Sample records for ambient substrate temperature

  1. A technique for measurement of instantaneous heat transfer in steady-flow ambient-temperature facilities

    NASA Technical Reports Server (NTRS)

    O'Brien, James E.

    1990-01-01

    An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.

  2. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  3. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  4. A versatile substrate design for LEED and AES studies in uhv.

    NASA Technical Reports Server (NTRS)

    Holloway, P. H.; Hudson, J. B.

    1972-01-01

    A substrate design is described that incorporates a single crystal disk into an electrically isolated, electron bombardment heated mount. Electron and photon leakage from the bombarding filament are prevented, and LEED and AES may be used at elevated temperatures. A cold finger, thermally coupled to the mount, decreases the time lost between cleaning the crystal and cooling it to the desired observation temperature. The cold finger also allows observation at temperatures below ambient.

  5. Preliminary investigation of single chamber single electrode microbial fuel cell using sewage sludge as a substrate

    NASA Astrophysics Data System (ADS)

    Sai Chaithanya, M.; Thakur, Somil; Sonu, Kumar; Das, Bhaskar

    2017-11-01

    A microbial fuel cell (MFC) consists of a cathode and anode; micro-organisms transfer electrons acquired from the degradation of organic matter in the substrate to anode; and thereby to cathode; by using an external circuit to generate electricity. In the present study, a single chamber single electrode microbial fuel cell has been fabricated to generate electricity from the sludge of the sewage treatment plant at two different ambient temperature range of 25 ± 4°C and 32 ± 4°C under aerobic condition. No work has been done yet by using the single electrode in any MFC system; it is hypothesized that single electrode submerged partially in substrate and rest to atmosphere can function as both cathode and anode. The maximum voltage obtained was about 2890 mV after 80 (hrs) at temperature range of 25 ± 4°C, with surface power density of 1108.29 mW/m2. When the ambient temperature was 32 ± 4°C, maximum voltage obtained was 1652 mV after 40 (hrs.) surface power density reduced to 865.57 mW/m2. When amount of substrate was decreased for certain area of electrode at 25 ± 4°C range, electricity generation decreased and it also shortened the time to reach peak voltage. On the other hand, when the ambient temperature was increased to 32 ± 4°C, the maximum potential energy generated was less than that of previous experiment at 25 ± 4°C for the same substrate Also the time to reach peak voltage decreased to 40 hrs. When comparing with other single chamber single electrode MFC, the present model is generating more electricity that any MFC using sewage sludge as substrate except platinum electrode, which is much costlier that electrode used in the present study.

  6. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions.

    PubMed

    Chen, H; Rygiewicz, P T; Johnson, M G; Harmon, M E; Tian, H; Tang, J W

    2008-01-01

    Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.

  7. Optimal activation condition of nonpolar a-plane p-type GaN layers grown on r-plane sapphire substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Son, Ji-Su; Hyeon Baik, Kwang; Gon Seo, Yong; Song, Hooyoung; Hoon Kim, Ji; Hwang, Sung-Min; Kim, Tae-Geun

    2011-07-01

    The optimal conditions of p-type activation for nonpolar a-plane (1 1 -2 0) p-type GaN films on r-plane (1 -1 0 2) sapphire substrates with various off-axis orientations have been investigated. Secondary ion mass spectrometry (SIMS) measurements show that Mg doping concentrations of 6.58×10 19 cm -3 were maintained in GaN during epitaxial growth. The samples were activated at various temperatures and periods of time in air, oxygen (O 2) and nitrogen (N 2) gas ambient by conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The activation of nonpolar a-plane p-type GaN was successful in similar annealing times and temperatures when compared with polar c-plane p-type GaN. However, activation ambient of nonpolar a-plane p-type GaN was clearly different, where a-plane p-type GaN was effectively activated in air ambient. Photoluminescence shows that the optical properties of Mg-doped a-plane GaN samples are enhanced when activated in air ambient.

  8. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  9. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Che; Al-Saab, Feras; Wang, Yudong; Ou, Jun-Yu; Walker, John C.; Wang, Shuncai; Gholipour, Behrad; Simpson, Robert E.; Hewak, Daniel W.

    2014-10-01

    Nano-scale MoS2 thin films are successfully deposited on a variety of substrates by atmospheric pressure chemical vapor deposition (APCVD) at ambient temperature, followed by a two-step annealing process. These annealed MoS2 thin films are characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-VIS-NIR spectrometry, photoluminescence (PL) and Hall Effect measurement. Key optical and electronic properties of APCVD grown MoS2 thin films are determined. This APCVD process is scalable and can be easily incorporated with conventional lithography as the deposition is taking place at room temperature. We also find that the substrate material plays a significant role in the crystalline structure formation during the annealing process and single crystalline MoS2 thin films can be achieved by using both c-plane ZnO and c-plane sapphire substrates. These APCVD grown nano-scale MoS2 thin films show great promise for nanoelectronic and optoelectronic applications.

  10. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    PubMed

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of storage conditions on the weight and appearance of dried blood spot samples on various cellulose-based substrates.

    PubMed

    Denniff, Philip; Spooner, Neil

    2010-11-01

    Before shipping and storage, dried blood spot (DBS) samples must be dried in order to protect the integrity of the spots. In this article, we examine the time required to dry blood spot samples and the effects of different environmental conditions on their integrity. Under ambient laboratory conditions, DBS samples on Whatman 903(®), FTA(®) and FTA(®) Elute substrates are dry within 90 min of spotting. An additional 5% of moisture is lost during subsequent storage with desiccant. When exposed to elevated conditions of temperature and relative humidity, the DBS samples absorb moisture. DBS samples on FTA lose this moisture on being returned to ambient conditions. DBS samples on 903 show no visible signs of deterioration when stored at elevated conditions. However, these conditions cause the DBS to diffuse through the FTA Elute substrate. Blood spots are dry within 90 min of spotting. However, the substrates examined behave differently when exposed to conditions of high relative humidity and temperature, in some cases resulting in the integrity of the substrate and DBS sample being compromised. It is recommended that these factors be investigated as part of method development and validation.

  12. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  13. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    NASA Astrophysics Data System (ADS)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  14. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    NASA Astrophysics Data System (ADS)

    Mandal, Paranjayee

    Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2 and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.

  15. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strömberg, Sten, E-mail: sten.stromberg@biotek.lu.se; Nistor, Mihaela, E-mail: mn@bioprocesscontrol.com; Liu, Jing, E-mail: jing.liu@biotek.lu.se

    Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the currentmore » study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.« less

  16. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests.

    PubMed

    Strömberg, Sten; Nistor, Mihaela; Liu, Jing

    2014-11-01

    The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2(4) full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors' impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors' influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1992-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  18. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  19. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Toshifumi Sugama.

    1993-04-06

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR)[sub n] (wherein M is Ti, Zr, Ge or Al; R is CH[sub 3], C[sub 2]H[sub 5] or C[sub 3]H[sub 7]; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., < 1,000 C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  20. Surface acoustic wave hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

  1. Multilayer heterostructures and their manufacture

    DOEpatents

    Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S

    2015-11-04

    A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C

  2. Silicon-based hot electron emitting substrate with double tunneling

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Zhan, Xinghua; Salcic, Zoran; Wong, Chee Cheong; Gao, Wei

    2017-07-01

    We propose a novel silicon structure, Hot Electron Emitting Substrate (HEES), which exhibits important effect of repeated tunneling at two different voltage ranges, which we refer to as double tunneling. In ambient atmosphere and room temperature, the I-V characteristic of HEES shows two current peaks during voltage sweep from 2 to 15 V. These two peaks are formed by the Fowler-Nordheim (FN) tunneling effect and tunneling diode mechanism, respectively.

  3. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  4. Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells.

    PubMed

    Heidrich, E S; Dolfing, J; Wade, M J; Sloan, W T; Quince, C; Curtis, T P

    2018-02-01

    The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5°C) versus cold (7.5°C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q 10 : 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  6. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  7. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  8. 120 DEG C Cure, Durable, Corrosion Protection Powder Coatings for Temperature Sensitive Substrates

    DTIC Science & Technology

    2005-01-28

    Extrudate was passed through water-cooled pinch-rolls and collected onto a stainless steel belt; from exit of the extruder, approximately 60 sec... stainless steel belt; from exit of the extruder, approximately 60 sec. was required to reach ambient temperature. Production scale processing at...inherently free from volatile organic compounds, chromates, and hazardous air pollutants. Relative to the incumbent solvent-borne urethane paint

  9. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature

    NASA Astrophysics Data System (ADS)

    Svatoš, Vojtěch; Gablech, Imrich; Ilic, B. Robert; Pekárek, Jan; Neužil, Pavel

    2018-03-01

    Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive for IR imaging devices. Since CNT growth occurs at elevated temperatures, the integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here, we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally heated membrane, while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.

  10. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  11. Microstructural characterization and tribological behavior of surface plasma Zr-Er alloying on TC11 alloy

    NASA Astrophysics Data System (ADS)

    Wei, Dongbo; Zhang, Pingze; Liu, Yingchao; Chen, Xiaohu; Ding, Feng; Li, Fengkun

    2018-02-01

    The Zr coating and Zr-Er coating are grown on TC11 substrate by double-glow plasma surface metallurgy technique, followed by the wear tests at ambient temperature and 500 °C. The data of nanohardness and elastic modulus of the samples are collected by the nano-indentation test. The adhesion strength of coatings is investigated by means of the scratch test. The study of wear resistance is performed using a ball-on-disc wear test system by running against the Si3N4 ball and measured by scanning electron microscope (SEM) and X-ray diffraction (XRD). Experimental results indicate that the nanohardness of the Zr coating and Zr-Er coating are 5.94 GPa and 7.98 GPa, respectively, which are 1.79 times and 2.41 times greater than that of TC11 substrate. Zr coating and Zr-Er coating realize the metallurgical bonding with TC11 substrate with continuous and compact structure. Compared with the Zr coating and TC11, the Zr-Er coating presents the lowest specific wear rates, which are 1.689 × 10-6 mm3 Nm-1 and 1.851 × 10-6 mm3 Nm-1 at ambient temperature and 500 °C respectively, indicating the excellent and improved wear resistance of TC11.

  12. Humidity-induced room-temperature decomposition of Au contacted indium phosphide

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    It has been found that Au-contacted InP is chemically unstable at room temperature in a humid ambient due to the leaching action of indium nitrate islands that continually remove In from the contact metallization and thus, in effect, from the Inp substrate. While similar appearing islands form on Au-contacted GaAs, that system appears to be stable since leaching of the group III element does not take place.

  13. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-08-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.

  14. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  15. Oviposition activity of Drosophila suzukii as mediated by ambient and fruit temperature

    PubMed Central

    2017-01-01

    The invasive pest Drosophila suzukii was introduced to southern Europe in 2008 and spread throughout Central Europe in the following years. Precise reliable data on the temperature-dependent behavior of D. suzukii are scarce but will help forecasting and cultivation techniques. Depending on physico-chemical properties, surface temperature of objects may differ from ambient temperatures, determining physical activity, and affect oviposition on or into substrate, determining preimaginal development later. Therefore, the preferred ambient temperatures of D. suzukii and fruit temperature for oviposition were examined on a linear temperature gradient device. Thirty adults (15 ♀; 15 ♂) were adapted to different temperatures (10, 20, 30°C) for six days and then exposed to different temperature gradients (10–25, 20–35, 25–40°C). D. suzukii adapted to 10°C remained in cooler regions and suffered from a significantly higher mortality at the 25–40°C gradient. Animals adapted to warmer temperatures had a wider temperature preference on the gradient device. Acclimation to lower temperatures and the resulting lower temperature preferences may allow the flies to disperse better in spring to search for oviposition sites. The oviposition activity decreased continuously at a fruit temperature above 28°C and below 15°C, with highest oviposition activity in fruits with temperatures between 19.7°C and 24.8°C. The preferred fruit temperature is in accordance with the temperature optimum of reproduction biology and preimaginal development of D. suzukii reported in the literature. PMID:29121635

  16. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.

    PubMed

    Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark G

    2016-10-01

    Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair  + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.

    PubMed

    Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P

    2017-10-01

    Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthesis of p-type ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.

    2000-06-01

    p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.

  19. Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakhri, M.; Goerrn, P.; Riedl, T.

    2011-09-19

    Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 deg. C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 deg. C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organicmore » light emitting diode displays.« less

  20. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    PubMed

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  1. Silicon nitride films deposited with an electron beam created plasma

    NASA Technical Reports Server (NTRS)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  2. Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Rohrer, N. J.; Warner, J. D.; Bhasin, K. B.

    1989-01-01

    The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates.

  3. Pd-catalyzed intramolecular oxidative C-H amination: synthesis of carbazoles.

    PubMed

    Youn, So Won; Bihn, Joon Hyung; Kim, Byung Seok

    2011-07-15

    A Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines under ambient temperature using Oxone as an inexpensive, safe, and easy-to-handle oxidant has been developed. This process represents a green and practical method for the facile construction of carbazoles with a broad substrate scope and wide functional group tolerance. © 2011 American Chemical Society

  4. Molecular dynamics study of the growth of a metal nanoparticle array by solid dewetting

    NASA Astrophysics Data System (ADS)

    Luan, Yanhua; Li, Yanru; Nie, Tiaoping; Yu, Jun; Meng, Lijun

    2018-03-01

    We investigated the effect of the substrate and the ambient temperature on the growth of a metal nanoparticle array (nanoarray) on a solid-patterned substrate by dewetting a Au liquid film using an atomic simulation technique. The patterned substrate was constructed by introducing different interaction potentials for two atom groups ( C 1 and C 2) in the graphene-like substrate. The C 1 group had a stronger interaction between the Au film and the substrate and was composed of regularly distributed circular disks with radius R and distance D between the centers of neighboring disks. Our simulation results demonstrate that R and D have a strikingly different influence on the growth of the nanoparticle arrays. The degree of order of the nanoarray increases first before it reaches a peak and then decreases for increasing R at fixed D. However, the degree of order increases monotonously when D is increased and reaches a saturated value beyond a critical value of D for a fixed R. Interestingly, a labyrinth-like structure appeared during the dewetting process of the metal film. The simulation results also indicated that the temperature was an important factor in controlling the properties of the nanoarray. An appropriate temperature leads to an optimized nanoarray with a uniform grain size and well-ordered particle distribution. These results are important for understanding the dewetting behaviors of metal films on solid substrates and understanding the growth of highly ordered metal nanoarrays using a solid-patterned substrate method.

  5. Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs

    NASA Technical Reports Server (NTRS)

    Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.

    2005-01-01

    In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.

  6. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage.

    PubMed

    Zhou, Chunyu; Szpunar, Jerzy A; Cui, Xiaoyu

    2016-06-22

    We have designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene substrate. This system exhibits attractive features like high gravimetric density, ambient conditions, and low activation temperature for hydrogen release. When charged at room temperature and an atmospheric hydrogen pressure of 1 bar, it could yield a hydrogen capacity of 0.14 wt %. When hydrogen pressure increased to 60 bar, the sorbent had a hydrogen gravimetric density of 1.18 wt %. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C.

  7. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Vernisse, Loranne; Guillermet, Olivier; Gourdon, André; Coratger, Roland

    2018-03-01

    Derivative perylene molecules deposited on Ag(111) and on NaCl(001) ultrathin layers have been investigated using low temperature STM and NC-AFM. When the metallic substrate is held at ambient temperature during evaporation, the molecules form characteristic trimers on the Ag(111) surface and interact through their polar groups. Close to the steps, the molecules form linear structures and seems to stand side by side. On the other hand, after deposition on a substrate cooled at liquid helium temperature, single molecules are observed both on metal and on NaCl. On the ultrathin insulator layers, the STM images present characteristic contrasts related to the molecular orbitals which favors the localization of aldehyde groups. In this case, the lateral molecular interactions may induce the formation of small assemblies in which the electronic levels are slightly shifted. A possible interpretation of this phenomenon is to take into account polar interactions and charge transfer between neighboring molecules.

  8. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response

    DOE PAGES

    Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...

    2017-07-03

    Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less

  9. Texture formation in FePt thin films via thermal stress management

    NASA Astrophysics Data System (ADS)

    Rasmussen, P.; Rui, X.; Shield, J. E.

    2005-05-01

    The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses.

  10. Deposition of diamond-like films by ECR microwave plasma

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)

    1995-01-01

    Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.

  11. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  12. Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment (Postprint)

    DTIC Science & Technology

    2014-07-31

    growth. Annealing of the catalyst film in an H2 ambient induces dewetting and leads to the formation of iron nanoparticles on top of the engineered...flow) at 585 °C for 10 min to dewet the catalyst layer into discrete nanoparticles. The samples were then rapidly cooled down to room temperature in a

  13. Photothermal damage is correlated to the delivery rate of time-integrated temperature

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.

    2016-03-01

    Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.

  14. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  15. Kleptothermy: an additional category of thermoregulation, and a possible example in sea kraits (Laticauda laticaudata, Serpentes).

    PubMed

    Brischoux, François; Bonnet, Xavier; Shine, Richard

    2009-12-23

    Lacking the capacity for thermogenesis, most ectotherms inhabiting thermally heterogeneous environments rely instead upon exploiting that ambient heterogeneity. In many cases they maintain body temperatures within a narrow range despite massive spatial and temporal variation in ambient conditions. Reliance on diverse thermal opportunities is reflected in specific terms for organisms that bask in sunlight to regulate their temperature (heliotherms), or that press their bodies against warm substrates to facilitate heat flow (thigmotherms), or that rely on large body mass to maintain thermal constancy (gigantothermy). We propose an additional category of thermoregulators: kleptotherms, which regulate their own temperature by 'stealing' heat from other organisms. This concept involves two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment and the selective use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in the local area. Kleptothermy occurs in endotherms also, but is usually reciprocal (rather than unilateral as in ectotherms). Thermal monitoring on a small tropical island documents a possible example of kleptothermy, based on high stable temperatures of a sea snake (Laticauda laticaudata) inside a burrow occupied by seabirds.

  16. Fabrication of Si3N4 thin films on phynox alloy substrates for electronic applications

    NASA Astrophysics Data System (ADS)

    Shankernath, V.; Naidu, K. Lakshun; Krishna, M. Ghanashyam; Padmanabhan, K. A.

    2018-04-01

    Thin films of Si3N4 are deposited on Phynox alloy substrates using radio frequency magnetron sputtering. The thickness of the films was varied between 80-150 nm by increasing the duration of deposition from 1 to 3 h at a fixed power density and working pressure. X-ray diffraction patterns reveal that the Si3N4 films had crystallized inspite of the substrates not being heated during deposition. This was confirmed using selected area electron diffraction and high resolution transmission electron microscopy also. It is postulated that a low lattice misfit between Si3N4 and Phynox provides energetically favourable conditions for ambient temperature crystallization. The hardness of the films is of the order of 6 to 9 GPa.

  17. Intermixing between HfO{sub 2} and GeO{sub 2} films deposited on Ge(001) and Si(001): Role of the substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, G. V.; Krug, C.; Miotti, L.

    2011-03-28

    Thermally driven atomic transport in HfO{sub 2}/GeO{sub 2}/substrate structures on Ge(001) and Si(001) was investigated in N{sub 2} ambient as function of annealing temperature and time. As-deposited stacks showed no detectable intermixing and no instabilities were observed on Si. On Ge, loss of O and Ge was detected in all annealed samples, presumably due to evolution of GeO from the GeO{sub 2}/Ge interface. In addition, hafnium germanate is formed at 600 deg. C. Our data indicate that at 500 deg. C and above HfO{sub 2}/GeO{sub 2} stacks are stable only if isolated from the Ge substrate.

  18. Near-equilibrium desorption of helium films

    NASA Astrophysics Data System (ADS)

    Weimer, M.; Housley, R. M.; Goodstein, D. L.

    1987-10-01

    The thermal desorption of helium films in the presence of their equilibrium vapor is studied experimentally for small but rapid departures from ambient temperature. The results are analyzed within the framework of a quasithermodynamic phenomenological model based on detailed balance. Under the usual experimental conditions, isothermal desorption at the temperature of the substrate is a general prediction of the model which seems to be substantiated. For realistic adsorption isotherms the time evolution of the net desorption flux nevertheless appears to be governed by a highly nonlinear equation. In such circumstances, a number of characteristic relaxation times may be identified. These time scales are distinct from, and in general unrelated to, the coverage-dependent mean lifetime of an atom on the surface. To characterize the overall nonlinear evolution towards steady state, a global time scale, defined in terms of both initial- and steady-state properties, is introduced to summarize the experimental data. Internal evidence suggests a criterion for judging when collisions among desorbed atoms are unimportant. When this condition is satisfied, data for near-equilibrium desorption agree well with the predictions of the model. Combining our results with earlier data at higher substrate temperatures and different ambient conditions, the overall picture is consistent with scaling properties implied by the theory. We show that the values of the parameters deduced from a Frenkel-Arrhenius parametrization of the global relaxation times, as well as a variety of other aspects of desorption kinetics, are actually consequences of the shape of the equilibrium adsorption isotherm.

  19. Zinc nitride thin films: basic properties and applications

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.

    2017-02-01

    Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.

  20. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  1. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    PubMed

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (<47°C) HA deposition technique, called CoBlast, for the application of crystalline HA coatings. To-date, reports on the CoBlast technique have been limited to titanium alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing. Copyright © 2013 Wiley Periodicals, Inc.

  2. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  3. Oxygen precipitation and bulk microdefects induced by the pre- and postepitaxial annealing in N/N + (100) silicon wafers

    NASA Astrophysics Data System (ADS)

    Wijaranakula, W.; Matlock, J. H.; Mollenkopf, H.

    1987-12-01

    Substrate wafers used for fabrication of epitaxial silicon wafers heavily doped with antimony at the concentration of 1020 atoms/cm3 were preannealed at a temperature between 500 and 900 °C prior to epitaxial deposition. Device fabrication thermal simulation was performed by heat treating the preannealed epitaxial wafers at 1050 °C in dry oxygen ambient for 16 h. Postepitaxial nucleation heat treatment at 750 °C for 4 h prior to the 1050 °C heat treament cycle was also applied on some epitaxial wafers for the purpose of enhancing the oxygen precipitation in silicon. It was observed that morphology and density of the bulk defects induced by the thermal treatment are affected by the preannealing temperature. The results also indicate that nucleation and growth kinetics of oxygen precipitates in preannealed n+ degenerate silicon substrate is strongly governed by oxygen and point defect diffusion.

  4. Thermophilic anaerobic digestion in compact systems: investigations by modern microbiological techniques and mathematical simulation.

    PubMed

    Lübken, M; Wichern, M; Letsiou, I; Kehl, O; Bischof, F; Horn, H

    2007-01-01

    Thermophilic anaerobic digestion in compact systems can be an economical and ecological reasonable decentralised process technique, especially for rural areas. Thermophilic process conditions are important for a sufficient removal of pathogens. The high energy demand, however, can make such systems unfavourable in terms of energy costs. This is the case when low concentrated wastewater is treated or the system is operated at low ambient temperatures. In this paper we present experimental results of a compact thermophilic anaerobic system obtained with fluorescent in situ hybridisation (FISH) analysis and mathematical simulation. The system was operated with faecal sludge for a period of 135 days and with a model substrate consisting of forage and cellulose for a period of 60 days. The change in the microbial community due to the two different substrates treated could be well observed by the FISH analysis. The Anaerobic Digestion Model no. 1 (ADM1) was used to evaluate system performance at different temperature conditions. The model was extended to contribute to decreased methanogenic activity at lower temperatures and was used to calculate energy production. A model was developed to calculate the major parts of energy consumed by the digester itself at different temperature conditions. It was demonstrated by the simulation study that a reduction of the process temperature can lead to higher net energy yield. The simulation study additionally showed that the effect of temperature on the energy yield is higher when a substrate is treated with high protein content.

  5. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, James G.

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, andmore » also has applications for thermal management within satellites.« less

  7. Sb-Te alloy nanostructures produced on a graphite surface by a simple annealing process

    NASA Astrophysics Data System (ADS)

    Kuwahara, Masashi; Uratsuji, Hideaki; Abe, Maho; Sone, Hayato; Hosaka, Sumio; Sakai, Joe; Uehara, Yoichi; Endo, Rie; Tsuruoka, Tohru

    2015-08-01

    We have produced Sb-Te alloy nanostructures from a thin Sb2Te3 layer deposited on a highly oriented pyrolytic graphite substrate using a simple rf-magnetron sputtering and annealing technique. The size, shape, and chemical composition of the structures were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectrometry (EDX), respectively. The shape of the nanostructures was found to depend on the annealing temperature; nanoparticles appear on the substrate by annealing at 200 °C, while nanoneedles are formed at higher temperatures. Chemical composition analysis has revealed that all the structures were in the composition of Sb:Te = 1:3, Te rich compared to the target composition Sb2Te3, probably due to the higher movability of Te atoms on the substrate compared with Sb. We also tried to observe the production process of nanostructures in situ using SEM. Unfortunately, this was not possible because of evaporation in vacuum, suggesting that the formation of nanostructures is highly sensitive to the ambient pressure.

  8. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    PubMed

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  9. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  10. Fabrication & characterization of thin film Perovskite solar cells under ambient conditions

    NASA Astrophysics Data System (ADS)

    Shah, Vivek T.

    High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.

  11. Kleptothermy: an additional category of thermoregulation, and a possible example in sea kraits (Laticauda laticaudata, Serpentes)

    PubMed Central

    Brischoux, François; Bonnet, Xavier; Shine, Richard

    2009-01-01

    Lacking the capacity for thermogenesis, most ectotherms inhabiting thermally heterogeneous environments rely instead upon exploiting that ambient heterogeneity. In many cases they maintain body temperatures within a narrow range despite massive spatial and temporal variation in ambient conditions. Reliance on diverse thermal opportunities is reflected in specific terms for organisms that bask in sunlight to regulate their temperature (heliotherms), or that press their bodies against warm substrates to facilitate heat flow (thigmotherms), or that rely on large body mass to maintain thermal constancy (gigantothermy). We propose an additional category of thermoregulators: kleptotherms, which regulate their own temperature by ‘stealing’ heat from other organisms. This concept involves two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment and the selective use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in the local area. Kleptothermy occurs in endotherms also, but is usually reciprocal (rather than unilateral as in ectotherms). Thermal monitoring on a small tropical island documents a possible example of kleptothermy, based on high stable temperatures of a sea snake (Laticauda laticaudata) inside a burrow occupied by seabirds. PMID:19656862

  12. The stability of the epitaxially introduced metastable metallic structures of thin layers and multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeville, M.C.

    Among the very large number of metallic thin films, sandwiches and multilayers which have been elaborated by epitaxy on various single crystalline substrates during the last decade, few new structures are reported. Limiting to the case of 3d metals, one finds with a great confidence bcc Cobalt, possibly bee Nickel and a non-compact hexagonal (hp) iron. Moreover structures existing at high temperature under ambient pressure are epitaxially stabilized at room temperature (RT) like fcc Cobalt, fcc Iron, fcc and bcc Manganese. The hcp iron which is stable under high pressure at RT would not be epitaxially stabilized at ambient pressuremore » conversely to first findings. The critical thickness of the metastable phase is generally limited to some monolayers in thin films, being slightly increased in sandwiches or multilayers, even if the phenomenological wetting criterion to build superlattices is not satisfied. No increased magnetic moment has been found up to now in the expanded lattices, contrary to band structure calculation predictions. 56 refs.« less

  13. The DIRT on Q10: In situ depletion of labile-inputs does not increase temperature sensitivity in a laboratory incubation (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, L. L.; Lajtha, K.; Bowden, R.; Johnson, B. R.; Bridgham, S. D.

    2013-12-01

    The decomposition of soil organic matter is expected to increase with global warming and has been commonly described by kinetic models with at least two pools with differing turnover times. Pools characterized by rapid turnover are thought to consist of labile substrates. Meanwhile, slower turnover is attributed, in part, to greater chemical complexity and a necessarily higher activation energy which should in turn lead to a higher sensitivity (Q10) to temperature and a proportionally larger response to warming. Experimental tests of the relative Q10 of these pools have been inconclusive and contradictory in part due the fact that all pools are decomposing simultaneously and soils kept under differing conditions over long periods of time diverge in more than the Q10 response making them less comparable over time. We present here a test of the temperature response on soils from a 20 yr litter manipulation experiment incubated under an experimental regime that minimizes divergence among the soils. We hypothesize that 1) if exclusion of inputs has depleted labile substrates and 2) the remaining carbon is more chemically complex, then the input exclusion treatments should show a higher Q10 compared to the ambient or increased input treatments. The soils are taken from the Detritus Input and Removal Treatment (DIRT) plots in the Bousson Forest, Pennsylvania, US. The DIRT treatments consist of litter and root exclusion (no inputs = NI), no roots (NR), no litter (NL), double litter (DL), and ambient conditions (C). Soils were incubated at 25oC for 525 days. Periodically, replicate sets were rotated into 15oC, 35oC or remained at 25oC for 24 hr. The headspace CO2 concentration was measured before and after the 24 hr temperature treatments, and then all replicate sets were returned to 25oC. Twenty years of input exclusion decreased respiration rate, with NI < NR = NL < C = DL, and total carbon content, and thus, we conclude, labile substrates. The respiration rate at 25oC was the same for all replicate sets throughout, indicating no divergence due to the temperature rotations. Contrary to our hypothesis, our data indicates that Q10 was similar among the DIRT treatments, despite the clear differences in their carbon pools. Similar studies have examined the temperature response due to depletion labile substrate through laboratory incubation, rather beginning with presumably very different initial labile pools. Our results would suggest that soils with differing soil carbon content and presumably differing carbon quality have the same relative temperature responses. Recent studies have questioned the putative importance of chemical recalcitrance in soils, which would explain our results relative to the predictions of enzymatic kinetic theory.

  14. An investigation of Au/Ti multilayer thin-films: surface morphology, structure and interfacial/surface migration of constituents under applied thermal stress

    NASA Astrophysics Data System (ADS)

    Senevirathne, Indrajith; Kemble, Eric; Lavoie, John

    2014-03-01

    Multilayer thin films are ubiquitous in industry. Au/Ti/substrate is unique due to possible biological applications in proof of concept devices. Material used for substrates include borosilicate glass, and quartz. Typical Ti depositions on substrates give rise to Stanski-Krastonov (SK) like growth while Frank-van der Merwe (FM) like growth is preferred. Ti films with thickness of ~ 100nm were deposited onto varying substrates using a thermal evaporator. The additional Au layer is then deposited via magnetron sputter deposition at 100mtorr at low deposition rates (~ 1ML/min) onto the Ti thin film. These systems were annealed at varying temperatures and at different durations. Systems were investigated via AFM (Atomic Force Microscopy) probes to examine the surface morphology, and structure. Further, the ambient contamination and elemental distribution/diffusion at annealing was investigated via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX). PASSHE FPDC Annual Grant (LOU # 2010-LHU-03)

  15. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release.

    PubMed

    Grimpo, Kirsten; Kutschke, Maria; Kastl, Anja; Meyer, Carola W; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin

    2014-01-01

    Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents. © 2013.

  16. Molecular dynamics studies of interfacial water at the alumina surface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior atmore » distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.« less

  17. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near-surface environments experiencing such high temperatures and may have significant implications for chemical and physical processes operating at the grain and subgrain scale; biological activity at both microfaunal and macrofaunal levels; and indeed the operational performance of the cables themselves, as convective heat transport would increase cable current ratings, something neglected in existing standards.

  18. A resistance ratio change phenomenon observed in Al doped ZnO (AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou

    2018-03-01

    In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.

  19. Transport properties and c/a ratio of V{sub 2}O{sub 3} thin films grown on C- and R-plane sapphire substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Joe; Limelette, Patrice; Funakubo, Hiroshi

    2015-12-14

    We prepared V{sub 2}O{sub 3} thin films on C- or R-plane sapphire (Al{sub 2}O{sub 3}) substrates by a pulsed laser deposition method. X-ray diffraction analyses confirmed that single-phase V{sub 2}O{sub 3} films were epitaxially grown on both C- and R-planes under an Ar gas ambient of 2 × 10{sup −2} mbar at a substrate temperature of 873 K. Depending on the deposition conditions, c/a ratios at room temperature of (0001)-oriented V{sub 2}O{sub 3} films widely ranged from 2.79 to 2.88. Among them, the films of 2.81 ≤ c/a ≤ 2.84 showed complex metal (M)–insulator (I)–M transition during cooling from 300 to 10 K, while those of larger c/a ratiosmore » were accompanied by metallic properties throughout this temperature range. All the films on R-plane substrates underwent simple M-I transition at ∼150 K, which was more abrupt than the films on C-plane, whereas their c/a ratios were narrowly distributed. The distinct difference of M-I transition properties between C- and R-plane films is explained by the intrinsic a- and c-axes evolution through the transition from M to I phases.« less

  20. Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  1. Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.

    PubMed

    McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.

  2. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    PubMed

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Complementary p- and n-type polymer doping for ambient stable graphene inverter.

    PubMed

    Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk

    2014-01-28

    Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.

  4. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  5. Low temperature sodium-beta battery

    DOEpatents

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  6. Impact of ambient environment on the electronic structure of CuPc/Au sample

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2018-02-01

    The performances of organic devices are crucially connected with their stability in the ambient environment. The impact of 24 h. Ambient environment exposure to the electronic structures of about 12 nm thick CuPc thin film on clean Au substrate have been studied employing UV photoemission spectroscopy technique. X-ray photoemission spectroscopy (XPS) was used to find out the origin of the change of the electronic structures in the sample with the exposure. The XPS study suggests that the oxidation occurs at the CuPc thin film. Due to the adsorption of oxygen in the CuPc film from the ambient air, charge carriers are formed within the CuPc film. Moreover, the XPS results imply that the CuPc film is sufficiently thinner for diffusing oxygen molecules through it and gets physically absorbed on Au substrate during the ambient exposure. Consequently, the hole injection barrier height of pristine CuPc film, grown on Au substrate, is reduced by about 0.50 eV and work-function of the pristine CuPc sample is enhanced by around 0.25 eV in the exposure. The findings will help to understand the mechanism that governs the degradation of performance of CuPc based devices in ambient environment.

  7. The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gu, Chengyan; Sui, Zhanpeng; Li, Yuxiong; Chu, Haoyu; Ding, Sunan; Zhao, Yanfei; Jiang, Chunping

    2018-03-01

    Although metal nitride thin films have attractive prospects in plasmonic applications due to its stable properties in harsh environments containing high temperatures, shock, and contaminants, the effect of deposition parameters on the properties of the metallic ZrN grown on III-N semiconductors by pulse laser deposition still lacks of detailed exploration. Here we have successfully prepared metallic ZrNx films on p-GaN substrate by pulsed laser deposition in N2 ambient of various pressures at a fixed substrate temperature (475 °C). It is found that the films exhibit quite smooth surfaces and (111) preferred orientation. The X-ray photoelectron spectroscopy measurements indicate that carbon contamination can be completely removed and oxygen contamination is significantly reduced on the film surfaces after cleaning using Ar+ sputtering. The N/Zr ratio increases from 0.64 to 0.75 when the N2 pressure increases from 0.5 Pa to 3 Pa. The optical reflectivity spectra measured by the UV-vis-NIR spectrophotometer show that the ZrNx is a typical and good metallic-like material and its metallic properties can be tuned with changing the film compositions.

  8. Atomic layer deposition of two dimensional MoS{sub 2} on 150 mm substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, Arturo; Conley, John F., E-mail: jconley@eecs.oregonstate.edu; Tweet, Douglas J.

    2016-03-15

    Low temperature atomic layer deposition (ALD) of monolayer to few layer MoS{sub 2} uniformly across 150 mm diameter SiO{sub 2}/Si and quartz substrates is demonstrated. Purge separated cycles of MoCl{sub 5} and H{sub 2}S precursors are used at reactor temperatures of up to 475 °C. Raman scattering studies show clearly the in-plane (E{sup 1}{sub 2g}) and out-of-plane (A{sub 1g}) modes of MoS{sub 2}. The separation of the E{sup 1}{sub 2g} and A{sub 1g} peaks is a function of the number of ALD cycles, shifting closer together with fewer layers. X-ray photoelectron spectroscopy indicates that stoichiometry is improved by postdeposition annealing in amore » sulfur ambient. High resolution transmission electron microscopy confirms the atomic spacing of monolayer MoS{sub 2} thin films.« less

  9. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries.

    PubMed

    Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho

    2017-08-31

    Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.

  10. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature.

    PubMed

    Chang, Xiaoyan; Li, Dong; Liang, Yuhai; Yang, Zhuo; Cui, Shaoming; Liu, Tao; Zeng, Huiping; Zhang, Jie

    2013-04-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400, 300, and 200 mg N/L) but constant influent ammonia load. The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23 degrees C). The average removal rate and removal loading of NH4(+)-N and TN was 83.90%, 1.26 kg N/(m3 x day), and 70.14%, 1.09 kg N/(m3 x day), respectively. Among the influencing factors like pH, dissolved oxygen and alkalinity, it was indicated that the pH was the key parameter of the performance of the CANON system. Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way. Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria, which had low diversity in different stages, while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable. These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation, which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  11. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Astrophysics Data System (ADS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-06-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  12. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Technical Reports Server (NTRS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-01-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  13. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  14. Novel Phenylethynyl Imide Silanes as Coupling Agents for Titanium Alloy

    NASA Technical Reports Server (NTRS)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.; Conell, J. W.; Hergenrother, P. M.; SaintClair, T. L.

    2004-01-01

    The durability of titanium (Ti) alloys bonded with high temperature adhesives such as polyimides has failed to attain the level of performance required for many applications. The problem to a large part is attributed to the instability of the surface treatment on the Ti substrate. Although Ti alloy adhesive specimens with surface treatments such as chromic acid anodization, Pasa-Jell, Turco, etc. have provided high initial mechanical properties, these properties have decreased as a function of aging at ambient temperature and faster, when aged at elevated temperatures or in a hot-wet environment. As part of the High Speed Civil Transport program where Ti honeycomb sandwich structure must perform for 60,000 hours at 177 C, work was directed to the development of environmentally safe, durable Ti alloy surface treatments.

  15. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  16. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  17. Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Williams, B. A.

    1976-01-01

    Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.

  18. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior.

    PubMed

    Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan

    2015-11-01

    To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed.

  19. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior

    PubMed Central

    Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan

    2015-01-01

    To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed. PMID:26632780

  20. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient air temperature... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined...

  1. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  2. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  3. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  4. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...

  5. Thermal Improvement and Stability of Si3N4/GeNx/p- and n-Ge Structures Prepared by Electron-Cyclotron-Resonance Plasma Nitridation and Sputtering at Room Temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro

    2012-09-01

    This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.

  6. Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method.

    PubMed

    Mute, A; Peres, M; Peiris, T C; Lourenço, A C; Jensen, Lars R; Monteiro, T

    2010-04-01

    Zinc oxide nanowires have been grown on alumina substrate by thermal evaporation of zinc nanopowder in the presence of oxygen flow. The growth was performed under ambient pressure and without the use of foreign catalyst. Scanning electron microscopy (SEM) observation showed that the as-grown sample consists of bulk ZnO crystal on the substrate surface with nanowires growing from this base. Growth mechanism of the observed morphology is suggested to be governed by the change of zinc vapour supersaturation during the growth process. X-ray diffraction (XRD) measurement was used to identify the crystalline phase of the nanowires. Optical properties of the nanowires were investigated using Raman scattering and photoluminescence (PL). The appearance of dominant, Raman active E2 (high) phonon mode in the Raman spectrum has confirmed the wurtzite hexagonal phase of the nanowires. With above bandgap excitation the low temperature PL recombination is dominated by donor bound exciton luminescence at -3.37 eV with a narrow full width at half maximum. Free exciton emission is also seen at low temperature and can be observed up to room temperature. The optical data indicates that the grown nanowires have high optical quality.

  7. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  8. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite.

    PubMed

    Venglovsky, J; Sasakova, N; Vargova, M; Pacajova, Z; Placha, I; Petrovsky, M; Harichova, D

    2005-01-01

    A 3-month experiment was conducted at a 300 kg scale to observe decomposition processes in pig slurry solids amended with two different doses of natural Slovak zeolite-clinoptilolite (substrates S1 and S2, 1% and 2% of zeolite by weight, respectively) in comparison with the control (unamended solids). The experimental and control substrates were stored outdoors in sheltered static piles at ambient temperatures ranging from 8.0 to 34.7 degrees C. The solid fraction (SF) of pig slurry was obtained by separation on vibration sieves prior to slurry treatment with activated sludge. The initial water content of the SF was 77.1% and no water was added to the piles during the storage. The temperature in the core of the piles was recorded throughout the experiment. By day 3 and 5 of storage (1% and 2% zeolite, resp.), the temperature in the substrates S1 and S2 exceeded 55 degrees C and remained above this level for 15 days while the highest temperature recorded in the control during the experiment was 29.8 degrees C. Samples from the core of the piles were taken periodically to determine pH, dry matter at 105 degrees C (DM), ash (550 degrees C/4 h), ammonia nitrogen (N-NH(4)(+)), nitrate nitrogen (N-NO(3)(-)), total nitrogen (N(t)), total phosphorus (P(t)); total organic carbon (TOC) was computed. The results showed that pH levels in S1 and S2 remained below that in the control for most of the thermophilic stage. This may be related to water-soluble ammonia and the affinity of zeolites to ammonium ions. A significant decrease in the level of ammonia nitrogen in water extracts from S1 and S2 was observed between days 5 and 35 in comparison with the control. The values of ash also differed and corresponded to the intensity of the decomposition processes in the respective substrates.

  9. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    PubMed

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those warmed with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final core temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  10. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    PubMed Central

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067

  11. Deposition of Hydroxyapatite Onto Superelastic Nitinol Using an Ambient Temperature Blast Coating Process

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.

    2018-06-01

    This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.

  12. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    PubMed

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  13. Forest farming of shiitake mushrooms: aspects of forced fruiting.

    PubMed

    Bruhn, J N; Mihail, J D

    2009-12-01

    Three outdoor shiitake (Lentinula edodes (Berk.) Pegler) cultivation experiments were established during 2002-2004 at the University of Missouri Horticulture and Agroforestry Research Center, in central Missouri. Over three complete years following a year of spawn run, we examined shiitake mushroom production in response to the temperature of forcing water, inoculum strain, substrate host species and physical orientation of the log during fruiting. Forcing compressed the period of most productive fruiting to the two years following spawn run. Further, chilled forcing water, 10-12 degrees C, significantly enhanced yield, particularly when ambient air temperatures were favorable for the selected mushroom strain. The temperature of water available for force-fruiting shiitake logs depends on geographic location (latitude) and source (i.e., farm pond vs. spring or well water). Prospective growers should be aware of this effect when designing their management and business plans.

  14. Oxide-apertured VCSEL with short period superlattice

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zhong, Jingchang; Zhang, Yongming; Su, Wei; Zhao, Yingjie; Yan, Changling; Hao, Yongqin; Jiang, Xiaoguang

    2004-12-01

    Novel distributed Bragg reflectors (DBRs) with 4.5 pairs of GaAs/AlAs short period superlattice (SPS) used in oxide-apertured vertical-cavity surface-emitting lasers (VCSELs) were designed. The structure of a 22-period Al_(0.9)Ga_(0.1)As (69.5 nm)/4.5-pair [GaAs (10 nm)-AlAs (1.9 nm)] DBR was grown on an n+ GaAs substrate (100) 2 deg. off toward <111>A by molecular beam epitaxy. The emitting wavelength was 850 nm with low threshold current of about 2 mA, corresponding to the threshold current density of 2 kA/cm2. The maximum output power was more than 1 mW. The VCSEL device temperature was increased by heating ambient temperature from 20 to 100 (Celsius degree) and the threshold current increased slowly with the increase of temperature.

  15. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Cai, K. F.; Yao, X.

    2009-12-01

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.

  16. The synthesis of graphene at different deposition time from palm oil via thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Salifairus, M. J.; Soga, T.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    The basic building of graphitic materials is graphene that can range from zero-dimensional to three-dimensional. Graphene is a single atomic layer of sp2 bonded carbon atoms. It becomes most potential new materials to replace silicon due to its fascinating properties. In this study, the graphene growth was observed at different deposition time. The 1cm x 1cm polycrystalline nickel substrate was cleaned by etching process. The palm oil, carbon source, was placed in the precursor furnace and the nickel substrate was placed in the second furnace (deposition furnace). The palm oil will mix with Argon and Hydrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis process. The deposition temperature was set at 900 °C and the deposition time was varied from 5 - 60 minutes. The graphene was growth at ambient pressure in the CVD system. Raman spectrometer and atomic force microscopy revealed the structural properties and surface topography of the grapheme on the nickel substrate. The D, G and 2D band appear approximately at 1378 cm-1, 1580 cm-1 and 2696 cm-1. It can be concluded that the graphene has successfully synthesized at different deposition time.

  17. Shadow-angle method for anisotropic and weakly absorbing films.

    PubMed

    Surdutovich, G; Vitlina, R; Baranauskas, V

    1999-07-01

    A method for determining the optical properties of a film on an isotropic substrate is proposed. The method is based on the existence of two specific incidence angles in the angular interference pattern of the p-polarized light where oscillations of the reflection coefficient cease. The first of these angles, theta(B1), is the well-known Abelès angle, i.e., the ambient-film Brewster angle, and the second angle theta(B2) is the film-substrate Brewster angle. In the conventional planar geometry and in a vacuum ambient there is a rigorous constraint epsilon(1) + epsilon > epsilon(1)epsilon on the film and the substrate dielectric permittivities epsilon(1) and epsilon, respectively, for the existence of the second angle theta(B2.) The limitation may be removed in an experiment by use of a cylindrical lens as an ambient with epsilon(0) > 1, so that both angles become observable. This, contrary to general belief, allows one to adopt the conventional Abelès method not only for films with epsilon(1) close to the substrate's value epsilon but also for any value of epsilon(1). The method, when applied to a wedge-shaped film or to any film of unknown variable thickness, permits one to determine (i) the refractive index of a film on an unknown substrate, (ii) the vertical and the horizontal optical anisotropies of a film on an isotropic substrate, (iii) the weak absorption of a moderately thick film on a transparent or an absorbing isotropic substrate.

  18. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  19. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    PubMed

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  20. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.

    PubMed

    Chang, Chun-Yu; Huang, Yu-Ching; Tsao, Cheng-Si; Su, Wei-Fang

    2016-10-12

    Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl 2 and CH 3 NH 3 I in N,N-dimethylformamide, to a crystalline CH 3 NH 3 PbI 3-x Cl x film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.

  1. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    PubMed

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature (< or = 21 degrees C and > 21 degrees C) on each variable. Compared with findings at ambient temperatures < or = 21 degrees C, venous blood pH was increased (mean, 7.521 vs 7.349) and PvCO2 was decreased (mean, 17.8 vs 29.3 mm Hg) at temperatures > 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  2. Raman Channel Temperature Measurement of SiC MESFET as a Function of Ambient Temperature and DC Power

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.

    2009-01-01

    Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.

  3. Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures.

    PubMed

    Ishiwata, Takayuki; Saito, Takehito; Hasegawa, Hiroshi; Yazawa, Toru; Kotani, Yasunori; Otokawa, Minoru; Aihara, Yasutsugu

    2005-06-28

    Action of gamma-aminobutyric acid (GABA) in the preoptic area and anterior hypothalamus (PO/AH) has been implicated to regulate body temperature (T(b)). However, its precise role in thermoregulation remains unclear. Moreover, little is known about its release pattern in the PO/AH during active thermoregulation. Using microdialysis and telemetry techniques, we measured several parameters related to thermoregulation of freely moving rats during pharmacological stimulation of GABA in normal (23 degrees C), cold (5 degrees C), and hot (35 degrees C) ambient temperatures. We also measured extracellular GABA levels in the PO/AH during cold (5 degrees C) and heat (35 degrees C) exposure combined with microdialysis and high performance liquid chromatography (HPLC). Perfusion of GABA(A) agonist muscimol into the PO/AH increased T(b), which is associated with increased heart rate (HR), as an index of heat production in all ambient temperatures. Although tail skin temperature (T(tail)) as an index of heat loss increased only under normal ambient temperatures, its response was relatively delayed in comparison with HR and T(b), suggesting that the increase in T(tail) was a secondary response to increased HR and T(b). Locomotor activity also increased in all ambient temperatures, but its response was not extraordinary. Interestingly, thermoregulatory responses were different after perfusion of GABA(A) antagonist bicuculline at each ambient temperature. In normal ambient temperature conditions, perfusion of bicuculline had no effect on any parameter. However, under cold ambient temperature, the procedure induced significant hypothermia concomitant with a decrease in HR in spite of hyperactivity and increase of T(tail). It induced hyperthermia with the increase of HR but no additional change of T(tail) in hot ambient temperature conditions. Furthermore, the extracellular GABA level increased significantly during cold exposure. Its release was lower during heat exposure than in a normal environment. These results indicate that GABA in the PO/AH is an important neurotransmitter for disinhibition of heat production and inhibition of heat loss under cold ambient temperature. It is a neurotransmitter for inhibition of heat production under hot ambient temperature.

  4. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.

    PubMed

    Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti

    2016-10-18

    Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.

  5. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  6. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    NASA Astrophysics Data System (ADS)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need to incorporate the potential changes in microbial physiological functioning into models, in order to accurately predict future changes in soil C stocks in response to global warming.

  7. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON GROWTH, BIOCHEMISTRY AND PHYSIOLOGY OF DOUGLAS-FIR

    EPA Science Inventory

    We examined the interactive effects of CO2 concentration and mean annual temperature on physiology, biochemistry and growth of Douglas fir seedlings. Seedlings were grown at ambient CO2 or ambient + 200 ppm CO2 and at ambient temperature or ambient + 4 ?C. Needle gas exchange m...

  8. Benzothienobenzothiophene-based conjugated oligomers as semiconductors for stable organic thin-film transistors.

    PubMed

    Yu, Han; Li, Weili; Tian, Hongkun; Wang, Haibo; Yan, Donghang; Zhang, Jingping; Geng, Yanhou; Wang, Fosong

    2014-04-09

    Two benzothienobenzothiophene (BTBT)-based conjugated oligomers, i.e., 2,2'-bi[1]benzothieno[3,2-b][1]benzothiophene (1) and 5,5'-bis([1]benzothieno[3,2-b][1]benzothiophen-2-yl)-2,2'-bithiophene (2), were prepared and characterized. Both oligomers exhibit excellent thermal stability, with 5% weight-loss temperatures (T(L)) above 370 °C; no phase transition was observed before decomposition. The highest occupied molecular orbital (HOMO) levels of 1 and 2 are -5.3 and -4.9 eV, respectively, as measured by ultraviolet photoelectron spectroscopy. Thin-film X-ray diffraction and atomic force microscopy characterizations indicate that both oligomers form highly crystalline films with large domain sizes on octadecyltrimethoxysilane-modified substrates. Organic thin-film transistors with top-contact and bottom-gate geometry based on 1 and 2 exhibited mobilities up to 2.12 cm(2)/V·s for 1 and 1.39 cm(2)/V·s for 2 in an ambient atmosphere. 1-based devices exhibited great air and thermal stabilities, as evidenced by the slight performance degradation after 2 months of storage under ambient conditions and after thermal annealing at temperatures below 250 °C.

  9. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Heat exchange of the rat in thermoneutral zone temperature and comparison with heat exchange in ambient temperature over and under it].

    PubMed

    Rumiantsev, G V

    2011-08-01

    With the help of thermonetry and general calorimetry body temperature and heat production in ambient temperatures 20 degrees C, 28 degrees C, 33 degrees C were recorded. The experiments showed, that at the temperature 20 degrees C the rectal temperature was changing very little. But in ambient temperature 33 degrees C the rectal temperature was 40.5 +/- 0.1 degrees C.

  11. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  12. Thioesterase Superfamily Member 2/Acyl-CoA Thioesterase 13 (Them2/Acot13) Regulates Adaptive Thermogenesis in Mice*

    PubMed Central

    Kang, Hye Won; Ozdemir, Cafer; Kawano, Yuki; LeClair, Katherine B.; Vernochet, Cecile; Kahn, C. Ronald; Hagen, Susan J.; Cohen, David E.

    2013-01-01

    Members of the acyl-CoA thioesterase (Acot) gene family hydrolyze fatty acyl-CoAs, but their biological functions remain incompletely understood. Thioesterase superfamily member 2 (Them2; synonym Acot13) is enriched in oxidative tissues, associated with mitochondria, and relatively specific for long chain fatty acyl-CoA substrates. Using Them2−/− mice, we have demonstrated key roles for Them2 in regulating hepatic glucose and lipid metabolism. However, reduced body weights and decreased adiposity in Them2−/− mice observed despite increased food consumption were not well explained. To explore a role in thermogenesis, mice were exposed to ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C). In response to short term (24-h) exposures to decreasing ambient temperatures, Them2−/− mice exhibited increased adaptive responses in physical activity, food consumption, and energy expenditure when compared with Them2+/+ mice. By contrast, genotype-dependent differences were not observed in mice that were equilibrated (96 h) at each ambient temperature. In brown adipose tissue, the absence of Them2 was associated with reduced lipid droplets, alterations in the ultrastructure of mitochondria, and increased expression of thermogenic genes. Indicative of a direct regulatory role for Them2 in heat production, cultured primary brown adipocytes from Them2−/− mice exhibited increased norepinephrine-mediated triglyceride hydrolysis and increased rates of O2 consumption, together with elevated expression of thermogenic genes. At least in part by regulating intracellular fatty acid channeling, Them2 functions in brown adipose tissue to suppress adaptive increases in energy expenditure. PMID:24072708

  13. Synthesis and characterization of γ-Fe2O3 NPs on silicon substrate for power device application

    NASA Astrophysics Data System (ADS)

    Hussein Nurul Athirah, Abu; Bee Chin, Ang; Yew Hoong, Wong; Boon Hoong, Ong; Aainaa Aqilah, Baharuddin

    2018-06-01

    Maghemite nanoparticles (γ-Fe2O3 NPs) were synthesized using Massart procedure. The formation reaction were optimized by varying the concentration of ferric nitrate solution (Fe(NO3)3) (0.1, 0.3, 0.5, 0.7 and 1.0 M). All samples were characterized by means of x-ray Diffractometer (XRD), Raman Spectroscopy, Transmission Electron Microscope (TEM) and Alternating Gradient Magnetometer (AGM). The smallest size of the NPs were chosen to be deposited on Silicon (100) substrate by spin coating technique. Annealing process of the samples were performed in Argon ambient at different temperatures (600, 700, 800 and 900°) for 20 min. Metal-oxide-semiconductor capacitors were then fabricated by depositing Aluminium as the gate electrode. The effect of the annealing process on the structural and electrical properties of γ-Fe2O3 NPs thin film were investigated. The structural properties of the deposited thin film were evaluated by XRD analysis, Atomic Force Microscopy (AFM) and Raman Analysis. On the other hand, the electrical properties was conducted by current-voltage analysis. It was revealed that the difference in the annealing temperature affect the grain size, surface roughness, distribution of the nanoparticles as well as the electrical performance of the samples where low annealing temperature (600 °C) gives low leakage current while high annealing temperature (900 °C) gives high electrical breakdown.

  14. Electronic transport in graphene-based heterostructures

    NASA Astrophysics Data System (ADS)

    Tan, J. Y.; Avsar, A.; Balakrishnan, J.; Koon, G. K. W.; Taychatanapat, T.; O'Farrell, E. C. T.; Watanabe, K.; Taniguchi, T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.

    2014-05-01

    While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ˜0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ˜ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ˜ 10 000 cm2/V s) and G/GaSe (μ ˜ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.

  15. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  16. Growth and characterization of V2 O5 thin film on conductive electrode.

    PubMed

    Mola, Genene T; Arbab, Elhadi A A; Taleatu, Bidini A; Kaviyarasu, K; Ahmad, Ishaq; Maaza, M

    2017-02-01

    Vanadium pentoxide V 2 O 5 thin films were grown at room temperature on ITO coated glass substrates by electrochemical deposition. The resulting films were annealed at 300, 400 and 500°C for 1 h in ambient environment. The effect of heat treatment on the films properties such as surface morphology, crystal structure, optical absorption and photoluminescence were investigated. The x-ray diffraction study showed that the films are well crystallized with temperatures. Strong reflection from plane (400) indicated the film's preferred growth orientation. The V 2 O 5 films are found to be highly transparent across the visible spectrum and the measured photoluminescence quenching suggested the film's potential application in OPV device fabrication. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. Transport Mechanisms in Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fung, A. W. P.

    1996-03-01

    Recent success in fabricating field-effect transistors with polycrystalline α-sexithiophene (α-6T) has allowed us to study charge transport in this organic semiconductor. The appealing structural property that the oligomer chains are seated almost perpendicular to the substrate provides a model π-conjugated system which we find exhibits band transport at low temperatures. We observe a behavioral transition around 50K which is consistent with the metal-insulator transition in Holstein's small-polaron theory. The fact that we can observe intrinsic behavior means that the ambient-temperature mobility obtained in these transistors is optimal for α-6T. Agreement with the Holstein theory provides us with a prescription for rational design of materials for organic transistor applications. Work done in collaboration with L. Torsi, A. Dodabalapur, L. J. Rothberg and H. E. Katz.

  18. Tandem cyclopropanation with dibromomethane under Grignard conditions.

    PubMed

    Brunner, Gerhard; Eberhard, Laura; Oetiker, Jürg; Schröder, Fridtjof

    2008-10-03

    Tertiary Grignard reagents and dibromomethane efficiently cyclopropanate allylic (and certain homoallylic) magnesium and lithium alcoholates at ambient temperature in ether solvents. Lithium (homo)allyl alcoholates are directly cyclopropanated with magnesium and CH2Br2 under Barbier conditions at higher temperatures. The reaction rates depend on the substitution pattern of the (homo)allylic alcoholates and on the counterion with lithium giving best results. Good to excellent syn-selectivities are obtained from alpha-substituted substrates, which are in accord with a staggered Houk model. In tandem reactions, cyclopropyl carbinols are obtained from allyloxylithium or -magnesium intermediates, generated in situ by alkylation of conjugated aldehydes, ketones, and esters as well as from allyl carboxylates or vinyloxiranes. Using this methodology, numerous fragrance ingredients and their precursors were efficiently converted to the corresponding cyclopropyl carbinols.

  19. An ultra-lightweight design for imperceptible plastic electronics.

    PubMed

    Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao

    2013-07-25

    Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.

  20. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    PubMed Central

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  1. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  2. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    PubMed

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  3. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOEpatents

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  4. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  5. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.

    2013-02-01

    The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a

  6. Short-term departures from an optimum ambient temperature are associated with increased risk of out-of-hospital cardiac arrest.

    PubMed

    Dahlquist, Marcus; Raza, Auriba; Bero-Bedada, Getahun; Hollenberg, Jacob; Lind, Tomas; Orsini, Nicola; Sjögren, Bengt; Svensson, Leif; Ljungman, Petter L

    2016-07-01

    Associations have been reported between daily ambient temperature and all-cause and cardiovascular mortality. However, the potential harmful effect of temperature on out-of-hospital cardiac arrest (OHCA) is insufficiently studied. The objective of this study was to investigate the short-term association between ambient temperature and the occurrence of OHCA. In 5961 cases of OHCAs treated by Emergency Medical Service occurring in Stockholm County we investigated the association between the preceding 24-h and 1h mean ambient temperature, obtained from a fixed monitoring station, and OHCA using a time-stratified case-crossover design. We observed a V-shaped relationship between preceding mean 24-h and 1-h ambient temperature and the occurrence of OHCAs. For mean 24-h temperature we observed an odds ratio (OR) of 1.05 (1.00-1.11) for each 5°C below the optimum temperature and 1.05 (0.96-1.18) for each 5°C above the optimum. We observed similar results for 1-h mean temperature exposure. Results for temperatures above the optimum temperature showed evidence of confounding by ozone. Ambient temperature below an optimum temperature was associated with increased risk of OHCA in Stockholm. Temperature above an optimum temperature was not significantly associated with OHCA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h

  8. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly

    PubMed Central

    Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.

    2015-01-01

    Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469

  9. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    PubMed

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  10. Influence of annealing environment on the ALD-Al2O3/4H-SiC interface studied through XPS

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Arshad, Muhammad; Saveda Suvanam, Sethu; Hallén, Anders

    2018-03-01

    The instability of Al2O3/4H-SiC interface at various process temperatures and ambient is investigated by the annealing of Al2O3/4H-SiC in low vacuum conditions as well as in N2 environments. Atomic layer deposited Al2O3 on a 4H-SiC substrate with 3, 6 and 10 nm of thicknesses is treated at 300, 500, 700 and 900 °C under the vacuum level of 10-1 torr. The as-deposited and annealed structures are analyzed using x-ray photoelectron spectroscopy. It is hypothesized that the minute quantity of oxygen present in low vacuum conditions diffuses through thin layers of Al2O3 and helps in forming SiO2 at the interface even at low temperatures (i.e. 300 °C), which plays a pivotal role in determining the electrical properties of the interface. It is also proved that the absence of oxygen in the ambient prevents the formation of SiO2 at low temperatures. Additionally, it is observed that Al-OH is present in as-deposited layers, which gradually reduces after annealing. However, at around 700 °C, the concentration of oxygen in the whole structure increases to maximum and reduces at 900 °C.

  11. Monolayer and/or few-layer graphene on metal or metal-coated substrates

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2015-04-14

    Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.

  12. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films

    PubMed Central

    Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  13. [Effects of annealing temperature on the structure and optical properties of ZnMgO films prepared by atom layer deposition].

    PubMed

    Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua

    2014-07-01

    In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.

  14. Effects of ingested crude and dispersed crude oil on thermoregulation in ducks (Anas platyrhynchos)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenssen, B.M.

    1989-02-01

    Thermoregulatory effects of ingested doses of Statfjord A crude oil and of this oil mixed with the dispersant Finasol OSR-5 were studied in adult domestic ducks (Anas platyrhynchos) exposed to ambient temperatures of +16 degrees C and -17 degrees C. The data show that ingestion of both the crude and the oil-dispersant mixture resulted in an increased body temperature during exposure to the low ambient temperature (-17 degrees C). Neither contaminant had any effect on body temperature during exposure to +16 degrees C. Ingestion of the contaminants had no effect on metabolic heat production at either ambient temperature. The breastmore » skin temperature of the ducks in both contaminated groups was significantly decreased when the ducks were exposed to the low ambient temperature. This indicates that the increase in body temperature observed in the contaminated ducks at the low ambient temperature is due to an increase in peripheral vasoconstriction.« less

  15. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    PubMed

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.

  16. Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera:Vespertilionidae) when euthermic and torpid.

    PubMed

    Hosken, D J; Withers, P C

    1997-01-01

    The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 degrees C. Torpid bats thermoconform at moderate ambient temperature, with body temperature approximately ambient temperature, and have a low rate of oxygen consumption determined primarily by Q10 effects. At low ambient temperature (< 10 degrees C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature.

  17. Plant molecular responses to the elevated ambient temperatures expected under global climate change.

    PubMed

    Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng

    2018-01-02

    Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.

  18. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of...

  19. Effect of Ambient Temperature on the Human Tear Film.

    PubMed

    Abusharha, Ali A; Pearce, E Ian; Fagehi, Raied

    2016-09-01

    During everyday life, the tear film is exposed to a wide range of ambient temperatures. This study aims to investigate the effect of ambient temperature on tear film physiology. A controlled environment chamber was used to create different ambient temperatures (5, 10, 15, 20, and 25°C) at a constant relative humidity of 40%. Subjects attended for two separate visits and were exposed to 25, 20, and 15°C at one visit and to 10 and 5°C at the other visit. The subjects were exposed to each room temperature for 10 min before investigating tear film parameters. The order of the visits was random. Tear physiology parameters assessed were tear evaporation rate, noninvasive tear break-up time (NITBUT), lipid layer thickness (LLT), and ocular surface temperature (OST). Each parameter was assessed under each condition. A threefold increase in tear evaporation rate was observed as ambient temperature increased to 25°C (P=0.00). The mean evaporation rate increased from 0.056 μL/min at 5°C to 0.17 μL/min at 25°C. The mean NITBUT increased from 7.31 sec at 5°C to 12.35 sec at 25°C (P=0.01). A significant change in LLT was also observed (P=0.00), LLT median ranged between 20 and 40 nm at 5 and 10°C and increased to 40 and 90 nm at 15, 20, and 25°C. Mean reduction of 4°C OST was observed as ambient temperature decreased from 25 to 5°C. Ambient temperature has a considerable effect on human tear film characteristics. Tear evaporation rate, tear LLT, tear stability, and OST were considerably affected by ambient temperature. Chronic exposure to low ambient temperature would likely result in symptoms of dry eye and ultimately ocular surface disorders.

  20. Electrical bushing for a superconductor element

    DOEpatents

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  1. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    PubMed

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  2. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  3. Ambient temperature and volume of perihematomal edema in acute intracerebral haemorrhage: the INTERACT1 study.

    PubMed

    Zheng, Danni; Arima, Hisatomi; Heeley, Emma; Karpin, Anne; Yang, Jie; Chalmers, John; Anderson, Craig S

    2015-01-01

    As no human data exist, we aimed to determine the relation between ambient temperature and volume of perihematomal 'cerebral' edema in acute spontaneous intracerebral haemorrhage (ICH) among Chinese participants of the pilot phase, Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT1). INTERACT1 was a multicenter, open, blind outcome assessed, randomized controlled trial of intensive (systolic target <140 mmHg) vs. guideline-recommended (systolic target <180 mmHg) blood pressure (BP) lowering in 404 patients with acute ICH. Data on ambient temperature (mean, minimum, maximum, and range) on the day of each participant's ICH obtained from China Meteorological Data Sharing Service System were linked to other data including edema volumes. Multivariable regression analyses were performed to evaluate association between ambient temperature and edema volumes. A generalized linear regression model with a generalized estimating equations approach (GEE) was used to assess any association of ambient temperature and change in edema volume over 72 h. A total of 250 of all 384 Chinese participants had complete data that showed positive associations between ambient temperature (mean and minimum temperatures) and edema volumes at each time point over 72 h after hospital admission (all P < 0·05). All temperature parameters except diurnal temperature range were positively associated with edema volume after adjustment for confounding variables (all P < 0·02). An apparent positive association exists between ambient temperature and perihematomal edema volume in acute spontaneous ICH. © 2014 World Stroke Organization.

  4. Real-time monitoring of steady-state pulsed chemical beam epitaxy by p-polarized reflectance

    NASA Astrophysics Data System (ADS)

    Bachmann, K. J.; Sukidi, N.; Höpfner, C.; Harris, C.; Dietz, N.; Tran, H. T.; Beeler, S.; Ito, K.; Banks, H. T.

    1998-01-01

    The structure in the p-polarized reflectance (PR) intensity Rp4( t) - observed under conditions of pulsed chemical beam epitaxy (PCBE) - is modeled on the basis of the four-layer stack: ambient/surface reaction layer (SRL)/epilayer/substrate. Linearization of the PR intensity with regard to the phase factor associated with the SRL results in a good approximation that can be expressed as Rp4 = Rp3 + ΔRp. Rp3 is the reflectivity of the three-layer stack ambient-epilayer-substrate. ΔRp describes the properties of the SRL. An explicit relation is derived between ΔRp( t) and the time-dependent surface concentrations ch( t) ( h = 1, 2, …, N) of the constituents of the SRL, which holds for conditions of submonolayer coverage of the surface by source vapor molecules. Under conditions of low temperature PCBE at high flux, the SRL is expected to exhibit nonideal behavior, mandating replacement of the surface concentrations by activities. Also, in this case, the thickness of the SRL must be represented in terms of partial molar volumina Vh. Since the relation between ΔRp( t) and the activities of reactants, intermediates and products of the chemical reactions driving heteroepitaxial growth is non-linear, the extraction of kinetic parameters from the measured time dependence of the PR signal generally requires numerical modeling.

  5. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  6. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  7. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  8. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  9. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  10. Influence of p-GaN annealing on the optical and electrical properties of InGaN/GaN MQW LEDs

    NASA Astrophysics Data System (ADS)

    Sun, Li; Weng, Guo-En; Liang, Ming-Ming; Ying, Lei-Ying; Lv, Xue-Qin; Zhang, Jiang-Yong; Zhang, Bao-Ping

    2014-06-01

    Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.

  11. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  12. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  13. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow discharging time constants. Finally, to circumvent fabrication challenges on predetermined complex shapes, like curved mirror optics, a technique to transfer electronics from a rigid substrate to a flexible substrate is used. This technique allows various thin films, regardless of their deposition temperature, to be transferred to flexible substrates. Finally, ultra-low power operation of ZnO TFT gas sensors was demonstrated. The ZnO ozone sensors were optimized to operate with excellent electrical stability in ambient conditions, without using elevated temperatures, while still providing good gas sensitivity. This was achieved by using a post-deposition anneal and by partially passivating the contact regions while leaving the semiconductor sensing area open to the ambient. A novel technique to reset the gas sensor using periodic pulsing of a UV light over the sensor results in less than 25 milliseconds recovery time. A pathway to achieve gas selectivity by using organic thin-film layers as filters deposited over the gas sensors tis demonstrated. The ZnO ozone sensor TFTs and the UV light operate at room temperature with an average power below 1 muW.

  14. Electrical Transport Mechanisms and Photoconduction in Undoped Crystalline Flash-Evaporated Lead Iodide Thin Films

    NASA Astrophysics Data System (ADS)

    Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader

    2018-03-01

    The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated (e-h) pairs at higher temperatures.

  15. Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Stahl, Phil; Hogue, Bill; Hadaway, James

    2004-01-01

    SuperSiC, a low areal density material, developed by POCO Graphite, have been used as mirror substrate for high energy lasers, laser radar systems, surveillance, telescopes, scan mirrors and satellites. SuperSiC has excellent thermal properties and cryogenic stability. It exhibits exceptional polishability for reflective optics with high strength, stiffness, and excellent thermal conductivity. A lightweighted 0.2-diameter polished SuperSic mirror was tested at cryogenic temperature at NASMSFC. Optical test results showed 6nm cry0 deformation from ambient to 30 degrees Kelvin and little to no change in its surface figure due to cry0 cycling.

  16. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  17. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

    PubMed Central

    Řezáčová, Veronika; Zemková, Lenka; Beskid, Olena; Püschel, David; Konvalinková, Tereza; Hujslová, Martina; Slavíková, Renata; Jansa, Jan

    2018-01-01

    Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF. PMID:29681914

  18. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    PubMed

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Tomo; Shahed, Syed Mohammad Fakruddin; Sainoo, Yasuyuki

    We formed an epitaxial film of CeO{sub 2}(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce{sup 4+}/Ce{sup 3+} ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO{sub 2}(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown atmore » 1060 K was more than twice of that grown at 1040 K. On the surface grown above the reduction temperature, the surface with a wide terrace and a sharp step was confirmed, but small dots were also seen in the terrace part, which are considerably Ce atoms adsorbed at the oxygen vacancies on the reduced surface. This experiment demonstrated that it is required to use the substrate temperature close to the reduction temperature to obtain CeO{sub 2}(111) with wide terrace width and sharp step edges.« less

  20. Water-based sol-gel synthesis of hydroxyapatite: process development.

    PubMed

    Liu, D M; Troczynski, T; Tseng, W J

    2001-07-01

    Hydroxyapatite (HA) ceramics were synthesized using a sol-gel route with triethyl phosphite and calcium nitrate as phosphorus and calcium precursors, respectively. Two solvents, water and anhydrous ethanol, were used as diluting media for HA sol preparation. The sols were stable and no gelling occurred in ambient environment for over 5 days. The sols became a white gel only after removal of the solvents at 60 degrees C. X-ray diffraction showed that apatitic structure first appeared at a temperature as low as 350 degrees C. The crystal size and the HA content in both gels increase with increasing calcination temperature. The type of initial diluting media (i.e., water vs. anhydrous ethanol) did not affect the microstructural evolution and crystallinity of the resulting HA ceramic. The ethanol-based sol dip-coated onto a Ti substrate, followed by calcination at 450 degrees C, was found to be porous with pore size ranging from 0.3 to 1 microm. This morphology is beneficial to the circulation of physiological fluid when the coating is used for biomedical applications. The satisfactory adhesion between the coating and substrate suggests its suitability for load-bearing uses.

  1. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  2. Hydrostatic temperature calculations. [in synoptic meteorology

    NASA Technical Reports Server (NTRS)

    Raymond, William H.

    1987-01-01

    Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).

  3. AVGAS/AUTOGAS (Aviation Gasoline/Automobile Gasoline) Comparison. Winter Grade Fuels.

    DTIC Science & Technology

    1986-07-01

    mass MAP Manifold pressure - inHg MON Motor Octane Number NIPER National Institute of Petroleum and Energy Resources Pamb Ambient pressure - inHg...pressure - psig si Sea level (used as a subscript) STC Supplemental Type Certificate Tamb Ambient temperature - degC or degF Tdew Dew point - degC or degF...temperature deg C #2 exhaust gas temperature deg C #3 exhaust gas temperature deg C #4 exhaust gas temperature deg C Ambient air temperature deg C 6

  4. No relevant impact of ambient temperature on disability measurements in a large cohort of patients with multiple sclerosis.

    PubMed

    Stellmann, J-P; Young, K L; Vettorazzi, E; Pöttgen, J; Heesen, C

    2017-06-01

    Many patients with multiple sclerosis (MS) report a worsening of symptoms due to high ambient temperatures, but objective data about this association are rare and contradictory. The aim of this study was to investigate the influence of ambient temperature on standard clinical tests. We extracted the Symbol Digit Modality Test, Nine Hole Peg Test, Timed 25 Foot Walk (T25FW), Timed Tandem Walk, Expanded Disability Status Scale (EDSS) and quality-of-life items on cognition, fatigue and depression from our clinical database and matched them to historical temperatures. We used linear mixed-effect models to investigate the association between temperature and outcomes. A total of 1254 patients with MS (mean age, 42.7 years; 69.9% females; 52.1% relapsing-remitting MS, mean EDSS, 3.8) had 5751 assessments between 1996 and 2012. We observed a worsening in the T25FW with higher ambient temperatures in moderately disabled patients (EDSS ≥ 4) but not in less disabled patients. However, an increase of 10°C prolonged the T25FW by just 0.4 s. Other outcomes were not associated with ambient temperatures. Higher ambient temperature might compromise walking capabilities in patients with MS with a manifest walking impairment. However, effects are small and not detectable in mildly disabled patients. Hand function, cognition, mood and fatigue do not appear to be correlated with ambient temperature. © 2017 EAN.

  5. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere

    PubMed Central

    Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats. PMID:29190767

  6. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere.

    PubMed

    Fabre, Anne-Lise; Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius' law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.

  7. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications.

    PubMed

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-17

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  8. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  9. [Influence of daily ambient temperature on mortality and years of life lost in Chongqing].

    PubMed

    Li, Jing; Luo, Shuquan; Ding, Xianbin; Yang, Jun; Li, Jing; Liu, Xiaobo; Gao, Jinghong; Xu, Lei; Tang, Wenge; Liu, Qiyong

    2016-03-01

    To evaluate the influence of extreme ambient temperature on mortality and years of life lost (YLL) in Chongqing. The daily mortality, meteorology and air pollution index data in Chongqing from the 1(st) January 2010 to the 31(st) December 2013 were collected. Distributed lag non-linear model (DLNM) was used to assess the influence of daily ambient temperature on daily number of deaths and daily YLL respectively. The delayed and cumulative effects of extreme temperature on sex, age, and cause-specific mortality were also assessed. The relationships between ambient temperature and non-accidental, cardiovascular disease and respiratory disease mortalities and YLL were U-shaped or W-shaped. The effect of heat was obvious on that day, peaked on day 7, and lasted for two weeks, whereas the effect of cold was obvious a week later and lasted for a month. As 1 ℃ increase of ambient temperature, the cumulative relative risks (CRR) of high temperature across lag 0-7 days on non-accidental, respiratory disease and cardiovascular disease mortalities were 1.05 (95%CI: 1.03-1.07), 1.08 (95%CI: 1.05-1.11) and 1.05 (95%CI: 1.01-1.09) respectively. The effects of heat on YLL for each cause were 23.81 (95%CI: 12.31-35.31), 14.34 (95%CI: 8.98-19.70) and 4.43 (95%CI: 1.64-7.21), respectively. On cold days, 1 ℃ decrease of ambient temperature was correlated with an increase in CRR of 1.06 (95%CI: 1.04-1.08), 1.09 (95%CI:1.06-1.12) and 1.06 (95%CI: 1.02-1.11) from lag 0 to 14 for non-accidental, respiratory disease and cardiovascular disease mortalities, respectively. The estimated YLL were 23.34 (95%CI: 10.04-36.64), 16.39 (95%CI: 10.19-22.59) and 2.61 (95%CI: -0.61-5.82). People aged ≥65 years tend to have higher CRR and YLL than those aged <65 years. On high temperature days, the CRR in women was higher than that in men, while the YLL in women was lower than that in men. On low temperature days, both the CRR and YLL in women were higher than those in men. Both high and low ambient temperature have adverse health effects. People aged ≥65 years are more sensitive to both high and low ambient temperature. Younger men are more sensitive to high ambient temperature and women and elder men are sensitive to low ambient temperature. It is necessary to take targeted measures to protect the population in Chongqing from the adverse influence of extreme ambient temperature.

  10. The Genetic Control of Reproductive Development under High Ambient Temperature.

    PubMed

    Ejaz, Mahwish; von Korff, Maria

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1 Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. The Genetic Control of Reproductive Development under High Ambient Temperature1[OPEN

    PubMed Central

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. PMID:28049855

  12. Measurement and thermal modeling of sapphire substrate temperature at III-Nitride MOVPE conditions

    DOE PAGES

    Creighton, J. Randall; Coltrin, Michael E.; Figiel, Jeffrey J.

    2017-04-01

    Here, growth rates and alloy composition of AlGaN grown by MOVPE is often very temperature dependent due to the presence of gas-phase parasitic chemical processes. These processes make wafer temperature measurement highly important, but in fact such measurements are very difficult because of substrate transparency in the near- IR (~900 nm) where conventional pyrometers detect radiation. The transparency problem can be solved by using a mid-IR pyrometer operating at a wavelength (~7500 nm) where sapphire is opaque. We employ a mid- IR pyrometer to measure the sapphire wafer temperature and simultaneously a near-IR pyrometer to measure wafer pocket temperature, whilemore » varying reactor pressure in both a N 2 and H 2 ambient. Near 1300 °C, as the reactor pressure is lowered from 300 Torr to 10 Torr the wafer temperature drops dramatically, and the ΔT between the pocket and wafer increases from ~20 °C to ~250 °C. Without the mid-IR pyrometer the large wafer temperature change with pressure would not have been noted. In order to explain this behavior we have developed a quasi-2D thermal model that includes a proper accounting of the pressure-dependent thermal contact resistance, and also accounts for sapphire optical transmission. The model and experimental results demonstrate that at most growth conditions the majority of the heat is transported from the wafer pocket to the wafer via gas conduction, in the free molecular flow limit. In this limit gas conductivity is independent of gap size but first order in pressure, and can quantitatively explain results from 20 to 300 Torr. Further analysis yields a measure of the thermal accommodation coefficients; α(H 2) =0.23, α(N 2) =0.50, which are in the range typically measured.« less

  13. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  14. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  15. Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Caliendo, Cinzia

    2006-09-01

    The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic alcohol was tested by means of a high-frequency (670MHz) high-sensitivity Si /AlN resonator sensor.

  16. Body Temperature Regulation in Hot Environments.

    PubMed

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future.

  17. Body Temperature Regulation in Hot Environments

    PubMed Central

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  18. Genetic variation for farrowing rate in pigs in response to change in photoperiod and ambient temperature.

    PubMed

    Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F

    2016-08-01

    Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.

  19. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen.

    PubMed

    Sun, Zhihong; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2013-12-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future.

  20. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    PubMed Central

    Niinemets, Ülo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol−1 and elevated [CO2] of 780 μmol mol−1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future. PMID:24153419

  1. KCl-Induced High-Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air

    NASA Astrophysics Data System (ADS)

    Jafari, Reza; Sadeghimeresht, Esmaeil; Farahani, Taghi Shahrabi; Huhtakangas, Matti; Markocsan, Nicolaie; Joshi, Shrikant

    2018-02-01

    KCl-induced high-temperature corrosion behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y and Ni21Cr9Mo) under KCl deposit has been investigated in ambient air at 600 °C up to 168 h. The coatings were deposited onto 16Mo3 steel—a widely used boiler tube material. Uncoated substrate, 304L and Sanicro 25 were used as reference materials in the test environment. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated degradation to the coatings. All coatings provided better corrosion resistance compared to the reference materials. The alumina-forming Ni5Al coating under KCl deposit was capable of forming a more protective oxide scale compared to the chromia-forming coatings as penetration of Cl through diffusion paths was hindered. Both active corrosion and chromate formation mechanisms were found to be responsible for the corrosion damages. The corrosion resistance of the coatings based on the microstructure analysis and kinetics had the following ranking (from the best to worst): Ni5Al > Ni21Cr > Ni21Cr7Al1Y > Ni21Cr9Mo.

  2. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    PubMed

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  3. Ambient Temperature, Fuel Economy, Emissions, and Trip Length

    DOT National Transportation Integrated Search

    1979-08-01

    This report examines the relationship among automotive fuel economy, ambient temperature, cold-start trip length, and drive-train component temperatures of four 1977 vehicles. Fuel economy, exhaust emission, and drive-train temperatures were measured...

  4. Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction

    NASA Astrophysics Data System (ADS)

    Berahim, A. N.; Zaharudin, M. Z.; Ani, M. H.; Arifin, S. K.

    2018-01-01

    The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

  5. Ambient Temperature and Morbidity: A Review of Epidemiological Evidence

    PubMed Central

    Ye, Xiaofang; Wolff, Rodney; Yu, Weiwei; Vaneckova, Pavla; Pan, Xiaochuan

    2011-01-01

    Objective: In this paper, we review the epidemiological evidence on the relationship between ambient temperature and morbidity. We assessed the methodological issues in previous studies and proposed future research directions. Data sources and data extraction: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of noncommunicable diseases published in refereed English journals before 30 June 2010. Forty relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heat wave on morbidity, and 1 assessed both temperature and heat wave effects. Data synthesis: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of nonlinear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared with that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded or modified by sociodemographic factors and air pollution. Conclusions: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable. PMID:21824855

  6. Mg2Sn heterostructures on Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Dózsa, L.; Galkin, N. G.; Pécz, B.; Osváth, Z.; Zolnai, Zs.; Németh, A.; Galkin, K. N.; Chernev, I. M.; Dotsenko, S. A.

    2017-05-01

    Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg2Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg2Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg2Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg2Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg2Sn layer. The measurements indicate the necessity of protective layer grown over the Mg2Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.

  7. The effect of ambient temperature on infrared thermographic images of joints in the distal forelimbs of healthy racehorses.

    PubMed

    Soroko, Maria; Howell, Kevin; Dudek, Krzysztof

    2017-05-01

    The aim of the study was to describe the dependence on ambient temperature of distal joint temperature at the forelimbs of racehorses. The study also investigated the influence of differing ambient temperatures on the temperature difference between joints: this was measured ipsilaterally (i.e. between the carpal and fetlock joints along each forelimb) and contralaterally (i.e. between the same joints of the left and right forelimbs). Sixty-four healthy racehorses were monitored over 10 months. At each session, three thermographic images were taken of the dorsal, lateral and medial aspects of the distal forelimbs. Temperature measurements were made from regions of interest (ROIs) covering the carpal and fetlock joints. There was a strong correlation between ambient temperature and absolute joint temperature at all ROIs. The study also observed a moderate correlation between ambient temperature and the ipsilateral temperature differences between joints when measured from the medial and lateral aspects. No significant correlation was noted when measured dorsally. The mean contralateral temperature differences between joints were all close to 0°C. The data support previous reports that the temperature distribution between the forelimbs of the healthy equine is generally symmetric, although some horses differ markedly from the average findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis.

    PubMed

    Blank, Jason M; Morrissette, Jeffery M; Farwell, Charles J; Price, Matthew; Schallert, Robert J; Block, Barbara A

    2007-12-01

    Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8-25 degrees C and swimming speeds of 0.75-1.75 body lengths (BL) s(-1). Pacific bluefin swimming at 1 BL s(-1) per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15 degrees C to 20 degrees C. Minimum MO2 of 175+/-29 mg kg(-1) h(-1) was recorded at 15 degrees C, while both cold and warm temperatures resulted in increased metabolic rates of 331+/-62 mg kg(-1) h(-1) at 8 degrees C and 256+/-19 mg kg(-1) h(-1) at 25 degrees C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.

  9. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  10. Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis.

    PubMed

    Smith, Wally R; Coyne, Patrick; Smith, Virginia S; Mercier, Bruce

    2003-09-01

    Weather changes are among the proposed precursors of painful sickle cell crises. However, epidemiologic data are mixed regarding the relationship between ambient temperature and crisis frequency. To study this relationship among a local sickle cell disease population, emergency department (ED) visits and admissions were evaluated in adults with sickle cell crisis as the primary diagnosis at a major teaching hospital in a temperate climate. Official daily ambient temperatures (average for that day) were obtained from the National Climate Data Center for the days patients visited the ED or were hospitalized, and for 24 or 48 hours prior. Daily ED visit counts and admission counts were correlated with the visit/admission day's ambient temperature, with the ambient temperature 24 hours before admission, and with the magnitude of change in daily ambient temperature over the prior 24 or 48 hours. For all correlations, statistical significance was defined as a p value of <0.01 and clinical significance was defined as a moderate or greater correlation, absolute value of r >/= 0.30. ED visits or admissions correlated statistically, but not clinically, with daily temperatures. On days when temperatures were <32 degrees F or >80 degrees F, these correlations were statistically significant, but clinical significance was variable. ED visits or admissions correlated only statistically with temperatures 24 hours prior, even on days when temperatures were <32 degrees F. When temperatures were >80 degrees F, the correlations were statistically significant, but there was a reverse, clinically significant correlation between admissions and temperatures. Finally, only statistically significant correlations were found between ED visits or admissions and change in temperature over the prior 24 or 48 hours. Weak or inconsistent confirmation of a relationship was found between daily ambient temperatures and ED visits or hospital admissions for sickle cell crises.

  11. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.

    PubMed

    Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2014-12-10

    In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.

  12. Well-Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward High-Performance Flexible Field-Effect Transistors.

    PubMed

    Shi, Keli; Zhang, Weifeng; Gao, Dong; Zhang, Shiying; Lin, Zuzhang; Zou, Ye; Wang, Liping; Yu, Gui

    2018-03-01

    Conjugated polymers, which can be fabricated by simple processing techniques and possess excellent electrical performance, are key to the fabrication of flexible polymer field-effect transistors (PFETs) and integrated circuits. Herein, two ambipolar conjugated polymers based on (3E,7E)-3,7-bis(2-oxo-1H-pyrrolo[2,3-b]pyridin-3(2H)-ylidene)benzo[1,2-b:4,5-b']difuran-2,6(3H,7H)-dione and dithienylbenzothiadiazole units, namely PNBDOPV-DTBT and PNBDOPV-DTF2BT, are developed. Both copolymers possess almost planar conjugated backbone conformations and suitable highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels (-5.64/-4.38 eV for PNBDOPV-DTBT and -5.79/-4.48 eV for PNBDOPV-DTF2BT). Note that PNBDOPV-DTBT has a glass transition temperature (140 °C) lower than the deformation temperature of polyethylene terephthalate (PET), meaning well-ordered molecular packing can be obtained on PET substrate before its deformation in mild thermal annealing process. Flexible PFETs based on PNBDOPV-DTBT fabricated on PET substrates exhibit high and well-balanced hole/electron mobilities of 4.68/4.72 cm 2 V -1 s -1 under ambient conditions. After the further modification of Au source/drain electrodes with 1-octanethiol self-assembled monolayers, impressively high and well-balanced hole/electron mobilities up to 5.97/7.07 cm 2 V -1 s -1 are achieved in the flexible PFETs. Meanwhile, flexible complementary-like inverters based on PNBDOPV-DTBT on PET substrate also afford a much high gain of 148. The device performances of both the PFETs and inverters are among the highest values for ambipolar conjugated polymers reported to date. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 40 CFR 1042.515 - Test procedures related to not-to-exceed standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... altitudes up to 1,100 feet above sea level. (2) Ambient air temperature must be between 13 and 35 °C (or... the engine). (3) Ambient water temperature must be between 5 and 27 °C. (4) Ambient humidity must be... operating temperatures. For example, this would include only engine operation after starting and after the...

  14. Microbiological Studies of Semi-Preserved Natural Condiments Paste Stored in Refrigerator and Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Dien, H. A.; Montolalu, R. I.; Mentang, F.; Mandang, A. S. K.; Rahmi, A. D.; Berhimpon, S.

    2018-01-01

    The aims of this studies were to prepare juice and raw condiment to be come semipreserve pastes, and to do microbial assessments on the both pastes during storing in refrigerator and ambient temperatures. For both pastes in refrigerator, samples were taken at 0, 2, 4, 5, 6, 8, 10, 15, 20, 25, and 30 days, and in ambient temperature samples were taken at 0, 1, 2, 3, 4, and 6 days. Assessment were done for TPC, total coliform and E. coli, Salmonella sp, Staphylococcus sp., Vibrio sp., pH and water content. The results shown that juice paste stored in refrigerator still good until 30 days (TPC 1,5x104 CFU/g), and in ambient temperature still good until 6 days (2x104 CFU/g). Condiment paste stored in refrigerator still good until 30 days (6.5x103 CFU/g), and in ambient temperature still good until 6 days (1.17x104 CFU/g). However, recommended that condiment paste stored in ambient temperature only until 4 days (7.3x103CFU/g), while that juice paste until 5 days (7.8x103CFU/g). There were no pathogenic bacteria found in all samples.

  15. Does maternal exposure during pregnancy to higher ambient temperature increase the risk of hypospadias?

    PubMed

    Kilinc, Muhammet Fatih; Cakmak, Sedat; Demir, Demirhan Orsan; Doluoglu, Omer Gokhan; Yildiz, Yildiray; Horasanli, Kaya; Dalkilic, Ayhan

    2016-12-01

    The association between ambient temperature that the mother is exposed to during pregnancy and hypospadias has not been investigated by the studies, although the recent studies showed the correlation between some congenital malformations (congenital heart disease, neural tube defect, etc.) and ambient temperature. The aim was to investigate the relation between hypospadias and the ambient temperatures that the mother is exposed to during her pregnancy. The data of patients with hypospadias that had their gestational periods in Ankara and Istanbul regions, and had other urological treatments (circumcision, urinary tract infection, pyeloplasty, nephrolithotomy, etc.) between January 2000 and November 2015 were analyzed retrospectively. The ambient temperature at 8-14 weeks of gestation was investigated for each patient by reviewing the data of the General Directorate of Meteorology, since this period was risky for development of hypospadias. The data including ambient temperature that the pregnant mother was exposed to, maternal age, parity, economical status, gestational age at birth, and birth weight were compared between two groups. The retrospective nature of the study may be a potential source for selection bias. The data of 1,709 children that had hypospadias repair and 4,946 children that had other urological treatments between 2000 and 2015 were retrospectively analyzed. There were no differences between the groups for maternal age, parity, economical status, gestational age at birth, and birth weight (Table). Analysis of exposed maximum and average ambient temperatures at 8-14 weeks of gestation revealed that July and August, hot periods in summer time, were more prevalent in the hypospadias group (p = 0.01). The average and maximum monthly ambient temperatures during summer increased the risk for hypospadias (OR, 1.32; 95% CI, 1.08-1.52; and OR, 1.22; 95% CI, 0.99-1.54, respectively. In this paper, we evaluated the relation between hypospadias and the ambient temperatures that the mother is exposed during her pregnancy. The results of this study indicated that the high ambient temperatures the mother and fetus are exposed to at 8-14 weeks of gestation increased the risk of hypospadias in the offspring. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  16. Inadequate thermal refuge constrains landscape habitability for a grassland bird species

    PubMed Central

    Pierce, Brian L.

    2017-01-01

    Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite (Colinus virginianus; hereafter bobwhite) as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, grassland obligate species. We conducted a mensurative field experiment in the rolling plains of Texas, USA, a semi-arid ecosystem on the southwestern periphery of bobwhite range, to determine whether native bunch grasses, apparently suitable for bobwhite nesting, could reduce ambient temperature below levels harmful for eggs. During the nesting season, we compared temperature and relative humidity readings at daily heat maxima (i.e., the 3 h during each day with highest temperatures) during the nesting season over the course of two years at 63 suitable nest sites paired with 63 random locations (n = 126) using two sensors at ∼10 and ∼60 cm above ground level. Mean temperature at nest height was 2.3% cooler at nest sites (35.99 °C ± 0.07 SE) compared to random locations (36.81 °C ± 0.07 SE); at ambient height, nest sites were slightly cooler (32.78 °C ± 0.06 SE) than random location (32.99 °C ± 0.06 SE). Mean relative humidity at nest sites was greater at nest height (34.53% ± 0.112 SE) and ambient height (36.22% ± 0.10 SE) compared to random locations at nest (33.35% ± 0.12 SE) and ambient height (35.75% ± 0.10 SE). Based on these results, cover at sites that appear visually suitable for nesting by bobwhites and other ground nesting birds provided adequate thermal refuge in the rolling plains by maintaining cooler, moister microclimates than surrounding non-nesting locations. Post-hoc analyses of data revealed that habitat conditions surrounding suitable nest sites strongly influenced thermal suitability of the substrate. Given that eggs of bobwhites and probably other species would experience lethal temperatures without these thermal refuges in the context of proper habitat condition, nesting vegetation is a critical component of niche space for bobwhites and other ground nesting birds in semi-arid regions. Many contemporary land uses, however, degrade or destroy bunch grasses and grassland systems, and thus decrease landscape inhabitability. Conservationists working with obligate grassland species that require bunch grasses in semi-arid regions should develop land management strategies that maximize the availability of these thermal refuges across space and time. PMID:28828282

  17. Inadequate thermal refuge constrains landscape habitability for a grassland bird species.

    PubMed

    Tomecek, John M; Pierce, Brian L; Reyna, Kelly S; Peterson, Markus J

    2017-01-01

    Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite ( Colinus virginianus ; hereafter bobwhite) as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, grassland obligate species. We conducted a mensurative field experiment in the rolling plains of Texas, USA, a semi-arid ecosystem on the southwestern periphery of bobwhite range, to determine whether native bunch grasses, apparently suitable for bobwhite nesting, could reduce ambient temperature below levels harmful for eggs. During the nesting season, we compared temperature and relative humidity readings at daily heat maxima (i.e., the 3 h during each day with highest temperatures) during the nesting season over the course of two years at 63 suitable nest sites paired with 63 random locations ( n = 126) using two sensors at ∼10 and ∼60 cm above ground level. Mean temperature at nest height was 2.3% cooler at nest sites (35.99 °C ± 0.07 SE) compared to random locations (36.81 °C ± 0.07 SE); at ambient height, nest sites were slightly cooler (32.78 °C ± 0.06 SE) than random location (32.99 °C ± 0.06 SE). Mean relative humidity at nest sites was greater at nest height (34.53% ± 0.112 SE) and ambient height (36.22% ± 0.10 SE) compared to random locations at nest (33.35% ± 0.12 SE) and ambient height (35.75% ± 0.10 SE). Based on these results, cover at sites that appear visually suitable for nesting by bobwhites and other ground nesting birds provided adequate thermal refuge in the rolling plains by maintaining cooler, moister microclimates than surrounding non-nesting locations. Post-hoc analyses of data revealed that habitat conditions surrounding suitable nest sites strongly influenced thermal suitability of the substrate. Given that eggs of bobwhites and probably other species would experience lethal temperatures without these thermal refuges in the context of proper habitat condition, nesting vegetation is a critical component of niche space for bobwhites and other ground nesting birds in semi-arid regions. Many contemporary land uses, however, degrade or destroy bunch grasses and grassland systems, and thus decrease landscape inhabitability. Conservationists working with obligate grassland species that require bunch grasses in semi-arid regions should develop land management strategies that maximize the availability of these thermal refuges across space and time.

  18. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature.

    PubMed

    Speakman, John R; Heidari-Bakavoli, Sahar

    2016-08-01

    Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections between ambient temperature and obesity, but the direction of the effect is confused. No previous studies have explored the link of type 2 diabetes to ambient temperature. We used county level data for obesity and diabetes prevalence across the mainland USA and matched this to county level ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence of type 2 diabetes, and this significant effect remained when latitude was entered into the model as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity significantly, but may be useful to combat type 2 diabetes.

  19. Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime

    DOEpatents

    Chen, Zhizhang; Rohatgi, Ajeet

    1995-01-01

    A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.

  20. Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review.

    PubMed

    Paine, Martin R L; Barker, Philip J; Blanksby, Stephen J

    2014-01-15

    The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ambient intelligence application based on environmental measurements performed with an assistant mobile robot.

    PubMed

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-03-27

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.

  2. Ambient Intelligence Application Based on Environmental Measurements Performed with an Assistant Mobile Robot

    PubMed Central

    Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi

    2014-01-01

    This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile. PMID:24681671

  3. Low temperature limits photoperiod control of smolting in atlantic salmon through endocrine mechanisms

    USGS Publications Warehouse

    McCormick, S.D.; Moriyama, S.

    2000-01-01

    We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10??C or ambient temperature (2??C from January to April followed by seasonal increase) under simulated natural day length. At 10??C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na+K+-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na+K+-ATPase activity under both photoperiods occurred later at ambient temperature than at 10??C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10??C and remained elevated for 5-9 wk; the same photoperiod treatment at 2??C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10??C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10??C. Plasma triiodothyronine was initially higher at 10??C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na+K+-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.

  4. In situ crystallized zirconium phenylphosphonate films with crystals vertically to the substrate and their hydrophobic, dielectric, and anticorrosion properties.

    PubMed

    Cui, Zhaohui; Zhang, Fazhi; Wang, Lei; Xu, Sailong; Guo, Xiaoxiao

    2010-01-05

    The in situ crystallization technique has been utilized to fabricate zirconium phenylphosphonate (ZrPP) films with their hexagonal crystallite perpendicular to the copper substrate. The micro/nano roughness surface structure, as well as the intrinsic hydrophobic characteristic of the surface functional groups, affords ZrPP films excellent hydrophobicity with water contact angle (CA) ranging from 134 degrees to 151 degrees , without any low-surface-energy modification. Particularly, in the corrosive solutions such as acidic or basic solutions over a wide pH from 2 to 12, no obvious fluctuation in CA was observed for all the ZrPP film. The k values of the hydrophobic ZrPP films are in the low-k range (k < 3.0), meeting the development of ultra-large-scale integration (ULSI) circuits. The hydrophobicity feature is proposed to bear ZrPP film a more stable low-k value in an ambient atmosphere. Besides, the polarization current of ZrPP films is reduced by 2 orders of magnitude, compared to that of the untreated copper substrate. Even deposited in a vacuum oven for 30 days at room temperature, ZrPP films also show excellent corrosion resistance, indicating a stable anticorrosion property.

  5. Imaging chiral symmetry breaking from Kekule bond order in graphene

    DOE PAGES

    Gutiérrez, Christopher; Kim, Cheol -Joo; Brown, Lola; ...

    2016-05-23

    Chirality—or ‘handedness’—is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that thismore » interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. Furthermore, the Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.« less

  6. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    PubMed

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our results will also indicate whether archaeol can be used as a proxy of ambient water hydrogen isotopic compositions in hypersaline environments.

  8. Correlation between corneal and ambient temperature with particular focus on polar conditions.

    PubMed

    Slettedal, Jon Klokk; Ringvold, Amund

    2015-08-01

    To examine the relationship between human corneal and environmental temperature. An infrared camera was used to measure the corneal surface temperature in a group of healthy volunteers as well as in an experimental setting with donor corneas and an artificial anterior chamber, employing circulating saline at +37°C. Liquid nitrogen was used to obtain a very low temperature in the experimental setting. High ambient temperature measurements were performed in a sauna. In healthy volunteers, the cornea required at least 20-30 min to adapt to change in ambient temperature. The relationship between corneal and external temperature was relatively linear. At the two extremes, +83°C and -40°C, the corneal temperature was +42°C and +25.1°C, respectively. In the experimental setting, corneal temperature was +24.3°C at air temperature -40°C. A rather stable aqueous humour temperature of +37°C and high thermal conductivity of the corneal tissue prevent corneal frostbite even at extremely low ambient temperatures. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2004-05-01

    The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.

  10. Materials Study of NbN and Ta x N Thin Films for SNS Josephson Junctions

    DOE PAGES

    Missert, Nancy; Brunke, Lyle; Henry, Michael D.; ...

    2017-02-15

    We investigated properties of NbN and Ta xN thin films grown at ambient temperatures on SiO 2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N 2 gas flow. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N 2 gas flow during growth. High crystalline quality, (111) oriented NbN films with T c up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the Ta xN films depended upon both the N 2 partial pressure usedmore » during growth and the film thickness. Furthermore, the root mean square surface roughness of Ta xN films grown by MS increased as the film thickness decreased down to 10 nm.« less

  11. A multi-node model for transient heat transfer analysis of stratospheric airships

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Irfan; Pant, Rajkumar S.

    2017-06-01

    This paper describes a seven-node thermal model for transient heat transfer analysis of a solar powered stratospheric airship in floating condition. The solar array is modeled as a three node system, viz., outer layer, solar cell and substrate. The envelope is also modeled in three nodes, and the contained gas is considered as the seventh node. The heat transfer equations involving radiative, infra-red and conductive heat are solved simultaneously using a fourth order Runge-Kutta Method. The model can be used to study the effect of solar radiation, ambient wind, altitude and location of deployment of the airship on the temperature of the solar array. The model has been validated against some experimental data and numerical results quoted in literature. The effect of change in the value of some operational parameters on temperature of the solar array, and hence on its power output is also discussed.

  12. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.

    PubMed

    Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu

    2003-11-01

    The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.

  13. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    PubMed

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  14. Controllable growth of aluminum nanorods using physical vapor deposition

    PubMed Central

    2014-01-01

    This letter proposes and experimentally demonstrates that oxygen, through action as a surfactant, enables the growth of aluminum nanorods using physical vapor deposition. Based on the mechanism through which oxygen acts, the authors show that the diameter of aluminum nanorods can be controlled from 50 to 500 nm by varying the amount of oxygen present, through modulating the vacuum level, and by varying the substrate temperature. When grown under medium vacuum, the nanorods are in the form of an aluminum metal - aluminum oxide core-shell. The thickness of the oxide shell is ~2 nm as grown and is stable when maintained in ambient for 30 days or annealed in air at 475 K for 1 day. As annealing temperature is increased, the nanorod morphology remains stable while the ratio of oxide shell to metallic core increases, resulting in a fully aluminum oxide nanorod at 1,475 K. PMID:25170334

  15. Stainless steel/tin/glass coating as spectrally selective material for passive radiative cooling applications

    NASA Astrophysics Data System (ADS)

    Mouhib, T.; Mouhsen, A.; Oualim, E. M.; Harmouchi, M.; Vigneron, J. P.; Defrance, P.

    2009-02-01

    Glass substrates coated with a stainless steel-tin double layer were prepared in order to achieve the inverse greenhouse effect. The measurements of the optical properties of the samples indicate that the needed specific spectral selectivity is available. Practical tests of radiative cooling were performed during clear night using a blackbody radiator covered by the coated plate with glass facing the sky. The blackbody temperature was observed to be 6.0 °C below that of the ambient, and the cooling power was estimated to be 27.9 W/m 2. Diurnal measurements indicated that cooling of the blackbody radiator is achieved except for approximately 6 hours around noon.

  16. Biocatalysis: applications and potentials for the chemical industry.

    PubMed

    Thomas, Stuart M; DiCosimo, Robert; Nagarajan, Vasantha

    2002-06-01

    The chemical industry is exploring the use of renewable feed stocks to improve sustainability, prompting the exploration of bioprocesses for the production of chemicals. Attractive features of biological systems include versatility, substrate selectivity, regioselectivity, chemoselectivity, enantioselectivity and catalysis at ambient temperatures and pressures. However, a challenge facing bioprocesses is cost competitiveness with chemical processes because capital assets associated with the existing commercial processes are high. The chemical industry will probably use biotechnology with existing feed stocks and processes to extract higher values from feed stocks, process by-products and waste streams. In this decade, bioprocesses that offer either a process or a product advantage over traditional chemical routes will become more widely used.

  17. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. FOLIAR NITROGEN CONCENTRATIONS AND NATURAL ABUNDANCE OF 15N SUGGEST NITROGEN ALLOCATION PATTERNS OF DOUGLAS-FIR AND MYCORRHIZAL FUNGI DURING DEVELOPMENT IN ELEVATED CARBON DIOXIDE CONCENTRATION AND TEMPERATURE

    EPA Science Inventory

    In an experiment using Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings and a 2x2 factorial design in enclosed mesocosms, temperatures were maintained at ambient or +3.5 degrees C above ambient, and CO2 levels were maintained at ambient or 179 ppm above ambient. Two ...

  19. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  20. Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources

    EPA Science Inventory

    Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...

  1. Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature

    NASA Astrophysics Data System (ADS)

    Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan

    2010-02-01

    The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.

  2. Artificial larviposition sites for field collections of the puparia of tsetse flies Glossina pallidipes and G. m. morsitans (Diptera: Glossinidae).

    PubMed

    Muzari, M O; Hargrove, J W

    2005-06-01

    Tsetse flies Glossina pallidipes Austen and G. morsitans morsitans Westwood deposit their larvae in warthog burrows, in August-November, at Rekomitjie Research Station, Zambezi Valley, Zimbabwe. Artificial burrows, made from 200-l steel drums, were used to sample these flies and to collect their puparia. Sand-filled plastic trays in the burrows served as a substrate for larval deposition. The sand was covered with c. 2 cm of leaf litter after it was shown that only 3% of larvae were deposited on bare sand if both substrates were available. Other burrow modifications - artificially shading the burrow entrance, increasing the relative humidity inside the burrow, or reducing the size of the burrow entrance - significantly decreased deposition rates. The use of burrows in the hot season results in a reduction in the temperature experienced by the puparium towards an assumed optimum level of 26 degrees C. Artificial burrows maintained a mean temperature of 28.5 degrees C during October-November 1998, c. 2.5 degrees C cooler than ambient; earlier work has shown that natural burrows can be c. 5 degrees C cooler than ambient at these times. This may explain why natural burrows in full sunlight were used for larviposition, whereas artificial burrows were used only when they were in deep shade, and why significantly higher proportions of G. pallidipes were found in natural (66%) than in artificial burrows (34%). Better-insulated artificial burrows might produce more puparia with higher proportions of G. pallidipes. Burrows become waterlogged during the rains and may be too cool for optimum puparial development during the rest of the year. The percentages of G. m. morsitans in catches of females from artificial burrows, refuges and odour-baited traps were 34, 26 and < 10% respectively. Traps are biased in favour of G. pallidipes; artificial burrows may show a bias in favour of G. m. morsitans that is a function of temperature. Artificial warthog burrows provide a convenient way of studying the puparial stage in tsetse and for the first time facilitate the capture of females as they deposit their larvae.

  3. Method for controlling exhaust gas heat recovery systems in vehicles

    DOEpatents

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  4. The effect of acclimatization and ambient temperature on heat withdrawal threshold in rats.

    PubMed

    Vítková, J; Loučka, M; Boček, J; Vaculín, S

    2015-01-01

    Nociception in rats is frequently measured in terms of latency of withdrawal reaction to radiant heat (thermal nociceptive threshold). The aim of this study was to determine how much housing acclimatization and ambient temperature affect the results of thermal pain threshold testing. All experiments used adult male Wistar rats. Thermal pain thresholds were tested using the radiant heat withdrawal reaction at three different body sites: forepaws, hind paws and tail. Skin temperature was measured using an Infrared thermometer and ambient temperature was set at 18, 20, 24 or 26 °C. The results demonstrate that (1) thermal pain threshold was inversely related to both ambient and skin temperature; (2) housing acclimatization and repeated testing had no effect on nociceptive thresholds at any of the three body sites; (3) a resting, cranio-caudal distribution, of nociceptive sensitivity was observed; (4) hind paws and tail were more sensitive to changes of skin and ambient temperature than forepaws. These findings show the importance of recording laboratory conditions in experiments and their influence on results. © 2014 European Pain Federation - EFIC®

  5. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  6. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  7. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  8. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  9. SUBCOOLING DETECTOR

    DOEpatents

    McCann, J.A.

    1963-12-17

    A system for detecting and measuring directly the subcooling margin in a liquid bulk coolant is described. A thermocouple sensor is electrically heated, and a small amount of nearly stagnant bulk coolant is heated to the boiling point by this heated thermocouple. The sequential measurement of the original ambient temperature, zeroing out this ambient temperature, and then measuring the boiling temperature of the coolant permits direct determination of the subcooling margin of the ambient liquid. (AEC)

  10. Ambient temperature effects on broadband UV-B measurements using fluorescent phosphor (MgWO4)-based detectors

    NASA Technical Reports Server (NTRS)

    Dichter, Bronislaw K.; Beaubien, David J.; Beaubien, Arthur F.

    1994-01-01

    Results of field tests on a group of broadband UV-B pyranometers are presented. A brief description of the instrument is given. The effects of ambient temperature on thermally unregulated fluorescent phosphor (Robertson type) meters are presented and compared with the performance of thermally stabilized instruments. Means for correcting data from thermally unregulated instruments, where the prevailing ambient temperatures are known, are outlined.

  11. High ambient temperature increases intravenous methamphetamine self-administration on fixed and progressive ratio schedules in rats.

    PubMed

    Cornish, Jennifer L; Clemens, Kelly J; Thompson, Murray R; Callaghan, Paul D; Dawson, Bronwyn; McGregor, Iain S

    2008-01-01

    Methamphetamine is a drug that is often consumed at dance parties or nightclubs where the ambient temperature is high. The present study determined whether such high ambient temperatures alter intravenous methamphetamine self-administration in the rat. Male Hooded Wistar rats were trained to self-administer intravenous methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 1 (FR1) or progressive ratio (PR) schedule of reinforcement at an ambient temperature of 23 +/- 1 degrees C. They were then given their daily self-administration session at a raised ambient temperature of 30 +/- 1 degrees C. Methamphetamine self-administration was increased at 30 degrees C under both FR1 and PR reinforcement schedules, with the latter effect indicating that heat enhances the motivation to obtain methamphetamine. High temperatures did not alter self-administration of the D1 receptor agonist SKF 82958 in methamphetamine-experienced rats suggesting some specificity in the methamphetamine effect. When rats were given access to drink isotonic saline solution during methamphetamine self-administration sessions they drank much more solution at 30 degrees C than 23 degrees C. However, availability of isotonic saline to drink did not alter the heat-induced facilitation of methamphetamine self-administration (PR schedule) indicating that the heat effect does not simply reflect increased motivation for intravenous fluids. Hyperthermia was evident in rats self-administering methamphetamine at high ambient temperatures and fluid consumption did not prevent this effect. Heat did not affect blood levels of methamphetamine, or its principal metabolite amphetamine indicating that the facilitatory effect of heat did not reflect altered methamphetamine pharmacokinetics. Overall, these results show that high ambient temperatures increase the reinforcing efficacy of methamphetamine and encourage higher levels of drug intake.

  12. Field study of dried blood spot specimens for HIV-1 drug resistance genotyping.

    PubMed

    Parry, C M; Parkin, N; Diallo, K; Mwebaza, S; Batamwita, R; DeVos, J; Bbosa, N; Lyagoba, F; Magambo, B; Jordan, M R; Downing, R; Zhang, G; Kaleebu, P; Yang, C; Bertagnolio, S

    2014-08-01

    Dried blood spots (DBS) are an alternative specimen type for HIV drug resistance genotyping in resource-limited settings. Data relating to the impact of DBS storage and shipment conditions on genotyping efficiency under field conditions are limited. We compared the genotyping efficiencies and resistance profiles of DBS stored and shipped at different temperatures to those of plasma specimens collected in parallel from patients receiving antiretroviral therapy in Uganda. Plasma and four DBS cards from anti-coagulated venous blood and a fifth card from finger-prick blood were prepared from 103 HIV patients with a median viral load (VL) of 57,062 copies/ml (range, 1,081 to 2,964,191). DBS were stored at ambient temperature for 2 or 4 weeks or frozen at -80 °C and shipped from Uganda to the United States at ambient temperature or frozen on dry ice for genotyping using a broadly sensitive in-house method. Plasma (97.1%) and DBS (98.1%) stored and shipped frozen had similar genotyping efficiencies. DBS stored frozen (97.1%) or at ambient temperature for 2 weeks (93.2%) and shipped at ambient temperature also had similar genotyping efficiencies. Genotyping efficiency was reduced for DBS stored at ambient temperature for 4 weeks (89.3%, P = 0.03) or prepared from finger-prick blood and stored at ambient temperature for 2 weeks (77.7%, P < 0.001) compared to DBS prepared from venous blood and handled similarly. Resistance profiles were similar between plasma and DBS specimens. This report delineates the optimal DBS collection, storage, and shipping conditions and opens a new avenue for cost-saving ambient-temperature DBS specimen shipments for HIV drug resistance (HIVDR) surveillances in resource-limited settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Fabrication of Nanostructured Mesoporous Germanium for Application in Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Abdelmaksoud, Hazem H; Guinan, Taryn M; Voelcker, Nicolas H

    2017-02-15

    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high-throughput analytical technique ideally suited for small-molecule detection from different bodily fluids (e.g., saliva, urine, and blood plasma). Many SALDI-MS substrates require complex fabrication processes and further surface modifications. Furthermore, some substrates show instability upon exposure to ambient conditions and need to be kept under special inert conditions. We have successfully optimized mesoporous germanium (meso-pGe) using bipolar electrochemical etching and efficiently applied meso-pGe as a SALDI-MS substrate for the detection of illicit drugs such as in the context of workplace, roadside, and antiaddictive drug compliance. Argon plasma treatment improved the meso-pGe efficiency as a SALDI-MS substrate and eliminated the need for surface functionalization. The resulting substrate showed a precise surface geometry tuning by altering the etching parameters, and an outstanding performance for illicit drug detection with a limit of detection in Milli-Q water of 1.7 ng/mL and in spiked saliva as low as 5.3 ng/mL for cocaine. The meso-pGe substrate had a demonstrated stability over 56 days stored in ambient conditions. This proof-of-principle study demonstrates that meso-pGe can be reproducibly fabricated and applied as an analytical SALDI-MS substrate which opens the door for further analytical and forensic high-throughput applications.

  14. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    PubMed

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  15. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum

    PubMed Central

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-01-01

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm2 V−1 s−1 under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications. PMID:22426220

  16. Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardinale, G.F.; Howitt, D.G.; Mirkarimi, P.B.

    1994-08-01

    Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Filmsmore » stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.« less

  17. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation.

    PubMed

    Greenwood, John; Phan, Thanh Hai; Fujita, Yasuhiko; Li, Zhi; Ivasenko, Oleksandr; Vanderlinden, Willem; Van Gorp, Hans; Frederickx, Wout; Lu, Gang; Tahara, Kazukuni; Tobe, Yoshito; Uji-I, Hiroshi; Mertens, Stijn F L; De Feyter, Steven

    2015-05-26

    We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

  18. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    PubMed

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  19. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...

  20. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 Module Regulates Ambient Temperature-Responsive Flowering via FLOWERING LOCUS T in Arabidopsis1[C][W][OA

    PubMed Central

    Kim, Jae Joon; Lee, Jeong Hwan; Kim, Wanhui; Jung, Hye Seung; Huijser, Peter; Ahn, Ji Hoon

    2012-01-01

    The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature. PMID:22427344

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less

  2. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult.

    PubMed

    Shin, Hangsik

    2016-12-01

    Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.

  3. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008

    PubMed Central

    2009-01-01

    Background This review examines recent evidence on mortality from elevated ambient temperature for studies published from January 2001 to December 2008. Methods PubMed was used to search for the following keywords: temperature, apparent temperature, heat, heat index, and mortality. The search was limited to the English language and epidemiologic studies. Studies that reported mortality counts or excess deaths following heat waves were excluded so that the focus remained on general ambient temperature and mortality in a variety of locations. Studies focusing on cold temperature effects were also excluded. Results Thirty-six total studies were presented in three tables: 1) elevated ambient temperature and mortality; 2) air pollutants as confounders and/or effect modifiers of the elevated ambient temperature and mortality association; and 3) vulnerable subgroups of the elevated ambient temperature-mortality association. The evidence suggests that particulate matter with less than 10 um in aerodynamic diameter and ozone may confound the association, while ozone was an effect modifier in the warmer months in some locations. Nonetheless, the independent effect of temperature and mortality was withheld. Elevated temperature was associated with increased risk for those dying from cardiovascular, respiratory, cerebrovascular, and some specific cardiovascular diseases, such as ischemic heart disease, congestive heart failure, and myocardial infarction. Vulnerable subgroups also included: Black racial/ethnic group, women, those with lower socioeconomic status, and several age groups, particularly the elderly over 65 years of age as well as infants and young children. Conclusion Many of these outcomes and vulnerable subgroups have only been identified in recent studies and varied by location and study population. Thus, region-specific policies, especially in urban areas, are vital to the mitigation of heat-related deaths. PMID:19758453

  4. Hydrogenation of CO 2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis

    DOE PAGES

    Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan; ...

    2017-08-21

    The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less

  5. Mobility enhancement in graphene transistors on low temperature pulsed laser deposited boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Md Ahsan, E-mail: uddin2@email.sc.edu, E-mail: gkoley@clemson.edu; Koley, Goutam, E-mail: uddin2@email.sc.edu, E-mail: gkoley@clemson.edu; Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208

    2015-11-16

    Low temperature pulsed laser deposited (PLD) ultrathin boron nitride (BN) on SiO{sub 2} was investigated as a dielectric for graphene electronics, and a significant enhancement in electrical transport properties of graphene/PLD BN compared to graphene/SiO{sub 2} has been observed. Graphene synthesized by chemical vapor deposition and transferred on PLD deposited and annealed BN exhibited up to three times higher field effect mobility compared to graphene on the SiO{sub 2} substrate. Graphene field effect transistor devices fabricated on 5 nm BN/SiO{sub 2} (300 nm) yielded maximum hole and electron mobility of 4980 and 4200 cm{sup 2}/V s, respectively. In addition, significant improvement in carriermore » homogeneity and reduction in extrinsic doping in graphene on BN has been observed. An average Dirac point of 3.5 V and residual carrier concentration of 7.65 × 10{sup 11 }cm{sup −2} was observed for graphene transferred on 5 nm BN at ambient condition. The overall performance improvement on PLD BN can be attributed to dielectric screening of charged impurities, similar crystal structure and phonon modes, and reduced substrate induced doping.« less

  6. Hydrogenation of CO 2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Ramirez, Pedro J.; Liu, Zongyuan

    The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO–copper interface in the generation of CO and the synthesis of methanol from CO 2 hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ oxi < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO–copper interface. Furthermore, size and metal–oxide interactions affect the chemical and catalytic properties of the oxide making themore » supported nanoparticles different from bulk ZnO. The formation of a ZnO–copper interface favors the binding and conversion of CO 2 into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500–600 K) used for the CO 2 hydrogenation reaction. However, reaction with CO 2 oxidized the zinc, enhancing its stability over the copper substrates.« less

  7. Transient natural convection with density inversion from a horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Wang, P.; Kahawita, R.; Nguyen, D. L.

    1992-01-01

    This paper is devoted to a numerical investigation of the free convection flow about a horizontal cylinder maintained at 0 °C in a water ambient close to the point of maximum density. Complete numerical solutions covering both the transient as well as steady state have been obtained. Principal results indicate that the proximity of the ambient temperature to the point of maximum density plays an important role in the type of convection pattern that may be obtained. When the ambient temperature is within 4.7 °C

  8. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng

    2018-03-01

    Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.

  9. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    PubMed

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and milk production.

  10. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature.

    PubMed

    Jung, Inuk; Kang, Hyejin; Kim, Jang Uk; Chang, Hyeonsook; Kim, Sun; Jung, Woosuk

    2018-03-19

    Ginseng is a popular traditional herbal medicine in north-eastern Asia. It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Under the high ambient temperature, vegetative growth was accelerated, which resulted in early flowering. This precocious phase change led to yield loss. Despite of its importance as a traditional medicine, biological mechanisms of ginseng has not been well studied and even the genome sequence of ginseng is yet to be determined due to its complex genome structure. Thus, it is challenging to investigate the molecular biology mechanisms at the transcript level. To investigate how ginseng responds to the high ambient temperature environment, we performed high throughput RNA sequencing and implemented a bioinformatics pipeline for the integrated analysis of small-RNA and mRNA-seq data without a reference genome. By performing reverse transcriptase (RT) PCR and sanger sequencing of transcripts that were assembled using our pipeline, we validated that their sequences were expressed in our samples. Furthermore, to investigate the interaction between genes and non-coding small RNAs and their regulation status under the high ambient temperature, we identified potential gene regulatory miRNAs. As a result, 100,672 contigs with significant expression level were identified and 6 known, 214 conserved and 60 potential novel miRNAs were predicted to be expressed under the high ambient temperature. Collectively, we have found that development, flowering and temperature responsive genes were induced under high ambient temperature, whereas photosynthesis related genes were repressed. Functional miRNAs were down-regulated under the high ambient temperature. Among them are miR156 and miR396 that target flowering (SPL6/9) and growth regulating genes (GRF) respectively.

  11. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.

    PubMed

    Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries

    2018-01-01

    Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p  < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p  < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p  < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p  < 0.0001) and REV-ERBα ( p  < 0.01) in the BAT and CLOCK ( p  < 0.05), PER2 ( p  < 0.05), CRY1 ( p  < 0.05), CRY2 ( p  < 0.01), and REV-ERBα ( p  < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.

  12. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    PubMed

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    PubMed

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  14. Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films

    DOE PAGES

    Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...

    2015-06-30

    Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less

  15. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  16. Nanoporous membrane device for ultra high heat flux thermal management

    NASA Astrophysics Data System (ADS)

    Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.

    2018-02-01

    High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.

  17. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  18. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  19. Influence of the Environment on Body Temperature of Racing Greyhounds.

    PubMed

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted.

  20. Influence of the Environment on Body Temperature of Racing Greyhounds

    PubMed Central

    McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted. PMID:27446941

  1. Limited Carbonate Dissolution by Boring Microflora at Two Volcanically Acidified Temperate Sites: Ischia (Italy, Mediterranean Sea) and Faial (Azores, NE Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tribollet, A.; Grange, J. S.; Parra, H.; Rodolfo-Metalpa, R.; Carreiro-Silva, M.

    2018-01-01

    In situ effects of ocean acidification on carbonate dissolution by microboring flora, also called biogenic dissolution, have only been studied once in tropical environments. Naturally acidified seawaters due to CO2 vents offer a perfect setting to study these effects in temperate systems. Three sites were selected at Ischia (Italy, Mediterranean Sea) with one experiencing ambient pH and the two others a mean pHT of 7.2 and 7.5. At Faial (Azores, NE Atlantic), one site with ambient pH and one acidified site with a mean pHT of 7.4 were selected. Experiments were carried out during 1.5 months and 6 months in Azores and Ischia, respectively, to determine the effects of OA on microboring communities in various carbonate substrates. Low pH influenced negatively boring microflora development by limiting their depth of penetration and abundance in substrates. Biogenic dissolution was thus reduced by a factor 3 to 7 depending on sites and substrate types. At sites with ambient pH in Faial, biogenic dissolution contributed up to 23% to the total weight loss, while it contributed less than 1% to the total weight loss of substrates at the acidified sites. Most of the dissolution at these sites was due to chemical dissolution (often Ω ≤ 1). Such conditions maintained microboring communities at a pioneer stage with a limited depth of penetration in substrates. Our results, together with previous findings that showed an increase of biogenic dissolution at pH > 7.7, suggest that there is a pH tipping point below which microborer development and thus carbonate biogenic dissolution is strongly limited.

  2. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma.

    PubMed

    Paing, Htoo W; Marcus, R Kenneth

    2018-03-12

    A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.

  3. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study.

    PubMed

    Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing

    2014-11-25

    Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged <45 years, whereas the effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.

  4. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China.

    PubMed

    Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping

    2018-03-11

    Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  5. The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer.

    PubMed

    Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V A L

    2013-03-07

    The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al(2)O(3)) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al(2)O(3) dielectric layer) could be potentially integrated with large area flexible electronics.

  6. Room temperature magnetization in Co-doped anatase phase of TiO2

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mageto, Maxwel Joel; Etefagh, Reyhaneh; Azhir, Elahe; Mwamburi, Mghendi; Topalian, Zareh

    2013-01-01

    CoxTi1-xO2 films were deposited by spray pyrolysis technique on Si(1 0 0) substrates at 475 °C. A hydro-alcoholic solution containing titanium (iv) isopropoxide and Co(NO3)2 with various Co doping levels from x = 0-0.015 in solution was used as spray solution. Grazing incident angle of X-ray diffraction illustrates that the CoxTi1-xO2 films are single phase and polycrystal with mixed orientations. Study of surface morphology of the films by atomic force microscope reveals that the annealing atmosphere does not significantly affect the grain size and the microstructure of the films. This study provides further insight into the importance of annealing atmosphere on magnetization of the films. Room temperature magneto-optical Kerr measurement was employed in polar mode. A hysteresis loop and a paramagnetic behavior have been recorded for samples annealed in H2 ambient gas and air, respectively. Chemical composition analysis by X-ray photo-electron spectroscopy showed that Co atoms are bounded to oxygen and no metallic clusters are present. Moreover, it indicates the formation of high spin Co2+ for the sample x = 0.008 annealed in H2 ambient gas. The origin of magnetization can be attributed to the contribution of oxygen vacancies in the spin polarization of the structure.

  7. Initial Plasma Testing of the Ion Proportional Surface Emission Cathode

    DTIC Science & Technology

    2008-07-15

    REPRINT 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Plasma Testing of the Ion Proportional Surface Emission Cathode 5a. CONTRACT NUMBER...substrate and an adjacent metal cathode element. The substrate potential is held positive of the cathode with gate elements. In plasma , the gate is...eliminated due to ambient ion flux which maintains the substrate potential near plasma ground. Prototype devices have been tested using a laboratory plasma

  8. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food.

    PubMed

    Chyan, Yieu; Ye, Ruquan; Li, Yilun; Singh, Swatantra Pratap; Arnusch, Christopher J; Tour, James M

    2018-03-27

    A simple and facile method for obtaining patterned graphene under ambient conditions on the surface of diverse materials ranging from renewable precursors such as food, cloth, paper, and cardboard to high-performance polymers like Kevlar or even on natural coal would be highly desirable. Here, we report a method of using multiple pulsed-laser scribing to convert a wide range of substrates into laser-induced graphene (LIG). With the increased versatility of the multiple lase process, highly conductive patterns can be achieved on the surface of a diverse number of substrates in ambient atmosphere. The use of a defocus method results in multiple lases in a single pass of the laser, further simplifying the procedure. This method can be implemented without increasing processing times when compared with laser induction of graphene on polyimide (Kapton) substrates as previously reported. In fact, any carbon precursor that can be converted into amorphous carbon can be converted into graphene using this multiple lase method. This may be a generally applicable technique for forming graphene on diverse substrates in applications such as flexible or even biodegradable and edible electronics.

  9. An epidemiological assessment of the effect of ambient temperature on the incidence of preterm births: Identifying windows of susceptibility during pregnancy.

    PubMed

    Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong

    2018-05-01

    It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 2.45 GHz Rectenna Designed for Wireless Sensors Operating at 500 C

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.; Jordan, Jennifer L.; Downey, Alan N.; Neudeck, Philip G.

    2004-01-01

    High temperature wireless sensors that operate at 500 C are required for aircraft engine monitoring and performance improvement These sensors would replace currently used hard-wired sensors and lead to a substantial reduction in mass. However, even if the sensor output data is transmitted wirelessly to a receiver in the cooler part of the engine, and the associated cables are eliminated, DC power cables are still required to operate the sensors and power the wireless circuits. To solve this problem, NASA is developing a rectenna, a circuit that receives RF power and converts it to DC power. The rectenna would be integrated with the wireless sensor, and the RF transmitter that powers the rectenna would be located in the cooler part of the engine. In this way, no cables to or from the sensors are required. Rectennas haw been demonstrated at ambient room temperature, but to date, no high temperature rectennas haw been reported. In this paper, we report the first rectenna designed for 2.45 GHz operation at 500 C. The circuit consists of a microstrip dipole antenna, a stripline impedance matching circuit, and a stripline low pass filter to prevent transmission of higher harmonics created by the rectifying diode fabricated on an Alumina substrate. The rectifying diode is the gate to source junction of a 6H Sic MESFET and the capacitor and load resistor are chip elements that are each bonded to the Alumina substrate. Each element and the hybrid, rectenna circuit haw been characterized through 500 C.

  11. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module

    PubMed Central

    Pandya, H. J.; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P.

    2014-01-01

    In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400–1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen. PMID:24855449

  12. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.

    PubMed

    Pandya, H J; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P

    2014-03-01

    In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400-1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen.

  13. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    PubMed Central

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  14. Influence of preservation methods on the quality of colostrum sourced from New Zealand dairy farms.

    PubMed

    Denholm, K S; Hunnam, J C; Cuttance, E L; McDougall, S

    2017-09-01

    To assess the effect of two temperatures (ambient temperature and 4°C), three preservation methods (no preservative, yoghurt and potassium sorbate), and two periods of storage (3 and 7 days) on Brix and total bacterial and coliform counts of colostrum collected from New Zealand dairy farms. One litre of colostrum destined to be fed to newborn calves was collected from 55 New Zealand dairy farms in the spring of 2015. Six aliquots of 150 mL were obtained from each colostrum sample, with two aliquots left untreated, two treated with potassium sorbate and two with yoghurt, and one of each pair of aliquots stored at ambient temperature and the other at 4°C. All samples were tested for Brix, total bacterial counts and coliform counts before treatment (Day 0), and after 3 and 7 days of storage. The effect of preservation method and storage temperature on the change in Brix, bacterial and coliform counts after 3 or 7 days of storage was analysed using multivariable random effects models. For all outcome variables there was a temperature by preservation interaction. For aliquots preserved with potassium sorbate, changes in Brix and bacterial counts did not differ between aliquots stored at ambient temperature or 4°C, but for aliquots preserved with yoghurt or no preservative the decrease in Brix and increase in bacterial counts was greater for aliquots stored at ambient temperature than 4°C (p<0.001). For aliquots preserved with potassium sorbate, coliform counts decreased at both temperatures, but for aliquots preserved with yoghurt or no preservative coliform counts increased for aliquots stored at 4°C, but generally decreased at ambient temperatures (p<0.001). There was also an interaction between duration of storage and temperature for bacterial counts (p<0.001). The difference in the increase in bacterial counts between aliquots stored at 4°C and ambient temperature after 3 days was greater than between aliquots stored at 4°C and ambient temperature after 7 days. Use of potassium sorbate to preserve colostrum for 3 or 7 days resulted in little or no reduction in Brix and a lower increase in total bacterial counts than colostrum stored without preservative or with yoghurt added. Colostrum quality was not affected by storage temperature for samples preserved with potassium sorbate, but storage at 4°C resulted in better quality colostrum than storage at ambient temperatures for colostrum with no preservative or yoghurt added.

  15. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2.

    PubMed

    Gyula, Péter; Baksa, Ivett; Tóth, Tamás; Mohorianu, Irina; Dalmay, Tamás; Szittya, György

    2018-06-01

    Plants substantially alter their developmental program upon changes in the ambient temperature. The 21-24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature-controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF-YA2, is also ambient temperature-regulated. NF-YA2, as the component of the conserved transcriptional regulator NF-Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24-nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants. This article is protected by copyright. All rights reserved.

  16. Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection.

    PubMed

    Gloster, John; Ebert, Katja; Gubbins, Simon; Bashiruddin, John; Paton, David J

    2011-11-21

    Thermal imagers have been used in a number of disciplines to record animal surface temperatures and as a result detect temperature distributions and abnormalities requiring a particular course of action. Some work, with animals infected with foot-and-mouth disease virus, has suggested that the technique might be used to identify animals in the early stages of disease. In this study, images of 19 healthy cattle have been taken over an extended period to determine hoof and especially coronary band temperatures (a common site for the development of FMD lesions) and eye temperatures (as a surrogate for core body temperature) and to examine how these vary with time and ambient conditions. The results showed that under UK conditions an animal's hoof temperature varied from 10°C to 36°C and was primarily influenced by the ambient temperature and the animal's activity immediately prior to measurement. Eye temperatures were not affected by ambient temperature and are a useful indicator of core body temperature. Given the variation in temperature of the hooves of normal animals under various environmental conditions the use of a single threshold hoof temperature will be at best a modest predictive indicator of early FMD, even if ambient temperature is factored into the evaluation.

  17. The Importance of Ambient Sound Level to Characterise Anuran Habitat

    PubMed Central

    Goutte, Sandra; Dubois, Alain; Legendre, Frédéric

    2013-01-01

    Habitat characterisation is a pivotal step of any animal ecology study. The choice of variables used to describe habitats is crucial and need to be relevant to the ecology and behaviour of the species, in order to reflect biologically meaningful distribution patterns. In many species, acoustic communication is critical to individuals’ interactions, and it is expected that ambient acoustic conditions impact their local distribution. Yet, classic animal ecology rarely integrates an acoustic dimension in habitat descriptions. Here we show that ambient sound pressure level (SPL) is a strong predictor of calling site selection in acoustically active frog species. In comparison to six other habitat-related variables (i.e. air and water temperature, depth, width and slope of the stream, substrate), SPL had the most important explanatory power in microhabitat selection for the 34 sampled species. Ambient noise was particularly useful in differentiating two stream-associated guilds: torrents and calmer streams dwelling species. Guild definitions were strongly supported by SPL, whereas slope, which is commonly used in stream-associated habitat, had a weak explanatory power. Moreover, slope measures are non-standardized across studies and are difficult to assess at small scale. We argue that including an acoustic descriptor will improve habitat-species analyses for many acoustically active taxa. SPL integrates habitat topology and temporal information (such as weather and hour of the day, for example) and is a simple and precise measure. We suggest that habitat description in animal ecology should include an acoustic measure such as noise level because it may explain previously misunderstood distribution patterns. PMID:24205070

  18. Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study

    DOE PAGES

    Knopf, Daniel A.; Alpert, P. A.; Wang, B.; ...

    2014-08-11

    The effect of anthropogenic and biogenic organic particles on atmospheric glaciation processes is poorly understood. We use an optical microscopy setup to identify the ice nuclei (IN) active in immersion freezing (IMF) and deposition ice nucleation within a large population of particles collected on a substrate from an ambient environment in central California dominated by urban and marine aerosols. Multimodal microspectroscopy methods are applied to characterize the physicochemical properties and mixing state of the individual IN and particle populations to identify particle-type classes. The temperature onsets of water uptake occurred between 235 and 257 K at subsaturated conditions, and themore » onsets of IMF proceeded at subsaturated and saturated conditions for 235–247 K, relevant for ice nucleation in mixed-phase clouds. Particles also took up water and nucleated ice between 226 and 235 K and acted as deposition IN with onset temperatures below 226 K, a temperature range relevant to cirrus cloud formation. The identified IN belong to the most common particle-type classes observed in the field samples: organic coated sea salt and Na-rich, secondary, and refractory carbonaceous particles. Based on these observations, we suggest that the IN are not always particles with unique chemical composition and exceptional ice nucleation propensity; rather, they are common particles in the ambient particle population. Lastly, the results suggest that particle-type abundance and total particle surface area are also crucial factors, in addition to particle-type ice nucleation efficiency, in determining ice formation within the particle population.« less

  19. Hyperactivity in Anorexia Nervosa: Warming Up Not Just Burning-Off Calories

    PubMed Central

    Carrera, Olaia; Adan, Roger A. H.; Gutierrez, Emilio; Danner, Unna N.; Hoek, Hans W.; van Elburg, Annemarie A.; Kas, Martien J. H.

    2012-01-01

    Excessive physical activity is a common feature in Anorexia Nervosa (AN) that interferes with the recovery process. Animal models have demonstrated that ambient temperature modulates physical activity in semi-starved animals. The aim of the present study was to assess the effect of ambient temperature on physical activity in AN patients in the acute phase of the illness. Thirty-seven patients with AN wore an accelerometer to measure physical activity within the first week of contacting a specialized eating disorder center. Standardized measures of anxiety, depression and eating disorder psychopathology were assessed. Corresponding daily values for ambient temperature were obtained from local meteorological stations. Ambient temperature was negatively correlated with physical activity (p = −.405) and was the only variable that accounted for a significant portion of the variance in physical activity (p = .034). Consistent with recent research with an analogous animal model of the disorder, our findings suggest that ambient temperature is a critical factor contributing to the expression of excessive physical activity levels in AN. Keeping patients warm may prove to be a beneficial treatment option for this symptom. PMID:22848634

  20. 16 CFR 1203.13 - Test schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...

  1. 16 CFR § 1203.13 - Test schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...

  2. 16 CFR 1203.13 - Test schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...

  3. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus).

    PubMed

    Cliffe, Rebecca N; Haupt, Ryan J; Avey-Arroyo, Judy A; Wilson, Rory P

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  4. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1.

    PubMed

    Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A

    2018-01-04

    FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  5. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    NASA Astrophysics Data System (ADS)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  6. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less

  8. Ambient temperature and cardiovascular biomarkers in a repeated-measure study in healthy adults: A novel biomarker index approach.

    PubMed

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2017-07-01

    Associations of ambient temperature with cardiovascular morbidity and mortality have been well documented in numerous epidemiological studies, but the underlying pathways remain unclear. We investigated whether systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function may be the mechanistic pathways associated with ambient temperature. Forty study participants underwent repeated blood collections for 12 times in Beijing, China in 2010-2011. Ambient temperature and air pollution data were measured in central monitors close to student residences. We created five indices as the sum of weighted biomarker percentiles to represent the overall levels of 15 cardiovascular biomarkers in five pathways (systemic inflammation: hs-CRP, TNF-α and fibrinogen; coagulation: fibrinogen, PAI-1, tPA, vWF and sP-selectin; systemic oxidative stress: Ox-LDL and sCD36: antioxidant activity: EC-SOD and GPX1; and endothelial function: ET-1, E-selectin, ICAM-1 and VCAM-1). We used generalized mixed-effects models to estimate temperature effects controlling for air pollution and other covariates. There were significant decreasing trends in the adjusted means of biomarker indices over the lowest to the highest quartiles of daily temperatures before blood collection. A 10°C decrease at 2-d average daily temperature were associated with increases of 2.5% [95% confidence interval (CI): 0.7, 4.2], 1.6% (95% CI: 0.1, 3.1), 2.7% (95% CI: 0.5, 4.8), 5.5% (95% CI: 3.8, 7.3) and 2.0% (95% CI: 0.3, 3.8) in the indices for systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function, respectively. In contrast, the associations between ambient temperature and individual biomarkers had substantial variation in magnitude and strength. The altered cardiovascular biomarker profiles in healthy adults associated with ambient temperature changes may help explain the temperature-related cardiovascular morbidity and mortality. The biomarker index approach may serve as a novel tool to capture ambient temperature effects. Copyright © 2017. Published by Elsevier Inc.

  9. Interactive effect of elevated CO2 and temperature on coral physiology

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.

    2011-12-01

    Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.

  10. Growth and characterization of ultra thin vanadium oxide films

    NASA Astrophysics Data System (ADS)

    Song, Fangfang

    This dissertation focuses on the growth and characterization of ultra thin VO2 films on technologically relevant Si/SiO2 substrate. The samples were prepared by magnetron sputtering with varying deposition and post annealing conditions. VO2(M1) films prepared under optimal condition with thickness around 42nm shows a continuous micro-structure and a metal insulator transition with resistivity change of two orders of magnitude. The transition temperature is determined to be 345K with a hysteresis width of approximately 8°C. The activation energy of the low temperature semiconducting VO2 monoclinic phase is determined to be 0.16+/-0.03ev. These properties are found to be fairly stable over time under ambient atmosphere. Temperature dependent hall measurements suggest that the decrease of the resistivity with increasing temperature is mainly caused by the increase of the number density of charge carriers, the energy gap of VO2 film in the semiconducting phase is 0.4ev and phonon scattering is the dominant scattering mechanism in the temperature range from 195K to 340K. Analysis based on composite model suggested that the sample has some untransitional phases with a length that is 1/4 of the grain size. Stress measurements using X-ray diffraction indicate that the ultra thin VO2 film has a large tensile stress of 2.0+/-0.2GPa. This value agrees well with that calculated thermal stress assuming the stress is due to differential thermal expansion between VO2 film and substrate. The stress is expected to lead to a shift of the transition temperature in the film, as observed. Using magnetron sputtering, VO2(B) film was able to obtained on Si substrate. The temperature dependent current voltage measurement on VO2(B) film did not show any abrupt change in the electrical resistivity. W - VO2(B) thin film - W metal semiconductor-metal I-V properties were found to be determined by reverse biased Schottky barrier at the W/VO 2(b) interface. And the Schottky height between VO2(B) and W was determined to be about 0.15ev, which indicate the electron affinity of the VO2(B) is about 4.35ev.

  11. Preservation of Biospecimens at Ambient Temperature: Special Focus on Nucleic Acids and Opportunities for the Biobanking Community.

    PubMed

    Muller, Rolf; Betsou, Fay; Barnes, Michael G; Harding, Keith; Bonnet, Jacques; Kofanova, Olga; Crowe, John H

    2016-04-01

    Several approaches to the preservation of biological materials at ambient temperature and the relative impact on sample stability and degradation are reviewed, with a focus on nucleic acids. This appraisal is undertaken within the framework of biobank risk, quality management systems, and accreditation, with a view to assessing how best to apply ambient temperature sample storage to ensure stability, reduce costs, improve handling logistics, and increase the efficiency of biobank procedures.

  12. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  13. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  14. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography.

    PubMed

    Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C

    2007-09-21

    A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.

  15. Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities.

    PubMed

    Niu, Fang; Zhang, Le-Sheng; Chen, Chao-Qiu; Li, Wei; Li, Lin; Song, Wei-Guo; Jiang, Lei

    2010-08-01

    TiO(2) porous nanospheres on polypropylene (PP) films (TiO(2)/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO(2) catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO(2) catalyst. In photodegrading reactions, the resulting TiO(2)/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO(2) catalyst in a traditional batch-type setup.

  16. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    PubMed

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exhaled breath temperature in children: reproducibility and influencing factors.

    PubMed

    Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P

    2014-09-01

    This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.

  18. Superlubricating graphene and graphene oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  19. Insect eggs protected from high temperatures by limited homeothermy of plant leaves.

    PubMed

    Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur

    2009-11-01

    Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.

  20. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  1. Weathering of iron sulfides under Mars surface ambient conditions

    NASA Technical Reports Server (NTRS)

    Blackburn, T. R.

    1981-01-01

    The study of iron sulfide surface alternation reactions under Mars' surface ambient conditions begun during 1980 was extended through improved irradiation design and experimental protocols. A wider range of humidities and more intense irradiation were incorporated in the study. X-ray photoelectron spectra of irradiated chips suggest formation of FeSO4, FeCO3, and an iron oxide on the iron sulfide substrates studied.

  2. The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates

    NASA Astrophysics Data System (ADS)

    Roy, Aditi; Xie, Hongtao; Wang, Shiliang; Huang, Han

    2016-12-01

    ZnO nanowires were bent on amorphous SiO2 and SiN substrates in an ambient atmosphere using optical nanomanipulation. The kinetic friction between the nanowires and substrate was determined from the bent shape of the nanowires. The kinetic friction force per unit area, i.e. frictional shear stress, for the ZnO/SiO2 and ZnO/SiN nanowire/substrate systems being measured were 1.05 ± 0.28 and 2.08 ± 0.33 MPa, respectively. The surface roughness and the Hamaker constant of SiO2 and SiN substrates had significant effect on the frictional stresses.

  3. Beyond the classic thermoneutral zone

    PubMed Central

    Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296

  4. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions

    PubMed Central

    2013-01-01

    Background The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse’s general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Results Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). Conclusion The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures. PMID:23298405

  5. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  6. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions.

    PubMed

    Poller, Christin; Hopster, Klaus; Rohn, Karl; Kästner, Sabine Br

    2013-01-08

    The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse's general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures.

  7. The influence of season and ambient temperature on birth outcomes: a review of the epidemiological literature.

    PubMed

    Strand, Linn B; Barnett, Adrian G; Tong, Shilu

    2011-04-01

    Seasonal patterns of birth outcomes, such as low birth weight, preterm birth and stillbirth, have been found around the world. As a result, there has been an increasing interest in evaluating short-term exposure to ambient temperature as a determinant of adverse birth outcomes. This paper reviews the epidemiological evidence on seasonality of birth outcomes and the impact of prenatal exposure to ambient temperature on birth outcomes. We identified 20 studies that investigated seasonality of birth outcomes, and reported statistically significant seasonal patterns. Most of the studies found peaks of preterm birth, stillbirth and low birth weight in winter, summer or both, which indicates the extremes of temperature may be an important determinant of poor birth outcomes. We identified 13 studies that investigated the influence of exposure to ambient temperature on birth weight and preterm birth (none examined stillbirth). The evidence for an adverse effect of high temperatures was stronger for birth weight than for preterm birth. More research is needed to clarify whether high temperatures have a causal effect on fetal health. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Formation of Cr2O3 Diffusion Barrier Between Cr-Contained Stainless Steel and Cold-Sprayed Ni Coatings at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-02-01

    A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.

  9. White LED performance

    NASA Astrophysics Data System (ADS)

    Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul

    2004-10-01

    Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.

  10. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  11. Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant.

    PubMed

    Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit

    2010-03-07

    Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.

  12. Pulsed-Laser Crystallization of Ferroelectric/Piezoelectric Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Rajashekhar, Adarsh

    Integration of ferroelectric/piezoelectric thin films, such as those of lead zirconate titanate (PZT), with temperature sensitive substrates (complementary metal oxide semiconductors (CMOS), or polymers) would benefit from growth at substrate temperatures below 400°C. However, high temperatures are usually required for obtaining good quality PZT films via conventional routes like rapid thermal processing (>550°C). Those conditions are not compatible either with polymer substrates or completed CMOS circuits and dictate exploration of alternative methods to realize integration with such substrates. In part of this work, factors influencing KrF excimer laser induced crystallization of amorphous sputtered Pb(Zr0.30Ti0.70)O3 thin films at substrate temperatures < 215°C were investigated. (111) Pt/Si substrates were utilized to understand the process window. Laser energy densities studied were in the range 35 - 85 mJ/cm2. The Pb content in the films was varied via the Ar gas pressure (in the range 5 mTorr - 9 mTorr) during sputtering of amorphous films. It was seen that a higher Pb content in the asdeposited films aided nucleation of the perovskite phase. Ozone-containing ambients (10% O3/90% O2) during the annealing promoted the formation of the metastable Pb-rich pyrochlore/fluorite phase, while annealing in pure oxygen produced the perovskite phase at relatively lower annealing laser energy densities. Heterogeneous nucleation from the substrate is favored on utilizing a layer-by-layer growth and crystallization process. Films were also grown on polymers using this method. Ferroelectric switching was demonstrated, but extensive process optimization would be needed to reduce leakage and porosity. Real time laser annealing during growth allows for scaling of the layer-by-layer growth process. A pulsed laser deposition system with in situ laser annealing was thus designed, built, and utilized to grow Pb(Zr 0.52Ti0.48)O3 thin films on a laser crystallized Pb(Zr0.20Ti0.80)O3 seed layer, at a temperature of 370°C. Polycrystalline 1.1 microm thick films exhibited columnar grains with small grain sizes ( 30 nm). The films showed well-saturated hysteresis loops (with a remanent polarization of 25 microC/cm2, and a coercive field of 50 kV/cm) and exhibited loss tangents <2.5% with a permittivity of 730. Film orientation could be controlled via the substrate choice; {111} Pb(Zr0.52Ti0.48)O3 films were grown on oriented (111) Pb(Zr0.30Ti0.70)O3 sol-gel seed layers, while epitaxial {001} films were prepared on (100) SrTiO 3 single crystals. In order to study the microstructure evolution in these films, in situ pulsed-laser annealing was used to grow crystalline lead zirconate titanate (PbZr0.52Ti0.48O3) thin films at a substrate temperature of 370°C on PbZr0.30Ti 0.70O3-buffered platinized silicon substrates. Transmission electron microscopy (TEM) analysis indicated that the films were well crystallized into columnar grains, but with pores segregated at the grain boundaries. Lateral densification of the grain columns was significantly improved by reducing the partial pressure of oxygen from 120 mTorr to 50 mTorr, presumably due to enhanced adatom mobility at the surface accompanying increased bombardment. It was found that varying the fractional annealing duration with respect to the deposition duration produced little effect on lateral grain growth. However, increasing the fractional annealing duration led to shift of 111 PZT X-ray diffraction peaks to higher 2theta values, suggesting residual in-plane tensile stresses in the films. Thermal simulations were used to understand the annealing process. Evolution of the film microstructure is described in terms of transient heating from the pulsed laser determining the nucleation events, while the energy of the arriving species dictates grain growth/coarsening.

  13. Differential effects of environment-induced changes in body temperature on modafinil’s actions against methamphetamine-induced striatal toxicity in mice

    PubMed Central

    Raineri, Mariana; González, Betina; Echeto, Celeste Rivero; Muñiz, Javier A.; Gutierrez, María Laura; Ghanem, Carolina I.; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J.; Veronica, Bisagno

    2015-01-01

    Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg , 2h apart; modafinil (90mg/kg) was injected twice, 1h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out six days after treatments and processed for TH, DAT, GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by sriatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures. PMID:25261212

  14. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice.

    PubMed

    Raineri, Mariana; González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A; Gutiérrez, María Laura; Ghanem, Carolina I; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica

    2015-01-01

    Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.

  15. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  16. Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO2 detection

    PubMed Central

    Villani, F; Schiattarella, C; Capua, R Di; Loffredo, F; Alfano, B; Miglietta, M L; Massera, E; Verdoliva, L; Francia, G Di

    2017-01-01

    The extremely high sensitivity to the external environment and the high specific surface area, as well as the absence of bulk phenomena that could interfere with the response signal, make graphene highly attractive for the applications in the field of sensing. Among the various methods for producing graphene over large areas, liquid phase exfoliation (LPE) appears to be very promising, especially if combined with inkjet printing (IJP), which offers several advantages, including the selective and controlled deposition of small ink volumes and the versatility of the exploitable inks and substrates. Herein we present a feasibility study of chemiresistive gas sensors inkjet-printed onto paper substrates, in which a LPE graphene suspension dispersed in a water/isopropanol (H2O/IPA) mixture is used as sensing ink. The device performances, in terms of relative conductance variations, upon exposure to NO2 at standard ambient temperature and pressure, are analysed. In addition, we examine the effect of the substrate morphology and, more specifically, of the ink/substrate interaction on the device performances, by comparing the response of different chemiresistors fabricated by dispensing the same suspension also onto Al2O3 and Si/SiO2 substrates and carrying out a supportive atomic force microscopy analysis. The results prove the possibility to produce sensor devices by means of a wholly environmentally friendly, low-cost process that meets the requests coming from the increasing field of paper-based electronics and paving the way towards a flexible, green-by-design mass production. PMID:28546896

  17. Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.

    1991-04-01

    Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.

  18. 40 CFR 1066.105 - Ambient controls and vehicle cooling fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... range of ambient temperature and humidity. Use good engineering judgment to maintain relatively uniform temperatures throughout the test cell before testing. You are generally not required to maintain uniform temperatures throughout the test cell while the vehicle is running due to the heat generated by the vehicle...

  19. Evaluation of 25-Percent ATJ Fuel Blends in the John Deere 4045HF 280 Engine

    DTIC Science & Technology

    2014-08-01

    25% ATJ Blend ........ 26 Figure 16 . THC Emissions, Pre-Test, Ambient Temperature ...................................................... 28 Figure...17 . THC Emissions, Pre-Test, Desert Temperature ......................................................... 28 Figure 18 . NOx Emissions, Pre-Test...Emissions, Pre-Test, Desert Temperature (Scaled) ............................................. 32 Figure 23 . THC Emissions, Post-Test, Ambient

  20. THERMOREGULATION AT A HIGH AMBIENT TEMPERATURE FOLLOWING THE ORAL ADMINISTRATION OF ETHANOL IN THE RAT

    EPA Science Inventory

    This study was designed to assess the thermoregulatory mechanisms responsible for the elevation in body temperature following ethanol administration when exposed to a high ambient temperature (Ta). ale rats of the Fischer 344 strain were gavaged with 20% ethanol at doses of 0, 2....

  1. Suicide and Ambient Temperature in East Asian Countries: A Time-Stratified Case-Crossover Analysis

    PubMed Central

    Kim, Yoonhee; Honda, Yasushi; Guo, Yue Leon; Chen, Bing-Yu; Woo, Jong-Min; Ebi, Kristie L.

    2015-01-01

    Background A limited number of studies suggest that ambient temperature contributes to suicide; these studies typically focus on a single nation and use temporally and spatially aggregated data. Objective We evaluated the association between ambient temperature and suicide in multiple cities in three East Asian countries. Methods A time-stratified case-crossover method was used to explore the relationship between temperature and suicide, adjusting for potential time-varying confounders and time-invariant individual characteristics. Sex- and age-specific associations of temperature with suicide were estimated, as were interactions between temperature and these variables. A random-effects meta-analysis was used to estimate country-specific pooled associations of temperature with suicide. Results An increase in temperature corresponding to half of the city-specific standard deviation was positively associated with suicide in most cities, although average suicide rates varied substantially. Pooled country-level effect estimates were 7.8% (95% CI: 5.0, 10.8%) for a 2.3°C increase in ambient temperature in Taiwan, 6.8% (95% CI: 5.4, 8.2%) for a 4.7°C increase in Korea, and 4.5% (95% CI: 3.3, 5.7%) for a 4.2°C increase in Japan. The association between temperature and suicide was significant even after adjusting for sunshine duration; the association between sunshine and suicide was not significant. The associations were greater among men than women in 12 of the 15 cities although not significantly so. There was little evidence of a consistent pattern of associations with age. In general, associations were strongest with temperature on the same day or the previous day, with little evidence of associations with temperature over longer lags (up to 5 days). Conclusions We estimated consistent positive associations between suicide and elevated ambient temperature in three East Asian countries, regardless of country, sex, and age. Citation Kim Y, Kim H, Honda Y, Guo YL, Chen BY, Woo JM, Ebi KL. 2016. Suicide and ambient temperature in East Asian countries: a time-stratified case-crossover analysis. Environ Health Perspect 124:75–80; http://dx.doi.org/10.1289/ehp.1409392 PMID:26069051

  2. Effect of substrate and temperature on the electronic properties of monolayer molybdenum disulfide field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yang, Qizhi; Fang, Jiajia; Zhang, Guangru; Wang, Quan

    2018-03-01

    The use of two-dimensional nanostructured molybdenum disulfide (MoS2) films in field-effect transistors (FETs) in place of graphene was investigated. Monolayer MoS2 films were fabricated by chemical vapor deposition. The output and transfer curves of supported and suspended MoS2 FETs were measured. The mobility of the suspended device reached 364.2 cm2 V-1 s-1 at 150 °C. The hysteresis of the supported device in transfer curves was much larger than that of the suspended device, and it increased at higher temperatures. These results indicate that the device mobility was limited by Coulomb scattering at ambient temperature, and surface/interface phonon scattering at 150 °C, and the injection of electrons, via quantum tunneling through the Schottky barrier at the contact, was enhanced at higher temperatures and led to the increase of the hysteresis. The suspended MoS2 films show potential for application as a channel material in electronic devices, and further understanding the causes of hysteresis in a material is important for its use in technologies, such as memory devices and sensing cells.

  3. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.

    PubMed

    Hu, Jie; Lang, Tingting; Shi, Guo-Hua

    2017-06-26

    In this paper, a novel kind of sensors for simultaneous measurement of refractive index and temperature based on all-dielectric metasurfaces is proposed. The metasurfaces are constructed by an array of silicon nanoblocks on top of the bulk fused silica substrate. We used three-dimensional full wave electromagnetic field simulation by finite integral method to accurately calculate the transmission spectrum of the metasurfaces. Two transmission dips corresponding to the electric and magnetic resonances are observed. Both dips shift as the ambient refractive index or the temperature changes. Simulation results show that the sensing sensitivities of two dips to the refractive index are 243.44 nm/RIU and 159.43 nm/RIU, respectively, while the sensitivities to the temperature are 50.47 pm/°C and 75.20 pm/°C, respectively. After introducing four holes into each silicon nanoblock, the electromagnetic field overlap in the surrounding medium can be further promoted, and the sensitivities to the refractive index increase to 306.71 nm/RIU and 204.27 nm/RIU, respectively. Our proposed sensors have advantages of polarization insensitive, small size, and low loss, which offer them high potential applications in physical, biological and chemical sensing fields.

  4. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5

    PubMed Central

    Kim, Sara; Hwang, Geonhee; Lee, Seulgi; Zhu, Jia-Ying; Paik, Inyup; Nguyen, Thom Thi; Kim, Jungmook; Oh, Eunkyoo

    2017-01-01

    Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module. PMID:29104579

  5. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  6. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens.

    PubMed

    Tan, G-Y; Yang, L; Fu, Y-Q; Feng, J-H; Zhang, M-H

    2010-01-01

    This study investigated the effects of different acute high ambient temperatures on dysfunction of hepatic mitochondrial respiration, the antioxidative enzyme system, and oxidative injury in broiler chickens. One hundred twenty-eight 6-wk-old broiler chickens were assigned randomly to 4 groups and subsequently exposed to 25 (control), 32, 35, and 38 degrees C (RH, 70 +/- 5%) for 3 h, respectively. The rectal temperatures, activity of antioxidative enzymes (superoxide dismutase, catalase, and glutathione peroxidase), content of malondialdehyde and protein carbonyl, and the activity of mitochondrial respiratory enzymes were determined. The results showed that exposure to high ambient temperature induced a significant elevation of rectal temperature, antioxidative enzyme activity, and formation of malondialdehyde and protein carbonyl, as well as dysfunction of the mitochondrial respiratory chain in comparison with control (P < 0.05). Almost all of the indicators changed in a temperature-dependent manner with the gradual increase of ambient temperature from 32 to 38 degrees C; differences in each parameter (except catalase) among the groups exposed to different high ambient temperatures were also statistically significant (P < 0.05). The results of the present study suggest that, in the broiler chicken model used here, acute exposure to high temperatures may depress the activity of the mitochondrial respiratory chain. This inactivation results subsequently in overproduction of reactive oxygen species, which ultimately results in oxidative injury. However, this hypothesis needs to be evaluated more rigorously in future studies. It has also been shown that, with the gradual increase in temperature, the oxidative injury induced by heat stress in broiler chickens becomes increasingly severe, and this stress response presents in a temperature-dependent manner in the temperature range of 32 to 38 degrees C.

  7. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD.

    PubMed

    Ge, Wanyin; Kawahara, Kenji; Tsuji, Masaharu; Ago, Hiroki

    2013-07-07

    We report ambient pressure chemical vapor deposition (CVD) growth of single-crystalline NbS2 nanosheets with controlled orientation. On Si and SiO2 substrates, NbS2 nanosheets grow almost perpendicular to the substrate surface. However, when we apply transferred CVD graphene on SiO2 as a substrate, NbS2 sheets grow laterally lying on the graphene. The NbS2 sheets show the triangular and hexagonal shapes with a thickness of about 20-200 nm and several micrometres in the lateral dimension. Analyses based on X-ray diffraction and Raman spectroscopy indicate that the NbS2 nanosheets are single crystalline 3R-type with a rhombohedral structure of R3m space group. Our findings on the formation of highly aligned NbS2 nanosheets on graphene give new insight into the formation mechanism of NbS2 and would contribute to the templated growth of various layered materials.

  8. Effect of sodium bicarbonate supplementation on carcass characteristics of lambs fed concentrate diets at different ambient temperature levels.

    PubMed

    Jallow, Demba B; Hsia, Liang Chou

    2014-08-01

    The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks). The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate) or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C) in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period). Ambient temperature had significant (p<0.05, p<0.05, p<0.01, and p<0.001) effects on meat color from the ribeye area (REA), fat, leg and longissimus dorsi muscles with higher values recorded for lambs in the lower temperature group than those from the higher ambient temperature group. Significant differences (p<0.05) in shear force value (kg/cm(2)) recorded on the leg muscles showed higher values (5.32 vs 4.16) in lambs under the lower ambient temperature group compared to the other group. Dietary treatments had significant (p<0.01, p<0.01, and p<0.05) effects on meat color from the REA, fat, and REA fat depth (cm(2)) with higher values recorded for lambs in the NaHCO3 supplementation group than the non supplemented group. Similarly, dietary treatments had significant differences (p<0.05) in shear force value (kg/cm(2)) of the leg muscles with the NaHCO3 groups recording higher (5.30 vs 4.60) values than those from the other group. Neither ambient temperature nor dietary treatments had any significant (p>0.05) effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality.

  9. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus)

    PubMed Central

    Haupt, Ryan J.; Avey-Arroyo, Judy A.; Wilson, Rory P.

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg−1day−1 (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths. PMID:25861559

  10. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers.

    PubMed

    Liu, Q W; Feng, J H; Chao, Z; Chen, Y; Wei, L M; Wang, F; Sun, R P; Zhang, M H

    2016-04-01

    This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p < 0.001, p < 0.001, p < 0.001, p = 0.008 respectively), but increased feed/gain, mortality, respiratory rate, rectal temperature, serum uric acid contents and serum creatine kinase activity (p = 0.008, p = 0.003, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.003 respectively), irrespective of crude protein levels. At the ambient temperature, reducing crude protein levels resulted in an increase in feed/gain (p < 0.001), but a decrease in serum total protein and uric acid contents. Only serum creatine kinase activity in broiler chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Morphological Behavior of Printed Silver Electrodes with Protective Self-Assembled Monolayers for Electrochemical Migration.

    PubMed

    Sekine, Tomohito; Sato, Jun; Takeda, Yasunori; Kumaki, Daisuke; Tokito, Shizuo

    2018-05-09

    We evaluated the electrochemical behaviors and reliability of printed silver (Ag) electrodes prepared from nanoparticle inks with the use of protective self-assembled monolayers (SAMs) under electronic bias conditions. The printed Ag electrodes were fabricated by inkjet printing on a hydrophobic substrate. The SAMs, which acted as barriers to moisture, were prepared by immersing the substrate in a pentafluorobenzenethiol solution at ambient temperature (25 °C). We investigated the electrochemical migration phenomenon using the water drop method, and the results showed that the formation of dendrites connecting the cathode and the anode, which can affect the electrochemical reliability of an electric device, was suppressed in the presence of the SAMs. The time before short circuit occurred was found to depend on the spacing between the electrodes, i.e., 130 s, when the distance between the electrodes was 200 μm in the presence of an SAM. We demonstrated that Ag electrodes treated using the procedure described in this work suppress the occurrence of electrical short circuits caused by Ag dendrite formation and thus their electrochemical properties are substantially improved.

  12. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature

    PubMed Central

    Potyrailo, Radislav A.; Surman, Cheryl

    2013-01-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  13. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  14. Dynamic modeling the composting process of the mixture of poultry manure and wheat straw.

    PubMed

    Petric, Ivan; Mustafić, Nesib

    2015-09-15

    Due to lack of understanding of the complex nature of the composting process, there is a need to provide a valuable tool that can help to improve the prediction of the process performance but also its optimization. Therefore, the main objective of this study is to develop a comprehensive mathematical model of the composting process based on microbial kinetics. The model incorporates two different microbial populations that metabolize the organic matter in two different substrates. The model was validated by comparison of the model and experimental data obtained from the composting process of the mixture of poultry manure and wheat straw. Comparison of simulation results and experimental data for five dynamic state variables (organic matter conversion, oxygen concentration, carbon dioxide concentration, substrate temperature and moisture content) showed that the model has very good predictions of the process performance. According to simulation results, the optimum values for air flow rate and ambient air temperature are 0.43 l min(-1) kg(-1)OM and 28 °C, respectively. On the basis of sensitivity analysis, the maximum organic matter conversion is the most sensitive among the three objective functions. Among the twelve examined parameters, μmax,1 is the most influencing parameter and X1 is the least influencing parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates

    DOE PAGES

    Burmistrova, Polina V.; Zakharov, Dmitri N.; Favaloro, Tela; ...

    2015-03-14

    Four epitaxial ScN(001) thin films were successfully deposited on MgO(001) substrates by dc reactive magnetron sputtering at 2, 5, 10, and 20 mTorr in an Ar/N2 ambient atmosphere at 650 °C. The microstructure of the resultant films was analyzed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrical resistivity, electron mobility and concentration were measured using the room temperature Hall technique, and temperature dependent in-plain measurements of the thermoelectric properties of the ScN thin films were performed. The surface morphology and film crystallinity significantly degrade with increasing deposition pressure. The ScN thin film deposited at 20 mTorr exhibitsmore » the presence of <221> oriented secondary grains resulting in decreased electric properties and a low thermoelectric power factor of 0.5 W/m-K² at 800 K. ScN thin films grown at 5 and 10 mTorr are single crystalline, yielding the power factor of approximately 2.5 W/m-K² at 800 K. The deposition performed at 2 mTorr produces the highest quality ScN thin film with the electron mobility of 98 cm² V⁻¹ s⁻¹ and the power factor of 3.3 W/m-K² at 800 K.« less

  16. High-temperature fiber-optic lever microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.

    1995-01-01

    The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.

  17. ELEVATED CO2 AND TEMPERATURE ALTER THE ECOSYSTEM C EXCHANGE IN A YOUNG DOUGLAS FIR MESOCOSM EXPERIMENT

    EPA Science Inventory

    We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...

  18. Influence of ambient temperatures on the production of restraint ulcers in the rat

    NASA Technical Reports Server (NTRS)

    Buchel, L.; Gallaire, D.

    1980-01-01

    A study of the influence of ambient temperature on the production of restraint ulcers in the rat is described. It concludes that the production of restrain ulcers, is favored by the reduction of the environmental temperature, whether the rat has been subjected to a fast or not.

  19. Experimental study on physiological responses and thermal comfort under various ambient temperatures.

    PubMed

    Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi

    2008-01-28

    This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.

  20. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  1. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  2. Crystallization, fluoridation and some properties of apatite thin films prepared through rf-sputtering from CaO-P2O5 glasses.

    PubMed

    Yamashita, K; Matsuda, M; Arashi, T; Umegaki, T

    1998-07-01

    Using calcium phosphate glass targets with the CaO/P2O5 molar ratios of 1.50-0.50, much lower than the stoichiometric value of 3.3 for hydroxyapatite, thin films of stoichiometric hydroxy-, nonstoichiometric oxyhydroxy- and Ca-deficient oxyhydroxy-apatites were prepared on alumina ceramic substrates by rf-sputtering followed by post-annealing. Based on the present results, a phase diagram for CaO-P2O5 at low temperatures in the ambience of air was depicted for thin films. The ambient H2O vapor had an influence on the phase diagram: Tricalcium phosphate was changed to apatite in the presence of H2O vapor. Dense fluorohydroxyapatite thin films were prepared by fluoridation of those apatite thin films at a low temperature such as 200 degrees C. In the present report, some functional properties of thin films thus prepared were also shown.

  3. Non-pharmacological and pharmacological strategies of brown adipose tissue recruitment in humans.

    PubMed

    Lee, Paul; Greenfield, Jerry R

    2015-12-15

    Humans maintain core temperature through a complex neuroendocrine circuitry, coupling environmental thermal and nutritional cues to heat-producing and dissipating mechanisms. Up to 40% of resting energy expenditure contributes to thermal homeostasis maintenance. Recent re-discovery of thermogenic brown adipose tissue (BAT) has brought the relation between ambient temperature, thermogenesis and systemic energy and substrate metabolism to the forefront. In addition to well-known pituitary-thyroid-adrenal axis, new endocrine signals, such as FGF21 and irisin, orchestrate crosstalk between white adipose tissue (WAT), BAT and muscle, tuning non-shivering and shivering thermogenesis responses. Cold exposure modulates the endocrine milieu, and cold-induced hormones cause bioenergetics transformation sufficient to impact whole body metabolism. This review will appraise the nature of human BAT and the basis of BAT-centred therapeutics, highlighting how the interaction between hormones and adipose tissue impacts metabolic responses. Non-pharmacological and pharmacological strategies of BAT recruitment and/or fat browning for metabolic benefits will be discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose.

    PubMed

    Perera, Karnayakage Rasika J; Nirmalakhandan, Nagamany

    2011-09-01

    This study evaluated fermentative biohydrogen production from sucrose supplemented with dairy cattle manure at different sucrose:manure ratios. Hydrogen yields found in this study (2.9-5.3M hydrogen/M sucrose) at ambient temperature are higher than literature results obtained at mesophilic temperatures. This study demonstrated that dairy cattle manure could serve as a buffering agent to maintain recommended pH levels; as a nutrient source to provide the required nutrients for hydrogen production; as a seed to produce hydrogen from sucrose; and as a co-substrate to improve the hydrogen yield. Based on an analysis of the net energy gain, it is concluded that positive net energy gains can be realized with non-thermal pretreatment and/or by combining dark fermentation with anaerobic digestion or microbial fuel cells to extract additional energy from the aqueous products of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu

    2018-02-01

    Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.

  6. [Association between ambient temperature and hospital emergency room visits for cardiovascular diseases: a case-crossover study].

    PubMed

    Guo, Yu-Ming; Wang, Jia-Jia; Li, Guo-Xing; Zheng, Ya-An; He, Wichmann; Pan, Xiao-Chuan

    2009-08-01

    To explore the association between ambient average temperature and hospital emergency room visits for cardiovascular diseases (International Classification of Diseases, Tenth Vision ICD-10: I00 - I99) in Beijing, China. Data was collected on daily hospital emergency room visits for cardiovascular diseases from Peking University Third Hospital, including meteorological data (daily average temperature, relative humidity, wind speed, and atmospheric pressure) from the China Meteorological Data Sharing Service System, and on air pollution from the Beijing Municipal Environmental Monitoring Center. Time-stratified case-crossover design was used to analyze data on 4 seasons. After adjusting data on air pollution, 1 degree ( degrees C) increase of ambient average temperature would associate with the emergency room visits of odds ratio (ORs) as 1.282 (95%CI: 1.250 - 1.315), 1.027 (95%CI: 1.001 - 1.055), 0.661 (95%CI: 0.637 - 0.687), and 0.960 (95%CI: 0.937 - 0.984) in spring, summer, autumn, and winter respectively. After controlling the influence of relative humidity, wind speed, and atmospheric pressure, 1 degrees C increase in the ambient average temperature would be associated with the emergency room visits on ORs value as 1.423 (95%CI: 1.377 - 1.471), 1.082 (95%CI: 1.041 - 1.124), 0.633 (95%CI: 0.607 - 0.660) and 0.971 (95%CI: 0.944 - 1.000) in spring, summer, autumn, and winter respectively. These data on outcomes suggested that the elevated level of ambient temperature would increase the hospital emergency room visits for cardiovascular diseases in spring and summer while the elevated level of ambient temperature would decrease the hospital emergency room visits for the cardiovascular diseases in autumn and winter, suggesting that patients with cardiovascular diseases should pay attention to the climate change.

  7. Relationship between prostate-specific antigen levels and ambient temperature

    NASA Astrophysics Data System (ADS)

    Ohwaki, Kazuhiro; Endo, Fumiyasu; Hattori, Kazunori; Muraishi, Osamu

    2014-07-01

    We examined the association between prostate-specific antigen (PSA) and daily mean ambient temperature on the day of the test in healthy men who had three annual checkups. We investigated 9,694 men who visited a hospital for routine health checkups in 2007, 2008, and 2009. Although the means and medians of ambient temperature for the three years were similar, the mode in 2008 (15.8 °C) was very different from those in 2007 and 2009 (22.4 °C and 23.2 °C). After controlling for age, body mass index, and hematocrit, a multiple regression analysis revealed a U-shaped relationship between ambient temperature and PSA in 2007 and 2009 ( P < 0.001 and P = 0.004, respectively), but not in 2008 ( P = 0.779). In 2007, PSA was 13.5 % higher at 5 °C and 10.0 % higher at 30 °C than that at 18.4 °C (nadir). In 2009, PSA was 7.3 % higher at 5 °C and 6.8 % at 30 °C compared with the level at 17.7 °C (nadir). In logistic regression analysis, a U-shaped relationship was found for the prevalence of a higher PSA (> 2.5 ng/mL) by ambient temperature, with the lowest likelihood of having a high PSA at 17.8 °C in 2007 ( P = 0.038) and 15.5 °C in 2009 ( P = 0.033). When tested at 30 °C, there was a 57 % excess risk of having a high PSA in 2007 and a 61 % higher risk in 2009 compared with those at each nadir temperature. We found a U-shaped relationship between PSA and ambient temperature with the lowest level of PSA at 15-20 °C.

  8. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.

    PubMed

    George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W

    2015-11-03

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.

  9. Ca++ induced hypothermia in a hibernator /Citellus beechyi/

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1975-01-01

    Results of perfusion of excess Ca++ and Na+ into the hypothalamus of the hibernating ground squirrel Citellus beechyi are presented. The significant finding is that perfused excess Ca++ causes a reduction in core temperature when ambient temperature is low (12 C). Ca++ also causes a rise in rectal temperature at high ambient temperature (33 C). Thus hypothalamic Ca++ perfusion apparently causes a nonspecific depression of thermoregulatory control.

  10. Effect of ambient temperature on human pain and temperature perception.

    PubMed

    Strigo, I A; Carli, F; Bushnell, M C

    2000-03-01

    Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous beta-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50 degrees C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15 degrees C (cool), 25 degrees C (neutral), and 35 degrees C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Mean skin temperature was altered by ambient temperature (cool room: 30.1 degrees C; neutral room: 33.4 degrees C; warm room: 34.5 degrees C; P < 0.0001). Ambient temperature affected both heat (44-50 degrees C) and cold (25-0 degrees C) perception (P < 0.01). Stimulus intensity ratings tended to be lower in the cool than in the neutral environment (P < 0.07) but were not different between the neutral and warm environments. Unpleasantness ratings revealed that cold stimuli were more unpleasant than hot stimuli in the cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40 degrees C) or mechanical stimuli. These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Adelta primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Adelta cutaneous cold fibers.

  11. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  12. Nitrous oxide causes a regulated hypothermia: rats select a cooler ambient temperature while becoming hypothermic.

    PubMed

    Ramsay, Douglas S; Seaman, Jana; Kaiyala, Karl J

    2011-04-18

    An initial administration of 60% nitrous oxide (N(2)O) evokes hypothermia in rats and if the administration continues for more than 1-2h, acute tolerance typically develops such that the initial reduction in core temperature (Tc) reverses and Tc recovers toward control values. Calorimeter studies at normal ambient temperature indicate that hypothermia results from a transient reduction in heat production (HP) combined with an elevation in heat loss. Acute tolerance develops primarily due to progressive increases in HP. Our aim was to determine whether rats provided a choice of ambient temperatures would behaviorally facilitate or oppose N(2)O-induced hypothermia. A gas-tight thermally-graded alleyway (range, 6.7-37.0°C) enabled male Long-Evans rats (n=12) to select a preferred ambient temperature during a 5-hour steady-state administration of 60% N(2)O and a separate paired control gas exposure (order counterbalanced). Tc was measured telemetrically from a sensor surgically implanted into the peritoneal cavity >7days before testing. Internal LED lighting maintained the accustomed day:night cycle (light cycle 0700-1900h) during sessions lasting 45.5h. Rats entered the temperature gradient at 1100h, and the 5-h N(2)O or control gas period did not start until 23h later to provide a long habituation/training period. Food and water were provided ad libitum at the center of the alleyway. The maximum decrease of mean Tc during N(2)O administration occurred at 0.9h and was -2.05±0.25°C; this differed significantly (p<0.0001) from the corresponding Tc change at 0.9h during control gas administration (0.01±0.14°C). The maximum decrease of the mean selected ambient temperature during N(2)O administration occurred at 0.7h and was -13.58±1.61°C; this differed significantly (p<0.0001) from the corresponding mean change in the selected ambient temperature at 0.7h during control gas administration (0.30±1.49°C). N(2)O appears to induce a regulated hypothermia because the selection of a cool ambient temperature facilitates the reduction in Tc. The recovery of Tc during N(2)O administration (i.e., acute tolerance development) could have been facilitated by selection of ambient temperatures that were warmer than those chosen during control administrations, but interestingly, this did not occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Nitrous Oxide Causes a Regulated Hypothermia: Rats Select a Cooler Ambient Temperature While Becoming Hypothermic

    PubMed Central

    Ramsay, Douglas S.; Seaman, Jana; Kaiyala, Karl J.

    2011-01-01

    An initial administration of 60% nitrous oxide (N2O) evokes hypothermia in rats and if the administration continues for more than 1 – 2 hours, acute tolerance typically develops such that the initial reduction in core temperature (Tc) reverses and Tc recovers toward control values. Calorimeter studies at normal ambient temperature indicate that hypothermia results from a transient reduction in heat production (HP) combined with an elevation in heat loss. Acute tolerance develops primarily due to progressive increases in HP. Our aim was to determine whether rats provided a choice of ambient temperatures would behaviorally facilitate or oppose N2O -induced hypothermia. A gas-tight thermally-graded alleyway (range, 6.7 – 37.0°C) enabled male Long-Evans rats (n=12) to select a preferred ambient temperature during a 5-hour steady-state administration of 60% N2O and a separate paired control gas exposure (order counterbalanced). Tc was measured telemetrically from a sensor surgically implanted into the peritoneal cavity > 7 days before testing. Internal LED lighting maintained the accustomed day:night cycle (light cycle 0700 – 1900 h) during sessions lasting 45.5 hours. Rats entered the temperature gradient at 1100 h, and the 5-h N2O or control gas period did not start until 23 hours later to provide a long habituation / training period. Food and water were provided ad libitum at the center of the alleyway. The maximum decrease of mean Tc during N2O administration occurred at 0.9 h and was −2.05 ± 0.25°C; this differed significantly (p<0.0001) from the corresponding Tc change at 0.9 h during control gas administration (0.01 ± 0.14°C). The maximum decrease of mean selected ambient temperature during N2O administration occurred at 0.7 h and was −13.58 ± 1.61°C; this differed significantly (p < 0.0001) from the corresponding mean change in selected ambient temperature at 0.7 h during control gas administration (0.30 ± 1.49°C). N2O appears to induce a regulated hypothermia because the selection of a cool ambient temperature facilitates the reduction in Tc. The recovery of Tc during N2O administration (i.e., acute tolerance development) could have been facilitated by selection of ambient temperatures that were warmer than those chosen during control administrations, but interestingly, this did not occur. PMID:21184766

  14. A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change.

    PubMed

    Medhurst, Jane; Parsby, Jan; Linder, Sune; Wallin, Göran; Ceschia, Eric; Slaney, Michelle

    2006-09-01

    A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.

  15. Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions.

    PubMed

    Kaiyala, Karl J; Ogimoto, Kayoko; Nelson, Jarrell T; Schwartz, Michael W; Morton, Gregory J

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity.

  16. Leptin Signaling Is Required for Adaptive Changes in Food Intake, but Not Energy Expenditure, in Response to Different Thermal Conditions

    PubMed Central

    Kaiyala, Karl J.; Ogimoto, Kayoko; Nelson, Jarrell T.; Schwartz, Michael W.; Morton, Gregory J.

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity. PMID:25756181

  17. Preparation and Characterization of Ferroelectric BaTi0.91(Hf0.5, Zr0.5)0.09O3 Thin Films by Sol-Gel Process Using Titanium and Zirconium Alkoxides

    NASA Astrophysics Data System (ADS)

    Thongrueng, Jirawat; Nishio, Keishi; Nagata, Kunihiro; Tsuchiya, Toshio

    2000-09-01

    Sol-gel-derived BaTi0.91(Hf0.5, Zr0.5)0.09O3 (BTHZ-9) thin films have been successfully prepared on Pt and Pt(111)/Ti/SiO2/Si(100) substrates by spin-coating and sintering from 550 to 900°C for 2 h in oxygen ambient. X-ray diffraction measurement indicated that the single perovskite phase of the BTHZ-9 thin films was obtained at heat treatment above 650°C. The formation temperature of the double-alkoxy-derived BTHZ-9 thin films was lower by at least 80°C than that of the films prepared from only titanium alkoxide. The microstructure of the films was observed by atomic force microscopy and scanning electron microscopy. The grain size of the films increased from 70 to 200 nm with increasing sintering temperature ranging from 650 to 850°C. The maximum peak for the dielectric constant, corresponding to the Curie point (87°C), was broad and lower in magnitude compared with that of the BTHZ-9 bulk ceramics. Tensile stresses resulting from the differences between thermal expansion coefficients of the substrate and the film caused poor electrical properties. BTHZ-9 thin films exhibited a well-saturated polarization-electric field hysteresis loop. The polarization and coercive field for the 850-nm-thick BTHZ-9 thin film prepared on Pt/Ti/SiO2/Si substrate at 750°C were determined to be 8 μC/cm2 and 15 kV/cm, respectively. Those of the BTHZ-9 thin film prepared on Pt substrate at 850°C were found to be 9 μC/cm2 and 18 kV/cm, respectively.

  18. Effects of a whole-body spandex garment on rectal temperature and oxygen consumption in healthy dogs.

    PubMed

    Reimer, S Brent; Schulz, Kurt S; Mason, David R; Jones, James H

    2004-01-01

    To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments. Prospective study. 10 healthy dogs. Each dog was evaluated at a low (20 degrees to 25 degrees C [68 degrees to 77 degrees F]) or high (30 degrees to 35 degrees C [86 degrees to 95 degrees F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed. Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature. Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat.

  19. Effects of Temperature and Humidity on Wilethane 44 Cure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Weigle

    Wilethane 44 is a polyurethane adhesive developed by the Materials Team within ESA-MEE at Los Alamos National Laboratory as a replacement for Hexcel Corporation Urethane 7200. Urethane 7200 is used in numerous weapon systems, but it was withdrawn from the market in 1989. The weapons complex requires a replacement material for use in the W76-1 LEP and the W88, as well as for assembly of JTAs for other warheads. All polyurethane systems are susceptible to moisture reacting with unreacted isocyanate groups. This side reaction competes with the curing reaction and results in CO{sub 2} formation. Therefore, a polyurethane adhesive canmore » exhibit foaming if appropriate environmental controls are not in place while it cures. A designed experiment has been conducted at TA-16-304 to determine the effects of ambient conditions on the properties of cured Wilethane 44. Temperature was varied from 15 C to 30 C and relative humidity from 15% to 40%. The density, hardness at 24 hours, and butt tensile strength on aluminum substrates were measured and fitted to quadratic equations over the experimental space. Additionally, the loss and storage moduli during cure were monitored as a function of cure temperature. These experiments provide a stronger basis for establishing appropriate environmental conditions and cure times when using Wilethane 44. The current guidelines are a working time of 90 minutes, a cure time of 18 hours, and a relative humidity of less than 25%, regardless of ambient temperature. Viscosity measurements revealed that the working time is a strong function of temperature and can be as long as 130 minutes at 15 C or as short as 90 minutes at 30 C. The experiments also showed that the gel time is much longer than originally thought, as long as 13 hours at 15 C. Consequently, it may be necessary to extend the required cure time at temperatures below 20 C. Allowable humidity varies as a function of temperature from 34% at 15 C to 15% at 30 C.« less

  20. Effect of ambient temperature and internal relative humidity on spectral sensitivity of broadband UV detectors

    NASA Astrophysics Data System (ADS)

    Huber, Martin; Blumthaler, Mario; Schreder, Josef

    2002-01-01

    Within the frame of the Austrian UV Monitoring Network, repeated recalibrations of Solar Light Sunburn Meters between December 1997 and March 2000 have shown significant temporal changes in the instruments' relative spectral response function as well as in their absolute calibration. Therefore, laboratory investigations of the effects of ambient temperature and internal relative humidity on the behavior of two Sunburn Meters have been performed. Despite internal temperature stabilization, both instruments show significant dependence of their spectral response function on ambient temperature. When the outside temperature of the detector's housing varies between 13 degree(s)C and 44 degree(s)C, spectral sensitivity changes by up to 10% in the UVB range and by up to a factor of 2 in the UVA range, depending on internal relative humidity. As a consequence, output voltage variations of 10% are observed when the detector is mounted in front of a 1000 W halogen lamp and its internal relative humidity is changed while its ambient temperature is kept constant. Whereas temperature effects take place within several hours, instabilities due to variations in internal relative humidity show typical time constants in the order of several days.

  1. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  2. Chemical properties and GMR improvement of specular spin valves with nano-oxide layers, formed in ambient mixed gases

    NASA Astrophysics Data System (ADS)

    Quang, H. D.; Hien, N. T.; Oh, S. K.; Sinh, N. H.; Yu, S. C.

    2004-12-01

    Specular spin valves (SVs) containing nano-oxide layers (NOLs) structured as substrate/seed/AF/P1/NOL/P2/Cu/F/NOL, have been fabricated. The NOLs were formed by natural oxidation in different ambient atmospheres of pure oxygen, oxygen/nitrogen and oxygen/argon gas mixtures. The fabrication conditions were optimized to enhance the magnetoresistance (MR) ratio, to suppress the interlayer coupling fields (Hf) between the free and pinned layers, to suppress the high interface density of the NOL, to ease the control of the NOL thickness and to form a smooth NOL/P2 interface for promoting specular electron scattering. The characteristics of our specular SVs are the MR ratio of 14.1%, the exchange bias field of 44-45 mT, and Hf weaker than 1.0 mT. The optimal conditions for oxidation time, total oxidation pressure and the annealing temperature were found to be 300 s, 0.14 Pa (oxygen/argon = 80/20) and 250°C, respectively. Also, the origin of thermal stability of MMn-based (M = Fe, Pt, Ir, etc) specular SVs has been explained in detail by chemical properties of NOL using secondary-ion mass spectroscopy and x-ray photoelectron spectroscopy depth profile analyses. Thermal stability turns out to be caused by a decrease in MR ratios at high temperatures (>250°C), which is a serious problem for device applications using the SV structure as a high density read head device.

  3. Hardness assurance testing and radiation hardening by design techniques for silicon-germanium heterojunction bipolar transistors and digital logic circuits

    NASA Astrophysics Data System (ADS)

    Sutton, Akil K.

    Hydrocarbon exploration, global navigation satellite systems, computed tomography, and aircraft avionics are just a few examples of applications that require system operation at an ambient temperature, pressure, or radiation level outside the range covered by military specifications. The electronics employed in these applications are known as "extreme environment electronics." On account of the increased cost resulting from both process modifications and the use of exotic substrate materials, only a handful of semiconductor foundries have specialized in the production of extreme environment electronics. Protection of these electronic systems in an extreme environment may be attained by encapsulating sensitive circuits in a controlled environment, which provides isolation from the hostile ambient, often at a significant cost and performance penalty. In a significant departure from this traditional approach, system designers have begun to use commercial off-the-shelf technology platforms with built in mitigation techniques for extreme environment applications. Such an approach simultaneously leverages the state of the art in technology performance with significant savings in project cost. Silicon-germanium is one such commercial technology platform that demonstrates potential for deployment into extreme environment applications as a result of its excellent performance at cryogenic temperatures, remarkable tolerance to radiation-induced degradation, and monolithic integration with silicon-based manufacturing. In this dissertation the radiation response of silicon-germanium technology is investigated, and novel transistor-level layout-based techniques are implemented to improve the radiation tolerance of HBT digital logic.

  4. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOEpatents

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  5. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  6. Effect of Substrate and Process Parameters on the Gas-Substrate Convective Heat Transfer Coefficient During Cold Spraying

    NASA Astrophysics Data System (ADS)

    Mahdavi, Amirhossein; McDonald, André

    2018-02-01

    The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.

  7. Reduced graphene Oxide/ZnO nanostructures based rectifier diode

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Sameeksha; Kumar, Ravi; Sharma, Monika; Kuanr, Bijoy K.

    2017-05-01

    We report on the fabrication and characterization of graphene oxide and reduced graphene oxide/ZnO nanostructures on ITO-coated glass substrates for the rectification properties of a heterojunction device. The composites of GO/ZnO and rGO/ZnO were synthesized by the modified Hummers method followed by annealing process in N2 and H2 ambient atmosphere at various temperatures. The structural and compositional analysis of the composite material have been investigated using X-ray diffraction spectroscopy and Raman spectroscopy. The optical properties of the composite films were studied by UV-visible spectroscopy and the band-gap was obtained by Tauc's plot. The band-gap reduces to 2.4 eV for the composite film as compared to ZnO film 3.26 eV. The I-V characteristics of ZnO thin films and rGO/ZnO films were done for different light conditions viz dark, ambient light and UV-illumination. It has been observed that the threshold voltage decreases when the sample was placed in UV-illumination. A direct variation in photo-response is revealed with the bias voltage as well as UV illumination. The fabricated device could be used as an Ultraviolet Photo-detector.

  8. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    PubMed

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Organic field-effect transistors: a combined study on short-channel effects and the influence of substrate pre-treatment on ambient stability

    NASA Astrophysics Data System (ADS)

    Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.

    2011-10-01

    For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.

  10. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    USDA-ARS?s Scientific Manuscript database

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  11. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subjected to sudden shock, pressure, or high temperature. Flammable means a chemical that falls into one of...: (A) A gas that, at ambient temperature and pressure, forms a flammable mixture with air at a concentration of 13 percent by volume or less; or (B) A gas that, at ambient temperature and pressure, forms a...

  12. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  13. Non-Instrumented Incubation of a Recombinase Polymerase Amplification Assay for the Rapid and Sensitive Detection of Proviral HIV-1 DNA

    PubMed Central

    Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C.; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S.

    2014-01-01

    Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25–43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS. PMID:25264766

  14. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA.

    PubMed

    Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S

    2014-01-01

    Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25-43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS.

  15. 40 CFR 50.3 - Reference conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.3 Reference conditions. All measurements of air quality that... reported based on actual ambient air volume measured at the actual ambient temperature and pressure at the...

  16. Microwave promoted simple, efficient and regioselective synthesis of trisubstituted imidazo[1,2-a]benzimidazoles on soluble support.

    PubMed

    Chen, Li-Hsun; Hsiao, Ya-Shan; Yellol, Gorakh S; Sun, Chung-Ming

    2011-03-14

    An efficient microwave-assisted and soluble polymer-supported synthesis of medicinally important imidazole-fused benzimidazoles has been developed. The protocol involves the rapid condensation of polymer-bound amino benzimidazoles with various α-bromoketones and subsequent in situ intramolecular cyclization under microwave irradiation resulting in a one pot synthesis of imidazole interlacing benzimidazole polymer conjugates. The condensed product was obtained with excellent regioselectivity. The biologically interesting imidazo[1,2-a]benzimidazoles was released from polymer support at ambient temperature. Diversity in the triheterocyclic nucleus was achieved by the different substitutions at its 2, 3, and 9 positions. The new protocol has the advantages of short reaction time, easy workup process, excellent yields, reduced environmental impact, wide substrate scope and convenient procedure.

  17. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less

  18. Changes in nitrate and nitrite content of four vegetables during storage at refrigerated and ambient temperatures.

    PubMed

    Chung, J-C; Chou, S-S; Hwang, D-F

    2004-04-01

    The nitrate and nitrite contents of four kinds of vegetables (spinach, crown daisy, organic Chinese spinach and organic non-heading Chinese cabbage) in Taiwan were determined during storage at both refrigerated (5 +/- 1 degrees C) and ambient temperatures (22 +/- 1 degrees C) for 7 days. During storage at ambient temperature, nitrate levels in the vegetables dropped significantly from the third day while nitrite levels increased dramatically from the fourth day of storage. However, refrigerated storage did not lead to changes in nitrate and nitrite levels in the vegetables over 7 days.

  19. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study.

    PubMed

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S

    2016-01-01

    Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150-220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99-1.91) for 10°C, 1.92 (1.31-2.81) for 0°C, 3.13 (1.89-5.19) for -10°C, and 5.76 (2.30-14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Exposure to low ambient temperature within several hours increases the risk of ICH. ClinicalTrials.gov NCT00716079.

  20. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study

    PubMed Central

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S.

    2016-01-01

    Background Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. Methods INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150–220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Results Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99–1.91) for 10°C, 1.92 (1.31–2.81) for 0°C, 3.13 (1.89–5.19) for -10°C, and 5.76 (2.30–14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Conclusions Exposure to low ambient temperature within several hours increases the risk of ICH. Trial Registration ClinicalTrials.gov NCT00716079 PMID:26859491

  1. SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures1[OPEN

    PubMed Central

    Marín-González, Esther; Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E.; Lee, Jeong Hwan; Ahn, Ji Hoon; Suárez-López, Paula; Pelaz, Soraya

    2015-01-01

    Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under inductive photoperiods, through repression of FT, revealing the importance of floral repressors acting at low temperatures. Previously, we have reported that the floral repressors TEMPRANILLO (TEM; TEM1 and TEM2) control flowering time through direct regulation of FT at 22°C. Here, we show that tem mutants are less sensitive than the wild type to changes in ambient growth temperature, indicating that TEM genes may play a role in floral repression at 16°C. Moreover, we have found that TEM2 directly represses the expression of FT and TWIN SISTER OF FT at 16°C. In addition, the floral repressor SHORT VEGETATIVE PHASE (SVP) directly regulates TEM2 but not TEM1 expression at 16°C. Flowering time analyses of svp tem mutants indicate that TEM may act in the same genetic pathway as SVP to repress flowering at 22°C but that SVP and TEM are partially independent at 16°C. Thus, TEM2 partially mediates the temperature-dependent function of SVP at low temperatures. Taken together, our results indicate that TEM genes are also able to repress flowering at low ambient temperatures under inductive long-day conditions. PMID:26243615

  2. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    PubMed

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  3. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization

    PubMed Central

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  4. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  5. Development of rabbit embryos during a 96-h period of in vitro culture after superovulatory treatment under conditions of elevated ambient temperature.

    PubMed

    Cheng, H; Dooley, M P; Hopkins, S M; Anderson, L L; Yibchok-anun, S; Hsu, W H

    1999-08-16

    The effects of elevated ambient temperature on the response to exogenous gonadotropins were evaluated in female New Zealand White rabbits exposed to 33+/-1 degrees C (mean +/- SE) and 10-30% relative humidity (8 h/day) during a 5-day period. Does were treated with pFSH (0.3 mg/0.3 ml Standard Armour) twice daily during three consecutive days with a minimum interval of 8 h between injections. Six hours after the last FSH injection all does were removed from the experimental chamber, given hCG (25 IU/kg) and paired overnight. Nineteen hours after pairing, embryos were flushed from the reproductive tracts, evaluated, and subjected to in vitro culture during a 96-h period. The ovulatory responses to exogenous gonadotropins and fertilization rates did not differ significantly under conditions of elevated ambient temperature, whereas fewer blastocysts and increased number of degenerate embryos were observed after culture. We conclude that although hyperthermia was induced during exposure to elevated ambient temperature, it did not alter the ovulatory responses to gonadotropin treatment and plasma concentrations of FSH and LH compared with does in a thermoneutral environment. Exposure of donor rabbits to elevated ambient temperature before mating, however, increased embryonic degeneration.

  6. The effect of ambient temperature and humidity on the carbon monoxide emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.; Subramaniam, A. K.

    1977-01-01

    Changes in ambient temperature and humidity affect the exhaust emissions of a gas turbine engine. The results of a test program employing a JT8D combustor are presented which quantize the effect of these changes on carbon monoxide emissions at simulated idle operating conditions. Analytical results generated by a kinetic model of the combustion process and reflecting changing ambient conditions are given. It is shown that for a complete range of possible ambient variations, significant changes do occur in the amount of carbon monoxide emitted by a gas turbine engine.

  7. Novel phase of carbon, ferromagnetism, and conversion into diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh

    2015-12-07

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown thatmore » nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed. Subsequent laser pulses can be used to grow nanodiamond into microdiamond and nucleate other nanostructures of diamond on the top of existing microdiamond and create novel nanostructured materials. The microstructural details provide insights into the mechanism of formation of nanodiamond, microdiamond, nanoneedles, microneedles, and single-crystal thin films. This process allows carbon-to-diamond conversion and formation of useful nanostructures and microstructures at ambient temperatures in air at atmospheric pressure on practical and heat-sensitive substrates in a controlled way without need for any catalysts and hydrogen to stabilize sp{sup 3} bonding for diamond formation.« less

  8. Novel phase of carbon, ferromagnetism, and conversion into diamond

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-12-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp3 (75%-85%) with the rest being threefold sp2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed. Subsequent laser pulses can be used to grow nanodiamond into microdiamond and nucleate other nanostructures of diamond on the top of existing microdiamond and create novel nanostructured materials. The microstructural details provide insights into the mechanism of formation of nanodiamond, microdiamond, nanoneedles, microneedles, and single-crystal thin films. This process allows carbon-to-diamond conversion and formation of useful nanostructures and microstructures at ambient temperatures in air at atmospheric pressure on practical and heat-sensitive substrates in a controlled way without need for any catalysts and hydrogen to stabilize sp3 bonding for diamond formation.

  9. Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory.

    PubMed

    Simons, Mirre J P; Reimert, Inonge; van der Vinne, Vincent; Hambly, Catherine; Vaanholt, Lobke M; Speakman, John R; Gerkema, Menno P

    2011-01-01

    The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in livestock has increased litter size or productivity in these animals. To test the wider validity of the heat dissipation limit theory, we studied common voles (Microtus arvalis), which have small litter sizes by comparison with mice and rats, and regular addition of wild-caught individuals of this species to our laboratory colony ensures a natural genetic background. A crossover design of ambient temperatures (21 and 30°C) during pregnancy and lactation was used. High ambient temperature during lactation decreased milk production, slowing pup growth. The effect on pup growth was amplified when ambient temperature was also high during pregnancy. Shaving fur off dams at 30°C resulted in faster growth of pups; however, no significant increase in food intake and or milk production was detected. With increasing litter size (natural and enlarged), asymptotic food intake during lactation levelled off in the largest litters at both 21 and 30°C. Interestingly, the effects of lactation temperature on pup growth where also observed at smaller litter sizes. This suggests that vole dams trade-off costs associated with hyperthermia during lactation with the yield from investment in pup growth. Moreover, pup survival was higher at 30°C, despite lower growth, probably owing to thermoregulatory benefits. It remains to be seen how the balance is established between the negative effect of high ambient temperature on maternal milk production and pup growth (and/or future reproduction of the dam) and the positive effect of high temperatures on pup survival. This balance ultimately determines the effect of different ambient temperatures on reproductive success.

  10. Temperature influence on the development and loss of seawater tolerance in two fast-growing strains of Atlantic salmon

    USGS Publications Warehouse

    Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.

    2004-01-01

    Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.

  11. Effect of Socioeconomic Status and Underlying Disease on the Association between Ambient Temperature and Ischemic Stroke.

    PubMed

    Cho, Seong Kyung; Sohn, Jungwoo; Cho, Jaelim; Noh, Juhwan; Ha, Kyoung Hwa; Choi, Yoon Jung; Pae, Sangjoon; Kim, Changsoo; Shin, Dong Chun

    2018-07-01

    Inconsistent findings have been reported regarding the effect of ambient temperature on ischemic stroke. Furthermore, little is known about how underlying disease and low socioeconomic status influence the association. We, therefore, investigated the relationship between ambient temperature and emergency department (ED) visits for ischemic stroke, and aimed to identify susceptible populations. Using medical claims data, we identified ED visits for ischemic stroke during 2005-2009 in Seoul, Korea. We conducted piecewise linear regression analyses to find optimum ambient temperature thresholds in summer and winter, and estimated the relative risks (RR) and 95% confidence intervals (CI) per a 1°C increase in temperature above/below the thresholds, adjusting for relative humidity, holidays, day of the week, and air pollutant levels. There were 63564 ED visits for ischemic stroke. In summer, the risk of ED visits for ischemic stroke was not significant, with the threshold at 26.8°C. However, the RRs were 1.055 (95% CI, 1.006-1.106) above 25.0°C in medical aid beneficiaries and 1.044 (1.007-1.082) above 25.8°C in patients with diabetes. In winter, the risk of ED visits for ischemic stroke significantly increased as the temperature decreased above the threshold at 7.2°C. This inverse association was significant also in patients with hypertension and diabetes mellitus above threshold temperatures. Ambient temperature increases above a threshold were positively associated with ED visits for ischemic stroke in patients with diabetes and medical aid beneficiaries in summer. In winter, temperature, to a point, and ischemic stroke visits were inversely associated. © Copyright: Yonsei University College of Medicine 2018.

  12. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  13. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  14. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill.

    PubMed

    Combrink, L; Combrink, H J; Botha, A J; Downs, C T

    2017-05-01

    Southern ground-hornbills Bucorvus leadbeateri inhabit savanna and bushveld regions of South Africa. They nest in the austral summer, which coincides with the wet season and hottest daytime temperatures in the region. They are secondary cavity nesters and typically nest in large cavities in trees, cliffs and earth banks, but readily use artificial nest boxes. Southern ground-hornbills are listed as Endangered in South Africa, with reintroductions into suitable areas highlighted as a viable conservation intervention for the species. Nest microclimate, and the possible implications this may have for the breeding biology of southern ground-hornbills, have never been investigated. We used temperature dataloggers to record nest cavity temperature and ambient temperature for one artificial and 11 natural southern ground-hornbill tree cavity nests combined, spanning two breeding seasons. Mean hourly nest temperature, as well as mean minimum and mean maximum nest temperature, differed significantly between southern ground-hornbill nests in both breeding seasons. Mean nest temperature also differed significantly from mean ambient temperature for both seasons. Natural nest cavities provided a buffer against the ambient temperature fluctuations. The artificial nest provided little insulation against temperature extremes, being warmer and cooler than the maximum and minimum local ambient temperatures, respectively. Nest cavity temperature was not found to have an influence on the breeding success of the southern ground-hornbill groups investigated in this study. These results have potentially important implications for southern ground-hornbill conservation and artificial nest design, as they suggest that the birds can tolerate greater nest cavity temperature extremes than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.

    PubMed

    Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo

    2007-09-01

    We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.

  16. Hot dogs: High ambient temperatures impact reproductive success in a tropical carnivore.

    PubMed

    Woodroffe, Rosie; Groom, Rosemary; McNutt, J Weldon

    2017-10-01

    Climate change imposes an urgent need to recognise and conserve the species likely to be worst affected. However, while ecologists have mostly explored indirect effects of rising ambient temperatures on temperate and polar species, physiologists have predicted direct impacts on tropical species. The African wild dog (Lycaon pictus), a tropical species, exhibits few of the traits typically used to predict climate change vulnerability. Nevertheless, we predicted that wild dog populations might be sensitive to weather conditions, because the species shows strongly seasonal reproduction across most of its geographical range. We explored associations between weather conditions, reproductive costs, and reproductive success, drawing on long-term wild dog monitoring data from sites in Botswana (20°S, 24 years), Kenya (0°N, 12 years), and Zimbabwe (20°S, 6 years). High ambient temperatures were associated with reduced foraging time, especially during the energetically costly pup-rearing period. Across all three sites, packs which reared pups at high ambient temperatures produced fewer recruits than did those rearing pups in cooler weather; at the non-seasonal Kenya site such packs also had longer inter-birth intervals. Over time, rising ambient temperatures at the (longest-monitored) Botswana site coincided with falling wild dog recruitment. Our findings suggest a direct impact of high ambient temperatures on African wild dog demography, indicating that this species, which is already globally endangered, may be highly vulnerable to climate change. This vulnerability would have been missed by simplistic trait-based assessments, highlighting the limitations of such assessments. Seasonal reproduction, which is less common at low latitudes than at higher latitudes, might be a useful indicator of climate change vulnerability among tropical species. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  17. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James; Klett, Lynn

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambientmore » air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.« less

  18. Effects of ambient temperature on mechanomyography of resting quadriceps muscle.

    PubMed

    McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L

    2013-03-01

    It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.

  19. Composite Structure Repair. Addendum

    DTIC Science & Technology

    1984-08-01

    room temperature curing systems . For permanent repairs no reduction in " serciveability with regard to the maximum design temperature and the design...pressure for ply compaction and conformation of bonding surfaces. In certain instances, ambient temperature cure systems may be sufficient. - Noisture...than those placed on radomes. Some of ,the resins used for the repairs were ambient curing systems which also required no additional pressure for

  20. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  1. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  2. An algorithm for temperature correcting substrate moisture measurements: aligning substrate moisture responses with environmental drivers in polytunnel-grown strawberry plants

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl

    2015-04-01

    The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of

  3. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOEpatents

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  4. Interaction of acidic trace gases with ice from a surface science perspective

    NASA Astrophysics Data System (ADS)

    Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.

    2016-12-01

    Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to enhanced surface disorder at environmentally relevant conditions.

  5. Method for removing semiconductor layers from salt substrates

    DOEpatents

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  6. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less

  7. Fatigue behavior of AAR Class A railroad wheel steel at ambient and elevated temperatures.

    DOT National Transportation Integrated Search

    2006-12-01

    This report documents a test program to determine the material properties (chemical composition, tensile, and fatigue) at ambient and elevated temperatures of a Class A wheel steel as designated by the Association of American Railroads. The 3 tempera...

  8. Experimental and casework validation of ambient temperature corrections in forensic entomology.

    PubMed

    Johnson, Aidan P; Wallman, James F; Archer, Melanie S

    2012-01-01

    This paper expands on Archer (J Forensic Sci 49, 2004, 553), examining additional factors affecting ambient temperature correction of weather station data in forensic entomology. Sixteen hypothetical body discovery sites (BDSs) in Victoria and New South Wales (Australia), both in autumn and in summer, were compared to test whether the accuracy of correlation was affected by (i) length of correlation period; (ii) distance between BDS and weather station; and (iii) periodicity of ambient temperature measurements. The accuracy of correlations in data sets from real Victorian and NSW forensic entomology cases was also examined. Correlations increased weather data accuracy in all experiments, but significant differences in accuracy were found only between periodicity treatments. We found that a >5°C difference between average values of body in situ and correlation period weather station data was predictive of correlations that decreased the accuracy of ambient temperatures estimated using correlation. Practitioners should inspect their weather data sets for such differences. © 2011 American Academy of Forensic Sciences.

  9. Development of sleep monitoring system for observing the effect of the room ambient toward the quality of sleep

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Khoo, C. W.; Rahman, S. I. Ab; Ibrahim, M. M.; Saad, N. H. M.

    2017-06-01

    Getting enough sleep at the right times can help in improving quality of life and protect mental and physical health. This study proposes a portable sleep monitoring device to determine the relationship between the room ambient and quality of sleep. Body condition parameter such as heart rate, body temperature and body movement was used to determine quality of sleep and Audio/video-based monitoring system. The functionality test on all sensors is carried out to make sure that all sensors is working properly. The functionality of the overall system is designed for a better experience with a very minimal intervention to the user. The simple test on the body condition (body temperature and heart rate) while asleep with several different ambient parameters (humidity, brightness and temperature) are varied and the result shows that someone has a better sleep in a dark and colder ambient. This can prove by lower body temperature and lower heart rate.

  10. Collective thermoregulation in bee clusters

    PubMed Central

    Ocko, Samuel A.; Mahadevan, L.

    2014-01-01

    Swarming is an essential part of honeybee behaviour, wherein thousands of bees cling onto each other to form a dense cluster that may be exposed to the environment for several days. This cluster has the ability to maintain its core temperature actively without a central controller. We suggest that the swarm cluster is akin to an active porous structure whose functional requirement is to adjust to outside conditions by varying its porosity to control its core temperature. Using a continuum model that takes the form of a set of advection–diffusion equations for heat transfer in a mobile porous medium, we show that the equalization of an effective ‘behavioural pressure’, which propagates information about the ambient temperature through variations in density, leads to effective thermoregulation. Our model extends and generalizes previous models by focusing the question of mechanism on the form and role of the behavioural pressure, and allows us to explain the vertical asymmetry of the cluster (as a consequence of buoyancy-driven flows), the ability of the cluster to overpack at low ambient temperatures without breaking up at high ambient temperatures, and the relative insensitivity to large variations in the ambient temperature. Our theory also makes testable hypotheses for the response of the cluster to external temperature inhomogeneities and suggests strategies for biomimetic thermoregulation. PMID:24335563

  11. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)

    2003-01-01

    This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.

  12. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    PubMed

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  13. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats

    PubMed Central

    Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries

    2017-01-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats (Molossus molossus) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature. Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known. PMID:29308259

  14. Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Li, Maosheng; Zhou, Youhe

    2017-07-01

    This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.

  15. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  16. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.

  17. Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild conditions.

    PubMed

    Manna, Joydeb; Begum, Gousia; Kumar, K Pranay; Misra, Sunil; Rana, Rohit K

    2013-05-22

    Herein, we present an environmentally benign method capable of mineralization and deposition of nanomaterials to introduce antibacterial functionalities into cotton fabrics under mild conditions. Similar to the way in which many naturally occurring biominerals evolve around the living organism under ambient conditions, this technique enables flexible substrates like the cotton fabric to be coated with inorganic-based functional materials. Specifically, our strategy involves the use of long-chain polyamines known to be responsible in certain biomineralization processes, to nucleate, organize, and deposit nanostructured ZnO on cotton bandage in an aqueous solution under mild conditions of room temperature and neutral pH. The ZnO-coated cotton bandages as characterized by SEM, confocal micro-Raman spectroscopy, XRD, UV-DRS, and fluorescence microscopy demonstrate the importance of polyamine in generating a stable and uniform coating of spindle-shaped ZnO particles on individual threads of the fabric. As the coating process requires only mild conditions, it avoids any adverse effect on the thermal and mechanical properties of the substrate. Furthermore, the ZnO particles on cotton fabric show efficient antibacterial activity against both gram-positive and gram-negetive bacteria. Therefore, the developed polyamine mediated bioinspired coating method provides not only a facile and "green" synthesis for coating on flexible substrate but also the fabrication of antibacterial enabled materials for healthcare applications.

  18. Fecal Immunochemical Test (FIT) for Colon Cancer Screening: Variable Performance with Ambient Temperature

    PubMed Central

    Doubeni, Chyke A.; Jensen, Christopher D.; Fedewa, Stacey A.; Quinn, Virginia P.; Zauber, Ann G.; Schottinger, Joanne E.; Corley, Douglas A.; Levin, Theodore R.

    2017-01-01

    Introduction Fecal immunochemical tests (FITs) are widely used in colorectal cancer (CRC) screening, but hemoglobin degradation, due to exposure of the collected sample to high temperatures, could reduce test sensitivity. We examined the relation of ambient temperature exposure with FIT positivity rate and sensitivity. Methods This was a retrospective cohort study of patients 50 to 75 years in Kaiser Permanente Northern California’s CRC screening program, which began mailing FIT kits annually to screen-eligible members in 2007. Primary outcomes were FIT positivity rate and sensitivity to detect CRC. Predictors were month, season, and daily ambient temperatures of test result dates based on US National Oceanic and Atmospheric Administration data. Results Patients (n =472,542) completed 1,141,162 FITs. Weekly test positivity rate ranged from 2.6% to 8.0% (median, 4.4%) and varied significantly by month (June/July vs December/January rate ratio [RR] =0.79, 95% confidence interval [CI], 0.76 to 0.83) and season. FIT sensitivity was lower in June/July (74.5%; 95% CI, 72.5 to 76.6) than January/December (78.9%; 95% CI, 77.0 to 80.7). Conclusions FITs completed during high ambient temperatures had lower positivity rates and lower sensitivity. Changing kit design, specimen transportation practices, or avoiding periods of high ambient temperatures may help optimize FIT performance, but may also increase testing complexity and reduce patient adherence, requiring careful study. PMID:28076249

  19. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water.

    PubMed

    Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D

    2011-04-01

     Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures.   This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of <1, 1–10, 11–100, 101–1000, >1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods.   These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.

  20. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  1. Effect of ambient temperature and humidity on emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.

    1977-01-01

    The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions.

  2. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    PubMed Central

    2012-01-01

    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices. PMID:22502639

  3. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  4. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo

    2005-01-01

    Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.

  5. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  6. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  7. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  8. Adaption of a microwave plasma source for low temperature diamond deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulczynski, M.; Reinhard, D.K.; Asmussen, J.

    1996-12-31

    This report describes the adaption of a microwave plasma reactor for low temperature diamond deposition. The reactor is of a resonant cavity design. Three approaches have been taken to establish plasma conditions for diamond deposition on substrates which are in the range of 450 C to 550 C. In the first, the substrate is heated only by the plasma and the source is operated at pressures on the order of 10 torr, such that the volumetric power density is sufficiently low to achieve these temperatures. In the second, the plasma pressure and microwave input power were reduced and a substratemore » heater was used to maintain the desired deposition temperatures. In the third approach, the plasma pressure and microwave power were increased and a substrate cooler was used to keep the substrate temperature in the desired range. Reactor performance and deposition results will be described for the three configurations. For the plasma heated substrate assembly, substrate dimensions were up to 10 cm diameter. For the heated and cooled substrate assemblies, substrate dimensions were up to 7.5 cm diameter. Deposition results on a variety of substrates will be reported including low-temperature substrates such as borosilicate glass.« less

  9. Individual shrink wrapping extends the storage life and maintains the quality of pomegranates (cvs. 'Mridula' and 'Bhagwa') at ambient and low temperature.

    PubMed

    Sudhakar Rao, D V

    2018-01-01

    The present investigation was carried out to study the response of two commercial pomegranate cultivars to individual shrink wrapping in extending the storage life and quality maintenance. Pomegranate fruits ('Mridula' and 'Bhagwa') were individually shrink wrapped using three semi-permeable films (Cryovac ® BDF-2001, D-955 and normal LDPE) and stored at ambient (25-32 °C and 49-67% RH) and low temperature (8 °C and 75-80% RH). Shrink wrapping greatly reduced weight loss in both cultivars irrespective of the film used and storage temperature. Weight loss in shrink wrapped (D-955 film) 'Mridula' and 'Bhagwa' after 1 month storage at ambient temperature was respectively 1.40 and 1.05%, when compared to 22.92 and 22.53% in non-wrapped fruits. After 3 months at 8 °C, shrink wrapped 'Mridula' and 'Bhagwa' fruits lost only 0.43 and 0.68% weight respectively, compared to 17.23 and 21.67% in non-wrapped ones. Shrink wrapping significantly reduced the respiration rate at ambient temperature and the response varied with variety and film used. Shrink wrapped fruits of both cultivars retained the original peel colour (Hunter h∘ and C* values) to a maximum extent during 3 months storage at 8 °C and shelf-life period at ambient temperature. Irrespective of variety and film, shrink wrapping maintained the peel thickness and peel moisture content, significantly much higher than non-wrapped fruits at both temperatures. Compared to 'Mridula' cultivar, 'Bhagwa' responded well to shrink wrapping during prolonged storage at both temperatures with better maintenance of quality in terms of appearance, colour, juice content, TSS, acidity, sugars and sensory attributes. At ambient temperature, shrink wrapping with D-955 or LDPE film extended the storage life of 'Mridula' and 'Bhagwa' for 3 weeks and 1 month respectively, whereas at 8 °C both could be stored for 3 months with 3 days of shelf life.

  10. Effect of temperature on the electric breakdown strength of dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Hualing; Sheng, Junjie; Zhang, Junshi; Wang, Yongquan; Jia, Shuhai

    2014-03-01

    DE (dielectric elastomer) is one of the most promising artificial muscle materials for its large strain over 100% under driving voltage. However, to date, dielectric elastomer actuators (DEAs) are prone to failure due to the temperature-dependent electric breakdown. Previously studies had shown that the electrical breakdown strength was mainly related to the temperature-dependent elasticity modulus and the permittivity of dielectric substances. This paper investigated the influence of ambient temperature on the electric breakdown strength of DE membranes (VHB4910 3M). The electric breakdown experiment of the DE membrane was conducted at different ambient temperatures and pre-stretch levels. The real breakdown strength was obtained by measuring the deformation and the breakdown voltage simultaneously. Then, we found that with the increase of the environment temperature, the electric breakdown strength decreased obviously. Contrarily, the high pre-stretch level led to the large electric breakdown strength. What is more, we found that the deformations of DEs were strongly dependent on the ambient temperature.

  11. Influence of ambient temperature and minute ventilation on passive and active heat and moisture exchangers.

    PubMed

    Lellouche, François; Qader, Siham; Taillé, Solenne; Lyazidi, Aissam; Brochard, Laurent

    2014-05-01

    During invasive mechanical ventilation, inspired gases must be humidified. We previously showed that high ambient temperature greatly impaired the hygrometric performance of heated wire-heated humidifiers. The aim of this bench and clinical study was to assess the humidification performance of passive and active heat and moisture exchangers (HMEs) and the impact of ambient temperature and ventilator settings. We first tested on the bench a device with passive and active humidification properties (Humid-Heat, Teleflex), and 2 passive hydrophobic/hygroscopic HMEs (Hygrobac and Hygrobac S, Tyco Healthcare). The devices were tested at 3 different ambient temperatures (from 22 to 30 °C), and at 2 minute ventilation settings (10 and 20 L/min). Inspired gas hygrometry was measured at the Y-piece with the psychrometric method. In addition to the bench study, we measured the hygrometry of inspired gases in 2 different clinical studies. In 15 mechanically ventilated patients, we evaluated Humid-Heat at different settings. Additionally, we evaluated Humid-Heat and compared it with Hygrobac in a crossover study in 10 patients. On the bench, with the Hygrobac and Hygrobac S the inspired absolute humidity was ∼ 30 mg H2O/L, and with the Humid-Heat, slightly < 35 mg H2O/L. Ambient temperature and minute ventilation did not have a clinically important difference on the performance of the tested devices. During the clinical evaluation, Humid-Heat provided inspired humidity in a range from 28.5 to 42.0 mg H2O/L, depending on settings, and was only weakly influenced by the patient's body temperature. In this study both passive and active HMEs had stable humidification performance with negligible influence of ambient temperature and minute ventilation. This contrasts with previous findings with heated wire-heated humidifiers. Although there are no clear data demonstrating that higher humidification impacts outcomes, it is worth noting that humidity was significantly higher with the active HME.

  12. Effects of ambient temperature and early open-field response on the behaviour, feed intake and growth of fast- and slow-growing broiler strains.

    PubMed

    Nielsen, B L

    2012-09-01

    Increased activity improves broiler leg health, but also increases the heat production of the bird. This experiment investigated the effects of early open-field activity and ambient temperature on the growth and feed intake of two strains of broiler chickens. On the basis of the level of activity in an open-field test on day 3 after hatching, fast-growing Ross 208 and slow-growing i657 chickens were allocated on day 13 to one of the 48 groups. Each group included either six active or six passive birds from each strain and the groups were housed in floor-pens littered with wood chips and fitted with two heat lamps. Each group was fed ad libitum and subjected to one of the three temperature treatments: two (HH; 26°C), one (HC; 16°C to 26°C) or no (CC; 16°C) heat lamps turned on. Production and behavioural data were collected every 2 weeks until day 57. For both strains, early open-field activity had no significant effects on their subsequent behaviour or on any of the production parameters measured, and overall, the slow-growing strain was more active than the fast-growing strain. Ambient temperature had significant effects on production measures for i657 broilers, with CC chickens eating and weighing more, and with a less efficient feed conversion than HH chickens, with HC birds intermediate. A similar effect was found for Ross 208 only for feed intake from 27 to 41 days of age. Ross 208 chickens distributed themselves in the pen with a preference for cooler areas in the hottest ambient temperature treatments. In contrast, the behaviour of the slow-growing strain appeared to be relatively unaffected by the ambient temperature. In conclusion, fast-growing broilers use behavioural changes when trying to adapt to warm environments, whereas slow-growing broilers use metabolic changes to adapt to cooler ambient temperatures.

  13. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.

    PubMed

    Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie

    2014-01-01

    Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.

  14. High Reliability of 0.1 μm InGaAs/InAlAs/InP High Electron Mobility Transistors Microwave Monolithic Integrated Circuit on 3-inch InP Substrates

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Chang; Leung, Denise; Lai, Richard; Grundbacher, Ron; Scarpulla, John; Barsky, Mike; Nishimoto, Matt; Eng, David; Liu, Po-Hsin; Oki, Aaron; Streit, Dwight

    2002-02-01

    The high-reliability performance of K-band microwave monolithic integrated circuit (MMIC) amplifiers fabricated with 0.1 μm gate length InGaAs/InAlAs/InP high electron mobility transistors (HEMTs) on 3-inch wafers using a high volume production process technology is reported. Operating at an accelerated life test condition of Vds=1.5 V and Ids=150 mA/mm, two-stage balanced amplifiers were lifetested at two-temperatures (T1=230°C, and T2=250°C) in nitrogen ambient. The activation energy (Ea) is as high as 1.5 eV, achieving a projected median-time-to-failure (MTTF) >1× 106 h at a 125°C of junction temperature. MTTF was determined by 2-temperature constant current stress using |Δ S21|>1.0 dB as the failure criteria. This is the first report of high reliability 0.1 μm InGaAs/InAlAs/InP HEMT MMICs based on small-signal microwave characteristics. This result demonstrates a reliable InGaAs/InAlAs/InP HEMT production technology.

  15. Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

    PubMed Central

    Peng, Xiaoying; Wang, Zhongming; Huang, Pan; Chen, Xun; Fu, Xianzhi; Dai, Wenxin

    2016-01-01

    An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature. PMID:27509502

  16. On the self-damping nature of densification in photonic sintering of nanoparticles

    PubMed Central

    MacNeill, William; Choi, Chang-Ho; Chang, Chih-Hung; Malhotra, Rajiv

    2015-01-01

    Sintering of nanoparticle inks over large area-substrates is a key enabler for scalable fabrication of patterned and continuous films, with multiple emerging applications. The high speed and ambient condition operation of photonic sintering has elicited significant interest for this purpose. In this work, we experimentally characterize the temperature evolution and densification in photonic sintering of silver nanoparticle inks, as a function of nanoparticle size. It is shown that smaller nanoparticles result in faster densification, with lower temperatures during sintering, as compared to larger nanoparticles. Further, high densification can be achieved even without nanoparticle melting. Electromagnetic Finite Element Analysis of photonic heating is coupled to an analytical sintering model, to examine the role of interparticle neck growth in photonic sintering. It is shown that photonic sintering is an inherently self-damping process, i.e., the progress of densification reduces the magnitude of subsequent photonic heating even before full density is reached. By accounting for this phenomenon, the developed coupled model better captures the experimentally observed sintering temperature and densification as compared to conventional photonic sintering models. Further, this model is used to uncover the reason behind the experimentally observed increase in densification with increasing weight ratio of smaller to larger nanoparticles. PMID:26443492

  17. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  18. Tunable conduction type of solution-processed germanium nanoparticle based field effect transistors and their inverter integration.

    PubMed

    Meric, Zeynep; Mehringer, Christian; Karpstein, Nicolas; Jank, Michael P M; Peukert, Wolfgang; Frey, Lothar

    2015-09-14

    In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.

  19. The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Behavior of 18-3 Mn (Nitronic 33) Stainless Steel Parent and Welded Material

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1976-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.

  20. Low-temperature incubation using a water supply

    USGS Publications Warehouse

    Wolf, K.; Quimby, M.C.

    1967-01-01

    Cell and tissue culture has been concerned primarily with homiothermic vertebrate cells which require incubation at about 37 C, and there is a great variety of incubators designed to maintain temperatures which are usually above ambient. The culture of poikilothermic vertebrate cells--and invertebrate, plant, and some microbial cells--can often be carried out at ambient temperatures, but for some work cooler conditions must be provided. Variety among the so-called low-temperature incubators is somewhat restricted; there are no small units, and all require a power source to maintain temperatures below ambient. We have used a gravity-fed water supply for 5 years to provide trouble-free, constant, low-temperature incubation of stock cultures of fish and amphibian cells. Though it is but a small part of our low-temperature incubator capacity, it has no power requirements and it provides maximal protection against temperature rises which could be lethal to some of the cell lines. Though the system has limitations, there is a considerable likelihood that the domestic water supply in other laboratories can also be used to provide low-temperature incubation.

  1. Molecular dynamics study about the effect of substrate temperature on a-Si:H structure

    NASA Astrophysics Data System (ADS)

    Luo, Yaorong; Gong, Hongyong; Zhou, Naigen; Huang, Haibin; Zhou, Lang

    2018-01-01

    Molecular dynamics simulation of the microstructure of hydrogenated amorphous silicon (a-Si:H) thin film with different substrate temperatures has been performed based on the Tersoff potential. The results showed that: the silicon thin film maintained amorphous structure in the substrate temperature range from 200 to 1000 K; high substrate temperature could smooth the surface. The first neighbour Voronoi polyhedron was dominated by the tetrahedron. When the substrate temperature increased, the content of tetrahedrons increased due to the transition from pentahedrons and hexahedrons to tetrahedrons. The change of the second neighbour Voronoi polyhedron could be classified into two cases: one case with low medium coordination number decreased as temperature increased, while the other one with high medium coordination number showed an opposite change tendency. It indicated that the local paracrystalline structure arrangement of the second neighbour atoms had been enhanced as substrate temperature rose.

  2. MONOTERPENE LEVELS IN NEEDLES OF DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    Levels of monoterpenes in current year needles of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the conclusion of four years of exposure to ambient or elevated CO2 (+ 179 mmol.mol-1), and ambient or elevated temperature (+ 3.5 C). Eleven monoterpen...

  3. Finite Element Modeling and Long Wave Infrared Imaging for Detection and Identification of Buried Objects

    DTIC Science & Technology

    surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided

  4. Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing

    USDA-ARS?s Scientific Manuscript database

    The concept of co-production of liquid fuel (ethanol) along with animal feed on farm was proposed. The strategy of using ambient-temperature acid pretreatment, ensiling, and washing to improve ethanol production from alfalfa stems was investigated. Alfalfa stems were separated and pretreated with su...

  5. Sorption Capacity of Europium for Media #1 and Media #2 from Solution at Ambient Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Garland

    This dataset shows the capacity for Europium of media #1 and media #2 in a shakertable experiment. The experimental conditions were 150mL of 500ppm Eu solution, 2g of media, pH of 3.2, at ambient temperature.

  6. 46 CFR 169.675 - Generators and motors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... designed for an ambient temperature of 50 degrees C. (122 degrees F.). (g) A generator or motor may be designed for an ambient temperature of 40 degrees C. (104 degrees F.) if the vessel is designed so that the...

  7. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor.

    PubMed

    Geiser, F; Drury, R L

    2003-02-01

    The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and suggests that the prevalence of torpor in low latitudes may have been under-estimated in the past.

  8. High ambient temperature increases 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy")-induced Fos expression in a region-specific manner.

    PubMed

    Hargreaves, G A; Hunt, G E; Cornish, J L; McGregor, I S

    2007-03-16

    3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.

  9. Chemistry of K in Cu(In,Ga)Se 2 photovoltaic absorbers: Effects of temperature on Cu-K-In-Se films

    DOE PAGES

    Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Tim

    2017-08-05

    Incorporation of K has led to world record Cu(In,Ga)Se 2 photovoltaic power conversion efficiencies, but there is poor consensus about the role of phase impurities in these advances. This work lays a foundation for identifying and controlling these phase impurities. Films of Cu-K-In-Se were co-evaporated at varied K/(K + Cu) compositions and substrate temperatures (with constant (K + Cu)/In ~ 0.85). Increased Na composition on the substrate's surface and decreased growth temperature were both found to favor Cu 1-xK xInSe 2 alloy formation, relative to two-phase CuInSe 2+KInSe 2 formation. Structures from X-ray diffraction (XRD), band gaps, resistivities, minority carriermore » lifetimes and carrier concentrations from time-resolved photoluminescence were in agreement with previous reports, where low K/(K + Cu) composition films exhibited properties promising for photovoltaic absorbers. Films grown at 400-500 °C were then annealed to 600 degrees C in a controlled Se ambient, which caused K loss by evaporation in proportion to the initial K/(K + Cu) composition. Similar to growth temperature, annealing drove Cu 1-xK xInSe 2 alloy consumption and CuInSe 2+KInSe 2 production, as evidenced by high temperature XRD. Annealing also decomposed KInSe 2 and formed K 2In 12Se 19. At high temperature, the KInSe 2 crystal lattice gradually contracted as temperature and time increased, as well as just time. Evaporative loss of K during annealing could accompany the generation of vacancies on K lattice sites, and may explain the KInSe 2 lattice contraction. As a result, this knowledge of Cu-K-In-Se material chemistry may be used to predict and control minor phase impurities in Cu(In,Ga)(Se,S) 2 photovoltaic absorbers - where impurities below typical detection limits may have played a role in recent world record photovoltaic efficiencies that utilized KF post-deposition treatments.« less

  10. Chemistry of K in Cu(In,Ga)Se 2 photovoltaic absorbers: Effects of temperature on Cu-K-In-Se films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Tim

    Incorporation of K has led to world record Cu(In,Ga)Se 2 photovoltaic power conversion efficiencies, but there is poor consensus about the role of phase impurities in these advances. This work lays a foundation for identifying and controlling these phase impurities. Films of Cu-K-In-Se were co-evaporated at varied K/(K + Cu) compositions and substrate temperatures (with constant (K + Cu)/In ~ 0.85). Increased Na composition on the substrate's surface and decreased growth temperature were both found to favor Cu 1-xK xInSe 2 alloy formation, relative to two-phase CuInSe 2+KInSe 2 formation. Structures from X-ray diffraction (XRD), band gaps, resistivities, minority carriermore » lifetimes and carrier concentrations from time-resolved photoluminescence were in agreement with previous reports, where low K/(K + Cu) composition films exhibited properties promising for photovoltaic absorbers. Films grown at 400-500 °C were then annealed to 600 degrees C in a controlled Se ambient, which caused K loss by evaporation in proportion to the initial K/(K + Cu) composition. Similar to growth temperature, annealing drove Cu 1-xK xInSe 2 alloy consumption and CuInSe 2+KInSe 2 production, as evidenced by high temperature XRD. Annealing also decomposed KInSe 2 and formed K 2In 12Se 19. At high temperature, the KInSe 2 crystal lattice gradually contracted as temperature and time increased, as well as just time. Evaporative loss of K during annealing could accompany the generation of vacancies on K lattice sites, and may explain the KInSe 2 lattice contraction. As a result, this knowledge of Cu-K-In-Se material chemistry may be used to predict and control minor phase impurities in Cu(In,Ga)(Se,S) 2 photovoltaic absorbers - where impurities below typical detection limits may have played a role in recent world record photovoltaic efficiencies that utilized KF post-deposition treatments.« less

  11. Rechargeability of the ambient temperature cell Li/2Me-THF, LiAsF6/Cr0.5V0.5S2

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Harris, P. B.; Natwig, D. L.

    1983-12-01

    Practical usefulness of Cr0.5V0.5S2 as a rechargeable positive electrode for ambient temperature Li cells has been assesed. The rate-capacity behavior or the Cr0.5V0.5S2 cathode has been evaluated as a function of carbon content, electrolyte, and temperature. Rechargeability of the disulfide has been investigated by extended cycling of Li cells utilizing 2Me-THF/LiAsF6. Cells with cathode capacities as large as 10 Ahr have been constructed and tested. Many cells have exceeded 200 deep discharge-charge cycles. A scheme of studies useful for assessing the practicality of potential solid cathodes for ambient temperature rechargeable Li cells is presented.

  12. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Raoufi, Davood; Taherniya, Atefeh

    2015-06-01

    In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.

  13. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    PubMed

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Nanostructured organic electronic materials: Synthesis and sensor applications

    NASA Astrophysics Data System (ADS)

    Dua, Vineet

    2009-12-01

    This study is an investigation into (a) the process by which one obtains bulk quantities of nanofibers of parent polythiophene, (b) in-situ deposition of nanofibers of polythiophene on flexible substrate and its application in vapor sensing, and (c) inkjet printing of graphene on flexible substrate and its application as a detector. (a) The 2 nd chapter of the thesis is an extension of "seeding" method from aqueous to organic solvents to synthesize parent polythiophene nanofibers. Bulk quantities of parent polythiophene nanofibers were synthesized in one step using catalytic amounts of freeze dried V2O5. This work is published in Chemistry Letters 2008 37(5), 526--527. (b) The 3rd chapter deals with in-situ films of polythiophene nanofibers on plastic substrates. In this a one step method to directly deposit nanofibers of parent polythiophene on flexible substrate is discussed. These films show a reversible detection of highly oxidizing vapors such as NO2, Cl2 and SO 2 at ppb levels under ambient conditions. This work is published in Macromolecules 2009, 42, 5414--5415. (c) The 4 th chapter describes the synthesis of reduced graphene oxide (RGO) using a mild reducing agent ascorbic acid (Vitamin C) rather than traditionally used harsh reducing agents (N2H4). Dispersions of RGO were inkjet printed on flexible substrate and has been shown to detect aggressive vapors NO2 and Cl2 at ambient conditions. This work is accepted for publication in Angewandte Chemie (Nov 2009).

  15. Effects of Ambient High Temperature Exposure on Alumina-Titania High Emittance Surfaces for Solar Dynamic Systems

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Smith, Daniela C.; Wheeler, Donald R.; MacLachlam, Brian J.

    1998-01-01

    Solar dynamic (SD) space power systems require durable, high emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. To enhance surface characteristics, an alumina-titania coating has been applied to 500 heat receiver thermal energy containment canisters and the PLR of NASA Lewis Research Center's (LeRC) 2 kW SD ground test demonstrator (GTD). The alumina-titania coating was chosen because it had been found to maintain its high emittance under vacuum (less than or equal to 10(exp -6) torr) at high temperatures (1457 F (827 C)) for an extended period (approximately 2,700 hours). However, preflight verification of SD systems components, such as the PLR require operation at ambient pressure and high temperatures. Therefore, the purpose of this research was to evaluate the durability of the alumina-titania coating at high temperature in air. Fifteen of sixteen alumina-titania coated Incoloy samples were exposed to high temperatures (600 F (316 C) to l500 F (816 C)) for various durations (2 to 32 hours). Samples, were characterized prior to and after heat treatment for reflectance, solar absorptance, room temperature emittance and emittance at 1,200 F (649 C). Samples were also examined to detect physical defects and to determine surface chemistry using optical microscopy, scanning electron microscopy operated with an energy dispersive spectroscopy (EDS) system, and x ray photoelectron spectroscopy (XPS). Visual examination of the heat-treated samples showed a whitening of samples exposed to temperatures of 1,000 F (538 C) and above. Correspondingly, the optical properties of these samples had degraded. A sample exposed to 1,500 F (816 C) for 24 hours had whitened and the thermal emittance at 1,200 F (649 C) had decreased from the non-heat treated value of 0.94 to 0.62. The coating on this sample had become embrittled with spalling off the substrate noticeable at several locations. Based on this research it is recommended that preflight testing of SD components with alumina-titania coatings be restricted to temperatures no greater than 600 F (316 C) in air to avoid optical degradation. Moreover, components with the alumina-titania coating are likely to experience optical property degradation with direct atomic oxygen exposure in space.

  16. The potential effects of climate-change-associated temperature increases on the metabolic rate of a small Afrotropical bird.

    PubMed

    Thompson, Lindy J; Brown, Mark; Downs, Colleen T

    2015-05-15

    Studies have only recently begun to underline the importance of including data on the physiological flexibility of a species when modelling its vulnerability to extinction from climate change. We investigated the effects of a 4°C increase in ambient temperature (Ta), similar to that predicted for southern Africa by the year 2080, on certain physiological variables of a 10-12 g passerine bird endemic to southern Africa, the Cape white-eye Zosterops virens. There was no significant difference in resting metabolism, body mass and intraperitoneal body temperature between birds housed indoors at 4°C above outside ambient temperature and those housed indoors at outside ambient temperature. We conclude that the physiological flexibility of Cape white-eyes will aid them in coping with the 4°C increase predicted for their range by 2080. © 2015. Published by The Company of Biologists Ltd.

  17. Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films.

    PubMed

    He, Ziming; Xu, Qingchi; Tan, Timothy Thatt Yang

    2011-12-01

    TiO(2)-InVO(4) nanostructured films were coated onto glass substrates and systematically investigated for their bactericidal activities using Escherichia coli (E. coli) as the model bacterium under ambient light illumination. The uniform TiO(2)-InVO(4) nanostructured films were prepared using titanium isopropoxide (TTIP) as the precursor via a simple sol-gel approach. Polyethylenimine (PEI) was used as a surfactant to ensure uniform dispersion of InVO(4) and a sacrificial pore-inducing agent, generating nanostructured films. Compared to unmodified TiO(2) film, the current TiO(2)-InVO(4) films exhibited enhanced bactericidal activities under ambient light illumination. Bacterial cell "photo-fixation" was demonstrated to be crucial in enhancing the bactericidal activity. A bacterial-nanostructured surface interaction mechanism was proposed for the current ambient-light activated nanostructured film.

  18. Influence of process parameters on the extraction of soluble substances from OFMSW and methane production.

    PubMed

    Campuzano, Rosalinda; González-Martínez, Simón

    2017-04-01

    Microorganisms involved in anaerobic digestion require dissolved substrates to transport them through the cell wall to different processing units and finally to be disposed as waste, such as methane and carbon dioxide. In order to increase methane production, this work proposes to separate the soluble substances from OFMSW and analyse methane production from extracts and OFMSW. Using water as solvent, four extraction parameters were proposed: (1) Number of consecutive extractions, (2) Duration of mixing for every consecutive extraction, (3) OFMSW to water mass ratios 1:1, 1:2, and 1:3 and, (4) The influence of temperature on the extraction process. Results indicated that is possible to separate 40% of VS from OFMSW with only three consecutive extraction with mixing of 30min in every extraction using ambient temperature water. For every OFMSW to water combination, the first three consecutive extracts were analysed for biochemical methane potential test during 21days at 35°C; OFMSW was also tested as reference. Methane production from all substrates is highest during the first day and then it slowly decreases to increase again during a second stage. This was identified as diauxic behaviour. Specific methane production at day 21 increased with increasing water content of the extracts where OFMSW methane production was the lowest of all with 535NL/kgVS. These results indicate that it is feasible to rapidly produce methane from extracted substances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Metal-free catalytic enantioselective C-B bond formation: (pinacolato)boron conjugate additions to α,β-unsaturated ketones, esters, Weinreb amides, and aldehydes promoted by chiral N-heterocyclic carbenes.

    PubMed

    Wu, Hao; Radomkit, Suttipol; O'Brien, Jeannette M; Hoveyda, Amir H

    2012-05-16

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C-B bond forming reactions are promoted in the presence of 2.5-7.5 mol % of a readily accessible C(1)-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B(2)(pin)(2)], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides, and aldehydes, can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50-66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene, or aldehyde).

  20. The Effect of Weathering on Octane Quality for Winter-Grade and Summer-Grade Gasolines.

    DTIC Science & Technology

    1987-12-01

    the following: 1. Fuels were stored at an ambient temperature 500 F and an initial (fresh fuel’ sample was taken under these conditions. Ŗ. Test...placed in the soak area and heated to a fuel temperature of 1100 F. This fuel temperature was controlled by room ambient temperature throughout the...Carl Borchers , Senior VP - Engineering FSDO #2 AVTEK Corporation 1387 Airport Boulevard S_4680 Calle Carga San Jose, CA 95110 Camarillo, CA 93010

  1. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    PubMed

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  2. Body temperatures of selected amphibian and reptile species.

    PubMed

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  3. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: A large database study in Beijing, China between years 2013 and 2014-Utilizing a distributed lag non-linear analysis.

    PubMed

    Luo, Yanxia; Li, Haibin; Huang, Fangfang; Van Halm-Lutterodt, Nicholas; Qin Xu; Wang, Anxin; Guo, Jin; Tao, Lixin; Li, Xia; Liu, Mengyang; Zheng, Deqiang; Chen, Sipeng; Zhang, Feng; Yang, Xinghua; Tan, Peng; Wang, Wei; Xie, Xueqin; Guo, Xiuhua

    2018-01-01

    The effects of ambient temperature on stroke death in China have been well addressed. However, few studies are focused on the attributable burden for the incident of different types of stroke due to ambient temperature, especially in Beijing, China. We purpose to assess the influence of ambient temperature on hospital stroke admissions in Beijing, China. Data on daily temperature, air pollution, and relative humidity measurements and stroke admissions in Beijing were obtained between 2013 and 2014. Distributed lag non-linear model was employed to determine the association between daily ambient temperature and stroke admissions. Relative risk (RR) with 95% confidence interval (CI) and Attribution fraction (AF) with 95% CI were calculated based on stroke subtype, gender and age group. A total number of 147, 624 stroke admitted cases (including hemorrhagic and ischemic types of stroke) were documented. A non-linear acute effect of cold temperature on ischemic and hemorrhagic stroke hospital admissions was evaluated. Compared with the 25th percentile of temperature (1.2 °C), the cumulative RR of extreme cold temperature (first percentile of temperature, -9.6 °C) was 1.51 (95% CI: 1.08-2.10) over lag 0-14 days for ischemic type and 1.28 (95% CI: 1.03-1.59) for hemorrhagic stroke over lag 0-3 days. Overall, 1.57% (95% CI: 0.06%-2.88%) of ischemic stroke and 1.90% (95% CI: 0.40%-3.41%) of hemorrhagic stroke was attributed to the extreme cold temperature over lag 0-7 days and lag 0-3 days, respectively. The cold temperature's impact on stroke admissions was found to be more obvious in male gender and the youth compared to female gender and the elderly. Exposure to extreme cold temperature is associated with increasing both ischemic and hemorrhagic stroke admissions in Beijing, China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of Warming on the Fate of Carbon Across a Hawaiian Soil Mineralogical Gradient

    NASA Astrophysics Data System (ADS)

    Neupane, A.

    2016-12-01

    Earth's surface temperature in tropical region have increased over the last century. However, relatively few studies have focused on the interacting effects of warming and soil mineralogy on the fate of carbon (C) in tropical soils. This research uses soils from three montane forest sites and two grasslands along soil age gradients on basaltic lava flows in Hawaii. The age gradient provides a range in soil mineralogies and binding site densities. We hypothesized that warming would promote microbial respiration and losses of added C more in younger soils with lower binding site density, whereas warming would have less of an impact on C losses in older soils with more reactive minerals. Soils were collected from 0-25 cm depths and incubated in the lab at 16 °C (ambient temperature), 21°C, and 26 °C. New C in the form of 13C-labeled glucose and glycine were added to replicate soils to track the fate of C with warming across sites (n = 3). Carbon dioxide (CO2) fluxes was measured every 15 to 30 days for 8 months to assess changes in heterotrophic respiration, and 13C uptake in microbial biomass was measured after 4 days and 8 months. Among the forest sites, the youngest soils (Thurston, 300 years old), had the overall lowest respiration, an intermediate aged soil (Laupahoehoe, 20,000 years old) had the highest respiration, and there was intermediate respiration from the oldest soil (Kohala, 150,000 yrs). Both the grassland sites had lower respiration compared to the forest. Soils from all sites showed increase in respiration rate at warmer temperature. Contrary to expectations, Kohala soil showed largest increase in respiration upon warming while Thurston showed the smallest increase for the forest sites. The C substrates altered respiration differently over time. Preliminary microbial 13C data show significant uptake and retention of added substrates in microbial biomass during the first 4 days of the incubation, with significantly greater retention of added substrate in microbial biomass at 16 °C versus 21 oC. These results show that warming not only increases heterotrophic respiration of C, but also decreases microbial retention of simple C substrates. These results, together with analyses across the soil mineralogical gradient, will improve our understanding of how warming may affect C storage across tropical sites.

  5. Interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological variables in broilers grown to 42 day of age

    USDA-ARS?s Scientific Manuscript database

    The interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological reactions in broilers grown to 42 day of age were investigated. The experiment consisted of 2 levels (Moderate=21.1, High=26.7 °C) of temperatures and 2 light sour...

  6. Warming and Acidification Induced Mass Mortality of a Coastal Keystone predator

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Findeisen, U.

    2016-02-01

    The Baltic Sea is characterized by low salinity and pronounced fluctuations in pCO2. On-line monitoring of pCO2 in 2014 in Kiel Fjord demonstrated occurrence of peak values of >2,000 µatm in summer and autumn and average values >750 µatm. We assessed the impacts of elevated temperature (ambient temperature, ambient +3°C) and pCO2 (500, 1,500, 2,400 µatm) on the keystone species Asterias rubens in a fully crossed long - term experiment (N=5 replicate tanks each, 1 year duration). During spring and early summer (February - June), high temperature animals ingested significantly more food and spawned significantly earlier (April 30th) than ambient acclimated animals (May 23rd). Elevated pCO2 led to comparatively minor reductions in food intake and scope for growth during that period. During summer (June - August), elevated temperature >25°C caused negative energy budgets and >95% mortality in the warm acclimated groups, while mortality was low in the ambient temperature groups. Our results indicate that A. rubens may benefit from increased temperature during colder months, yet dramatically suffer during summer heat waves in warm years. Meaningful experimental approaches to assess species vulnerability to climate change need to encompass all seasons and realistic abiotic stressor levels.

  7. Morphological adaptation to climate in modern Homo sapiens crania: the importance of basicranial breadth.

    PubMed

    Nowaczewska, Wioletta; Dabrowski, Paweł; Kuźmiński, Łukasz

    2011-09-01

    The aim of this study is to investigate whether the variation in breadth of the cranial base among modern human populations that inhabit different regions of the world is linked with climatic adaptation. This work provides an examination of two hypotheses. The first hypothesis is that the correlation between basicranial breadth and ambient temperature is stronger than the correlation between temperature and other neurocranial variables, such as maximum cranial breadth, maximum neurocranial length, and the endocranial volume. The second hypothesis is that the correlation between the breadth of the cranial base and the ambient temperature is significant even when other neurocranial features used in this study (including the size of the neurocranium) are constant. For the sake of this research, the necessary neurocranial variables for fourteen human populations living in diverse environments were obtained from Howells' data (except for endocranial volume which was obtained by means of estimation). The ambient temperature (more precisely, the mean yearly temperature) of the environments inhabited by these populations was used as a major climatic factor. Data were analysed using Pearson correlation coefficients, linear regression and partial correlation analyses. The results supported the two hypotheses, thus suggesting that ambient temperature may contribute to the observed differences in the breadth of the cranial base in the studied modern humans.

  8. Cryogenic Moisture Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Smith, Trent; Breakfield, Robert; Baughner, Kevin; Heckle, Kenneth; Meneghelli, Barry

    2010-01-01

    The Cryogenic Moisture Apparatus (CMA) is designed for quantifying the amount of moisture from the surrounding air that is taken up by cryogenic-tank-insulating material specimens while under typical conditions of use. More specifically, the CMA holds one face of the specimen at a desired low temperature (e.g., the typical liquid-nitrogen temperature of 77 K) while the opposite face remains exposed to humid air at ambient or near-ambient temperature. The specimen is weighed before and after exposure in the CMA. The difference between the "after" and "before" weights is determined to be the weight of moisture absorbed by the specimen. Notwithstanding the term "cryogenic," the CMA is not limited to cryogenic applications: the low test temperature can be any temperature below ambient, and the specimen can be made of any material affected by moisture in air. The CMA is especially well suited for testing a variety of foam insulating materials, including those on the space-shuttle external cryogenic tanks, on other cryogenic vessels, and in refrigerators used for transporting foods, medicines, and other perishables. Testing is important because absorbed moisture not only adds weight but also, in combination with thermal cycling, can contribute to damage that degrades insulating performance. Materials are changed internally when subjected to large sub-ambient temperature gradients.

  9. Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature

    NASA Technical Reports Server (NTRS)

    Yu, Ping; Nalette, Tim; Kayatin, Matthew

    2016-01-01

    The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.

  10. The effects of reduced ambient temperatures on the warm-up fuel consumption behavior of gasoline fueled automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucher, G.R.; Gardiner, D.P.; Mallory, R.W.

    Warm-up fuel consumption behavior as affected by ambient temperature was evaluated for five OEM gasoline fueled automobiles. Multiple EPA FTP 75 tests were performed with each vehicle at ambient test cell soak temperatures of 25 C and {minus}7 C. Fuel consumption measured during the warm-up (Bag 1, Cold Transient) test segments at these two temperature conditions was compared to the fully warmed Hot Transient (Bag 3) fuel consumption from the 25 C ambient temperature tests (the Bag 1 and Bag 3 segments involve identical speed curves). Fuel consumption increases over the 25 C Bag 3 tests for the two warm-upmore » test conditions were differentiated as those caused by increased drivetrain losses and those caused by intake charge enrichment. Results show wide variations in warm-up behavior among the five vehicles with respect to the relative increases in fuel consumption, and the proportion of the fuel consumption increases attributable to drivetrain losses and enrichment. It was discovered that the most sophisticated vehicle systems do not necessarily facilitate the least degradation in fuel consumption with respect to baseline conditions for the group of vehicles tested.« less

  11. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  12. Uncooled pulsed zinc oxide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Bogdankevich, O. V.; Darznek, S. A.; Zverev, M. M.; Kostin, N. N.; Krasavina, E. M.

    1985-02-01

    An optimized ZnO laser which operates at ambient temperature without cooling is reported, along with extension of the design to form a multielement high-power laser. ZnO single crystal plane-parallel wafers 0.22 mm thick, covered with total and semi-transparent coatings, were exposed to a 200 keV electron beam with a 10 nsec pulse and a current density up to 1 kA/sq cm. No damage was observed in the crystals at saturation. A 7 percent maximum efficiency at a reflection coefficient (RC) of 0.4 was associated with a maximum output of 25 kW and a light power density of 3 MW/sq cm. Cementing a ZnO wafer to a sapphire substrate, applying the same type of coatings and working with a RC of 0.6 yielded a maximum power of 300 kW/sq cm.

  13. Structural and spectroscopic analysis of ex-situ annealed RF sputtered aluminium doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel

    2017-08-01

    Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.

  14. Die attach dimension and material on thermal conductivity study for high power COB LED

    NASA Astrophysics Data System (ADS)

    Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.

  15. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics.

    PubMed

    Kim, Janghyuk; Oh, Sooyeoun; Mastro, Michael A; Kim, Jihyun

    2016-06-21

    This study demonstrated the exfoliation of a two-dimensional (2D) β-Ga2O3 nano-belt and subsequent processing into a thin film transistor structure. This mechanical exfoliation and transfer method produces β-Ga2O3 nano-belts with a pristine surface as well as a continuous defect-free interface with the SiO2/Si substrate. This β-Ga2O3 nano-belt based transistor displayed an on/off ratio that increased from approximately 10(4) to 10(7) over the operating temperature range of 20 °C to 250 °C. No electrical breakdown was observed in our measurements up to VDS = +40 V and VGS = -60 V between 25 °C and 250 °C. Additionally, the electrical characteristics were not degraded after a month-long storage in ambient air. The demonstration of high-temperature/high-voltage operation of quasi-2D β-Ga2O3 nano-belts contrasts with traditional 2D materials such as transition metal dichalcogenides that intrinsically have limited temperature and power operational envelopes owing to their narrow bandgap. This work motivates the application of 2D β-Ga2O3 to high power nano-electronic devices for harsh environments such as high temperature chemical sensors and photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

  16. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.

    PubMed

    Heim, Amy; Lundholm, Jeremy

    2013-01-01

    Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  17. Impact of cold temperature on Euro 6 passenger car emissions.

    PubMed

    Suarez-Bertoa, Ricardo; Astorga, Covadonga

    2018-03-01

    Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment

    NASA Astrophysics Data System (ADS)

    Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira

    2017-05-01

    The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.

  19. Temperature compensation analysis of liquid lens for variable-focus control

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Jung; Tai, Tsai-Lin; Shen, Chih-Hsiung

    2006-01-01

    In this work, a fabrication and temperature compensation analysis and electrowetting for the liquid lenses is proposed. The unique capability of controlling the lens profile during the electrowetting fabrication processes is successfully demonstrated for different ambient temperature environment. For a lens fabricated on a hydrophobic Teflon layer, it is found that when the applied voltage is increased, the focal length increases, and the curvature decreases. One challenge for the liquid lens is operating temperature range. Due to the environment temperature change, the ability of controlling the lens profile is analyzed and measured. The description of change in contact angle corresponding to the variation of ambient temperature is derived. Based on this description, we firstly derive the control of voltage vs. temperature for a fixed dioptric power. The control of lens during a focusing action was studied by observation of the image formed by the light through the transparent bottom of ITO glass. Under several conditions of ambient temperature change, capability of controlling the lens profile for a fixed focus is successfully demonstrated by experiments.

  20. Ambient-temperature co-oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Schryer, David R.; Brown, Kenneth G.; Kielin, Erik J.

    1991-01-01

    Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions.

Top