm, showing the order of the calculated/measured flux ratios to be Fe > Cu > Zn > Mn > Cr > Pb > particle. And the calculated/measured flux ratio orders were Fe > Zn > Mn > Cu > Cr > particle > Pb and were Fe > Cu > Zn > Mn > Cr > particle > Pb for fall and winter season, respectively. © The Author(s) 2012.

  15. The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Delle Site, Alessandro

    1997-01-01

    The experimental techniques and the prediction procedures for the determination or evaluation of the vapor pressure of environmentally relevant organic compounds are described; with 259 references examined. For each of them the characteristics of precision and accuracy are given, when available from the literature. The experimental methods are classified as "direct" and "indirect." The first class includes all those which can measure directly the vapor pressure, while the second concerns those which need "known" vapor pressures of reference compounds for the calibration. Prediction methods are based on the application of the Clapeyron-Clausius equation or on the quantitative structure-property relationships. Also correlation methods require a suitable calibration. The vapor pressures at ambient temperature for several polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and furans, selected pesticides, and some reference compounds are tabulated together with the vapor pressure equations and the enthalpy values in the temperature range of measurement. A critical comparison, based on a statistical analysis of the data obtained with different methods and derived from 152 references, is also carried out.

  16. Chemical states of surface oxygen during CO oxidation on Pt(110) surface revealed by ambient pressure XPS.

    PubMed

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon; Jeong, Beomgyun; Isegawa, Kazuhisa; Kim, Dae Hyun; Ueda, Kohei; Kondoh, Hiroshi; Mase, Kazuhiko; Crumlin, Ethan; Ross, Philip N; Gallet, Jean-Jacques; Bournel, Fabrice; Mun, Bongjin Simon

    2017-08-25

    The study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure condition, both the -phase of PtO2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to exothermic nature of CO oxidation, the temperature of Pt surface increases as CO oxidation takes places. As the CO/O2 ratio increases, the production of CO2 increases continuously and the surface temperature also increases. Interestingly, during the mass transfer limiting regions, the amount of surface oxide changes little while the chemisorbed oxygen is being reduced. . © 2017 IOP Publishing Ltd.

  17. Prediction of Solids Circulation Rate of Cork Particles in an Ambient-Pressure Pilot-Scale Circulating Fluidized Bed

    SciTech Connect

    Huang, Yue; Turton, Richard; Famouri, Parviz; Boyle, Edward J.

    2009-01-07

    Circulating fluidized beds (CFB) are currently used in many industrial processes for noncatalytic and catalytic because its effective control is the key to smooth operation of a CFB system. This paper presents a method for solids flow metering from pressure drop measurements in the standpipe dense phase. A model based on the Ergun equation is developed to predict the solids flow rate and voidage in the dense phase of the standpipe. The profile of the solids flow rate under unsteady state is also presented. With the use of this method, the dynamic response time at different locations along the standpipe of a pilot-scale fluidized bed operating at ambient conditions with 812 mu m cork particles is estimated successfully. Through the use of a pressure balance analysis, solids flow models for the standpipe, riser, and other sections of the flow loop are combined to give an integrated CFB model.

  18. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser).

    PubMed

    Frigerio, Didone; Dittami, John; Möstl, Erich; Kotrschal, Kurt

    2004-05-15

    In many species, seasonal activities such as reproduction or migration need to be fine-tuned with weather conditions. Air pressure and temperature changes are the best parameters for such conditions. Adapting to climatic changes invariably involves physiological and behavioral reactions associated with the adrenals. In the present study, we investigated the effects of ambient temperature and air pressure on excreted immuno-reactive metabolites of corticosterone (BM) and androgens (AM). Focal individuals were 14 paired male greylag geese (Anser anser) from a semi-tame, unrestrained flock. BM and AM were measured in individual fecal samples over 25 days in November and December. Two different ACTH-validated assays were used for the assessment of BM: the first one cross-reacting with 11beta,21-diol-20-one structures ("old assay") and the second one with 5beta,3alpha,11beta-diol structures ("new assay"). With the "new assay," BM correlated negatively with the minimum ambient temperature of the night before, which may reflect corticosterone involvement in thermoregulation. BM also correlated positively with the minimum air pressure of the previous afternoon, which supports the value of air pressure for predicting weather conditions. Together, these reactions suggest a role of the adrenals in responding behaviorally and physiologically to changes in weather. Preliminary analysis indicated a higher sensitivity to the excreted glucocorticosteroid metabolites in the "new assay." As expected for outside the mating season, no relationships were found between excreted AM and the weather parameters considered. The gradual changes in BM excretion in parallel with weather conditions may be part of the fine-tuning of physiology and behavior by environmental clues.

  19. Synthetic Lead Bromapatite: X-ray Structure at Ambient Pressure and Compressibility up to about 20 GPa

    SciTech Connect

    X Liu; M Fleet; S Shieh; Q He

    2011-12-31

    Lead bromapatite [Pb{sub 10}(PO{sub 4}){sub 6}Br{sub 2}] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO{sub 4} tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite (P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K{sub T}) of 49.8(16) GPa and first pressure derivative (K{sub T}) of 10.1(10). If K{sub T} is fixed at 4, the derived K{sub T} is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli ({approx}5%) of the calcium apatites fluorapatite [Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}], chlorapatite [Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}] and hydroxylapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.

  20. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    NASA Astrophysics Data System (ADS)

    Sarawade, Pradip B.; Shao, Godlisten N.; Quang, Dang Viet; Kim, Hee Taik

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as a silica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400 °C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silica aerogels.

  1. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  2. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  3. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  4. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  5. Comparison of Surfactant Distributions in Pressure-Sensitive Adhesive Films Dried from Dispersion under Lab-Scale and Industrial Drying Conditions.

    PubMed

    Baesch, S; Siebel, D; Schmidt-Hansberg, B; Eichholz, C; Gerst, M; Scharfer, P; Schabel, W

    2016-03-01

    Film-forming latex dispersions are an important class of material systems for a variety of applications, for example, pressure-sensitive adhesives, which are used for the manufacturing of adhesive tapes and labels. The mechanisms occurring during drying have been under intense investigations in a number of literature works. Of special interest is the distribution of surfactants during the film formation. However, most of the studies are performed at experimental conditions very different from those usually encountered in industrial processes. This leaves the impact of the drying conditions and the resulting influence on the film properties unclear. In this work, two different 2-ethylhexyl-acrylate (EHA)-based adhesives with varying characteristics regarding glass transition temperature, surfactants, and particle size distribution were investigated on two different substrates. The drying conditions, defined by film temperature and mass transfer in the gas phase, were varied to emulate typical conditions encountered in the laboratory and industrial processes. Extreme conditions equivalent to air temperatures up to 250 °C in a belt dryer and drying rates of 12 g/(m(2)·s) were realized. The surfactant distributions were measured by means of 3D confocal Raman spectroscopy in the dry film. The surfactant distributions were found to differ significantly with drying conditions at moderate film temperatures. At elevated film temperatures the surfactant distributions are independent of the investigated gas side transport coefficients: the heat and mass transfer coefficient. Coating on substrates with significantly different surface energies has a large impact on surfactant concentration gradients, as the equilibrium between surface and bulk concentration changes. Dispersions with higher colloidal stability showed more homogeneous lateral surfactant distributions. These results indicate that the choice of the drying conditions, colloidal stability, and substrates is crucial

  6. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  7. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  8. Molecular dynamics at ambient and elevated pressure of the amorphous pharmaceutical: Nonivamide (pelargonic acid vanillylamide)

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Hawelek, L.; Paluch, M.; Sawicki, W.; Ngai, K. L.

    2011-01-01

    Broadband dielectric spectroscopy was employed to investigate the relaxation dynamics of supercooled and glassy nonivamide—the synthetic form of capsaicin being the most spicy-hot substance known to man. The material is of great importance in the pharmaceutical industry because it has wide usage in the medical field for relief of pain, and more recently it has been shown to be effective in fighting cancers. Dielectric measurements carried out at various isobaric and isothermal conditions (pressure up to 400 MPa) revealed very narrow α-loss peak and unresolved secondary relaxations appearing in the form of an excess wing on the high frequency flank. Moreover, our studies have shown the shape of dielectric loss spectrum at any fixed loss peak frequency is invariant to different combinations of temperature and pressure, i.e., validity of the time-temperature-pressure superpositioning. We also found the fragility index is nearly constant on varying pressure. This property is likely due to the unusual structure of nonivamide, which has a part characteristic of van der Waals glass-former and another part characteristic of hydrogen-bonded glass-former.

  9. Characterization of Ultrafast Laser-Ablation Plasma Plumes at Various Ar Ambient Pressures

    SciTech Connect

    Diwakar, P. K.; Harilal, S. S.; Phillips, Mark C.; Hassanein, A.

    2015-07-28

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plume species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. Possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.

  10. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ~10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  11. Stabilization of HfB12 in Y1-xHfxB12 under Ambient Pressure.

    PubMed

    Akopov, Georgiy; Yeung, Michael T; Turner, Christopher L; Li, Rebecca L; Kaner, Richard B

    2016-05-16

    Alloys of metal dodecaborides-YB12 with HfB12-were prepared via arc-melting in order to stabilize the metastable HfB12 high-pressure phase under ambient pressure. Previously, HfB12 had been synthesized only under high-pressure (6.5 GPa). Powder X-ray diffraction (PXRD) and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the purity and phase composition of the prepared samples. The solubility limit for HfB12 in Y1-xHfxB12 (cubic UB12 structure type) was determined to be ∼35 at. % Hf by PXRD and EDS analysis. The value of the cubic unit cell parameter (a) changed from 7.505 Å (pure YB12) to 7.454 Å across the solid solution range. Vickers hardness increased from 40.9 ± 1.6 GPa for pure YB12 to 45.0 ± 1.9 GPa under an applied load of 0.49 N for the Y1-xHfxB12 solid solution composition with ∼28 at. % Hf, suggesting both solid solution hardening and extrinsic hardening due to the formation of secondary phases of hafnium.

  12. Observation of in situ oxidation dynamics of vanadium thin film with ambient pressure X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Geonhwa; Yoon, Joonseok; Yang, Hyukjun; Lim, Hojoon; Lee, Hyungcheol; Jeong, Changkil; Yun, Hyungjoong; Jeong, Beomgyun; Crumlin, Ethan; Lee, Jouhahn; Lee, Jaeyoung; Ju, Honglyoul; Mun, Bongjin Simon

    2016-11-01

    The evolution of oxidation/reduction states of vanadium oxide thin film was monitored in situ as a function of oxygen pressure and temperature via ambient pressure X-ray photoemission spectroscopy. Spectra analysis showed that VO2 can be grown at a relatively low temperature, T ˜ 523 K, and that V2O5 oxide develops rapidly at elevated oxygen pressure. Raman spectroscopy was applied to confirm the formation of VO2 oxide inside of the film. In addition, the temperature-dependent resistivity measurement on the grown thin film, e.g., 20 nm exhibited a desirable metal-insulator transition of VO2 with a resistivity change of ˜1.5 × 103 times at 349.3 K, displaying typical characteristics of thick VO2 film, e.g., 100 nm thick. Our results not only provide important spectroscopic information for the fabrication of vanadium oxides, but also show that high quality VO2 films can be formed at relatively low temperature, which is highly critical for engineering oxide film for heat-sensitive electronic devices.

  13. Effect of Type of Protein-Based Microcapsules and Storage at Various Ambient Temperatures on the Survival and Heat Tolerance of Spray Dried Lactobacillus acidophilus.

    PubMed

    Dianawati, Dianawati; Lim, Seng Feng; Ooi, Yasmin Beng Houi; Shah, Nagendra P

    2017-09-01

    The aims of this study were to evaluate the effect of types of protein-based microcapsules and storage at various ambient temperatures on the survival of Lactobacillus acidophilus during exposure to simulated gastrointestinal tract and on the change in thermo-tolerance during heating treatment. The encapsulating materials were prepared using emulsions of protein (sodium caseinate, soy protein isolate, or pea protein), vegetable oil, and glucose, with maltodextrin was used as a wall material. The formulations were heated at 90 °C for 30 min to develop Maillard substances prior to being incorporated with L. acidophilus. The mixtures were then spray dried. The microspheres were stored at 25, 30, and 35 °C for 8 wk and examined every 4 wk. The addition of proteins as encapsulating materials demonstrated a significant protective effect (P < 0.05) as compared to the control sample. Sodium caseinate and soy protein isolate appeared more effective than pea protein in protecting the bacteria after spray drying and during the storage at different room temperatures. Storage at 35 °C resulted in a significant decrease in survival at end of storage period regardless the type of encapsulating materials. The addition of protein-based materials also enhanced the survival of L. acidophilus during exposure to simulated gastrointestinal condition as compared to the control. After spray drying and after 0th wk storage, casein, soy protein isolate, and pea protein-based formulations protected the bacteria during heat treatment. In fact, a significant decrease in thermal tolerance was inevitable after 2 wk of storage at 25 °C. © 2017 Institute of Food Technologists®.

  14. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Xin; Zhou, Jianxin; Shao, Xinyu; Wang, Chunming

    2015-11-01

    The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid-liquid-vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.

  15. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    PubMed

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  16. A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Ehernberger, L. J.

    1985-01-01

    The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

  17. A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Ehernberger, L. J.

    1985-01-01

    The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

  18. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed Central

    Muller, F L

    1995-01-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses. PMID:8800853

  19. Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line

    SciTech Connect

    Lee, Chi Young; Lee, Sang Yong

    2010-01-15

    In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air-water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%. (author)

  20. Concentrations of particulates in ambient air, gaseous elementary mercury (GEM), and particulate-bound mercury (Hg(p)) at a traffic sampling site: a study of dry deposition in daytime and nighttime.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Chang, Chia-Ying; Zheng, Yu-Cheng

    2014-08-01

    In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m(3), 3.17, and 0.024 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m(2) min and 0.022 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m(3), 2.74, and 0.018 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m(2) min and 0.016 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.

  1. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  2. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  3. Nitric acid dihydrate at ambient and high pressure: An experimental and computational study

    SciTech Connect

    Walker, Martin; Pulham, Colin R.; Morrison, Carole A.; Allan, David R.; Marshall, William G.

    2006-06-01

    The high pressure structural behavior of nitric acid dihydrate ([H{sub 3}O]{sup +}{center_dot}[NO{sub 3}]{sup -}{center_dot}H{sub 2}O) has been investigated up to 3.8 GPa using single crystal x-ray diffraction and neutron powder diffraction techniques. A new structural phase has been identified above 1.33 GPa and this has been further studied by ab initio quantum mechanical calculations. These have guided the refinement by neutron powder diffraction.

  4. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure.

    PubMed

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-31

    The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a "nanoreactor" is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  5. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.

    PubMed

    Deshmukh, Sanket; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2014-06-06

    Understanding the phase behavior of confined water is central to fields as diverse as heterogeneous catalysis, corrosion, nanofluidics, and to emerging energy technologies. Altering the state points (temperature, pressure, etc.) or introduction of a foreign surface can result in the phase transformation of water. At room temperature, ice nucleation is a very rare event and extremely high pressures in the GPa-TPa range are required to freeze water. Here, we perform computer experiments to artificially alter the balance between electrostatic and dispersion interactions between water molecules, and demonstrate nucleation and growth of ice at room temperature in a nanoconfined environment. Local perturbations in dispersive and electrostatic interactions near the surface are shown to provide the seed for nucleation (nucleation sites), which lead to room temperature liquid-solid phase transition of confined water. Crystallization of water occurs over several tens of nanometers and is shown to be independent of the nature of the substrate (hydrophilic oxide vs. hydrophobic graphene and crystalline oxide vs. amorphous diamond-like carbon). Our results lead us to hypothesize that the freezing transition of confined water can be controlled by tuning the relative dispersive and electrostatic interaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Real-time studies of the atomic layer deposition of metal oxides using Ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnadt, Joachim; Head, Ashley R.; Chaudhary, Shilpi; Yngman, Sofie; Johansson, Niclas; Snezhkova, Olesia; Knudsen, Jan; Andersen, Jesper N.; Bluhm, Hendrik; Mikkelsen, Anders; Timm, Rainer

    2014-03-01

    Performing atomic layer deposition (ALD) of metal oxides at pressures around 0.01 mbar slows the half reactions of the process to allow in situ real-time probing of changes in the surface electronic structure using Ambient pressure x-ray photoelectron spectroscopy (APXPS). By monitoring the ALD process as it occurs, new details on the mechanisms of interface formation and thin film growth can be obtained. The deposition of HfO2 on InAs and the deposition of TiO2 on rutile titania from transition metal complexes and water were studied with APXPS. Predictable, cyclic chemical shifts of ligand and substrate ionizations are seen in the growth of the films, but the kinetics of the film growth differs for the two systems. Upon exposure to the titania surface, the titanium precursor reacts straightaway and gradually proceeds to completion. In contrast, the hafnium precursor does not interact with the surface immediately. Once an activation barrier is surpassed, the reaction occurs instantaneously. By understanding the reactivity of different precursors, the ALD process can be more easily optimized in applications that require thin films of metal oxides such as metal-oxide-semiconductor devices and catalytic surfaces. Support by the Swedish Research Council (grant no. 2010-5080) is gratefully acknowledged.

  7. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    SciTech Connect

    Starr, David E.; Wong, Ed K.; Worsnop, Douglas R.; Wilson, Kevin R.; Bluhm, Hendrik

    2008-05-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50...150 {micro}m is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100...1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a {chi} = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  8. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    PubMed Central

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  9. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 plus.

    PubMed

    Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A

    2005-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction

  10. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 Plus

    SciTech Connect

    Bohm, Tim D.; Griffin, Sheridan L.; DeLuca, Paul M. Jr.; DeWerd, Larry A.

    2005-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure P{sub TP} correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized P{sub TP} corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized P{sub TP}-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized P{sub TP} corrected chamber response is near unity. For low-energy {beta} sources of 0.25 to 0.50 MeV, the normalized P{sub TP}-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy {beta} sources (>0.75 MeV) have a normalized P{sub TP} corrected chamber response near unity. Comparing calculated and measured chamber responses for common {sup 103}Pd- and {sup 125}I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well

  11. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  12. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  13. Particulate matter air pollution and ambient temperature: opposing effects on blood pressure in high-risk cardiac patients.

    PubMed

    Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D

    2015-10-01

    Fine particulate matter air pollution (PM2.5) and extreme temperatures have both been associated with alterations in blood pressure (BP). However, few studies have evaluated their joint haemodynamic actions among individuals at high risk for cardiovascular events. We assessed the effects of short-term exposures during the prior week to ambient PM2.5 and outdoor temperature levels on resting seated BP among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from 2003 to 2011) using multiple linear regression analyses adjusting for age, sex, BMI, ozone and the same-day alternate environmental factor (i.e. PM2.5 or temperature). Mean PM2.5 and temperature levels were 12.6 ± 8.2 μg/m and 10.3 ± 10.4°C, respectively. Each standard deviation elevation in PM2.5 concentration during lag days 4-6 was associated with significant increases in SBP (2.1-3.5 mmHg) and DBP (1.7-1.8 mmHg). Conversely, higher temperature levels (per 10.4°C) during lag days 4-6 were associated with reductions in both SBP (-3.6 to -2.3 mmHg) and DBP (-2.5 to -1.8 mmHg). There was little evidence for consistent effect modification by other covariates (e.g. demographics, seasons, medication usage). Short-term exposures to PM2.5, even at low concentrations within current air quality standards, are associated with significant increases in BP. Contrarily, higher ambient temperatures prompt the opposite haemodynamic effect. These findings demonstrate that both ubiquitous environmental exposures have clinically meaningful effects on resting BP among high-risk cardiac patients.

  14. Dry and Wet Friction of Plagioclase: Pure Cataclastic Flow(CF) vs. CF with Concurrent Pressure Solution

    NASA Astrophysics Data System (ADS)

    He, C.; Tan, W.

    2015-12-01

    To distinguish different deformation mechanisms at hydrothermal conditions, friction experiments of plagioclase under nominally dry conditions were compared with that at hydrothermal conditions documented in a previous study[He et al.,2013]. Preliminary result[Tan and He, 2008] shows that the rate dependence of plagioclase under confining pressure of 150MPa and nominally dry conditions is velocity strengthening at temperatures of 50-600oC, in contrast to the full velocity weakening at hydrothermal conditions. Here a) we conducted data fitting to the rate and state friction law to compare with the hydrothermal case; b) microstructural comparison was performed to understand the difference between the dry and wet conditions in the operative deformation mechanisms. The evolution effect (b value) under dry conditions exhibits much smaller values than that at wet conditions, and in contrast to the increasing trend at wet conditions, b values under dry conditions have a decreasing trend as temperature increases, from ~0.007 at 300oC down to 0 at 600oC. The direct effect (a value) at dry conditions has a peak of ~0.01 at 300oC and decreases to a level of 0.007-0.008 at higher temperatures, in contrast to the increasing trend seen at hydrothermal conditions. In the dry case, microstructure at temperatures of 300-600oC transitions gradually from a fabric characterized by localized Riedel shear zones to pervasive shear deformation, with the grain size reduced to a level of 1-3 micron in a submicron matrix in the latter case, corresponding to a lower porosity. The close association between porosity evolution and that of state variable revealed in previous studies[Morrow and Byerlee, 1989; Marone et al.,1990] suggests that the porosity change contributes largely to the evolution effect in addition to plasticity at intergranular contacts, probably due to gradual switching between different densities of packing. Our dry experiments indicate a cataclastic flow where the evolution

  15. Strong ferromagnetic exchange interaction under ambient pressure in BaFe2S3

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Jin, S. J.; Yi, Ming; Song, Yu; Jiang, H. C.; Zhang, W. L.; Sun, H. L.; Luo, H. Q.; Christianson, A. D.; Bourret-Courchesne, E.; Lee, D. H.; Yao, Dao-Xin; Birgeneau, R. J.

    2017-02-01

    Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe2S3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351; T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015), 10.1103/PhysRevLett.115.246402]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (S JR=-71 ±4 meV) along the rung direction, an antiferromagnetic S JL=49 ±3 meV along the leg direction, and a ferromagnetic S J2=-15 ±2 meV along the diagonal direction. Our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.

  16. Strong ferromagnetic exchange interaction under ambient pressure in BaFe2S3

    DOE PAGES

    Wang, Meng; Jin, S. J.; Yi, Ming; ...

    2017-02-03

    Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe 2 S 3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015); T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (SJR = - 71 ± 4 meV) along the rung direction, an antiferromagnetic SJL = 49 ± 3 meV alongmore » the leg direction, and a ferromagnetic SJ2 = - 15 ± 2 meV along the diagonal direction. Finally, our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.« less

  17. ZK-5: a CO₂-selective zeolite with high working capacity at ambient temperature and pressure.

    PubMed

    Liu, Qingling; Pham, Trong; Porosoff, Marc D; Lobo, Raul F

    2012-11-01

    The increased carbon dioxide concentration in the atmosphere caused by combustion of fossil fuels has been a leading contributor to global climate change. The adsorption-driven pressure or vacuum swing (PSA/VSA) processes are promising as affordable means for the capture and separation of CO₂. Herein, an 8-membered-ring zeolite ZK-5 (Framework Type Code: KFI) exchanged with different cations (H⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺) was synthesized as novel CO₂ adsorbent. The samples were characterized by SEM, energy-dispersive X-ray spectroscopy (EDAX), XRD, and gas adsorption (CO₂ and N₂). The Toth adsorption model was used to describe the CO₂ adsorption isotherms, and the isosteric heats of adsorption were calculated. CO₂ capture adsorbent evaluation criteria such as working capacity, regenerability and CO₂/N₂ selectivity were applied to evaluate the zeolite adsorbents for PSA/VSA applications. The in situ FTIR CO₂ adsorption spectra show that physisorption accounts for the largest fraction of the total CO₂ adsorbed. The CO₂ adsorption analysis shows that Mg-ZK-5 is the most promising adsorbent for PSA applications with the highest working capacity (ΔN(CO₂)=2.05 mmol g⁻¹), excellent selectivity (α(CO₂/N₂)=121), and low isosteric heat. Li-, Na- and K-ZK-5 with good working capacity (ΔN(CO₂)=1.55-2.16 mmol g⁻¹) and excellent selectivity (α(CO₂/N₂)=103-128) are promising CO₂ adsorbents for the VSA working region.

  18. Surface analysis of all elements with isotopic resolution at high ambient pressures using ion spectroscopic techniques

    SciTech Connect

    Smentkowski, V.S.; Krauss, A.R.; Gruen, D.M.; Holecek, J.C.; Schultz, J.A.

    1997-09-01

    The authors have developed a mass spectrometer capable of surface analysis using the techniques of secondary ion mass spectroscopy (SIMS) and mass spectroscopy of recoiled ions (MSRI). For SIMS, an energetic ion beam creates a collision cascade which results in the ejection of low kinetic energy secondary ions from the surface being analyzed. The low kinetic energy SIMS ions are very susceptible to charge neutralization with the surface, and as a result, the SIMS ion yield varies by orders of magnitude depending on the chemical state of the surface. SIM spectra contain elemental ions, and molecular ions. For MSRI, a pulsed ion beam induces a binary collision with the surface being analyzed and the surface species are recoiled into the forward scattering direction with a large kinetic energy. The violence of the binary collision results in complete molecular decomposition, and only elemental ions are detected. The high kinetic energy MSRI ions are much less susceptible to charge neutralization with the surface than the low kinetic energy SIMS ions. In MSRI, the ion yield typically varies by less than a factor of ten as the chemical state of the surface changes--simplifying quantitative analysis vs. SIMS. In this paper, they authors will demonstrate that the high kinetic energy MSRI ions are able to transverse high pressure paths with only a reduction in peak intensity--making MSRI an ideal tool for real-time, in-situ film growth studies. The use of a single analyzer for both MSRI and SIMS is unique and provides complimentary information.

  19. Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic, Airport, Park (T.A.P.) areas during years of 2011-2012.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng

    2016-02-01

    The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.

  20. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-02-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

  1. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    PubMed

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  2. Mobility resolution and mass analysis of ions from ammonia and hydrazine complexes with ketones formed in air at ambient pressure.

    PubMed

    Bollan, H R; Stone, J A; Brokenshire, J L; Rodriguez, J E; Eiceman, G A

    2007-05-01

    Protonated ammonia and hydrazines (MH(+)) form complexes with ketones and the differences in masses and mobilities of the resulting ions, MH(+)(ketone)(n), are sufficient for separation in an ion mobility spectrometer at ambient pressure. The highest mass ion for any of the protonated molecules is obtained when the ketone is present at elevated concentrations in the supporting atmosphere of both the source and drift regions of the spectrometer so that an ion maintains a discrete composition and mobility. The sizes of the ion-molecule complexes were found to depend on the number of H atoms on the protonated nitrogen atom--four for ammonia, three for hydrazine, two for monomethylhydrazine, and one for 1,1-dimethylhydrazine, and the drift times of these ions were proportional to the size of the ion-molecule complex. Unexpected side products, including protonated hydrazones and azines, and associated ketone clusters, were isolated to a single drift tube containing ceramic parts and could not, from CID studies, be attributed to gas-phase ion chemistry. These findings illustrate that mobility resolution of ions in IMS and IMS/MS experiments can be enhanced through chemical modification of the supporting gas atmosphere without changes in the core ion.

  3. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    SciTech Connect

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  4. Experimental Determination of Spatial and Temporal Discharge Parameters for an Ambient Pressure Dielectric Barrier Discharge in Helium

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Bourham, Mohamed

    2004-11-01

    Ambient pressure Dielectric Barrier Discharges (DBD's) are studied for a number of applications. Barrier discharges composed primarily of inert gases are potentially useful for the production of intense excimer light, sterilization of thermally sensitive materials and control of insects for quarantine. The neutral bremsstrahlung technique is used to determine spatial variations of electron density and electron temperature in a parallel plate, helium (99.9% by vol) dielectric barrier discharge operated at an average power density between 50 and 75 mW/cm^3. The applied frequency is varied between 2 kHz and 6 kHz. The time average electron density suggests a more intense discharge near the surface of the electrodes than the bulk of the discharge for all frequencies and power densities. When moving parallel to the electrodes, the electron temperature remains constant, while the electron density is constant within 20% of the average value. A monochromator tuned to a nitrogen ion line (391.4 nm) and a helium line (706.5 nm) has a more intense emission when the electrode is negatively biased.

  5. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-01

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  6. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGES

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; ...

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  7. Ambient-Pressure X-ray Photoelectron Spectroscopy to Characterize the Solid/Liquid Interface: Probing the Electrochemical Double Layer

    DOE PAGES

    Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.

    2017-03-31

    Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less

  8. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    PubMed Central

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-01-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation. PMID:28240300

  9. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  10. Tetrahedrally bonded dense C2N3H with a defective wurtzite structure: X-ray diffraction and Raman scattering results at high pressure and ambient conditions

    NASA Astrophysics Data System (ADS)

    Salamat, Ashkan; Woodhead, Katherine; McMillan, Paul F.; Cabrera, Raul Quesada; Rahman, Aisha; Adriaens, Davy; Corà, Furio; Perrillat, Jean-Philippe

    2009-09-01

    Synchrotron x-ray diffraction and Raman scattering data supported by ab initio calculations are reported for the dense tetrahedrally bonded phase (C2N3H) with a defective wurtzite (dwur) structure synthesized by laser heating from dicyandiamide (C2N4H4) at high pressure in a diamond anvil cell. This work confirms the structure deduced in previous work from electron diffraction experiments. The phase (Cmc21) is recoverable to ambient conditions. The ambient pressure volume (V0=137.9Å3) and bulk modulus (K0=258±21GPa) are in excellent agreement with density functional calculations (V0=134.7Å3;K0=270GPa) . The calculated Raman frequencies and pressure shifts are also in good agreement with experiment. Ammonia (P212121) was identified among the reaction products as expected from the synthesis reaction.

  11. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  12. EFFECTS OF LASER RADIATION ON MATTER: Influence of the ambient air pressure on short-wavelength radiation from a laser plasma

    NASA Astrophysics Data System (ADS)

    Golovin, A. F.; Zemtsov, S. S.; Fedyushin, B. T.

    1991-12-01

    A detailed experimental investigation was made of the radiation from a plasma created on an aluminum target by a pulsed CO2 laser at different ambient gas pressures. Measurements were made of the energy and angular distribution of the radiation and of the efficiency of conversion of laser energy into reemitted plasma radiation. The intensity of this radiation was found to exhibit pressure-dependent pulsations. The maximum reflection of the laser radiation from the plasma was recorded at a pressure of ~ 40 Torr. An interpretation is given of the experimental data.

  13. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    SciTech Connect

    Butcher, Derek Robert

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  14. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  15. Aquatic exercise is as effective as dry land training to blood pressure reduction in postmenopausal hypertensive women.

    PubMed

    Arca, Eduardo Aguilar; Martinelli, Bruno; Martin, Luis Cuadrado; Waisberg, César Becalel; Franco, Roberto Jorge da Silva

    2014-06-01

    The evidence of the benefits from regular physical activity to hypertensives is based on dry land training studies. Therefore, the aim of this study is to compare the effect of aquatic exercise with dry land training on hypertensive women. This is a randomized controlled study with 52 post-menopausal hypertensive women. The patients were randomly allocated in three groups: water aerobic training group (n = 19), dry land aerobic training group (n = 19) and a non-intervention control group (n = 14). The training protocol was performed by 12 weeks. There were no differences among the three groups concerning basal blood pressure (BP) and biochemical variables. In water group, there was a statistically significant reduction of systolic BP from 136 ± 16 mm Hg at zero week to 124 ± 18 mm Hg at 11th week and 124 ± 15 mm Hg at 12th week. In dry land training group, there was a statistically significant reduction of systolic BP from 138 ± 15 mm Hg at zero week to 125 ± 10 mm Hg at 7th week, 127 ± 10 mm Hg at 10th week and 126 ± 9 mm Hg at 12th week. The control group presented no change in any of the assessed variables. No changes were carried out in any antihypertensive medications during study. This is a randomized controlled study that demonstrates the antihypertensive efficacy of aerobic aquatic exercise. © 2013 John Wiley & Sons, Ltd.

  16. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    SciTech Connect

    Roper, T.R.; Williams, L.E. Kearney Agricultural Center, Parlier, CA )

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  17. Age-related effects of increased ambient pressure on discrimination reaction time: A study in 105 professional divers at 6.0 atm abs.

    PubMed

    Tikkinen, Janne; Siimes, Martti A

    2015-01-01

    We investigated 105 professional divers using a computerized visual discrimination trial (Cognitrone) to measure the effects of ambient pressure on reaction times. The possible improvement in performance due to practice was anticipated, and the trials were carried out four times prior to pressurization in a hyperbaric chamber. The effect of increased ambient pressure was measured at 6.0 and 1.9 atm abs, and the potential for residual effects was tested after decompression. The results of our study indicate that repeated testing had a systematic influence on the measured time values. The effects of learning, which were independent of diver age, may have independently influenced response times. Exposure to 6.0 atm abs modified the systematic pattern of learning and was associated with increased reaction times. There were also age-related differences in response times associated with exposure to increased ambient pressures. Younger divers were more susceptible to elevated ambient pressure, evidenced by increased response times at 6 atm abs relative to their older colleagues. One out of every four of the younger divers could be considered susceptible to inert gas narcosis (ION) when an increase of one standard deviation/1SD (> 19%) or more in discrimination reaction time is used as an indicator. ION susceptibility appears independent of body composition and physical fitness. The slowed response speed experienced at 6.0 atm abs was of short duration and returned to baseline immediately with decompression. Our results suggest that IGN is demonstrated by an impaired learning process and decreased response speed and that some younger divers appear more susceptible.

  18. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults.

    PubMed

    Lin, Hualiang; Guo, Yanfei; Zheng, Yang; Di, Qian; Liu, Tao; Xiao, Jianpeng; Li, Xing; Zeng, Weilin; Cummings-Vaughn, Lenise A; Howard, Steven W; Vaughn, Michael G; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2017-05-01

    Long-term exposure to ambient fine particulate pollution (PM2.5) has been associated with cardiovascular diseases. Hypertension, a major risk factor for cardiovascular diseases, has also been hypothesized to be linked to PM2.5 However, epidemiological evidence has been mixed. We examined long-term association between ambient PM2.5 and hypertension and blood pressure. We interviewed 12 665 participants aged 50 years and older and measured their blood pressures. Annual average PM2.5 concentrations were estimated for each community using satellite data. We applied 2-level logistic regression models to examine the associations and estimated hypertension burden attributable to ambient PM2.5 For each 10 μg/m(3) increase in ambient PM2.5, the adjusted odds ratio of hypertension was 1.14 (95% confidence interval, 1.07-1.22). Stratified analyses found that overweight and obesity could enhance the association, and consumption of fruit was associated with lower risk. We further estimated that 11.75% (95% confidence interval, 5.82%-18.53%) of the hypertension cases (corresponding to 914, 95% confidence interval, 453-1442 cases) could be attributable to ambient PM2.5 in the study population. Findings suggest that long-term exposure to ambient PM2.5 might be an important risk factor of hypertension and is responsible for significant hypertension burden in adults in China. A higher consumption of fruit may mitigate, whereas overweight and obesity could enhance this effect. © 2017 American Heart Association, Inc.

  19. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    PubMed

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-02-16

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (<10 l×) from 17:00 to 09:00 next morning; CR-LL, n = 81, lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (<10 l×) during the whole experiment. Systolic (SBP) and diastolic (DBP) BP, HR and BT were measured every 2 h. For comparison, the results of the former studies performed under conditions of regular life with an activity period from 07:00 to 23:00 h and sleep from 23:00 till 07:00 h (Control) were reanalyzed. Seven-day Ambulatory Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former

  20. Ultrasensitive Ambient Mass Spectrometric Analysis with a Pin-to-Capillary Flowing Atmospheric-Pressure Afterglow Source

    PubMed Central

    Shelley, Jacob T.; Wiley, Joshua S.; Hieftje, Gary M.

    2011-01-01

    The advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the Flowing Atmospheric-Pressure Afterglow (FAPA). FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (<100 fmol). The FAPA was also shown to be less affected by competitive-ionization matrix effects than other plasma-based sources. However, the original FAPA design exhibited substantial background levels, cluttered background spectra in the negative-ion mode, and significant oxidation of aromatic analytes, which ultimately compromised analyte identification and quantification. In the present study, a change in the FAPA configuration from a pin-to-plate to a pin-to-capillary geometry was found to vastly improve performance. Background signals in positive- and negative-ionization modes were reduced by 89% and 99%, respectively. Additionally, the capillary anode strongly reduced the amount of atomic oxygen that could cause oxidation of analytes. Temperatures of the gas stream that interacts with the sample, which heavily influences desorption capabilities, were compared between the two sources by means of IR thermography. The performance of the new FAPA configuration is evaluated through the determination of a variety of compounds in positive- and negative-ion mode, including agrochemicals and explosives. A detection limit of 4 amol was found for the direct determination of the agrochemical ametryn, and appears to be spectrometer-limited. The ability to quickly screen for analytes in bulk liquid samples with the pin-to-capillary FAPA is also shown. PMID:21627097

  1. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.

    PubMed

    Qadir, Kamran; Joo, Sang Hoon; Mun, Bongjin S; Butcher, Derek R; Renzas, J Russell; Aksoy, Funda; Liu, Zhi; Somorjai, Gabor A; Park, Jeong Young

    2012-11-14

    Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.

  2. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    SciTech Connect

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.

  3. Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

    DOE PAGES

    Favaro, Marco; Yang, Jinhui; Nappini, Silvia; ...

    2017-06-09

    Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co3O4/Co(OH)2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that the catalyst undergoes chemical-structuralmore » transformations as a function of the applied anodic potential, with complete conversion of the Co(OH)2 and partial conversion of the spinel Co3O4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co3O4 catalyst supports this interpretation and reveals that the presence of Co(OH)2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.« less

  4. Structural phase transitions and superconductivity in Fe(1+delta)Se0.57Te0.43 at ambient and elevated pressures.

    PubMed

    Gresty, Nathalie C; Takabayashi, Yasuhiro; Ganin, Alexey Y; McDonald, Martin T; Claridge, John B; Giap, Duong; Mizuguchi, Yoshikazu; Takano, Yoshihiko; Kagayama, Tomoko; Ohishi, Yasuo; Takata, Masaki; Rosseinsky, Matthew J; Margadonna, Serena; Prassides, Kosmas

    2009-11-25

    The ternary iron chalcogenide, Fe(1.03)Se(0.57)Te(0.43) is a member of the recently discovered family of Fe-based superconductors with an ambient pressure T(c) of 13.9 K and a simple structure comprising layers of edge-sharing distorted Fe(Se/Te)(4) tetrahedra separated by a van der Waals gap. Here we study the relationship between its structural and electronic responses to the application of pressure. T(c) depends sensitively on applied pressure attaining a broad maximum of 23.3 K at approximately 3 GPa. Further compression to 12 GPa leads to a metallic but nonsuperconducting ground state. High-resolution synchrotron X-ray diffraction shows that the superconducting phase is metrically orthorhombic at ambient pressure but pressurization to approximately 3 GPa leads to a structural transformation to a more distorted structure with monoclinic symmetry. The exact coincidence of the crystal symmetry crossover pressure with that at which T(c) is maximum reveals an intimate link between crystal and electronic structures of the iron chalcogenide superconductors.

  5. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Swiety-Pospiech, A.; Grzybowska, K.; Hawelek, L.; Paluch, M.; Ngai, K. L.

    2012-04-01

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M″(f ) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across Tg. The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below Tg. At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  6. The rapid solid-state synthesis of group III and transition metal nitrides at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Wallace, Charles Henry

    The development and improvement of new and existing technologies requires the synthesis of ultra-pure, crystalline materials. To meet this need, new ways of synthesizing materials with specific properties that are difficult or impossible to produce using traditional methods must be developed. The research presented herein outlines various new techniques that can be effectively used to produce high quality, crystalline materials using a novel time and energy efficient process called solid-state metathesis. This process combines two or more solid, molecular precursors that react exothermically to rapidly produce crystalline refractory ceramic and electronic materials, such as binary and ternary metal carbides, nitrides, phosphides, sulfides and oxides. Several important materials, including graphite, gallium nitride, indium nitride, tantalum nitride, silicon nitride and cubic boron nitride, which had been difficult or impossible to synthesize using standard solid-state metathesis reactions, can now be synthesized using modified metathesis methods. One of the new techniques described in this thesis for the successful synthesis of materials, such as gallium nitride, is the use of high pressures (up to 80,000 atm) before initiating a solid-state reaction. New nitrogen precursors were investigated, such as lithium amide and ammonium chloride, which when combined in the proper ratios, aid in the formation of gallium and indium nitride at ambient pressures. The major focus of this work is on new synthetic techniques that rapidly produce pure, crystalline materials. Since gallium nitride is an important direct wide-bandgap semiconductor of interest for high brightness, blue light-emitting diodes, lasers and flat panel displays, a large majority of the research described has been devoted to developing more efficient methods for synthesizing and purifying high quality products. Also discussed is the importance of controlling the temperature by the addition of less reactive

  7. Comparative Study of the Oxidation of NiAl(100) by Molecular Oxygen and Water Vapor Using Ambient-Pressure X-ray Photoelectron Spectroscopy.

    PubMed

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; Zhou, Guangwen

    2016-11-08

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. These results demonstrate that the O2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barring the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.

  8. Microautoradiography of Water-Soluble Compounds in Plant Tissue after Freeze-Drying and Pressure Infiltration with Epoxy Resin

    PubMed Central

    Vogelmann, Thomas C.; Dickson, Richard E.

    1982-01-01

    It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible. Images Fig. 2 PMID:16662542

  9. Dry skin and pressure ulcer risk: A multi-center cross-sectional prevalence study in German hospitals and nursing homes.

    PubMed

    Lechner, Anna; Lahmann, Nils; Neumann, Konrad; Blume-Peytavi, Ulrike; Kottner, Jan

    2017-05-18

    Pressure ulcers are a serious health problem in medical and nursing care. Therefore, effective prevention is crucial. Major pressure ulcer risk factors have been identified but the particular role of dry skin (xerosis cutis) is unclear. To investigate possible associations between dry skin and pressure ulcers focusing on the sacrum/trochanter and at heel/ankle skin areas. Two multicenter cross-sectional studies. In 2014 and 2015 thirty nursing homes and thirteen hospitals in Germany participated. In total 3837 participants were included. Mean age was 76.1 (SD 15.5) years. Skin assessments and data collection were performed by trained nurses based on a standardized data collection form. Descriptive comparisons and multilevel logistic regressions predicting pressure ulcers at sacrum/trochanter and ankle/heel were conducted. The prevalence of skin dryness at the trunk was significantly higher for subjects with pressure ulcers category 2+ at the sacral area compared to without (39.0% vs. 24.4%, p=0.010). Adjusted to demographic variables, mobility and type of institution dry skin at the trunk was no longer associated with pressure ulceration (OR 1.11 (95% CI 0.62-2.00)). 71.9% of patients with heel/ankle pressure ulcers category 2+ were affected by dry skin at legs or feet, compared to 42.8% of subjects without pressure ulcers (p<0.001). In the adjusted analysis the OR was 1.85 (95% CI 0.83-4.14). Study results indicate that dry skin at the feet may be considered as a risk factor for heel pressure ulcer development. Skin dryness may be less important for sacral pressure ulcers. Therefore, the variable skin status should be better defined in future studies and pressure ulcer risk models. Results further support differences in pressure ulcer aetiologies between anatomical locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples

    NASA Astrophysics Data System (ADS)

    Sallé, Béatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.

    2005-04-01

    Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects.

  11. High gas pressure: an innovative method for the inactivation of dried bacterial spores.

    PubMed

    Colas de la Noue, A; Espinasse, V; Perrier-Cornet, J-M; Gervais, P

    2012-08-01

    In this article, an original non-thermal process to inactivate dehydrated bacterial spores is described. The use of gases such as nitrogen or argon as transmission media under high isostatic pressure led to an inactivation of over 2 logs CFU/g of Bacillus subtilis spores at 430 MPa, room temperature, for a 1 min treatment. A major requirement for the effectiveness of the process resided in the highly dehydrated state of the spores. Only a water activity below 0.3 led to substantial inactivation. The solubility of the gas in the lipid components of the spore and its diffusion properties was essential to inactivation. The main phenomenon involved seems to be the sorption of the gas under pressure by the spores' structures such as residual pores and plasma membranes, followed by a sudden drop in pressure. Observation by phase-contrast microscopy suggests that internal structures have been affected by the treatment. Some parallels with polymer permeability to gas and rigidity at various water activities offer a few clues about the behavior of the outer layers of spores in response to this parameter and provide a good explanation for the sensitivity of spores to high gas pressure discharge at low hydration levels. Specificity of microorganisms such as size, organization, and composition could help in understanding the differences between spores and yeast regarding the parameters required for inactivation, such as pressure or maintenance time.

  12. Ambient pressure structural quantum critical point in the phase diagram of (Ca(x)Sr(1-x))(3)Rh(4)Sn(13).

    PubMed

    Goh, S K; Tompsett, D A; Saines, P J; Chang, H C; Matsumoto, T; Imai, M; Yoshimura, K; Grosche, F M

    2015-03-06

    The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138  K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures.

  13. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  14. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  15. Dry Zones Around Frozen Droplets

    NASA Astrophysics Data System (ADS)

    Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    The saturation pressure of water vapor above supercooled water exceeds that above ice at the same temperature. A frozen droplet will therefore grow by harvesting water vapor from neighboring supercooled condensate, which has recently been demonstrated to be a primary mechanism of in-plane frost growth on hydrophobic surfaces. The underlying physics of this source-sink interaction is still poorly understood. In this work, a deposited water droplet is frozen on a dry hydrophobic surface initially held above the dew point. We demonstrate that when the surface is then cooled beneath the dew point, the frozen droplet harvests nearby water vapor in the air. This results in an annular dry zone that forms between the frozen droplet and the forming supercooled condensation. For a given ambient temperature and humidity, the length of the dry zone varied strongly with surface temperature and weakly with droplet volume. The dependence of the dry zone on surface temperature is due to the fact that the vapor pressure gradients between the ambient and the surface and between the liquid and frozen water are both functions of temperature.

  16. A Dry Process for Polymer Nano-Microfibers Prepared by Electrospinning under Pressurized CO2

    NASA Astrophysics Data System (ADS)

    Wahyudiono; Murakami, Kanako; Machmudah, Siti; Sasaki, Mitsuru; Goto, Motonobu

    2012-08-01

    Electrospinning is known as an efficient technique for the fabrication of polymer nanoparticles and nanofibers. Various polymers have been successfully electrospun into ultrafine particles and fibers in recent years, mostly in solvent solution and some in melt form. In this study, electrospinning was conducted under pressurized carbon dioxide (CO2) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ˜8.0 MPa. Poly(vinyl pyrrolidone) (PVP) in dichloromethane (DCM) was used as a polymer solution with 4 wt % of concentration. The applied voltage was 17 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO2, PVP electrospun was produced without bead formation with diameter ranges of 608.50-7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes.

  17. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Hu, Haiying; Li, Heping; Wu, Lei; Hui, Keshi; Jiang, Jianjun; Sun, Wenqing

    2016-06-01

    The electrical conductivity of eclogite was measured at temperatures of 873-1173 K and pressures of 1.0-3.0 GPa within a frequency range of 0.1-106 Hz using a YJ-3000t multianvil press and Solartron-1260 impedance/gain-phase analyzer. Three solid-state oxygen buffers (Cu + CuO, Ni + NiO, and Mo + MoO2) were employed to control the oxygen fugacity. Experimental results indicate that the electrical conductivity of the samples tended to increase with increasing temperature, conforming to an Arrhenius relation. Under the control of a Cu + CuO oxygen buffer, the electrical conductivity of the eclogite decreased with a rise in pressure, and its corresponding activation volume and activation energy at atmospheric pressure were calculated as -2.51 ± 0.29 cm3/mole and 0.86 ± 0.12 eV, respectively. At 2.0 GPa, the electrical conductivity of the eclogite increased with increasing oxygen fugacity, and the preexponential factor increased while the activation enthalpy decreased. The observed positive exponential factor for the dependence of electrical conductivity on oxygen fugacity, as well as the negative activation volume, confirm that the hopping of small polarons is the dominant conduction mechanism in eclogite at high temperatures and pressures. Our results suggest that the electrical conductivity of dry eclogite under various redox conditions cannot explain the high anomalies in conductivity under stable midlower continental crust and under the Dabie-Sulu ultrahigh-pressure metamorphic belt of eastern China.

  18. High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage

    PubMed Central

    Utama, Dicky Tri; Lee, Seung Gyu; Baek, Ki Ho; Chung, Woon Si; Chung, In Ae; Jeon, Jung Tae; Lee, Sung Ki

    2017-01-01

    Objective Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. Methods The longissimus lumborum muscles obtained from Friesian Holstein steers (33±0.5 months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at 15°C±2°C; the samples were then stored for 9 days at 4°C±1°C and compared with control (0.1 MPa). Results HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Conclusion Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased L* and a* values with less discoloration and oxidative deterioration during storage. PMID:27383811

  19. High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage.

    PubMed

    Utama, Dicky Tri; Lee, Seung Gyu; Baek, Ki Ho; Chung, Woon Si; Chung, In Ae; Jeon, Jung Tae; Lee, Sung Ki

    2017-03-01

    Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. The longissimus lumborum muscles obtained from Friesian Holstein steers (33±0.5 months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at 15°C±2°C; the samples were then stored for 9 days at 4°C±1°C and compared with control (0.1 MPa). HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased L* and a* values with less discoloration and oxidative deterioration during storage.

  20. High-Temperature Phase Transitions in CsH2PO4 Under Ambient and High-Pressure Conditions: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Botez,C.; Hermosillo, J.; Zhang, J.; Qian, J.; Zhao, Y.; Majzlan, J.; Chianelli, R.; Pantea, C.

    2007-01-01

    To clarify the microscopic origin of the temperature-induced three-order-of-magnitude jump in the proton conductivity of CsH2PO4 (superprotonic behavior), we have investigated its crystal structure modifications within the 25-300 C temperature range under both ambient- and high-pressure conditions using synchrotron x-ray diffraction. Our high-pressure data show no indication of the thermal decomposition/polymerization at the crystal surface recently proposed as the origin of the enhanced proton conductivity. Instead, we found direct evidence that the superprotonic behavior of the title material is associated with a polymorphic structural transition to a high-temperature cubic phase. Our results are in excellent agreement with previous high-pressure ac impedance measurements.

  1. Atmospheric Pressure Plasma Jet as a Dry Alternative to Inkjet Printing in Flexible Electronics

    NASA Technical Reports Server (NTRS)

    Gandhiraman, Ram Prasad; Lopez, Arlene; Koehne, Jessica; Meyyappan, M.

    2016-01-01

    We have developed an atmospheric pressure plasma jet printing system that works at room temperature to 50 deg C unlike conventional aerosol assisted techniques which require a high temperature sintering step to obtain desired thin films. Multiple jets can be configured to increase throughput or to deposit multiple materials, and the jet(s) can be moved across large areas using a x-y stage. The plasma jet has been used to deposit carbon nanotubes, graphene, silver nanowires, copper nanoparticles and other materials on substrates such as paper, cotton, plastic and thin metal foils.

  2. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    SciTech Connect

    Lie, Zener Sukra; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  3. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Pardede, Marincan; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-08-01

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO2 ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO2 ambient gas. Meanwhile the considerably weaker carbon emission from the CO2 gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO2 gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO2 ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  4. Interaction of atmospheric pressure plasmas with dry and wet wounded skin

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kushner, Mark

    2010-11-01

    Non-equilibrium plasmas in direct contact with living tissue can produce therapeutic effects. Dielectric barrier discharge (DBD) devices used for this purpose contain the powered electrode while the tissue being treated is usually the floating electrode. The plasma produces beneficial effects through: (i) electric fields, (ii) production of radicals and charged species, (iii) photons and (iv) energetic ions impinging onto wounds and tissue surfaces. Using a 2-d plasma hydrodynamics model, we discuss the interaction of DBD filaments with human skin. We model the propagation of the streamer across the gap, its intersection with skin, the charging of cell surfaces and the generation of conduction and displacement currents, and electric fields in the cells. The cellular structure in the first few mm of human skin is incorporated into the computational mesh with permittivity and conductivity to represent the electrical properties of the intra- and inter-cell structures. In this talk, we concentrate on the effects of plasmas on open wounds which are either dry or filled with blood serum. We will discuss the penetration of electric fields through the blood serum and into the underlying cells, including the possible interactions with blood platelets, and the distribution of ion energies onto the liquid and cellular surfaces.

  5. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized.

  6. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    NASA Astrophysics Data System (ADS)

    Shyamkumar, Prashanth

    Cardiovascular Diseases (CVDs) have been a major cause for deaths in both men and women in United States. Cerebrovascular Diseases like Strokes are known to have origins in CVDs as well. Moreover, nearly 18 Million Americans have a history of myocardial infarction and are currently undergoing cardiac rehabilitation. Consequently, CVDs are the highest costing disease groups and cost more than all types of cancer combined. However, significant cost reduction is possible through the effective use of the vast advances in embedded and pervasive electronic devices for healthcare. These devices can automate and move a significant portion of disease management to the patient's home through cyber connectivity, a concept known as point-of-care (POC) diagnostics and healthcare services. POC can minimize hospital visits and potentially avoid admission altogether with prognostic tools that give advanced notice of any abnormalities or chronic illnesses so that the treatment can be planned in advance. The POC concept requires continuous remote health monitoring. Therefore, the various sensors needed for comprehensive monitoring need to be worn daily and throughout the day. Moreover, true "roaming" capability is necessary so that it does not restrict the user's travel or his/her quotidian activities. Two biomedical signals namely, Electrocardiogram (ECG) and Blood Pressure are important diagnostic tests in assessing the cardiac health of a person. To that end, the research presented in this thesis: First , describes the development of a remote monitoring solution based on Bluetooth(TM), smartphones and cyber infrastructure for cardiac care called e-nanoflex. Second, Sensors for ECG that are compatible with everyday life style namely, (a) dry, gel-less vertically aligned gold nanowire electrodes, (b) dry textile-based conductive sensor electrodes to address the need for this technology to monitor cardiovascular diseases in women are tested with e-nanoflex and discussed. Third, non

  7. Copper dry etching by sub-atmospheric-pressure pure hydrogen glow plasma

    NASA Astrophysics Data System (ADS)

    Ohmi, Hiromasa; Sato, Jumpei; Hirano, Tatsuya; Kubota, Yusuke; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2016-11-01

    Copper (Cu) dry etching is demonstrated using a narrow-gap hydrogen plasma generated at 13.3 kPa (100 Torr) for applications in the Cu wiring technology of integrated circuits. A localized hydrogen plasma is generated around the apex of a fine pipe electrode. The Cu etching can be observed only when the process gas contains hydrogen, and the etching rates decrease with decreased hydrogen concentration. The plasma heating effect owing to plasma localization is negligible for the Cu etching because no etching occurs in the presence of pure N2 plasma whose volume is almost equal to that of the pure H2 plasma. Furthermore, the influences of physical sputtering and vacuum ultraviolet irradiation on the Cu etching are confirmed to be insignificant by exposing the samples to rare-gas plasma. The maximum Cu etching rate of 500 nm/min can be achieved at a stage temperature of 0 °C. However, the Cu etching rate has no obvious dependence on the stage temperature in a range from -20 to 330 °C. In contrast, the etching rates for Si and SiO2 at a stage temperature of 0 °C are 100 μm/min and 50 nm/min, respectively. The Cu etching rate is 10 times higher than that of SiO2, which implies that this etching technique has potential applications for Cu wiring on an SiO2 layer. The Cu surface etched by the hydrogen plasma is roughened and exhibits many round pits and bumps, which seems to be owing to excessive incorporation of the diffused hydrogen in the Cu bulk.

  8. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised.

  9. Phase Diagram Of UGe2: The Magnetic Transition within the Ferromagnetic Phase and the Superconducting Transition; the Effect of Magnetic Field on the Ambient-Pressure Ferromagnetic Phase

    NASA Astrophysics Data System (ADS)

    Phillips, N. E.; Bouquet, F.; Fisher, R. A.; Hardy, F.; Oeschler, N.; Lashley, J. C.; Flouquet, J.; Huxley, A.

    2007-03-01

    Superconductivity in UGe2 occurs near 1.2 GPa at the 0-K termination of the phase boundary (Tx, Px) of a magnetic transition that occurs within the ferromagnetic phase. Ambient-pressure specific-heat measurements show a hysteretic transition at Tx(0) ˜ 22 K, reminiscent of the CDW/SDW transition in α-U, and consistent with the suggestion that the transition in UGe2 is also a CDW/SDW transition. The magnetic field dependence of the specific heat, at ambient pressure, demonstrates the presence of structure in the electron density of states and an unusual nature of the ferromagnetic ordering at the Curie temperature. Specific-heat measurements to 1.8 GPa give an estimate of the latent heat of the transition and determine the phase boundary for 1 <= T <= 11 K. Contrary to expectations, the onset temperature of the superconducting transition is independent of pressure in the region in which it was observed, 1.08 <= P <= 1.35 GPa.

  10. Interface-induced superconductivity at ˜25 K at ambient pressure in undoped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu

    2016-11-01

    Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ˜25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T-cT transition, which is sensitive to lattice strain, and the T-O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction.

  11. Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals.

    PubMed

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu

    2016-11-15

    Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T-cT transition, which is sensitive to lattice strain, and the T-O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction.

  12. Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals

    PubMed Central

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu

    2016-01-01

    Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T–cT transition, which is sensitive to lattice strain, and the T–O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction. PMID:27799564

  13. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes.

    PubMed

    Hereu, Anna; Bover-Cid, Sara; Garriga, Margarita; Aymerich, Teresa

    2012-03-15

    This work aimed to evaluate the effect of nisin application (biopreservation) combined with high hydrostatic pressure processing (HHP) on the behavior of Listeria monocytogenes CTC1034 intentionally inoculated (at ca. 10(7)cells/g) onto the surface of ready-to-eat (RTE) sliced dry-cured ham. Two types of dry-cured ham, which had different water activities and fat contents were studied (a(w) of 0.92 and 14.25% fat and a(w) of 0.88 and 33.26% fat). Three batches were prepared for each type of product: (C) control, without nisin; (N) nisin directly applied (200 AU/cm(2)) and (F) nisin applied through active packaging, polyvinyl alcohol films with 200 AU/cm(2). Half of the samples were pressurized at 600 MPa for 5min. Counts of L. monocytogenes were periodically monitored throughout 60 days of storage at 8°C. The physico-chemical characteristics of the products enabled the survival of L. monocytogenes, but it was significantly reduced by the presence of nisin. The effect of biopreservation was greater when applied directly to the surface and in the product with lower water activity in comparison with the active packaging and the high water activity products, respectively. The immediate inactivation of L. monocytogenes by HHP ranged from 1.82 to 3.85 Log units, depending on the type of dry-cured ham. The lower the water activity, the less was the inactivation induced by HHP, both immediately and during storage. The reduction of L. monocytogenes immediately after HHP and during storage was more evident in batches with nisin applied directly to the surface of the product. The pathogen was not detected in some samples from day 5 of storage in the product with higher water activity. The effect of nisin applied through active packaging was lower than the direct application. The results of the present study indicated that HHP, as post-processing listericidal treatment, is more effective (both immediately and long term) than the use of nisin as an antimicrobial measure

  14. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham.

    PubMed

    Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Nuñez, Manuel; Picon, Antonia

    2016-01-01

    The volatile fraction of 30 Serrano dry-cured hams with different salt and intramuscular fat contents was investigated. In addition, the effect of high pressure processing (HPP) at 600 MPa for 6 min at 21°C on the volatile compounds of those hams was studied. One hundred volatile compounds were identified and their levels subjected to analysis of variance with ham chemical composition (aw, salt content, intramuscular fat content and salt in lean ratio) and HPP treatment as main effects. Chemical composition mainly affected the relative abundance of acids, alcohols, branched-chain aldehydes, ketones, benzene compounds, sulfur compounds and some miscellaneous compounds. Salt content and fat content influenced a greater number of volatile compounds than aw. High pressure processing had a significant effect on only 8 volatile compounds, with higher levels of methanethiol and sulfur dioxide in HPP-treated samples and higher levels of ethyl acetate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, dimethyl disulfide and dimethyl trisulfide in control untreated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship.

    PubMed

    Kanabuchi, Kazuo; Kondo, Tetsuri; Tanigaki, Toshimori; Tajiri, Sakurako; Hayama, Naoki; Takahari, Yoko; Iwao, Kayoko

    2011-04-20

    Inhalation therapy using the dry powder inhaler (DPI) is now the first choice for obstructive pulmonary diseases. We previously measured relationships between inspiratory pressure (PI) and flow rate of almost all of the DPIs available in Japan, and described an importance of inspiratory efforts. In the present study, we further analyzed the data obtained in the previous study. Although there were linear relationships between PI and flow2, the slope became steeper when PI was less than a certain value (critical PI, existed between 15-20 cmH2O). When PI was less than critical PI, linear rather than parabolic regression between PI and flow yielded better fits (r > 0.90, p < 0.001). Inspiratory flows at the critical PI were 53.9 (Diskus), 65.8 (Diskhaler), 45.9 (Turbuhaler for Pulmincort), 48.6 (Turbuhaler for Symbicort) and 38.0 l/min (Twisthaler). These findings suggested that flow through the DPI becomes laminar rather than turbulent flow in the range below critical PIs. We suggest that patients should inhale from the DPIs with inspiratory pressure higher than critical PI.

  16. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source.

    PubMed

    Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  17. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-05-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.

  18. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions.

    PubMed

    Bartis, Elliot A J; Luan, Pingshan; Knoll, Andrew J; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb S

    2015-06-30

    An atmospheric pressure plasma jet (APPJ) was used to treat polystyrene (PS) films under remote conditions where neither the plume nor visible afterglow interacts with the film surface. Carefully controlled conditions were achieved by mounting the APPJ inside a vacuum chamber interfaced to a UHV surface analysis system. PS was chosen as a model system as it contains neither oxygen nor nitrogen, has been extensively studied, and provides insight into how the aromatic structures widespread in biological systems are modified by atmospheric plasma. These remote treatments cause negligible etching and surface roughening, which is promising for treatment of sensitive materials. The surface chemistry was measured by X-ray photoelectron spectroscopy to evaluate how ambient chemistry, feed gas chemistry, and plasma-ambient interaction impact the formation of specific moieties. A variety of oxidized carbon species and low concentrations of NOx species were measured after APPJ treatment. In the remote conditions used in this work, modifications are not attributed to short-lived species, e.g., O atoms. It was found that O3 does not correlate with modifications, suggesting that other long-lived species such as singlet delta oxygen or NOx are important. Indeed, surface-bound NO3 was observed after treatment, which must originate from gas phase NOx as neither N nor O are found in the pristine film. By varying the ambient and feed gas chemistry to produce O-rich and O-poor conditions, a possible correlation between the oxygen and nitrogen composition was established. When oxygen is present in the feed gas or ambient, high levels of oxidation with low concentrations of NO3 on the surface were observed. For O-poor conditions, NO and NO2 were measured, suggesting that these species contribute to the oxidation process, but are easily oxidized when oxygen is present. That is, surface oxidation limits and competes with surface nitridation. Overall, surface oxidation takes place easily

  19. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2.

    PubMed

    Bobich, Edward G; Barron-Gafford, Greg A; Rascher, Katherine G; Murthy, Ramesh

    2010-07-01

    The means by which growth CO(2) concentration ([CO(2)]) affects anatomy and water relations responses to drought and vapour pressure deficit (VPD) were studied for yearly coppiced, 4-year-old Populus deltoides clones that were grown in either 400 mumol mol(-1) (ambient) or 800 mumol mol(-1) (elevated) CO(2) for 3 years. It was hypothesized that, during drought, trees growing in elevated [CO(2)] would have a lower volume flux density of water (J(V)), stomatal conductance (g(s)) and transpiration per leaf area (E), as well as a lower stomatal density and a greater stomatal response to drought and changes in VPD than would trees in ambient [CO(2)]. Trees in elevated [CO(2)] actually had higher J(V) values throughout the study, but did not differ from trees in ambient [CO(2)] with respect to g(s) or E under saturating light or E scaled from J(V) (E(scaled)), all of which indicates that the higher J(V) in elevated [CO(2)] resulted from those trees having greater leaf area and not from differences in g(s). Furthermore, although plants in elevated [CO(2)] had greater absolute leaf loss during the drought, the percentage of leaf area lost was similar to that of trees in ambient [CO(2)]. g(s) and E under saturating light were affected by changes in VPD after the first 9 days of the experiment, which coincided with a large decrease in water potential at a soil depth of 0.1 m. Trees in elevated [CO(2)] had a greater stomatal density and a lower wood density than trees in ambient [CO(2)], both traits that may make the trees more susceptible to xylem cavitation in severe drought. Drought and VPD effects for the P. deltoides clone were not ameliorated by long-term growth in elevated [CO(2)] compared with ambient [CO(2)], and plants in elevated [CO(2)] possessed anatomical traits that may result in greater stress associated with long-term drought.

  20. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Klimeš, Jiří; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-01

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  1. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  2. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    SciTech Connect

    Dawood, Mahmoud S.; Hamdan, Ahmad E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  3. Synthesis of Ca-substituted Y1-xCaxBa2Cu4O8 at ambient pressure using CuI

    NASA Astrophysics Data System (ADS)

    Zheng, X. G.; Suzuki, M.; Xu, C.; Kuriyaki, H.; Hirakawa, K.

    1996-02-01

    Ca-substituted Y124 superconductors Y 1- xCa xBa 2Cu 4O 8 ( x = 0.05, 0.1) were synthesized at ambient oxygen pressure by a solid-state reaction method which used CuI instead of the conventional CuO. Experimental results showed a promoting effect of copper iodide on the formation of the 124 phase at normal oxygen pressure. Tc determined from the Meissner effect was 88 K for x = 0.05 and 90 K for x = 0.1. For the same Ca-substitution rates Tc(zero-resistance) of 80.5 K and 82.0 K was obtained respectively.

  4. Electronic properties and the nature of metal-insulator transition in NdNiO3 prepared at ambient oxygen pressure

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2016-06-01

    We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m*~8me) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2-20 K) is governed by the variable range hopping of the charge carriers.

  5. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  6. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; Zhou, Guangwen

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barring the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.

  7. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barringmore » the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  8. Normal impingement loads due to small air jets issuing from a base plate and reflecting off a platform for various jet Mach numbers, separation distances, and ambient pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1972-01-01

    An investigation was conducted in a 12.5-meter-diameter vacuum sphere to determine the impingement loads due to air jets issuing from and perpendicular to a circular base and reflecting off a square platform, that is, a simulation of rendezvous maneuvering, docking, launch, impact dampers etc. The nozzles had exit Mach numbers of 1, 3, 5, and 7. The ambient pressures were 0.0006, 5, 225, and 760 torr. Under near-field separation distances and at 0.0006 torr, reflections were significant; and ratios of the impingement force to thrust on both plates in the biplane arrangement varied from about 750 for exit Mach number 1 to 120 for exit Mach number 7. The far-field force ratios were near unity for the platform and zero for the base and indicated few, if any, reflections. Some reversals and rapid changes in loads were obtained at transition distances between the near and far fields. In general, increasing the exit Mach number or ambient pressure reduced the impingement loads.

  9. Effectiveness of fermentation/drying and post-process pressurization on viability of Listeria monocytogenes and Salmonella spp. in Genoa salami

    USDA-ARS?s Scientific Manuscript database

    We evaluated the effectiveness of fermentation and drying alone and in combination with high pressure processing (HPP) to inactivate five-strain cocktails of L. monocytogenes or Salmonella spp. (ca. 7.0 log10 per gram of each in batter) in Genoa salami. The inoculated chubs were fermented at 20 degr...

  10. Ambient Pressure Structural Quantum Critical Point in the Phase Diagram of (CaxSr1-x)3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Goh, Swee K.; Tompsett, D. A.; Saines, P. J.; Chang, H. C.; Matsumoto, T.; Imai, M.; Yoshimura, K.; Grosche, F. M.

    The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity at T* ~ 138 K. The anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T* as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (xc=0.9). This establishes the (CaxSr1-x)3Rh4Sn13 series as an important system for exploring the physics of structural quantum criticality and its interplay with the superconductivity, without the need of applying high pressures. This work was supported by CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Trinity College (Cam- bridge), Grants-in-Aid from MEXT (No. 22350029 and 23550152) and Glasstone Bequest (Oxford).

  11. A study of the O/Ag(111) system with scanning tunneling microscopy and x-ray photoelectron spectroscopy at ambient pressures

    NASA Astrophysics Data System (ADS)

    Heine, Christian; Eren, Baran; Lechner, Barbara A. J.; Salmeron, Miquel

    2016-10-01

    The interaction of O2 with the Ag(111) surface was studied with scanning tunneling microscopy (STM) in the pressure range from 10- 9 Torr to 1 atm at room temperature and with X-ray photoelectron spectroscopy (XPS) up to 0.3 Torr O2 in the temperature range from RT to 413 K. STM images show that the Ag(111) surface topography is little affected in regions with large flat terraces, except for the appearance of mobile features due to oxygen atoms at pressures above 0.01 Torr. In regions where the step density is high, the surface became rough under 0.01 Torr of O2, due to the local oxidation of Ag. Various chemical states of oxygen due to chemisorbed, oxide and subsurface species were identified by XPS as a function of pressure and temperature. The findings from the STM images and XPS measurements indicate that formation of an oxide phase, the thermodynamically stable form at room temperature under ambient O2 pressure, is kinetically hindered in the flat terrace areas but proceeds readily in regions with high-step density.

  12. Pressure-induced Formation of Energetic and Structural Extended Solids with Quench-recovery to Ambient Conditions

    DTIC Science & Technology

    2014-06-12

    cube . In MgC2 the C2 dumbbell coordination number is 6...recrystallization and capsule texture . Tick marks indicate ‐Mg2C3, Mg and MgO from top to bottom. The new Mg2C3 structure is monoclinic with space group C2/m...lined stainless steel gaskets and IR spectrometry using the pressure shift of the antisymmetric NO2 stretch as a pressure sensor and

  13. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry.

    PubMed

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R

    2013-09-01

    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

  14. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin.

    PubMed

    Ju, Zhi Yong; Howard, Luke R

    2003-08-27

    Pressurized liquid extraction (PLE) was used to extract anthocyanins from the freeze-dried skin of a highly pigmented red wine grape with six solvents at 50 degrees C, 10.1 MPa, and 3 x 5 min extraction cycles. Temperature (from 20 to 140 degrees C in 20 degrees C increments) effects on anthocyanin recovery by acidified water and acidified 60% methanol were also studied. Acidified methanol extracted the highest levels of total monoglucosides and total anthocyanins, whereas the solvent mixture (40:40:20:0.1 methanol/acetone/water HCl) extracted the highest levels of total phenolics and total acylated anthocyanins. Acidified water extracts obtained by PLE at 80-100 degrees C had the highest levels of total monoglucosides, total acylated anthocyanins, total anthocyanins, total phenolics, and ORAC values. Acidified methanol extracts obtained by PLE at 60 degrees C had the highest levels of total monoglucosides and total anthocyanins, whereas extracts obtained at 120 degrees C had the highest levels of total phenolics. High-temperature PLE (80-100 degrees C) using acidified water, an environmentally friendly solvent, was as effective as acidified 60% methanol in extracting anthocyanins from grape skins.

  15. Influence of physicochemical characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham.

    PubMed

    Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Ávila, Marta; Garde, Sonia; Nuñez, Manuel; Picon, Antonia

    2017-09-01

    The volatile fraction of 30 Iberian dry-cured hams of different physicochemical characteristics and the effect of high pressure processing (HPP) at 600MPa on volatile compounds were investigated. According to the analysis of variance carried out on the levels of 122 volatile compounds, intramuscular fat content influenced the levels of 8 benzene compounds, 5 carboxylic acids, 2 ketones, 2 furanones, 1 alcohol, 1 aldehyde and 1 sulfur compound, salt concentration influenced the levels of 1 aldehyde and 1 ketone, salt-in-lean ratio had no effect on volatile compounds, and water activity influenced the levels of 3 sulfur compounds, 1 alcohol and 1 aldehyde. HPP-treated samples of Iberian ham had higher levels of 4 compounds and lower levels of 31 compounds than untreated samples. A higher influence of HPP treatment on volatile compounds than physicochemical characteristics was observed for Iberian ham. Therefore, HPP treatment conditions should be optimized in order to diminish its possible effect on Iberian ham odor and aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Preliminary study on atmospheric-pressure plasma-based chemical dry figuring and finishing of reaction-sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Deng, Hui; Zhang, Xiaonan; Peng, Kang; Yamamura, Kazuya

    2016-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a research focus in the field of optical manufacturing. Atmospheric-pressure plasma-based chemical dry figuring and finishing, which consist of plasma chemical vaporization machining (PCVM) and plasma-assisted polishing (PAP), were applied to improve material removal rate (MRR) in rapid figuring and ameliorate surface quality in fine finishing. Through observing the processed RS-SiC sample in PCVM by scanning white-light interferometer (SWLI), the calculated peak-MRR and volume-MRR were 0.533 μm/min and 2.78×10-3 mm3/min, respectively. The comparisons of surface roughness and morphology of the RS-SiC samples before and after PCVM were obtained by the scanning electron microscope and atomic force microscope. It could be found that the processed RS-SiC surface was deteriorated with surface roughness rms 382.116 nm. The evaluations of surface quality of the processed RS-SiC sample in PAP corresponding to different collocations of autorotation speed and revolution speed were obtained by SWLI measurement. The optimal surface roughness rms of the processed RS-SiC sample in PAP was 2.186 nm. There were no subsurface damages, scratches, or residual stresses on the processed sample in PAP. The results indicate that parameters in PAP should be strictly selected, and the optimal parameters can simultaneously obtain high MRR and smooth surface.

  17. Encapsulation of a pressure-sensitive adhesive by spray-drying: microparticles preparation and evaluation of their crushing strength.

    PubMed

    Gavory, Cécile; Abderrahmen, Robin; Valour, Jean-Pierre; Chaussy, Didier; Belgacem, Mohamed Naceur; Fessi, Hatem; Briançon, Stéphanie

    2012-01-01

    An industrial pressure-sensitive adhesive was microencapsulated by spray-drying using an aqueous colloidal ethylcellulose dispersion (Aquacoat® ECD) plasticised by triacetin to form the wall material. Unloaded (0:100) and adhesive-loaded (25:75) particles were produced in a Büchi B-191 mini spray-dryer with product yields of 62% and 57%, respectively. Microparticles were spherical and narrow sized with mean D₃,₂ diameters of 3.165 ± 0.001 and 5.544 ± 0.105 µm, respectively. The microparticles were found to redisperse well in water and exhibit enough stability in neutral and alkaline aqueous media to be further used in a coating slip. Crush tests on single microparticles with diameters ranging from 2 to 12 µm were performed using a nanoindenter. They revealed that the crushing force of both kinds of microparticles increased linearly with their diameter and that the adhesive loading reduced the mechanical strength of the prepared microparticles.

  18. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  19. Variations in dark respiration and mitochondrial numbers within needles of Pinus radiata grown in ambient or elevated CO2 partial pressure.

    PubMed

    Griffin, Kevin L; Anderson, O Roger; Tissue, David T; Turnbull, Matthew H; Whitehead, David

    2004-03-01

    Within-leaf variations in cell size, mitochondrial numbers and dark respiration rates were compared in the most recently expanded tip, the mid-section and base of needles of Pinus radiata D. Don trees grown for 4 years in open-top chambers at ambient (36 Pa) or elevated (65 Pa) carbon dioxide partial pressure (p(CO2)a). Mitochondrial numbers and respiratory activity varied along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Regardless of the location of the cells (tip, middle or basal sections), needles collected from trees grown in elevated p(CO2)a had nearly twice the number of mitochondria per unit cytoplasm as those grown in ambient p(CO2)a. This stimulation of mitochondrial density by growth at elevated p(CO2)a was greater at the tip of the needle (2.7 times more mitochondria than in needles grown in ambient CO2) than at the base of the needle (1.7 times). The mean size of individual mitochondria was unaffected either by growth at elevated p(CO2)a or by position along the needle. Tree growth at elevated p(CO2)a had a variable effect on respiration per unit leaf area, significantly increasing respiration in the tip of the needles (+25%) and decreasing respiration at the mid-section and base of the needles (-14% and -25%, respectively). Although a simple relationship between respiration per unit leaf area and mitochondrial number per unit cytoplasm was found within each CO2 treatment, the variable effect of growth at elevated p(CO2)a on respiration along the length of the needles indicates that a more complex relationship must determine the association between structure and function in these needles.

  20. Effects of dry brining, liquid smoking and high-pressure treatment on the physical properties of aquacultured King salmon (Oncorhynchus tshawytscha) during refrigerated storage.

    PubMed

    Kong, Kelvin Jia Wey; Alçiçek, Zayde; Balaban, Murat O

    2015-03-15

    Aquacultured King salmon (Oncorhynchus tshawytscha) pieces were dry brined with a salt/brown sugar mix, dipped in liquid smoke for 3 min, vacuum packed, high hydrostatic pressure (HHP) treated at 600 or 200 MPa for 5 min and stored at 4 °C for up to 40 days. The surface redness (average a*) of the samples increased after dry brining, then decreased after liquid smoke treatment. HHP did not change the outside color of liquid-smoked samples. However, the inside color changed depending on pressure. HHP-treated control samples without dry brining and liquid smoking changed to a pale pink color. HHP at 600 MPa resulted in a significant increase in hardness. Compared with fresh samples, dry-brined samples had reduced water activity, while samples dipped in liquid smoke had lower pH values. Dry brining and liquid smoking protect the outside color of salmon against changes caused by HHP. The increase in hardness may counteract the softening of the smoked salmon tissue over time. © 2014 Society of Chemical Industry.

  1. Phase formation in the (1-y)BiFeO3-yBiScO3 system under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Salak, A. N.; Khalyavin, D. D.; Pushkarev, A. V.; Radyush, Yu. V.; Olekhnovich, N. M.; Shilin, A. D.; Rubanik, V. V.

    2017-03-01

    Formation and thermal stability of perovskite phases in the BiFe1-yScyO3 system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO3) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO3-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi2O3. Single-phase perovskite ceramics of the BiFe1-yScyO3 composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2ap×√2ap×2√3ap superstructure (ap 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2ap×4ap×2√2ap) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6ap×√2ap×√6ap) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe1-yScyO3 phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively.

  2. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Laasch, R.; Costello, J. T.; Kennedy, E. T.

    2013-08-01

    Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.

  3. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    NASA Astrophysics Data System (ADS)

    Kratzer, Jan; Mester, Zoltán; Sturgeon, Ralph E.

    2011-08-01

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  4. Evaluation of nucleic acid stabilization products for ambient temperature shipping and storage of viral RNA and antibody in a dried whole blood format.

    PubMed

    Dauner, Allison L; Gilliland, Theron C; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C; Hontz, Robert D; Wu, Shuenn-Jue L

    2015-07-01

    Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6-97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing.

  5. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Prosvirin, Igor P.; Bukhtiyarov, Andrey V.; Bluhm, Hendrik; Bukhtiyarov, Valerii I.

    2016-02-01

    Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  6. Effect of H2S and COS in the fuel gas on the performance of ambient pressure phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Ross, P. N., Jr.

    1985-04-01

    The objective of this project was to determine in laboratory cells the tolerance of phosphoric acid fuel cells (PAFC) to hydrogen sulfide and carbonyl sulphide impurities in the anode feed gas. The study was conducted in three phases: the first was testing in a small (1 sq cm) free electrolyte cell to examine the effect of electrode structure on cell tolerance and to determine the order of magnitude of sulfur causing failure in cells at zero utilization; the second was testing in standard 2' x 2' PAFC laboratory hardware at ambient pressure to examine the effect of hydrogen utilization on tolerance and the possible effect of fuel impurities on cathode performance; the final phase was testing with a 2' x 2' cell in a pressure vessel to determine the effect of pressurized operation on cell tolerance. The poisoning effect of hydrogen sulfide was characteristically different from the effects of carbon monoxide, in that it was not manifested by a marginal (e.g., 0 to 50 mV) increase in anode potential but either had no effect or caused catastrophic polarization. Critical levels were derived for hydrogen sulfide as related to cell operating conditions.

  7. Flow rate/pressure drop data gathered from testing a sample of the Space Shuttle Strain Isolation Pad (SIP): Effects of ambient pressure combined with tension and compression conditions

    NASA Technical Reports Server (NTRS)

    Springfield, R. D.; Lawing, P. L.

    1983-01-01

    Tests were conducted on a sample of strain isolation pad (SIP) typical of that used in the shuttle orbiter thermal protection system to determine the characteristics of SIP internal flow. Data obtained were pressure drop as a function of flow rate for a range of ambient pressures representing various points along the Shuttle trajectory and for stretched and compressed conditions of the SIP. Flow was in the direction of the weave parallel to most of the fibers. The data are plotted in several standard engineering formats in order to be of maximum utility to the user. In addition to providing support to the Space Shuttle Program, these data are a source of experimental information on flow through fiberous (rather than the more usual sand bed type) porous media.

  8. The nature of the water nucleation sites on TiO2(110) surfacesrelvealed by ambient pressure x-ray photoelectron spectroscopy

    SciTech Connect

    Ketteler, Guido; Yamamoto, Susumu; Bluhm, Hendrik; Andersson,Klas; Starr, David E.; Ogletree, D. Frank; Ogasawara, Hirohito; Nilsson,Anders; Salmeron, Miquel

    2007-05-01

    X-ray photoelectron spectroscopy at ambient conditions of pressure (up to 1.5 Torr) and temperature (265K

  9. Experimental and Theoretical Investigation of the Restructuring Process Induced by CO at Near Ambient Pressure: Pt Nanoclusters on Graphene/Ir(111).

    PubMed

    Podda, Nicola; Corva, Manuel; Mohamed, Fatema; Feng, Zhijing; Dri, Carlo; Dvorák, Filip; Matolin, Vladimir; Comelli, Giovanni; Peressi, Maria; Vesselli, Erik

    2017-01-24

    The adsorption of CO on Pt nanoclusters grown in a regular array on a template provided by the graphene/Ir(111) Moiré was investigated by means of infrared-visible sum frequency generation vibronic spectroscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy from ultrahigh vacuum to near-ambient pressure, and ab initio simulations. Both terminally and bridge bonded CO species populate nonequivalent sites of the clusters, spanning from first to second-layer terraces to borders and edges, depending on the particle size and morphology and on the adsorption conditions. By combining experimental information and the results of the simulations, we observe a significant restructuring of the clusters. Additionally, above room temperature and at 0.1 mbar, Pt clusters catalyze the spillover of CO to the underlying graphene/Ir(111) interface.

  10. Full-Scale Testing of the Ambient Pressure, Acid-Dissolution Front-End Process for the Current 99Mo Recovery Processes

    SciTech Connect

    Jerden, James L.; Bailey, James; Hafenrichter, Lohman; Vandegrift, George F.

    2013-01-31

    The Global Threat Reduction Initiative (GTRI) Conversion Program is actively developing technologies for converting civilian facilities that use high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The conversion of conventional HEU targets to LEU for the production of 99Mo production requires approximately five times the uranium in a target to maintain the 99Mo yield on a per-target basis. Under GTRI, Argonne National Laboratory (Argonne) is developing two frontend options for current 99Mo production processes to allow the use of LEU-foil targets. In both processes, the aim is to produce a frontend product that is compatible with current 99Mo purification operations and will provide the same or a higher yield of 99Mo for the same number of irradiated targets. The two frontend processes under development as part of this project are (1) the dissolution of irradiated LEU foil (up to 250 g in a single batch) and nickel fission recoil barrier in nitric acid at ambient pressure; and (2) the electrochemical dissolution of LEU foil in series of steps that produces an alkaline (basic) solution feed for 99Mo purification. This report describes results from performance tests and design optimization of the ambient pressure, nitric-acid-dissolver system. The design, fabrication, and performance test planning for this system are described in more detail in previous reports (Jerden et al. 2011a,b, 2012). Full-scale demonstrations of both of the frontend processes using irradiated uranium foils are planned to be performed at Oak Ridge National Laboratory this fiscal year.

  11. Cyclic-load crack growth in ASME SA-105 grade II steel in high-pressure hydrogen at ambient temperature

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chandler, W. T.

    1976-01-01

    ASME SA-105 Grade II steel, which is used in high-pressure hydrogen compressor systems, is similar to steels used or considered for use in high-pressure hydrogen storage vessels and pipelines. This paper summarizes the results of a program conducted to provide cyclic-load crack growth rate (da/dN) data for a fracture mechanics analysis of a 15,000 psi hydrogen compressor facility which contains pulse quieter and after-cooler separator vessels constructed of the ASME SA-105 Grade II steel. Included in the program were tests performed to assist in establishing operating procedures that could minimize the effect of hydrogen on crack growth rates during operation.

  12. The fcc-bcc Bain path in In-Sn and related alloys at ambient and high pressure.

    PubMed

    Degtyareva, Valentina F

    2009-03-04

    Experimental high-pressure structural studies on an In-Sn alloy containing 8 at.% Sn reveal an isostructural transition of a face-centered tetragonal phase at pressures above 15 GPa with a switch of the axial ratio from c/a>1 to c/a<1. Such tetragonal phases in binary alloys based on In and Sn are analyzed in relation to the Bain path, i.e. a transformation between a face-centered cubic (fcc) and a body-centered cubic (bcc) structure. Variation of the axial ratio c/a in these phases correlates with the average number of valence electrons per atom in an alloy. A common Bain path from fcc to bcc is discussed within a nearly-free-electron model of Brillouin-zone-Fermi-sphere interactions.

  13. Formoterol by pressurized metered-dose aerosol or dry powder on airway obstruction and lung hyperinflation in partially reversible COPD.

    PubMed

    Brusasco, Vito; Canonica, G Walter; Dal Negro, Roberto; Scano, Giorgio; Paggiaro, Pierluigi; Fabbri, Leonardo M; Barisione, Giovanni; D'Amato, Gennaro; Varoli, Guido; Baroffio, Michele; Milanese, Manlio; Mereu, Carlo; Crimi, Emanuele

    2011-10-01

    We compared the efficacy and safety of formoterol given by a pressurized metered-dose inhaler (pMDI) (Atimos®, Chiesi Farmaceutici, Italy), using a chlorine-free hydrofluoroalkane (HFA-134a) propellant developed to provide stable and uniform dose delivery (Modulite™, Chiesi Farmaceutici, Italy), with formoterol by dry powder inhaler (DPI) (Foradil® Aerolizer®, Novartis Pharmaceuticals) and placebo, in reducing airflow obstruction and lung hyperinflation, in moderate-to-severe, partially reversible chronic obstructive pulmonary disease (COPD). Forty-eight patients were randomized to a 1-week, double-blind, double-dummy, three-period crossover study with 12 μg b.i.d. of formoterol given by pMDI or DPI, or placebo. Spirometry, specific airway conductance, and lung volumes were measured at the beginning and at the end of each treatment period from predose to 4 h postdose. A 6-min walking test was carried out 4 h after the first and the last dose, with dyspnea assessed by Borg scale. Safety was assessed through adverse events monitoring electrocardiography and vital signs. The two formulations of formoterol were significantly superior to placebo but not different from each other in increasing 1-sec forced expiratory volume, specific airway conductance, inspiratory capacity, and inspiratory-to-total lung capacity ratio. The two active treatments were also equivalent and superior to placebo in reducing dyspnea at rest and on exertion. No differences in terms of safety between the two active forms and placebo were detected. Formoterol given with chlorine-free pMDI was equivalent to DPI in reducing airway obstruction and lung hyperinflation in COPD patients. Both formoterol formulations confirmed the good safety profile similar to placebo.

  14. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    SciTech Connect

    Ren, X. D. Yang, H. M.; Zheng, L. M.; Tang, S. X.; Ren, N. F.; Xu, S. D.; Yuan, S. Q.

    2014-07-14

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  15. Equation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions

    NASA Astrophysics Data System (ADS)

    Grzybowski, A.; Koperwas, K.; Paluch, M.

    2014-01-01

    In this paper, based on the effective intermolecular potential with well separated density and configuration contributions and the definition of the isothermal bulk modulus, we derive two similar equations of state dedicated to describe volumetric data of supercooled liquids studied in the extremely wide pressure range related to the density range, which is extremely wide in comparison with the experimental range reached so far in pressure-volume-temperature measurements of glass-forming liquids. Both the equations comply with the generalized density scaling law of molecular dynamics versus h(ρ)/T at different densities ρ and temperatures T, where the scaling exponent can be in general only a density function γ(ρ) = d ln h/d ln ρ as recently argued by the theory of isomorphs. We successfully verify these equations of state by using data obtained from molecular dynamics simulations of the Kob-Andersen binary Lennard-Jones liquid. As a very important result, we find that the one-parameter density function h(ρ) analytically formulated in the case of this prototypical model of supercooled liquid, which implies the one-parameter density function γ(ρ), is able to scale the structural relaxation times with the value of this function parameter determined by fitting the volumetric simulation data to the equations of state. We also show that these equations of state properly describe the pressure dependences of the isothermal bulk modulus and the configurational isothermal bulk modulus in the extremely wide pressure range investigated by the computer simulations. Moreover, we discuss the possible forms of the density functions h(ρ) and γ(ρ) for real glass formers, which are suggested to be different from those valid for the model of supercooled liquid based on the Lennard-Jones intermolecular potential.

  16. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  17. A theoretical study of MgH2 ambient and high-pressure phases using NQCC parameters

    NASA Astrophysics Data System (ADS)

    Rafiee, Marjan A.

    2014-12-01

    Quadrupolar parameters of nuclei can be used as a tool to understand the electronic structure of the compounds. Magnesium hydride (MgH2) is a potential hydrogen storage material due to its outstanding hydrogen capacity, however, its high thermodynamic stability is unfavorable for dehydrogenation processes. Understanding the bonding nature of Mg and H is essential for improving its dehydrogenation performance. In this work the charge density distribution in MgH2 is studied. For this purpose, using calculated NQCCs of hydrogen atoms, the electronic structure of α-MgH2 with several high pressure forms of MgH2 were compared. The results show that in the high pressure phases (β, γ, and δ) some hydrogens have very small NQCC and therefore these hydrogens form weaker bond with Mg. In other words, easier condition for dehydrogenation in pressure-induced forms is expected. The electric field gradient (EFG) at the site of quadrupolar nuclei were calculated to obtain NQCC parameters using Gaussian 03 at B3LYP/6-31G level of theory. The selected level and basis set give the rather acceptable qualitative NQCCs of hydrogen atoms.

  18. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated.

  19. Evaluation of Nucleic Acid Stabilization Products for Ambient Temperature Shipping and Storage of Viral RNA and Antibody in a Dried Whole Blood Format

    PubMed Central

    Dauner, Allison L.; Gilliland, Theron C.; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C.; Hontz, Robert D.; Wu, Shuenn-Jue L.

    2015-01-01

    Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6–97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing. PMID:25940193

  20. Changes in spasticity, widespread pressure pain sensitivity, and baropodometry after the application of dry needling in patients who have had a stroke: a randomized controlled trial.

    PubMed

    Salom-Moreno, Jaime; Sánchez-Mila, Zacarías; Ortega-Santiago, Ricardo; Palacios-Ceña, Maria; Truyol-Domínguez, Sebastian; Fernández-de-las-Peñas, César

    2014-10-01

    The purpose of this study was to determine the effects of deep dry needling (DDN) on spasticity, pressure sensitivity, and plantar pressure in patients who have had stroke. A randomized controlled trial was conducted. Thirty-four patients who previously had a stroke were randomly assigned either an experimental group that received a single session of DDN over the gastrocnemius and tibialis anterior muscles on the spastic leg or a control group that received no intervention. Spasticity (evaluated with the Ashworth Scale); pressure pain thresholds over the deltoid muscle, second metacarpal, and tibialis anterior muscle; and plantar pressure (baropodometry) were collected by a blinded assessor before and 10 minutes after intervention. A greater number of individuals receiving DDN exhibited decreased spasticity after the intervention (P < .001). The analysis of covariance showed that pressure pain thresholds increased bilaterally in patients receiving DDN compared with those who did not receive the intervention (P < .001). The analysis of covariance also found that patients receiving DDN experienced bilateral increases of support surface in the forefoot, unilateral increase of the support surface in the rear foot of the treated (affected) side, and bilateral decreases in mean pressure (all, P < .02) as compared with those who did not receive DDN. Our results suggest that a single session of DDN decreases spasticity and widespread pressure sensitivity in individuals with poststroke spasticity. Deep dry needling also induced changes in plantar pressure by increasing the support surface and decreasing the mean pressure. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  1. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  2. Study of dynamics and crystallization kinetics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile at ambient and elevated pressure

    NASA Astrophysics Data System (ADS)

    Adrjanowicz, K.; Kaminski, K.; Paluch, M.; Ngai, K. L.; Yu, Lian

    2012-06-01

    The organic liquid ROY, i.e., 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, has been a subject of detailed study in the last few years. One interest in ROY lies in its polymorph-dependent fast crystal growth mode below and above the glass transition temperature. This growth mode is not diffusion controlled, and the possibility that it is enabled by secondary relaxation had been suggested. However, a previous study by dielectric relaxation spectroscopy had not been able to find any resolved secondary relaxation. The present paper reports new dielectric measurements of ROY in the liquid and glassy states at ambient pressure and elevated pressure, which were performed to provide more insight into the molecular dynamics as well as the crystallization tendency of ROY. In the search of secondary relaxation, a special glassy state of ROY was prepared by applying high pressure to the liquid state, from which secondary relaxation was possibly resolved. Thus, the role of secondary relaxation in crystallization of ROY remains to be clarified. Notwithstanding, the secondary relaxation present is not necessarily the sole enabler of crystallization. In an effort to search for possible cause of crystallization other than secondary relaxation, we also performed crystallization kinetics studies of ROY at different T and P combinations while keeping the structural relaxation time constant. The results show that crystallization of ROY speeds up with pressure, opposite to the trend found in the crystallization of ibuprofen studied up to 1 GPa. The dielectric relaxation and thermodynamic properties of ROY with phenolphthalein dimethylether (PDE) are similar in many respects, but PDE does not crystallize. Taking all the above into account, besides the secondary relaxation, the specific chemical structure, molecular interactions and packing of the molecules are additional factors that could affect the kinetics of crystallization found in ROY.

  3. Dueling Mechanisms for Dry Zones around Frozen Droplets

    NASA Astrophysics Data System (ADS)

    Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan

    2016-11-01

    Ice acts as a local humidity sink, due to its depressed saturation pressure relative to that of supercooled water. Hygroscopic chemicals typically exhibit annular dry zones of inhibited condensation; however, dry zones do not tend to form around ice because of inter-droplet frost growth to nearby liquid droplets that have already condensed on the chilled surface. Here, we use a humidity chamber with an embedded Peltier stage to initially suppress the growth of condensation on a chilled surface containing a single frozen droplet, in order to characterize the dry zone around ice for the first time. The length of the dry zone was observed to vary by at least two orders of magnitude as a function of surface temperature, ambient humidity, and the size of the frozen droplet. The surface temperature and ambient humidity govern the magnitudes of the in-plane and out-of-plane gradients in vapor pressure, while the size of the frozen droplet effects the local thickness of the concentration boundary layer. We develop an analytical model that reveals two different types of dry zones are possible: one in which nucleation is inhibited and one where the net growth of condensate is inhibited. Finally, a phase map was developed to predict the parameter space in which nucleation dry zones versus flux dry zones are dominant.

  4. Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures

    PubMed Central

    Piskorska, M; Soule, T; Gosse, J L; Milliken, C; Flickinger, M C; Smith, G W; Yeager, C M

    2013-01-01

    Summary To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. PMID:23331993

  5. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    DOE PAGES

    Piskorska, M.; Soule, T.; Gosse, J. L.; ...

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts the recovery and subsequent rates ofmore » H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  6. In-situ spectroscopic monitoring of the ambient pressure hydrogenation of C2 to ethane on Pt(111)

    NASA Astrophysics Data System (ADS)

    Krooswyk, Joel D.; Kruppe, Christopher M.; Trenary, Michael

    2016-10-01

    The hydrogenation of C2 molecules formed on the Pt(111) surface through acetylene exposure at 750 K was monitored in-situ with reflection absorption infrared spectroscopy (RAIRS) in the presence of up to 10 Torr of H2. The coverage of post-reaction surface carbon was measured with Auger electron spectroscopy. The RAIR spectra show that C2 is hydrogenated to an ethylidyne intermediate. The hydrogenation of ethylidyne was also monitored at 400 K for H2(g) pressures of 1.0 × 10- 2 to 10 Torr. At H2(g) pressures greater than 1.0 Torr, ethylidyne is completely hydrogenated. In an attempt to probe the nature of the C2 adsorption sites, RAIR spectra of coadsorbed CO were obtained. It is found that while C2 does not block CO adsorption, the spectra indicate that the surface carbon is free of hydrogen. In contrast, ethylidyne blocks CO adsorption sites. In the presence of coadsorbed CO, complete hydrogenation of ethylidyne occurs at 450 K versus 400 K in the absence of CO.

  7. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  8. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  9. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    SciTech Connect

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  10. Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface.

    PubMed

    Axnanda, Stephanus; Crumlin, Ethan J; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G; Edwards, Mårten O M; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a "dip &pull" method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, "dip &pull" approach, with a "tender" X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt(2+) and Pt(4+) interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of "tender" AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  11. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGES

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  12. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC).

    PubMed

    Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan

    2017-06-01

    Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R(2)  > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Direct carbide synthesis by multipulse excimer laser treatment of Ti samples in ambient CH4 gas at superatmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mihailescu, I. N.; Chitica, N.; Teodorescu, V. S.; Popescu, M.; De Giorgi, M. L.; Luches, A.; Perrone, A.; Boulmer-Leborgne, Ch.; Hermann, J.; Dubreuil, B.; Udrea, S.; Barborica, A.; Iova, I.

    1994-05-01

    Successful carbidation of Ti in a layer forming on the surface of a Ti sample submitted to multipulse excimer (λ=308 nm) laser treatment in CH4 at a slightly superatmospheric pressure is reported. The layer is only surface contaminated with oxygen while its main part consists of fcc TiC. The layer apparently ends with a tail of carbides with low C content, extending deeper into the sample's bulk. The characteristics of the synthesized layer are suggested to be related to the peculiarities of the chemical synthesis which are enhanced by gas propulsion into a melted layer under the recoil action of a plasma evolving in front of the sample. A cavitation mechanism inside the melted surface layer in order to account for plasma initiation is proposed. This mechanism also facilitates the strong substance propulsion into the sample's bulk.

  14. Reduction of Listeria Innocua Contamination in Vacuum-Packaged Dry-Cured Italian Pork Products After High Hydrostatic Pressure Treatment.

    PubMed

    Merialdi, Giuseppe; Ramini, Mattia; Ravanetti, Emanuela; Gherri, Giorgio; Bonilauri, Paolo

    2015-05-28

    The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP) on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i) TH group, samples treated with HHP; ii) group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied), and analyzed for the determination of the surface (1st trial) and deep (2nd trial) quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test) with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01). In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of this study

  15. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    PubMed

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  16. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    PubMed

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM10 (50.0 μg/m(3)) and O3 (53.0 μg/m(3)) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM10 and 2.77 (95% CI, 1.94-3.95) for O3. Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM10 and O3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A molecular dynamics study of ambient and high pressure phases of silica: Structure and enthalpy variation with molar volume

    NASA Astrophysics Data System (ADS)

    Rajappa, Chitra; Sringeri, S. Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J.

    2014-06-01

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume—for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  18. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.

    2017-08-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.

  19. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics.

    PubMed

    Zang, Xiaoling; Pérez, José J; Jones, Christina M; Monge, María Eugenia; McCarty, Nael A; Stecenko, Arlene A; Fernández, Facundo M

    2017-03-31

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy. Graphical Abstract ᅟ.

  20. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    PubMed

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  1. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca

    2015-04-01

    According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.

  2. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  3. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  4. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization.

    PubMed

    Nenning, Andreas; Opitz, Alexander K; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Klötzer, Bernhard; Fleig, Jürgen

    2016-01-28

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as Fe(III) in oxidizing atmosphere and as mixed Fe(II/III) in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe(0) phase.

  5. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  6. Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

    2010-03-31

    The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

  7. Quality of the blood pressure phenotype in the GEnotipo, Fenotipo y Ambiente de la hipertensión arterial en UruguaY (GEFA-HT-UY) study.

    PubMed

    Luzardo, Leonella; Sottolano, Mariana; Lujambio, Inés; Robaina, Sebastián; Thijs, Lutgarde; da Rosa, Alicia; Krul, Nadia; Carusso, Florencia; Ríos, Ana C; Olascoaga, Alicia; Noboa, Oscar; Staessen, Jan A; Boggia, José

    2014-12-01

    In the ongoing GEnotipo, Fenotipo y Ambiente de la HiperTensión Arterial en UruguaY (GEFA-HT-UY) study, we applied standardized epidemiological methods to determine complex phenotypes including blood pressure (BP). In this report, we present the quality control of the conventionally measured BP. Three trained observers measured BP five times consecutively in the seated position at each of two home visits and one clinic visit according to the guidelines of the European Society of Hypertension. On 1 December 2013, 4379 single BP readings in 170 participants were available for analysis. Fewer BP readings than the five planned per contact occurred only at one home visit. Among observers, the frequency of identical consecutive readings for systolic or diastolic BP varied from 0 to 4.2%. The occurrence of odd readings ranged from 0.1 to 0.6%. Only 21.6% of the systolic and diastolic BP readings ended on zero (expected 20%). At home visits, there was a progressive decline in BP from the first to the fifth reading. The average of the five BP readings also decreased from the first to the second home visit (-5.63/-2.34 mmHg). Our study highlighted the necessity to implement a stringent quality control of the conventionally measured BP. The procedures set up in the GEFA-HT-UY study are resulting in a well-defined BP phenotype, which is consistent with that in other population studies.

  8. A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports

    DOE PAGES

    Mao, Bao -Hua; Chang, Rui; Shi, Lei; ...

    2014-10-29

    Here, we have investigated model systems of silver clusters with different sizes (3 and 15 atoms) deposited on alumina and titania supports using ambient pressure X-ray photoelectron spectroscopy. The electronic structures of silver clusters and support materials are studied upon exposure to various atmospheres (ultrahigh vacuum, O2 and CO) at different temperatures. Compared to bulk silver, the binding energies of silver clusters are about 0.55 eV higher on TiO2 and 0.95 eV higher on Al2O3 due to the final state effect and the interaction with supports. No clear size effect of the silver XPS peak is observed on different silvermore » clusters among these samples. Silver clusters on titania show better stability against sintering. Al 2p and Ti 2p core level peak positions of the alumina and titania support surfaces change upon exposure to oxygen while the Ag 3d core level position remains unchanged. We discuss the origin of these core level shifts and their implications for catalytic properties of Ag clusters.« less

  9. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS

    DOE PAGES

    Mao, Bao -Hua; Crumlin, Ethan; Tyo, Eric C.; ...

    2016-07-21

    In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al2O3, ZnO and TiO2 ultrathin films (similar to 1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al2O3 and ZnO ultrathin films at RT. At 80 °C, the magnitude of the upward band bending decreased, and the change in the electron affinity vanished.more » These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al2O3 > ZnO > TiO2. Lastly, this finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.« less

  10. The Influence of Hydrocarbon and CO2 on the Reversibility of Li-O2 Chemistry Using In Situ Ambient Pressure X-ray Photoelectron Spectroscopy

    SciTech Connect

    Lu, Yi-chun; Crumlin, Ethan; Carney, Thomas J; Baggetto, Loic; Veith, Gabriel M; Dudney, Nancy J; Liu, Zhi; Shao-Horn, Yang

    2013-01-01

    Identifying fundamental barriers that hinder reversible lithium oxygen (Li O2) redox reaction is essential for developing efficient and long lasting rechargeable Li O2 batteries. Addressing these challenges is being limited by parasitic reactions in the carbon based O2 electrode with aprotic electrolytes. Understanding the mechanisms of these parasitic reactions is hampered by the complexity that multiple and coupled parasitic reactions involving carbon, electrolytes, and Li O2 reaction intermediates/products can occur simultaneously. In this work, we employed solid state cells free of carbon and aprotic electrolytes to probe the influence of surface adventitious hydrocarbons and carbon dioxide (CO2) on the reversibility of the Li O2 redox chemistry using in situ synchrotron based ambient pressure X ray photoelectron spectroscopy. Direct evidence was provided, for the first time, that surface hydrocarbons and CO2 irreversibly react with Li O2 reaction intermediates/ products such as Li2O2 and Li2O, forming carboxylate and carbonate based species, which cannot be removed fully upon recharge. The slower Li2O2 oxidation kinetics was correlated with increasing coverage of surface carbonate/ carboxylate species. Our work critically points out that materials design that mitigates the reactivity between Li O2 reaction products and common impurities in the atmosphere is needed to achieve long cycle life Li O2 batteries.

  11. The preparation of La2O3@AAO with simple hydrothermal method under ambient pressure and the enhanced electrowetting-on-dielectric performance

    NASA Astrophysics Data System (ADS)

    Jin, Hongxia; Wang, Jian; Yin, Yangyang; An, Yuying; Wang, Xiangzhuo; Li, Yan; Wang, Chengwei; Lv, Yudong

    2017-10-01

    Anodic aluminum oxide (AAO) has unique nanostructure and is a conventional EWOD material. The lanthanum oxide, a kind of rare-earth oxide, has unique electronic structure and high dielectric constant, but its synthesis is still complicated. A simple method is proposed to prepare the La2O3@AAO nanocomposites through immersing highly ordered AAO films into La(NO3)3 solution under ambient temperature and pressure and subsequent annealing. It can be known that when the immersion temperature gets to 60 °C, the La2O3 starts to grow in AAO by the characterization of morphology, crystal phase structure and surface chemical composition. The measurement of EWOD performance indicates that the incorporation of La2O3 into AAO greatly enhances the capacitance about 2-3 orders of magnitude, and the large contact angle modulation is acquired. Furthermore, the EW properties of La2O3@AAO nanocomposites, such as relaxation time, critical voltage, can be easily modulated by the immersion temperature and time.

  12. Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.).

    PubMed

    Rosseler, Olivier; Sleiman, Mohamad; Montesinos, V Nahuel; Shavorskiy, Andrey; Keller, Valerie; Keller, Nicolas; Litter, Marta I; Bluhm, Hendrik; Salmeron, Miquel; Destaillats, Hugo

    2013-02-07

    Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3(-), adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3(-) conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3(-) in the vicinity of coadsorbed K(+) cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

  13. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    PubMed Central

    Popescu, Andrei C.; Stan, George E.; Duta, Liviu; Nita, Cristina; Popescu, Camelia; Surdu, Vasile-Adrian; Husanu, Marius-Adrian; Bita, Bogdan; Ghisleni, Rudy; Himcinschi, Cameliu; Craciun, Valentin

    2015-01-01

    Hard carbon thin films were synthesized on Si (100) and quartz substrates by the Pulsed Laser Deposition (PLD) technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  14. Nonhomogeneous surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Yang, Bin; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng; Liu, Jingquan

    2016-10-01

    Surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air were investigated. The morphologies and chemical compositions of the etched surface were analyzed by optical microscopy, SEM, EDS, XPS and ATR-FTIR. The microscopy and SEM images showed the etched surface was nonhomogeneous with six discernable ring patterns from the center to the outside domain, which were composed of (I) a central region; (II) an effective etching region, where almost all of the parylene-C film was removed by the plasma jet with only a little residual parylene-C being functionalized with carboxyl groups (Cdbnd O, Osbnd Cdbnd O-); (III) an inner etching boundary; (IV) a middle etching region, where the film surface was smooth and partially removed; (V) an outer etching boundary, where the surface was decorated with clusters of debris, and (VI) a pristine parylene-C film region. The analysis of the different morphologies and chemical compositions illustrated the different localized etching process in the distinct regions. Besides, the influence of O2 flow rate on the surface properties of the etched parylene-C film was also investigated. Higher volume of O2 tended to weaken the nonhomogeneous characteristics of the etched surface and improve the etched surface quality.

  15. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    NASA Astrophysics Data System (ADS)

    Shiva, S. Sai; Leela, Ch.; Chaturvedi, S.; Sijoy, C. D.; Kiran, P. Prem

    2017-01-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model was developed to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport due e-i and e-n thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The velocity of SW observed in the experiments over 0.2 µs-8 µs time scales was compared with the numerical results to understand the SW transition from planar to spherical evolution.

  16. Adsorption of acetic acid on ice studied by ambient-pressure XPS and partial-electron-yield NEXAFS spectroscopy at 230-240 K.

    PubMed

    Křepelová, Adéla; Bartels-Rausch, Thorsten; Brown, Matthew A; Bluhm, Hendrik; Ammann, Markus

    2013-01-17

    Ice plays a key role in the environment, and the ice-air interface influences heterogeneous chemical reactions between snowpack or cirrus clouds and the surrounding air. Soluble gases have been suspected to affect the topmost, disordered layer on ice (often referred to as a quasiliquid layer, QLL). Changes are especially expected in the hydrogen-bonding structure of water in the presence of solutes at the ice surface. Here, we used ambient-pressure X-ray photoelectron spectroscopy (XPS) to detect acetic acid at the ice surface at 230-240 K under atmospheric conditions for the first time. Electron-kinetic-energy-dependent C 1s spectra indicate that acetic acid remains confined to the topmost ice surface layers. Spectral analysis provides information about the protonation state of acetate at the ice surface. Surface-sensitive Auger-electron-yield C-edge near-edge X-ray absorption fine structure (NEXAFS) spectra were recorded to probe the molecular state of the adsorbed species. The O-edge NEXAFS spectra show only minor differences between clean ice and ice with adsorbed acetic acid and thus indicate that acetic acid does not lead to an extended disordered layer on the ice surface between 230 and 240 K.

  17. An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO2/Ni/Electrolyte Interfaces

    DOE PAGES

    Lichterman, Michael F.; Richter, Matthias H.; Hu, Shu; ...

    2015-12-05

    The electrical and spectroscopic properties of the TiO2/Ni protection layer system, which enables stabilization of otherwise corroding photoanodes, have been investigated in contact with electrolyte solutions by scanning-probe microscopy, electrochemistry and in-situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Specifically, the energy-band relations of the p+-Si/ALD-TiO2/Ni interface have been determined for a selected range of Ni thicknesses. AP-XPS measurements using tender X-rays were performed in a three-electrode electrochemical arrangement under potentiostatic control to obtain information from the semiconductor near-surface region, the electrochemical double layer (ECDL) and the electrolyte beyond the ECDL. The degree of conductivity depended on the chemical state ofmore » the Ni on the TiO2 surface. At low loadings of Ni, the Ni was present primarily as an oxide layer and the samples were not conductive, although the TiO2 XPS core levels nonetheless displayed behavior indicative of a metal-electrolyte junction. In contrast, as the Ni thickness increased, the Ni phase was primarily metallic and the electrochemical behavior became highly conductive, with the AP-XPS data indicative of a metal-electrolyte junction. Electrochemical and microtopographical methods have been employed to better define the nature of the TiO2/Ni electrodes and to contextualize the AP-XPS results.« less

  18. An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO2/Ni/Electrolyte Interfaces

    SciTech Connect

    Lichterman, Michael F.; Richter, Matthias H.; Hu, Shu; Crumlin, Ethan J.; Axnanda, Stephanus; Favaro, Marco; Drisdell, Walter; Hussain, Zahid; Brunschwig, Bruce S.; Lewis, Nathan S.; Liu, Zhi; Lewerenz, Hans-Joachim

    2015-12-05

    The electrical and spectroscopic properties of the TiO2/Ni protection layer system, which enables stabilization of otherwise corroding photoanodes, have been investigated in contact with electrolyte solutions by scanning-probe microscopy, electrochemistry and in-situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Specifically, the energy-band relations of the p+-Si/ALD-TiO2/Ni interface have been determined for a selected range of Ni thicknesses. AP-XPS measurements using tender X-rays were performed in a three-electrode electrochemical arrangement under potentiostatic control to obtain information from the semiconductor near-surface region, the electrochemical double layer (ECDL) and the electrolyte beyond the ECDL. The degree of conductivity depended on the chemical state of the Ni on the TiO2 surface. At low loadings of Ni, the Ni was present primarily as an oxide layer and the samples were not conductive, although the TiO2 XPS core levels nonetheless displayed behavior indicative of a metal-electrolyte junction. In contrast, as the Ni thickness increased, the Ni phase was primarily metallic and the electrochemical behavior became highly conductive, with the AP-XPS data indicative of a metal-electrolyte junction. Electrochemical and microtopographical methods have been employed to better define the nature of the TiO2/Ni electrodes and to contextualize the AP-XPS results.

  19. Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy.

    PubMed

    Heine, Christian; Lechner, Barbara A J; Bluhm, Hendrik; Salmeron, Miquel

    2016-10-12

    Using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we studied the adsorption and reactions of CO2 and CO2 + H2 on the Ni(111) surface to identify the surface chemical state and the nature of the adsorbed species during the methanation reaction. In 200 mTorr CO2, we found that NiO is formed from CO2 dissociation into CO and atomic oxygen. Additionally, carbonate (CO3(2-)) is present on the surface from further reaction of CO2 with NiO. The addition of H2 into the reaction environment leads to reduction of NiO and the disappearance of CO3(2-). At temperatures >160 °C, CO adsorbed on hollow sites, and atomic carbon and OH species are present on the surface. We conclude that the methanation reaction proceeds via dissociation of CO2, followed by reduction of CO to atomic carbon and its hydrogenation to methane.

  20. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    NASA Astrophysics Data System (ADS)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  1. Modelling the impact of water activity and fat content of dry-cured ham on the reduction of Salmonella enterica by high pressure processing.

    PubMed

    Bover-Cid, S; Belletti, N; Aymerich, T; Garriga, M

    2017-01-01

    This work aimed to quantify the impact of aw and fat content of dry-cured ham on the Log reduction of Salmonella enterica by high pressure (HP). Dry-cured ham with adjusted aw (0.86-0.96) and fat content (10-50%) was inoculated with S. enterica and pressurised (347-852MPa, 5min/15°C), following a Central Composite Design. Polynomial regression indicated a significant impact of pressure and aw on S. enterica HP-lethality. By lowering aw a clear piezoprotection was observed. At low aw (0.88) the S. enterica reduction was little affected by increasing pressure (e.g. 2.3 to 3.2 Logs at 450 to 750MPa, respectively). At the highest aw the estimated inactivation ranged from 3.3 to 8.9 Logs at 450 to 750MPa, respectively. No significant piezoprotective effect on S. enterica was recorded by the fat content. The relevance of food characteristics on the HP-lethality of S. enterica indicate the need to validate the HP effectiveness on the specific product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparing Trigger Point Dry Needling and Manual Pressure Technique for the Management of Myofascial Neck/Shoulder Pain: A Randomized Clinical Trial.

    PubMed

    De Meulemeester, Kayleigh E; Castelein, Birgit; Coppieters, Iris; Barbe, Tom; Cools, Ann; Cagnie, Barbara

    2017-01-01

    The aim of this study was to investigate short-term and long-term treatment effects of dry needling (DN) and manual pressure (MP) technique with the primary goal of determining if DN has better effects on disability, pain, and muscle characteristics in treating myofascial neck/shoulder pain in women. In this randomized clinical trial, 42 female office workers with myofascial neck/shoulder pain were randomly allocated to either a DN or MP group and received 4 treatments. They were evaluated with the Neck Disability Index, general numeric rating scale, pressure pain threshold, and muscle characteristics before and after treatment. For each outcome parameter, a linear mixed-model analysis was applied to reveal group-by-time interaction effects or main effects for the factor "time." No significant differences were found between DN and MP. In both groups, significant improvement in the Neck Disability Index was observed after 4 treatments and 3 months (P < .001); the general numerical rating scale also significantly decreased after 3 months. After the 4-week treatment program, there was a significant improvement in pain pressure threshold, muscle elasticity, and stiffness. Both treatment techniques lead to short-term and long-term treatment effects. Dry needling was found to be no more effective than MP in the treatment of myofascial neck/shoulder pain. Copyright © 2016. Published by Elsevier Inc.

  3. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  4. Endotoxin and β-1,3-d-Glucan in Concentrated Ambient Particles Induce Rapid Increase in Blood Pressure in Controlled Human Exposures.

    PubMed

    Zhong, Jia; Urch, Bruce; Speck, Mary; Coull, Brent A; Koutrakis, Petros; Thorne, Peter S; Scott, James; Liu, Ling; Brook, Robert D; Behbod, Behrooz; Gibson, Heike; Silverman, Frances; Mittleman, Murray A; Baccarelli, Andrea A; Gold, Diane R

    2015-09-01

    Short-term exposure to particulate matter (PM) is associated with increased blood pressure (BP) in epidemiological studies. Understanding the impact of specific PM components on BP is essential in developing effective risk-reduction strategies. We investigated the association between endotoxin and β-1,3-d-Glucan-two major biological PM components-and BP. We also examined whether vascular endothelial growth factor, a vasodilatory inflammatory marker, modified these associations. We conducted a single-blind, randomized, crossover trial of controlled human exposure to concentrated ambient particles with 50 healthy adults. Particle-associated-endotoxin and β-1,3-d-Glucan were sampled using polycarbonate-membrane-filters. Supine resting systolic BP and diastolic BP were measured pre-, 0.5-hour post-, and 20-hour postexposure. Urine vascular endothelial growth factor concentration was determined using enzyme-linked immunosorbant assay and creatinine-corrected. Exposures to endotoxin and β-1,3-d-Glucan for 130 minutes were associated with increases in BPs: at 0.5-hour postexposure, every doubling in endotoxin concentration was associated with 1.73 mm Hg higher systolic BP (95% confidence interval, 0.28, 3.18; P=0.02) and 2.07 mm Hg higher diastolic BP (95% confidence interval, 0.74, 3.39; P=0.003); every doubling in β-1,3-d-Glucan concentration was associated with 0.80 mm Hg higher systolic BP (95% confidence interval, -0.07, 1.67; P=0.07) and 0.88 mm Hg higher diastolic BP (95% confidence interval, 0.09, 1.66; P=0.03). Vascular endothelial growth factor rose after concentrated ambient particle endotoxin exposure and attenuated the association between endotoxin and 0.5-hour postexposure diastolic BP (Pinteraction=0.02). In healthy adults, short-term endotoxin and β-1,3-d-Glucan exposures were associated with increased BP. Our findings suggest that the biological PM components contribute to PM-related cardiovascular outcomes, and postexposure vascular endothelial

  5. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  6. Pressurized pyrolysis of dried distillers grains with solubles and canola seed press cake in a fixed-bed reactor.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Saricaoğlu, Beyza

    2015-02-01

    Pressurized pyrolysis of biomasses was carried in a fixed bed reactor to obtain gases, bio-oils and chars at elevated temperatures. The products were characterized by GC-MS, FTIR, viscometer, SEM, BET and EDXRFS methods. Experiments were performed at 1, 5 and 10 bar pressure and 400, 500 and 600°C temperatures. The experimental results show that in all the experimental condition the yield of bio-oil from DDGS as higher than that of canola. Yield of non-condensable gases and chars increased, while that of liquid products decreased by pressure. Increasing pressure favoured the formation of low molecular weight gas, such as H2. Maximum surface area of chars was obtained at atmospheric pressure and the surface areas decreased rapidly with increasing pressure. GC/MS results shows that the amount of fatty acids in bio-oils was increased by increasing pressure and bio-oils showed non-Newtonian behavior. Based on EDXRFS results, bio-oils and char contained lots of elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ambient-pressure organic superconductor

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  8. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  9. Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials

    PubMed Central

    2015-01-01

    In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam—serving as a model structure for bulk Ni in cermet materials such as Ni/YSZ—and Ni foil. The growth mechanism of graphene/graphite species was found to be closely related to that previously described for ethylene-induced graphene growth on Ni(111). After a sufficiently long “incubation” period of the Ni foam in methane at 0.2 mbar and temperatures around 400 °C, cooling down to ∼250 °C, and keeping the sample at this temperature for 50–60 min, initial formation of a near-surface carbide phase was observed, which exhibited the same spectroscopic fingerprint as the C2H4 induced Ni2C phase on Ni(111). Only in the presence of this carbidic species, subsequent graphene/graphite nucleation and growth was observed. Vice versa, the absence of this species excluded further graphene/graphite formation. At temperatures above 400 °C, decomposition/bulk dissolution of the graphene/graphite phase was observed on the rather “open” surface of the Ni foam. In contrast, Ni foil showed—under otherwise identical conditions—predominant formation of unreactive amorphous carbon, which can only be removed at ≥500 °C by oxidative clean-off. Moreover, the complete suppression of carbide and subsequent graphene/graphite formation by Cu-alloying of the Ni foam and by addition of water to the methane atmosphere was verified. PMID:26692914

  10. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    NASA Astrophysics Data System (ADS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core⿿shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core⿿shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  11. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS

    SciTech Connect

    Mao, Bao -Hua; Crumlin, Ethan; Tyo, Eric C.; Pellin, Michael J.; Vajda, Stefan; Li, Yimin; Wang, Sui -Dong; Liu, Zhi

    2016-07-21

    In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al2O3, ZnO and TiO2 ultrathin films (similar to 1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al2O3 and ZnO ultrathin films at RT. At 80 °C, the magnitude of the upward band bending decreased, and the change in the electron affinity vanished. These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al2O3 > ZnO > TiO2. Lastly, this finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.

  12. Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials.

    PubMed

    Rameshan, Raffael; Mayr, Lukas; Klötzer, Bernhard; Eder, Dominik; Knop-Gericke, Axel; Hävecker, Michael; Blume, Raoul; Schlögl, Robert; Zemlyanov, Dmitry Y; Penner, Simon

    2015-12-03

    In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam-serving as a model structure for bulk Ni in cermet materials such as Ni/YSZ-and Ni foil. The growth mechanism of graphene/graphite species was found to be closely related to that previously described for ethylene-induced graphene growth on Ni(111). After a sufficiently long "incubation" period of the Ni foam in methane at 0.2 mbar and temperatures around 400 °C, cooling down to ∼250 °C, and keeping the sample at this temperature for 50-60 min, initial formation of a near-surface carbide phase was observed, which exhibited the same spectroscopic fingerprint as the C2H4 induced Ni2C phase on Ni(111). Only in the presence of this carbidic species, subsequent graphene/graphite nucleation and growth was observed. Vice versa, the absence of this species excluded further graphene/graphite formation. At temperatures above 400 °C, decomposition/bulk dissolution of the graphene/graphite phase was observed on the rather "open" surface of the Ni foam. In contrast, Ni foil showed-under otherwise identical conditions-predominant formation of unreactive amorphous carbon, which can only be removed at ≥500 °C by oxidative clean-off. Moreover, the complete suppression of carbide and subsequent graphene/graphite formation by Cu-alloying of the Ni foam and by addition of water to the methane atmosphere was verified.

  13. Moisture swing sorbent for carbon dioxide capture from ambient air.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen

    2011-08-01

    An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.

  14. Design of an in-house ambient pressure AP-XPS using a bench-top X-ray source and the surface chemistry of ceria under reaction conditions.

    PubMed

    Tao, Franklin Feng

    2012-04-21

    A new in-house ambient pressure XPS (AP-XPS) was designed for the study of surfaces of materials under reaction conditions and during catalysis. Unique features of this in-house AP-XPS are the use of monochromated Al Kα and integration of a minimized reaction cell, and working conditions of up to 500 °C in gases of tens of Torr. Generation of oxygen vacancies on ceria and filling them with oxygen atoms were characterized in operando.

  15. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  16. Leaf conductance in relation to rate of CO/sub 2/ assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO/sub 2/ during ontogeny. [Zea mays

    SciTech Connect

    Wong, S.C.; Cowan, I.R.; Farquhar, G.D.

    1985-01-01

    Plants of Zea mays were grown with different concentrations of nitrate (0.6, 4, 12, and 24 millimolar) and phosphate (0.04, 0.13, 0.53, and 1.33 millimolar) supplied to the roots, photon flux densities (0.04, 0.13, 0.53, and 1.33 millimolar) supplied to the roots, photon flux densities (0.12, 0.5, and 2 millimoles per square meter per second), and ambient partial pressures of CO/sub 2/ (305 and 610 microbars). Differences in mineral nutrition and irradiance led to a large variation in rate of CO/sub 2/ assimilation per unit leaf area (A, 11 to 58 micromoles per square meter per second) when measured under standard conditions. The variation was shown, with the plants that had received different amounts of nitrate, to be related to variations in the nitrogen and chlorophyll contents, and phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylase activities per unit leaf area. Irrespective of growth treatment, A and leaf conductance to CO/sub 2/ transfer (g), measured under standard conditions were in almost constant proportion, implying that intercellular partial pressure of CO/sub 2/ (p/sub i/), was almost constant at 95 microbars. The same proportionality was maintained as A and g increased in an initially nitrogen-deficient plant that had been supplied with abundant nitrate. It was shown that p/sub i/ measured at a given ambient partial pressure was not affected by the ambient partial pressure at which the plants had been grown, although it was different when measured at different ambient partial pressures. This suggests that the close coupling between A and g in these experiments is not associated with sensitivity of stomata to change in p/sub i/. Similar, though less comprehensive, experiments were done with Gosypium hirsutum, and yielded similar conclusions, except that the proportionality between A and g at normal ambient partial pressure of CO/sub 2/ implied p/sub i/ approx. = 200 microbars. 11 references, 6 figures, 1 table.

  17. Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry.

    PubMed

    Corso, Gaetano; D'Apolito, Oceania; Garofalo, Daniela; Paglia, Giuseppe; Dello Russo, Antonio

    2011-11-01

    Free carnitine and acylcarnitines play an important role in the metabolism of fatty acids. Sterols are structural lipids found in the membranes of many eukaryotic cells, and they also have functional roles such as the regulation of membrane permeability and fluidity, activity of membrane-bound enzymes and signals transduction. Abnormal profiles of these compounds in biological fluids may be useful markers of metabolic changes. In this review, we describe the subset of the lipidome represented by acylcarnitines and sterols, and we summarize how these compounds have been analyzed in the past. Over the last 50years, lipid mass spectrometry (MS) has evolved to become one of the most useful techniques for metabolic analysis. Today, the introduction of new ambient ionization techniques coupled to MS (AMS), which are characterized by the direct desorbing/ionizing of molecules from solid samples, is generating new possibilities for in situ analysis. Recently, we developed an AMS approach called APTDCI to desorb/ionize using a heated gas flow and an electrical discharge to directly analyze sterols and indirectly investigate acylcarnitines in dried blood or plasma spot samples. Here, we also describe the APTDCI method and some of its clinical applications, and we underline the common complications and issues that remain to be resolved. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The Effect of the Dried-Bonito Broth on Blood Pressure, 8-Hydroxydeoxyguanosine (8-OHdG), an Oxidative Stress Marker, and Emotional States in Elderly Subjects.

    PubMed

    Umeki, Youko; Hayabuchi, Hitomi; Hisano, Manami; Kuroda, Motonaka; Honda, Masashi; Ando, Bunei; Ohta, Masanori; Ikeda, Masaharu

    2008-11-01

    Dried-bonito broth (DBB, katsuo-bushi dashi) is commonly used in Japanese cuisine, and is also used as a traditional remedy for recovery from fatigue and improvement of blood circulation. To clarify the effect of DBB on blood pressure, oxidative stress and emotional states, a randomized crossover human trial was performed. Twenty-seven elderly Japanese subjects ingested DBB or water for one month. Measurement of blood pressure and urinary 8-hydroxydeoxyguanosine (8-OHdG) and evaluation of emotional states were performed before and after the ingestion periods. The changes in systolic blood pressure (SBP) during DBB ingestion was significantly lower than that during water ingestion (p = 0.037). Urinary 8-OHdG significantly decreased during DBB ingestion (p = 0.0002). Evaluation of emotional states indicated that composure significantly improved during DBB ingestion (p = 0.034). These results suggest that the daily ingestion of DBB lower SBP, reduce urinary 8-OHdG and might improve emotional states in elderly subjects.

  19. In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy.

    PubMed

    Takagi, Yasumasa; Wang, Heng; Uemura, Yohei; Nakamura, Takahiro; Yu, Liwei; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki; Samjeské, Gabor; Iwasawa, Yasuhiro; Yokoyama, Toshihiko

    2017-02-22

    We performed in situ hard X-ray photoelectron spectroscopy (HAXPES) measurements of the electronic states of platinum nanoparticles on the cathode electrocatalyst of a polymer electrolyte fuel cell (PEFC) using a near ambient pressure (NAP) HAXPES instrument having an 8 keV excitation source. We successfully observed in situ NAP-HAXPES spectra of the Pt/C cathode catalysts of PEFCs under working conditions involving water, not only for the Pt 3d states with large photoionization cross-sections in the hard X-ray regime but also for the Pt 4f states and the valence band with small photoionization cross-sections. Thus, this setup allowed in situ observation of a variety of hard PEFC systems under operating conditions. The Pt 4f spectra of the Pt/C electrocatalysts in PEFCs clearly showed peaks originating from oxidized Pt(ii) at 1.4 V, which unambiguously shows that Pt(iv) species do not exist on the Pt nanoparticles even at such large positive voltages. The water oxidation reaction might take place at that potential (the standard potential of 1.23 V versus a standard hydrogen electrode) but such a reaction should not lead to a buildup of detectable Pt(iv) species. The voltage-dependent NAP-HAXPES Pt 3d spectra revealed different behaviors with increasing voltage (0.6 → 1.0 V) compared with decreasing voltage (1.0 → 0.6 V), showing a clear hysteresis. Moreover, quantitative peak-fitting analysis showed that the fraction of non-metallic Pt species matched the ratio of the surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation only takes place at the surface of the Pt nanoparticles on the PEFC cathode, and the inner Pt atoms do not participate in the reaction. In the valence band spectra, the density of electronic states near the Fermi edge reduces with decreasing particle size, indicating an increase in the electrocatalytic activity. Additionally, a change in the valence band structure due to the oxidation of platinum atoms was also

  20. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    PubMed

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  1. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  2. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik; Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver; Hertlein, Marcus P.; Tyliszczak, Tolek; Huse, Nils; and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  3. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    NASA Astrophysics Data System (ADS)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S.; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Zegkinoglou, Ioannis; Fraund, Matthew W.; Khurmi, Champak; Hertlein, Marcus P.; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.; Rude, Bruce S.; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ˜0.1 mm spatial resolution and ˜150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy Ep = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ˜9 ns at a pass energy of 50 eV and ˜1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  4. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  5. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat

    NASA Astrophysics Data System (ADS)

    Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc

    2013-05-01

    The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either

  6. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure

    PubMed Central

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning. PMID:28560101

  7. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure.

    PubMed

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy; Boege, Karina; Del-Val, Ek

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  8. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.

    PubMed

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-08-01

    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  10. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  11. Effect of Dry Needling on Spasticity, Shoulder Range of Motion, and Pressure Pain Sensitivity in Patients With Stroke: A Crossover Study.

    PubMed

    Mendigutia-Gómez, Ana; Martín-Hernández, Carolina; Salom-Moreno, Jaime; Fernández-de-Las-Peñas, César

    2016-06-01

    The purpose of this study was to determine the effects of the inclusion of deep dry needling (DDN) in spastic shoulder muscles into a rehabilitation program on spasticity, pressure pain sensitivity, and shoulder range of motion in subjects who had experienced a stroke. A controlled, repeated-measures, crossover, double-blinded, randomized trial was conducted. Twenty patients who have had a stroke were randomly assigned to receive rehabilitation alone or rehabilitation combined with DDN over the upper trapezius, infraspinatus, subscapularis, and pectoralis mayor muscles on the spastic shoulder. Subjects received both interventions separated at least 15 days apart. Each intervention was applied once per week over 3 weeks. Spasticity (Modified Ashworth Scale), pressure pain thresholds over the deltoid and infraspinatus muscles and C5-C6 zygapophyseal joint, and shoulder range of motion were collected 1 week before and 1 week after each intervention by a blinded assessor. Reduction in spasticity was similar after both conditions for the upper trapezius, pectoralis major, and subscapularis muscles. A greater number of individuals receiving DDN exhibited decreased spasticity within the infraspinatus muscle. The analysis of covariance showed that all pressure pain thresholds, shoulder abduction, and external rotation of the shoulder increased significantly more after DNN intervention (P < .05). Shoulder flexion showed similar changes after both conditions. Our results suggest that inclusion of DDN into a multimodal rehabilitation program was effective for decreasing localized pressure sensitivity and improving shoulder range of motion in individuals who had experienced stroke; however, we did not observe significant differences in muscle spasticity. Copyright © 2016. Published by Elsevier Inc.

  12. Vibration-to-translation energy transfer in atmospheric-pressure streamer discharge in dry and humid air

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takahashi, Kazunori; Ando, Akira

    2015-10-01

    Vibration-to-translation (V-T) energy transfer in atmospheric-pressure streamer discharge is numerically simulated using a two-dimensional electro-hydrodynamic model. The model includes state-to-state vibrational kinetics in humid air and is coupled with the compressible flow equation of the gas fluid. The vibrational distribution of {{\\text{O}}2}(v) reaches equilibrium more quickly than that of {{\\text{N}}2}(v) , whereas the energy released from {{\\text{O}}2}(v) does not increase the gas temperature. In humid air, the decay rate of the vibrational energy of {{\\text{N}}2}(v) is accelerated by the V-T energy transfer through water molecules and the energy heats the gas. However, the increase in gas temperature due to V-T energy transfer is not always seen because it competes with thermal diffusion.

  13. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  14. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  15. Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: Experimental results

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Romano, G. P.

    2010-10-01

    Geophysical granular flows such as pyroclastic flows and rock avalanches kill people and damage properties worldwide. The pressures exerted at their base affect the retarding forces that act on them and, for this reason, affect also their mobility that is important to foresee when assessing natural hazards in mountain regions. Here we present the results of experiments obtained by measuring with a load cell the basal pressures exerted by dry and cohesionless granular flows that descend a curved chute in the laboratory. The interaction between these flows and the chute surface on which they travel is dominated by collisions of particles (and or clusters of particles). A dimensional analysis suggests that the energy dissipation of these flows increases as grain size increases and as flow volume decreases (all the other features equal). Therefore the smaller the grain size and the larger the volume, the larger is expected to be flow mobility. Although, the longer travel distances of the centre of mass of finer grain size flows are easily discernible in our experiments, the effect of volume is probably hidden by additional phenomena such as the deposition first of the frontal portion of longer flows on the less-steep more-distal part of the slope that prevents the rear portion and the centre of mass of the flows to travel further downhill.

  16. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere

    NASA Astrophysics Data System (ADS)

    Ficklin, Darren L.; Novick, Kimberly A.

    2017-02-01

    Via air temperature increases and relative humidity changes, climate change will modify vapor pressure deficit (VPD), which is an important determinant of water vapor and CO2 exchange between the land surface and atmosphere. VPD is the difference between the water vapor the air can hold at saturation (es) and the actual amount of water vapor (ea). Here we assess changes in VPD, es, and ea in the United States (U.S.) for the recent past (1979-2013) and the future (2065-2099) using gridded, observed climate data and output from general circulation models. Historically, VPD has increased for all seasons, driven by increases in es and declines in ea. The spring, summer, and fall seasons exhibited the largest areal extent of significant increases in VPD, which was largely concentrated in the western and southern portions of the U.S. The changes in VPD stemmed from recent air temperature increases and relative humidity decreases. Projections indicate similar, amplified patterns into the future. For the summer, the general circulation model ensemble median showed a 51% projected increase (quartile range of 39 and 64%) in summer VPD for the U.S., reflecting temperature-driven increases in es but decreases or minimal changes in relative humidity that promotes negligible changes in ea. Using a simple model for plant hydraulic functioning, we also show that in the absence of stomatal acclimation, future changes in VPD can reduce stomatal conductance by 9-51%, which is a magnitude comparable to the expected decline in stomatal conductance from rising CO2.

  17. Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study

    SciTech Connect

    Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

    2008-09-03

    In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

  18. Evaluation of the scattered pressure due to infinite rigid cylinders, infinite elastic cylindrical shells, and rigid spheres in the presence of an ambient noise field

    NASA Astrophysics Data System (ADS)

    Honeycutt, Rebecca L.; Johnson, Steven J.

    1993-04-01

    The sound scattering due to an ambient noise field, approximated by a squared cosine function, is considered for infinite rigid and elastic cylinders and rigid spheres. For the cylinders, it is assumed that the acoustic wave front is parallel to the axis of the cylinder (informally incident). For this assumption, a closed form expression for the scattered sound field-to-incident ambient noise field (signal-to-noise) ratio is obtained not only for the cosine squared directivity, but for any arbitrary directivity which can be expressed in terms of a Fourier series. For the sphere, it is assumed that the noise is circumferentially symmetric which leads to a closed form expression for the signal-to-noise ratio due to a cosine squared directivity.

  19. Dry pressing technical ceramics

    SciTech Connect

    Lewis, W.A. Jr.

    1996-04-01

    Dry pressing of technical ceramics is a fundamental method of producing high-quality ceramic components. The goals of dry pressing technical ceramics are uniform compact size and green density, consistent part-to-part green density and defect-free compact. Dry pressing is the axial compaction of loosely granulated dry ceramic powders (< 3% free moisture) within a die/punch arrangement. The powder, under pressure, conforms to the specific shape of the punch faces and die. Powder compaction occurs within a rigid-walled die and usually between a top and bottom punch. Press configurations include anvil, rotary, multiple-punch and multiple-action.

  20. Evaluation of fermentation, drying, and high pressure processing on viability of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Trichinella spiralis in raw pork and/or Genoa salami

    USDA-ARS?s Scientific Manuscript database

    We evaluated the effectiveness of fermentation, drying, and high pressure processing (HPP) to inactivate Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Trichinella spiralis in Genoa salami produced with trichinae infected pork. In addition, we evaluated the effectiveness of u...

  1. Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage.

    PubMed

    Martínez-Onandi, N; Rivas-Cañedo, A; Picon, A; Nuñez, M

    2016-12-01

    One hundred and three volatile compounds were detected by solid-phase microextraction followed by gas chromatography-mass spectrometry in 30 ripened Serrano dry-cured hams, submitted or not to high pressure processing (HPP) and afterwards held for 5months at 4°C. The effect of ham physicochemical parameters and HPP (600MPa for 6min) on volatile compounds was assessed. Physicochemical parameters primarily affected the levels of acids, alcohols, alkanes, esters, benzene compounds, sulfur compounds and some miscellaneous compounds. Intramuscular fat content was the physicochemical parameter with the most pronounced effect on the volatile fraction of untreated Serrano ham after refrigerated storage, influencing the levels of 38 volatile compounds while aw, salt content and salt-in-lean ratio respectively influenced the levels of 4, 4 and 5 volatile compounds. HPP treatment affected 21 volatile compounds, resulting in higher levels of alkanes and ketones and lower levels of esters and secondary alcohols, what might affect Serrano ham odor and aroma after 5months of refrigerated storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Pi, Dong-Hai; Guo, Jing; Kato, Hidemi; Lee, Sunghak; Kim, Hyoung Seop

    2016-05-01

    Wear properties of bulk metallic glasses (BMGs) are important for industrial applications as much as strength and ductility. Free volume of BMGs is a significant factor which decides wear mechanism and resistance. Increased free volume of a Zr55Al10Ni5Cu30 BMG processed by high-pressure torsion (HPT) affected wear resistance under dry reciprocating conditions. Two- and three-body abrasive wear as well as the delamination of oxide layers simultaneously operated during the wear tests of both as-cast and HPT-processed BMG (HPT-BMG). However, the HPT- BMG had a larger area of the oxide layers on a worn surface compared to the as-cast BMG at the early stage of the wear tests. The increased free volume by the HPT process resulted in ductile plastic deformation, prohibited crack propagation, and delayed delamination of the oxide layers. Therefore, the HPT-BMG had thicker oxide layers, which acted as an adequate protection and increased wear properties of the Zr-based BMG.

  3. Imaging with ambient noise

    SciTech Connect

    Snieder, Roel; Wapenaar, Kees

    2010-09-15

    Recent developments in seismology, ultrasonics, and underwater acoustics have led to a radical change in the way scientists think about ambient noise--the diffuse waves generated by pressure fluctuations in the atmosphere, the scattering of water waves in the ocean, and any number of other sources that pervade our world. Because diffuse waves consist of the superposition of waves propagating in all directions, they appear to be chaotic and random. That appearance notwithstanding, diffuse waves carry information about the medium through which they propagate.

  4. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  5. Compaction of montmorillonite in ultra-dry state

    NASA Astrophysics Data System (ADS)

    Chow, Brian J.; Chen, Tzehan; Zhong, Ying; Wang, Meng; Qiao, Yu

    2017-10-01

    The current study discovers that uniaxial compression under ambient condition can directly cause strong bonding in ultra-dry montmorillonite, which is attributed to the secondary molecular interaction other than hydrogen bonding. The strength of so-processed material is sensitive to the lateral confinement condition of loading. Similar compaction pressure produces equally strong solids between quasi-static and impact loading modes. Gas permeability of the compacted solids is comparable to those of dense rocks. These findings shed light on the study of Martian regolith and in-situ resource utilization.

  6. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    NASA Astrophysics Data System (ADS)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  7. The effect of dry needling on pain, pressure pain threshold and disability in patients with a myofascial trigger point in the upper trapezius muscle.

    PubMed

    Ziaeifar, Maryam; Arab, Amir Massoud; Karimi, Noureddin; Nourbakhsh, Mohammad Reza

    2014-04-01

    Dry needling (DN) has been used recently by physical therapists as a therapy of choice for patients with myofascial trigger points (TrP). The purpose of this randomized controlled trial was to investigate the effect of DN in the treatment of TrPs in the upper trapezius (UT) muscle. A sample of convenience of 33 patients with TrP in the UT muscle participated in this study. Patients were randomly assigned to a standard (N = 17) or experimental group (N = 16). The treatment protocol for the standard group consisted of trigger point compression technique (TCT) on MTP, while the patients in the experimental group received DN. Pain intensity and pressure pain thresholds were assessed for both groups before and after the treatment sessions. In addition, the Disability of Arm, Hand, and Shoulder (DASH) was administered. Statistical analysis (paired t-test) revealed a significant improvement in pain, PPT and DASH scores after treatment in the experimental (DN) and standard (TCT) group compared with before treatment (P < 0.05). The ANCOVA revealed significant differences between the DN and TCT groups on the post-measurement VAS score (P = 0.01). There was, however, no significant difference between the two groups on the post-measurement score of the PPT (P = 0.08) and DASH (P = 0.34). DN produces an improvement in pain intensity, PPT and DASH and may be prescribed for subjects with TrP in UT muscles especially when pain relief is the goal of the treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Optimizing the primary particle size distributions of pressurized metered dose inhalers by using inkjet spray drying for targeting desired regions of the lungs.

    PubMed

    Ehtezazi, T; Davies, M J; Seton, L; Morgan, M N; Ross, S; Martin, G D; Hutchings, I M

    2015-02-01

    Conventional suspension pressurized metered dose inhalers (pMDIs) suffer not only from delivering small amounts of a drug to the lungs, but also the inhaled dose scatters all over the lung regions. This results in much less of the desired dose being delivered to regions of the lungs. This study aimed to improve the aerosol performance of suspension pMDIs by producing primary particles with narrow size distributions. Inkjet spray drying was used to produce respirable particles of salbutamol sulfate. The Next Generation Impactor (NGI) was used to determine the aerosol particle size distribution and fine particle fraction (FPF). Furthermore, oropharyngeal models were used with the NGI to compare the aerosol performances of a pMDI with monodisperse primary particles and a conventional pMDI. Monodisperse primary particles in pMDIs showed significantly narrower aerosol particle size distributions than pMDIs containing polydisperse primary particles. Monodisperse pMDIs showed aerosol deposition on a single stage of the NGI as high as 41.75 ± 5.76%, while this was 29.37 ± 6.79% for a polydisperse pMDI. Narrow size distribution was crucial to achieve a high FPF (49.31 ± 8.16%) for primary particles greater than 2 µm. Only small polydisperse primary particles with sizes such as 0.65 ± 0.28 µm achieved a high FPF with (68.94 ± 6.22%) or without (53.95 ± 4.59%) a spacer. Oropharyngeal models also indicated a narrower aerosol particle size distribution for a pMDI containing monodisperse primary particles compared to a conventional pMDI. It is concluded that, pMDIs formulated with monodisperse primary particles show higher FPFs that may target desired regions of the lungs more effectively than polydisperse pMDIs.

  9. Adrenal suppression in asthmatic children receiving low-dose inhaled budesonide: comparison between dry powder inhaler and pressurized metered-dose inhaler attached to a spacer.

    PubMed

    Goldberg, Shmuel; Einot, Tsurit; Algur, Nurit; Schwartz, Shimshon; Greenberg, Alan C; Picard, Elie; Virgilis, Dov; Kerem, Eitan

    2002-12-01

    Dry powder inhalers (DPI) have in recent years become a common mode for administration of inhaled corticosteroids for preventive therapy of asthma. Inhaled steroids delivered by DPI achieve increased lung deposition compared with pressurized metered-dose inhalers (pMDI), which is associated with increased therapeutic effect. This may be associated with increased systemic absorption. The purpose of this study was to evaluate the prevalence of adrenal suppression in children using low-dose budesonide given by DPI, as compared with pMDI attached to a large-volume spacer device (pMDI + spacer). In an open-labeled crossover study, 15 asthmatic children aged 5 to 15 years received 200 microg of inhaled budesonide twice daily by DPI (Turbuhaler, Astra, Draco AB, Lund, Sweden) and by pMDI + spacer, 1 month each, in a randomized order. Twenty-four-hour urine collections were performed at baseline and at the end of each of the 2 months of the study period, and urinary cortisol and creatinine were measured. Baseline urinary cortisol:creatinine was 0.038 +/- 0.012 microg/mg, similar in both groups. After 1 month of DPI therapy, urinary cortisol:creatinine was reduced by 27 +/- 16% to 0.028 +/- 0.012 microg/mg (P = 0.018). Urinary cortisol:creatinine after 1 month of pMDI + spacer therapy was similar to baseline 0.037 +/- 0.019 microg/mg (P = 0.78). Treatment of asthmatic children with budesonide 400 microg daily given via a DPI for 1 month was associated with hypothalamic-pituitary-adrenal axis suppression. This effect was not observed with the same dose of budesonide administered via pMDI + spacer. This indicates that systemic absorption might be reduced with pMDI + spacer therapy.

  10. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    PubMed

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives.

  11. Drying rates of wood chips during compression drying

    SciTech Connect

    Liu, Z.; Haygreen, J.G.

    1985-04-01

    Compression drying is basically a process of forcing the free water in wood to move under high hydrostatic pressure through a solid structure. Fundamental information regarding the time- dependent characteristic of compression drying is necessary to develop efficient commercial processes. The purpose of this study is to provide an initial evaluation of the effect of some factors - pressure, wood density, and particle (chip) size - on free water extraction. Five species - aspen, balsam fir, jack pine, red maple, and red oak - were tested in this study. For each species both typical pulp size chips and particles from hammermilled chips were used. Drying rates were determined under constant ram face pressures at 500 psi, 1000 psi, 1500 psi, and 2000 psi, respectively. The concept of drying rate is one of the important factors in dealing with compression drying, especially in designing dewatering pressure cycles. The most efficient compression drying is achieved during the first two minutes. Drying rates are negligible after 3 to 4 minutes of constant pressure in the 500 to 2000 psi range. The analysis of variance for species shows highly significant differences in final moisture contents. Size of chips had a significant effect on final moisture contents. Compressed density of hammermilled chips is slightly higher than that of unrefined chips. High density chips require higher pressure to initiate effective drying rates. 8 references.

  12. Interplay of superconductivity with the SDW order and Eu2+ AFM order in the Ca1-xEuxFe2As2 system at ambient and under pressures

    NASA Astrophysics Data System (ADS)

    Shrestha, Keshav; Zhao, Kui; Jawdat, Ben; Deng, Liangzi; Zhu, Xiyu; Xue, Yuyi; Lv, Bing; Chu, Paul

    2013-03-01

    Single crystals of Eu doped Ca1-xEuxFe2As2 (0 <= x <=1) with size up to 5 x 5 mm size were grown from FeAs self-flux technique. Detailed magnetic and resistivity data a systematical evolution of a spin-density-wave (SDW) transition from ~ 170K at x =0 to ~ 190K at x =1. Moreover, the Eu2+ antiferromagnetic (AFM) emerged at 3.7K at a threshold doping x ~ 0.2, and systematically increased up to ~ 20K with the increase of the Eu content. High pressure was applied to some of these compounds to explore the competition among SDW, collapsed phase and superconductivity. Superconductivity up to 18K was observed in samples without the structural ``collapsed tetragonal'' phase before the emergence of the superconductivity signal. The data suggest that the superconductivity in the doped Ca122 under pressure is not associated with the structural collapsed-tetragonal phase. The complex phase diagram of the SDW, Eu2+ AFM order and superconductivity at ambient and under pressure will be presented and its implication will be discussed. Work at Houston is supported in part by US AFOSR, the State of Texas, T. L. L. Temple Foundation and John and Rebecca Moores Endowment.

  13. Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko; Sugenoya, Junichi

    2013-05-01

    The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32 ± 5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10' N and longitude 136°57.9' E. The average environmental temperature was 29 ± 1 °C in summer and 3 ± 1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.

  14. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  15. The metered delivery of solids into pressure: A radically new machine concept

    SciTech Connect

    Winston, M.M.; Hay, A.G.

    1992-12-31

    This is the second report on the development of a machine concept for the continuous movement and accurately metered delivery of particulate solids (e.g., coal), wet or dry, into environments of ambient or differential fluid or mechanical pressure. It includes the first disclosure of continuous, direct delivery of US power plant coal into 26 psi gas pressure. The pump has only one moving part and is self-cleaning.

  16. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  17. Nd2K2IrO7 and Sm2K2IrO7: Iridium(VI) Oxides Prepared under Ambient Pressure

    SciTech Connect

    Mugavero, III, S.; Smith, M; Yoon, W; zur Loye, H

    2009-01-01

    The most-oxidized iridium oxides known to date are prepared in a hydroxide flux under normal pressure. They contain iridium centers exclusively in the +VI oxidation state and are characterized crystallographically. The picture shows the structure of the Ln2K2IrO7 (Ln=Nd, Sm) and its structural components: IrO6 octahedra (black), KO10 polyhedra (beige), LnO10 polyhedra (blue).

  18. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    from ozone mode to nitrogen oxides mode occurs as the discharge power increases. One prominent example of plasma biotechnology is the use of plasma-derived reactive species as a novel disinfectant. Ambient-air plasma is an attractive means of disinfection because it is non-thermal, expends a small amount of power, and requires only air and electricity to operate. Both solid surfaces and liquid volumes can be effectively and efficiently decontaminated by the reactive oxygen and nitrogen species that plasma generates. Dry surfaces are decontaminated most effectively by the plasma operating in NOx mode and less effectively in ozone mode, with the weakest antibacterial effects in the transition region, and neutral reactive species are more influential in surface disinfection than charged particles. Aqueous bacterial inactivation correlates well with ozone concentration, suggesting that ozone is the dominant species for bacterial inactivation under the condition of a low-power discharge. Alternatively, air plasma operating in the higher-power, nitrogen oxides-rich mode can create a persistently antibacterial solution. Finally, when near-UV (UVA) treatment follows plasma treatment of bacterial suspension, the antimicrobial effect exceeds the effect predicted from the two treatments alone, and addition of nitrite to aqueous solution, followed by photolysis of nitrite by UVA photons, is hypothesized as the primary mechanism of synergy. The results presented in this dissertation underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications. The complexity of atmospheric pressure plasma devices, and their sensitivity to subtle differences in design and operation, can lead to different results with different mechanisms.

  19. Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure

    PubMed Central

    Lv, Bing; Deng, Liangzi; Gooch, Melissa; Wei, Fengyan; Sun, Yanyi; Meen, James K.; Xue, Yu-Yi; Lorenz, Bernd; Chu, Ching-Wu

    2011-01-01

    We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe2As2 via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at 49 K, which has a low critical field < 4 Oe, and the other at 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr, or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (Tc) only up to 38 K and pressurization has been reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K phase detected will be discussed. PMID:21911404

  20. Ambient seismic wave field.

    PubMed

    Nishida, Kiwamu

    2017-01-01

    The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1-20 mHz), primary microseisms (0.02-0.1 Hz), and secondary microseisms (0.1-1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system.

  1. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  2. Potential tuning in the S-W system. (i) Bringing T c,2 to ambient pressure, and (ii) colliding T c,2 with the liquid-vapor spinodal

    NASA Astrophysics Data System (ADS)

    Angell, C. Austen; Kapko, Vitaliy

    2016-09-01

    Following Vasisht et al’s identification of the second critical point (T c2, P c2) for liquid silicon in the Stillinger-Weber (S-W) model for silicon, we study the variation of T c2, P c2 with tetrahedral repulsion parameter in an extension of the earlier ‘potential tuning’ study of this system. We use the simple isochore crossing approach to identify the location of the second critical point (before any crystallization can occur) as a function of the ‘tuning’ or ‘tetrahedrality’, parameter λ, and identify two phenomena of high interest content. The first is that the second critical point pressure P c2, becomes less negative as λ decreases from the silicon value (meaning the drive to high tetrahedrality is decreased) and reaches zero pressure at the same value of lambda found to mark the onset of glassforming ability in an earlier study of this tunable system. The second is that, as the T c,2 approaches the temperature of the liquid-gas spinodal, λ  >  22, the behavior of the temperature of maximum density (TMD) switches from the behavior seen in most current water pair potential models (locus of TMDs has a maximum), to the behavior seen in empirical engineering multiparameter equations of state (EoS) (and also by two parameter Speedy isothermal expansion EoS) for water, according to which the locus of TMDs of HDL phase has no maximum, and the EoS for HDL has no second critical point. At λ  =  23 the behavior is isomorphic with that of the mW model of water, which is now seen to conform, at least closely, to the ‘critical point free’ scenario for water.