NASA Astrophysics Data System (ADS)
Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.
2018-01-01
Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.
Systems and methods for thermal imaging technique for measuring mixing of fluids
Booten, Charles; Tomerlin, Jeff; Winkler, Jon
2016-06-14
Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.
Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon; ...
2017-10-20
Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon
Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less
Surface texturing of superconductors by controlled oxygen pressure
Chen, N.; Goretta, K.C.; Dorris, S.E.
1999-01-05
A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.
Surface texturing of superconductors by controlled oxygen pressure
Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.
1999-01-01
A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.
NASA Astrophysics Data System (ADS)
Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst
2017-03-01
Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.
Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A
2012-07-01
It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Effect of Ambient Temperature on the Human Tear Film.
Abusharha, Ali A; Pearce, E Ian; Fagehi, Raied
2016-09-01
During everyday life, the tear film is exposed to a wide range of ambient temperatures. This study aims to investigate the effect of ambient temperature on tear film physiology. A controlled environment chamber was used to create different ambient temperatures (5, 10, 15, 20, and 25°C) at a constant relative humidity of 40%. Subjects attended for two separate visits and were exposed to 25, 20, and 15°C at one visit and to 10 and 5°C at the other visit. The subjects were exposed to each room temperature for 10 min before investigating tear film parameters. The order of the visits was random. Tear physiology parameters assessed were tear evaporation rate, noninvasive tear break-up time (NITBUT), lipid layer thickness (LLT), and ocular surface temperature (OST). Each parameter was assessed under each condition. A threefold increase in tear evaporation rate was observed as ambient temperature increased to 25°C (P=0.00). The mean evaporation rate increased from 0.056 μL/min at 5°C to 0.17 μL/min at 25°C. The mean NITBUT increased from 7.31 sec at 5°C to 12.35 sec at 25°C (P=0.01). A significant change in LLT was also observed (P=0.00), LLT median ranged between 20 and 40 nm at 5 and 10°C and increased to 40 and 90 nm at 15, 20, and 25°C. Mean reduction of 4°C OST was observed as ambient temperature decreased from 25 to 5°C. Ambient temperature has a considerable effect on human tear film characteristics. Tear evaporation rate, tear LLT, tear stability, and OST were considerably affected by ambient temperature. Chronic exposure to low ambient temperature would likely result in symptoms of dry eye and ultimately ocular surface disorders.
NASA Technical Reports Server (NTRS)
Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.
1987-01-01
Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.
[Indoor simulation on dew formation on plant leaves].
Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong
2014-03-01
Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.
NASA Astrophysics Data System (ADS)
Fang, Kaizheng; Mu, Daobin; Chen, Shi; Wu, Borong; Wu, Feng
2012-06-01
In this study, a prediction model based on artificial neural network is constructed for surface temperature simulation of nickel-metal hydride battery. The model is developed from a back-propagation network which is trained by Levenberg-Marquardt algorithm. Under each ambient temperature of 10 °C, 20 °C, 30 °C and 40 °C, an 8 Ah cylindrical Ni-MH battery is charged in the rate of 1 C, 3 C and 5 C to its SOC of 110% in order to provide data for the model training. Linear regression method is adopted to check the quality of the model training, as well as mean square error and absolute error. It is shown that the constructed model is of excellent training quality for the guarantee of prediction accuracy. The surface temperature of battery during charging is predicted under various ambient temperatures of 50 °C, 60 °C, 70 °C by the model. The results are validated in good agreement with experimental data. The value of battery surface temperature is calculated to exceed 90 °C under the ambient temperature of 60 °C if it is overcharged in 5 C, which might cause battery safety issues.
1989-12-15
epidermal surfaces were exposed to ambient air (220C) during the entire length of the experiment. Penetration of [3H]PbTx-3 into skin layers and receptor...bathed by the receptor fluid and the epidermal surface was exposed to ambient conditions in an en- vironmental chamber. Temperature and relative...DMSO or water. The epidermal surfaces were exposed to ambient conditions in the environmental chamber. In order to determine if constituents leaching
Venus Surface Power and Cooling System Design
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power class, laboratory-tested Stirling engines at GRC. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg.
surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided
Composite Structure Repair. Addendum
1984-08-01
room temperature curing systems . For permanent repairs no reduction in " serciveability with regard to the maximum design temperature and the design...pressure for ply compaction and conformation of bonding surfaces. In certain instances, ambient temperature cure systems may be sufficient. - Noisture...than those placed on radomes. Some of ,the resins used for the repairs were ambient curing systems which also required no additional pressure for
Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran
2013-03-01
Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.
Power System for Venus Surface Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth
2002-01-01
A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg. Additional information is included in the original extended abstract.
Cooling Different Body Surfaces during Upper-and-Lower Body Exercise.
1986-09-01
exercise (02 uptake, 1.2 lmin -) tests in a hot environment. (ambient temperature - 38*C, relative humidity - 30%) while dressed in a clothing ... exercise (02 uptake, 1.2 l’min-) t,sts in a hot environment (ambient temperature a 380C, relative humidity = 30%) while , - dressed in a clothing ...AD-A173 328 COOLING DIFFERENT BODY SURFACES DURING UPPER-AND-LONEi 1i/I BODY EXERCISE (U) ARMY RESEARCH INST OF ENYVIONMENTAL MEDICINE NATICK MR A J
Body temperatures of selected amphibian and reptile species.
Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S
2012-09-01
Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.
Cooling effect of rivers on metropolitan Taipei using remote sensing.
Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen
2014-01-23
This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.
Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing
Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen
2014-01-01
This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature. PMID:24464232
The bactericidal effect of surface micro-discharge plasma under different ambient conditions
NASA Astrophysics Data System (ADS)
Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.
2011-02-01
A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O2/N2 and H2O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.
Correlation between corneal and ambient temperature with particular focus on polar conditions.
Slettedal, Jon Klokk; Ringvold, Amund
2015-08-01
To examine the relationship between human corneal and environmental temperature. An infrared camera was used to measure the corneal surface temperature in a group of healthy volunteers as well as in an experimental setting with donor corneas and an artificial anterior chamber, employing circulating saline at +37°C. Liquid nitrogen was used to obtain a very low temperature in the experimental setting. High ambient temperature measurements were performed in a sauna. In healthy volunteers, the cornea required at least 20-30 min to adapt to change in ambient temperature. The relationship between corneal and external temperature was relatively linear. At the two extremes, +83°C and -40°C, the corneal temperature was +42°C and +25.1°C, respectively. In the experimental setting, corneal temperature was +24.3°C at air temperature -40°C. A rather stable aqueous humour temperature of +37°C and high thermal conductivity of the corneal tissue prevent corneal frostbite even at extremely low ambient temperatures. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Myles, L.; Heuer, M. W.
2012-12-01
Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH3 to determine how environmental conditions can affect ambient concentrations and therefore, the amount of NH3 available in the atmosphere to form particulate matter or participate in deposition processes.
NASA Astrophysics Data System (ADS)
Netsou, Asteriona-Maria; Thupakula, Umamahesh; Debehets, Jolien; Chen, Taishi; Hirsch, Brandon; Volodin, Alexander; Li, Zhe; Song, Fengqi; Seo, Jin Won; De Feyter, Steven; Schouteden, Koen; Van Haesendonck, Chris
2017-08-01
We investigated the topological insulator (TI) Bi2Te3 in four different environments (ambient, ultra-high vacuum (UHV), nitrogen gas and organic solvent environment) using scanning probe microscopy (SPM) techniques. Upon prolonged exposure to ambient conditions and organic solvent environments the cleaved surface of the pristine Bi2Te3 is observed to be strongly modified during SPM measurements, while imaging of freshly cleaved Bi2Te3 in UHV and nitrogen gas shows considerably less changes of the Bi2Te3 surface. We conclude that the reduced surface stability upon exposure to ambient conditions is triggered by adsorption of molecular species from ambient, including H2O, CO2, etc which is verified by Auger electron spectroscopy. Our findings of the drastic impact of exposure to ambient on the Bi2Te3 surface are crucial for further in-depth studies of the intrinsic properties of the TI Bi2Te3 and for potential applications that include room temperature TI based devices operated under ambient conditions.
Codde, Sarah A; Allen, Sarah G; Houser, Dorian S; Crocker, Daniel E
2016-10-01
Pinnipeds spend extended periods of time on shore during breeding, and some temperate species retreat to the water if exposed to high ambient temperatures. However, female northern elephant seals (Mirounga angustirostris) with pups generally avoid the water, presumably to minimize risks to pups or male harassment. Little is known about how ambient temperature affects thermoregulation of well insulated females while on shore. We used a thermographic camera to measure surface temperature (T s ) of 100 adult female elephant seals and their pups during the breeding season at Point Reyes National Seashore, yielding 782 thermograms. Environmental variables were measured by an onsite weather station. Environmental variables, especially solar radiation and ambient temperature, were the main determinants of mean and maximum T s of both females and pups. An average of 16% of the visible surface of both females and pups was used as thermal windows to facilitate heat loss and, for pups, this area increased with solar radiation. Thermal window area of females increased with mean T s until approximately 26°C and then declined. The T s of both age classes were warmer than ambient temperature and had a large thermal gradient with the environment (female mean 11.2±0.2°C; pup mean 14.2±0.2°C). This large gradient suggests that circulatory adjustments to bypass blubber layers were sufficient to allow seals to dissipate heat under most environmental conditions. We observed the previously undescribed behavior of females and pups in the water and determined that solar radiation affected this behavior. This may have been possible due to the calm waters at the study site, which reduced the risk of neonates drowning. These results may predict important breeding habitat features for elephant seals as solar radiation and ambient temperatures change in response to changing climate. Published by Elsevier Ltd.
Soil moisture sensing with aircraft observations of the diurnal range of surface temperature
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Blanchard, B.; Anderson, A.; Wang, V.
1977-01-01
Aircraft observations of the surface temperature were made by measurements of the thermal emission in the 8-14 micrometers band over agricultural fields around Phoenix, Arizona. The diurnal range of these surface temperature measurements were well correlated with the ground measurement of soil moisture in the 0-2 cm layer. The surface temperature observations for vegetated fields were found to be within 1 or 2 C of the ambient air temperature indicating no moisture stress. These results indicate that for clear atmospheric conditions remotely sensed surface temperatures are a reliable indicator of soil moisture conditions and crop status.
USDA-ARS?s Scientific Manuscript database
A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...
Silicone-Rubber Microvalves Actuated by Paraffin
NASA Technical Reports Server (NTRS)
Svelha, Danielle; Feldman, Sabrina; Barsic, David
2004-01-01
Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally open and normally closed valves according to the proposal. In each valve, an arch cross section defining a channel having dimensions of the order of tens of micrometers would be formed in a silicone-rubber sheet about 40 m thick. The silicone rubber sheet would be hermetically sealed to a lower glass plate that would define the sealing surface and to an upper glass plate containing a well. The well would be filled with paraffin and capped with a rigid restraining layer of epoxy. In the normally open valve, the paraffin would have a melting temperature above ambient (e.g., 40 C) and the wall of the well would be coated with a layer of titanium that would serve as an electric heater. In the normally closed valve, the paraffin would have a melting temperature below ambient (e.g.-5 C). Instead of a heater in the well, the normally closed valve would include a thermoelectric cooler on top of the epoxy cap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.; ...
2018-02-05
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari
Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less
Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari; ...
2017-09-07
Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less
Sonogashira cross-coupling over Au(1 1 1): from UHV to ambient pressure
NASA Astrophysics Data System (ADS)
Johansson, N.; Sisodiya, S.; Shayesteh, P.; Chaudhary, S.; Andersen, J. N.; Knudsen, J.; Wendt, O. F.; Schnadt, J.
2017-11-01
We have studied the reaction of phenylacetylene (PA) with chloro-, bromo-, and iodobenzene on the Au(1 1 1) surface as a model system for the gold-catalysed Sonogashira cross-coupling. Both ultrahigh vacuum-based and ambient pressure x-ray photoelectron spectroscopy show that iodo- and chlorobenzene (IB and CB) undergo the cross-coupling reaction towards diphenylacetylene. Bromobenzene (BB), in contrast, does not react in the UHV experiments. Further, at ambient pressure signs are found for poisoning of the Au(1 1 1) surface by a carbon species formed in the reaction. The understanding obtained in the reaction experiments are based on a thorough investigation of the adsorption of PA, IB, CB, and BB on the Au(1 1 1) surface by soft x-ray absorption spectroscopy and temperature-dependent x-ray photoelectron spectroscopy. In particular, the experiments provide the orientation of the intact adsorbates with respect to the surfaces at liquid nitrogen temperature. Dissociation in the temperature regime between -80 and -15 °C is observed for iodo- and chlorobenzene, but not for BB, in agreement with that only IB and CB, but not BB, react with PA to form diphenylacetylene. The difference is tentatively attributed to a difference in surface orientation of the different halobenzenes.
Marine heatwaves and optimal temperatures for microbial assemblage activity.
Joint, Ian; Smale, Dan A
2017-02-01
The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3 H leucine, measured in a temperature gradient from 5°C to 38°C. Q 10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the assemblage optimum temperature (T opt ), which was out of phase with sea surface temperature. In July, highest 3 H-leucine incorporation rates were measured at temperatures that were only 2.8°C greater than ambient sea surface temperature but in winter, T opt was ∼20°C higher than the ambient sea surface temperature. Sea surface temperatures for the adjacent English Channel and Celtic Sea for 1982-2014 have periodically been >3°C higher than climatological mean temperatures. This suggests that discrete periods of anomalously high temperatures might be close to, or exceed, temperatures at which maximum microbial assemblage activity occurs. The frequency and magnitude of marine heatwaves are likely to increase as a consequence of anthropogenic climate change and extreme temperatures may influence the role of bacterial assemblages in biogeochemical processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
O'Brien, James E.
1990-01-01
An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.
NASA Technical Reports Server (NTRS)
Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.
2000-01-01
We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.
Gloster, John; Ebert, Katja; Gubbins, Simon; Bashiruddin, John; Paton, David J
2011-11-21
Thermal imagers have been used in a number of disciplines to record animal surface temperatures and as a result detect temperature distributions and abnormalities requiring a particular course of action. Some work, with animals infected with foot-and-mouth disease virus, has suggested that the technique might be used to identify animals in the early stages of disease. In this study, images of 19 healthy cattle have been taken over an extended period to determine hoof and especially coronary band temperatures (a common site for the development of FMD lesions) and eye temperatures (as a surrogate for core body temperature) and to examine how these vary with time and ambient conditions. The results showed that under UK conditions an animal's hoof temperature varied from 10°C to 36°C and was primarily influenced by the ambient temperature and the animal's activity immediately prior to measurement. Eye temperatures were not affected by ambient temperature and are a useful indicator of core body temperature. Given the variation in temperature of the hooves of normal animals under various environmental conditions the use of a single threshold hoof temperature will be at best a modest predictive indicator of early FMD, even if ambient temperature is factored into the evaluation.
Growth of two-dimensional Ge crystal by annealing of heteroepitaxial Ag/Ge(111) under N2 ambient
NASA Astrophysics Data System (ADS)
Ito, Koichi; Ohta, Akio; Kurosawa, Masashi; Araidai, Masaaki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The growth of a two-dimensional crystal of Ge atoms on an atomically flat Ag(111) surface has been demonstrated by the thermal annealing of a heteroepitaxial Ag/Ge structure in N2 ambient at atmospheric pressure. The surface morphology and chemical bonding features of heteroepitaxial Ag(111) grown on wet-cleaned Ge(111) after annealing at different temperatures and for various times have been systematically investigated to control the surface segregation of Ge atoms and the planarization of the heteroepitaxial Ag(111) surface.
Dehydration of trehalose dihydrate at low relative humidity and ambient temperature.
Jones, Matthew D; Hooton, Jennifer C; Dawson, Michelle L; Ferrie, Alan R; Price, Robert
2006-04-26
The physico-chemical behaviour of trehalose dihydrate during storage at low relative humidity and ambient temperature was investigated, using a combination of techniques commonly employed in pharmaceutical research. Weight loss, water content determinations, differential scanning calorimetry and X-ray powder diffraction showed that at low relative humidity (0.1% RH) and ambient temperature (25 degrees C) trehalose dihydrate dehydrates forming the alpha-polymorph. Physical examination of trehalose particles by scanning electron microscopy and of the dominant growth faces of trehalose crystals by environmentally controlled atomic force microscopy revealed significant changes in surface morphology upon partial dehydration, in particular the formation of cracks. These changes were not fully reversible upon complete rehydration at 50% RH. These findings should be considered when trehalose dihydrate is used as a pharmaceutical excipient in situations where surface properties are key to behaviour, for example as a carrier in a dry powder inhalation formulations, as morphological changes under common processing or storage conditions may lead to variations in formulation performance.
Effects of ambient temperature on mechanomyography of resting quadriceps muscle.
McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L
2013-03-01
It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.
Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna.
Mohler, F S; Heath, J E
1988-02-01
The temperature of the pinnae of male New Zealand White rabbits was measured by use of infrared thermography. At ambient temperatures of 15, 20, and 25 degrees C, the average pinna temperatures were 23.0, 28.7, and 36.2 degrees C, respectively. From these temperatures, average heat loss from the total pinna surface area was calculated to be 2.8, 3.3, and 4.4 W, respectively. Preoptic temperature changes also affect the vasomotor state of the rabbit. At an ambient temperature of 20 degrees C, cooling the preoptic area of the rabbit by approximately 1 degree C resulted in an average pinna temperature of 26.5 degrees C and a heat loss of 2.4 W. Heating the preoptic area by approximately 1 degree C resulted in an average pinna temperature of 33.5 degrees C and a heat loss of 5.4 W. Finally, pinna temperatures were measured by use of a thermocouple and infrared thermography simultaneously. When the pinnae were vasodilated, the thermocouple measurements were consistently higher than the pinna surface temperatures measured thermographically. When the pinnae were vasoconstricted, the thermocouple measurements were consistently lower than the pinna surface temperatures measured thermographically. The discrepancy between the two methods of measurement is discussed.
Warming of infusion syringes caused by electronic syringe pumps.
Cornelius, A; Frey, B; Neff, T A; Gerber, A C; Weiss, M
2003-05-01
To evaluate inadvertent warming of the infusion syringe in four different types of electronic syringe pumps. Ambient temperature and syringe surface temperature were simultaneously measured by two electronic temperature probes in four different models of commercially available syringe pumps. Experiments were performed at an infusion rate of 1 ml h(-1) using both battery-operated and main power-operated pumps. Measurements were repeated four times with two pumps from each of the four syringe pump types at a room temperature of approximately 23 degrees C. Differences among the four syringe pump brands regarding ambient to syringe temperature gradient were compared using ANOVA. A P-value of less than 0.05 was considered statistically significant. Syringe warming differed significantly between the four syringe brands for both the battery-operated and main power-operated mode (ANOVA, P< 0.001 for both modes). Individual differences between syringe surface and ambient temperature ranged from 0.3 to 1.9 degrees C for battery operation and from 0.5 to 11.2 degrees C during main-power operation. Infusion solutions can be significantly warmed by syringe pumps. This has potential impact on bacterial growth and the stability of drug solutions and blood products infused, as well as on the susceptibility to hydrostatic pressure changes within the infusion syringe.
The thermal regime around buried submarine high-voltage cables
NASA Astrophysics Data System (ADS)
Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.
2016-08-01
The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near-surface environments experiencing such high temperatures and may have significant implications for chemical and physical processes operating at the grain and subgrain scale; biological activity at both microfaunal and macrofaunal levels; and indeed the operational performance of the cables themselves, as convective heat transport would increase cable current ratings, something neglected in existing standards.
Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping
2018-03-11
Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
Quantifying the impact of human activity on temperatures in Germany
NASA Astrophysics Data System (ADS)
Benz, Susanne A.; Bayer, Peter; Blum, Philipp
2017-04-01
Human activity directly influences ambient air, surface and groundwater temperatures. Alterations of surface cover and land use influence the ambient thermal regime causing spatial temperature anomalies, most commonly heat islands. These local temperature anomalies are primarily described within the bounds of large and densely populated urban settlements, where they form so-called urban heat islands (UHI). This study explores the anthropogenic impact not only for selected cities, but for the thermal regime on a countrywide scale, by analyzing mean annual temperature datasets in Germany in three different compartments: measured surface air temperature (SAT), measured groundwater temperature (GWT), and satellite-derived land surface temperature (LST). As a universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat intensity (AHI) is introduced. It is closely related to the urban heat island intensity, but determined for each pixel (for satellite-derived LST) or measurement point (for SAT and GWT) of a large, even global, dataset individually, regardless of land use and location. Hence, it provides the unique opportunity to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) to find main instances of anthropogenic temperature anomalies within the study area, in this case Germany, and c) to study the impact of smaller settlements or industrial sites on temperatures. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1 km × 1 km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5 K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities > 4 K. Overall, surface anthropogenic heat intensities > 0 K and therefore urban heat islands are observed in communities down to a population of 5,000.
Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.
Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin
2017-02-08
We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.
Stability of plasma treated superhydrophobic surfaces under different ambient conditions.
Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin
2016-05-15
Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. Copyright © 2016 Elsevier Inc. All rights reserved.
Solid State Carbon Monoxide Sensor
NASA Technical Reports Server (NTRS)
Upchurch, Billy T. (Inventor); Wood, George M. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); DAmbrosia, Christine M. (Inventor)
1999-01-01
A means for detecting carbon monoxide which utilizes an un-heated catalytic material to oxidize carbon monoxide at ambient temperatures. Because this reaction is exothermic, a thermistor in contact with the catalytic material is used as a sensing element to detect the heat evolved as carbon monoxide is oxidized to carbon dioxide at the catalyst surface, without any heaters or external heating elements for the ambient air or catalytic element material. Upon comparison to a reference thermistor, relative increases in the temperature of the sensing thermistor correspond positively with an increased concentration of carbon monoxide in the ambient medium and are thus used as an indicator of the presence of carbon monoxide.
Thermo-electric modular structure and method of making same
Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.
1974-01-29
A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)
High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels
NASA Technical Reports Server (NTRS)
Canada, G. S.
1974-01-01
Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.
Electronic and chemical structure of the H 2O/GaN(0001) interface under ambient conditions
Zhang, Xueqiang; Ptasinska, Sylwia
2016-04-25
We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H 2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H 2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H 2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H 2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorptionmore » of H 2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H 2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less
Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.
Low Temperature Reflectance Spectra of Titan Tholins
NASA Technical Reports Server (NTRS)
Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)
2001-01-01
Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.
Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin
2015-01-01
In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high. PMID:28793583
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.
2012-01-01
As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
The Thermal Regime Around Buried Submarine High-Voltage Cables
NASA Astrophysics Data System (ADS)
Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.
2015-12-01
The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.
NASA Astrophysics Data System (ADS)
Ozawa, S.; Suzuki, S.; Hibiya, T.; Fukuyama, H.
2011-01-01
Influences of oxygen partial pressure, PO2, of ambient atmosphere and temperature on surface tension and its temperature coefficient for molten iron were experimentally investigated by an oscillating droplet method using an electromagnetic levitation furnace. We successfully measured the surface tension of molten iron over a very wide temperature range of 780 K including undercooling condition in a well controlled PO2 atmosphere. When PO2 is fixed at 10-2 Pa at the inlet of the chamber, a "boomerang shape" temperature dependence of surface tension was experimentally observed; surface tension increased and then decreased with increasing temperature. The pure surface tension of molten iron was deduced from the negative temperature coefficient in the boomerang shape temperature dependence. When the surface tension was measured under the H2-containing gas atmosphere, surface tension did not show a linear relationship against temperature. The temperature dependence of the surface tension shows anomalous kink at around 1850 K due to competition between the temperature dependence of PO2 and that of the equilibrium constant of oxygen adsorption.
NASA Technical Reports Server (NTRS)
Orndoff, Evelyne; Trevino, Luis A.
2000-01-01
Protection of astronauts from the extreme temperatures in the space environment has been provided in the past using multi-layer insulation in ultra-high vacuum environments of low earth orbit and the lunar surface. For planetary environments with residual gas atmospheres such as Mars with ambient pressures between 8 to 14 hPa (8 to 14 mbar), new protection techniques are required because of the dominating effect of the ambient gas on heat loss through the insulation. At Mars ambient pressure levels, the heat loss can be excessive at expected suit external temperatures of 172 K with state-of-the-art suit insulation, requiring an active heat source and its accompanying weight and volume penalties. Micro-fibers have been identified as one potential structure to reduce the heat losses, but existing fundamental data on fiber heat transfer at low pressure is lacking for integrated fabric structures. This baseline study presents insulation performance test data at different pressures and fabric loads for selected polyesters and aramids as a function of fiber density, fiber diameter, fabric density, and fabric construction. A set of trend data of thermal conductivity versus ambient pressure is presented for each fiber and fabric construction design to identify the design effects on thermal conductivity at various ambient pressures, and to select a fiber and fabric design for further development as a suit insulation. The trend data also shows the pressure level at which thermal conductivity approaches a minimum, below which no further improvement is possible for a given fiber and fabric design. The pressure levels and resulting thermal conductivities from the trend data can then be compared to the ambient pressure at a planetary surface, Mars for example, to determine if a particular fiber and fabric design has potential as a suit insulation.
NASA Technical Reports Server (NTRS)
Ng, Daniel
1996-01-01
The NASA self calibrating multiwavelength pyrometer is a recent addition to the list of pyrometers used in remote temperature measurement in research and development. The older one-color, two-color, and the disappearing filament pyrometers, as well as the multicolor and early multiwavelength pyrometers, all do not operate successfully in situations in which strong ambient radiation coexists with radiation originating from the measured surface. In such situations radiation departing from the target surface arrives at the pyrometer together with radiation coming from another source either directly or through reflection. Unlike the other pyrometers, the self calibrating multiwavelength pyrometer can still calibrate itself and measure the temperatures in this adverse environment.
Platinum/Tin Oxide/Silica Gel Catalyst Oxidizes CO
NASA Technical Reports Server (NTRS)
Upchurch, Billy T.; Davis, Patricia P.; Schryer, David R.; Miller, Irvin M.; Brown, David; Van Norman, John D.; Brown, Kenneth G.
1991-01-01
Heterogeneous catalyst of platinum, tin oxide, and silica gel combines small concentrations of laser dissociation products, CO and O2, to form CO22 during long times at ambient temperature. Developed as means to prevent accumulation of these products in sealed CO2 lasers. Effective at ambient operating temperatures and installs directly in laser envelope. Formulated to have very high surface area and to chemisorb controlled quantities of moisture: chemisorbed water contained within and upon its structure, makes it highly active and very longlived so only small quantity needed for long times.
NASA Astrophysics Data System (ADS)
Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho
2015-12-01
There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.
Alien liquid detector and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, B.M.
An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In onemore » embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.« less
A novel phenomenological multi-physics model of Li-ion battery cells
NASA Astrophysics Data System (ADS)
Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.
2016-09-01
A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.
Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P
2009-07-31
In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be equivalent to the bacterial growth occurring at the product's surface or centre when convection heat transfer is taken into account. Our results indicate that combining food engineering and predictive microbiology models is an interesting approach providing very useful tools for food safety and process optimisation.
Influence of irradiation conditions on plasma evolution in laser-surface interaction
NASA Astrophysics Data System (ADS)
Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.
1993-09-01
The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.
McDevitt, James; Rudnick, Stephen; First, Melvin; Spengler, John
2010-01-01
Influenza virus has been found to persist in the environment for hours to days, allowing for secondary transmission of influenza via inanimate objects known as fomites. We evaluated the efficacy of heat and moisture for the decontamination of surfaces for the purpose of preventing of the spread of influenza. Aqueous suspensions of influenza A virus were deposited onto stainless steel coupons, allowed to dry under ambient conditions, and exposed to temperatures of 55°C, 60°C, or 65°C and relative humidity (RH) of 25%, 50%, or 75% for up to 1 h. Quantitative virus assays were performed on the solution used to wash the viruses from these coupons, and results were compared with the solution used to wash coupons treated similarly but left under ambient conditions. Inactivation of influenza virus on surfaces increased with increasing temperature, RH, and exposure time. Reductions of greater than 5 logs of influenza virus on surfaces were achieved at temperatures of 60 and 65°C, exposure times of 30 and 60 min, and RH of 50 and 75%. Our data also suggest that absolute humidity is a better predictor of surface inactivation than RH and allows the prediction of survival using two parameters rather than three. Modest amounts of heat and adequate moisture can provide effective disinfection of surfaces while not harming surfaces, electrical systems, or mechanical components, leaving no harmful residues behind after treatment and requiring a relatively short amount of time. PMID:20435770
NASA Astrophysics Data System (ADS)
Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng
2017-12-01
Graphite powder was adopted to prevent AZ91D alloy from oxidizing during melting and casting. The microstructure of the resultant surface films, formed at 933 K, 973 K, 1013 K, and 1053 K (660 °C, 700 °C, 740 °C, and 780 °C) for 30 minutes, was investigated by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction, and the phase composition of the surface films was analyzed by the standard Gibbs free energy change of the reactions between the graphite powder, the alloy melt, and the ambient atmosphere. The effect and mechanism of melt temperature on the resultant surface films were also discussed. The results indicated that the surface films, of which the surface morphology comprised folds and wrinkles, were composed of a protective layer and MgF2 particles. The protective layer was contributive to the prevention of the molten alloy from oxidizing, and consisted of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium existing in the form of MgO, MgF2, C, and MgAl2O4. The layer thickness was 200 to 900 nm. The melt temperature may affect the surface films through the increased interaction between the graphite powder, the melt, and the ambient atmosphere. The oxygen content and thickness of the protective layer decreased and then increased, while the height of the folds increased with melt temperature.
NASA Astrophysics Data System (ADS)
Tibuleac, I. M.; Iovenitti, J. L.; Pullammanappallil, S. K.; von Seggern, D. H.; Ibser, H.; Shaw, D.; McLachlan, H.
2015-12-01
A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. Seismic interferometry was used to extract Green's Functions (P and surface waves) from 21 days of continuous ambient seismic noise. With the advantage of S-velocity models estimated from surface waves, an ambient noise seismic reflection survey along a line (named Line 2), although with lower resolution, reproduced the results of the active survey, when the ambient seismic noise was not contaminated by strong cultural noise. Ambient noise resolution was less at depth (below 1000m) compared to the active survey. Useful information could be recovered from ambient seismic noise, including dipping features and fault locations. Processing method tests were developed, with potential to improve the virtual reflection survey results. Through innovative signal processing techniques, periods not typically analyzed with high frequency sensors were used in this study to obtain seismic velocity model information to a depth of 1.4km. New seismic parameters such as Green's Function reflection component lateral variations, waveform entropy, stochastic parameters (Correlation Length and Hurst number) and spectral frequency content extracted from active and passive surveys showed potential to indicate geothermal favorability through their correlation with high temperature anomalies, and showed potential as fault indicators, thus reducing the uncertainty in fault identification. Geothermal favorability maps along ambient seismic Line 2 were generated considering temperature, lithology and the seismic parameters investigated in this study and compared to the active Line 2 results. Pseudo-favorability maps were also generated using only the seismic parameters analyzed in this study.
Dropwise condensation dynamics in humid air
NASA Astrophysics Data System (ADS)
Castillo Chacon, Julian Eduardo
Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity effects on the growth of single and distributed droplets offered in this thesis can improve the prediction of heat and mass transfer during dropwise condensation of humid air under differing environmental conditions. This knowledge can be used to engineer condenser systems and surfaces that are adapted for local ambient relative humidity and temperature conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.
X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C + ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C + ions into U 238 with a dose of 4.3 × 10 17 cm –3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layersmore » were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Moreover, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface.« less
Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell Greenhalgh
2013-07-01
A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EFmore » MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOF’s were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNL’s inital EF supplied material.« less
Method for identifying anomalous terrestrial heat flows
Del Grande, Nancy Kerr
1977-01-25
A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.
Jayaraman, T. V.; Meka, V. M.; Jiang, X.; ...
2018-01-09
Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, T. V.; Meka, V. M.; Jiang, X.
Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less
Transient climate and ambient health impacts due to national solid fuel cookstove emissions
Lacey, Forrest G.; Henze, Daven K.; Lee, Colin J.; van Donkelaar, Aaron; Martin, Randall V.
2017-01-01
Residential solid fuel use contributes to degraded indoor and ambient air quality and may affect global surface temperature. However, the potential for national-scale cookstove intervention programs to mitigate the latter issues is not yet well known, owing to the spatial heterogeneity of aerosol emissions and impacts, along with coemitted species. Here we use a combination of atmospheric modeling, remote sensing, and adjoint sensitivity analysis to individually evaluate consequences of a 20-y linear phase-out of cookstove emissions in each country with greater than 5% of the population using solid fuel for cooking. Emissions reductions in China, India, and Ethiopia contribute to the largest global surface temperature change in 2050 [combined impact of −37 mK (11 mK to −85 mK)], whereas interventions in countries less commonly targeted for cookstove mitigation such as Azerbaijan, Ukraine, and Kazakhstan have the largest per cookstove climate benefits. Abatement in China, India, and Bangladesh contributes to the largest reduction of premature deaths from ambient air pollution, preventing 198,000 (102,000–204,000) of the 260,000 (137,000–268,000) global annual avoided deaths in 2050, whereas again emissions in Ukraine and Azerbaijan have the largest per cookstove impacts, along with Romania. Global cookstove emissions abatement results in an average surface temperature cooling of −77 mK (20 mK to −278 mK) in 2050, which increases to −118 mK (−11 mK to −335 mK) by 2100 due to delayed CO2 response. Health impacts owing to changes in ambient particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) amount to ∼22.5 million premature deaths prevented between 2000 and 2100. PMID:28115698
Beeswax as phase change material to improve solar panel’s performance
NASA Astrophysics Data System (ADS)
Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.
2018-02-01
One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.
XPS and SIMS study of the surface and interface of aged C + implanted uranium
Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.
2016-09-08
X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C + ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C + ions into U 238 with a dose of 4.3 × 10 17 cm –3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layersmore » were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Moreover, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface.« less
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
Fast, high sensitivity dewpoint hygrometer
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor)
1998-01-01
A dewpoint/frostpoint hygrometer that uses a surface moisture-sensitive sensor as part of an RF oscillator circuit with feedback control of the sensor temperature to maintain equilibrium at the sensor surface between ambient water vapor and condensed water/ice. The invention is preferably implemented using a surface acoustic wave (SAW) device in an RF oscillator circuit configured to generate a condensation-dependent output signal, a temperature sensor to measure the temperature of the SAW device and to distinguish between condensation-dependent and temperature-dependent signals, a temperature regulating device to control the temperature of the SAW device, and a feedback control system configured to keep the condensation-dependent signal nearly constant over time in the presence of time-varying humidity, corrected for temperature. The effect of this response is to heat or cool the surface moisture-sensitive device, which shifts the equilibrium with respect to evaporation and condensation at the surface of the device. The equilibrium temperature under feedback control is a measure of dewpoint or frostpoint.
Fourier analysis of conductive heat transfer for glazed roofing materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heatmore » transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.« less
On the stability of sub-stoichiometric uranium oxides
NASA Astrophysics Data System (ADS)
Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.
1986-12-01
The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.
Outdoor surface temperature measurement: ground truth or lie?
NASA Astrophysics Data System (ADS)
Skauli, Torbjorn
2004-08-01
Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.
Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle
2017-01-01
Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.
Simulation of the real efficiencies of high-efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachenko, A. V., E-mail: sach@isp.kiev.ua; Skrebtii, A. I.; Korkishko, R. M.
The temperature dependences of the efficiency η of high-efficiency solar cells based on silicon are calculated. It is shown that the temperature coefficient of decreasing η with increasing temperature decreases as the surface recombination rate decreases. The photoconversion efficiency of high-efficiency silicon-based solar cells operating under natural (field) conditions is simulated. Their operating temperature is determined self-consistently by simultaneously solving the photocurrent, photovoltage, and energy-balance equations. Radiative and convective cooling mechanisms are taken into account. It is shown that the operating temperature of solar cells is higher than the ambient temperature even at very high convection coefficients (~300 W/m{sup 2}more » K). Accordingly, the photoconversion efficiency in this case is lower than when the temperature of the solar cells is equal to the ambient temperature. The calculated dependences for the open-circuit voltage and the photoconversion efficiency of high-quality silicon solar cells under concentrated illumination are discussed taking into account the actual temperature of the solar cells.« less
Wind and Wind Stress Measurements in HiRes
2008-09-30
to design the experimental system to be conducted on R /P FLIP. Data from a past experiment are also being analyzed with respect to processes...For the HiRes experiment on R /P FLIP, the air temperature profile will be measured along with wind stress, surface heat flux, sea surface...the best as it registered the lower ambient temperature. In preparation for the HiRes experiment onboard R /P FLIP a mast prototype was built in
Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon
2017-07-26
Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.
Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions
NASA Astrophysics Data System (ADS)
Cardellach, M.; Verdaguer, A.; Fraxedas, J.
2011-12-01
The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.
Temperature dependence of interfacial structures and acidity of clay edge surfaces
NASA Astrophysics Data System (ADS)
Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng
2015-07-01
In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.
A rotary drum dryer for palm sterilization: preliminary study of flow and heat transfer using CFD
NASA Astrophysics Data System (ADS)
Hanifarianty, S.; Legwiriyakul, A.; Alimalbari, A.; Nuntadusit, C.; Theppaya, T.; Wae-Hayee, M.
2018-01-01
Preliminary study in this article, the flow and the heat transfer of rotary drum dryer were simulated by using Computational Fluid Dynamics (CFD). A 3D modelling of rotary drum dryer including ambient air was created by considering transient simulation. The temperature distributions on rotary drum dryer surfaces of experimental setup during heating detected by using infrared camera were given to be boundary conditions of modelling. The average temperature at the surface of the drum lids was 80°C, and the average temperature on the heated surface of the drum was 130°C. The results showed that the internal temperature of air in drum modelling was increased relating on time dependent. The final air temperature inside the drum modelling was similar to the measurement results.
Sensor Amplifier for the Venus Ground Ambient
NASA Technical Reports Server (NTRS)
DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.
2006-01-01
Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.
The Mars climate for a photovoltaic system operation
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.
Surface acoustic wave hydrogen sensor
NASA Technical Reports Server (NTRS)
Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)
2006-01-01
The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.
Gautam, Raju; Bani-Yaghoub, Majid; Neill, William H; Döpfer, Dörte; Kaspar, Charles; Ivanek, Renata
2011-10-01
To explore the potential role of ambient temperature on infection transmission dynamics for pathogens, we used Escherichia coli O157:H7 in a dairy herd and the surrounding farm environment as a model system. For this system, we developed a mathematical model in which a Susceptible-Infectious-Susceptible (SIS) model of infection spread through the host population is coupled with a metapopulation model of E. coli O157:H7 free-living stage in the environment allowing bacterial growth to be influenced by ambient temperature. Model results indicate that seasonal variation in ambient temperature could have a considerable impact on pathogen populations in the environment, specifically on barn surfaces and in water troughs, and consequently on the prevalence of infection in the host population. Based on model assumptions, contaminated drinking water was the most important pathway of E. coli O157:H7 transmission to cattle. Sensitivity analysis indicated that water-borne transmission is amplified during the warmer months if the amount of standing drinking water available to the cattle herd is high. This is because warmer ambient temperature favors faster pathogen replication which when combined with slower water replacement-rate due to high amount of available standing water leads to a greater pathogen load in drinking water. These results offer a possible explanation of the seasonal variation in E. coli O157:H7 prevalence in cattle and suggest that improved drinking-water management could be used for control of this infection in cattle. Our study demonstrates how consideration of ambient temperature in transmission cycles of pathogens able to survive and grow in the environment outside the host could offer novel perspectives on the spread and control of infections caused by such pathogens. Copyright © 2011 Elsevier B.V. All rights reserved.
Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.
1991-01-01
Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.
Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments
NASA Astrophysics Data System (ADS)
Muratore, C.; Voevodin, A. A.
2009-08-01
Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10-10 to 10-4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials.
NASA Astrophysics Data System (ADS)
Barszcz, Marcin; Józwik, Jerzy; Dziedzic, Krzysztof; Stec, Kamil
2017-10-01
The paper includes an assessment of the tribological properties of mineral and synthetic Lotos oil marked SAE 15W/40 and SAE 5W/40 at ambient temperature and 100 °C. The evaluation was based on the analysis of the tribological properties of friction couple consumables. Tribological tests were performed using the Anton Paar THT 1000 high temperature tribotester according to ASTM G133. Tribological properties were investigated using the "ball on disc" method. The change of friction coefficient, friction couple temperature, volume wear of samples and counter-samples and Hertz stresses were evaluated. In addition, hardness tests of the friction couple materials as well as surface roughness before and after friction were performed. On the basis of tribological studies, it was noted that Lotos Synthetic 5W/40 oil has better cooling properties compared. For both oils the coefficient of friction was lower at ambient temperature than at 100 °C. The highest value of volume wear of the sample was noted for the combination lubricated with Mineral Oil 15W/40 at 100 °C (0.0143 mm3) while for counter-sample lubricated with synthetic oil at ambient temperature (0.0039 mm3). The highest sample wear coefficient was recorded for the mineral oil lubricated at temperature of 100 °C (3.585*10-7 mm3/N/m) while for counter-sample lubricated with synthetic oil at ambient temperature (9.8768*10-8 mm3/N/m). The Hertz stress for each test couple had a value of 1.787 GPa.
Warren, David W.
1997-01-01
A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.
High environmental temperature around farrowing induced heat stress in crated sows.
Muns, R; Malmkvist, J; Larsen, M L V; Sørensen, D; Pedersen, L J
2016-01-01
The aim of the experiment was to study the impact of high ambient temperature (25°C) around farrowing on crated sows unable to perform thermoregulatory behavior. Twenty sows were housed in 2 farrowing rooms in conventional farrowing crates. In 1 room (CONTROL) temperature was kept at 20°C. In the other room (HEAT) temperature was initially kept at 20°C and gradually raised until it reached 25°C from d 112 to 115 of gestation. Then the temperature was gradually lowered to 20°C. Sows were continuously video recorded for behavior recording. Sows' respiration rates were recorded from d 3 before farrowing to d 5 after farrowing. Sows' rectal temperatures were recorded from d 1 before farrowing to d 8 after farrowing, and sows' udder surface temperatures were recorded from the day of farrowing to d 3 after farrowing. All measures were recorded daily. Sows' BW were recorded at d 108 of gestation and at weaning. Sows' back fat was recorded on farrowing day, when room temperature was set again at 20°C, and at weaning. Piglets were weighed at d 1, 14, and 21. The HEAT sows spent a higher proportion of time lying in the lateral position than CONTROL sows, both during the 16 h before farrowing and the 24 h after the start of farrowing ( < 0.05), but with no difference in the amount of time spent lying down between groups ( > 0.10). The HEAT sows had higher rectal temperature on d 1 after farrowing ( < 0.05) and had udder surface temperature 0.9°C higher than that of CONTROL sows during the recording period ( < 0.05). The HEAT sows also tended to have longer farrowing duration ( < 0.10). Respiration rate was higher in HEAT sows on d 1 before farrowing and on the day of farrowing. On d 7, 8, and 9, CONTROL sows had higher feed intake ( < 0.05), and piglets from CONTROL sows were heavier at d 21 after farrowing ( < 0.05). High ambient temperature around farrowing altered sows' postural behavior. Sows reacted to the thermal challenge with higher respiration rate around farrowing, but both their rectal and udder temperatures were elevated, indicating that they were not able to compensate for the higher ambient temperature. High ambient temperature negatively influenced sows' feed intake, with negative impact on piglets' weaning weight. High temperatures around farrowing (25°C) compromise crated sows' welfare, with a potential negative impact on offspring performance.
Oviposition activity of Drosophila suzukii as mediated by ambient and fruit temperature
2017-01-01
The invasive pest Drosophila suzukii was introduced to southern Europe in 2008 and spread throughout Central Europe in the following years. Precise reliable data on the temperature-dependent behavior of D. suzukii are scarce but will help forecasting and cultivation techniques. Depending on physico-chemical properties, surface temperature of objects may differ from ambient temperatures, determining physical activity, and affect oviposition on or into substrate, determining preimaginal development later. Therefore, the preferred ambient temperatures of D. suzukii and fruit temperature for oviposition were examined on a linear temperature gradient device. Thirty adults (15 ♀; 15 ♂) were adapted to different temperatures (10, 20, 30°C) for six days and then exposed to different temperature gradients (10–25, 20–35, 25–40°C). D. suzukii adapted to 10°C remained in cooler regions and suffered from a significantly higher mortality at the 25–40°C gradient. Animals adapted to warmer temperatures had a wider temperature preference on the gradient device. Acclimation to lower temperatures and the resulting lower temperature preferences may allow the flies to disperse better in spring to search for oviposition sites. The oviposition activity decreased continuously at a fruit temperature above 28°C and below 15°C, with highest oviposition activity in fruits with temperatures between 19.7°C and 24.8°C. The preferred fruit temperature is in accordance with the temperature optimum of reproduction biology and preimaginal development of D. suzukii reported in the literature. PMID:29121635
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
Morita, Viviane de Souza; de Almeida, Vitor Rosa; Matos, João Batista; Vicentini, Tamiris Iara; van den Brand, Henry; Boleli, Isabel Cristina
2016-01-01
Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C), control (37.5°C), or high (39°C) temperatures (treatments LT, CK, and HT, respectively) from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C) was higher than of LT (37.4±0.08°C) and CK eggs (37.8 ±0.15°C). The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to increased temperature during incubation is an environmental factor that can exert early-life influence on ambient temperature preference of broiler hatchlings in later life. PMID:27183111
Morita, Viviane de Souza; Almeida, Vitor Rosa de; Matos, João Batista; Vicentini, Tamiris Iara; van den Brand, Henry; Boleli, Isabel Cristina
2016-01-01
Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C), control (37.5°C), or high (39°C) temperatures (treatments LT, CK, and HT, respectively) from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C) was higher than of LT (37.4±0.08°C) and CK eggs (37.8 ±0.15°C). The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to increased temperature during incubation is an environmental factor that can exert early-life influence on ambient temperature preference of broiler hatchlings in later life.
Modeling heat loss from the udder of a dairy cow.
Gebremedhin, Kifle G; Wu, Binxin
2016-07-01
A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket). Copyright © 2016 Elsevier Ltd. All rights reserved.
Low temperature sodium-beta battery
Farmer, Joseph C
2013-11-19
A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.
Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.
1999-01-01
Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.
NASA Astrophysics Data System (ADS)
Mathis, Urs; Mohr, Martin; Forss, Anna-Maria
Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dp<0.5μm) more efficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka,; Kumar, Bharat; Kumar, Sandeep
The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetatemore » (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.« less
Carbon Nanotubes Growth on Graphite Fibers
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.
NASA Astrophysics Data System (ADS)
Zhang, X.; Stoddart, P. R.; Comins, J. D.; Every, A. G.
2001-03-01
Surface Brillouin scattering (SBS) has been used to study the thermally induced surface vibrations (phonons) and thereby obtain the elastic properties of the nickel-based superalloy CMSX-4. SBS spectra have been acquired for a range of wavevector directions in the (001) surface in the single-crystal specimen to determine the angular variation of SAW velocities and the nature of the various excitations. Rayleigh and pseudo-surface acoustic waves as well as the details of the Lamb shoulder are studied, and the elastic constants and engineering moduli are determined using different, but self-consistent, methods at ambient and high temperatures. Calculations of the SBS spectra using surface Green function methods are in good agreement with the experimental results.
Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho
2017-08-31
Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.
Role of a single shield in thermocouple measurements in hot air flow
NASA Astrophysics Data System (ADS)
Ma, Hongwei; Shi, Lei; Tian, Yangtao
2017-12-01
To investigate the role of a single shield on steady temperature measurement using thermocouples in hot air flow, a methodology for solving convection, conduction, and radiation in one single model is provided. In order to compare with the experimental results, a cylindrical computational domain is established, which is the same size with the hot calibration wind-tunnel. In the computational domain, two kinds of thermocouples, the bare-bead and the single-shielded thermocouples, are simulated respectively. Surface temperature distribution and the temperature measurement bias of the two typical thermocouples are compared. The simulation results indicate that: 1) The existence of the shield reduces bead surface heat flux and changes the direction of wires inner heat conduction in a colder surrounding; 2) The existence of the shield reduces the temperature measurement bias both by improving bead surface temperature and by reducing surface temperature gradient; 3) The shield effectively reduces the effect of the ambient temperature on the temperature measurement bias; 4) The shield effectively reduces the influence of airflow velocity on the temperature measurement bias.
NASA Astrophysics Data System (ADS)
Isa, N. A.; Mohd, W. M. N. Wan; Salleh, S. A.; Ooi, M. C. G.
2018-02-01
Matured trees contain high concentration of chlorophyll that encourages the process of photosynthesis. This process produces oxygen as a by-product and releases it into the atmosphere and helps in lowering the ambient temperature. This study attempts to analyse the effect of green area on air surface temperature of the Kuala Lumpur city. The air surface temperatures of two different dates which are, in March 2006 and March 2016 were simulated using the Weather Research and Forecasting (WRF) model. The green area in the city was extracted using the Normalized Difference Vegetation Index (NDVI) from two Landsat satellite images. The relationship between the air surface temperature and the green area were analysed using linear regression models. From the study, it was found that, the green area was significantly affecting the distribution of air temperature within the city. A strong negative correlation was identified through this study which indicated that higher NDVI values tend to have lower air surface temperature distribution within the focus study area. It was also found that, different urban setting in mixed built-up and vegetated areas resulted in different distributions of air surface temperature. Future studies should focus on analysing the air surface temperature within the area of mixed built-up and vegetated area.
Drag coefficient Variability and Thermospheric models
NASA Astrophysics Data System (ADS)
Moe, Kenneth
Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag coefficients help evaluate the biases in present models. Moreover, they make possible the derivation of accurate densities from accelerometer measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, T. V.; Meka, V. M.; Jiang, X.
In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbonsmore » produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.« less
40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... atmosphere within the enclosure (a heated FID (HFID)(235° ±15 °F (113±8 °C)) is recommended for methanol...
40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...
40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... atmosphere within the enclosure (a heated FID (HFID)(235° ±15 °F (113 ±8 °C)) is recommended for methanol...
40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...
40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...
Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures
Siminovitch, Michael J.
1992-01-01
In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.
Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055
Investigation on the storage of benzotriazole corrosion inhibitor in TiO2 nanotube
NASA Astrophysics Data System (ADS)
Nguyen, Thi Dieu Hang; Tiep Nong, Thanh; Quang Nguyen, Van; Quyen Nguyen, The; Le, Quang Trung
2018-06-01
The present paper describes different methods for storing the benzotriazole (BTA) corrosion inhibitor in the titanium dioxide nanotubes (TNT) as nanocontainers. Three methods were used, including the vacuum impregnation at ambient temperature, the vacuum impregnation at cooling temperature () and the rotary vacuum evaporation. TNT, BTA and BTA/TNT products were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. nanotube powder was synthesized by hydrothermal treatment from the inexpensive spherical commercial precursor. The results obtained from SEM, TEM images and BET values showed the successful synthesis of TNT with a homogeneous morphology of nano size tubes and a large specific surface . The existence of BTA in TNT was demonstrated. The BTA/TNT obtained via the rotary vacuum evaporation contained a very significant amount of BTA (66.6 weight %) but BTA existed mostly outside the nanotubes. Two processes of vacuum impregnation at ambient temperature and vacuum impregnation at cooling temperature revealed that there was about 8 weight % BTA stored in BTA/TNT product and BTA was present mostly inside the nanotubes.
Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.
Manufactured Porous Ambient Surface Simulants
NASA Technical Reports Server (NTRS)
Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul
2016-01-01
The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).
Ershow, Gennady Moiseevich; Kirillov, Evgenii Vladislavovich; Mirzabekov, Andrei Darievich
1998-01-01
A device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance.
Remote Raman Spectroscopy of Minerals at Elevated Temperature Relevant to Venus Exploration
NASA Technical Reports Server (NTRS)
Sharma, Shiv K.; Misra, Anupam K.; Singh, Upendra N.
2008-01-01
We have used a remote time-resolved telescopic Raman system equipped with 532 nm pulsed laser excitation and a gated intensified CCD (ICCD) detector for measuring Raman spectra of a number of minerals at high temperature to 970 K. Remote Raman measurements were made with samples at 9-meter in side a high-temperature furnace by gating the ICCD detector with 2 micro-sec gate to minimize interference from blackbody emission from mineral surfaces at high temperature as well as interference from ambient light. A comparison of Raman spectra of gypsum (CaSO4.2H2O), dolomite (CaMg(CO3)2), and olivine (Mg2Fe2-xSiO4), as a function of temperature shows that the Raman lines remains sharp and well defined even in the high-temperature spectra. In the case of gypsum, Raman spectral fingerprints of CaSO4.H2O at 518 K were observed due to dehydration of gypsum. In the case of dolomite, partial mineral dissociation was observed at 973 K at ambient pressure indicating that some of the dolomite might survive on Venus surface that is at approximately 750 K and 92 atmospheric pressure. Time-resolved Raman spectra of low clino-enstatite (MgSiO3) measured at 75 mm from the sample in side the high-temperature furnace also show that the Raman lines remains sharp and well defined in the high temperature spectra. These high-temperature remote Raman spectra of minerals show that time-resolved Raman spectroscopy can be used as a potential tool for exploring Venus surface mineralogy at shorter (75 mm) and long (9 m) distances from the samples both during daytime and nighttime. The remote Raman system could also be used for measuring profiles of molecular species in the dense Venus atmosphere during descent as well as on the surface.
Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Rahman, Md. Fahim
Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.
Internally cured concrete for pavement and bridge deck applications : [summary].
DOT National Transportation Integrated Search
2015-08-01
High-strength-high-performance concrete (HSHPC) is used for rapid repair of concrete : bridge decks and pavement. However, HSHPC has very high early shrinkage, often leading to : cracking, made worse by high ambient temperatures and a large surface a...
Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission
NASA Technical Reports Server (NTRS)
Mellott, Ken
2004-01-01
The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.
NASA Astrophysics Data System (ADS)
Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James
2017-08-01
It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.
Design principles for contamination abatement in scientific satellites.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1972-01-01
It is shown that deposition of contamination films on satellite optics can be controlled by the following means: isolating critical optical surfaces from the rest of the spacecraft; avoiding or minimizing the use of nonmetallic material, particularly near or in line of sight of optical surfaces; avoiding materials with high vapor pressures; subjecting materials to vacuum baking prior to use, to drive off the volatile outgassing products; keeping the critical surfaces at temperatures above the ambient; avoiding elevated operational temperatures for nonmetallic materials; paying special attention to optics exposed to intense UV-, X-ray, or particular radiation; avoiding water-vapor sources; and directing RCS plumes away from critical surfaces. Methods of controlling particulate contaminants are also proposed.
Oxidation and low cycle fatigue life prediction
NASA Technical Reports Server (NTRS)
Oshida, Y.; Liu, H. W.
1984-01-01
When a metallic material is exposed to a high temperature in an ambient atmosphere, oxidation takes place on the metallic surface. The formed oxides (both surface and grain boundary oxides) are mechanically brittle so that if the stress is high enough the oxides will be cracked. The grain boundary oxide formation in TAZ-8A nickel-base superalloy was studied. The effect of oxide crack nucleus on low cycle fatigue life will be analyzed. The TAZ-8A was subjected to high temperature oxidation tests in air under the stress-free condition. The oxidation temperatures were 600, 800, and 1000 C. The oxidation time varies from 10 to 1000 hours.
NASA Astrophysics Data System (ADS)
Mannam, Ramanjaneyulu; Kumar, E. Senthil; Priyadarshini, D. M.; Bellarmine, F.; DasGupta, Nandita; Ramachandra Rao, M. S.
2017-10-01
We report on the growth of ZnO nanostructures in different gas ambient (Ar and N2) using pulsed laser deposition technique. Despite the similar growth temperature, use of N2 ambient gas resulted in well-aligned nanorods with flat surface at the tip, whereas, nanorods grown with Ar ambient exhibited tapered tips. The Nanorods grown under N2 ambient exhibited additional Raman modes corresponding to N induced zinc interstitials. The nanorods are c-axis oriented and highly epitaxial in nature. Photoluminescence spectroscopy reveals that the UV emission can be significantly enhanced by 10 times for the nanorods grown under Ar ambient. The enhanced UV emission is attributed to the reduction in polarization electric field along the c-axis. n-ZnO nanorods/p-Si heterojunction showed rectifying I-V characteristics with a turn of voltage of 3.4 V.
Warren, D.W.
1997-04-15
A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.
Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers
NASA Technical Reports Server (NTRS)
Montgomery, L. D.; Williams, B. A.
1976-01-01
Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.
Cardellach, M; Verdaguer, A; Santiso, J; Fraxedas, J
2010-06-21
The interaction of water with freshly cleaved BaF(2)(111) surfaces at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes. The images strongly suggest a high surface diffusion of water molecules on the surface indicated by the accumulation of water at step edges forming two-dimensional bilayered structures. Steps running along the 110 crystallographic directions show a high degree of hydrophilicity, as evidenced by small step-film contact angles, while steps running along other directions exhibiting a higher degree of kinks surprisingly behave in a quite opposite way. Our results prove that morphological defects such as steps can be crucial in improving two-dimensional monolayer wetting and stabilization of multilayer grown on surfaces that show good lattice mismatch with hexagonal ice.
NASA Astrophysics Data System (ADS)
Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.
2018-06-01
This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.
Energy transfer from a pulsed thermal source to He II below 0.3 K.
NASA Technical Reports Server (NTRS)
Pfeifer, C. D.; Luszczynski, K.
1973-01-01
Results of measurements of the angular distribution of the energy flux radiated from a pulsed heater immersed in He II at low temperatures (around 230 mK). It is shown that the energy transfer from a pulsed carbon heater at a relatively high temperature to ambient liquid helium maintained at low temperature cannot be adequately described by the phonon-coupling models. The experimental data on the velocity and angular distribution of the energy flux radiated from the plane of the heater indicate that the energy from the heater is transferred to a layer of hot helium adjacent to the surface of the heater and that this layer acts as the effective source of excitations radiated into the ambient liquid helium. The extent and shape of this source depend on the total energy flux produced by the heater.
Detonation in TATB Hemispheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druce, B; Souers, P C; Chow, C
2004-03-17
Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. Themore » problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.« less
Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan
2015-11-01
To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed.
Toth, Linda A; Trammell, Rita A; Ilsley-Woods, Megan
2015-01-01
To determine how housing density and ambient temperature interact to influence the physiology and behavior of mice, we systematically varied housing density (1 to 5 mice per cage) and ambient temperature (22, 26, or 30 °C) and measured effects on body weight, food intake, diurnal patterns of locomotor activity and core temperature, fecal corticosterone, and serum cytokine and adipokine panels. Temperatures inside cages housing 5 mice were 1 to 2 °C higher than the ambient temperature. As the housing density decreased, in-cage temperatures began to fall at a density of 2 or 3 mice per cage and did not differ from ambient temperature at 1 mouse per cage. Ambient temperature, but not housing density, significantly affected food intake. Although neither ambient temperature nor housing density affected core temperature or activity, hyperthermia and behavioral activation occurred during the 12-h period after cage change. Fecal concentrations of corticosterone metabolites and serum cytokines, chemokines, insulin, and leptin were not influenced by cage density and were only sporadically influenced by ambient temperature. Our data document that the number of mice housed per cage influences the intracage environmental conditions and that ambient temperature influences food intake even when temperatures are within or near recommended or thermoneutral ranges. We conclude that investigators should be cautious when changing the number of mice housed in a cage over the course of a study, because doing so significantly alters the cage environment to which remaining mice are exposed. PMID:26632780
2016-10-05
describes physics of a nanosecond surface dielectric barrier discharge (SDBD) at ambient gas temperature and high pressures (1-6 bar) in air. Details about...the ignition by a nanosecond discharge. Chapter 7 presents the high pressure high temperature reactor built recently at Laboratory for Plasma Physics ...livelink.ebs.afrl.af.mil/livelink/llisapi.dll Laboratory for Physics of Plasma, Ecole Polytechnique Plasma Assisted Ignition and Combustion at Low Initial Gas
Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures
Siminovitch, M.J.
1992-11-10
In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.
40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient air temperature... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined...
14 CFR 25.1527 - Ambient air temperature and operating altitude.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...
14 CFR 25.1527 - Ambient air temperature and operating altitude.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...
14 CFR 25.1527 - Ambient air temperature and operating altitude.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...
14 CFR 25.1527 - Ambient air temperature and operating altitude.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited by...
Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.
2018-01-01
Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.
NASA Astrophysics Data System (ADS)
Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes
2017-02-01
The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.
Hwang, Sung-Woo; Kim, Tae-Youn; Hyun, Sang-Hoon
2008-06-01
The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).
Microscopic contour changes of tribological surfaces by chemical and mechanical action
NASA Technical Reports Server (NTRS)
Lauer, J. L.; Fung, S. S.
1982-01-01
An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed for the examination of surface profiles of bearing surfaces without physical contact. This instrument was used to determine topological chemical reactivity by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. It was found that scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. In a separate series of experiments, a number of stainless steel plates were heated in a nitrogen atmosphere to different temperatures and their reactivity examined later at ambient temperature. The change of surface contour as a result of the probe reaction was found to follow an Arrhenius-type relation with respect to heat treatment temperature. This result could have implications on the scuffing mechanism.
Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I
2018-05-01
The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those warmed with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final core temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.
NASA Astrophysics Data System (ADS)
Sasaki, S.
In the solar nebula, a growing planet attracts ambient gas to form a solar-type atmosphere. The structure of this H2-He atmosphere is calculated assuming the Earth was formed in the nebula. The blanketing effect of the atmosphere renders the planetary surface molten when the planetary mass exceeds 0.2 ME (ME being the present Earth's mass). Reduction of the surface melt by atmospheric H2 should add a large amount of H2O to the atmosphere: under the quartz-iron-fayalite oxygen buffer, partial pressure ratio P(H2O)/P(H2) becomes higher than 0.1. Enhancing opacity and gas mean molecular weight, the excess H2O raises the temperature and renders the atmosphere in convective equilibrium, while the dissociation of H2 suppresses the adiabatic temperature gradient. The surface temperature of the proto-Earth can be as high as 4700K when its mass is 1 ME. Such a high temperature may accelerate the evaporation of surface materials. A deep totally-molten magma ocean should exist in the accretion Earth.
Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources
NASA Astrophysics Data System (ADS)
Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.
2016-01-01
Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.
Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.
Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J
2016-01-01
Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.
Properties of various plasma surface treatments for low-temperature Au–Au bonding
NASA Astrophysics Data System (ADS)
Yamamoto, Michitaka; Higurashi, Eiji; Suga, Tadatomo; Sawada, Renshi; Itoh, Toshihiro
2018-04-01
Atmospheric-pressure (AP) plasma treatment using three different types of gases (an argon-hydrogen mixed gas, an argon-oxygen mixed gas, and a nitrogen gas) and low-pressure (LP) plasma treatment using an argon gas were compared for Au–Au bonding with thin films and stud bumps at low temperature (25 or 150 °C) in ambient air. The argon-hydrogen gas mixture AP plasma treatment and argon LP plasma treatment were found to distinctly increase the shear bond strength for both samples at both temperatures. From X-ray photoelectron spectroscopy (XPS) analysis, the removal of organic contaminants on Au surfaces without the formation of hydroxyl groups and gold oxide is considered effective in increasing the Au–Au bonding strength at low temperature.
Ershov, Gennady Moiseevich; Kirillov, Eugenii Vladislavovich; Mirzabekov, Andrei Darievich
1999-10-05
A method and a device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance
Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash
2017-03-01
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.
Hoffbauer, Mark A.; Prettyman, Thomas H.
2001-01-01
Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.
Influence of temperature on the single-stage ATAD process predicted by a thermal equilibrium model.
Cheng, Jiehong; Zhu, Jun; Kong, Feng; Zhang, Chunyong
2015-06-01
Autothermal thermophilic aerobic digestion (ATAD) is a promising biological process that will produce an effluent satisfying the Class A requirements on pathogen control and land application. The thermophilic temperature in an ATAD reactor is one of the critical factors that can affect the satisfactory operation of the ATAD process. This paper established a thermal equilibrium model to predict the effect of variables on the auto-rising temperature in an ATAD system. The reactors with volumes smaller than 10 m(3) could not achieve temperatures higher than 45 °C under ambient temperature of -5 °C. The results showed that for small reactors, the reactor volume played a key role in promoting auto-rising temperature in the winter. Thermophilic temperature achieved in small ATAD reactors did not entirely depend on the heat release from biological activities during degrading organic matters in sludges, but was related to the ambient temperature. The ratios of surface area-to-effective volume less than 2.0 had less impact on the auto-rising temperature of an ATAD reactor. The influence of ambient temperature on the auto-rising reactor temperature decreased with increasing reactor volumes. High oxygen transfer efficiency had a significant influence on the internal temperature rise in an ATAD system, indicating that improving the oxygen transfer efficiency of aeration devices was a key factor to achieve a higher removal rate of volatile solids (VS) during the ATAD process operation. Compared with aeration using cold air, hot air demonstrated a significant effect on maintaining the internal temperature (usually 4-5 °C higher). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Novel Phenylethynyl Imide Silanes as Coupling Agents for Titanium Alloy
NASA Technical Reports Server (NTRS)
Park, C.; Lowther, S. E.; Smith, J. G., Jr.; Conell, J. W.; Hergenrother, P. M.; SaintClair, T. L.
2004-01-01
The durability of titanium (Ti) alloys bonded with high temperature adhesives such as polyimides has failed to attain the level of performance required for many applications. The problem to a large part is attributed to the instability of the surface treatment on the Ti substrate. Although Ti alloy adhesive specimens with surface treatments such as chromic acid anodization, Pasa-Jell, Turco, etc. have provided high initial mechanical properties, these properties have decreased as a function of aging at ambient temperature and faster, when aged at elevated temperatures or in a hot-wet environment. As part of the High Speed Civil Transport program where Ti honeycomb sandwich structure must perform for 60,000 hours at 177 C, work was directed to the development of environmentally safe, durable Ti alloy surface treatments.
Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films
Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; ...
2016-02-11
Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr 2Co 2O 5 (SCO) epitaxial thin films with different crystallographic orientations. Detailedmore » analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La 0.8Sr 0.2CoO 3-δ thin films by SCO surface particles observed previously.« less
Gendaszek, Andrew S.
2012-01-01
Longitudinal profiles of near-streambed and near-surface temperatures were collected for selected reaches of the Methow and Chewuch Rivers, Washington, during August 2011 to facilitate development of a stream temperature model near the confluence of the Methow and Chewuch Rivers. Temperature was measured using a probe with an internal datalogger towed behind a watercraft moving downstream at ambient river velocity. For the Methow River, an additional temperature survey was completed using near-streambed and near-surface probes towed behind a second watercraft that traversed the channel to measure vertical and lateral temperature variability. All data were referenced to location that was concurrently measured with a Global Positioning System. Data are presented as Microsoft Excel® files consisting of date and time, water temperature, and Washington State Plane North easting and northing.
Moon, Seong-Cheol; Joo, Su-Yeon; Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Bae, Sung-Jin; Kim, Keuk-Jun; Kim, Cheorl-Ho; Joo, Myungsoo; Ha, Ki-Tae
2016-07-29
Ambient cold temperature, as an abiotic stress, regulates the survival, stability, transmission, and infection of pathogens. However, the effect of cold temperature on the host receptivity to the pathogens has not been fully studied. In this study, the expression of terminal α-2,3- and α-2,6-sialic acids were increased in murine lung tissues, especially bronchial epithelium, by exposure to cold condition. The expression of several sialyltransferases were also increased by exposure to cold temperature. Furthermore, in human bronchial epithelial BEAS-2B cells, the expressions of α-2,3- and α-2,6-sialic acids, and mRNA levels of sialyltransferases were increased in the low temperature condition at 33 °C. On the other hand, the treatment of Lith-Gly, a sialyltransferase inhibitor, blocked the cold-induced expression of sialic acids on surface of BEAS-2B cells. The binding of influenza H1N1 hemagglutinin (HA) toward BEAS-2B cells cultured at low temperature condition was increased, compared to 37 °C. In contrast, the cold-increased HA binding was blocked by treatment of lithocholicglycine and sialyl-N-acetyl-D-lactosamines harboring α-2,3- and α-2,6-sialyl motive. These results suggest that the host receptivity to virus at cold temperature results from the expressions of α-2,3- and α-2,6-sialic acids through the regulation of sialyltransferase expression. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1980-01-01
The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.
Contaminant trap for gas-insulated apparatus
Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.
1984-01-01
A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.
Intra-articular temperatures of the knee in sports – An in-vivo study of jogging and alpine skiing
Becher, Christoph; Springer, Jan; Feil, Sven; Cerulli, Guiliano; Paessler, Hans H
2008-01-01
Background Up to date, no information exists about the intra-articular temperature changes of the knee related to activity and ambient temperature. Methods In 6 healthy males, a probe for intra-articular measurement was inserted into the notch of the right knee. Each subject was jogging on a treadmill in a closed room at 19°C room temperature and skiing in a ski resort at -3°C outside temperature for 60 minutes. In both conditions, temperatures were measured every fifteen minutes intra-articulary and at the skin surface of the knee. A possible influence on joint function and laxity was evaluated before and after activity. Statistical analysis of intra-articular and skin temperatures was done using nonparametric Wilcoxon's sign rank sum test and Mann-Whitney's-U-Test. Results Median intra-articular temperatures increased from 31.4°C before activity by 2.1°C, 4°C, 5.8°C and 6.1°C after 15, 30, 45 and 60 min of jogging (all p ≤ 0.05). Median intra-articular temperatures dropped from 32.2°C before activity by 0.5°C, 1.9°C, 3.6°C and 1.1°C after 15, 30, 45 and 60 min of skiing (all n.s.). After 60 minutes of skiing (jogging), the median intra-articular temperature was 19.6% (8.7%) higher than the skin surface temperature at the knee. Joint function and laxity appeared not to be different before and after activity within both groups. Conclusion This study demonstrates different changes of intra-articular and skin temperatures during sports in jogging and alpine skiing and suggests that changes are related to activity and ambient temperature. PMID:18405365
NASA Technical Reports Server (NTRS)
Callis, L. B.; Natarajan, M.
1981-01-01
The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.
Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient
NASA Astrophysics Data System (ADS)
Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.
2017-03-01
ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.
2007-03-01
enzymes or energy to break down the contaminants (Devinny, 1999). Known biologically toxic compounds should be avoided altogether if using a...mesophilic and thermophilic temperature ranges, however, most biodegradation is executed by mesophiles and thermophiles (Leson and Winer, 1991). Of...ambient temperatures. Some microbes are known to function effectively in thermophilic conditions (40-55 °C). For example, microbes were shown to have
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netzel, Carsten; Jeschke, Jörg; Brunner, Frank
2016-09-07
We have studied the effect of continuous illumination with above band gap energy on the emission intensity of polar (Al)GaN bulk layers during the photoluminescence experiments. A temporal change in emission intensity on time scales from seconds to hours is based on the modification of the semiconductor surface states and the surface recombination by the incident light. The temporal behavior of the photoluminescence intensity varies with the parameters such as ambient atmosphere, pretreatment of the surface, doping density, threading dislocation density, excitation power density, and sample temperature. By means of temperature-dependent photoluminescence measurements, we observed that at least two differentmore » processes at the semiconductor surface affect the non-radiative surface recombination during illumination. The first process leads to an irreversible decrease in photoluminescence intensity and is dominant around room temperature, and the second process leads to a delayed increase in intensity and becomes dominant around T = 150–200 K. Both processes become slower when the sample temperature decreases from room temperature. They cease for T < 150 K. Stable photoluminescence intensity at arbitrary sample temperature was obtained by passivating the analyzed layer with an epitaxially grown AlN cap layer.« less
Integrated CMOS dew point sensors for relative humidity measurement
NASA Astrophysics Data System (ADS)
Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina
2004-07-01
This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.
Prediction of moisture and temperature changes in composites during atmospheric exposure
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Tenney, D. R.; Unnan, J.
1978-01-01
The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.
Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde
NASA Technical Reports Server (NTRS)
Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John
2010-01-01
The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.
Sliney, David H
2002-01-01
The geographical variations in the incidence of age-related ocular changes such as presbyopia and cataracts and diseases such as pterygium and droplet keratopathies have led to theories pointing to sunlight, ultraviolet radiation (UVR) exposure and ambient temperature as potential etiological factors. Some epidemiological evidence also points to an association of age-related macular degeneration to sunlight exposure. The actual distribution of sunlight exposure and the determination of temperature variations of different tissues within the anterior segment of the eye are difficult to assess. Of greatest importance are the geometrical factors that influence selective UVR exposures to different segments of the lens, cornea and retina. Studies show that the temperature of the lens and cornea varies by several degrees depending upon climate, and that the incidence of nuclear cataract incidence is greater in areas of higher ambient temperature (i.e., in the tropics). Likewise, sunlight exposure to local areas of the cornea, lens and retina varies greatly in different environments. However, epidemiological studies of the influence of environmental UVR in the development of cataract, pterygium, droplet keratopathies and age-related macular degeneration have produced surprisingly inconsistent findings. The lack of consistent results is seen to be due largely to either incomplete or erroneous estimates of outdoor UV exposure dose. Geometrical factors dominate the determination of UVR exposure of the eye. The degree of lid opening limits ocular exposure to rays entering at angles near the horizon. Clouds redistribute overhead UVR to the horizon sky. Mountains, trees and building shield the eye from direct sky exposure. Most ground surfaces reflect little UVR. The result is that highest UVR exposure occurs during light overcast where the horizon is visible and ground surface reflection is high. By contrast, exposure in a high mountain valley (lower ambient temperature) with green foliage results in a much lower ocular dose. Other findings of these studies show that retinal exposure to light and UVR in daylight occurs largely in the superior retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Tomo; Shahed, Syed Mohammad Fakruddin; Sainoo, Yasuyuki
We formed an epitaxial film of CeO{sub 2}(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce{sup 4+}/Ce{sup 3+} ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO{sub 2}(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown atmore » 1060 K was more than twice of that grown at 1040 K. On the surface grown above the reduction temperature, the surface with a wide terrace and a sharp step was confirmed, but small dots were also seen in the terrace part, which are considerably Ce atoms adsorbed at the oxygen vacancies on the reduced surface. This experiment demonstrated that it is required to use the substrate temperature close to the reduction temperature to obtain CeO{sub 2}(111) with wide terrace width and sharp step edges.« less
Macro- and microscopic properties of strontium doped indium oxide
NASA Astrophysics Data System (ADS)
Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.
2014-07-01
Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In2O3:(SrO)x were investigated for materials with different doping levels at different temperatures (T = 20-300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn2O4. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100-200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10-13 cm2/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.
NASA Technical Reports Server (NTRS)
Wang, J.; Magee, D.; Schneider, J. A.
2009-01-01
The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, Mahmoud S.; Hamdan, Ahmad, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca
2015-11-15
The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center tomore » its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.« less
Method and apparatus for altering material
Stinnett, Regan W.; Greenly, John B.
2002-01-01
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Method and apparatus for altering material
Stinnett, Regan W.; Greenly, John B.
1995-01-01
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Method and apparatus for altering material
Stinnett, Regan W.; Greenly, John B.
2002-02-05
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Manabe, Kengo; Matsubayashi, Takeshi; Tenjimbayashi, Mizuki; Moriya, Takeo; Tsuge, Yosuke; Kyung, Kyu-Hong; Shiratori, Seimei
2016-09-29
Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.
Hidden phase in parent Fe-pnictide superconductors
NASA Astrophysics Data System (ADS)
Ali, Khadiza; Adhikary, Ganesh; Thakur, Sangeeta; Patil, Swapnil; Mahatha, Sanjoy K.; Thamizhavel, A.; De Ninno, Giovanni; Moras, Paolo; Sheverdyaeva, Polina M.; Carbone, Carlo; Petaccia, Luca; Maiti, Kalobaran
2018-02-01
We investigate the origin of exoticity in Fe-based systems via studying the fermiology of CaFe2As2 employing angle-resolved photoemission spectroscopy. While the Fermi surfaces (FSs) at 200 K and 31 K are observed to exhibit two-dimensional and three-dimensional (3D) topology, respectively, the FSs at intermediate temperatures reveal the emergence of the 3D topology at a temperature much lower than the structural and magnetic phase transition temperature (170 K, for the sample under scrutiny). This leads to the conclusion that the evolution of FS topology is not directly driven by the structural transition. In addition, we discover the existence in ambient conditions of energy bands related to the cT phase. These bands are distinctly resolved in the high-photon energy spectra exhibiting strong Fe 3 d character. They gradually move to higher binding energies due to thermal compression with cooling, leading to the emergence of 3D topology in the Fermi surface. These results reveal the so-far hidden existence of a cT phase under ambient conditions, which is argued to lead to quantum fluctuations responsible for the exotic electronic properties in Fe-pnictide superconductors.
NASA Astrophysics Data System (ADS)
Svatoš, Vojtěch; Gablech, Imrich; Ilic, B. Robert; Pekárek, Jan; Neužil, Pavel
2018-03-01
Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive for IR imaging devices. Since CNT growth occurs at elevated temperatures, the integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here, we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally heated membrane, while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.
New Electrocatalysts for Direct Oxidation of Organic Fuels
2009-06-12
ambient temperature . [28,29] While 13C-NMR provides information on the nature of the adsorbate and the electronic environment at the active surface of...our study to unsupported electrocatalysts that are of greater interest for direct methanol and direct ethanol fuel cells. We have developed a new in...coverage, and type of surface site on the relative adsorption rate and electrooxidative activity of the electrocatalyst. Figure 2 shows sample
Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.
Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen
2010-06-01
This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.
Dueling Mechanisms for Dry Zones around Frozen Droplets
NASA Astrophysics Data System (ADS)
Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan
2016-11-01
Ice acts as a local humidity sink, due to its depressed saturation pressure relative to that of supercooled water. Hygroscopic chemicals typically exhibit annular dry zones of inhibited condensation; however, dry zones do not tend to form around ice because of inter-droplet frost growth to nearby liquid droplets that have already condensed on the chilled surface. Here, we use a humidity chamber with an embedded Peltier stage to initially suppress the growth of condensation on a chilled surface containing a single frozen droplet, in order to characterize the dry zone around ice for the first time. The length of the dry zone was observed to vary by at least two orders of magnitude as a function of surface temperature, ambient humidity, and the size of the frozen droplet. The surface temperature and ambient humidity govern the magnitudes of the in-plane and out-of-plane gradients in vapor pressure, while the size of the frozen droplet effects the local thickness of the concentration boundary layer. We develop an analytical model that reveals two different types of dry zones are possible: one in which nucleation is inhibited and one where the net growth of condensate is inhibited. Finally, a phase map was developed to predict the parameter space in which nucleation dry zones versus flux dry zones are dominant.
Steiss, Janet E; Wright, James C
2008-10-01
To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature (< or = 21 degrees C and > 21 degrees C) on each variable. Compared with findings at ambient temperatures < or = 21 degrees C, venous blood pH was increased (mean, 7.521 vs 7.349) and PvCO2 was decreased (mean, 17.8 vs 29.3 mm Hg) at temperatures > 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.
2009-01-01
Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.
NASA Astrophysics Data System (ADS)
Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.
2013-06-01
Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be considered as a very efficient method to propose qualification of treatments onto Ni-P surfaces before performing electronic and mechatronic assembly processes that are achieved under ambient conditions.
Murphy, P J; Morgan, P B; Patel, S; Marshall, J
1999-05-01
The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.
NASA Astrophysics Data System (ADS)
Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu
2018-05-01
Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.
Thermal stability of Pt-Ti bilayer films annealing in vacuum and ambient atmosphere
NASA Astrophysics Data System (ADS)
Weng, Sizhe; Qiao, Li; Wang, Peng
2018-06-01
The thermal stability of platinum/titanium bilayer film dominates the performance when the film electrodes operate under extreme conditions, such as high temperature. In this study, a platinum/titanium bilayer film deposited by magnetron sputtering was used as a model system to study the influence of annealing in vacuum and ambient atmosphere on structural and electrical resistivity changes. The results show that in both cases blow 773 K annealing the metal platinum is the dominant phase, the alloying and the diffusion happen only at the interface of Pt and Ti. Two different structural evolutions set in when the temperature above 873 K, in vacuum an alloying process promotes with increasing of annealing temperature and metal Pt phase transforms to TiPt8 and finally to TiPt3 compounds, which leads to the increase of electrical resistivity. In ambient atmosphere annealing, when titanium diffused out to the surface of film, the oxidation reaction between titanium and oxygen suppresses the alloying process between platinum and titanium, in this case the metal Pt phase remains in the film and starts to agglomerate, defects such as grain boundary and voids in film reduced due to the recrystallization, results in the reduction of electrical resistivity.
Ishiwata, Takayuki; Saito, Takehito; Hasegawa, Hiroshi; Yazawa, Toru; Kotani, Yasunori; Otokawa, Minoru; Aihara, Yasutsugu
2005-06-28
Action of gamma-aminobutyric acid (GABA) in the preoptic area and anterior hypothalamus (PO/AH) has been implicated to regulate body temperature (T(b)). However, its precise role in thermoregulation remains unclear. Moreover, little is known about its release pattern in the PO/AH during active thermoregulation. Using microdialysis and telemetry techniques, we measured several parameters related to thermoregulation of freely moving rats during pharmacological stimulation of GABA in normal (23 degrees C), cold (5 degrees C), and hot (35 degrees C) ambient temperatures. We also measured extracellular GABA levels in the PO/AH during cold (5 degrees C) and heat (35 degrees C) exposure combined with microdialysis and high performance liquid chromatography (HPLC). Perfusion of GABA(A) agonist muscimol into the PO/AH increased T(b), which is associated with increased heart rate (HR), as an index of heat production in all ambient temperatures. Although tail skin temperature (T(tail)) as an index of heat loss increased only under normal ambient temperatures, its response was relatively delayed in comparison with HR and T(b), suggesting that the increase in T(tail) was a secondary response to increased HR and T(b). Locomotor activity also increased in all ambient temperatures, but its response was not extraordinary. Interestingly, thermoregulatory responses were different after perfusion of GABA(A) antagonist bicuculline at each ambient temperature. In normal ambient temperature conditions, perfusion of bicuculline had no effect on any parameter. However, under cold ambient temperature, the procedure induced significant hypothermia concomitant with a decrease in HR in spite of hyperactivity and increase of T(tail). It induced hyperthermia with the increase of HR but no additional change of T(tail) in hot ambient temperature conditions. Furthermore, the extracellular GABA level increased significantly during cold exposure. Its release was lower during heat exposure than in a normal environment. These results indicate that GABA in the PO/AH is an important neurotransmitter for disinhibition of heat production and inhibition of heat loss under cold ambient temperature. It is a neurotransmitter for inhibition of heat production under hot ambient temperature.
HIGH ALBEDO AND ENVIRONMENT-FRIENDLY CONCRETE FOR SMART GROWTH AND SUSTAINABLE DEVELOPMENT
Concrete surfaces absorb heat from sunlight due to their low solar reflectivity (albedo). This increases the local ambient temperature in urban areas (the so-called "heat-island" effect). The heat-island effect leads to a waste of energy because of increased cooling costs. ...
Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).
Brown, Kelly J; Downs, Colleen T
2006-01-01
Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.
Borgatti, Francesco; Torelli, Piero; Brucale, Marco; Gentili, Denis; Panaccione, Giancarlo; Castan Guerrero, Celia; Schäfer, Bernhard; Ruben, Mario; Cavallini, Massimiliano
2018-03-27
We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.
NASA Astrophysics Data System (ADS)
Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph
2010-05-01
Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.
EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON GROWTH, BIOCHEMISTRY AND PHYSIOLOGY OF DOUGLAS-FIR
We examined the interactive effects of CO2 concentration and mean annual temperature on physiology, biochemistry and growth of Douglas fir seedlings. Seedlings were grown at ambient CO2 or ambient + 200 ppm CO2 and at ambient temperature or ambient + 4 ?C. Needle gas exchange m...
Mechanical properties of anodized coatings over molten aluminum alloy
Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...
2007-10-22
A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less
Feasibility of solar power for Mars
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
NASA, through Project Pathfinder, has put in place an advanced technology program to address future needs of manned space exploration. Included in the missions under study is the establishment of outposts on the surface of Mars. The Surface Power program in Pathfinder is aimed at providing photovoltaic array technology for such an application (as well as for the lunar surface). Another important application is for unmanned precursor missions, such as the photovoltaic-power aircraft, which will scout landing sites and investigate Mars geology for a 1 to 2 year mission without landing on the surface. Effective design and utilization of solar energy depend to a large extent on adequate knowledge of solar radiation characteristics in the region of solar energy system operation. The two major climatic components needed for photovoltaic system designs are the distributions of solar insolation and ambient temperature. These distributions for the Martian climate are given at the two Viking lander locations but can also be used, to the first approximation, for other latitudes. One of the most important results is that there is a large diffuse component of the insolation, even at high optical depth, so that solar energy system operation is still possible. If the power system is to continue to generate power even on high optical opacity days, it is thus important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. In absence of long term insolation and temperature data for Mars, the data presented can be used until updated data are available. The ambient temperature data are given as measured directly by the temperature sensor; the insolation data are calculated from optical depth measurements of the atmosphere.
Temperature anomalies in the Lower Suwannee River and tidal creeks, Florida, 2005
Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta
2007-01-01
Temperature anomalies in coastal waters were detected with Thermal Infrared imagery of the Lower Suwannee River (LSR) and nearshore tidal marshes on Florida’s Gulf Coast. Imagery included 1.5-m-resolution day and night Thermal Infrared (TIR) and 0.75-m-resolution Color Infrared (CIR) imagery acquired on 2-3 March 2005. Coincident temperature readings were collected on the ground and used to calibrate the imagery. The Floridan aquifer is at or near the land surface in this area and bears a constant temperature signature of ~ 22 degrees Celsius. This consistent temperature contrasts sharply with ambient temperatures during winter and summer months. Temperature anomalies identified in the imagery during a late-winter cold spell may be correlated with aquifer seeps. Hot spots were identified as those areas exceeding ambient water temperature by 4 degrees Celsius or more. Warm-water plumes were also mapped for both day and night imagery. The plume from Manatee Spring, a first-order magnitude spring, influenced water temperature in the lower river. Numerous temperature anomalies were identified in small tributaries and tidal creeks from Shired Island to Cedar Key and were confirmed with field reconnaissance. Abundant warm-water features were identified along tidal creeks south of the Suwannee River and near Waccasassa Bay. Features were mapped in the tidal creeks north of the river but appear to be less common or have lower associated discharge. The imagery shows considerable promise in mapping coastal-aquifer seeps and understanding the underlying geology of the region. Detection of seep locations may aid research in groundwater/surface-water interactions and water quality, and in the management of coastal habitats.
Integrated Solar Concentrator and Shielded Radiator
NASA Technical Reports Server (NTRS)
Clark, David Larry
2010-01-01
A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
Vapor pressure and vapor fractionation of silicate melts of tektite composition
Walter, Louis S.; Carron, M.K.
1964-01-01
The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.
NASA Astrophysics Data System (ADS)
Dutta, D.; Drewry, D.; Johnson, W. R.
2017-12-01
The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.
Calibration Assessment of Uncooled Thermal Cameras for Deployment on UAV platforms
NASA Astrophysics Data System (ADS)
Aragon, B.; Parkes, S. D.; Lucieer, A.; Turner, D.; McCabe, M.
2017-12-01
In recent years an array of miniaturized sensors have been developed and deployed on Unmanned Aerial Vehicles (UAVs). Prior to gaining useful data from these integrations, it is vitally important to quantify sensor accuracy, precision and cross-sensitivity of retrieved measurements on environmental variables. Small uncooled thermal frame cameras provide a novel solution to monitoring surface temperatures from UAVs with very high spatial resolution, with retrievals being used to investigate heat stress or evapotranspiration. For these studies, accuracies of a few degrees are generally required. Although radiometrically calibrated thermal cameras have recently become commercially available, confirmation of the accuracy of these sensors is required. Here we detail a system for investigating the accuracy and precision, start up stabilisation time, dependence of retrieved temperatures on ambient temperatures and image vignetting. The calibration system uses a relatively inexpensive blackbody source deployed with the sensor inside an environmental chamber to maintain and control the ambient temperature. Calibration of a number of different thermal sensors commonly used for UAV deployment was investigated. Vignetting was shown to be a major limitation on sensor accuracy, requiring characterization through measuring a spatially uniform temperature target such as the blackbody. Our results also showed that a stabilization period is required after powering on the sensors and before conducting an aerial survey. Through use of the environmental chamber it was shown the ambient temperature influenced the temperatures retrieved by the different sensors. This study illustrates the importance of determining the calibration and cross-sensitivities of thermal sensors to obtain accurate thermal maps that can be used to study crop ecosystems.
From climate models to planetary habitability: temperature constraints for complex life
NASA Astrophysics Data System (ADS)
Silva, Laura; Vladilo, Giovanni; Schulte, Patricia M.; Murante, Giuseppe; Provenzale, Antonello
2017-07-01
In an effort to derive temperature-based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for the active metabolism and reproduction of multicellular poikilotherms on earth are approximately bracketed by the temperature interval 0°C <= T <= 50°C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures observable in exoplanets. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We therefore propose a habitability index for complex life, h 050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0°C <= T <= 50°C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h 050 as a function of planet insolation, S, and atmospheric columnar mass, N atm, for a few earth-like atmospheric compositions with trace levels of CO2. By displaying h 050 as a function of S and N atm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life habitable zone is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life habitable zone is significantly narrower than the habitable zone of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and N atm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.
Rumiantsev, G V
2011-08-01
With the help of thermonetry and general calorimetry body temperature and heat production in ambient temperatures 20 degrees C, 28 degrees C, 33 degrees C were recorded. The experiments showed, that at the temperature 20 degrees C the rectal temperature was changing very little. But in ambient temperature 33 degrees C the rectal temperature was 40.5 +/- 0.1 degrees C.
NASA Astrophysics Data System (ADS)
Brunkov, P. N.; Kaasik, V. P.; Lipovskii, A. A.; Tagantsev, D. K.
2018-04-01
Thermally stimulated depolarization current spectra of poled silicate multicomponent glasses in the vicinity of room temperature (220-320 K) have been recorded and two bands, typical for such glasses, have been observed. It was shown that the high-temperature band (at about 290 K) is related to the relaxation of poled glass structure in the bulk, while the low-temperature band (at about 230-270 K) should be attributed to the surface phenomenon—absorption/desorption of positive species of ambient atmosphere, supposedly, water cluster ions H+(H2O)n.
The Importance of Biologically Relevant Microclimates in Habitat Suitability Assessments
Varner, Johanna; Dearing, M. Denise
2014-01-01
Predicting habitat suitability under climate change is vital to conserving biodiversity. However, current species distribution models rely on coarse scale climate data, whereas fine scale microclimate data may be necessary to assess habitat suitability and generate predictive models. Here, we evaluate disparities between temperature data at the coarse scale from weather stations versus fine-scale data measured in microhabitats required for a climate-sensitive mammal, the American pika (Ochotona princeps). We collected two years of temperature data in occupied talus habitats predicted to be suitable (high elevation) and unsuitable (low elevation) by the bioclimatic envelope approach. At low elevations, talus surface and interstitial microclimates drastically differed from ambient temperatures measured on-site and at a nearby weather station. Interstitial talus temperatures were frequently decoupled from high ambient temperatures, resulting in instantaneous disparities of over 30°C between these two measurements. Microhabitat temperatures were also highly heterogeneous, such that temperature measurements within the same patch of talus were not more correlated than measurements at distant patches. An experimental manipulation revealed that vegetation cover may cool the talus surface by up to 10°C during the summer, which may contribute to this spatial heterogeneity. Finally, low elevation microclimates were milder and less variable than typical alpine habitat, suggesting that, counter to species distribution model predictions, these seemingly unsuitable habitats may actually be better refugia for this species under climate change. These results highlight the importance of fine-scale microhabitat data in habitat assessments and underscore the notion that some critical refugia may be counterintuitive. PMID:25115894
The importance of biologically relevant microclimates in habitat suitability assessments.
Varner, Johanna; Dearing, M Denise
2014-01-01
Predicting habitat suitability under climate change is vital to conserving biodiversity. However, current species distribution models rely on coarse scale climate data, whereas fine scale microclimate data may be necessary to assess habitat suitability and generate predictive models. Here, we evaluate disparities between temperature data at the coarse scale from weather stations versus fine-scale data measured in microhabitats required for a climate-sensitive mammal, the American pika (Ochotona princeps). We collected two years of temperature data in occupied talus habitats predicted to be suitable (high elevation) and unsuitable (low elevation) by the bioclimatic envelope approach. At low elevations, talus surface and interstitial microclimates drastically differed from ambient temperatures measured on-site and at a nearby weather station. Interstitial talus temperatures were frequently decoupled from high ambient temperatures, resulting in instantaneous disparities of over 30 °C between these two measurements. Microhabitat temperatures were also highly heterogeneous, such that temperature measurements within the same patch of talus were not more correlated than measurements at distant patches. An experimental manipulation revealed that vegetation cover may cool the talus surface by up to 10 °C during the summer, which may contribute to this spatial heterogeneity. Finally, low elevation microclimates were milder and less variable than typical alpine habitat, suggesting that, counter to species distribution model predictions, these seemingly unsuitable habitats may actually be better refugia for this species under climate change. These results highlight the importance of fine-scale microhabitat data in habitat assessments and underscore the notion that some critical refugia may be counterintuitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enos, David; Bryan, Charles R.
Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function ofmore » temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.« less
NASA Astrophysics Data System (ADS)
Bellaoui, Mebrouk; Hassini, Abdelatif; Bouchouicha, Kada
2017-05-01
Detection of thermal anomaly prior to earthquake events has been widely confirmed by researchers over the past decade. One of the popular approaches for anomaly detection is the Robust Satellite Approach (RST). In this paper, we use this method on a collection of six years of MODIS satellite data, representing land surface temperature (LST) images to predict 21st May 2003 Boumerdes Algeria earthquake. The thermal anomalies results were compared with the ambient temperature variation measured in three meteorological stations of Algerian National Office of Meteorology (ONM) (DELLYS-AFIR, TIZI-OUZOU, and DAR-EL-BEIDA). The results confirm the importance of RST as an approach highly effective for monitoring the earthquakes.
Extending the potential of evaporative cooling for heat-stress relief.
Berman, A
2006-10-01
Factors were analyzed that limit the range of environmental conditions in which stress from heat may be relieved by evaporative cooling in shaded animals. Evaporative cooling reduces air temperature (Ta), but increases humidity. Equations were developed to predict Ta reduction as a function of ambient temperature and humidity and of humidity in cooled air. Predictions indicated that a reduction of Ta becomes marginal at humidities beyond 45%. A reduction of Ta lessens with rising ambient Ta. The impact of increasing humidity on respiratory heat loss (Hre) was estimated from existing data published on Holstein cattle. Respiratory heat loss is reduced by increased humidity up to 45%, but is not affected by higher humidity. Skin evaporative and sensible heat losses are determined not only by the humidity and temperature gradient, but also by air velocity close to the body surface. At higher Ta, the reduction in sensible heat loss is compensated for by an increased demand for Hre. High Hre may become a stressor when panting interferes with resting and rumination. Effects of temperature, humidity, air velocity, and body surface exposure to free air on Hre were estimated by a thermal balance model for lactating Holstein cows yielding 35 kg/d. The predictions of the simulations were supported by respiratory rate observations. The Hre was assumed to act as a stressor when exceeding 50% of the maximal capacity. When the full body surface was exposed to a 1.5 m/s air velocity, humidity (15 to 75%) had no significant predicted effect on Hre. For an air velocity of 0.3 m/s, Hre at 50% of the maximum rate was predicted at 34, 32.5, and 31.5 degrees C for relative humidities of 55, 65, and 75%, respectively. Similar results were predicted for an animal with two-thirds of its body surface exposed to 1.5 m/s air velocity. If air velocity was reduced for such animals to 0.3 m/s, the rise in Hre was expected to occur at approximately 25 degrees C and 50% relative humidity. Maximal rates of Hre were estimated at 27 to 30 degrees C when ambient humidity was 55% relative humidity and higher. High humidity may stress animals in evaporative cooling systems. Humidity stress may be prevented by a higher air velocity on the body surface of the animal, particularly in sheltered areas in which the exposed body surface is reduced, such as mangers and stalls. This may extend the use of evaporative cooling to less dry environments.
NASA Astrophysics Data System (ADS)
Yang, Ying; Zeng, Yimin; Amirkhiz, Babak S.; Luo, Jing-Li; Yan, Ning
2018-02-01
Increasing the stability of perovskite proton conductor against atmospheric CO2 and moisture attack at ambient conditions might be equally important as that at the elevated service temperatures. It can ease the transportation and storage of materials, potentially reducing the maintenance cost of the integral devices. In this work, we initially examined the surface degradation behaviors of various Zr-doped barium cerates (BaCe0.7Zr0.1Y0.1Me0.1O3) using XRD, SEM, STEM and electron energy loss spectroscopy. Though that the typical lanthanide (Y, Yb and Gd) and In incorporated Zr-doped cerates well resisted CO2-induced carbonation in air at elevated temperatures, they were unfortunately vulnerable at ambient conditions, suffering slow decompositions at the surface. Conversely, Sn doped samples (BCZYSn) were robust at both conditions yet showed high protonic conductivity. Thanks to that, the anode supported solid oxide fuel cells equipped with BCZYSn electrolyte delivered a maximum power density of 387 mW cm-2 at 600 °C in simulated coal-derived syngas. In the hydrogen permeation test using BCZYSn based membrane, the H2 flux reached 0.11 mL cm-2 min-1 at 850 °C when syngas was the feedstock. Both devices demonstrated excellent stability in the presence of CO2 in the syngas.
Electrical connection structure for a superconductor element
Lallouet, Nicolas; Maguire, James
2010-05-04
The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.
Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu
2015-12-01
Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m(3) in PM2.5 concentration in the lowest temperature range (-9.7∼2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38∼2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m(3) in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92∼3.33 %) in the highest level (23.50∼31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7∼2.6 °C): for an increase of 10 μg/m(3) in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46∼2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.
NASA Astrophysics Data System (ADS)
Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu
2015-12-01
Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m3 in PM2.5 concentration in the lowest temperature range (-9.7˜2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38˜2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m3 in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92˜3.33 %) in the highest level (23.50˜31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7˜2.6 °C): for an increase of 10 μg/m3 in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46˜2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.
NASA Technical Reports Server (NTRS)
Ganssle, Eugene Robert (Inventor); Scott, Ralph Richard (Inventor); Williams, Richard Jean (Inventor)
1978-01-01
A mounting platform for heat producing instruments operated in a narrow equilibrium temperature range comprises a grid-like structure with relatively large openings therein. The instruments are secured to and thermally coupled with the grid surface facing the instruments. Excess heat from the instruments is selectively radiated to the ambient through openings in the grid, the grid surfaces at these openings exhibiting low thermal emissivity and adsorptivity. The remainder of the grid is maintained at the equilibrium temperature and is covered with a thermal insulating blanket. Thus, the entire system including the platform and instruments is maintained substantially isothermal, whereby the instruments remain in fixed physical relationship to one another.
Elevated temperature tribology of cobalt and tantalum-based alloys
Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; ...
2014-12-31
This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less
Elevated temperature tribology of cobalt and tantalum-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scharf, T. W.; Prasad, S. V.; Kotula, P. G.
This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less
Sub-to super-ambient temperature programmable microfabricated gas chromatography column
Robinson, Alex L.; Anderson, Lawrence F.
2004-03-16
A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
1981-10-01
insulation during shivering in the rat, which nas a large body surface area to mass ratio (Bligh, 1973). Ambient temperature plays a critical role in this...S.M. (1979). Microwaves: Effects on thermoregula- tory behavior in rats. Science 206:1198. Szekely, M. and Szelenyi, Z. (1979). Endotoxin fever in
Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines
W.E. Heilman
1994-01-01
A two-dimensional nonhydrostatic atmospheric model is used to simulate the boundary-layer circulations that develop from multiple lines of extremely high surface temperatures. Numerical simulations are carried out to investigate the role of buoyancy and ambient crossflow effects in generating horizontal roll vortices in the vicinity of adjacent wildland fire perimeters...
NASA Astrophysics Data System (ADS)
Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng
2017-03-01
The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.
Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films
Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...
2015-06-30
Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less
Seasonal acclimatization determined by non-invasive measurements of coat insulation.
Langman, Vaughan A; Langman, Sarah L; Ellifrit, Nancy
2015-01-01
Seasonal acclimatization in terrestrial mammals in the Northern Hemisphere involves changes in coat insulation. It is more economical to provide increased insulation than increased heat production for protection against the cold. This study was done to test a technique for the non-invasive measurement of mammal coat insulation and to measure coat insulation over several seasons on captive exotics. The working hypothesis was that species that have no coat or have a coat that does not change seasonally do not acclimatize seasonally. Three surface temperature readings were measured from the torso area. The insulation was calculated using measured metabolic rates and body temperature when possible. The African elephants, giraffe and okapi did not acclimatize with average maximum insulation values of 0.256°Cm(2) W(-1) . The Amur tigers and mountain goats acclimatized to seasonal ambient conditions by increasing the insulation values of the hair coats in the cold with an average maximum insulation values of 0.811°Cm(2) W(-1) . The cold adapted species are more than three times more insulated in the cold than the equatorial species. The husbandry implications of exotics that have no ability to acclimatize to Northern Hemisphere seasonal ambient changes are profound. Giraffe, African elephants, and okapi when exposed to cold conditions with ambient air temperatures below 21°C will use body energy reserves to maintain a heat balance and will require housing that provides ambient conditions of 21°C. © 2015 Wiley Periodicals, Inc.
[Thermoresistance in Saccharomyces cerevisiae yeasts].
Kaliuzhin, V A
2011-01-01
Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.
Temperature modifies the health effects of particulate matter in Brisbane, Australia
NASA Astrophysics Data System (ADS)
Ren, Cizao; Tong, Shilu
2006-11-01
A few epidemiological studies have examined whether there was an interactive effect between temperature and ambient particulate matter on cardiorespiratory morbidity and mortality, but the results were inconsistent. The present study used three time-series approaches to explore whether maximum temperature modified the impact of ambient particulate matter less than 10 μm in diameter (PM10) on daily respiratory hospital admissions, cardiovascular hospital admissions, respiratory emergency visits, cardiovascular emergency visits, non-external cause mortality and cardiovascular mortality in Brisbane between 1996 and 2001. The analytical approaches included a bivariate response surface model, a non-stratification parametric model and a stratification parametric model. Results show that there existed a statistically significant interaction between PM10 and temperature on most health outcomes at various lags. PM10 exhibited more adverse health effects on warm days than cold days. The choice of the degree of freedom for smoothers to adjust for confounders and the selection of arbitrary cut-offs for temperature affected the interaction estimates to a certain extent, but did not change the overall conclusion. The results imply that it is important to control and reduce the emission of air particles in Brisbane, particularly when temperature increases.
A Chemical Approach to Mitigate Coral Bleaching
NASA Astrophysics Data System (ADS)
Marty-Rivera, M.; Yudowski, G.
2016-02-01
Changes in sea surface temperature and irradiance can induce bleaching and increase mortality in corals. Coral bleaching occurs when symbiotic algae living inside the coral is degraded or expelled, reducing the availability of energetic resources. Oxidative stress has been suggested as a possible molecular mechanism triggering bleaching. We hypothesized that reduction of reactive oxygen species (ROS) during stress could mitigate or prevent coral bleaching. We utilized the coral Porites Astreoides as our model to test the effects of two natural antioxidants, catechin and Resveratrol, on thermally induced bleaching. Coral fragments were exposed to four treatments: high temperature (32°C), high temperature plus antioxidants (1μM), ambient temperature (25°C), or ambient temperature (25°C) plus antioxidant for four days. A total of 8 corals were used per treatment. We measured several photobiological parameters, such as maximum quantum yield and light curves to assess the viability of symbiodinium spp. after thermal stress in the presence of antioxidants. Preliminary experiments on a model species, the sea anemone Aiptasia pallida and corals, showed that exposure to antioxidants reduced intracellular levels of ROS. Additionally, antioxidant-treated anemones showed higher photosynthetic efficiency (67%) than those exposed to high-temperature alone.
Dahlquist, Marcus; Raza, Auriba; Bero-Bedada, Getahun; Hollenberg, Jacob; Lind, Tomas; Orsini, Nicola; Sjögren, Bengt; Svensson, Leif; Ljungman, Petter L
2016-07-01
Associations have been reported between daily ambient temperature and all-cause and cardiovascular mortality. However, the potential harmful effect of temperature on out-of-hospital cardiac arrest (OHCA) is insufficiently studied. The objective of this study was to investigate the short-term association between ambient temperature and the occurrence of OHCA. In 5961 cases of OHCAs treated by Emergency Medical Service occurring in Stockholm County we investigated the association between the preceding 24-h and 1h mean ambient temperature, obtained from a fixed monitoring station, and OHCA using a time-stratified case-crossover design. We observed a V-shaped relationship between preceding mean 24-h and 1-h ambient temperature and the occurrence of OHCAs. For mean 24-h temperature we observed an odds ratio (OR) of 1.05 (1.00-1.11) for each 5°C below the optimum temperature and 1.05 (0.96-1.18) for each 5°C above the optimum. We observed similar results for 1-h mean temperature exposure. Results for temperatures above the optimum temperature showed evidence of confounding by ozone. Ambient temperature below an optimum temperature was associated with increased risk of OHCA in Stockholm. Temperature above an optimum temperature was not significantly associated with OHCA. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chui, Apple Pui Yi; Ang, Put
2017-01-01
With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial. Therefore, corals that are currently present in marginal environments like Hong Kong, as exemplified by the dominant P. acuta, are likely to persist in a warmer and intermittently less saline, future ocean.
Chui, Apple Pui Yi; Ang, Put
2017-01-01
With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial. Therefore, corals that are currently present in marginal environments like Hong Kong, as exemplified by the dominant P. acuta, are likely to persist in a warmer and intermittently less saline, future ocean. PMID:28622371
Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel
2016-11-06
We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.
Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel
2016-01-01
We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm2, while the second prototype, which is described herein, had a 2 × 2 cm2 detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat’s temperature, while the power dissipated depends on the individual’s metabolism and any physical and/or emotional activity. PMID:27827977
Interaction of acidic trace gases with ice from a surface science perspective
NASA Astrophysics Data System (ADS)
Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.
2016-12-01
Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to enhanced surface disorder at environmentally relevant conditions.
Investigations of Control Surface Seals for Re-entry Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen
2002-01-01
Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.; Wheeler, Donald R.; MacLachlam, Brian J.
1998-01-01
Solar dynamic (SD) space power systems require durable, high emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. To enhance surface characteristics, an alumina-titania coating has been applied to 500 heat receiver thermal energy containment canisters and the PLR of NASA Lewis Research Center's (LeRC) 2 kW SD ground test demonstrator (GTD). The alumina-titania coating was chosen because it had been found to maintain its high emittance under vacuum (less than or equal to 10(exp -6) torr) at high temperatures (1457 F (827 C)) for an extended period (approximately 2,700 hours). However, preflight verification of SD systems components, such as the PLR require operation at ambient pressure and high temperatures. Therefore, the purpose of this research was to evaluate the durability of the alumina-titania coating at high temperature in air. Fifteen of sixteen alumina-titania coated Incoloy samples were exposed to high temperatures (600 F (316 C) to l500 F (816 C)) for various durations (2 to 32 hours). Samples, were characterized prior to and after heat treatment for reflectance, solar absorptance, room temperature emittance and emittance at 1,200 F (649 C). Samples were also examined to detect physical defects and to determine surface chemistry using optical microscopy, scanning electron microscopy operated with an energy dispersive spectroscopy (EDS) system, and x ray photoelectron spectroscopy (XPS). Visual examination of the heat-treated samples showed a whitening of samples exposed to temperatures of 1,000 F (538 C) and above. Correspondingly, the optical properties of these samples had degraded. A sample exposed to 1,500 F (816 C) for 24 hours had whitened and the thermal emittance at 1,200 F (649 C) had decreased from the non-heat treated value of 0.94 to 0.62. The coating on this sample had become embrittled with spalling off the substrate noticeable at several locations. Based on this research it is recommended that preflight testing of SD components with alumina-titania coatings be restricted to temperatures no greater than 600 F (316 C) in air to avoid optical degradation. Moreover, components with the alumina-titania coating are likely to experience optical property degradation with direct atomic oxygen exposure in space.
Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly
Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.
2015-01-01
Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469
Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.
Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A
2015-01-01
Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Technical Reports Server (NTRS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-01-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Astrophysics Data System (ADS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-04-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability
NASA Astrophysics Data System (ADS)
Mandal, Paranjayee
Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2 and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.
Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.
Benz, Susanne A; Bayer, Peter; Blum, Philipp
2017-04-15
Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and therefore urban heat islands are observed in communities down to a population of 5000. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of ingested crude and dispersed crude oil on thermoregulation in ducks (Anas platyrhynchos)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenssen, B.M.
1989-02-01
Thermoregulatory effects of ingested doses of Statfjord A crude oil and of this oil mixed with the dispersant Finasol OSR-5 were studied in adult domestic ducks (Anas platyrhynchos) exposed to ambient temperatures of +16 degrees C and -17 degrees C. The data show that ingestion of both the crude and the oil-dispersant mixture resulted in an increased body temperature during exposure to the low ambient temperature (-17 degrees C). Neither contaminant had any effect on body temperature during exposure to +16 degrees C. Ingestion of the contaminants had no effect on metabolic heat production at either ambient temperature. The breastmore » skin temperature of the ducks in both contaminated groups was significantly decreased when the ducks were exposed to the low ambient temperature. This indicates that the increase in body temperature observed in the contaminated ducks at the low ambient temperature is due to an increase in peripheral vasoconstriction.« less
Vu, Joseph C V; Allen, Leon H
2009-07-15
Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.
A novel method of temperature compensation for piezoresistive microcantilever-based sensors.
Han, Jianqiang; Wang, Xiaofei; Yan, Tianhong; Li, Yan; Song, Meixuan
2012-03-01
Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.
Hosken, D J; Withers, P C
1997-01-01
The thermal and metabolic physiology of Chalinolobus gouldii, an Australian vespertilionid bat, was studied in the laboratory using flow-through respirometry. Chalinolobus gouldii exhibits a clear pattern of euthermic thermoregulation, typical of endotherms with respect to body temperature and rate of oxygen consumption. The basal metabolic rate of euthermic Chalinolobus gouldii is approximately 86% of that predicted for a 17.5-g mammal and falls into the range of mass-specific basal metabolic rates ascribed to vespertilionid bats. However, like most vespertilionid bats, Chalinolobus gouldii displays extreme thermolability. It is able to enter into torpor and spontaneously arouse at ambient temperatures as low as 5 degrees C. Torpid bats thermoconform at moderate ambient temperature, with body temperature approximately ambient temperature, and have a low rate of oxygen consumption determined primarily by Q10 effects. At low ambient temperature (< 10 degrees C), torpid C. gouldii begin to regulate their body temperature by increased metabolic heat production; they tend to maintain a higher body temperature at low ambient temperature than do many northern hemisphere hibernating bats. Use of torpor leads to significant energy savings. The evaporative water loss of euthermic bats is relatively high, which seems unusual for a bat whose range includes extremely arid areas of Australia, and is reduced during torpor. The thermal conductance of euthermic C. gouldii is less than that predicted for a mammal of its size. The thermal conductance is considerably lower for torpid bats at intermediate body temperature and ambient temperature, but increases to euthermic values for torpid bats when thermoregulating at low ambient temperature.
Plant molecular responses to the elevated ambient temperatures expected under global climate change.
Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng
2018-01-02
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
Eren, Baran; Kersell, Heath; Weatherup, Robert S; Heine, Christian; Crumlin, Ethan J; Friend, Cynthia M; Salmeron, Miquel B
2018-01-18
Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.
Surface Brillouin scattering of opaque solids and thin supported films
Comins; Every; Stoddart; Zhang; Crowhurst; Hearne
2000-03-01
Surface Brillouin scattering (SBS) has been used successfully for the study of acoustic excitations in opaque solids and thin supported films, at both ambient and high temperatures. A number of different systems have been investigated recently by SBS including crystalline silicon, amorphous silicon layers produced by ion bombardment and their high temperature recrystallisation, vanadium carbides, and a nickel-based superalloy. The most recent development includes the measurement of a supported gold film at high pressure. The extraction of the elastic constants is successfully accomplished by a combination of the angular dependence of surface wave velocities and the longitudinal wave threshold within the Lamb shoulder. The application of surface Green's function methods successfully reproduces the experimental SBS spectra. The discrepancies often observed between surface wave velocities and by ultrasonics measurements have been investigated and a detailed correction procedure for the SBS measurements has been developed.
The Space Transportation System summer environment on launch pad
NASA Technical Reports Server (NTRS)
Ahmad, R. A.
1992-01-01
This paper describes a 2D flow and thermalanalysis to determine the solar effect on the Space Shuttle launch components subsequent to the external tank (ET) loading operation in extremely hot conditions. An existing CFD code Parabolic Hyperbolic or Elliptical Numerical Integration Code Series was used in the study. The analysis was done for a 2D slice between planes perpendicular to the longitudinal axis of the STS and passing through the lower portions of the Redesigned Solid Rocket Motors (RSRMs), the ET, and the wing of the Orbiter. The results are presented as local and average values of the heat transfer coefficient, and the Nusselt number, and the surface temperature around the RSRMs and the ET. Solar heating effects increased the surface temperatures of the RSRMs by 9-11 F. Higher prelaunch surface temperatures measured on the east and west RSRMs (in the inboard region between the RSRMs and the ET) during 19 most recent launches of the STS are correlated as a function of the ambient temperature.
14 CFR 25.1527 - Ambient air temperature and operating altitude.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of...
Comparison of experimental three-band IR detection of buried objects and multiphysics simulations
NASA Astrophysics Data System (ADS)
Rabelo, Renato C.; Tilley, Heather P.; Catterlin, Jeffrey K.; Karunasiri, Gamani; Alves, Fabio D. P.
2018-04-01
A buried-object detection system composed of a LWIR, a MWIR and a SWIR camera, along with a set of ground and ambient temperature sensors was constructed and tested. The objects were buried in a 1.2x1x0.3 m3 sandbox and surface temperature (using LWIR and MWIR cameras) and reflection (using SWIR camera) were recoded throughout the day. Two objects (aluminum and Teflon) with volume of about 2.5x10-4 m3 , were placed at varying depths during the measurements. Ground temperature sensors buried at three different depths measured the vertical temperature profile within the sandbox, while the weather station recorded the ambient temperature and solar radiation intensity. Images from the three cameras were simultaneously acquired in five-minute intervals throughout many days. An algorithm to postprocess and combine the images was developed in order to maximize the probability of detection by identifying thermal anomalies (temperature contrast) resulting from the presence of the buried object in an otherwise homogeneous medium. A simplified detection metric based on contrast differences was established to allow the evaluation of the image processing method. Finite element simulations were performed, reproducing the experiment conditions and, when possible, incorporated with data coming from actual measurements. Comparisons between experiment and simulation results were performed and the simulation parameters were adjusted until images generated from both methods are matched, aiming at obtaining insights of the buried material properties. Preliminary results show a great potential for detection of shallowburied objects such as land mines and IEDs and possible identification using finite element generated maps fitting measured surface maps.
Electrical bushing for a superconductor element
Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis
2010-05-04
The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.
Field measurements on the exchange of carbonyl sulfide between lichens and the atmosphere
NASA Astrophysics Data System (ADS)
Kuhn, U.; Wolf, A.; Gries, C.; , T. H. Nash, III; Kesselmeier, J.
The exchange of carbonyl sulfide (COS) between lichens and the atmosphere was investigated under natural field conditions. Using dynamic enclosures flushed with ambient air, we demonstrate that lichens act as a major sink for atmospheric COS in the investigated ecosystem. Diel courses of the exchange are shown in an open oak woodland ecosystem at a rural site in central California. The measurements were distributed over a variety of weather conditions during the dry (May/June) and the wet season (Nov/Dec). The physiological parameters (CO 2 exchange and thallus hydration status) plus environmental variables (temperature, irradiance, atmospheric humidity and ambient COS mixing ratio) were recorded. Lichens are capable of continuous uptake of COS in the dark as well as in the light, depending mainly on their moisture status. Results indicate that the uptake is additionally dependent on temperature and COS ambient mixing ratio. Enzyme inactivation by high temperature denaturation demonstrate that the uptake is under physiological control. Light and thus photosynthetic activity do not have a direct influence on the uptake rate. Under these field investigations the COS uptake on a dry weight basis ranged between 0.015 and 0.071 pmol g-1 s-1. On a thallus surface area basis the sink strength is comparable to the uptake by higher vegetation.
Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy
2016-09-01
This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.
NASA Technical Reports Server (NTRS)
Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.
2008-01-01
This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).
Heat Production in the Voodoo Lily (Sauromatum guttatum) as Monitored by Infrared Thermography.
Skubatz, H; Nelson, T A; Meeuse, B J; Bendich, A J
1991-04-01
The pattern of surface temperatures of the inflorescence of Sauromatum guttatum was investigated by using an infrared camera. The male flowers are weakly thermogenic on the first day of inflorescence opening (D-day) as well as on the next day (D + 1), reaching 0.5 to 1 degrees C above ambient temperature. The appendix (the upper sterile part of the inflorescence) is highly thermogenic on D-day, reaching 32 degrees C, and is faintly thermogenic on D + 1, reaching 1 degrees C above ambient temperature. The lower part of the spadix, close to the female flowers, is also thermogenic on D-day and D + 1, reaching a temperature similar to that of the appendix only on D + 1. Salicylic acid does not induce heat production in the lower part of the spadix, as it does in the appendix. Respiration of tissue slices obtained from the appendix shows that the capacity for cyanide-insensitive respiration is present in young and mature appendices. This alternative respiratory pathway is not, however, utilized in young appendix tissue, but is engaged during the maturation of that tissue.
Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann
2015-11-05
Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.
Surface friction of rock in terrestrial and simulated lunar environments
NASA Technical Reports Server (NTRS)
Roepke, W. W.; Peng, S. S.
1975-01-01
The conventional probe-on-the rotating-disk concept was used to determine the surface friction in mineral probe/specimen interfaces. Nine rocks or minerals and two stainless steels were tested in both new (NT) and same track (ST) tests under three different pressure environments-atmospheric, UHV, and dry nitrogen. Each environment was further subdivided into two testing conditions, that is, ambient and elevated (135 C) temperatures. In NT tests, friction was the lowest in an atmospheric pressure condition for all rock types and increased to the largest in UHV ambient condition except for pyroxene and stainless steel. Friction values measured in dry nitrogen ambient condition lie between the two extremes. Heating tends to increase friction in atmospheric and dry nitrogen environment but decreases in UHV environment with the exception of stainless steel, basalt, and pyroxene. In ST tests, friction was the lowest in the first run and increased in subsequent runs except for stainless steel where the reverse was true. The increases leveled off after a few runs ranging from the second to the seventh depending on rock types.
External tank chill effect on the space transportation system launch pad environment
NASA Technical Reports Server (NTRS)
Ahmad, R. A.; Boraas, S.
1991-01-01
The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.
Jhaveri, KA; Trammell, RA; Toth, LA
2007-01-01
Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232
Spectroscopic and solubility characteristics of oxidized soots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chughtai, A.R.; Jassim, J.A.; Peterson, J.H.
1991-01-01
Spectroscopic and solubility studies of reaction products of soot (black carbon) with O{sub 3}, NO{sub 2}/N{sub 2}O{sub 4}, and SO{sub 2} have revealed a relationship between reactivity and product solubility and structure. A remarkably high solubility of ozonated n-hexane soot has its origin in the formation of anhydride and lactone surface structures and their subsequent hydrolysis to carboxylic acid species. Calculations indicate that the rate of surface carboxylation of 0.1-{mu}m diameter spheroidal soot particles, in the presence of 50 ppbv ozone at ambient temperature, is such that solubilization may occur within a 30-minute time frame. Measurements on ambient air aerosolmore » samples in metropolitan Denver are consistent with these observations and demonstrate the high reactivity of soot with ozone even at very low levels in natural systems.« less
Zheng, Danni; Arima, Hisatomi; Heeley, Emma; Karpin, Anne; Yang, Jie; Chalmers, John; Anderson, Craig S
2015-01-01
As no human data exist, we aimed to determine the relation between ambient temperature and volume of perihematomal 'cerebral' edema in acute spontaneous intracerebral haemorrhage (ICH) among Chinese participants of the pilot phase, Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT1). INTERACT1 was a multicenter, open, blind outcome assessed, randomized controlled trial of intensive (systolic target <140 mmHg) vs. guideline-recommended (systolic target <180 mmHg) blood pressure (BP) lowering in 404 patients with acute ICH. Data on ambient temperature (mean, minimum, maximum, and range) on the day of each participant's ICH obtained from China Meteorological Data Sharing Service System were linked to other data including edema volumes. Multivariable regression analyses were performed to evaluate association between ambient temperature and edema volumes. A generalized linear regression model with a generalized estimating equations approach (GEE) was used to assess any association of ambient temperature and change in edema volume over 72 h. A total of 250 of all 384 Chinese participants had complete data that showed positive associations between ambient temperature (mean and minimum temperatures) and edema volumes at each time point over 72 h after hospital admission (all P < 0·05). All temperature parameters except diurnal temperature range were positively associated with edema volume after adjustment for confounding variables (all P < 0·02). An apparent positive association exists between ambient temperature and perihematomal edema volume in acute spontaneous ICH. © 2014 World Stroke Organization.
NASA Astrophysics Data System (ADS)
Dutcher, Cari; Metcalf, Andrew
2015-03-01
Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.
Amplification and Attenuation Across USArray Using Ambient Noise Wavefront Tracking
NASA Astrophysics Data System (ADS)
Bowden, Daniel C.; Tsai, Victor C.; Lin, Fan-Chi
2017-12-01
As seismic traveltime tomography continues to be refined using data from the vast USArray data set, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface wave amplification and attenuation at shorter periods (8-32 s) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than traveltime observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh wave amplitudes without the need for 3-D tomographic inversions.
NASA Astrophysics Data System (ADS)
Eisemann, Joan; Huntington, Gerald; Williamson, Megan; Hanna, Michelle; Poore, Matthew
2014-11-01
Two studies separated effects of dietary ergot alkaloids from effects of feed intake or ambient temperature on respiration rate (RR), heart rate (HR), surface temperature (ST), rectal temperature (RT), blood pressure (BP), serum hormone, and plasma metabolite concentrations in beef steers. The balanced, single reversal design for each experiment used 8 beef steers fed tall fescue seed (2.5 g/kg body weight, (BW)) with (E+) or without (E-) ergot alkaloids as part of a 60:40 switchgrass hay: supplement diet. Periods were 35 d with 21 d of preliminary phase and 14 d of feeding fescue seed once daily. Measures of dependent variables were collected on d 20, 25, 29 and 35 of each period at 0730 (before feeding), 1230 and 1530. In Expt 1 steers weighed 286 kg, gained 0.61 kg BW/d, E+ supplied 2.72 mg ergot alkaloids including 1.60 mg ergovaline per steer daily, and mean minimum and maximum daily ambient temperatures were 23.6 and 32.3°C. In Expt 2 steers weighed 348 kg, gained 1.03 kg BW/d, E+ supplied 3.06 mg ergot alkaloids including 2.00 mg ergovaline daily, and mean minimum and maximum daily ambient temperatures were 11.9 and 17.4°C. Dry matter intake was not affected by fescue seed treatment (P < 0.20) in either experiment. In both experiments, E+ reduced HR (P < 0.01) and increased insulin (P = 0.07). Systolic BP minus diastolic BP decreased (P< 0.05) for E+ in both experiments, due to increased diastolic BP in Expt 1 (P < 0.03) and decreased systolic BP in Expt 2 (P < 0.07). In Expt 1, above the thermoneutral zone, E+ increased (P< 0.05) RR, RT and left side ST in comparison to E-, but in Expt 2, within the thermoneutral zone, E+ and E- did not differ (P < 0.18). Ergot alkaloids from fescue seed affect the cardiovascular system of steers separately from effects of feed intake or environmental temperature. Ergot alkaloids interact with ambient temperatures above the steers’ thermoneutral zone to exacerbate the symptoms of hyperthermic stress.
Analysis of a Radioisotope Thermal Rocket Engine
NASA Technical Reports Server (NTRS)
Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.
2017-01-01
The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.
NASA Astrophysics Data System (ADS)
Lomnicki, S. M.
2017-12-01
Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
Collecting cometary soil samples? Development of the ROSETTA sample acquisition system
NASA Technical Reports Server (NTRS)
Coste, P. A.; Fenzi, M.; Eiden, Michael
1993-01-01
In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.
Influence of p-GaN annealing on the optical and electrical properties of InGaN/GaN MQW LEDs
NASA Astrophysics Data System (ADS)
Sun, Li; Weng, Guo-En; Liang, Ming-Ming; Ying, Lei-Ying; Lv, Xue-Qin; Zhang, Jiang-Yong; Zhang, Bao-Ping
2014-06-01
Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.
Monte Carlo Model Insights into the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Killen, R. M.; Sarantos, M.
2012-01-01
Sodium in the lunar exosphere is released from the lunar regolith by several mechanisms. These mechanisms include photon stimulated desorption (PSD), impact vaporization, electron stimulated desorption, and ion sputtering. Usually, PSD dominates; however, transient events can temporarily enhance other release mechanisms so that they are dominant. Examples of transient events include meteor showers and coronal mass ejections. The interaction between sodium and the regolith is important in determining the density and spatial distribution of sodium in the lunar exosphere. The temperature at which sodium sticks to the surface is one factor. In addition, the amount of thermal accommodation during the encounter between the sodium atom and the surface affects the exospheric distribution. Finally, the fraction of particles that are stuck when the surface is cold that are rereleased when the surface warms up also affects the exospheric density. In [1], we showed the "ambient" sodium exosphere from Monte Carlo modeling with a fixed source rate and fixed surface interaction parameters. We compared the enhancement when a CME passes the Moon to the ambient conditions. Here, we compare model results to data in order to determine the source rates and surface interaction parameters that provide the best fit of the model to the data.
Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.
Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo
2011-08-01
Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Gallais, L.; Burla, R.; Martin, F.; Richaud, J. C.; Volle, G.; Pontillon, M.; Capdevila, H.; Pontillon, Y.
2018-01-01
We report on experimental development and qualification of a system developed to detect and quantify the deformations of the cladding surface of nuclear fuel pellet assemblies submitted to heat transient conditions. The system consists of an optical instrument, based on 2 wavelengths speckle interferometry, associated with an induction furnace and a model pellet assembly used to simulate the radial thermal gradient experienced by fuel pellets in pressurized water reactors. We describe the concept, implementation, and first results obtained with this system. We particularly demonstrate that the optical system is able to provide real time measurements of the cladding surface shape during the heat transients from ambient to high temperatures (up to a cladding surface temperature of 600 °C) with micrometric resolution.
Gallais, L; Burla, R; Martin, F; Richaud, J C; Volle, G; Pontillon, M; Capdevila, H; Pontillon, Y
2018-01-01
We report on experimental development and qualification of a system developed to detect and quantify the deformations of the cladding surface of nuclear fuel pellet assemblies submitted to heat transient conditions. The system consists of an optical instrument, based on 2 wavelengths speckle interferometry, associated with an induction furnace and a model pellet assembly used to simulate the radial thermal gradient experienced by fuel pellets in pressurized water reactors. We describe the concept, implementation, and first results obtained with this system. We particularly demonstrate that the optical system is able to provide real time measurements of the cladding surface shape during the heat transients from ambient to high temperatures (up to a cladding surface temperature of 600 °C) with micrometric resolution.
Hydrostatic temperature calculations. [in synoptic meteorology
NASA Technical Reports Server (NTRS)
Raymond, William H.
1987-01-01
Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).
AVGAS/AUTOGAS (Aviation Gasoline/Automobile Gasoline) Comparison. Winter Grade Fuels.
1986-07-01
mass MAP Manifold pressure - inHg MON Motor Octane Number NIPER National Institute of Petroleum and Energy Resources Pamb Ambient pressure - inHg...pressure - psig si Sea level (used as a subscript) STC Supplemental Type Certificate Tamb Ambient temperature - degC or degF Tdew Dew point - degC or degF...temperature deg C #2 exhaust gas temperature deg C #3 exhaust gas temperature deg C #4 exhaust gas temperature deg C Ambient air temperature deg C 6
Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.
Aljabali, Alaa A A; Evans, David J
2014-01-01
Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.
Stellmann, J-P; Young, K L; Vettorazzi, E; Pöttgen, J; Heesen, C
2017-06-01
Many patients with multiple sclerosis (MS) report a worsening of symptoms due to high ambient temperatures, but objective data about this association are rare and contradictory. The aim of this study was to investigate the influence of ambient temperature on standard clinical tests. We extracted the Symbol Digit Modality Test, Nine Hole Peg Test, Timed 25 Foot Walk (T25FW), Timed Tandem Walk, Expanded Disability Status Scale (EDSS) and quality-of-life items on cognition, fatigue and depression from our clinical database and matched them to historical temperatures. We used linear mixed-effect models to investigate the association between temperature and outcomes. A total of 1254 patients with MS (mean age, 42.7 years; 69.9% females; 52.1% relapsing-remitting MS, mean EDSS, 3.8) had 5751 assessments between 1996 and 2012. We observed a worsening in the T25FW with higher ambient temperatures in moderately disabled patients (EDSS ≥ 4) but not in less disabled patients. However, an increase of 10°C prolonged the T25FW by just 0.4 s. Other outcomes were not associated with ambient temperatures. Higher ambient temperature might compromise walking capabilities in patients with MS with a manifest walking impairment. However, effects are small and not detectable in mildly disabled patients. Hand function, cognition, mood and fatigue do not appear to be correlated with ambient temperature. © 2017 EAN.
Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques
2017-01-01
Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats. PMID:29190767
Fabre, Anne-Lise; Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques
2017-01-01
Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius' law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.
Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Hagermann, A.
2017-01-01
Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.
Anodized aluminum coatings for thermal control. I - Coating process and stresses
NASA Technical Reports Server (NTRS)
Alwitt, R. S.; Mcclung, R. C.; Jacobs, S.
1992-01-01
Anodized aluminum is a candidate material for use as a thermal radiator surface on Space Station Freedom. Here, results of measurements of coating stress at room temperature are presented. The effects of coating process conditions and also subsequent exposure to different humidities, from above ambient to vacuum, are reported. The most important observation with regard to space applications is that the coating stress is very dependent on humidity, changing from compressive at ambient humidity to strongly tensile in 10 exp -6 torr vacuum. The increase in stress is accompanied by loss of water from the coating, and the process is reversible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, J.; Raut, U.; Kim, J.-H.
2011-09-01
The mass uptake of ambient oxygen in nanoporous ice is enhanced by irradiation with 193 nm photons, due to conversion of O{sub 2} into H{sub 2}O{sub 2} and O{sub 3}, with an efficiency that increases with decreasing temperature. These findings show a new way to form H{sub 2}O{sub 2} and O{sub 3} on icy surfaces in the outer solar system at depths much larger than are accessible by typical ionizing radiation, with possible astrobiological implications.
[Influence of daily ambient temperature on mortality and years of life lost in Chongqing].
Li, Jing; Luo, Shuquan; Ding, Xianbin; Yang, Jun; Li, Jing; Liu, Xiaobo; Gao, Jinghong; Xu, Lei; Tang, Wenge; Liu, Qiyong
2016-03-01
To evaluate the influence of extreme ambient temperature on mortality and years of life lost (YLL) in Chongqing. The daily mortality, meteorology and air pollution index data in Chongqing from the 1(st) January 2010 to the 31(st) December 2013 were collected. Distributed lag non-linear model (DLNM) was used to assess the influence of daily ambient temperature on daily number of deaths and daily YLL respectively. The delayed and cumulative effects of extreme temperature on sex, age, and cause-specific mortality were also assessed. The relationships between ambient temperature and non-accidental, cardiovascular disease and respiratory disease mortalities and YLL were U-shaped or W-shaped. The effect of heat was obvious on that day, peaked on day 7, and lasted for two weeks, whereas the effect of cold was obvious a week later and lasted for a month. As 1 ℃ increase of ambient temperature, the cumulative relative risks (CRR) of high temperature across lag 0-7 days on non-accidental, respiratory disease and cardiovascular disease mortalities were 1.05 (95%CI: 1.03-1.07), 1.08 (95%CI: 1.05-1.11) and 1.05 (95%CI: 1.01-1.09) respectively. The effects of heat on YLL for each cause were 23.81 (95%CI: 12.31-35.31), 14.34 (95%CI: 8.98-19.70) and 4.43 (95%CI: 1.64-7.21), respectively. On cold days, 1 ℃ decrease of ambient temperature was correlated with an increase in CRR of 1.06 (95%CI: 1.04-1.08), 1.09 (95%CI:1.06-1.12) and 1.06 (95%CI: 1.02-1.11) from lag 0 to 14 for non-accidental, respiratory disease and cardiovascular disease mortalities, respectively. The estimated YLL were 23.34 (95%CI: 10.04-36.64), 16.39 (95%CI: 10.19-22.59) and 2.61 (95%CI: -0.61-5.82). People aged ≥65 years tend to have higher CRR and YLL than those aged <65 years. On high temperature days, the CRR in women was higher than that in men, while the YLL in women was lower than that in men. On low temperature days, both the CRR and YLL in women were higher than those in men. Both high and low ambient temperature have adverse health effects. People aged ≥65 years are more sensitive to both high and low ambient temperature. Younger men are more sensitive to high ambient temperature and women and elder men are sensitive to low ambient temperature. It is necessary to take targeted measures to protect the population in Chongqing from the adverse influence of extreme ambient temperature.
The Genetic Control of Reproductive Development under High Ambient Temperature.
Ejaz, Mahwish; von Korff, Maria
2017-01-01
Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1 Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. © 2017 American Society of Plant Biologists. All Rights Reserved.
The Genetic Control of Reproductive Development under High Ambient Temperature1[OPEN
2017-01-01
Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. PMID:28049855
Surface topographical changes measured by phase-locked interferometry
NASA Technical Reports Server (NTRS)
Lauer, J. L.; Fung, S. S.
1984-01-01
An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.
NASA Astrophysics Data System (ADS)
Sai Chaithanya, M.; Thakur, Somil; Sonu, Kumar; Das, Bhaskar
2017-11-01
A microbial fuel cell (MFC) consists of a cathode and anode; micro-organisms transfer electrons acquired from the degradation of organic matter in the substrate to anode; and thereby to cathode; by using an external circuit to generate electricity. In the present study, a single chamber single electrode microbial fuel cell has been fabricated to generate electricity from the sludge of the sewage treatment plant at two different ambient temperature range of 25 ± 4°C and 32 ± 4°C under aerobic condition. No work has been done yet by using the single electrode in any MFC system; it is hypothesized that single electrode submerged partially in substrate and rest to atmosphere can function as both cathode and anode. The maximum voltage obtained was about 2890 mV after 80 (hrs) at temperature range of 25 ± 4°C, with surface power density of 1108.29 mW/m2. When the ambient temperature was 32 ± 4°C, maximum voltage obtained was 1652 mV after 40 (hrs.) surface power density reduced to 865.57 mW/m2. When amount of substrate was decreased for certain area of electrode at 25 ± 4°C range, electricity generation decreased and it also shortened the time to reach peak voltage. On the other hand, when the ambient temperature was increased to 32 ± 4°C, the maximum potential energy generated was less than that of previous experiment at 25 ± 4°C for the same substrate Also the time to reach peak voltage decreased to 40 hrs. When comparing with other single chamber single electrode MFC, the present model is generating more electricity that any MFC using sewage sludge as substrate except platinum electrode, which is much costlier that electrode used in the present study.
Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K
2017-01-01
African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.
Haupt, Meghan; Bennett, Nigel C.
2017-01-01
African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840
Study of copper-free back contacts to thin film cadmium telluride solar cells
NASA Astrophysics Data System (ADS)
Viswanathan, Vijay
The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.
Body Temperature Regulation in Hot Environments.
Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola
2016-01-01
Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future.
Body Temperature Regulation in Hot Environments
Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola
2016-01-01
Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758
Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F
2016-08-01
Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.
The Role of Surface Protection for High-Temperature Performance of TiAl Alloys
NASA Astrophysics Data System (ADS)
Schütze, Michael
2017-12-01
In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2005-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2004-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
NASA Astrophysics Data System (ADS)
Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.
2017-01-01
Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.
Alternative Antimicrobial Commercial Egg Washing Procedures.
Hudson, Lauren K; Harrison, Mark A; Berrang, Mark E; Jones, Deana R
2016-07-01
Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures were evaluated for Salmonella reduction: pH 11 at 48.9°C (industry standard), pH 11 at ambient temperature (∼20°C), pH 6 at 48.9°C, and pH 6 at ambient temperature. Alkaline washes contained potassium hydroxide-based detergent, while pH 6 washes contained approximately 200 ppm of chlorine and a proprietary chlorine stabilizer (T-128). When eggs were inoculated by immersion in a cell suspension of Salmonella Enteritidis and Salmonella Typhimurium, all treatments resulted in a slight and similar reduction of Salmonella numbers (approximately 0.77 log CFU/ml of shell emulsion reduction). When eggs were inoculated by droplet on the shell surface, Salmonella counts were reduced by approximately 5 log CFU when washed with chlorine plus the chlorine stabilizer at both temperatures and with the alkaline wash at the high temperature. The reductions in Salmonella by these treatments were not significantly (P > 0.05) different from each other but were significantly (P < 0.05) more than the reduction observed for the 20°C alkaline treatment and 20°C control water treatments. Ambient temperature acidic washes reduced Salmonella contamination to the same degree as the standard pH 11 warm water wash and may be a viable option to reduce cost, increase shelf life, and slow pathogen growth in and on shell eggs.
Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.
Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P
2017-10-01
Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increased ambient air temperature alters the severity of soil water repellency
NASA Astrophysics Data System (ADS)
van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard
2017-04-01
Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with functional expression and nanoscale studies to generate deep mechanistic understanding of the roles of microbes in soil ecosystems. Our controlled soil pertubation studies have shown that an increase in ambient temperature has consistently affected the severity of soil water repellency. Surprisingly, a higher ambient air temperature impacts soils that in the field develop subcritical and extreme repellency, differently under controlled laboratory conditions. We will discuss the impact of these results in relation to predicted UK climatic conditions. Soil metaproteomics will provide mechanistic insight at the molecular level whether differential microbial adaptation is correlated with the apparent different response to a higher ambient air temperature.
Ambient Temperature, Fuel Economy, Emissions, and Trip Length
DOT National Transportation Integrated Search
1979-08-01
This report examines the relationship among automotive fuel economy, ambient temperature, cold-start trip length, and drive-train component temperatures of four 1977 vehicles. Fuel economy, exhaust emission, and drive-train temperatures were measured...
NASA Astrophysics Data System (ADS)
Bellworthy, Jessica; Fine, Maoz
2017-12-01
Despite rapidly rising sea surface temperatures and recurrent positive temperature anomalies, corals in the Gulf of Aqaba (GoA) rarely experience thermal bleaching. Elsewhere, mass coral bleaching has been observed in corals when the water temperature exceeds 1-2 °C above the local maximum monthly mean (MMM). This threshold value or "bleaching rule" has been used to create predictive models of bleaching from satellite sea surface temperature observations, namely the "degree heating week" index. This study aimed to characterize the physiological changes of dominant reef building corals from the GoA in response to a temperature and light stress gradient. Coral collection and experiments began after a period of 14 consecutive days above MMM in the field. Stylophora pistillata showed negligible changes in symbiont and host physiology parameters after accumulating up to 9.4 degree heating weeks during peak summer temperatures, for which the index predicts widespread bleaching and some mortality. This result demonstrates acute thermal tolerance in S. pistillata from the GoA and deviation from the bleaching rule. In a second experiment after 4 weeks at 4 °C above peak summer temperatures, S. pistillata and Acropora eurystoma in the high-light treatment visibly paled and suffered greater midday and afternoon photoinhibition compared to corals under low-light conditions (35% of high-light treatment). However, light, not temperature (alone or in synergy with light), was the dominant factor in causing paling and the effective quantum yield of corals at 4 °C above ambient was indistinguishable from those in the ambient control. This result highlights the exceptional, atypical thermal tolerance of dominant GoA branching corals. Concomitantly, it validates the efficacy of protecting GoA reefs from local stressors if they are to serve as a coral refuge in the face of global sea temperature rise.
Ambient Temperature and Morbidity: A Review of Epidemiological Evidence
Ye, Xiaofang; Wolff, Rodney; Yu, Weiwei; Vaneckova, Pavla; Pan, Xiaochuan
2011-01-01
Objective: In this paper, we review the epidemiological evidence on the relationship between ambient temperature and morbidity. We assessed the methodological issues in previous studies and proposed future research directions. Data sources and data extraction: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of noncommunicable diseases published in refereed English journals before 30 June 2010. Forty relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heat wave on morbidity, and 1 assessed both temperature and heat wave effects. Data synthesis: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of nonlinear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared with that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded or modified by sociodemographic factors and air pollution. Conclusions: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable. PMID:21824855
Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil
2016-04-01
Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.
Soroko, Maria; Howell, Kevin; Dudek, Krzysztof
2017-05-01
The aim of the study was to describe the dependence on ambient temperature of distal joint temperature at the forelimbs of racehorses. The study also investigated the influence of differing ambient temperatures on the temperature difference between joints: this was measured ipsilaterally (i.e. between the carpal and fetlock joints along each forelimb) and contralaterally (i.e. between the same joints of the left and right forelimbs). Sixty-four healthy racehorses were monitored over 10 months. At each session, three thermographic images were taken of the dorsal, lateral and medial aspects of the distal forelimbs. Temperature measurements were made from regions of interest (ROIs) covering the carpal and fetlock joints. There was a strong correlation between ambient temperature and absolute joint temperature at all ROIs. The study also observed a moderate correlation between ambient temperature and the ipsilateral temperature differences between joints when measured from the medial and lateral aspects. No significant correlation was noted when measured dorsally. The mean contralateral temperature differences between joints were all close to 0°C. The data support previous reports that the temperature distribution between the forelimbs of the healthy equine is generally symmetric, although some horses differ markedly from the average findings. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, D. J.; Xu, L.; McDermitt, D. K.
2006-12-01
One laboratory and two field experiments were conducted between September 2005 and September 2006 to investigate the impact of an added heat flux in the sample path of the LI-7500 CO2/H2O gas analyzer caused by the difference in temperatures between the ambient air and the surface of the instrument. Contribution of heat dissipated from the internal instrument electronics toward the instrument surface was substantial, especially in cold conditions. In the environmental chamber, surface heating ranged from about 0 °C above ambient, at air temperatures above +40 °C, to about 7 °C, at an air temperature of -25 °C. In the field, daytime temperature differences were overall smaller than in the chamber due to convective cooling by the wind and some long-wave cooling, despite the added sunlight contribution. However, considerable temperature gradients (up to 2 °C per 1mm) were still observed over the lower window of the LI-7500, suggesting strong sensible heat fluxes above the instrument surface. The nighttime situation was different due to strong long-wave cooling of some parts of the instrument, partially (and sometimes, fully) offsetting effects of the electronics heating in the other parts. The concept of an added heat flux term in the Web-Pearman-Leuning correction is revisited, and effect of the instrument surface heating on the CO2 flux measurements is examined. The proposed concept is presented in detail, along with resulted corrections to the originally computed flux. Field data are examined separately for daytime and nighttime cases, and on hourly and seasonal time scales. Significant reduction in the apparent CO2 uptake during off-season periods was observed as a result of applying correction due to the added heat, while fluxes during the growing season have not been noticeably affected. The correction also resulted in the elimination of most of the wrong signs from the off-season open- path CO2 fluxes, in considerable reduction in variability of the data, elimination of the difference between measurements made with the LI-6262 and the LI-7500, and in a significant improvement in off-season integrations of CO2 exchange. A framework was created to develop a site-specific practical correction due to instrument surface heating. The concept may provide a basis for further research in the area of instrument temperature affecting the measurement of the open-path fluxes. Proposed correction may be useful for future CO2 flux research, and it can also be applied to pre-existing data today.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1992-01-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Laser ablated copper plasmas in liquid and gas ambient
NASA Astrophysics Data System (ADS)
Kumar, Bhupesh; Thareja, Raj K.
2013-05-01
The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Astrophysics Data System (ADS)
Hoadley, A. W.; Porter, A. J.
1992-07-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis.
Blank, Jason M; Morrissette, Jeffery M; Farwell, Charles J; Price, Matthew; Schallert, Robert J; Block, Barbara A
2007-12-01
Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8-25 degrees C and swimming speeds of 0.75-1.75 body lengths (BL) s(-1). Pacific bluefin swimming at 1 BL s(-1) per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15 degrees C to 20 degrees C. Minimum MO2 of 175+/-29 mg kg(-1) h(-1) was recorded at 15 degrees C, while both cold and warm temperatures resulted in increased metabolic rates of 331+/-62 mg kg(-1) h(-1) at 8 degrees C and 256+/-19 mg kg(-1) h(-1) at 25 degrees C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.
The solid surface combustion experiment aboard the USML-1 mission
NASA Technical Reports Server (NTRS)
Altenkirch, Robert A.; Sacksteder, Kurt; Bhattacharjee, Subrata; Ramachandra, Prashant A.; Tang, Lin; Wolverton, M. Katherine
1994-01-01
AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model.
Wu, Wei-Jie; Ahn, Byung-Yong
2014-01-01
Response surface methodology (RSM) was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus). Ultraviolet B (UV-B) was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C), exposure time (40-120 min), and irradiation intensity (0.6-1.2 W/m2). The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min), the experimental vitamin D2 content of 239.67 µg/g (dry weight) was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g) within much shorter UV-B exposure time (10 min), and thus should receive attention from the food processing industry.
Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
Wang, Fagen; Zhang, Haojie; He, Dannong
2014-01-01
The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.
The 3.5-meter telescope enclosure
NASA Astrophysics Data System (ADS)
Brady, Michael H.
1994-04-01
The 3.5-m telescope enclosure is designed to perform two functions as part of the U.S. Air Force's 3.5-m telescope system: (1) to provide weather and temperature protection when the telescope is not in use and (2) to permit open-air operation of the telescope while minimizing atmospheric disturbances in the field of view (FOV). The use of a standard rotating dome is impractical because of the large telescope and its high rotational rate and acceleration. The enclosure is a 40-ft tall cylinder with a diameter of 72 ft. This steel and aluminum structure does not rotate but collapses vertically to fully expose the telescope to the open air and to provide it with an unobscured view of the horizon at all azimuthal angles. To lessen wind disturbances in the FOV, the enclosure has a moderately sloped roof and smooth, vertical walls. To minimize thermal flow, the outer surface has a high-reflectivity, low-emissivity coating and ambient air is forced through the double-skinned walls and roof. These measures make it possible to keep the enclosure surface temperature near that of the ambient air during viewing. With these features, the enclosure adds minimal degradation to the seeing.
NASA Astrophysics Data System (ADS)
Aroudam, El. H.
In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.
Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Troy G. Garn; Jack D. Law
2010-02-01
A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less
Effect of Ambient Temperature on Hydrophobic Recovery Behavior of Silicone Rubber Composites
NASA Astrophysics Data System (ADS)
Peng, Xiangyang; Li, Zijian; Zheng, Feng; Zhang, Ni; Huang, Zhen; Fang, Pengfei
A series of silicone rubber samples with different cyclosiloxanes contents have been successfully prepared, and their hydrophobic recovery behaviors and mechanism were investigated in detail. The gas chromatography-mass spectroscopy technique after Soxhlet extraction was utilized to examine the low molecular weight siloxanes in the sample, SEM was used to observe the surface morphology of the silicone rubber influenced by plasma treatment, and contact angle measurement was applied to probe the hydrophobic recovery of the sample surface after plasma treatment at different storage temperatures. The storage time-dependent contact angle of water can be well fitted by the diffusion model calculated from Fick’s second law. The results imply that the hydrophobic recovery of silicone rubber is related to the diffusion of low molecular weight siloxanes, while larger content or higher temperature can induce faster hydrophobic recovery.
A Magnetoresistive Tactile Sensor for Harsh Environment Applications
Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Leitao, Diana; Kosel, Jürgen
2016-01-01
A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature. PMID:27164113
Smith, Wally R; Coyne, Patrick; Smith, Virginia S; Mercier, Bruce
2003-09-01
Weather changes are among the proposed precursors of painful sickle cell crises. However, epidemiologic data are mixed regarding the relationship between ambient temperature and crisis frequency. To study this relationship among a local sickle cell disease population, emergency department (ED) visits and admissions were evaluated in adults with sickle cell crisis as the primary diagnosis at a major teaching hospital in a temperate climate. Official daily ambient temperatures (average for that day) were obtained from the National Climate Data Center for the days patients visited the ED or were hospitalized, and for 24 or 48 hours prior. Daily ED visit counts and admission counts were correlated with the visit/admission day's ambient temperature, with the ambient temperature 24 hours before admission, and with the magnitude of change in daily ambient temperature over the prior 24 or 48 hours. For all correlations, statistical significance was defined as a p value of <0.01 and clinical significance was defined as a moderate or greater correlation, absolute value of r >/= 0.30. ED visits or admissions correlated statistically, but not clinically, with daily temperatures. On days when temperatures were <32 degrees F or >80 degrees F, these correlations were statistically significant, but clinical significance was variable. ED visits or admissions correlated only statistically with temperatures 24 hours prior, even on days when temperatures were <32 degrees F. When temperatures were >80 degrees F, the correlations were statistically significant, but there was a reverse, clinically significant correlation between admissions and temperatures. Finally, only statistically significant correlations were found between ED visits or admissions and change in temperature over the prior 24 or 48 hours. Weak or inconsistent confirmation of a relationship was found between daily ambient temperatures and ED visits or hospital admissions for sickle cell crises.
RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.
Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J
2014-12-10
In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.
NASA Astrophysics Data System (ADS)
Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.
2017-07-01
This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.
40 CFR 1042.515 - Test procedures related to not-to-exceed standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... altitudes up to 1,100 feet above sea level. (2) Ambient air temperature must be between 13 and 35 °C (or... the engine). (3) Ambient water temperature must be between 5 and 27 °C. (4) Ambient humidity must be... operating temperatures. For example, this would include only engine operation after starting and after the...
NASA Astrophysics Data System (ADS)
Dien, H. A.; Montolalu, R. I.; Mentang, F.; Mandang, A. S. K.; Rahmi, A. D.; Berhimpon, S.
2018-01-01
The aims of this studies were to prepare juice and raw condiment to be come semipreserve pastes, and to do microbial assessments on the both pastes during storing in refrigerator and ambient temperatures. For both pastes in refrigerator, samples were taken at 0, 2, 4, 5, 6, 8, 10, 15, 20, 25, and 30 days, and in ambient temperature samples were taken at 0, 1, 2, 3, 4, and 6 days. Assessment were done for TPC, total coliform and E. coli, Salmonella sp, Staphylococcus sp., Vibrio sp., pH and water content. The results shown that juice paste stored in refrigerator still good until 30 days (TPC 1,5x104 CFU/g), and in ambient temperature still good until 6 days (2x104 CFU/g). Condiment paste stored in refrigerator still good until 30 days (6.5x103 CFU/g), and in ambient temperature still good until 6 days (1.17x104 CFU/g). However, recommended that condiment paste stored in ambient temperature only until 4 days (7.3x103CFU/g), while that juice paste until 5 days (7.8x103CFU/g). There were no pathogenic bacteria found in all samples.
Kilinc, Muhammet Fatih; Cakmak, Sedat; Demir, Demirhan Orsan; Doluoglu, Omer Gokhan; Yildiz, Yildiray; Horasanli, Kaya; Dalkilic, Ayhan
2016-12-01
The association between ambient temperature that the mother is exposed to during pregnancy and hypospadias has not been investigated by the studies, although the recent studies showed the correlation between some congenital malformations (congenital heart disease, neural tube defect, etc.) and ambient temperature. The aim was to investigate the relation between hypospadias and the ambient temperatures that the mother is exposed to during her pregnancy. The data of patients with hypospadias that had their gestational periods in Ankara and Istanbul regions, and had other urological treatments (circumcision, urinary tract infection, pyeloplasty, nephrolithotomy, etc.) between January 2000 and November 2015 were analyzed retrospectively. The ambient temperature at 8-14 weeks of gestation was investigated for each patient by reviewing the data of the General Directorate of Meteorology, since this period was risky for development of hypospadias. The data including ambient temperature that the pregnant mother was exposed to, maternal age, parity, economical status, gestational age at birth, and birth weight were compared between two groups. The retrospective nature of the study may be a potential source for selection bias. The data of 1,709 children that had hypospadias repair and 4,946 children that had other urological treatments between 2000 and 2015 were retrospectively analyzed. There were no differences between the groups for maternal age, parity, economical status, gestational age at birth, and birth weight (Table). Analysis of exposed maximum and average ambient temperatures at 8-14 weeks of gestation revealed that July and August, hot periods in summer time, were more prevalent in the hypospadias group (p = 0.01). The average and maximum monthly ambient temperatures during summer increased the risk for hypospadias (OR, 1.32; 95% CI, 1.08-1.52; and OR, 1.22; 95% CI, 0.99-1.54, respectively. In this paper, we evaluated the relation between hypospadias and the ambient temperatures that the mother is exposed during her pregnancy. The results of this study indicated that the high ambient temperatures the mother and fetus are exposed to at 8-14 weeks of gestation increased the risk of hypospadias in the offspring. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature.
Speakman, John R; Heidari-Bakavoli, Sahar
2016-08-01
Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections between ambient temperature and obesity, but the direction of the effect is confused. No previous studies have explored the link of type 2 diabetes to ambient temperature. We used county level data for obesity and diabetes prevalence across the mainland USA and matched this to county level ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence of type 2 diabetes, and this significant effect remained when latitude was entered into the model as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity significantly, but may be useful to combat type 2 diabetes.
Temperature response surfaces for mortality risk of tree species with future drought
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; ...
2017-11-17
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less
Temperature response surfaces for mortality risk of tree species with future drought
NASA Astrophysics Data System (ADS)
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.
2017-11-01
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.
Temperature response surfaces for mortality risk of tree species with future drought
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P . ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less
Temperature response surfaces for mortality risk of tree species with future drought
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.
Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less
Observations of currents and density structure across a buoyant plume front
Gelfenbaum, G.; Stumpf, R.P.
1993-01-01
Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.
Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.
2012-01-01
With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578
Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; ...
2017-07-24
Sodium-based catalysts (such as Na 2 WO 4) were proposed to selectively catalyze OH radical formation from H 2O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2WO 4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2O 2 species,more » which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800°C, and these species are useful for various gasphase hydrocarbon reactions, including the selective transformation of methane to ethane.« less
Transient nature of Arctic spring systems driven by subglacial meltwater
NASA Astrophysics Data System (ADS)
Scheidegger, J. M.; Bense, V. F.; Grasby, S. E.
2012-06-01
In the High Arctic, supra- and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet-based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps.
Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi
2014-03-27
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.
Martinez, Dani; Teixidó, Mercè; Font, Davinia; Moreno, Javier; Tresanchez, Marcel; Marco, Santiago; Palacín, Jordi
2014-01-01
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile. PMID:24681671
Domańska, Urszula; Królikowska, Marta; Walczak, Klaudia
2014-01-01
The effects of temperature and composition on the density and viscosity of pure benzothiophene and ionic liquid (IL), and those of the binary mixtures containing the IL 1-butyl-1-methylpyrrolidynium tricyanomethanide ([BMPYR][TCM] + benzothiophene), are reported at six temperatures (308.15, 318.15, 328.15, 338.15, 348.15 and 358.15) K and ambient pressure. The temperature dependences of the density and viscosity were represented by an empirical second-order polynomial and by the Vogel-Fucher-Tammann equation, respectively. The density and viscosity variations with compositions were described by polynomials. Excess molar volumes and viscosity deviations were calculated and correlated by Redlich-Kister polynomial expansions. The surface tensions of benzothiophene, pure IL and binary mixtures of ([BMPYR][TCM] + benzothiophene) were measured at atmospheric pressure at four temperatures (308.15, 318.15, 328.15 and 338.15) K. The surface tension deviations were calculated and correlated by a Redlich-Kister polynomial expansion. The temperature dependence of the interfacial tension was used to evaluate the surface entropy, the surface enthalpy, the critical temperature, the surface energy and the parachor for pure IL. These measurements have been provided to complete information of the influence of temperature and composition on physicochemical properties for the selected IL, which was chosen as a possible new entrainer in the separation of sulfur compounds from fuels. A qualitative analysis on these quantities in terms of molecular interactions is reported. The obtained results indicate that IL interactions with benzothiophene are strongly dependent on packing effects and hydrogen bonding of this IL with the polar solvent.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Cheng, H. S.
1987-01-01
A complete analysis of spiral bevel gear sets is presented. The gear profile is described by the movements of the cutting tools. The contact patterns of the rigid body gears are investigated. The tooth dynamic force is studied by combining the effects of variable teeth meshing stiffness, speed, damping, and bearing stiffness. The lubrication performance is also accomplished by including the effects of the lubricant viscosity, ambient temperature, and gear speed. A set of numerical results is also presented.
Heat Production in the Voodoo Lily (Sauromatum guttatum) as Monitored by Infrared Thermography
Skubatz, Hanna; Nelson, Timothy A.; Meeuse, Bastiaan J. D.; Bendich, Arnold J.
1991-01-01
The pattern of surface temperatures of the inflorescence of Sauromatum guttatum was investigated by using an infrared camera. The male flowers are weakly thermogenic on the first day of inflorescence opening (D-day) as well as on the next day (D + 1), reaching 0.5 to 1°C above ambient temperature. The appendix (the upper sterile part of the inflorescence) is highly thermogenic on D-day, reaching 32°C, and is faintly thermogenic on D + 1, reaching 1°C above ambient temperature. The lower part of the spadix, close to the female flowers, is also thermogenic on D-day and D + 1, reaching a temperature similar to that of the appendix only on D + 1. Salicylic acid does not induce heat production in the lower part of the spadix, as it does in the appendix. Respiration of tissue slices obtained from the appendix shows that the capacity for cyanide-insensitive respiration is present in young and mature appendices. This alternative respiratory pathway is not, however, utilized in young appendix tissue, but is engaged during the maturation of that tissue. Images Figure 1 Figure 2 PMID:16668094
McCormick, S.D.; Moriyama, S.
2000-01-01
We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10??C or ambient temperature (2??C from January to April followed by seasonal increase) under simulated natural day length. At 10??C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na+K+-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na+K+-ATPase activity under both photoperiods occurred later at ambient temperature than at 10??C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10??C and remained elevated for 5-9 wk; the same photoperiod treatment at 2??C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10??C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10??C. Plasma triiodothyronine was initially higher at 10??C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na+K+-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.
NASA Astrophysics Data System (ADS)
Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant
2014-10-01
Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b
Lunar and Martian environmental interactions with nuclear power system radiators
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.; Katzan, Cynthia M.
1992-01-01
Future NASA space missions include a permanent manned presence on the moon and an expedition to the planet Mars. Such steps will require careful consideration of environmental interactions in the selection and design of required power systems. Several environmental constituents may be hazardous to performance integrity. Potential threats common to both the moon and Mars are low ambient temperatures, wide daily temperature swings, solar flux, and large quantities of dust. The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. In this review, the anticipated environmental interactions with surface power system radiators are described, as well as the impacts of these interactions on radiator durability, which were identified at NASA Lewis Research Center.
Temperature changes across porcelain during multiple exposure CO2 lasing
NASA Astrophysics Data System (ADS)
Barron, Joseph R.; Zakariasen, Kenneth L.; Peacocke, Larry
1990-06-01
Research indicates that laser energy may provide a useful method for glazing and fusing porcelain for intraoral prosthetic purposes. However, it is not known whether such lasing will result in the production of heat levels that may be damaging to adjacent vital tissues such as the dental pulp and periodontal tissues. This research is designed to measure the magnitude of temperature rise across porcelain observed during multiple exposure C02 lasing. Fifteen porcelain examples of 1000 jim (5), 1500 pm (5) and 2000 tm (5) x each received five C02 laser exposures on the same exposure site at 1.0 sec. intervals at 8.0 watts (0.2 sec. per exposure with a 1 mm focal spot). A YSI 144201 thermilinear precision thermistor was placed on the porcelain surface opposite each laser exposure site. Temperature rise above ambient was recorded by an HP3421A data acquisition unit and HP9816 technical microcomputer. Recording continued for sufficient time to allow temperatures to return to ambient. The mean temperature elevations ranged from a low of 2.97 0C (2000 pm) to a high of 7.77 °C (1000 μm). ANOVA and Duncan's Multiple Range Test indicated significant differences in temperature rise by porcelain thickness. It would appear from the results of this research that temperature elevations adjacent to lased porcelain may be sufficiently controllable that safe intraoral porcelain lasing will be possible.
Optomechanical integrated simulation of Mars medium resolution lens with large field of view
NASA Astrophysics Data System (ADS)
Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi
2017-10-01
The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.
Calfee, M W; Wendling, M
2015-11-01
Five commercially available liquid antimicrobials were evaluated for their ability to decontaminate common environmental surface materials, contaminated with Burkholderia pseudomallei, using a spray-based disinfectant delivery procedure. Tests were conducted at both an ambient temperature (c. 20°C) and a lower temperature (c. 12°C) condition. Nonporous materials (glass and aluminium) were more easily decontaminated than porous materials (wood, concrete and carpet). Citric acid (1%) demonstrated poor efficacy in all test conditions. Bleach (pH-adjusted), ethanol (70%), quaternary ammonium and PineSol®, demonstrated high (>6 log10 reduction) efficacies on glass and aluminium at both temperatures, but achieved varying results for wood, carpet and concrete. Temperature had minimal effect on decontamination efficacy during these tests. Much of the antimicrobial efficacy data for pathogenic micro-organisms are generated with testing that utilizes hard nonporous surface materials. These data are not directly translatable for decontaminant selection following an incident whereby complex and porous environmental surfaces are contaminated. This study presents efficacy data for spray-applied antimicrobial liquids, when used to decontaminate common environmental surfaces contaminated with Burkholderia pseudomallei. These data can help responders develop effective remediation strategies following an environmental contamination incident involving B. pseudomallei. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Wang, Jun; Magee, Daniel; Schneider, Judy; Cannon, Seth
2009-01-01
This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace(Registered TradeMark) MX130 and Kane Ace(Registered TradeMark) MX960 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles up to 13.8wt%, while at LN2 temperatures, it reached a plateau at much lower CSR concentration.
Method for high temperature mercury capture from gas streams
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2006-04-25
A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.
Method of forming cavitated objects of controlled dimension
Anderson, Paul R.; Miller, Wayne J.
1982-01-01
A method of controllably varying the dimensions of cavitated objects such as hollow spherical shells wherein a precursor shell is heated to a temperature above the shell softening temperature in an ambient atmosphere wherein the ratio of gases which are permeable through the shell wall at that temperature to gases which are impermeable through the shell wall is substantially greater than the corresponding ratio for gases contained within the precursor shell. As the shell expands, the partial pressures of permeable gases internally and externally of the shell approach and achieve equilibrium, so that the final shell size depends solely upon the difference in impermeable gas partial pressures and shell surface tension.
Gaseous oxygen cooling of the Space Transportation System launch pad environment
NASA Astrophysics Data System (ADS)
Ahmad, R. A.; Mathias, E. C.; Boraas, S.
1991-12-01
The external tank (ET) of the Space Transportation System (STS) contains liquid oxygen and hydrogen as oxidizer and fuel for the Space Shuttle main engines (SSMEs). During and subsequent to the loading of the ET prior to the launch of an STS, the cryogens boil in the near atmospheric conditions existing within their respective tanks. The gaseous oxygen (GOX) formed as a result of this boiling is vented overboard, mixes with air, and may, under certain wind conditions, be transported toward the STS to cause a cooling of its environment. This paper describes a two-dimensional computational fliud dynamics analysis to determine the magnitude of this cooling effect by determining the temperature depression and stratification caused by this GOX/air mixture in the region around the east redesigned solid rocket motor (RSRM), the ET, and below the STS assembly. For a severe wintertime launch temperature of -4.44 C, the maximum local temperature depression of the mixture was calculated to be 32.22 C in the inboard region next to the ET surface, and a surface temperature on the east RSRM was found to be as much as 13.89 C colder than ambient. The computed average surface temperatures on either side of the RSRM were in excellent agreement with a temperature determined from a correlation of prelaunch temperature measurements.
In an experiment using Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings and a 2x2 factorial design in enclosed mesocosms, temperatures were maintained at ambient or +3.5 degrees C above ambient, and CO2 levels were maintained at ambient or 179 ppm above ambient. Two ...
Concentration of sunlight to solar-surface levels using non-imaging optics
NASA Astrophysics Data System (ADS)
Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland
1989-05-01
An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.
Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants
Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.
2017-01-01
Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507
Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources
Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...
NASA Astrophysics Data System (ADS)
Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan
2010-02-01
The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.
Method for controlling exhaust gas heat recovery systems in vehicles
Spohn, Brian L.; Claypole, George M.; Starr, Richard D
2013-06-11
A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.
The effect of acclimatization and ambient temperature on heat withdrawal threshold in rats.
Vítková, J; Loučka, M; Boček, J; Vaculín, S
2015-01-01
Nociception in rats is frequently measured in terms of latency of withdrawal reaction to radiant heat (thermal nociceptive threshold). The aim of this study was to determine how much housing acclimatization and ambient temperature affect the results of thermal pain threshold testing. All experiments used adult male Wistar rats. Thermal pain thresholds were tested using the radiant heat withdrawal reaction at three different body sites: forepaws, hind paws and tail. Skin temperature was measured using an Infrared thermometer and ambient temperature was set at 18, 20, 24 or 26 °C. The results demonstrate that (1) thermal pain threshold was inversely related to both ambient and skin temperature; (2) housing acclimatization and repeated testing had no effect on nociceptive thresholds at any of the three body sites; (3) a resting, cranio-caudal distribution, of nociceptive sensitivity was observed; (4) hind paws and tail were more sensitive to changes of skin and ambient temperature than forepaws. These findings show the importance of recording laboratory conditions in experiments and their influence on results. © 2014 European Pain Federation - EFIC®
In situ studies of surface of NiFe 2O 4 catalyst during complete oxidation of methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shiran; Shan, Junjun; Nie, Longhui
2015-12-21
Here, NiFe 2O 4 with an inverse spinel structure exhibits high activity for a complete oxidation of methane at 400 °C–425 °C and a higher temperature. The surface of the catalyst and its adsorbates were well characterized with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ infrared spectroscopy (IR). In situ studies of the surface of NiFe 2O 4 using AP-XPS suggest the formation of methoxy-like and formate-like intermediates at a temperature lower than 200 °C, supported by the observed vibrational signatures in in situ IR studies. Evolutions of C1s photoemission features and the nominal atomic ratios of C/(Nimore » + Fe) of the catalyst surface suggest that the formate-like intermediate is transformed to product molecules CO 2 and H 2O in the temperature range of 250–300 °C. In situ studies suggest the formation of a spectator, – O lattice – CH 2 – O lattice –. It strongly bonds to surface through C–O bonds and cannot be activated even at 400 °C.« less
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
33 CFR 159.119 - Operability test; temperature range.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...
McCann, J.A.
1963-12-17
A system for detecting and measuring directly the subcooling margin in a liquid bulk coolant is described. A thermocouple sensor is electrically heated, and a small amount of nearly stagnant bulk coolant is heated to the boiling point by this heated thermocouple. The sequential measurement of the original ambient temperature, zeroing out this ambient temperature, and then measuring the boiling temperature of the coolant permits direct determination of the subcooling margin of the ambient liquid. (AEC)
NASA Technical Reports Server (NTRS)
Dichter, Bronislaw K.; Beaubien, David J.; Beaubien, Arthur F.
1994-01-01
Results of field tests on a group of broadband UV-B pyranometers are presented. A brief description of the instrument is given. The effects of ambient temperature on thermally unregulated fluorescent phosphor (Robertson type) meters are presented and compared with the performance of thermally stabilized instruments. Means for correcting data from thermally unregulated instruments, where the prevailing ambient temperatures are known, are outlined.
Arterio-venous anastomoses in the human skin and their role in temperature control
Walløe, Lars
2016-01-01
ABSTRACT Arterio-venous anastomoses (AVAs) are direct connections between small arteries and small veins. In humans they are numerous in the glabrous skin of the hands and feet. The AVAs are short vessel segments with a large inner diameter and a very thick muscular wall. They are densely innervated by adrenergic axons. When they are open, they provide a low-resistance connection between arteries and veins, shunting blood directly into the venous plexuses of the limbs. The AVAs play an important role in temperature regulation in humans in their thermoneutral zone, which for a naked resting human is about 26°C to 36°C, but lower when active and clothed. From the temperature control center in the hypothalamus, bursts of nerve impulses are sent simultaneously to all AVAs. The AVAs are all closed near the lower end and all open near the upper end of the thermoneutral zone. The small veins in the skin of the arms and legs are also contracted near the lower end of the thermoneutral zone and relax to a wider cross section as the ambient temperature rises. At the cold end of the thermoneutral range, the blood returns to the heart through the deep veins and cools the arterial blood through a countercurrent mechanism. As the ambient temperature rises, more blood is returned through the superficial venous plexuses and veins and heats the skin surface of the full length of the 4 limbs. This skin surface is responsible for a large part of the loss of heat from the body toward the upper end of the thermoneutral zone. PMID:27227081
Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon
NASA Technical Reports Server (NTRS)
Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.
1989-01-01
The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.
Cornish, Jennifer L; Clemens, Kelly J; Thompson, Murray R; Callaghan, Paul D; Dawson, Bronwyn; McGregor, Iain S
2008-01-01
Methamphetamine is a drug that is often consumed at dance parties or nightclubs where the ambient temperature is high. The present study determined whether such high ambient temperatures alter intravenous methamphetamine self-administration in the rat. Male Hooded Wistar rats were trained to self-administer intravenous methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 1 (FR1) or progressive ratio (PR) schedule of reinforcement at an ambient temperature of 23 +/- 1 degrees C. They were then given their daily self-administration session at a raised ambient temperature of 30 +/- 1 degrees C. Methamphetamine self-administration was increased at 30 degrees C under both FR1 and PR reinforcement schedules, with the latter effect indicating that heat enhances the motivation to obtain methamphetamine. High temperatures did not alter self-administration of the D1 receptor agonist SKF 82958 in methamphetamine-experienced rats suggesting some specificity in the methamphetamine effect. When rats were given access to drink isotonic saline solution during methamphetamine self-administration sessions they drank much more solution at 30 degrees C than 23 degrees C. However, availability of isotonic saline to drink did not alter the heat-induced facilitation of methamphetamine self-administration (PR schedule) indicating that the heat effect does not simply reflect increased motivation for intravenous fluids. Hyperthermia was evident in rats self-administering methamphetamine at high ambient temperatures and fluid consumption did not prevent this effect. Heat did not affect blood levels of methamphetamine, or its principal metabolite amphetamine indicating that the facilitatory effect of heat did not reflect altered methamphetamine pharmacokinetics. Overall, these results show that high ambient temperatures increase the reinforcing efficacy of methamphetamine and encourage higher levels of drug intake.
Field study of dried blood spot specimens for HIV-1 drug resistance genotyping.
Parry, C M; Parkin, N; Diallo, K; Mwebaza, S; Batamwita, R; DeVos, J; Bbosa, N; Lyagoba, F; Magambo, B; Jordan, M R; Downing, R; Zhang, G; Kaleebu, P; Yang, C; Bertagnolio, S
2014-08-01
Dried blood spots (DBS) are an alternative specimen type for HIV drug resistance genotyping in resource-limited settings. Data relating to the impact of DBS storage and shipment conditions on genotyping efficiency under field conditions are limited. We compared the genotyping efficiencies and resistance profiles of DBS stored and shipped at different temperatures to those of plasma specimens collected in parallel from patients receiving antiretroviral therapy in Uganda. Plasma and four DBS cards from anti-coagulated venous blood and a fifth card from finger-prick blood were prepared from 103 HIV patients with a median viral load (VL) of 57,062 copies/ml (range, 1,081 to 2,964,191). DBS were stored at ambient temperature for 2 or 4 weeks or frozen at -80 °C and shipped from Uganda to the United States at ambient temperature or frozen on dry ice for genotyping using a broadly sensitive in-house method. Plasma (97.1%) and DBS (98.1%) stored and shipped frozen had similar genotyping efficiencies. DBS stored frozen (97.1%) or at ambient temperature for 2 weeks (93.2%) and shipped at ambient temperature also had similar genotyping efficiencies. Genotyping efficiency was reduced for DBS stored at ambient temperature for 4 weeks (89.3%, P = 0.03) or prepared from finger-prick blood and stored at ambient temperature for 2 weeks (77.7%, P < 0.001) compared to DBS prepared from venous blood and handled similarly. Resistance profiles were similar between plasma and DBS specimens. This report delineates the optimal DBS collection, storage, and shipping conditions and opens a new avenue for cost-saving ambient-temperature DBS specimen shipments for HIV drug resistance (HIVDR) surveillances in resource-limited settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking.
Ren, Jun; Tian, Kaikai; Jia, Lingyun; Han, Xiuyou; Zhao, Mingshan
2016-10-19
A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.
NASA Astrophysics Data System (ADS)
Zhentao, Y.; Xiaofei, C.; Jiannan, W.
2016-12-01
The fundamental mode is the primary component of surface wave derived from ambient noise. It is the basis of the method of structure imaging from ambient noise (e.g. SPAC, Aki 1957; F-K, Lascoss 1968; MUSIC, Schmidt 1986). It is well known, however, that if the higher modes of surface wave can be identified from data and are incorporated in the inversion of dispersion curves, the uncertainty in inversion results will be greatly reduced (e.g., Tokimastu,1997). Actually, the ambient noise indeed contains the higher modes as well in its raw data of ambient noise. If we could extract the higher modes from ambient noise, the structure inversion method of ambient noise would be greatly improved. In the past decade, there are many studies to improve SPAC and analyses the relationship of fundamental mode and higher mode (Ohri et al 2002; Asten et al. 2006; Tashiaki Ykoi 2010 ;Tatsunori Ikeda 2012). In this study, we will present a new method of identifying higher modes from ambient noise data by reprocessing the "surface waves' phases" derived from the ambient noise through cross-correlation analysis, and show preliminary application in structure inversion.
Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.
Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory
2017-08-21
Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
Effects of service environments on aluminum-brazed titanium (ABTi)
NASA Technical Reports Server (NTRS)
Cotton, W. L.
1978-01-01
Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Matteo, Edward N.
An example case is presented for testing analytical thermal models. The example case represents thermal analysis of a generic repository in bedded salt at 500 m depth. The analysis is part of the study reported in Matteo et al. (2016). Ambient average ground surface temperature of 15°C, and a natural geothermal gradient of 25°C/km, were assumed to calculate temperature at the near field. For generic salt repository concept crushed salt backfill is assumed. For the semi-analytical analysis crushed salt thermal conductivity of 0.57 W/m-K was used. With time the crushed salt is expected to consolidate into intact salt. In thismore » study a backfill thermal conductivity of 3.2 W/m-K (same as intact) is used for sensitivity analysis. Decay heat data for SRS glass is given in Table 1. The rest of the parameter values are shown below. Results of peak temperatures at the waste package surface are given in Table 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu
Sodium-based catalysts (such as Na 2 WO 4) were proposed to selectively catalyze OH radical formation from H 2O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2WO 4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2O 2 species,more » which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800°C, and these species are useful for various gasphase hydrocarbon reactions, including the selective transformation of methane to ethane.« less
40 CFR 53.56 - Test for effect of variations in ambient pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...
Kim, Jae Joon; Lee, Jeong Hwan; Kim, Wanhui; Jung, Hye Seung; Huijser, Peter; Ahn, Ji Hoon
2012-01-01
The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature. PMID:22427344
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D. P.; Bardon, M. F.; Clark, W.
This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less
Shin, Hangsik
2016-12-01
Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.
High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008
2009-01-01
Background This review examines recent evidence on mortality from elevated ambient temperature for studies published from January 2001 to December 2008. Methods PubMed was used to search for the following keywords: temperature, apparent temperature, heat, heat index, and mortality. The search was limited to the English language and epidemiologic studies. Studies that reported mortality counts or excess deaths following heat waves were excluded so that the focus remained on general ambient temperature and mortality in a variety of locations. Studies focusing on cold temperature effects were also excluded. Results Thirty-six total studies were presented in three tables: 1) elevated ambient temperature and mortality; 2) air pollutants as confounders and/or effect modifiers of the elevated ambient temperature and mortality association; and 3) vulnerable subgroups of the elevated ambient temperature-mortality association. The evidence suggests that particulate matter with less than 10 um in aerodynamic diameter and ozone may confound the association, while ozone was an effect modifier in the warmer months in some locations. Nonetheless, the independent effect of temperature and mortality was withheld. Elevated temperature was associated with increased risk for those dying from cardiovascular, respiratory, cerebrovascular, and some specific cardiovascular diseases, such as ischemic heart disease, congestive heart failure, and myocardial infarction. Vulnerable subgroups also included: Black racial/ethnic group, women, those with lower socioeconomic status, and several age groups, particularly the elderly over 65 years of age as well as infants and young children. Conclusion Many of these outcomes and vulnerable subgroups have only been identified in recent studies and varied by location and study population. Thus, region-specific policies, especially in urban areas, are vital to the mitigation of heat-related deaths. PMID:19758453
Risoul, V; Pichon, C; Trouvé, G; Peters, W A; Gilot, P; Prado, G
1999-02-15
To determine decontamination behavior as affected by temperature, shallow beds of a clay-rich, a calcerous, and a sedimentary soil, artificially polluted with hexachlorobenzene, 4-chlorobiphenyl, naphthalene, or n-decane, were separately heated at 5 degrees C min-1 in a thermogravimetric analyzer. Temperatures for deep cleaning of the calcerous and the sedimentary soil increased with increasing boiling point (bp) of the aromatic contaminants, but removal efficiencies still approached 100% well below the bp. Decontamination rates were therefore modelled according to a pollutant evaporation-diffusion transport model. For the calcerous and sedimentary soils, this model reasonably correlated removal of roughly the first 2/3 of the naphthalene, but gave only fair predictions for hexachlorobenzene and 4-chlorobiphenyl. It was necessary to heat the clay soil above the aromatics bp to achieve high decontamination efficiencies. Weight loss data imply that for temperatures from near ambient to as much as 150 degrees C, interactions of each aromatic with the clay soil, or its decomposition products, result in lower net volatilization of the contaminated vs. neat clay. A similar effect was observed in heating calcerous soil polluted with hexachlorobenzene from near ambient to about 140 degrees C. Decontamination mechanisms remain to be established, although the higher temperatures needed to remove aromatics from the clay may reflect a more prominent role for surface desorption than evaporation. This would be consistent with our estimates that the clay can accommodate all of the initial pollutant loadings within a single surface monolayer, whereas the calcerous and sedimentary soils cannot.
Unruh, Ellen M; Theurer, Miles E; White, Brad J; Larson, Robert L; Drouillard, James S; Schrag, Nora
2017-07-01
OBJECTIVE To determine whether infrared thermographic images obtained the morning after overnight heat abatement could be used as the basis for diagnostic algorithms to predict subsequent heat stress events in feedlot cattle exposed to high ambient temperatures. ANIMALS 60 crossbred beef heifers (mean ± SD body weight, 385.8 ± 20.3 kg). PROCEDURES Calves were housed in groups of 20 in 3 pens without any shade. During the 6 am and 3 pm hours on each of 10 days during a 14-day period when the daily ambient temperature was forecasted to be > 29.4°C, an investigator walked outside each pen and obtained profile digital thermal images of and assigned panting scores to calves near the periphery of the pen. Relationships between infrared thermographic data and panting scores were evaluated with artificial learning models. RESULTS Afternoon panting score was positively associated with morning but not afternoon thermographic data (body surface temperature). Evaluation of multiple artificial learning models indicated that morning body surface temperature was not an accurate predictor of an afternoon heat stress event, and thermographic data were of little predictive benefit, compared with morning and forecasted weather conditions. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated infrared thermography was an objective method to monitor beef calves for heat stress in research settings. However, thermographic data obtained in the morning did not accurately predict which calves would develop heat stress later in the day. The use of infrared thermography as a diagnostic tool for monitoring heat stress in feedlot cattle requires further investigation.
Pallas, J. E.; Michel, B. E.; Harris, D. G.
1967-01-01
Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered. Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity. PMID:16656488
Transient natural convection with density inversion from a horizontal cylinder
NASA Astrophysics Data System (ADS)
Wang, P.; Kahawita, R.; Nguyen, D. L.
1992-01-01
This paper is devoted to a numerical investigation of the free convection flow about a horizontal cylinder maintained at 0 °C in a water ambient close to the point of maximum density. Complete numerical solutions covering both the transient as well as steady state have been obtained. Principal results indicate that the proximity of the ambient temperature to the point of maximum density plays an important role in the type of convection pattern that may be obtained. When the ambient temperature is within 4.7 °C
Bagdonienė, Indrė; Baležentienė, Ligita
2013-01-01
Experimental data were applied for the modelling optimal cowshed temperature environment in laboratory test bench by a mass-flow method. The principal factor affecting exponent growth of ammonia emission was increasing air and manure surface temperature. With the manure temperature increasing from 4°C to 30°C, growth in the ammonia emission grew fourfold, that is, from 102 to 430 mg m−2h−1. Especial risk emerges when temperature exceeds 20°C: an increase in temperature of 1°C contributes to the intensity of ammonia emission by 17 mg m−2h−1. The temperatures of air and manure surface as well as those of its layers are important when analysing emission processes from manure. Indeed, it affects the processes occurring on the manure surface, namely, dehydration and crust formation. To reduce ammonia emission from cowshed, it is important to optimize the inner temperature control and to manage air circulation, especially at higher temperatures, preventing the warm ambient air from blowing direct to manure. Decrease in mean annual temperature of 1°C would reduce the annual ammonia emission by some 5.0%. The air temperature range varied between −15°C and 30°C in barns. The highest mean annual temperature (14.6°C) and ammonia emission (218 mg m−2h−1) were observed in the semideep cowshed. PMID:24453912
Ambient temperature affects postnatal litter size reduction in golden hamsters.
Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G
2016-01-01
To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and milk production.
The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature.
Jung, Inuk; Kang, Hyejin; Kim, Jang Uk; Chang, Hyeonsook; Kim, Sun; Jung, Woosuk
2018-03-19
Ginseng is a popular traditional herbal medicine in north-eastern Asia. It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Under the high ambient temperature, vegetative growth was accelerated, which resulted in early flowering. This precocious phase change led to yield loss. Despite of its importance as a traditional medicine, biological mechanisms of ginseng has not been well studied and even the genome sequence of ginseng is yet to be determined due to its complex genome structure. Thus, it is challenging to investigate the molecular biology mechanisms at the transcript level. To investigate how ginseng responds to the high ambient temperature environment, we performed high throughput RNA sequencing and implemented a bioinformatics pipeline for the integrated analysis of small-RNA and mRNA-seq data without a reference genome. By performing reverse transcriptase (RT) PCR and sanger sequencing of transcripts that were assembled using our pipeline, we validated that their sequences were expressed in our samples. Furthermore, to investigate the interaction between genes and non-coding small RNAs and their regulation status under the high ambient temperature, we identified potential gene regulatory miRNAs. As a result, 100,672 contigs with significant expression level were identified and 6 known, 214 conserved and 60 potential novel miRNAs were predicted to be expressed under the high ambient temperature. Collectively, we have found that development, flowering and temperature responsive genes were induced under high ambient temperature, whereas photosynthesis related genes were repressed. Functional miRNAs were down-regulated under the high ambient temperature. Among them are miR156 and miR396 that target flowering (SPL6/9) and growth regulating genes (GRF) respectively.
Materials Study of NbN and Ta x N Thin Films for SNS Josephson Junctions
Missert, Nancy; Brunke, Lyle; Henry, Michael D.; ...
2017-02-15
We investigated properties of NbN and Ta xN thin films grown at ambient temperatures on SiO 2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N 2 gas flow. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N 2 gas flow during growth. High crystalline quality, (111) oriented NbN films with T c up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the Ta xN films depended upon both the N 2 partial pressure usedmore » during growth and the film thickness. Furthermore, the root mean square surface roughness of Ta xN films grown by MS increased as the film thickness decreased down to 10 nm.« less
Auger compositional depth profiling of the metal contact-TlBr interface
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.
2015-08-01
Degradation of room temperature operation of TlBr radiation detectors with time is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. Scanning Auger electron spectroscopy (AES) in combination with sputter depth profiling was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage and create a TlBr1-xClx surface layer prior to metal contact deposition. Auger compositional depth profiling results reveal non-equilibrium interfacial diffusion after device operation in both air and N2 at ambient temperature. These results improve our understanding of contact/device degradation versus operating environment for further enhancing radiation detector performance.
Methods and systems for remote detection of gases
Johnson, Timothy J.
2007-11-27
Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.
Methods and systems for remote detection of gases
Johnson, Timothy J
2012-09-18
Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.
Helicopter thermal imaging for detecting insect infested cadavers.
Amendt, Jens; Rodner, Sandra; Schuch, Claus-Peter; Sprenger, Heinz; Weidlich, Lars; Reckel, Frank
2017-09-01
One of the most common techniques applied for searching living and even dead persons is the FLIR (Forward Looking Infrared) system fixed on an aircraft like e.g. a helicopter, visualizing the thermal patterns emitted from objects in the long-infrared spectrum. However, as body temperature cools down to ambient values within approximately 24h after death, it is common sense that searching for deceased persons can be just applied the first day post-mortem. We postulated that the insect larval masses on a decomposing body generate a heat which can be considerably higher than ambient temperatures for a period of several weeks and that such heat signatures might be used for locating insect infested human remains. We examined the thermal history of two 70 and 90kg heavy pig cadavers for 21days in May and June 2014 in Germany. Adult and immature insects on the carcasses were sampled daily. Temperatures were measured on and inside the cadavers, in selected maggot masses and at the surroundings. Thermal imaging from a helicopter using the FLIR system was performed at three different altitudes up to 1500ft. during seven day-flights and one night-flight. Insect colonization was dominated by blow flies (Diptera: Calliphoridae) which occurred almost immediately after placement of the cadavers. Larvae were noted first on day 2 and infestation of both cadavers was enormous with several thousand larvae each. After day 14 a first wave of post-feeding larvae left the carcasses for pupation. Body temperature of both cadavers ranged between 15°C and 35°C during the first two weeks of the experiment, while body surface temperatures peaked at about 45°C. Maggot masses temperatures reached values up to almost 25°C above ambient temperature. Detection of both cadavers by thermal imaging was possible on seven of the eight helicopter flights until day 21. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias
2015-05-01
Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong
2018-06-01
The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.
Influence of the Environment on Body Temperature of Racing Greyhounds.
McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J
2016-01-01
Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted.
Influence of the Environment on Body Temperature of Racing Greyhounds
McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.
2016-01-01
Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures over 41.5°C and postrace myoglobinuria. Risk of heat strain may be increased in higher ambient temperatures and in darker colored greyhounds. Further research into the incidence of heat strain in racing greyhounds, and longer term physiological responses to heat strain, are warranted. PMID:27446941
NASA Astrophysics Data System (ADS)
Khare, Harmandeep S.
Liquid lubricants are precluded in an exceedingly large number of consumer as well as extreme applications as a means to reduce friction and wear at the sliding interface of two bodies. The extraterrestrial environment is one such example of an extreme environment which has motivated the development of advanced solid lubricant materials. Mechanical systems for space require fabrication, assembly, transportation and testing on earth before launch and deployment. Solid lubricants for space are expected to not only operate efficiently in the hard vacuum of space but also withstand interactions with moisture or oxygen during the terrestrial storage, transportation and assembly prior to deployment and launch. Molybdenum disulfide (MoS2) is considered the gold standard in solid lubricants for space due to its excellent tribological properties in ultra-high vacuum. However in the presence of environmental species such as water and oxygen or at elevated temperatures, the lubricity and endurance of MoS2 is severely limited. Past studies have offered several hypotheses for the breakdown of lubrication of MoS2 under the influence of water and oxygen, although exact mechanisms remain unknown. Furthermore, it is unclear if temperature acts as a driver solely for oxidation or for thermally activated slip and thermally activated desorption as well. The answers to these questions are of fundamental importance to improving the reliability of existing MoS2-based solid lubricants for space, as well as for guiding the design of advanced lamellar solid lubricant coatings. This dissertation aims to elucidate: (1) the role of water on MoS2 oxidation, (2) the role of water on MoS2 friction, (3) the role of oxygen on MoS2 friction, (4) the contribution of thermal activation to ambient-temperature friction, and (5) effects of length-scale. The results of this study showed that water does not cause oxidation of MoS2. Water increases ambient-temperature friction of MoS2 directly through a combination of both surface adsorption and diffusion into the coating subsurface. Thermally activated desiccation effectively dries the bulk of the coating, yielding low values of friction coefficient even at ambient humidity and temperature. Friction of MoS2 decreases with increasing temperature between 25°C and 100°C in the presence of environmental water and increases in the presence of oxygen alone. At temperatures greater than 100°C, friction generally increases with temperature only in the presence of environmental oxygen; at these elevated temperatures, friction decreases with increasing humidity. The transition from room-temperature increase to elevated-temperature decrease in friction with increasing humidity is found to be a strong function of the contact history as well as coating microstructure. Lastly, the contribution of nanoscale tribofilms to macroscale friction was studied through nanotribometry. Friction measured on the worn MoS2 coating with a nano-scale AFM probe showed direct and quantifiable evidence of sliding-induced surface modification of MoS2; friction measured on the perfectly ordered single crystal MoS2 was nearly an order of magnitude lower than friction on worn MoS2. Although friction coefficients measured with a nanoscale probe showed high surface sensitivity, micron-sized AFM probes gave friction coefficients similar to those obtained in the macroscale, suggesting the formation of surface films in-situ during sliding with the colloidal probe. A reduction in friction is observed after annealing for both the nanoscale and microscale probes, suggesting a strong overriding effect of the desiccated bulk over surface adsorption in driving the friction response at these length-scales.
NASA Technical Reports Server (NTRS)
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal
2016-12-03
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493
NASA Astrophysics Data System (ADS)
Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji
2018-06-01
The impacts of inserting ultrathin oxides into insulator/AlGaN interfaces on their electrical properties were investigated to develop advanced AlGaN/GaN metal–oxide–semiconductor (MOS) gate stacks. For this purpose, the initial thermal oxidation of AlGaN surfaces in oxygen ambient was systematically studied by synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) and atomic force microscopy (AFM). Our physical characterizations revealed that, when compared with GaN surfaces, aluminum addition promotes the initial oxidation of AlGaN surfaces at temperatures of around 400 °C, followed by smaller grain growth above 850 °C. Electrical measurements of AlGaN/GaN MOS capacitors also showed that, although excessive oxidation treatment of AlGaN surfaces over around 700 °C has an adverse effect, interface passivation with the initial oxidation of the AlGaN surfaces at temperatures ranging from 400 to 500 °C was proven to be beneficial for fabricating high-quality AlGaN/GaN MOS gate stacks.
Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing
2014-11-25
Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged <45 years, whereas the effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.
Effects of orbital exposure on Halar during the LDEF mission
NASA Technical Reports Server (NTRS)
Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.
1992-01-01
Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.
Mackenzie, Clara L.; Ormondroyd, Graham A.; Curling, Simon F.; Ball, Richard J.; Whiteley, Nia M.; Malham, Shelagh K.
2014-01-01
Ocean surface pH levels are predicted to fall by 0.3–0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2–4°C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH –0.4 pH units) and warming (ambient temperature +4°C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4–6 h day−1). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited. PMID:24489785
Mackenzie, Clara L; Ormondroyd, Graham A; Curling, Simon F; Ball, Richard J; Whiteley, Nia M; Malham, Shelagh K
2014-01-01
Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units) and warming (ambient temperature +4 °C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1)). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.
Thermal repellent properties of surface coating using silica
NASA Astrophysics Data System (ADS)
Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.
2017-11-01
Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.
Thermal equilibrium of Nellore cattle in tropical conditions: an investigation of circadian pattern.
de Melo Costa, Cíntia Carol; Campos Maia, Alex Sandro; Brown-Brandl, Tami M; Chiquitelli Neto, Marcos; de França Carvalho Fonsêca, Vinicius
2018-05-01
The aim of this work was to evaluate the diurnal patterns of physiological responses and the thermal regulation of adult Nellore bulls. Six 30-mo-old Nellore bulls (669 ± 65 kg BW) were randomly assigned to four 6-h periods in a Latin Square design such that measurements of each animal cover a 24-h cycle. Meteorological variables (air temperature, relative humidity, local solar irradiance, ultraviolet radiation, wind speed and black globe temperature) were recorded at regular one-minute intervals with an automated weather station. Respiratory rate, ventilation rate, oxygen, carbon dioxide, methane, saturation pressure, air temperature of the exhaled air, saturation pressure in the air leaving the ventilated capsule placed over the animal surface, hair coat, skin surface and rectal temperature were assessed. The thermal equilibrium was determined according to the principles of the first law of thermodynamics using biophysical equations. Animals were evaluated in an area which was protected from solar radiation, rain, and had a range of ambient air temperature between 20.57 ± 0.07 and 30.86 ± 0.07 °C. Percentage of O 2 and CO 2 in the exhaled air changed moderately (P < 0.0001) throughout the 24 h, which resulted in an average metabolic heat production of 151.45 ± 13.60 W m -2 . At the largest thermal gradient (T S - T A ; from 24:00-07:00 h), heat transferred by long wave radiation and surface convection corresponded to near 60% of the metabolism. At 11:00 h the ambient temperature approached 29 °C and latent heat became the main way to cool the body. From this time until 17:00 h, cutaneous evaporation represented approximately 53% of total heat loss. In conclusion, results of the present study seem to be a good indicator of lower energy expenditure for body thermal regulation, high heat tolerance and adaptation of Nellore cattle to the tropical environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hall, L. Embere; Chalfoun, Anna D.; Beever, Erik; Loosen, Anne E.
2016-01-01
BackgroundContemporary climate change is affecting nearly all biomes, causing shifts in animal distributions, phenology, and persistence. Favorable microclimates may buffer organisms against rapid changes in climate, thereby allowing time for populations to adapt. The degree to which microclimates facilitate the local persistence of climate-sensitive species, however, is largely an open question. We addressed the importance of microrefuges in mammalian thermal specialists, using the American pika (Ochotona princeps) as a model organism. Pikas are sensitive to ambient temperatures, and are active year-round in the alpine where conditions are highly variable. We tested four hypotheses about the relationship between microrefuges and pika occurrence: 1) Local-habitat Hypothesis (local-habitat conditions are paramount, regardless of microrefuge); 2) Surface-temperature Hypothesis (surrounding temperatures, unmoderated by microrefuge, best predict occurrence); 3) Interstitial-temperature Hypothesis (temperatures within microrefuges best predict occurrence), and 4) Microrefuge Hypothesis (the degree to which microrefuges moderate the surrounding temperature facilitates occurrence, regardless of other habitat characteristics). We examined pika occurrence at 146 sites across an elevational gradient. We quantified pika presence, physiographic habitat characteristics and forage availability at each site, and deployed paired temperature loggers at a subset of sites to measure surface and subterranean temperatures.ResultsWe found strong support for the Microrefuge Hypothesis. Pikas were more likely to occur at sites where the subsurface environment substantially moderated surface temperatures, especially during the warm season. Microrefugium was the strongest predictor of pika occurrence, independent of other critical habitat characteristics, such as forage availability.ConclusionsBy modulating surface temperatures, microrefuges may strongly influence where temperature-limited animals persist in rapidly warming environments. As climate change continues to manifest, efforts to understand the changing dynamics of animal-habitat relationships will be enhanced by considering the quality of microrefuges.
Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun
2013-01-01
A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1−xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl2) atmosphere. Therefore, our finding, the direct transformation of a-Si1−xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349
Final results of the NASA storm hazards program
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.; Brown, Philip W.; Plumer, J. Anderson; Wunschel, Alfred J., Jr.
1988-01-01
Lightning swept-flash attachment patterns and the associated flight conditions were recorded from 1980-1986 during 1496 thunderstorm penetrations and 714 direct strikes with a NASA F-1068 research airplane. These data were studied with an emphasis on lightning avoidance by aircraft and on aircraft protection design. The individual lightning attachment spots, along with crew comments and on-board photographic data were used to identify lightning swept-flash attachment patterns and the orientations of the lightning channels with respect to the airplane. The full-scale in-flight data were compared to results from scale-model arc-attachment tests. The airborne and scale-model data showed that any exterior surface of this airplane may be susceptible to direct lightning attachment. In addition, the altitudes, ambient temperatures, and the relative turbulence and precipitation levels at which the strikes occurred in thunderstorms are summarized and discussed. It was found that the peak strike rate occurred at pressure altitudes betwen 38,000 ft and 40,000 ft, corresponding to ambient temperatures colder than -40 C.
Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong
2018-05-01
It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermal loading of natural streams
Jackman, Alan P.; Yotsukura, Nobuhiro
1977-01-01
The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin
2015-11-01
In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter, denser and hotter plasma is always observed in argon than in air as with lower ablation laser fluences. The observed different influences of the ambient gas on the plasma expansion behavior for different laser fluences are related to the different modes of laser-supported absorption waves, namely laser-supported combustion (LSC) wave and laser-supported detonation (LSD) wave.
Seal Technology in Gas Turbine Engines
1978-08-01
ambient temperatures and 427*C (800*F). 3. Application as a part of the normal manufacturing sequence without subsequent finishing operations...of demonstrable hardnless with sharp, cutting edges. 4. The coating must be applied to a finish dimmsion without subsequent processing. 5. Application...The JC1-Iii 3.4 coating had a surface finish of 11 V metre (425 mioroinches). Both materials appeared to be adequately rough for the proposed
Electric Power Load Analysis (EPLA) for Surface Ships
2012-09-17
112 - Shipping: Emergency Lighting And Power Systems (Copies of this document are available from the Superintendent of Documents, U.S. Government...number of (dry bulb ) temperature/relative humidity ambient conditions and an associated percentage of time the ship is spent operating in the particular...propulsion cannot be otherwise restored in less than 2 minutes. c. Machinery space class W and circle W ventilation. d. Emergency lighting . DDS 310-1
A Subambient Open Roof Surface under the Mid-Summer Sun.
Gentle, Angus R; Smith, Geoff B
2015-09-01
A novel material open to warm air stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.9 to 13 μm.
Influence of preservation methods on the quality of colostrum sourced from New Zealand dairy farms.
Denholm, K S; Hunnam, J C; Cuttance, E L; McDougall, S
2017-09-01
To assess the effect of two temperatures (ambient temperature and 4°C), three preservation methods (no preservative, yoghurt and potassium sorbate), and two periods of storage (3 and 7 days) on Brix and total bacterial and coliform counts of colostrum collected from New Zealand dairy farms. One litre of colostrum destined to be fed to newborn calves was collected from 55 New Zealand dairy farms in the spring of 2015. Six aliquots of 150 mL were obtained from each colostrum sample, with two aliquots left untreated, two treated with potassium sorbate and two with yoghurt, and one of each pair of aliquots stored at ambient temperature and the other at 4°C. All samples were tested for Brix, total bacterial counts and coliform counts before treatment (Day 0), and after 3 and 7 days of storage. The effect of preservation method and storage temperature on the change in Brix, bacterial and coliform counts after 3 or 7 days of storage was analysed using multivariable random effects models. For all outcome variables there was a temperature by preservation interaction. For aliquots preserved with potassium sorbate, changes in Brix and bacterial counts did not differ between aliquots stored at ambient temperature or 4°C, but for aliquots preserved with yoghurt or no preservative the decrease in Brix and increase in bacterial counts was greater for aliquots stored at ambient temperature than 4°C (p<0.001). For aliquots preserved with potassium sorbate, coliform counts decreased at both temperatures, but for aliquots preserved with yoghurt or no preservative coliform counts increased for aliquots stored at 4°C, but generally decreased at ambient temperatures (p<0.001). There was also an interaction between duration of storage and temperature for bacterial counts (p<0.001). The difference in the increase in bacterial counts between aliquots stored at 4°C and ambient temperature after 3 days was greater than between aliquots stored at 4°C and ambient temperature after 7 days. Use of potassium sorbate to preserve colostrum for 3 or 7 days resulted in little or no reduction in Brix and a lower increase in total bacterial counts than colostrum stored without preservative or with yoghurt added. Colostrum quality was not affected by storage temperature for samples preserved with potassium sorbate, but storage at 4°C resulted in better quality colostrum than storage at ambient temperatures for colostrum with no preservative or yoghurt added.
NASA Astrophysics Data System (ADS)
Wei, Dongbo; Zhang, Pingze; Liu, Yingchao; Chen, Xiaohu; Ding, Feng; Li, Fengkun
2018-02-01
The Zr coating and Zr-Er coating are grown on TC11 substrate by double-glow plasma surface metallurgy technique, followed by the wear tests at ambient temperature and 500 °C. The data of nanohardness and elastic modulus of the samples are collected by the nano-indentation test. The adhesion strength of coatings is investigated by means of the scratch test. The study of wear resistance is performed using a ball-on-disc wear test system by running against the Si3N4 ball and measured by scanning electron microscope (SEM) and X-ray diffraction (XRD). Experimental results indicate that the nanohardness of the Zr coating and Zr-Er coating are 5.94 GPa and 7.98 GPa, respectively, which are 1.79 times and 2.41 times greater than that of TC11 substrate. Zr coating and Zr-Er coating realize the metallurgical bonding with TC11 substrate with continuous and compact structure. Compared with the Zr coating and TC11, the Zr-Er coating presents the lowest specific wear rates, which are 1.689 × 10-6 mm3 Nm-1 and 1.851 × 10-6 mm3 Nm-1 at ambient temperature and 500 °C respectively, indicating the excellent and improved wear resistance of TC11.
NASA Astrophysics Data System (ADS)
Patel, Trushit; Meher, Ramakanta
2017-09-01
In this paper, we consider a Roseland approximation to radiate heat transfer, Darcy's model to simulate the flow in porous media and finite-length fin with insulated tip to study the thermal performance and to predict the temperature distribution in a vertical isothermal surface. The energy balance equations of the porous fin with several temperature dependent properties are solved using the Adomian Decomposition Sumudu Transform Method (ADSTM). The effects of various thermophysical parameters, such as the convection-conduction parameter, Surface-ambient radiation parameter, Rayleigh numbers and Hartman number are determined. The results obtained from the ADSTM are further compared with the fourth-fifth order Runge-Kutta-Fehlberg method and Least Square Method(LSM) (Hoshyar et al. 2016 ) to determine the accuracy of the solution.
Kot, Malgorzata; Das, Chittaranjan; Wang, Zhiping; Henkel, Karsten; Rouissi, Zied; Wojciechowski, Konrad; Snaith, Henry J; Schmeisser, Dieter
2016-12-20
In this work, solar cells with a freshly made CH 3 NH 3 PbI 3 perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al 2 O 3 deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al 2 O 3 -covered perovskite films showed enhanced ambient air stability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gyula, Péter; Baksa, Ivett; Tóth, Tamás; Mohorianu, Irina; Dalmay, Tamás; Szittya, György
2018-06-01
Plants substantially alter their developmental program upon changes in the ambient temperature. The 21-24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature-controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF-YA2, is also ambient temperature-regulated. NF-YA2, as the component of the conserved transcriptional regulator NF-Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24-nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants. This article is protected by copyright. All rights reserved.
Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1999-01-01
Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.
Spinal cord, hypothalamic, and air temperature: interaction with arousal states in the marmot.
Miller, V M; South, F E
1979-01-01
Yellow-bellied marmots, Marmota flaviventris, prepared with U-shaped thermodes in the epidural space of the thoracic vertebral canal, a thermode in the preoptic hypothalamus, and cortical surface and hippocampal electrodes, were used to investigate the interaction of arousal states with temperature regulation. It was found that arousal state of the animal influences the thermoregulatory responses initiated in either the spinal cord or hypothalamus. Further, changes in ambient temperature affected both the gain and the threshold of these responses. The interaction of the hypothalamus and spinal cord was not an additive function, however the threshold for shivering of each could be altered by temperature manipulation of the other. Future studies in modeling of temperature regulation should consider the contributions of temperature receptors of the spinal cord and the arousal state of the animal during the stimulation period.
Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.
2014-01-01
The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.
NASA Astrophysics Data System (ADS)
Choi, Kyeonggon; Lee, Kiyeol; Jeong, Jaehoon; Ye, Jongpil
2017-03-01
We present the results of low-temperature growth of graphene on polycrystalline copper foil surfaces at 800 °C by using low-pressure chemical-vapor deposition of alcohol precursors. The structural quality of the graphene sample was found to depend significantly on the ambient conditions during the annealing and the growth processes. The improved quality of graphene grown in an oxidizing environment was found to be associated with a lower nucleation density, suggesting that chemisorbed oxygen atoms play a critical role in determining the quality of graphene.
Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.
Air exposure and sample storage time influence on hydrogen release from tungsten
NASA Astrophysics Data System (ADS)
Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.
2010-09-01
In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.
Hyperactivity in Anorexia Nervosa: Warming Up Not Just Burning-Off Calories
Carrera, Olaia; Adan, Roger A. H.; Gutierrez, Emilio; Danner, Unna N.; Hoek, Hans W.; van Elburg, Annemarie A.; Kas, Martien J. H.
2012-01-01
Excessive physical activity is a common feature in Anorexia Nervosa (AN) that interferes with the recovery process. Animal models have demonstrated that ambient temperature modulates physical activity in semi-starved animals. The aim of the present study was to assess the effect of ambient temperature on physical activity in AN patients in the acute phase of the illness. Thirty-seven patients with AN wore an accelerometer to measure physical activity within the first week of contacting a specialized eating disorder center. Standardized measures of anxiety, depression and eating disorder psychopathology were assessed. Corresponding daily values for ambient temperature were obtained from local meteorological stations. Ambient temperature was negatively correlated with physical activity (p = −.405) and was the only variable that accounted for a significant portion of the variance in physical activity (p = .034). Consistent with recent research with an analogous animal model of the disorder, our findings suggest that ambient temperature is a critical factor contributing to the expression of excessive physical activity levels in AN. Keeping patients warm may prove to be a beneficial treatment option for this symptom. PMID:22848634
16 CFR 1203.13 - Test schedule.
Code of Federal Regulations, 2014 CFR
2014-01-01
... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...
16 CFR § 1203.13 - Test schedule.
Code of Federal Regulations, 2013 CFR
2013-01-01
... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...
16 CFR 1203.13 - Test schedule.
Code of Federal Regulations, 2011 CFR
2011-01-01
... helmets, as designated in Table 1203.13, shall be tested for peripheral vision in accordance with § 1203... conditioned in the ambient, high temperature, low temperature, and water immersion environments as follows: helmets 1 and 5—ambient; helmets 2 and 7—high temperature; helmets 3 and 6—low temperature; and helmets 4...
Cliffe, Rebecca N; Haupt, Ryan J; Avey-Arroyo, Judy A; Wilson, Rory P
2015-01-01
Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.
Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment
NASA Technical Reports Server (NTRS)
Boyle, Robert J.
2002-01-01
Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is fed through the hollow probe body. The detector's signal goes to an externally mounted preamplifier. The detector assembly, along with a preamplifier, is calibrated as a function of the surface temperature for various detector temperatures. The output voltage is a function of both the detector and object temperatures.
Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A
2018-01-04
FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Effects of thermal deformation on optical instruments for space application
NASA Astrophysics Data System (ADS)
Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.
2017-11-01
Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.
Mass spectrometry imaging under ambient conditions.
Wu, Chunping; Dill, Allison L; Eberlin, Livia S; Cooks, R Graham; Ifa, Demian R
2013-01-01
Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field. Copyright © 2012 Wiley Periodicals, Inc.
Mass Spectrometry Imaging under Ambient Conditions
Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.
2012-01-01
Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field. PMID:22996621
Seth, Henrik; Gräns, Albin; Sandblom, Erik; Olsson, Catharina; Wiklander, Kerstin; Johnsson, Jörgen I; Axelsson, Michael
2013-01-01
Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological capacity to undertake aerobically challenging activities. Any temperature increase may thus disrupt species-specific temperature adaptations, at both the molecular level as well as in behavior, and concomitant species differences in the temperature sensitivity may shift the competitive balance among coexisting species. We investigated the influence of temperature on metabolic scope and competitive ability in three species of marine sculpin that coexist in Greenland coastal waters. Since these species have different distribution ranges, we hypothesized that there should be a difference in their physiological response to temperature; hence we compared their metabolic scope at three temperatures (4, 9 and 14°C). Their competitive ability at the ambient temperature of 9°C was also tested in an attempt to link physiological capacity with behaviour. The Arctic staghorn sculpin, the species with the northernmost distribution range, had a lower metabolic scope in the higher temperature range compared to the other two species, which had similar metabolic scope at the three temperatures. The Arctic staghorn sculpin also had reduced competitive ability at 9°C and may thus already be negatively affected by the current ocean warming. Our results suggest that climate change can have effects on fish physiology and interspecific competition, which may alter the species composition of the Arctic fish fauna.
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Lin, R. P.; Stubbs, T. J.; Farrell, W. M.
2008-09-01
We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ˜-100 V in the terrestrial magnetotail lobes and potentials of ˜-200 V to ˜-1 kV in the plasma sheet. In the lunar wake, we find potentials of ˜-200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ˜-4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ˜20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These new techniques open the door for future studies of the variation of lunar surface charging as a function of temporal and spatial variations in input currents and as a function of location and material characteristics of the surface as well as comparisons to the increasingly sophisticated theoretical predictions now available.
NASA Astrophysics Data System (ADS)
Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu
New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.
2011-01-01
Background The evaluation of exposure to ambient temperatures in epidemiological studies has generally been based on records from meteorological stations which may not adequately represent local temperature variability. Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under various meteorological conditions based on satellite and meteorological data. Methods A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7 images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The images encompassed both rural and urban landscapes and predictors included: meteorological records of temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year. Results The model explained 77% of the variance in surface temperature, accounting for both temporal and spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of surface temperature. Conclusions This study suggests that a statistical approach to estimating surface temperature incorporating both spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface temperatures, this model may also be used to assess the possible impacts of land use changes under various meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The method proposed here could be replicated in other areas around the globe for which satellite data and meteorological data is available. PMID:21251286
Surface-acoustic-wave (SAW) flow sensor
NASA Astrophysics Data System (ADS)
Joshi, Shrinivas G.
1991-03-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Surface-acoustic-wave (SAW) flow sensor.
Joshi, S G
1991-01-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
[Ambient pressure synthesis and characterization of silica aerogel as adsorbent for dieldrin].
Sha, Wei; Liu, Rui-ping; Liu, Hui-juan; Qu, Jiu-hui
2008-12-01
Hydrophobic silica aerogels were prepared from cheap waterglass precursors via surface modification of wet gels and ambient pressure drying route. Its adsorption capacity of Dieldrin, a typical of persistent organic pollutants (POPs), was examined. It is characterized via BET, FTIR, and DSC-TGA. The silica aerogels were highly hydrophobic with contact angles of 135 degrees-142 degrees, and the hydrophobicity of the aerogels could be maintained up to the temperature of 380 degrees C. The silica aerogels were porous with, pore size distribution of 17.5-23.4 nm, porosity of 94.8%-95.6%, and surface area of 444-560 m2 x g(-1). The results of adsorption experiments indicated that the hydrophobic aerogels could remove 84% of dieldrin from aqueous solution within 4 h; the adsorption process followed the pseudo-second-order kinetics process. Based on the adsorption equilibrium results, the adsorption capacity of silica aerogel was 11 times bigger than by active carbon.
Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao
2017-07-01
Associations of ambient temperature with cardiovascular morbidity and mortality have been well documented in numerous epidemiological studies, but the underlying pathways remain unclear. We investigated whether systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function may be the mechanistic pathways associated with ambient temperature. Forty study participants underwent repeated blood collections for 12 times in Beijing, China in 2010-2011. Ambient temperature and air pollution data were measured in central monitors close to student residences. We created five indices as the sum of weighted biomarker percentiles to represent the overall levels of 15 cardiovascular biomarkers in five pathways (systemic inflammation: hs-CRP, TNF-α and fibrinogen; coagulation: fibrinogen, PAI-1, tPA, vWF and sP-selectin; systemic oxidative stress: Ox-LDL and sCD36: antioxidant activity: EC-SOD and GPX1; and endothelial function: ET-1, E-selectin, ICAM-1 and VCAM-1). We used generalized mixed-effects models to estimate temperature effects controlling for air pollution and other covariates. There were significant decreasing trends in the adjusted means of biomarker indices over the lowest to the highest quartiles of daily temperatures before blood collection. A 10°C decrease at 2-d average daily temperature were associated with increases of 2.5% [95% confidence interval (CI): 0.7, 4.2], 1.6% (95% CI: 0.1, 3.1), 2.7% (95% CI: 0.5, 4.8), 5.5% (95% CI: 3.8, 7.3) and 2.0% (95% CI: 0.3, 3.8) in the indices for systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function, respectively. In contrast, the associations between ambient temperature and individual biomarkers had substantial variation in magnitude and strength. The altered cardiovascular biomarker profiles in healthy adults associated with ambient temperature changes may help explain the temperature-related cardiovascular morbidity and mortality. The biomarker index approach may serve as a novel tool to capture ambient temperature effects. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.
2017-12-01
Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant transport in the basin, temperature induced changes in photochemistry and aerosol phase partitioning, and changes to secondary organic aerosol.
Ethylene glycol contamination effects on first surface aluminized mirrors
NASA Astrophysics Data System (ADS)
Dunlop, Patrick; Probst, Ronald G.; Evatt, Matthew; Reddell, Larry; Sprayberry, David
2016-07-01
The Dark Energy Spectroscopic Instrument (DESI) is under construction for installation on the Mayall 4 Meter telescope. The use of a liquid cooling system is proposed to maintain the DESI prime focus assembly temperature within ±1°C of ambient. Due to concerns of fluid deposition onto optical surfaces from possible leaks, systematic tests were performed of the effects on first surface aluminized mirrors of ethylene glycol and two other candidate coolants. Objective measurement of scattering and reflectivity was an important supplement to visual inspection. Rapid cleanup of a coolant spill followed by a hand wash of the mirror limited surface degradation to the equivalent of a few months of general environmental exposure. Prolonged exposure to corrosive coolants dissolved the aluminum, necesitating mirror recoating.
Interactive effect of elevated CO2 and temperature on coral physiology
NASA Astrophysics Data System (ADS)
Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.
2011-12-01
Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.
Analysis of pipeline transportation systems for carbon dioxide sequestration
NASA Astrophysics Data System (ADS)
Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian
2014-03-01
A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2) inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s) and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.
NASA Astrophysics Data System (ADS)
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Molina, Francisco J; Leynaud, Gerardo C
2017-10-01
Ectotherm species are not capable of generating metabolic heat; therefore, they present different strategies for regulating their body temperatures, ranging from a precise degree of thermoregulation to a passive thermoconformity with ambient temperatures. In reptiles, aerial basking is the most common mechanism for gaining heat. However, among aquatic reptiles, such as freshwater turtles, aquatic basking is also frequent. Hydromedusa tectifera is a turtle of exclusively aquatic and nocturnal habits widely distributed in South America. We studied the relationship between body temperature (Tb) of H. tectifera and its habitat, and explored the effects of sex, life stage and body size and mass on Tb. Fieldwork was conducted in two streams of a mountain area of central Argentina. We recorded cloacal temperature, size and mass of 84 turtles. We also determined individuals' sex and life stage (adult/juvenile). Regarding ambient temperatures, we measured water temperature on the surface (Tsurf) and at depth of turtle capture (Tdepth) and air temperature. Mean Tb was 18.58°C (Min = 10.20°C; Max = 25.70°C). Tsurf and Tdepth were highly correlated. Multi-model analysis using Akaike criterion indicated that Tb was strongly associated with water temperature, whereas air temperature and body size and mass did not show a significant effect. There was also no effect of turtle sex or life stage on Tb. Our results indicate that H. tectifera is a thermoconformer and eurythermal species. A nocturnal pattern of activity and a fully aquatic lifestyle are suggested as determinant factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Tao; Neville, Anne; Sorbie, Ken; Zhong, Zhong
2007-01-01
The formation of calcium carbonate mineral scale is a persistent and expensive problem in oil and gas production, water piping systems, power generator, and batch precipitation. The aim of this paper is to further the understanding of scale formation and inhibition by in situ probing of crystal growth by synchrotron radiation wide angle X-ray scattering (WAXS) at ambient and elevated temperature. This novel technique enables in situ study of mineral scale formation and inhibition and as such, information on the nucleation and growth processes are accessible. This technique studies bulk precipitation and surface deposition in the same system and will be of great benefit to the understanding of an industrial scaling system. It offers an exciting prospect for the study of scaling. It has been shown that the nucleation and growth of various calcareous polymorphs and their individual crystal planes can be followed in real-time and from this the following conclusions are reached. The process of scale deposition on the surface can be divided into an unstable phase and a stable phase. The initial phase of crystallization of calcium carbonate is characterized by instability with individual planes from various vaterite and aragonite polymorphs emerging and subsequently disappearing under the hydrodynamic conditions. After the initial unstable phase, various calcium carbonate crystal planes adhere on the surface and then grow on the surface. At 25 degrees C, the main plane of surface deposit is calcite and a strong (104) peak is detected. The other calcite planes (102), (006), (110) (113) and (202) are hardly detectable under this condition. At 80 degrees C, the main planes in the surface deposit are the (104), (113) and (110) planes of calcite. Stable planes of vaterite and aragonite are also observed. This paper will discuss how surface scale evolves--exploring the power of the synchrotron in situ methodology.
Muller, Rolf; Betsou, Fay; Barnes, Michael G; Harding, Keith; Bonnet, Jacques; Kofanova, Olga; Crowe, John H
2016-04-01
Several approaches to the preservation of biological materials at ambient temperature and the relative impact on sample stability and degradation are reviewed, with a focus on nucleic acids. This appraisal is undertaken within the framework of biobank risk, quality management systems, and accreditation, with a view to assessing how best to apply ambient temperature sample storage to ensure stability, reduce costs, improve handling logistics, and increase the efficiency of biobank procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.
The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.
The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.
Preparation of high porosity xerogels by chemical surface modification.
Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey
1996-01-01
This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.
Exhaled breath temperature in children: reproducibility and influencing factors.
Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P
2014-09-01
This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.
Insect eggs protected from high temperatures by limited homeothermy of plant leaves.
Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur
2009-11-01
Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
Is Obsidian Hydration Dating Affected by Relative Humidity?
Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.
1994-01-01
Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.
Takanabe, Kazuhiro; Khan, Abdulaziz M; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W; Elbaz, Ayman M; Sarathy, S Mani; Tao, Franklin Feng
2017-08-21
Sodium-based catalysts (such as Na 2 WO 4 ) were proposed to selectively catalyze OH radical formation from H 2 O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2 WO 4 , which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2 O 2 species, which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800 °C, and these species are useful for various gas-phase hydrocarbon reactions, including the selective transformation of methane to ethane. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study
NASA Astrophysics Data System (ADS)
Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.
2016-12-01
Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et al., Top Catal 2016, 59, 591-604. 2. Huthwelker, T.; Malmstrom, M. E.; Helleis, F.; Moortgat, G. K.; Peter, T., J Phys Chem A 2004, 108, 6302-6318.
Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments.
NASA Technical Reports Server (NTRS)
Cadenhead, D. A.; Wagner, N. J.; Jones, B. R.; Stetter, J. R.
1972-01-01
Comprehensive survey of the physical surface characteristics of Apollo 14 fines, two fragments of a breccia (14321), and a crystalline rock (14310). The survey was carried out with optical and both scanning and transmission electron microscopy and by studying the adsorption of a variety of gases including nitrogen, hydrogen, and water vapor. Our objective in the optical microscope study was to relate the visible geological and petrological features to the surface properties. Electron microscopy particularly helped relate surface roughness and particle fusion to gas adsorption and pore structure. The fine sample (14163,111) had a surface area of 0.210 sq m/g and a helium density of 2.9 g/cc. Similar values have been observed with breccia fragments. Other observations include physical adsorption of molecular hydrogen at low temperatures and of water vapor at ambient temperatures. It is concluded that these particular lunar materials, while capable of adsorbing water vapor, do not retain it for any significant time at low pressures, nor, under lunar conditions, is there any indication of absorption or penetration.
High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu
2002-01-01
It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.
Growth of well-defined metal and oxide nanoparticles on biological surfaces
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir
2009-03-01
We present a brief overview of our recent studies in the field of bio-enabled surface-mediated growth of inorganic nanoparticles at room temperature and ambient conditions. We demonstrate that all titania, gold, and silver nanoparticles can be grown with relatively monodisperse diameter within 4-6 nm surrounded by biological shells of 1-2 nm thick. As biological templates we utilized ultrathin, molecular uniform and micropatterned surface layers of two different proteins: silk fibroin (for growth of gold and silver nanoparticles) and silaffin (for growth of titania nanoparticles). To identify the grown nanophases and chemical composition/secondary structure of biological templates we applied combined AFM, SEM, TEM, XPS, SERS, UV-vis, and ATR-FTIR techniques.
Quality of surface water in Missouri, water year 2012
Barr, Miya N.
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Role of Water in the Selection of Stable Proteins at Ambient and Extreme Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Bianco, Valentino; Franzese, Giancarlo; Dellago, Christoph; Coluzza, Ivan
2017-04-01
Proteins that are functional at ambient conditions do not necessarily work at extreme conditions of temperature T and pressure P . Furthermore, there are limits of T and P above which no protein has a stable functional state. Here, we show that these limits and the selection mechanisms for working proteins depend on how the properties of the surrounding water change with T and P . We find that proteins selected at high T are superstable and are characterized by a nonextreme segregation of a hydrophilic surface and a hydrophobic core. Surprisingly, a larger segregation reduces the stability range in T and P . Our computer simulations, based on a new protein design protocol, explain the hydropathy profile of proteins as a consequence of a selection process influenced by water. Our results, potentially useful for engineering proteins and drugs working far from ambient conditions, offer an alternative rationale to the evolutionary action exerted by the environment in extreme conditions.
Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.
McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Quality of surface water in Missouri, water year 2013
Barr, Miya N.; Schneider, Rachel E.
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Complementary p- and n-type polymer doping for ambient stable graphene inverter.
Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk
2014-01-28
Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.
Guan, Ming; Jin, Zexin; Li, Junmin; Pan, Xiaocui; Wang, Suizi; Li, Yuelin
2016-01-01
The aim of this study was to investigate the effects of temperature and Cu on the morphological and physiological traits of Elsholtzia haichowensis grown in soils amended with four Cu concentrations (0, 50, 500, and 1000 mg kg(-1)) under ambient temperature and slight warming. At the same Cu concentration, the height, shoot dry weight, total plant dry weight, and root morphological parameters such as length, surface area and tip number of E. haichowensis increased due to the slight warming. The net photosynthetic rate, stomatal conductance, transpiration, light use efficiency were also higher under the slight warming than under ambient temperature. The increased Cu concentrations, total Cu uptake, bioaccumulation factors and tolerance indexes of shoots and roots were also observed at the slight warming. The shoot dry weight, root dry weight, total plant dry weight and the bioaccumulation factors of shoots and roots at 50 mg Cu kg(-1) were significantly higher than those at 500 and 1000 mg Cu kg(-1) under the slight warming. Therefore, the climate warming may improve the ability of E. haichowensis to phytoremediate Cu-contaminated soil, and the ability improvement greatly depended on the Cu concentrations in soils.
Color change of Blue butterfly wing scales in an air - Vapor ambient
NASA Astrophysics Data System (ADS)
Kertész, Krisztián; Piszter, Gábor; Jakab, Emma; Bálint, Zsolt; Vértesy, Zofia; Biró, László Péter
2013-09-01
Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called "pepper-pot" type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.
Beyond the classic thermoneutral zone
Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D
2014-01-01
The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296
2013-01-01
Background The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse’s general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Results Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). Conclusion The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures. PMID:23298405
Beyond the classic thermoneutral zone: Including thermal comfort.
Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D
2014-01-01
The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.
Poller, Christin; Hopster, Klaus; Rohn, Karl; Kästner, Sabine Br
2013-01-08
The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse's general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures.
Strand, Linn B; Barnett, Adrian G; Tong, Shilu
2011-04-01
Seasonal patterns of birth outcomes, such as low birth weight, preterm birth and stillbirth, have been found around the world. As a result, there has been an increasing interest in evaluating short-term exposure to ambient temperature as a determinant of adverse birth outcomes. This paper reviews the epidemiological evidence on seasonality of birth outcomes and the impact of prenatal exposure to ambient temperature on birth outcomes. We identified 20 studies that investigated seasonality of birth outcomes, and reported statistically significant seasonal patterns. Most of the studies found peaks of preterm birth, stillbirth and low birth weight in winter, summer or both, which indicates the extremes of temperature may be an important determinant of poor birth outcomes. We identified 13 studies that investigated the influence of exposure to ambient temperature on birth weight and preterm birth (none examined stillbirth). The evidence for an adverse effect of high temperatures was stronger for birth weight than for preterm birth. More research is needed to clarify whether high temperatures have a causal effect on fetal health. Copyright © 2011 Elsevier Inc. All rights reserved.
Boundary Waves on the Ice Surface Created by Currents
NASA Astrophysics Data System (ADS)
Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.
2013-12-01
The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance equation at the flow-ice interface. It is assumed that the interfacial heat fluxes of the liquid and ice are determined by the temperature profile, and the Reynolds stress and the turbulent heat flux are expressed by the eddy diffusivity of momentum and the eddy diffusivity of heat, respectively. In addition, the liquid can be divided into two layers; viscous sublayer and turbulent layer. In order to determine the velocity and temperature profile in the liquid, we employ the Prandtl-Taylor analogy which assumes that the velocity profile follows a linear law in the viscous sublayer and a logarithmic law in the turbulent layer, and the eddy diffusivity of heat is described by the eddy diffusivity of momentum and Prandtl number of the liquid. Finally, we obtain the temperature profiles (because the heat transfer equation for the ice reduces to the Laplace equation, the temperature profile in the ice can be easily estimated) and interfacial heat fluxes.
Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm
2008-12-02
The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.
NASA Astrophysics Data System (ADS)
Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul
2004-10-01
Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.
Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D
2016-08-01
To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.
NASA Astrophysics Data System (ADS)
Drake, J. E.; Toelker, M. G.; Reich, P. B.
2016-12-01
Respiration drives the metabolism and growth of trees and represents a large and uncertain component of land surface feedbacks to climate change. A fixed scaling relationship between body mass and respiration has been described as a fundamental law across plants and animals, but this has been controversial. There is now ample evidence that trees adjust their respiration rates in response to temperature variation in their growth environment through physiological acclimation. Is acclimation sufficiently large to alter the scaling relationship between respiration and mass? Here, we make continuous measurements of in-situ respiration rates complemented with repeated measurements at a defined set temperature of 15°C for leaves and the entire aboveground component of Eucalyptus parramattensis and E. tereticornis trees growing in the field in warming experiments (ambient vs. +3°C) using 12 whole tree chambers in Australia. We report thousands of repeated measurements as trees grew from 1 to 9-m-tall, allowing a concurrent evaluation of physiological acclimation and metabolic scaling. Trees adjusted the respiration rates of leaves and whole-crowns in relation to the air temperature of the preceding three days, such that: (1) respiration rate per unit mass was reduced by warming when measured at a common temperature, and (2) in-situ whole-crown respiration rates per unit mass were equivalent across ambient and warmed trees (i.e., homeostatic respiration). Acclimation appeared to modify the scaling between respiration and mass, as the slope and intercept of this relationship were affected by recent air temperature. This suggests that metabolic scaling is not fixed, although the overall allometric scaling slope was consistent with the theoretical value of 0.75 (95% CI of 0.5 to 0.78). We suggest that considering acclimation and tree mass together provides new insight into a dynamic scaling of tree respiration, with implications for land surface feedbacks under climate warming.
Raineri, Mariana; González, Betina; Echeto, Celeste Rivero; Muñiz, Javier A.; Gutierrez, María Laura; Ghanem, Carolina I.; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J.; Veronica, Bisagno
2015-01-01
Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg , 2h apart; modafinil (90mg/kg) was injected twice, 1h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out six days after treatments and processed for TH, DAT, GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by sriatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures. PMID:25261212
Raineri, Mariana; González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A; Gutiérrez, María Laura; Ghanem, Carolina I; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica
2015-01-01
Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.
NASA Technical Reports Server (NTRS)
Jones, Steven M.; Paik, Jong-Ah
2013-01-01
A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.