Sample records for ambiguous glycan binding

  1. MCAW-DB: A glycan profile database capturing the ambiguity of glycan recognition patterns.

    PubMed

    Hosoda, Masae; Takahashi, Yushi; Shiota, Masaaki; Shinmachi, Daisuke; Inomoto, Renji; Higashimoto, Shinichi; Aoki-Kinoshita, Kiyoko F

    2018-05-11

    Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The profiles in MCAW-DB could potentially be used as predictors of affinity of unknown or novel glycans to particular GBPs by comparing how well they match the existing profiles for those GBPs. Moreover, as the glycan profiles of diseased tissues become available, glycan alignments could also be used to identify glycan biomarkers unique to that tissue. Databases of these alignments may be of great use for drug discovery. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Glycobiology simplified: diverse roles of glycan recognition in inflammation

    PubMed Central

    Schnaar, Ronald L.

    2016-01-01

    Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978

  3. Development and application of an algorithm to compute weighted multiple glycan alignments.

    PubMed

    Hosoda, Masae; Akune, Yukie; Aoki-Kinoshita, Kiyoko F

    2017-05-01

    A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. http://www.rings.t.soka.ac.jp. kkiyoko@soka.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  4. The Glycan Microarray Story from Construction to Applications.

    PubMed

    Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae

    2017-04-18

    Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.

  5. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform

    PubMed Central

    Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong

    2015-01-01

    A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329

  6. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform.

    PubMed

    Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong

    2015-07-16

    A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.

  7. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.

    PubMed

    Byrd-Leotis, Lauren; Liu, Renpeng; Bradley, Konrad C; Lasanajak, Yi; Cummings, Sandra F; Song, Xuezheng; Heimburg-Molinaro, Jamie; Galloway, Summer E; Culhane, Marie R; Smith, David F; Steinhauer, David A; Cummings, Richard D

    2014-06-03

    Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.

  8. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides

    PubMed Central

    Yahashiri, Atsushi; Jorgenson, Matthew A.; Weiss, David S.

    2015-01-01

    Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division. PMID:26305949

  9. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    PubMed

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  10. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells.

    PubMed

    Srikrishna, G; Panneerselvam, K; Westphal, V; Abraham, V; Varki, A; Freeze, H H

    2001-04-01

    We recently showed that a class of novel carboxylated N:-glycans was constitutively expressed on endothelial cells. Activated, but not resting, neutrophils expressed binding sites for the novel glycans. We also showed that a mAb against these novel glycans (mAbGB3.1) inhibited leukocyte extravasation in a murine model of peritoneal inflammation. To identify molecules that mediated these interactions, we isolated binding proteins from bovine lung by their differential affinity for carboxylated or neutralized glycans. Two leukocyte calcium-binding proteins that bound in a carboxylate-dependent manner were identified as S100A8 and annexin I. An intact N terminus of annexin I and heteromeric assembly of S100A8 with S100A9 (another member of the S100 family) appeared necessary for this interaction. A mAb to S100A9 blocked neutrophil binding to immobilized carboxylated glycans. Purified human S100A8/A9 complex and recombinant human annexin I showed carboxylate-dependent binding to immobilized bovine lung carboxylated glycans and recognized a subset of mannose-labeled endothelial glycoproteins immunoprecipitated by mAbGB3.1. Saturable binding of S100A8/A9 complex to endothelial cells was also blocked by mAbGB3.1. These results suggest that the carboxylated glycans play important roles in leukocyte trafficking by interacting with proteins known to modulate extravasation.

  11. Galectins are human milk glycan receptors

    PubMed Central

    Noll, Alexander J; Gourdine, Jean-Philippe; Yu, Ying; Lasanajak, Yi; Smith, David F; Cummings, Richard D

    2016-01-01

    The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin–HMG interactions may play a role in infant immunity. PMID:26747425

  12. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d.

    PubMed

    Doxey, Andrew C; Cheng, Zhenyu; Moffatt, Barbara A; McConkey, Brendan J

    2010-08-03

    Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.

  13. The GM2 Glycan Serves as a Functional Coreceptor for Serotype 1 Reovirus

    PubMed Central

    Liu, Yan; Blaum, Bärbel S.; Reiter, Dirk M.; Feizi, Ten; Dermody, Terence S.; Stehle, Thilo

    2012-01-01

    Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus. PMID:23236285

  14. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus.

    PubMed

    Reiss, Kerstin; Stencel, Jennifer E; Liu, Yan; Blaum, Bärbel S; Reiter, Dirk M; Feizi, Ten; Dermody, Terence S; Stehle, Thilo

    2012-01-01

    Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.

  15. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment ofmore » the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.« less

  16. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  17. Human H3N2 Influenza Viruses Isolated from 1968 To 2012 Show Varying Preference for Receptor Substructures with No Apparent Consequences for Disease or Spread

    PubMed Central

    Gulati, Shelly; Smith, David F.; Cummings, Richard D.; Couch, Robert B.; Griesemer, Sara B.; St. George, Kirsten; Webster, Robert G.; Air, Gillian M.

    2013-01-01

    It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population. PMID:23805213

  18. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE PAGES

    Hu, Liya; Ramani, Sasirekha; Czako, Rita; ...

    2015-09-30

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  19. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Liya; Ramani, Sasirekha; Czako, Rita

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  20. Conformational Heterogeneity of the HIV Envelope Glycan Shield.

    PubMed

    Yang, Mingjun; Huang, Jing; Simon, Raphael; Wang, Lai-Xi; MacKerell, Alexander D

    2017-06-30

    To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.

  1. Rapid assays for lectin toxicity and binding changes that reflect altered glycosylation in mammalian cells.

    PubMed

    Stanley, Pamela; Sundaram, Subha

    2014-06-03

    Glycosylation engineering is used to generate glycoproteins, glycolipids, or proteoglycans with a more defined complement of glycans on their glycoconjugates. For example, a mammalian cell glycosylation mutant lacking a specific glycosyltransferase generates glycoproteins, and/or glycolipids, and/or proteoglycans with truncated glycans missing the sugar transferred by that glycosyltransferase, as well as those sugars that would be added subsequently. In some cases, an alternative glycosyltransferase may then use the truncated glycans as acceptors, thereby generating a new or different glycan subset in the mutant cell. Another type of glycosylation mutant arises from gain-of-function mutations that, for example, activate a silent glycosyltransferase gene. In this case, glycoconjugates will have glycans with additional sugar(s) that are more elaborate than the glycans of wild type cells. Mutations in other genes that affect glycosylation, such as nucleotide sugar synthases or transporters, will alter the glycan complement in more general ways that usually affect several types of glycoconjugates. There are now many strategies for generating a precise mutation in a glycosylation gene in a mammalian cell. Large-volume cultures of mammalian cells may also generate spontaneous mutants in glycosylation pathways. This article will focus on how to rapidly characterize mammalian cells with an altered glycosylation activity. The key reagents for the protocols described are plant lectins that bind mammalian glycans with varying avidities, depending on the specific structure of those glycans. Cells with altered glycosylation generally become resistant or hypersensitive to lectin toxicity, and have reduced or increased lectin or antibody binding. Here we describe rapid assays to compare the cytotoxicity of lectins in a lectin resistance test, and the binding of lectins or antibodies by flow cytometry in a glycan-binding assay. Based on these tests, glycosylation changes expressed by a cell can be revealed, and glycosylation mutants classified into phenotypic groups that may reflect a loss-of-function or gain-of-function mutation in a specific gene involved in glycan synthesis. Copyright © 2014 John Wiley & Sons, Inc.

  2. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    PubMed

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. Copyright © 2016 Wibmer et al.

  3. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.« less

  4. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    PubMed Central

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.

    2016-01-01

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. PMID:27581986

  5. Recognition of microbial glycans by human intelectin-1

    DOE PAGES

    Wesener, Darryl A.; Wangkanont, Kittikhun; McBride, Ryan; ...

    2015-07-06

    The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. In this paper, we used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol–modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in humanmore » glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. Finally, this ligand selectivity suggests that hIntL-1 functions in microbial surveillance.« less

  6. Glycan Engagement Dictates Hydrocephalus Induction by Serotype 1 Reovirus

    PubMed Central

    Stencel-Baerenwald, Jennifer; Reiss, Kerstin; Blaum, Bärbel S.; Colvin, Daniel; Li, Xiao-Nan; Abel, Ty; Boyd, Kelli; Stehle, Thilo

    2015-01-01

    ABSTRACT Receptors expressed on the host cell surface adhere viruses to target cells and serve as determinants of viral tropism. Several viruses bind cell surface glycans to facilitate entry, but the contribution of specific glycan moieties to viral disease is incompletely understood. Reovirus provides a tractable experimental model for studies of viral neuropathogenesis. In newborn mice, serotype 1 (T1) reovirus causes hydrocephalus, whereas serotype 3 (T3) reovirus causes encephalitis. T1 and T3 reoviruses engage distinct glycans, suggesting that glycan-binding capacity contributes to these differences in pathogenesis. Using structure-guided mutagenesis, we engineered a mutant T1 reovirus incapable of binding the T1 reovirus-specific glycan receptor, GM2. The mutant virus induced substantially less hydrocephalus than wild-type virus, an effect phenocopied by wild-type virus infection of GM2-deficient mice. In comparison to wild-type virus, yields of mutant virus were diminished in cultured ependymal cells, the cell type that lines the brain ventricles. These findings suggest that GM2 engagement targets reovirus to ependymal cells in mice and illuminate the function of glycan engagement in reovirus serotype-dependent disease. PMID:25736887

  7. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    NASA Astrophysics Data System (ADS)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  8. Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus.

    PubMed

    van Eijk, Martin; Rynkiewicz, Michael J; Khatri, Kshitij; Leymarie, Nancy; Zaia, Joseph; White, Mitchell R; Hartshorn, Kevan L; Cafarella, Tanya R; Van Die, Irma; Hessing, Martin; Seaton, Barbara A; Haagsman, Henk P

    2018-05-16

    Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD-glycosylation provides interactions with the sialic acid binding site of IAV, and a tripeptide loop at the lectin binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neckCRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure including the lectin site conformation, but revealed a potential second non-lectin binding site for glycans. IAV hemagglutination inhibition, IAV aggregation and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3) sialylated oligosaccharides. Glycan binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures whereas RhNCRD bound polylactosamine-containing glycans. Presence of the N-glycan in the CRD increases the glycan binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform  the design of  recombinant SP-D-based antiviral drugs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Solution NMR Analyses of the C-type Carbohydrate Recognition Domain of DC-SIGNR Protein Reveal Different Binding Modes for HIV-derived Oligosaccharides and Smaller Glycan Fragments

    PubMed Central

    Probert, Fay; Whittaker, Sara B.-M.; Crispin, Max; Mitchell, Daniel A.; Dixon, Ann M.

    2013-01-01

    The C-type lectin DC-SIGNR (dendritic cell-specific ICAM-3-grabbing non-integrin-related; also known as L-SIGN or CD299) is a promising drug target due to its ability to promote infection and/or within-host survival of several dangerous pathogens (e.g. HIV and severe acute respiratory syndrome coronavirus (SARS)) via interactions with their surface glycans. Crystallography has provided excellent insight into the mechanism by which DC-SIGNR interacts with small glycans, such as (GlcNAc)2Man3; however, direct observation of complexes with larger, physiological oligosaccharides, such as Man9GlcNAc2, remains elusive. We have utilized solution-state nuclear magnetic resonance spectroscopy to investigate DC-SIGNR binding and herein report the first backbone assignment of its active, calcium-bound carbohydrate recognition domain. Direct interactions with the small sugar fragments Man3, Man5, and (GlcNAc)2Man3 were investigated alongside Man9GlcNAc derived from recombinant gp120 (present on the HIV viral envelope), providing the first structural data for DC-SIGNR in complex with a virus-associated ligand, and unique binding modes were observed for each glycan. In particular, our data show that DC-SIGNR has a different binding mode for glycans on the HIV viral envelope compared with the smaller glycans previously observed in the crystalline state. This suggests that using the binding mode of Man9GlcNAc, instead of those of small glycans, may provide a platform for the design of DC-SIGNR inhibitors selective for high mannose glycans (like those on HIV). 15N relaxation measurements provided the first information on the dynamics of the carbohydrate recognition domain, demonstrating that it is a highly flexible domain that undergoes ligand-induced conformational and dynamic changes that may explain the ability of DC-SIGNR to accommodate a range of glycans on viral surfaces. PMID:23788638

  10. Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts.

    PubMed

    Yoon, Seon-Joo; Utkina, Natalia; Sadilek, Martin; Yagi, Hirokazu; Kato, Koichi; Hakomori, Sen-itiroh

    2013-07-01

    High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.

  11. Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses*

    PubMed Central

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L.; Ashline, David J.; Prasad, B. V. Venkataram; Estes, Mary K.; Reinhold, Vernon N.; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures. PMID:25048705

  12. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  13. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins.

    PubMed

    Bensing, Barbara A; Khedri, Zahra; Deng, Lingquan; Yu, Hai; Prakobphol, Akraporn; Fisher, Susan J; Chen, Xi; Iverson, Tina M; Varki, Ajit; Sullam, Paul M

    2016-11-01

    Serine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity. Here we examine the binding properties of four additional BRs from Streptococcus sanguinis or Streptococcus mitis and characterize the molecular determinants of ligand selectivity and affinity. Each BR has two domains that are essential for sialoglycan binding by GspB. One domain is structurally similar to the glycan-binding module of mammalian Siglecs (sialic acid-binding immunoglobulin-like lectins), including an arginine residue that is critical for glycan recognition, and that resides within a novel, conserved YTRY motif. Despite low sequence similarity to GspB, one of the BRs selectively binds sialyl-T antigen. Although the other three BRs are highly similar to Hsa, each displayed a unique ligand repertoire, including differential recognition of sialyl Lewis antigens and sulfated glycans. These differences in glycan selectivity were closely associated with differential binding to salivary and platelet glycoproteins. Specificity of sialoglycan adherence is likely an evolving trait that may influence the propensity of streptococci expressing Siglec-like adhesins to cause infective endocarditis. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity.

    PubMed

    Lee, Sang-Min; Booe, Jason M; Gingell, Joseph J; Sjoelund, Virginie; Hay, Debbie L; Pioszak, Augen A

    2017-07-05

    The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI - cells, which yield core N-glycans (Man 5 GlcNAc 2 ). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.

  15. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    PubMed

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Functional Regulation of Sugar Assimilation by N-Glycan-specific Interaction of Pancreatic α-Amylase with Glycoproteins of Duodenal Brush Border Membrane*

    PubMed Central

    Asanuma-Date, Kimie; Hirano, Yuki; Le, Na; Sano, Kotone; Kawasaki, Nana; Hashii, Noritaka; Hiruta, Yoko; Nakayama, Ken-ichi; Umemura, Mariko; Ishikawa, Kazuhiko; Sakagami, Hiromi; Ogawa, Haruko

    2012-01-01

    Porcine pancreatic α-amylase (PPA) binds to N-linked glycans of glycoproteins (Matsushita, H., Takenaka, M., and Ogawa, H. (2002) J. Biol Chem., 277, 4680–4686). Immunostaining revealed that PPA is located at the brush-border membrane (BBM) of enterocytes in the duodenum and that the binding is inhibited by mannan but not galactan, indicating that PPA binds carbohydrate-specifically to BBM. The ligands for PPA in BBM were identified as glycoprotein N-glycans that are significantly involved in the assimilation of glucose, including sucrase-isomaltase (SI) and Na+/Glc cotransporter 1 (SGLT1). Binding of SI and SGLT1 in BBM to PPA was dose-dependent and inhibited by mannan. Using BBM vesicles, we found functional changes in PPA and its ligands in BBM due to the N-glycan-specific interaction. The starch-degrading activity of PPA and maltose-degrading activity of SI were enhanced to 240 and 175%, respectively, while Glc uptake by SGLT1 was markedly inhibited by PPA at high but physiologically possible concentrations, and the binding was attenuated by the addition of mannose-specific lectins, especially from Galanthus nivalis. Additionally, recombinant human pancreatic α-amylases expressed in yeast and purified by single-step affinity chromatography exhibited the same carbohydrate binding specificity as PPA in binding assays with sugar-biotinyl polymer probes. The results indicate that mammalian pancreatic α-amylases share a common carbohydrate binding activity and specifically bind to the intestinal BBM. Interaction with N-glycans in the BBM activated PPA and SI to produce much Glc on the one hand and to inhibit Glc absorption by enterocytes via SGLT1 in order to prevent a rapid increase in blood sugar on the other. PMID:22584580

  17. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  18. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    PubMed

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  19. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doores, Katie J.; Fulton, Zara; Hong, Vu

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12,more » their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.« less

  20. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  1. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    PubMed

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more binding inhibition than by the same amount of intact human lactoferrin or by the plant-derived N-glycans released from the rice recombinant lactoferrin; 3) pre-incubation of the bacteria with N-linked glycans released from human tear proteins inhibiting the adhesion of the ocular P. aeruginosa strains to immobilised tear proteins; 4) inhibition by the N-glycans from lactoferrin of the ability of an ocular strain of P. aeruginosa to invade corneal epithelial cells; 5) removal of terminal sialic acid and fucose moieties from the tear glycoproteins with α2-3,6,8 neuraminidase (sialidase) and α1-2,3,4 fucosidase resulting in a reduction in binding of the UTI P. aeruginosa isolate, but not the adhesion of the ocular cytotoxic (6206) or invasive (6294) isolates. Glycosidase activity was validated by mass spectrometry. In all cases, the magnitude of inhibition of bacterial adhesion by the N-glycans was consistently greater for the cytotoxic ocular strain than for the invasive ocular strain. Ocular P. aeruginosa isolates seems to exhibit different adhesion mechanism than previously known PAI and PAII lectin adhesion. The work may contribute towards the development of glycan-focused therapies to prevent P. aeruginosa infection of the eye. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site

    PubMed Central

    Crooks, Ema T.; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S.; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O’Dell, Sijy; LaBranche, Celia; Robinson, James E.; Montefiori, David C.; McKee, Krisha; Du, Sean X.; Doria-Rose, Nicole; Kwong, Peter D.; Mascola, John R.; Zhu, Ping; Schief, William R.; Wyatt, Richard T.; Whalen, Robert G.; Binley, James M.

    2015-01-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative “glycan fence” that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine. PMID:26023780

  3. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    PubMed

    Crooks, Ema T; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O'Dell, Sijy; LaBranche, Celia; Robinson, James E; Montefiori, David C; McKee, Krisha; Du, Sean X; Doria-Rose, Nicole; Kwong, Peter D; Mascola, John R; Zhu, Ping; Schief, William R; Wyatt, Richard T; Whalen, Robert G; Binley, James M

    2015-05-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  4. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.

    PubMed

    Lennemann, Nicholas J; Rhein, Bethany A; Ndungo, Esther; Chandran, Kartik; Qiu, Xiangguo; Maury, Wendy

    2014-01-28

    Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus vaccines and therapeutics are being developed, there are no licensed products. The sole viral envelope glycoprotein, which is a principal immunogenic target, contains a heavy shield of glycans surrounding the conserved receptor-binding domain. We find that disruption of this shield through targeted mutagenesis leads to an increase in cell entry, protease sensitivity, and antiserum/antibody sensitivity but is not sufficient to allow virion binding to the intracellular receptor NPC1. Therefore, our studies provide evidence that filoviruses maintain glycoprotein glycosylation to protect against proteases and antibody neutralization at the expense of efficient entry. Our results unveil interesting insights into the unique entry process of filoviruses and potential immune evasion tactics of the virus.

  5. Host specific glycans are correlated with susceptibility to infection by lagoviruses, but not with their virulence.

    PubMed

    Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques

    2017-11-29

    The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs are observed. The mechanisms responsible for the emergence of pathogenicity and host-species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely doors of virus entry. Here we studied the glycan-binding properties of novel pathogenic and non-pathogenic strains looking for a link between glycan-binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host range of the virus strains, suggesting that glycan diversity contributes to lagoviruses' host range. Copyright © 2017 American Society for Microbiology.

  6. A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Nishihara, Shoko; Takase-Yoden, Sayaka; Sakoda, Yoshihiro; Kida, Hiroshi

    2014-05-01

    Influenza viruses recognize sialoglycans as receptors. Although viruses isolated form chickens preferentially bind to sialic acid α2,3 galactose (SAα2,3Gal) glycans as do those of ducks, chickens were not experimentally infected with viruses isolated from ducks. A chicken influenza virus, A/chicken/Ibaraki/1/2005 (H5N2) (Ck/IBR) bound to fucose-branched SAα2,3Gal glycans, whereas the binding towards linear SAα2,3Gal glycans was weak. On the epithelial cells of the upper respiratory tracts of chickens, fucose-branched SAα2,3Gal glycans were detected, but not linear SAα2,3Gal glycans. The growth of Ck/IBR in MDCK-FUT cells, which were genetically prepared to express fucose-branched SAα2,3Gal glycans, was significantly higher than that in the parental MDCK cells. The present results indicate that fucose-branched SAα2,3Gal glycans existing on the epithelial cells lining the upper respiratory tracts of chickens are critical for recognition by Ck/IBR. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    PubMed

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs.

    PubMed

    Arata-Kawai, Hanayo; Singer, Mark S; Bistrup, Annette; Zante, Annemieke van; Wang, Yang-Qing; Ito, Yuki; Bao, Xingfeng; Hemmerich, Stefan; Fukuda, Minoru; Rosen, Steven D

    2011-01-01

    L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. The glycan structure of albumin Redhill, a glycosylated variant of human serum albumin.

    PubMed

    Kragh-Hansen, U; Donaldson, D; Jensen, P H

    2001-11-26

    Although human serum albumin is synthesized without carbohydrate, glycosylated variants of the protein can be found. We have determined the structure of the glycan bound to the double-mutant albumin Redhill (-1 Arg, 320 Ala-->Thr). The oligosaccharide was released from the protein using anhydrous hydrazine, and its structure was investigated using neuraminidase and a reagent array analysis method, which is based on the use of specific exoglycosidases. The glycan was shown to be a disialylated biantennary complex type oligosaccharide N-linked to 318 Asn. However, a minor part (11 mol%) of the glycan was without sialic acid. The structure is principally the same as that of glycans bound to two other types of glycosylated albumin variants. Glycosylation can affect, for example, the fatty acid binding properties of albumin. Taking the present information into account, it is apparent that different effects on binding are caused not by different glycan structures but by different locations of attachment, with the possible addition of local conformational changes in the protein molecule.

  10. Distinct roles of N- and O-glycans in cellulase activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. In this paper, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalyticmore » domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. In conclusion, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.« less

  11. Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival

    PubMed Central

    Goossens, Katty V. Y.; Ielasi, Francesco S.; Nookaew, Intawat; Stals, Ingeborg; Alonso-Sarduy, Livan; Daenen, Luk; Van Mulders, Sebastiaan E.; Stassen, Catherine; van Eijsden, Rudy G. E.; Siewers, Verena; Delvaux, Freddy R.; Kasas, Sandor; Nielsen, Jens; Devreese, Bart

    2015-01-01

    ABSTRACT We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. PMID:25873380

  12. Distinct roles of N- and O-glycans in cellulase activity and stability

    DOE PAGES

    Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.; ...

    2017-12-11

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. In this paper, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalyticmore » domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. In conclusion, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.« less

  13. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    PubMed

    Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram

    2010-10-29

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.

  14. Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin

    PubMed Central

    Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M.; Sasisekharan, Ram

    2010-01-01

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA. PMID:21060797

  15. Hierarchical sampling for metastable conformers determines biomolecular recognition: the case of malectin and diglucosylated N-glycan interactions.

    PubMed

    Mamidi, Ashalatha Sreshty; Surolia, Avadhesha

    2015-01-01

    Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.

  16. Anti-Retroviral Lectins Have Modest Effects on Adherence of Trichomonas vaginalis to Epithelial Cells In Vitro and on Recovery of Tritrichomonas foetus in a Mouse Vaginal Model

    PubMed Central

    Chatterjee, Aparajita; Ratner, Daniel M.; Ryan, Christopher M.; Johnson, Patricia J.; O’Keefe, Barry R.; Secor, W. Evan; Anderson, Deborah J.; Robbins, Phillips W.; Samuelson, John

    2015-01-01

    Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas. PMID:26252012

  17. Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides

    NASA Astrophysics Data System (ADS)

    Chai, Wengang; Zhang, Yibing; Mauri, Laura; Ciampa, Maria G.; Mulloy, Barbara; Sonnino, Sandro; Feizi, Ten

    2018-05-01

    Gangliosides, as plasma membrane-associated sialylated glycolipids, are antigenic structures and they serve as ligands for adhesion proteins of pathogens, for toxins of bacteria, and for endogenous proteins of the host. The detectability by carbohydrate-binding proteins of glycan antigens and ligands on glycolipids can be influenced by the differing lipid moieties. To investigate glycan sequences of gangliosides as recognition structures, we have underway a program of work to develop a "gangliome" microarray consisting of isolated natural gangliosides and neoglycolipids (NGLs) derived from glycans released from them, and each linked to the same lipid molecule for arraying and comparative microarray binding analyses. Here, in the first phase of our studies, we describe a strategy for high-sensitivity assignment of the tetrasaccharide backbones and application to identification of eight of monosialylated glycans released from bovine brain gangliosides. This approach is based on negative-ion electrospray mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) of the desialylated glycans. Using this strategy, we have the data on backbone regions of four minor components among the monosialo-ganglioside-derived glycans; these are of the ganglio-, lacto-, and neolacto-series.

  18. A recombinant fungal lectin for labeling truncated glycans on human cancer cells.

    PubMed

    Audfray, Aymeric; Beldjoudi, Mona; Breiman, Adrien; Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.

  19. A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells

    PubMed Central

    Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases. PMID:26042789

  20. N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin*

    PubMed Central

    Sumer-Bayraktar, Zeynep; Kolarich, Daniel; Campbell, Matthew P.; Ali, Sinan; Packer, Nicolle H.; Thaysen-Andersen, Morten

    2011-01-01

    Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues. PMID:21558494

  1. When galectins recognize glycans: from biochemistry to physiology and back again.

    PubMed

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P; Guardia, Carlos M; Estrin, Dario A; Vasta, Gerardo R; Rabinovich, Gabriel A

    2011-09-20

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. © 2011 American Chemical Society

  2. Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi

    PubMed Central

    Deng, Lingquan; Song, Jeongmin; Gao, Xiang; Wang, Jiawei; Yu, Hai; Chen, Xi; Varki, Nissi; Naito-Matsui, Yuko; Galán, Jorge E.; Varki, Ajit

    2014-01-01

    Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here we report that typhoid toxin binds to and is toxic towards cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi’s host specificity and may help the development of therapies for typhoid fever. PMID:25480294

  3. Inhibition of glycosylation on a camelid antibody uniquely affects its FcγRI binding activity.

    PubMed

    Krahn, Natalie; Spearman, Maureen; Meier, Markus; Dorion-Thibaudeau, July; McDougall, Matthew; Patel, Trushar R; De Crescenzo, Gregory; Durocher, Yves; Stetefeld, Jörg; Butler, Michael

    2017-01-01

    Glycoengineering of mAbs has become common practice in attempts to generate the ideal mAb candidate for a wide range of therapeutic applications. The effects of these glycan modifications on the binding affinity of IgG mAbs for FcγRIIIa and their cytotoxicity are well known. However, little is understood about the effect that these modifications have on binding to the high affinity FcγRI receptor. This study analyzed the effect of variable N-glycosylation on a human-llama hybrid mAb (EG2-hFc, 80kDa) binding to FcγRI including a comparison to a full-sized IgG1 (DP-12, 150kDa). This was achieved by the addition of three glycosylation inhibitors (swainsonine, castanospermine, and kifunensine) independently to Chinese hamster ovary (CHO) cell cultures to generate hybrid and high mannose glycan structures. Biophysical analysis by circular dichroism, dynamic light scattering and analytical ultra-centrifugation confirmed that the solution-behaviour of the mAbs remained constant over multiple concentrations and glycan treatments. However, changes were observed when studying the interaction of FcγRI with variously glycosylated mAbs. Both mAbs were observed to have a decreased binding affinity upon treatment with swainsonine which produced hybrid glycans. Following de-glycosylation the binding affinity for EG2-hFc was only marginally reduced (6-fold) compared to a drastic (118-fold) decrease for DP-12. In summary, our data suggest that the relatively low molecular weight of chimeric EG2-hFc may contribute to its enhanced stability against glycan changes making it a highly suitable mAb candidate for therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  5. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  6. Sensitive and Structure-Informative N-Glycosylation Analysis by MALDI-MS; Ionization, Fragmentation, and Derivatization

    PubMed Central

    Nishikaze, Takashi

    2017-01-01

    Mass spectrometry (MS) has become an indispensable tool for analyzing post translational modifications of proteins, including N-glycosylated molecules. Because most glycosylation sites carry a multitude of glycans, referred to as “glycoforms,” the purpose of an N-glycosylation analysis is glycoform profiling and glycosylation site mapping. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has unique characteristics that are suited for the sensitive analysis of N-glycosylated products. However, the analysis is often hampered by the inherent physico-chemical properties of N-glycans. Glycans are highly hydrophilic in nature, and therefore tend to show low ion yields in both positive- and negative-ion modes. The labile nature and complicated branched structures involving various linkage isomers make structural characterization difficult. This review focuses on MALDI-MS-based approaches for enhancing analytical performance in N-glycosylation research. In particular, the following three topics are emphasized: (1) Labeling for enhancing the ion yields of glycans and glycopeptides, (2) Negative-ion fragmentation for less ambiguous elucidation of the branched structure of N-glycans, (3) Derivatization for the stabilization and linkage isomer discrimination of sialic acid residues. PMID:28794918

  7. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B and G

    PubMed Central

    Stewart-Jones, Guillaume B. E.; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V.; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W.; Davison, Jack R.; Georgiev, Ivelin S.; Joyce, M. Gordon; Do Kwon, Young; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S.; Shivatare, Vidya S.; Lee, Chang-Chun D.; Wu, Chung-Yi; Bewley, Carole A.; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T.; Wong, Chi-Huey; Mascola, John R.; Kwong, Peter D.

    2017-01-01

    The HIV-1-envelope (Env) trimer is covered by a glycan shield of ~90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, which encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans amongst known broadly neutralizing antibodies that target the glycan-shielded trimer. PMID:27114034

  8. WURCS 2.0 Update To Encapsulate Ambiguous Carbohydrate Structures.

    PubMed

    Matsubara, Masaaki; Aoki-Kinoshita, Kiyoko F; Aoki, Nobuyuki P; Yamada, Issaku; Narimatsu, Hisashi

    2017-04-24

    Accurate representation of structural ambiguity is important for storing carbohydrate structures containing varying levels of ambiguity in the literature and databases. Although many representations for carbohydrates have been developed in the past, a generalized but discrete representation format did not exist. We had previously developed the Web3 Unique Representation of Carbohydrate Structures (WURCS) in an attempt to define a generalizable and unique linear representation for carbohydrate structures. However, it lacked sufficient rules to uniquely describe ambiguous structures. In this work, we updated WURCS to handle such ambiguous monosaccharide structures. In particular, to handle structural ambiguity around (potential) carbonyl groups incidental to the carbohydrate analysis, we defined a representation of backbone carbons containing atomic-level ambiguity. As a result, we show that WURCS 2.0 can represent a wider variety of carbohydrate structures containing ambiguous monosaccharides, such as those whose ring closure is undefined or whose anomeric information is only known. This new format provides a representation of carbohydrates that was not possible before, and it is currently being used by the International Glycan Structure Repository GlyTouCan.

  9. Repertoire of human natural anti-glycan immunoglobulins. Do we have auto-antibodies?

    PubMed

    Bovin, Nicolai; Obukhova, Polina; Shilova, Nadezhda; Rapoport, Evgenia; Popova, Inna; Navakouski, Maksim; Unverzagt, Carlo; Vuskovic, Marko; Huflejt, Margaret

    2012-09-01

    Profiling of donor's antibodies using glycan arrays demonstrated presence of antibodies capable of binding to >100 mammalian glycans or their fragments. For example, relatively high binding to Galα1-4Galβ1-4GlcNAc (P(1)), Galα1-4Galβ1-4Glc (P(k)), Galβ1-3GlcNAc (Le(c)), 4-O-SuGalβ1-4GlcNAc, and GalNAcα1-3GalNAc (Fs) was found in all tested individuals. Affinity isolation using hapten-specific chromatography in combination with epitope mapping revealed their glycotopes. Notably, a significant part of the antibodies was capable of recognizing a fragment of larger glycans, for example, -Galβ1-4Glc of glycolipids, or Fucα1-3GlcNAc motif of Le(X)/Le(Y) antigens. Their epitope specificity did not vary between different healthy individuals. Nominally, all the mentioned immunoglobulins could be classified as auto-antibodies. In this work we re-evaluated results published earlier and analyzed new data to address the question why autologous antibodies found in healthy individuals do not cause severe auto-immune reactions. In all cases the presumably "auto" antibodies were found to bind short fragments "subtracted" from larger glycans whereas recognition of the same fragment in the context of the whole natural chain was completely abolished. Thus, in spite of numerous formally positive signals observed on the printed glycan array, we are yet unable to identify in blood serum of healthy individuals true auto-antibodies capable of binding carbohydrate chains in their naturally occurring form. The identified natural anti-glycan antibodies were found to be specific, high-titer and population conservative immunoglobulins - all of this suggesting as yet unknown biological role(s) of the studied proteins. This article is part of a Special Issue entitled Glycoproteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Structural evolution of glycan recognition by a family of potent HIV antibodies.

    PubMed

    Garces, Fernando; Sok, Devin; Kong, Leopold; McBride, Ryan; Kim, Helen J; Saye-Francisco, Karen F; Julien, Jean-Philippe; Hua, Yuanzi; Cupo, Albert; Moore, John P; Paulson, James C; Ward, Andrew B; Burton, Dennis R; Wilson, Ian A

    2014-09-25

    The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. High-Throughput Lectin Microarray-Based Analysis of Live Cell Surface Glycosylation

    PubMed Central

    Li, Yu; Tao, Sheng-ce; Zhu, Heng; Schneck, Jonathan P.

    2011-01-01

    Lectins, plant-derived glycan-binding proteins, have long been used to detect glycans on cell surfaces. However, the techniques used to characterize serum or cells have largely been limited to mass spectrometry, blots, flow cytometry, and immunohistochemistry. While these lectin-based approaches are well established and they can discriminate a limited number of sugar isomers by concurrently using a limited number of lectins, they are not amenable for adaptation to a high-throughput platform. Fortunately, given the commercial availability of lectins with a variety of glycan specificities, lectins can be printed on a glass substrate in a microarray format to profile accessible cell-surface glycans. This method is an inviting alternative for analysis of a broad range of glycans in a high-throughput fashion and has been demonstrated to be a feasible method of identifying binding-accessible cell surface glycosylation on living cells. The current unit presents a lectin-based microarray approach for analyzing cell surface glycosylation in a high-throughput fashion. PMID:21400689

  12. A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.

    PubMed

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian

    2017-11-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  14. Automated glycan assembly of galactosylated xyloglucan oligosaccharides and their recognition by plant cell wall glycan-directed antibodies.

    PubMed

    Dallabernardina, Pietro; Ruprecht, Colin; Smith, Peter J; Hahn, Michael G; Urbanowicz, Breeanna R; Pfrengle, Fabian

    2017-12-06

    We report the automated glycan assembly of oligosaccharides related to the plant cell wall hemicellulosic polysaccharide xyloglucan. The synthesis of galactosylated xyloglucan oligosaccharides was enabled by introducing p-methoxybenzyl (PMB) as a temporary protecting group for automated glycan assembly. The generated oligosaccharides were printed as microarrays, and the binding of a collection of xyloglucan-directed monoclonal antibodies (mAbs) to the oligosaccharides was assessed. We also demonstrated that the printed glycans can be further enzymatically modified while appended to the microarray surface by Arabidopsis thaliana xyloglucan xylosyltransferase 2 (AtXXT2).

  15. Complement Factor H and Simian Virus 40 bind the GM1 ganglioside in distinct conformations.

    PubMed

    Blaum, Bärbel S; Frank, Martin; Walker, Ross C; Neu, Ursula; Stehle, Thilo

    2016-05-01

    Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 μs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation.

    PubMed

    Bochner, Bruce S; Zimmermann, Nives

    2015-03-01

    Virtually all cells and extracellular material are heavily decorated by various glycans, yet our understanding of the structure and function of these moieties lags behind the understanding of nucleic acids, lipids, and proteins. Recent years have seen a tremendous acceleration of knowledge in the field of glycobiology, revealing many intricacies and functional contributions that were previously poorly appreciated or even unrecognized. This review highlights several topics relevant to glycoimmunology in which mammalian and pathogen-derived glycans displayed on glycoproteins and other scaffolds are recognized by specific glycan-binding proteins (GBPs), leading to a variety of proinflammatory and anti-inflammatory cellular responses. The focus for this review is mainly on 2 families of GBPs, sialic acid-binding immunoglobulin-like lectins (siglecs) and selectins, that are involved in multiple steps of the immune response, including distinguishing pathogens from self, cell trafficking to sites of inflammation, fine-tuning of immune responses leading to activation or tolerance, and regulation of cell survival. Importantly for the clinician, accelerated rates of discovery in the field of glycoimmunology are being translated into innovative medical approaches that harness the interaction of glycans and GBPs to the benefit of the host and might soon lead to novel diagnostics and therapeutics. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Profiling of Glycan Receptors for Minute Virus of Mice in Permissive Cell Lines Towards Understanding the Mechanism of Cell Recognition

    PubMed Central

    Halder, Sujata; Cotmore, Susan; Heimburg-Molinaro, Jamie; Smith, David F.; Cummings, Richard D.; Chen, Xi; Trollope, Alana J.; North, Simon J.; Haslam, Stuart M.; Dell, Anne; Tattersall, Peter; McKenna, Robert; Agbandje-McKenna, Mavis

    2014-01-01

    The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen. PMID:24475195

  18. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy.

    PubMed

    Poiroux, Guillaume; Barre, Annick; van Damme, Els J M; Benoist, Hervé; Rougé, Pierre

    2017-06-09

    Aberrant O -glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O -glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola , and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O -glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.

  19. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy

    PubMed Central

    Poiroux, Guillaume; Barre, Annick; van Damme, Els J. M.; Benoist, Hervé; Rougé, Pierre

    2017-01-01

    Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors. PMID:28598369

  20. The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity.

    PubMed

    Morozov, Vasily; Borkowski, Julia; Hanisch, Franz-Georg

    2018-05-11

    Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin ( BabA ) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 ( TFF2 ) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.

  1. Anti-GM1 antibodies as a model of the immune response to self-glycans.

    PubMed

    Nores, Gustavo A; Lardone, Ricardo D; Comín, Romina; Alaniz, María E; Moyano, Ana L; Irazoqui, Fernando J

    2008-03-01

    Glycans are a class of molecules with high structural variability, frequently found in the plasma membrane facing the extracellular space. Because of these characteristics, glycans are often considered as recognition molecules involved in cell social functions, and as targets of pathogenic factors. Induction of anti-glycan antibodies is one of the early events in immunological defense against bacteria that colonize the body. Because of this natural infection, antibodies recognizing a variety of bacterial glycans are found in sera of adult humans and animals. The immune response to glycans is restricted by self-tolerance, and no antibodies to self-glycans should exist in normal subjects. However, antibodies recognizing structures closely related to self-glycans do exist, and can lead to production of harmful anti-self antibodies. Normal human sera contain low-affinity anti-GM1 IgM-antibodies. Similar antibodies with higher affinity or different isotype are found in some neuropathy patients. Two hypotheses have been developed to explain the origin of disease-associated anti-GM1 antibodies. According to the "molecular mimicry" hypothesis, similarity between GM1 and Campylobacter jejuni lipopolysaccharide carrying a GM1-like glycan is the cause of Guillain-Barré syndrome associated with anti-GM1 IgG-antibodies. According to the "binding site drift" hypothesis, IgM-antibodies associated with disease originate through changes in the binding site of normally occurring anti-GM1 antibodies. We now present an "integrated" hypothesis, combining the "mimicry" and "drift" concepts, which satisfactorily explains most of the published data on anti-GM1 antibodies.

  2. Chemoenzymatic assembly of mammalian O-mannose glycans.

    PubMed

    Cao, Hongzhi; Meng, Caicai; Sasmal, Aniruddha; Zhang, Yan; Gao, Tian; Liu, Chang-Cheng; Khan, Naazneen; Varki, Ajit; Wang, Fengshan

    2018-05-26

    O-Mannose glycans account up to 30% of total O-glycans in brain. Previous synthesis and functional studies only focused on the Core M3 O-mannose glycans of α-dystroglycan which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 Core M1 and Core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of 5 judiciously designed core structures, and the diversity-oriented modification of the core structures with 3 enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed 4 steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies and brain proteins were also explored using the printed O-mannose glycan array. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.

    PubMed

    Stewart-Jones, Guillaume B E; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W; Davison, Jack R; Georgiev, Ivelin S; Joyce, M Gordon; Kwon, Young Do; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S; Shivatare, Vidya S; Lee, Chang-Chun D; Wu, Chung-Yi; Bewley, Carole A; Burton, Dennis R; Koff, Wayne C; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T; Wong, Chi-Huey; Mascola, John R; Kwong, Peter D

    2016-05-05

    The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoper, Ryan C.; Ferrarone, John; Yan Yuhe

    2009-09-01

    Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIHmore » 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.« less

  5. Defining the interaction of human soluble lectin ZG16p and mycobacterial phosphatidylinositol mannosides

    PubMed Central

    Ikeda, Akemi; Kojima-Aikawa, Kyoko; Taniguchi, Naoyuki; Varón Silva, Daniel; Feizi, Ten; Seeberger, Peter H.; Yamaguchi, Yoshiki

    2018-01-01

    ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analyses of the interactions of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs), using glycan microarray and NMR. Pathogen-related glycan microarray analysis identified phosphatidylinositol mono- and di-mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Saturation Transfer Difference (STD) NMR and transferred NOE experiments with chemically synthesized PIM glycans indicate that PIMs preferentially interacts with ZG16p using the mannose residues. Binding site of PIMs is identified by chemical shift perturbation experiments using uniformly 15N-labeled ZG16p. NMR results with docking simulations suggest a binding mode of ZG16p and PIM glycan, which would help to consider the physiological role of ZG16p. PMID:25919894

  6. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A.

    PubMed

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-Ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-07-01

    Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates-is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.

  7. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    PubMed Central

    Itakura, Yoko; Nakamura-Tsuruta, Sachiko; Kominami, Junko; Tateno, Hiroaki; Hirabayashi, Jun

    2017-01-01

    Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations. PMID:28556796

  8. The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2G12 Recognizes a Cluster of α1→2 Mannose Residues on the Outer Face of gp120

    PubMed Central

    Scanlan, Christopher N.; Pantophlet, Ralph; Wormald, Mark R.; Ollmann Saphire, Erica; Stanfield, Robyn; Wilson, Ian A.; Katinger, Hermann; Dwek, Raymond A.; Rudd, Pauline M.; Burton, Dennis R.

    2002-01-01

    2G12 is a broadly neutralizing human monoclonal antibody against human immunodeficiency virus type-1 (HIV-1) that has previously been shown to bind to a carbohydrate-dependent epitope on gp120. Here, site-directed mutagenesis and carbohydrate analysis were used to define further the 2G12 epitope. Extensive alanine scanning mutagenesis showed that elimination of the N-linked carbohydrate attachment sequences associated with residues N295, N332, N339, N386, and N392 by N→A substitution produced significant decreases in 2G12 binding affinity to gp120JR-CSF. Further mutagenesis suggested that the glycans at N339 and N386 were not critical for 2G12 binding to gp120JR-CSF. Comparison of the sequences of isolates neutralized by 2G12 was also consistent with a lesser role for glycans attached at these positions. The mutagenesis studies provided no convincing evidence for the involvement of gp120 amino acid side chains in 2G12 binding. Antibody binding was inhibited when gp120 was treated with Aspergillus saitoi mannosidase, Jack Bean mannosidase, or endoglycosidase H, indicating that Manα1→2Man-linked sugars of oligomannose glycans on gp120 are required for 2G12 binding. Consistent with this finding, the binding of 2G12 to gp120 could be inhibited by monomeric mannose but not by galactose, glucose, or N-acetylglucosamine. The inability of 2G12 to bind to gp120 produced in the presence of the glucose analogue N-butyl-deoxynojirimycin similarly implicated Manα1→2Man-linked sugars in 2G12 binding. Competition experiments between 2G12 and the lectin cyanovirin for binding to gp120 showed that 2G12 only interacts with a subset of available Manα1→2Man-linked sugars. Consideration of all the data, together with inspection of a molecular model of gp120, suggests that the most likely epitope for 2G12 is formed from mannose residues contributed by the glycans attached to N295 and N332, with the other glycans playing an indirect role in maintaining epitope conformation. PMID:12072529

  9. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors

    PubMed Central

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-01-01

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn91 in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus. PMID:22642577

  10. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    PubMed

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  11. Solid-phase glycan isolation for glycomics analysis

    PubMed Central

    Yang, Shuang; Zhang, Hui

    2013-01-01

    Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. PMID:23090885

  12. Solid-phase glycan isolation for glycomics analysis.

    PubMed

    Yang, Shuang; Zhang, Hui

    2012-12-01

    Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Baculovirus-Expressed Binding Region of Plasmodium falciparum EBA-140 Ligand and Its Glycophorin C Binding Specificity

    PubMed Central

    Rydzak, Joanna; Kaczmarek, Radoslaw; Czerwinski, Marcin; Lukasiewicz, Jolanta; Tyborowska, Jolanta; Szewczyk, Boguslaw; Jaskiewicz, Ewa

    2015-01-01

    The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands. PMID:25588042

  14. Top-Down Chemoenzymatic Approach to Synthesizing Diverse High-Mannose N-Glycans and Related Neoglycoproteins for Carbohydrate Microarray Analysis.

    PubMed

    Toonstra, Christian; Wu, Lisa; Li, Chao; Wang, Denong; Wang, Lai-Xi

    2018-05-22

    High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins. We describe in this paper a top-down chemoenzymatic approach to synthesize a library of high-mannose N-glycans and related neoglycoproteins for glycan microarray analysis. The method involves the sequential enzymatic trimming of two readily available natural N-glycans, the Man 9 GlcNAc 2 Asn prepared from soybean flour and the sialoglycopeptide (SGP) isolated from chicken egg yolks, coupled with chromatographic separation to obtain a collection of a full range of natural high-mannose N-glycans. The Asn-linked N-glycans were conjugated to bovine serum albumin (BSA) to provide neoglycoproteins containing the oligomannose moieties. The glycoepitopes displayed were characterized using an array of glycan-binding proteins, including the broadly virus-neutralizing agents, glycan-specific antibody 2G12, Galanthus nivalis lectin (GNA), and Narcissus pseudonarcissus lectin (NPA).

  15. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs.

    PubMed

    van Diepen, Angela; van der Plas, Arend-Jan; Kozak, Radoslaw P; Royle, Louise; Dunne, David W; Hokke, Cornelis H

    2015-06-01

    Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Computational approaches to define a human milk metaglycome

    PubMed Central

    Agravat, Sanjay B.; Song, Xuezheng; Rojsajjakul, Teerapat; Cummings, Richard D.; Smith, David F.

    2016-01-01

    Motivation: The goal of deciphering the human glycome has been hindered by the lack of high-throughput sequencing methods for glycans. Although mass spectrometry (MS) is a key technology in glycan sequencing, MS alone provides limited information about the identification of monosaccharide constituents, their anomericity and their linkages. These features of individual, purified glycans can be partly identified using well-defined glycan-binding proteins, such as lectins and antibodies that recognize specific determinants within glycan structures. Results: We present a novel computational approach to automate the sequencing of glycans using metadata-assisted glycan sequencing, which combines MS analyses with glycan structural information from glycan microarray technology. Success in this approach was aided by the generation of a ‘virtual glycome’ to represent all potential glycan structures that might exist within a metaglycomes based on a set of biosynthetic assumptions using known structural information. We exploited this approach to deduce the structures of soluble glycans within the human milk glycome by matching predicted structures based on experimental data against the virtual glycome. This represents the first meta-glycome to be defined using this method and we provide a publically available web-based application to aid in sequencing milk glycans. Availability and implementation: http://glycomeseq.emory.edu Contact: sagravat@bidmc.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26803164

  17. A Lectin from Platypodium elegans with Unusual Specificity and Affinity for Asymmetric Complex N-Glycans*

    PubMed Central

    Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne

    2012-01-01

    Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206

  18. The Interaction of N-Glycans in Fcγ Receptor I α-Chain with Escherichia coli K1 Outer Membrane Protein A for Entry into Macrophages

    PubMed Central

    Krishnan, Subramanian; Liu, Fan; Abrol, Ravinder; Hodges, Jacqueline; Goddard, William A.; Prasadarao, Nemani V.

    2014-01-01

    Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa−/− bone marrow-derived macrophages transfected with FcγRIa into FcγRIa−/− newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis. PMID:25231998

  19. Computational Investigation of Glycosylation Effects on a Family 1 Carbohydrate-binding Module*

    PubMed Central

    Taylor, Courtney B.; Talib, M. Faiz; McCabe, Clare; Bu, Lintao; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2012-01-01

    Carbohydrate-binding modules (CBMs) are ubiquitous components of glycoside hydrolases, which degrade polysaccharides in nature. CBMs target specific polysaccharides, and CBM binding affinity to cellulose is known to be proportional to cellulase activity, such that increasing binding affinity is an important component of performance improvement. To ascertain the impact of protein and glycan engineering on CBM binding, we use molecular simulation to quantify cellulose binding of a natively glycosylated Family 1 CBM. To validate our approach, we first examine aromatic-carbohydrate interactions on binding, and our predictions are consistent with previous experiments, showing that a tyrosine to tryptophan mutation yields a 2-fold improvement in binding affinity. We then demonstrate that enhanced binding of 3–6-fold over a nonglycosylated CBM is achieved by the addition of a single, native mannose or a mannose dimer, respectively, which has not been considered previously. Furthermore, we show that the addition of a single, artificial glycan on the anterior of the CBM, with the native, posterior glycans also present, can have a dramatic impact on binding affinity in our model, increasing it up to 140-fold relative to the nonglycosylated CBM. These results suggest new directions in protein engineering, in that modifying glycosylation patterns via heterologous expression, manipulation of culture conditions, or introduction of artificial glycosylation sites, can alter CBM binding affinity to carbohydrates and may thus be a general strategy to enhance cellulase performance. Our results also suggest that CBM binding studies should consider the effects of glycosylation on binding and function. PMID:22147693

  20. Preparation and biological activities of anti-HER2 monoclonal antibodies with fully core-fucosylated homogeneous bi-antennary complex-type glycans.

    PubMed

    Tsukimura, Wataru; Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Matsuda, Akio; Takegawa, Kaoru; Furukawa, Kiyoshi; Shirai, Takashi

    2017-12-01

    Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.

  1. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray.

    PubMed

    Mickum, Megan L; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W Evan; Wilkins, Patricia P; Van Die, Irma; Smith, David F; Nyame, A Kwame; Cummings, Richard D; Rivera-Marrero, Carlos A

    2016-05-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray

    PubMed Central

    Mickum, Megan L.; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W. Evan; Wilkins, Patricia P.; Van Die, Irma; Smith, David F.; Nyame, A. Kwame

    2016-01-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. PMID:26883596

  3. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.

    2012-02-13

    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only formore » {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.« less

  4. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells.

    PubMed

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.

  5. Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor

    NASA Astrophysics Data System (ADS)

    Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.

    2017-02-01

    IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.

  6. CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells.

    PubMed

    Peng, Wenjie; Paulson, James C

    2017-09-13

    CD22 is a sialic acid-binding immunoglobulin-like lectin (Siglec) that is highly expressed on B-cells and B cell lymphomas, and is a validated target for antibody and nanoparticle based therapeutics. However, cell targeted therapeutics are limited by their complexity, heterogeneity, and difficulties in production. We describe here a chemically defined natural N-linked glycan scaffold that displays high affinity CD22 glycan ligands and outcompetes the natural ligand for the receptor, resulting in single molecule binding to CD22 and endocytosis into cells. Binding affinity is increased by up to 1500-fold compared to the monovalent ligand, while maintaining the selectivity for hCD22 over other Siglecs. Conjugates of these multivalent ligands with auristatin and saporin toxins are efficiently internalized via hCD22 resulting in killing of B-cell lymphoma cells. This single molecule ligand targeting strategy represents an alternative to antibody- and nanoparticle-mediated approaches for delivery of agents to cells expressing CD22 and other Siglecs.

  7. Glycan microarray screening assay for glycosyltransferase specificities.

    PubMed

    Peng, Wenjie; Nycholat, Corwin M; Razi, Nahid

    2013-01-01

    Glycan microarrays represent a high-throughput approach to determining the specificity of glycan-binding proteins against a large set of glycans in a single format. This chapter describes the use of a glycan microarray platform for evaluating the activity and substrate specificity of glycosyltransferases (GTs). The methodology allows simultaneous screening of hundreds of immobilized glycan acceptor substrates by in situ incubation of a GT and its appropriate donor substrate on the microarray surface. Using biotin-conjugated donor substrate enables direct detection of the incorporated sugar residues on acceptor substrates on the array. In addition, the feasibility of the method has been validated using label-free donor substrate combined with lectin-based detection of product to assess enzyme activity. Here, we describe the application of both procedures to assess the specificity of a recombinant human α2-6 sialyltransferase. This technique is readily adaptable to studying other glycosyltransferases.

  8. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  9. Glycobiology of the ocular surface: Mucins and lectins

    PubMed Central

    Argüeso, Pablo

    2013-01-01

    Glycosylation is an important and common form of posttranscriptional modification of proteins in cells. A vast array of biological functions has been ascribed to glycans during the last decade thanks to a rapid evolution in glycomic technologies. Glycogenes highly expressed at the human ocular surface include families of glycosyltransferases, proteoglycans, glycan degradation proteins, as well as mucins and carbohydrate-binding proteins such as the galectins. On the apical glycocalyx, mucin O-glycans promote boundary lubrication, prevent bacterial adhesion and endocytic activity, and maintain epithelial barrier function through interactions with galectins. The emerging roles attributed to glycans are contributing to the appreciation of their biological capabilities at the ocular surface. PMID:23325272

  10. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale

    PubMed Central

    Cockburn, Darrell W.; Orlovsky, Nicole I.; Foley, Matthew H.; Kwiatkowski, Kurt J.; Bahr, Constance M.; Maynard, Mallory; Demeler, Borries; Koropatkin, Nicole M.

    2015-01-01

    Summary Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute-binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, while the membrane associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute-binding proteins display a range of glycan-binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6-branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch-degrading Clostridium cluster XIVa organisms in the human gut. PMID:25388295

  11. The glycan-mediated mechanism on the interactions of gp120 with CD4 and antibody: Insights from molecular dynamics simulation.

    PubMed

    Zhang, Yan; Niu, Yuzhen; Tian, Jiaqi; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang

    2017-12-01

    N-linked glycans such as 234 and 276 gp 120 glycans are vital components of HIV evasion from humoral immunity and important for HIV-1 neutralization of many broadly neutralizing antibodies (bNAbs). However, it is unknown the action mechanism of two glycans. To investigate the roles of the glycans on the interactions of gp120 with CD4 and antibody, molecular dynamic simulations based on gp120-CD4-8ANC195 complex with 234 and 276 gp 120 glycans, 234 gp 120 glycan, 276 gp 120 glycan, and without glycan were performed. Our results reveal that 276 gp 120 glycan can enhance gp120-CD4 and gp120-antibody interactions through the formation of hydrogen bonds of the glycan with CD4 and antibody and make the binding interface of gp120, CD4 and antibody stable; 234 gp 120 glycan primarily reinforces gp120-antibody interactions and weakly affects gp120-CD4 interactions as it mainly lies between gp120 and antibody. The co-operating of two glycans can enhance gp120-CD4 and gp120-antibody associations. Through the structural analysis, it can be seen that 234 gp 120 glycan leads to moving upward of two glycans and the variable region of heavy chain, which is favorable for the interactions of gp120 with CD4 and antibody. The information obtained in this study can provide the guidance for design vaccines and small molecule inhibitors. © 2017 John Wiley & Sons A/S.

  12. Development of rabbit monoclonal antibodies for detection of alpha-dystroglycan in normal and dystrophic tissue

    USDA-ARS?s Scientific Manuscript database

    Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The...

  13. Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated.

    PubMed

    Klaver, Elsenoor J; Kuijk, Loes M; Laan, Lisa C; Kringel, Helene; van Vliet, Sandra J; Bouma, Gerd; Cummings, Richard D; Kraal, Georg; van Die, Irma

    2013-03-01

    Human monocyte-derived dendritic cells (DCs) show remarkable phenotypic changes upon direct contact with soluble products (SPs) of Trichuris suis, a pig whipworm that is experimentally used in therapies to ameliorate inflammation in patients with Crohn's disease and multiple sclerosis. These changes may contribute to the observed induction of a T helper 2 (Th2) response and the suppression of Toll-like receptor (TLR)-induced Th1 and Th17 responses by human DCs primed with T. suis SPs. Here it is demonstrated that glycans of T. suis SPs contribute significantly to the suppression of the lipopolysaccharide (LPS)-induced expression in DCs of a broad variety of cytokines and chemokines, including important pro-inflammatory mediators such as TNF-α, IL-6, IL-12, lymphotoxin α (LTA), C-C Motif Ligand (CCL)2, C-X-C Motif Ligands (CXCL)9 and CXCL10. In addition, the data show that human DCs strongly bind T. suis SP-glycans via the C-type lectin receptors (CLRs) mannose receptor (MR) and DC-specific ICAM-3-grabbing non-integrin (DC-SIGN). The interaction of DCs with T. suis glycans likely involves mannose-type glycans, rather than fucosylated glycans, which differs from DC binding to soluble egg antigens of the human worm parasite, Schistosoma mansoni. In addition, macrophage galactose-type lectin (MGL) recognises T. suis SPs, which may contribute to the interaction with immature DCs or other MGL-expressing immune cells such as macrophages. The interaction of T. suis glycans with CLRs of human DCs may be essential for the ability of T. suis to suppress a pro-inflammatory phenotype of human DCs. The finding that the T. suis-induced modulation of human DC function is glycan-mediated is novel and indicates that helminth glycans contribute to the dampening of inflammation in a wide range of human inflammatory diseases. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  14. Rational and Computational Design of Stabilized Variants of Cyanovirin-N which Retain Affinity and Specificity for Glycan Ligands

    PubMed Central

    Patsalo, Vadim; Raleigh, Daniel P.; Green, David F.

    2011-01-01

    Cyanovirin-N (CVN) is an 11-kDa pseudo-symmetric cyanobacterial lectin that has been shown to inhibit infection by the Human Immunodeficiency Virus (HIV) by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work we describe rationally-designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson–Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 m of GuaHCl against chemical denaturation, relative to a previously-characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations, and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding. PMID:22032696

  15. Databases and Associated Tools for Glycomics and Glycoproteomics.

    PubMed

    Lisacek, Frederique; Mariethoz, Julien; Alocci, Davide; Rudd, Pauline M; Abrahams, Jodie L; Campbell, Matthew P; Packer, Nicolle H; Ståhle, Jonas; Widmalm, Göran; Mullen, Elaine; Adamczyk, Barbara; Rojas-Macias, Miguel A; Jin, Chunsheng; Karlsson, Niclas G

    2017-01-01

    The access to biodatabases for glycomics and glycoproteomics has proven to be essential for current glycobiological research. This chapter presents available databases that are devoted to different aspects of glycobioinformatics. This includes oligosaccharide sequence databases, experimental databases, 3D structure databases (of both glycans and glycorelated proteins) and association of glycans with tissue, disease, and proteins. Specific search protocols are also provided using tools associated with experimental databases for converting primary glycoanalytical data to glycan structural information. In particular, researchers using glycoanalysis methods by U/HPLC (GlycoBase), MS (GlycoWorkbench, UniCarb-DB, GlycoDigest), and NMR (CASPER) will benefit from this chapter. In addition we also include information on how to utilize glycan structural information to query databases that associate glycans with proteins (UniCarbKB) and with interactions with pathogens (SugarBind).

  16. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  17. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

    PubMed Central

    Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.

    2015-01-01

    The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768

  18. NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.

    PubMed

    Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-05-08

    Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.

  19. Glycomics-based analysis of chicken red blood cells provides insight into the selectivity of the viral agglutination assay.

    PubMed

    Aich, Udayanath; Beckley, Nia; Shriver, Zachary; Raman, Rahul; Viswanathan, Karthik; Hobbie, Sven; Sasisekharan, Ram

    2011-05-01

    Agglutination of red blood cells (RBCs), including chicken RBCs (cRBCs), has been used extensively to estimate viral titer, to screen glycan-receptor binding preference, and to assess the protective response of vaccines. Although this assay enjoys widespread use, some virus strains do not agglutinate RBCs. To address these underlying issues and to increase the usefulness of cRBCs as tools for studying viruses, such as influenza, we analyzed the cell surface N-glycans of cRBCs. On the basis of the results obtained from complementary analytical strategies, including MS, 1D and 2D-NMR spectroscopy, exoglycosidase digestions, and HPLC profiling, we report the major glycan structures present on cRBCs. By comparing the glycan structures of cBRCs with those of representative human upper respiratory cells, we offer a possible explanation for the fact that certain influenza strains do not agglutinate cRBCs, using specific human-adapted influenza hemagglutinins as examples. Finally, recent understanding of the role of various glycan structures in high affinity binding to influenza hemagglutinins provides context to our findings. These results illustrate that the field of glycomics can provide important information with respect to the experimental systems used to characterize, detect and study viruses. © 2011 The Authors Journal compilation © 2011 FEBS.

  20. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates

    PubMed Central

    Yoshino, Timothy P.; Wu, Xiao-Jun; Gonzalez, Laura A.; Hokke, Cornelis H.

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval S. mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins, as well as the ability or hemocytes to acquire shared glycans by the selective binding of parasite-released LTP. Unraveling the functional significance of these naturally expressed and acquired shared glycans on specific hemocyte populations represents an important challenge for future investigations. PMID:23085445

  1. Exposure of Trypanosoma brucei to an N-acetylglucosamine-Binding Lectin Induces VSG Switching and Glycosylation Defects Resulting in Reduced Infectivity

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Van Damme, Els J. M.; Balzarini, Jan; González-Pacanowska, Dolores

    2015-01-01

    Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents. PMID:25746926

  2. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  3. Functional Glycomic Analysis of Human Milk Glycans Reveals the Presence of Virus Receptors and Embryonic Stem Cell Biomarkers*

    PubMed Central

    Yu, Ying; Mishra, Shreya; Song, Xuezheng; Lasanajak, Yi; Bradley, Konrad C.; Tappert, Mary M.; Air, Gillian M.; Steinhauer, David A.; Halder, Sujata; Cotmore, Susan; Tattersall, Peter; Agbandje-McKenna, Mavis; Cummings, Richard D.; Smith, David F.

    2012-01-01

    Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens. PMID:23115247

  4. Mechanism of pathogen recognition by human dectin-2.

    PubMed

    Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J; Drickamer, Kurt; Weis, William I; Taylor, Maureen E

    2017-08-11

    Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1-2 or α1-4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1-2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man 9 GlcNAc 2 oligosaccharide exhibited interaction with Manα1-2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca 2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1-2Man structures, whereas dectin-2 can bind Manα1-2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1-2Man disaccharide unit. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. GlycReSoft: A Software Package for Automated Recognition of Glycans from LC/MS Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Evan; Tan, Yan; Tan, Yuxiang

    2012-09-26

    Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS) is used to profile themore » glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.« less

  6. The Emerging Importance of IgG Fab Glycosylation in Immunity.

    PubMed

    van de Bovenkamp, Fleur S; Hafkenscheid, Lise; Rispens, Theo; Rombouts, Yoann

    2016-02-15

    Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions.

    PubMed

    Shriver, Zachary; Raman, Rahul; Viswanathan, Karthik; Sasisekharan, Ram

    2009-08-28

    Protein-glycan interactions are important regulators of a variety of biological processes, ranging from immune recognition to anticoagulation. An important area of active research is directed toward understanding the role of host cell surface glycans as recognition sites for pathogen protein receptors. Recognition of cell surface glycans is a widely employed strategy for a variety of pathogens, including bacteria, parasites, and viruses. We present here a representative example of such an interaction: the binding of influenza A hemagglutinin (HA) to specific sialylated glycans on the cell surface of human upper airway epithelial cells, which initiates the infection cycle. We detail a generalizable strategy to understand the nature of protein-glycan interactions both structurally and biochemically, using HA as a model system. This strategy combines a top-down approach using available structural information to define important contacts between glycans and HA, with a bottom-up approach using data-mining and informatics approaches to identify the common motifs that distinguish glycan binders from nonbinders. By probing protein-glycan interactions simultaneously through top-down and bottom-up approaches, we can scientifically validate a series of observations. This in turn provides additional confidence and surmounts known challenges in the study of protein-glycan interactions, such as accounting for multivalency, and thus truly defines concepts such as specificity, affinity, and avidity. With the advent of new technologies for glycomics-including glycan arrays, data-mining solutions, and robust algorithms to model protein-glycan interactions-we anticipate that such combination approaches will become tractable for a wide variety of protein-glycan interactions.

  8. The interaction of N-glycans in Fcγ receptor I α-chain with Escherichia coli K1 outer membrane protein A for entry into macrophages: experimental and computational analysis.

    PubMed

    Krishnan, Subramanian; Liu, Fan; Abrol, Ravinder; Hodges, Jacqueline; Goddard, William A; Prasadarao, Nemani V

    2014-11-07

    Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa(-/-) bone marrow-derived macrophages transfected with FcγRIa into FcγRIa(-/-) newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action.

    PubMed

    Upton, Rosie; Bell, Leonard; Guy, Colin; Caldwell, Paul; Estdale, Sian; Barran, Perdita E; Firth, David

    2016-10-18

    In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.

  10. Glycosylation of random IgG distinguishes seropositive and seronegative rheumatoid arthritis.

    PubMed

    Magorivska, I; Döncző, B; Dumych, T; Karmash, A; Boichuk, M; Hychka, K; Mihalj, M; Szabó, M; Csánky, E; Rech, J; Guttman, A; Vari, S G; Bilyy, R

    2018-05-01

    The N-glycosylation of human immunoglobulins, especially IgGs, plays a critical role in determining affinity of IgGs towards their effector (pro- and anti-inflammatory) receptors. However, it is still not clear whether altered glycosylation is involved in only antibody-dependent disorders like seropositive rheumatoid arthritis (RA) or also in pathologies with similar clinical manifestations, but no specific autoantibodies like seronegative RA. The clarification of that uncertainty was the aim of the current study. Another study aim was the detection of specific glycan forms responsible for altered exposure of native glycoepitopes. We studied sera from seropositive RA (n = 15) and seronegative RA (n = 12) patients for exposure of glycans in native IgG molecules, followed by determination of specific glycans by capillary electrophoresis with laser-induced fluorescent detection (CE-LIF). Aged-matched groups of normal healthy donors (NHD) and samples of intravenous immunoglobulin IgG preparations (IVIG) served as controls. There was significantly stronger binding of Lens culinaris agglutinin (LCA) and Aleuria aurantia lectin (AAL) lectins towards IgG from seropositive RA compared to seronegative RA or NHD. CE-LIF analysis revealed statistically significant increases in bisecting glycans FA2BG2 (p = .006) and FABG2S1 (p = .005) seropositive RA, accompanied by decrease of bisecting monogalactosylated glycan FA2(6)G1 (p = .074) and non-bisecting monosialylated glycan FA2(3)G1S1 (p = .055). The results suggest that seropositive RA is distinct from seronegative RA in terms of IgG glycan moieties, attributable to specific immunoglobulin molecules present in seropositive disease. These glycans were determined to be bisecting GlcNAc-bearing forms FA2BG2 and FABG2S1, and their appearance increased the availability of LCA and AAL lectin-binding sites in native IgG glycoepitopes.

  11. Biological roles of glycans

    PubMed Central

    Varki, Ajit

    2017-01-01

    Abstract Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences. PMID:27558841

  12. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search

    PubMed Central

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740

  13. Fixation of Oligosaccharides to a Surface May Increase the Susceptibility to Human Parainfluenza Virus 1, 2, or 3 Hemagglutinin-Neuraminidase▿†

    PubMed Central

    Tappert, Mary M.; Smith, David F.; Air, Gillian M.

    2011-01-01

    The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N′s role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341–8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface. PMID:21917945

  14. An engineered high affinity Fbs1 carbohydrate binding protein for selective capture of N-glycans and N-glycopeptides

    PubMed Central

    Chen, Minyong; Shi, Xiaofeng; Duke, Rebecca M.; Ruse, Cristian I.; Dai, Nan; Taron, Christopher H.; Samuelson, James C.

    2017-01-01

    A method for selective and comprehensive enrichment of N-linked glycopeptides was developed to facilitate detection of micro-heterogeneity of N-glycosylation. The method takes advantage of the inherent properties of Fbs1, which functions within the ubiquitin-mediated degradation system to recognize the common core pentasaccharide motif (Man3GlcNAc2) of N-linked glycoproteins. We show that Fbs1 is able to bind diverse types of N-linked glycomolecules; however, wild-type Fbs1 preferentially binds high-mannose-containing glycans. We identified Fbs1 variants through mutagenesis and plasmid display selection, which possess higher affinity and improved recovery of complex N-glycomolecules. In particular, we demonstrate that the Fbs1 GYR variant may be employed for substantially unbiased enrichment of N-linked glycopeptides from human serum. Most importantly, this highly efficient N-glycopeptide enrichment method enables the simultaneous determination of N-glycan composition and N-glycosites with a deeper coverage (compared to lectin enrichment) and improves large-scale N-glycoproteomics studies due to greatly reduced sample complexity. PMID:28534482

  15. Endothelial Galectin-1 Binds to Specific Glycans on Nipah Virus Fusion Protein and Inhibits Maturation, Mobility, and Function to Block Syncytia Formation

    PubMed Central

    Garner, Omai B.; Aguilar, Hector C.; Fulcher, Jennifer A.; Levroney, Ernest L.; Harrison, Rebecca; Wright, Lacey; Robinson, Lindsey R.; Aspericueta, Vanessa; Panico, Maria; Haslam, Stuart M.; Morris, Howard R.; Dell, Anne

    2010-01-01

    Nipah virus targets human endothelial cells via NiV-F and NiV-G envelope glycoproteins, resulting in endothelial syncytia formation and vascular compromise. Endothelial cells respond to viral infection by releasing innate immune effectors, including galectins, which are secreted proteins that bind to specific glycan ligands on cell surface glycoproteins. We demonstrate that galectin-1 reduces NiV-F mediated fusion of endothelial cells, and that endogenous galectin-1 in endothelial cells is sufficient to inhibit syncytia formation. Galectin-1 regulates NiV-F mediated cell fusion at three distinct points, including retarding maturation of nascent NiV-F, reducing NiV-F lateral mobility on the plasma membrane, and directly inhibiting the conformational change in NiV-F required for triggering fusion. Characterization of the NiV-F N-glycome showed that the critical site for galectin-1 inhibition is rich in glycan structures known to bind galectin-1. These studies identify a unique set of mechanisms for regulating pathophysiology of NiV infection at the level of the target cell. PMID:20657665

  16. Therapeutic Targeting of Siglecs using Antibody- and Glycan-based Approaches

    PubMed Central

    Angata, Takashi; Nycholat, Corwin M.; Macauley, Matthew S.

    2015-01-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell-type specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo-delivery and immunomodulation is a promising new approach. Here, we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  17. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  18. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  19. 1H, 15N and 13C backbone and side-chain resonance assignments of a family 32 carbohydrate-binding module from the Clostridium perfringens NagH.

    PubMed

    Grondin, Julie M; Chitayat, Seth; Ficko-Blean, Elizabeth; Boraston, Alisdair B; Smith, Steven P

    2012-10-01

    The Gram-positive anaerobe Clostridium perfringens is an opportunistic bacterial pathogen that secretes a battery of enzymes involved in glycan degradation. These glycoside hydrolases are thought to be involved in turnover of mucosal layer glycans, and in the spread of major toxins commonly associated with the development of gastrointestinal diseases and gas gangrene in humans. These enzymes employ multi-modularity and carbohydrate-binding function to degrade extracellular eukaryotic host sugars. Here, we report the full (1)H, (15)N and (13)C chemical shift resonance assignments of the first family 32 carbohydrate-binding module from NagH, a secreted family 84 glycoside hydrolase.

  20. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  1. ABC Transporters Involved in Export of Cell Surface Glycoconjugates

    PubMed Central

    Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris

    2010-01-01

    Summary: Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles. PMID:20805402

  2. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    PubMed

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  3. Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning

    PubMed Central

    Rondard, Philippe; Huang, Siluo; Monnier, Carine; Tu, Haijun; Blanchard, Bertrand; Oueslati, Nadia; Malhaire, Fanny; Li, Ying; Trinquet, Eric; Labesse, Gilles; Pin, Jean-Philippe; Liu, Jianfeng

    2008-01-01

    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABAB1 and GABAB2. GABAB1 binds agonists, whereas GABAB2 is required for trafficking GABAB1 to the cell surface, increasing agonist affinity to GABAB1, and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABAB1 VFT leads to GABAB2 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABAB VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABAB2, including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation. PMID:18388862

  4. Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution

    PubMed Central

    Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.

    2007-01-01

    A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538

  5. The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

    PubMed Central

    Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina

    2011-01-01

    ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163

  6. Bovine κ-casein inhibits human rotavirus (HRV) infection via direct binding of glycans to HRV.

    PubMed

    Inagaki, M; Muranishi, H; Yamada, K; Kakehi, K; Uchida, K; Suzuki, T; Yabe, T; Nakagomi, T; Nakagomi, O; Kanamaru, Y

    2014-05-01

    Human rotavirus (HRV) is a major etiologic agent of severe infantile gastroenteritis. κ-Casein (κ-CN) from both human and bovine mature milk has been reported to have anti-HRV activity; however, the mechanism of this activity is poorly understood. The present study examined the molecular basis for the protective effect of bovine κ-CN derived from late colostrum (6-7 d after parturition) and from mature milk. Among the components of casein, κ-CN is the only glycosylated protein that has been identified. Therefore, we investigated whether the glycan residues in κ-CN were involved in the anti-HRV activity. Desialylated CN obtained by neuraminidase treatment exhibited anti-HRV activity, whereas deglycosylated CN obtained by o-glycosidase treatment lacked antiviral activity, indicating that glycans were responsible for the antiviral activity of CN. Furthermore, an evanescent-field fluorescence-assisted assay showed that HRV particles directly bound to heated casein (at 95°C for 30 min) in a viral titer-dependent manner. Although the heated κ-CN retained inhibitory activity in a neutralization assay, the activity was weaker than that observed before heat treatment. Our findings indicate that the inhibitory mechanism of bovine κ-CN against HRV involves direct binding to viral particles via glycan residues. In addition, heat-labile structures in κ-CN may play an important role in maintenance of κ-CN binding to HRV. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion.

    PubMed

    Fogel, Adam I; Li, Yue; Giza, Joanna; Wang, Qing; Lam, Tukiet T; Modis, Yorgo; Biederer, Thomas

    2010-11-05

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  8. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*

    PubMed Central

    Fogel, Adam I.; Li, Yue; Giza, Joanna; Wang, Qing; Lam, TuKiet T.; Modis, Yorgo; Biederer, Thomas

    2010-01-01

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion. PMID:20739279

  9. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less

  10. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    NASA Astrophysics Data System (ADS)

    Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.

    2013-11-01

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  11. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    PubMed

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  12. Lectin-Array Blotting.

    PubMed

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands.

    PubMed

    Sun, Xiaoman; Wang, Lihong; Qi, Jianxun; Li, Dandi; Wang, Mengxuan; Cong, Xin; Peng, Ruchao; Chai, Wengang; Zhang, Qing; Wang, Hong; Wen, Hongling; Gao, George F; Tan, Ming; Duan, Zhaojun

    2018-06-01

    Group/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines. IMPORTANCE Group/species C rotaviruses (RVCs), members of Reoviridae family, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs. Copyright © 2018 American Society for Microbiology.

  14. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies.

    PubMed

    Pochechueva, Tatiana; Jacob, Francis; Goldstein, Darlene R; Huflejt, Margaret E; Chinarev, Alexander; Caduff, Rosemarie; Fink, Daniel; Hacker, Neville; Bovin, Nicolai V; Heinzelmann-Schwarz, Viola

    2011-12-01

    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P(1), a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P(1) antibody binding profiles displayed much lower concordance. Whilst anti-P(1) antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p=0.004), we got only similar results using SA (p=0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection. © The Author(s) 2011. This article is published with open access at Springerlink.com

  16. Direct Enzymatic Branch-End Extension of Glycocluster-Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity.

    PubMed

    Bayón, Carlos; He, Ning; Deir-Kaspar, Mario; Blasco, Pilar; André, Sabine; Gabius, Hans-Joachim; Rumbero, Ángel; Jiménez-Barbero, Jesús; Fessner, Wolf-Dieter; Hernáiz, María J

    2017-01-31

    The sequence of a glycan and its topology of presentation team up to determine the specificity and selectivity of recognition by saccharide receptors (lectins). Structure-activity analysis would be furthered if the glycan part of a glycocluster could be efficiently elaborated in situ while keeping all other parameters constant. By using a bacterial α2,6-sialyltransferase and a small library of bi- to tetravalent glycoclusters, we illustrate the complete conversion of scaffold-presented lactoside units into two different sialylated ligands based on N-acetyl/glycolyl-neuraminic acid incorporation. We assess the ensuing effect on their bioactivity for a plant toxin, and present an analysis of the noncovalent substrate binding contacts that the added sialic acid moiety makes to the lectin. Enzymatic diversification of a scaffold-presented glycan can thus be brought to completion in situ, offering a versatile perspective for rational glycocluster engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120

    PubMed Central

    Kong, Leopold; Lee, Jeong Hyun; Doores, Katie J.; Murin, Charles D.; Julien, Jean-Philippe; McBride, Ryan; Liu, Yan; Marozsan, Andre; Cupo, Albert; Klasse, Per-Johan; Hoffenberg, Simon; Caulfield, Michael; King, C. Richter; Hua, Yuanzi; Le, Khoa M.; Khayat, Reza; Deller, Marc C.; Clayton, Thomas; Tien, Henry; Feizi, Ten; Sanders, Rogier W.; Paulson, James C.; Moore, John P.; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.

    2013-01-01

    A substantial fraction of broadly neutralizing antibodies (bnAbs) in certain HIV-infected donors recognizes glycan-dependent epitopes on HIV-1 gp120. Here, we elucidate how bnAb PGT 135 recognizes its Asn332 glycan-dependent epitope from its crystal structure with gp120, CD4 and Fab 17b at 3.1 Å resolution. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield to access the gp120 protein surface. Electron microscopy reveals PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. The combined structural studies of PGT 135, PGT 128 and 2G12 show this Asn332-dependent epitope is highly accessible and much more extensive than initially appreciated, allowing for multiple binding modes and varied angles of approach, thereby representing a supersite of vulnerability for antibody neutralization. PMID:23708606

  18. Mechanistic Study on Electron Capture Dissociation of the Oligosaccharide-Mg2+ Complex

    NASA Astrophysics Data System (ADS)

    Huang, Yiqun; Pu, Yi; Yu, Xiang; Costello, Catherine E.; Lin, Cheng

    2014-08-01

    Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg2+ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg2+ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg2+ and the resultant Mg+• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg2+-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.

  19. Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes

    PubMed Central

    Kallemeijn, Wouter W.; Scheij, Saskia; Hoogendoorn, Sascha; Witte, Martin D.; Herrera Moro Chao, Daniela; van Roomen, Cindy P. A. A.; Ottenhoff, Roelof; Overkleeft, Herman S.; Boot, Rolf G.; Aerts, Johannes M. F. G.

    2017-01-01

    Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s). Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme), contains predominantly Man(3) glycans, and velaglucerase (Shire PLC) Man(9) glycans. Activity-based probes (ABPs) enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors (n = 12) were noted, but the same trends were always observed. Our study suggests that further insight in targeting and efficacy of enzyme therapy of individual Gaucher patients could be obtained by the use of recombinant GBA, trace-labeled with an ABP, preferably equipped with an infrared fluorophore or other reporter tag suitable for in vivo imaging. PMID:28207759

  20. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site

    PubMed Central

    West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2016-01-01

    HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46–derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs. PMID:27617431

  1. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation*

    PubMed Central

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-01-01

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption stage in the intestine. PMID:26023238

  2. O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases.

    PubMed

    Sheikh, M Osman; Thieker, David; Chalmers, Gordon; Schafer, Christopher M; Ishihara, Mayumi; Azadi, Parastoo; Woods, Robert J; Glushka, John N; Bendiak, Brad; Prestegard, James H; West, Christopher M

    2017-11-17

    Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF ( S kp1/ C ullin-1/ F -box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O 2 -dependent Dictyostelium development, but full glycosylation at that position is required for optimal O 2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein.

    PubMed

    Sun, Junfeng; Han, Zongxi; Qi, Tianming; Zhao, Ran; Liu, Shengwang

    2017-12-08

    Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N -glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N -glycans on HN glycoprotein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway.

    PubMed

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-02-03

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4-5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.

  5. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    PubMed Central

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  6. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway

    PubMed Central

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-01-01

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers. PMID:28157181

  7. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    PubMed

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mucin-type O-glycans in Tears of Normal Subjects and Patients with Non-Sjögren’s Dry Eye

    PubMed Central

    Guzman-Aranguez, Ana; Mantelli, Flavio; Argüeso, Pablo

    2009-01-01

    Purpose O-linked carbohydrates (O-glycans) contribute to the hydrophilic character of mucins in mucosal tissues. This study aimed to identify the repertoire of O-glycans in the tear film, and the glycosyltransferases associated with their biosynthesis, in normal subjects and patients with non-Sjögren’s dry eye. Methods Human tear fluid was collected from the inferior conjunctival fornix. O-glycans were released by hydrazinolysis, labeled with 2-aminobenzamide, and analyzed by fluorometric, high-performance liquid chromatography (HPLC) coupled with exoglycosidase digestions. O-glycan structures identified in tears were related to potential biosynthetic pathways in human conjunctival epithelium using a glycogene microarray database. Lectin-binding analyses were performed using agglutinins from Arachis hypogaea, Maackia amurensis, and Sambucus nigra. Results The O-glycan profile of human tears consisted primarily of core 1 (Galβ1-3GalNAcα1-Ser/Thr)-based structures. Mono-sialyl O-glycans represented approximately 66% of the glycan pool, being α2-6-sialyl core 1 the predominant O-glycan structure in human tears (48%). Four families of glycosyltranferases potentially related to the biosynthesis of these structures were identified in human conjunctiva. These included thirteen polypeptide-GalNAc-transferases (GALNT), the core 1 β-3-galactosyltransferase (T-synthase), three α2-6-sialyltransferases (ST6GalNAc), and two α2-3-sialyltransferases (ST3Gal). No significant differences in total amount of O-glycans were detected between tears of normal subjects and dry eye patients, by HPLC and lectin blot. Likewise, no differences in glycosyltransferase expression were found by glycogene microarray. Conclusions This study identifies the most common mucin-type O-glycans in human tears and their expected biosynthetic pathways in ocular surface epithelia. Patients with non-Sjögren’s dry eye show no alterations in composition and amount of O-glycans in the tear fluid. PMID:19407012

  9. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients

    PubMed Central

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V.; Hacker, Neville F.; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2–6 vs. α2–3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers. PMID:27764122

  10. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients.

    PubMed

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2-6 vs. α2-3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers.

  11. LC-MS/MS Analysis of Permethylated Free Oligosaccharides and N-glycans Derived from Human, Bovine, and Goat Milk Samples

    PubMed Central

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-01-01

    Oligosaccharides in milk not only provide nutrition to the infants, but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat and human milk using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat and human milk samples (without isomeric consideration) were 11, 8 and 11 respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by PGC LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using PGC column. Permethylation of the glycan structures facilitated the interpretation of tandem MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529

  12. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    PubMed

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans.

    PubMed

    Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian

    2015-04-07

    Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent Advances in Immobilization Strategies for Glycosidases

    PubMed Central

    Karav, Sercan; Cohen, Joshua L.; Barile, Daniela; de Moura Bell, Juliana Maria Leite Nobrega

    2017-01-01

    Glycans play important biological roles in cell-to-cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large-scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo-β-N-acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI-1) that cleaves N-N′-diacetyl chitobiose moieties found in the N-linked glycan (N-glycan) core of high mannose, hybrid, and complex N-glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N-glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state-of-the-art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. PMID:27718339

  15. Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis

    PubMed Central

    Parkinson, John E.; Tivey, Trevor R.; Mandelare, Paige E.; Adpressa, Donovon A.; Loesgen, Sandra; Weis, Virginia M.

    2018-01-01

    Mutualisms between cnidarian hosts and dinoflagellate endosymbionts are foundational to coral reef ecosystems. These symbioses are often re-established every generation with high specificity, but gaps remain in our understanding of the cellular mechanisms that control symbiont recognition and uptake dynamics. Here, we tested whether differences in glycan profiles among different symbiont species account for the different rates at which they initially colonize aposymbiotic polyps of the model sea anemone Aiptasia (Exaiptasia pallida). First, we used a lectin array to characterize the glycan profiles of colonizing Symbiodinium minutum (ITS2 type B1) and noncolonizing Symbiodinium pilosum (ITS2 type A2), finding subtle differences in the binding of lectins Euonymus europaeus lectin (EEL) and Urtica dioica agglutinin lectin (UDA) that distinguish between high-mannoside and hybrid-type protein linked glycans. Next, we enzymatically cleaved glycans from the surfaces of S. minutum cultures and followed their recovery using flow cytometry, establishing a 48–72 h glycan turnover rate for this species. Finally, we exposed aposymbiotic host polyps to cultured S. minutum cells masked by EEL or UDA lectins for 48 h, then measured cell densities the following day. We found no effect of glycan masking on symbiont density, providing further support to the hypothesis that glycan-lectin interactions are more important for post-phagocytic persistence of specific symbionts than they are for initial uptake. We also identified several methodological and biological factors that may limit the utility of studying glycan masking in the Aiptasia system. PMID:29765363

  16. Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II.

    PubMed

    Saul, F A; Rovira, P; Boulot, G; Damme, E J; Peumans, W J; Truffa-Bachi, P; Bentley, G A

    2000-06-15

    Urtica dioica agglutinin (UDA), a monomeric lectin extracted from stinging nettle rhizomes, is specific for saccharides containing N-acetylglucosamine (GlcNAc). The lectin behaves as a superantigen for murine T cells, inducing the exclusive proliferation of Vbeta8.3(+) lymphocytes. UDA is unique among known T cell superantigens because it can be presented by major histocompatibility complex (MHC) molecules of both class I and II. The crystal structure of UDA has been determined in the ligand-free state, and in complex with tri-acetylchitotriose and tetra-acetylchitotetraose at 1.66 A, 1.90 A and 1.40 A resolution, respectively. UDA comprises two hevein-like domains, each with a saccharide-binding site. A serine and three aromatic residues at each site form the principal contacts with the ligand. The N-terminal domain binding site can centre on any residue of a chito-oligosaccharide, whereas that of the C-terminal domain is specific for residues at the nonreducing terminus of the ligand. We have shown previously that oligomers of GlcNAc inhibit the superantigenic activity of UDA and that the lectin binds to glycans on the MHC molecule. We show that UDA also binds to glycans on the T cell receptor (TCR). The presence of two saccharide-binding sites observed in the structure of UDA suggests that its superantigenic properties arise from the simultaneous fixation of glycans on the TCR and MHC molecules of the T cell and antigen-presenting cell, respectively. The well defined spacing between the two binding sites of UDA is probably a key factor in determining the specificity for Vbeta8.3(+) lymphocytes.

  17. Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution.

    PubMed

    Liu, Yang; Xu, Shenyuan; Woodruff, Andrew L; Xia, Ming; Tan, Ming; Kennedy, Michael A; Jiang, Xi

    2017-11-01

    Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.

  18. A Novel High-Mannose Specific Lectin from the Green Alga Halimeda renschii Exhibits a Potent Anti-Influenza Virus Activity through High-Affinity Binding to the Viral Hemagglutinin

    PubMed Central

    Mu, Jinmin; Hirayama, Makoto; Sato, Yuichiro; Morimoto, Kinjiro; Hori, Kanji

    2017-01-01

    We have isolated a novel lectin, named HRL40 from the green alga Halimeda renschii. In hemagglutination-inhibition test and oligosaccharide-binding experiment with 29 pyridylaminated oligosaccharides, HRL40 exhibited a strict binding specificity for high-mannose N-glycans having an exposed (α1-3) mannose residue in the D2 arm of branched mannosides, and did not have an affinity for monosaccharides and other oligosaccharides examined, including complex N-glycans, an N-glycan core pentasaccharide, and oligosaccharides from glycolipids. The carbohydrate binding profile of HRL40 resembled those of Type I high-mannose specific antiviral algal lectins, or the Oscillatoria agardhii agglutinin (OAA) family, which were previously isolated from red algae and a blue-green alga (cyanobacterium). HRL40 potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells with half-maximal effective dose (ED50) of 2.45 nM through high-affinity binding to a viral envelope hemagglutinin (KD, 3.69 × 10−11 M). HRL40 consisted of two isolectins (HRL40-1 and HRL40-2), which could be separated by reverse-phase HPLC. Both isolectins had the same molecular weight of 46,564 Da and were a disulfide -linked tetrameric protein of a 11,641 Da polypeptide containing at least 13 half-cystines. Thus, HRL40, which is the first Type I high-mannose specific antiviral lectin from the green alga, had the same carbohydrate binding specificity as the OAA family, but a molecular structure distinct from the family. PMID:28813016

  19. NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.

    PubMed

    Higai, Koji; Imaizumi, Yuzo; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-09-04

    Killer lectin-like receptors NKG2D and CD94 on natural killer cells trigger cytotoxicity through binding of glycans on target cells including sialyl Lewis X antigen. We previously reported that NKG2D and CD94 recognize alpha2,3-linked NeuAc on multi-antennary N-glycans. Here we further investigated polysaccharide binding by these receptors, using glutathione-S-transferase-fused extracellular domains of NKG2D AA 73-216 (rNKG2Dlec) and CD94 AA 68-179 (rCD94lec). We found that rNKG2Dlec and rCD94lec bind in a dose-dependent manner to plates coated with heparin-conjugated bovine serum albumin (heparin-BSA). Binding to heparin-BSA was suppressed by soluble sulfate-containing polysaccharides, but minimally impacted by 2-O-, 6-O-, and 2-N-desulfated heparin. Mutagenesis revealed that (152)Y and (199)Y of NKG2D and (144)F, (160)N, and (166)C of CD94 were critical for binding to heparin-BSA. The present manuscript provides the first evidence that NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.

  20. Glycosylation status of bone sialoprotein and its role in mineralization.

    PubMed

    Xu, Lan; Zhang, Zhenqing; Sun, Xue; Wang, Jingjing; Xu, Wei; Shi, Lv; Lu, Jiaojiao; Tang, Juan; Liu, Jingjing; Su, Xiong

    2017-11-15

    The highly glycosylated bone sialoprotein (BSP) is an abundant non-collagenous phosphoprotein in bone which enhances osteoblast differentiation and new bone deposition in vitro and in vivo. However, the structural details of its different glycosylation linkages have not been well studied and their functions in bone homeostasis are not clear. Previous studies suggested that the O-glycans, but not the N-glycans on BSP, are highly sialylated. Herein, we employed tandem mass spectrometry (MS/MS) to demonstrate that the N-glycanson the recombinant human integrin binding sialoprotein (rhiBSP) are also enriched in sialic acids (SAs) at their termini. We also identified multiple novel sites of N-glycan modification. Treatment of rhiBSP enhances osteoblast differentiation and mineralization of MC3T3-E1 cells and this effect could be partially reversed by efficient enzymatic removal of its N-glycans. Removal of all terminal SAs has a greater effect in reversing the effect of rhiBSP on osteogenesis, especially on mineralization, suggesting that sialylation at the termini of both N-glycans and O-glycans plays an important role in this regulation. Moreover, BSP-conjugated SAs may affect mineralization via ERK activation of VDR expression. Collectively, our results identified novel N-glycans enriched in SAs on the rhiBSP and demonstrated that SAs at both N- and O-glycans are important for BSP regulation of osteoblast differentiation and mineralization in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  2. An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins.

    PubMed

    Xiao, Haopeng; Chen, Weixuan; Smeekens, Johanna M; Wu, Ronghu

    2018-04-27

    Protein glycosylation is ubiquitous in biological systems and essential for cell survival. However, the heterogeneity of glycans and the low abundance of many glycoproteins complicate their global analysis. Chemical methods based on reversible covalent interactions between boronic acid and glycans have great potential to enrich glycopeptides, but the binding affinity is typically not strong enough to capture low-abundance species. Here, we develop a strategy using dendrimer-conjugated benzoboroxole to enhance the glycopeptide enrichment. We test the performance of several boronic acid derivatives, showing that benzoboroxole markedly increases glycopeptide coverage from human cell lysates. The enrichment is further improved by conjugating benzoboroxole to a dendrimer, which enables synergistic benzoboroxole-glycan interactions. This robust and simple method is highly effective for sensitive glycoproteomics analysis, especially capturing low-abundance glycopeptides. Importantly, the enriched glycopeptides remain intact, making the current method compatible with mass-spectrometry-based approaches to identify glycosylation sites and glycan structures.

  3. Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin.

    PubMed

    Higai, Koji; Suzuki, Chiho; Imaizumi, Yuzo; Xin, Xin; Azuma, Yutaro; Matsumoto, Kojiro

    2011-01-01

    Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.

  4. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  5. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A

    PubMed Central

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-01-01

    Botulinum neurotoxin serotype A1 (BoNT/A1) is one of the most dangerous potential bioterrorism agents, and exerts its action by invading motoneurons. It is also a licensed drug widely used for medical and cosmetic applications. Here we report a 2.0 Å resolution crystal structure of BoNT/A1 receptor-binding domain in complex with its neuronal receptor, the glycosylated human SV2C. We find that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an anti-botulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications to achieve highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors. PMID:27294781

  6. Repertoire of BALB/c Mice Natural Anti-Carbohydrate Antibodies: Mice vs. Humans Difference, and Otherness of Individual Animals

    PubMed Central

    Bello-Gil, Daniel; Khasbiullina, Nailya; Shilova, Nadezhda; Bovin, Nicolai; Mañez, Rafael

    2017-01-01

    One of the most common genetic backgrounds for mice used as a model to investigate human diseases is the inbred BALB/c strain. This work is aimed to characterize the pattern of natural anti-carbohydrate antibodies present in the serum of 20 BALB/c mice by printed glycan array technology and to compare their binding specificities with that of human natural anti-carbohydrate antibodies. Natural antibodies (NAbs) from the serum of BALB/c mice interacted with 71 glycans from a library of 419 different carbohydrate structures. However, only seven of these glycans were recognized by the serum of all the animals studied, and other five glycans by at least 80% of mice. The pattern of the 12 glycans mostly recognized by the circulating antibodies of BALB/c mice differed significantly from that observed with natural anti-carbohydrate antibodies in humans. This lack of identical repertoires of natural anti-carbohydrate antibodies between individual inbred mice, and between mice and humans, should be taken into consideration when mouse models are intended to be used for investigation of NAbs in biomedical research. PMID:29163519

  7. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  8. Glycan microarray analysis of the carbohydrate-recognition specificity of native and recombinant forms of the lectin ArtinM.

    PubMed

    Liu, Y; Cecílio, N T; Carvalho, F C; Roque-Barreira, M C; Feizi, T

    2015-12-01

    This article contains data related to the researc.h article entitled "Yeast-derived ArtinM shares structure, carbohydrate recognition, and biological effects with native ArtinM" by Cecílio et al. (2015) [1]. ArtinM, a D-mannose-binding lectin isolated from the seeds of Artocarpus heterophyllus, exerts immunomodulatory and regenerative activities through its Carbohydrate Recognition Domain (CRD) (Souza et al., 2013; Mariano et al., 2014 [2], [3]). The limited availability of the native lectin (n-ArtinM) led us to characterize a recombinant form of the protein, obtained by expression in Saccharomyces cerevisiae (y-ArtinM). We compared the carbohydrate-binding specificities of y-ArtinM and n-ArtinM by analyzing the binding of biotinylated preparations of the two lectin forms using a neoglycolipid (NGL)-based glycan microarray. Data showed that y-ArtinM mirrored the specificity exhibited by n-ArtinM.

  9. Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition.

    PubMed

    Wangkanont, Kittikhun; Wesener, Darryl A; Vidani, Jack A; Kiessling, Laura L; Forest, Katrina T

    2016-03-11

    Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition*

    PubMed Central

    Wangkanont, Kittikhun; Wesener, Darryl A.; Vidani, Jack A.; Kiessling, Laura L.; Forest, Katrina T.

    2016-01-01

    Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates. PMID:26755729

  11. A beta-N-acetylglucosaminyl phosphate diester residue is attached to the glycosylphosphatidylinositol anchor of human placental alkaline phosphatase: a target of the channel-forming toxin aerolysin.

    PubMed

    Fukushima, Keiko; Ikehara, Yukio; Kanai, Michiko; Kochibe, Naohisa; Kuroki, Masahide; Yamashita, Katsuko

    2003-09-19

    Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.

  12. A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples.

    PubMed

    Johansen, Eric; Schilling, Birgit; Lerch, Michael; Niles, Richard K; Liu, Haichuan; Li, Bensheng; Allen, Simon; Hall, Steven C; Witkowska, H Ewa; Regnier, Fred E; Gibson, Bradford W; Fisher, Susan J; Drake, Penelope M

    2009-10-01

    Glycans are an important class of post-translational modifications. Typically found on secreted and extracellular molecules, glycan structures signal the internal status of the cell. Glycans on tumor cells tend to have abundant sialic acid and fucose moieties. We propose that these cancer-associated glycan variants be exploited for biomarker development aimed at diagnosing early-stage disease. Accordingly, we developed a mass spectrometry-based workflow that incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan structures. The lectins Sambucus nigra (SNA) and Aleuria aurantia (AAL), which bind sialic acid and fucose, respectively, were covalently coupled to POROS beads (Applied Biosystems) and packed into PEEK columns for high pressure liquid chromatography (HPLC). Briefly, plasma was depleted of the fourteen most abundant proteins using a multiple affinity removal system (MARS-14; Agilent). Depleted plasma was trypsin-digested and separated into flow-through and bound fractions by SNA or AAL HPLC. The fractions were treated with PNGaseF to remove N-linked glycans, and analyzed by LC-MS/MS on a QStar Elite. Data were analyzed using Mascot software. The experimental design included positive controls-fucosylated and sialylated human lactoferrin glycopeptides-and negative controls-high mannose glycopeptides from Saccharomyces cerevisiae-that were used to monitor the specificity of lectin capture. Key features of this workflow include the reproducibility derived from the HPLC format, the positive identification of the captured and PNGaseF-treated glycopeptides from their deamidated Asn-Xxx-Ser/Thr motifs, and quality assessment using glycoprotein standards. Protocol optimization also included determining the appropriate ratio of starting material to column capacity, identifying the most efficient capture and elution buffers, and monitoring the PNGaseF-treatment to ensure full deglycosylation. Future directions include using this workflow to perform mass spectrometry-based discovery experiments on plasma from breast cancer patients and control individuals.

  13. Core 1-derived O-glycans are essential E-selectin ligands on neutrophils.

    PubMed

    Yago, Tadayuki; Fu, Jianxin; McDaniel, J Michael; Miner, Jonathan J; McEver, Rodger P; Xia, Lijun

    2010-05-18

    Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcalpha1-Ser/Thr to form the core 1 structure Galbeta1-3GalNAcalpha1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase-deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate beta2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.

  14. Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.

    PubMed

    Piller, Friedrich; Mongis, Aline; Piller, Véronique

    2015-01-01

    By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.

  15. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.

    PubMed

    Amann, Thomas; Hansen, Anders Holmgaard; Kol, Stefan; Lee, Gyun Min; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup

    2018-06-03

    In production of recombinant proteins for biopharmaceuticals, N-glycosylation is often important for protein efficacy and patient safety. IgG with agalactosylated (G0)-N-glycans can improve the activation of the lectin-binding complement system and be advantageous in the therapy of lupus and virus diseases. In this study, we aimed to engineer CHO-S cells for the production of proteins with G0-N-glycans by targeting B4Gal-T isoform genes with CRISPR/Cas9. Indel mutations in genes encoding B4Gal-T1, -T2 and-T3 with and without a disrupted B4Gal-T4 sequence resulted in only ∼1% galactosylated N-glycans on total secreted proteins of 3-4 clones per genotype. We revealed that B4Gal-T4 is not active in N-glycan galactosylation in CHO-S cells. In the triple-KO clones, transiently expressed erythropoietin (EPO) and rituximab harbored only ∼6% and ∼3% galactosylated N-glycans, respectively. However, simultaneous disruption of B4Gal-T1 and -T3 may decrease cell growth. Altogether, we present the advantage of analyzing total secreted protein N-glycans after disrupting galactosyltransferases, followed by expressing recombinant proteins in selected clones with desired N-glycan profiles at a later stage. Furthermore, we provide a cell platform that prevalently glycosylates proteins with G0-N-glycans to further study the impact of agalactosylation on different in vitro and in vivo functions of recombinant proteins. This article is protected by copyright. All rights reserved.

  16. Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, E.; Hartshorn, K; Horlacher, T

    2009-01-01

    Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced bindingmore » to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.« less

  17. Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants

    PubMed Central

    Liu, Yang; Huang, Pengwei; Jiang, Baoming; Tan, Ming; Morrow, Ardythe L.; Jiang, Xi

    2013-01-01

    Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children. PMID:24244290

  18. Biogenesis of influenza a virus hemagglutinin cross-protective stem epitopes.

    PubMed

    Magadán, Javier G; Altman, Meghan O; Ince, William L; Hickman, Heather D; Stevens, James; Chevalier, Aaron; Baker, David; Wilson, Patrick C; Ahmed, Rafi; Bennink, Jack R; Yewdell, Jonathan W

    2014-06-01

    Antigenic variation in the globular domain of influenza A virus (IAV) hemagglutinin (HA) precludes effective immunity to this major human pathogen. Although the HA stem is highly conserved between influenza virus strains, HA stem-reactive antibodies (StRAbs) were long considered biologically inert. It is now clear, however, that StRAbs reduce viral replication in animal models and protect against pathogenicity and death, supporting the potential of HA stem-based immunogens as drift-resistant vaccines. Optimally designing StRAb-inducing immunogens and understanding StRAb effector functions require thorough comprehension of HA stem structure and antigenicity. Here, we study the biogenesis of HA stem epitopes recognized in cells infected with various drifted IAV H1N1 strains using mouse and human StRAbs. Using a novel immunofluorescence (IF)-based assay, we find that human StRAbs bind monomeric HA in the endoplasmic reticulum (ER) and trimerized HA in the Golgi complex (GC) with similar high avidity, potentially good news for producing effective monomeric HA stem immunogens. Though HA stem epitopes are nestled among several N-linked oligosaccharides, glycosylation is not required for full antigenicity. Rather, as N-linked glycans increase in size during intracellular transport of HA through the GC, StRAb binding becomes temperature-sensitive, binding poorly to HA at 4°C and well at 37°C. A de novo designed, 65-residue protein binds the mature HA stem independently of temperature, consistent with a lack of N-linked oligosaccharide steric hindrance due to its small size. Likewise, StRAbs bind recombinant HA carrying simple N-linked glycans in a temperature-independent manner. Chemical cross-linking experiments show that N-linked oligosaccharides likely influence StRAb binding by direct local effects rather than by globally modifying the conformational flexibility of HA. Our findings indicate that StRAb binding to HA is precarious, raising the possibility that sufficient immune pressure on the HA stem region could select for viral escape mutants with increased steric hindrance from N-linked glycans.

  19. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.

    2012-01-01

    Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679

  20. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood.

    PubMed

    Deng, Lingquan; Bensing, Barbara A; Thamadilok, Supaporn; Yu, Hai; Lau, Kam; Chen, Xi; Ruhl, Stefan; Sullam, Paul M; Varki, Ajit

    2014-12-01

    Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a selective advantage in colonizing damaged cardiac valves and cause infective endocarditis.

  1. Structures of the Streptococcus sanguinis SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand.

    PubMed

    Loukachevitch, Lioudmila V; Bensing, Barbara A; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-10-11

    Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays with SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To improve our understanding of the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpA BR ) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-Lewis X ), and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpA BR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpA BR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that binding of SrpA to platelets either is multivalent or occurs via a larger, disialylated glycan.

  2. Structures of the Streptococcus sanguinis SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand

    PubMed Central

    Loukachevitch, Lioudmila V.; Bensing, Barbara A.; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M.; Iverson, T M

    2016-01-01

    Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays between SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To better understand the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpABR) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-LewisX) and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpABR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpABR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that SrpA binding to platelets is either multivalent or occurs via a larger, disialylated glycan. PMID:27685666

  3. Directing stem cell trafficking via GPS.

    PubMed

    Sackstein, Robert

    2010-01-01

    The success of stem-cell-based regenerative therapeutics critically hinges on delivering relevant stem/progenitor cells to sites of tissue injury. To achieve adequate parenchymal infiltration following intravascular administration, it is first necessary that circulating cells bind to target tissue endothelium with sufficient strength to overcome the prevailing forces of hemodynamic shear. The principal mediators of these shear-resistant binding interactions consist of a family of C-type lectins known as "selectins" that bind discrete sialofucosylated glycans on their respective ligands. One member of this family, E-selectin, is an endothelial molecule that is inducibly expressed on postcapillary venules at all sites of tissue injury, but is also constitutively expressed on the luminal surface of bone marrow and dermal microvascular endothelium. Most stem/progenitor cells express high levels of CD44, and, in particular, human hematopoietic stem cells express a specialized sialofucosylated glycoform of CD44 known as "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a potent E-selectin ligand. This chapter describes a method called "glycosyltransferase-programmed stereosubstitution" (GPS) for custom-modifying CD44 glycans to create HCELL on the surface of living cells that natively lack HCELL. Ex vivo glycan engineering of HCELL via GPS licenses trafficking of infused cells to endothelial beds that express E-selectin, thereby enabling efficient vascular delivery of stem/progenitor cells to sites where they are needed. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.

    PubMed

    Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi

    2008-09-19

    Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.

  5. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    PubMed Central

    Tate, Michelle D.; Job, Emma R.; Deng, Yi-Mo; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Reading, Patrick C.

    2014-01-01

    Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity. PMID:24638204

  6. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  7. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE PAGES

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul; ...

    2015-11-01

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  8. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    PubMed Central

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  9. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD22.

    PubMed

    Chen, Weihsu C; Sigal, Darren S; Saven, Alan; Paulson, James C

    2012-02-01

    CD22 is a member of the siglec (sialic acid-binding immunoglobulin-like lectin) family expressed on B cells that recognizes glycans of glycoproteins as ligands. Because siglecs exhibit restricted expression on one or a few leukocyte cell types, they have gained attention as attractive targets for cell-directed therapies. Several antibody-based therapies targeting CD22 (Siglec-2) are currently in clinical trials for the treatment of hairy cell leukemia and other B cell lymphomas. As an alternative to antibodies we have developed liposomal nanoparticles decorated with glycan ligands of CD22 that selectively target B cells. Because CD22 is an endocytic receptor, ligand-decorated liposomes are bound by CD22 and rapidly internalized by the cell. When loaded with a toxic cargo such as doxorubicin, they are efficacious in prolonging life in a Daudi B cell lymphoma model. These B cell targeted nanoparticles have been demonstrated to bind and kill malignant B cells from patients with hairy cell leukemia, marginal zone lymphoma and chronic lymphocytic leukemia. The results demonstrate the potential of using CD22 ligand-targeted liposomal nanoparticles as an alternative approach for the treatment of B cell malignancies.

  10. Combining Crystallography and Hydrogen-Deuterium Exchange to Study Galectin-Ligand Complexes.

    PubMed

    Ruiz, Federico M; Gilles, Ulrich; Lindner, Ingo; André, Sabine; Romero, Antonio; Reusch, Dietmar; Gabius, Hans-Joachim

    2015-09-21

    The physiological significance arising from translating information stored in glycans into cellular effects explains the interest in structurally defining lectin-carbohydrate recognition. The relatively small set of adhesion/growth-regulatory galectins in chicken makes this system attractive to study the origins of specificity and divergence. Cell binding by using glycosylation mutants reveals binding of the N-terminal domain of chicken galectin-8 (CG-8N) to α-2,3-sialylated and galactose-terminated glycan chains. Cocrystals with lactose and its 3'-sialylated derivative disclose Arg58 as a key contact for the carboxylic acid and differences in loop lengths to the three homodimeric chicken galectins. Monitoring hydrogen-deuterium exchange by mass spectrometry revealed an effective reduction of deuteration after ligand binding within the contact area. In addition, evidence for changes in solvent accessibility of amide protons beyond this site was obtained. Their detection, which highlights the sensor capacity of this technique, encourages systematic studies on galectins and beyond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the naturalmore » helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.« less

  12. Microrheology study of human mucins varying in Helicobacter pylori binding affinity

    NASA Astrophysics Data System (ADS)

    Su, Clover; Sharba, Sinan; Linden, Sara; Bansil, Rama

    Helicobacter pylori is the pathogen that colonizes the human stomach and causes gastric ulcers and cancer. One of the key mechanisms by which H. pylori establishes an infection on the gastric mucosa is by expressing adhesins that facilitate the binding of the bacterium to the host epithelial cell. We present the motility and microrheology study of a clinical isolate strain of H. pylori, J99, and its mutant with and without particular adhesins that bind to mucins with specific alterations in their glycans coat. Our microrheology experiments show that mucin viscosity depends on the glycans coat and decreases in the presence of bacteria. We found no significant changes in bacterial motility between J99 wild type and mutant in culture broth. Unlike previous observations made with other H. pylori strains, we did not see reversals in J99 strains. Bacteria tracking measurements are underway to examine the motility in these altered mucin solutions. Supported by NSF PHY 1410798.

  13. Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis.

    PubMed

    Mathew, Mohit P; Donaldson, Julie G

    2018-05-11

    Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.

  14. Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets.

    PubMed

    Singh, Anirudh K; Woodiga, Shireen A; Grau, Margaret A; King, Samantha J

    2017-03-01

    Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis , like Streptococcus gordonii and Streptococcus sanguinis , binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors. Copyright © 2017 American Society for Microbiology.

  15. Bivalent Carbohydrate Binding Is Required for Biological Activity of Clitocybe nebularis Lectin (CNL), the N,N′-Diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc)-specific Lectin from Basidiomycete C. nebularis*

    PubMed Central

    Pohleven, Jure; Renko, Miha; Magister, Špela; Smith, David F.; Künzler, Markus; Štrukelj, Borut; Turk, Dušan; Kos, Janko; Sabotič, Jerica

    2012-01-01

    Lectins are carbohydrate-binding proteins that exert their biological activity by binding to specific cell glycoreceptors. We have expressed CNL, a ricin B-like lectin from the basidiomycete Clitocybe nebularis in Escherichia coli. The recombinant lectin, rCNL, agglutinates human blood group A erythrocytes and is specific for the unique glycan N,N′-diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc) as demonstrated by glycan microarray analysis. We here describe the crystal structures of rCNL in complex with lactose and LacdiNAc, defining its interactions with the sugars. CNL is a homodimeric lectin, each of whose monomers consist of a single ricin B lectin domain with its β-trefoil fold and one carbohydrate-binding site. To study the mode of CNL action, a nonsugar-binding mutant and nondimerizing monovalent CNL mutants that retain carbohydrate-binding activity were prepared. rCNL and the mutants were examined for their biological activities against Jurkat human leukemic T cells and the hypersensitive nematode Caenorhabditis elegans mutant strain pmk-1. rCNL was toxic against both, although the mutants were inactive. Thus, the bivalent carbohydrate-binding property of homodimeric CNL is essential for its activity, providing one of the rare pieces of evidence that certain activities of lectins are associated with their multivalency. PMID:22298779

  16. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  17. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    PubMed

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret-transmissible H5N1 that increases human-type receptor binding. K193T seems to be a common receptor specificity determinant, as it increases human-type receptor binding in multiple subtypes. The K193T mutation can now be used as a marker during surveillance of emerging viruses to assess potential pandemic risk. Copyright © 2018 American Society for Microbiology.

  18. Restricted HIV-1 Env glycan engagement by lectin-reengineered DAVEI protein chimera is sufficient for lytic inactivation of the virus

    PubMed Central

    Parajuli, Bibek; Acharya, Kriti; Bach, Harry C.; Parajuli, Bijay; Zhang, Shiyu; Smith, Amos B.; Abrams, Cameron F.; Chaiken, Irwin

    2018-01-01

    We previously reported a first-generation recombinant DAVEI construct, a dual action virus entry inhibitor composed of cyanovirin-N (CVN) fused to a membrane proximal external region or its derivative peptide Trp3. DAVEI exhibits potent and irreversible inactivation of HIV-1 (human immunodeficiency virus) viruses by dual engagement of gp120 and gp41. However, the promiscuity of CVN to associate with multiple glycosylation sites in gp120 and its multivalency limit current understanding of the molecular arrangement of the DAVEI molecules on trimeric spike. Here, we constructed and investigated the virolytic function of second-generation DAVEI molecules using a simpler lectin, microvirin (MVN). MVN is a monovalent lectin with a single glycan-binding site in gp120, is structurally similar to CVN and exhibits no toxicity or mitogenicity, both of which are liabilities with CVN. We found that, like CVN-DAVEI-L2-3Trp (peptide sequence DKWASLWNW), MVN-DAVEI2-3Trp exploits a similar mechanism of action for inducing HIV-1 lytic inactivation, but by more selective gp120 glycan engagement. By sequence redesign, we significantly increased the potency of MVN-DAVEI2-3Trp protein. Unlike CVN-DAVEI2-3Trp, re-engineered MVN-DAVEI2-3Trp(Q81K/M83R) virolytic activity and its interaction with gp120 were both competed by 2G12 antibody. That the lectin domain in DAVEIs can utilize MVN without loss of virolytic function argues that restricted HIV-1 Env (envelope glycoprotein) glycan engagement is sufficient for virolysis. It also shows that DAVEI lectin multivalent binding with gp120 is not required for virolysis. MVN-DAVEI2-3Trp(Q81K/M83R) provides an improved tool to elucidate productive molecular arrangements of Env-DAVEI enabling virolysis and also opens the way to form DAVEI fusions made up of gp120-binding small molecules linked to Trp3 peptide. PMID:29343613

  19. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.

    PubMed

    Tzeng, Sheue-Fen; Tsai, Chin-Hsien; Chao, Tai-Kuang; Chou, Yu-Ching; Yang, Yu-Chih; Tsai, Mong-Hsun; Cha, Tai-Lung; Hsiao, Pei-Wen

    2018-06-15

    Disseminated castration-resistant prostate cancer (CRPC) is a common disease in men that is characterized by limited survival and resistance to androgen-deprivation therapy. The increase in human epidermal growth factor receptor 2 (HER2) signaling contributes to androgen receptor activity in a subset of patients with CRPC; however, enigmatically, HER2-targeted therapies have demonstrated a lack of efficacy in patients with CRPC. Aberrant glycosylation is a hallmark of cancer and involves key processes that support cancer progression. Using transcriptomic analysis of prostate cancer data sets, histopathologic examination of clinical specimens, and in vivo experiments of xenograft models, we reveal in this study a coordinated increase in glycan-binding protein, galectin-4, specific glycosyltransferases of core 1 synthase, glycoprotein- N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) and ST3 beta-galactoside α-2,3-sialyltransferase 1 (ST3GAL1), and resulting mucin-type O-glycans during the progression of CRPC. Furthermore, galectin-4 engaged with C1GALT1-dependent O-glycans to promote castration resistance and metastasis by activating receptor tyrosine kinase signaling and cancer cell stemness properties mediated by SRY-box 9 (SOX9). This galectin-glycan interaction up-regulated the MYC-dependent expression of C1GALT1 and ST3GAL1, which altered cellular mucin-type O-glycosylation to allow for galectin-4 binding. In clinical prostate cancer, high-level expression of C1GALT1 and galectin-4 together predict poor overall survival compared with low-level expression of C1GALT1 and galectin-4. In summary, MYC regulates abnormal O-glycosylation, thus priming cells for binding to galectin-4 and downstream signaling, which promotes castration resistance and metastasis.-Tzeng, S.-F., Tsai, C.-H., Chao, T.-K., Chou, Y.-C., Yang, Y.-C., Tsai, M.-H., Cha, T.-L., Hsiao, P.-W. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.

  20. Molecular-Scale Features that Govern the Effects of O-Glycosylation on a Carbohydrate-Binding Module

    DOE PAGES

    Guan, Xiaoyang; Chaffey, Patrick K.; Zeng, Chen; ...

    2015-09-21

    The protein glycosylation is a ubiquitous post-translational modification in all kingdoms of life. Despite its importance in molecular and cellular biology, the molecular-level ramifications of O-glycosylation on biomolecular structure and function remain elusive. Here, we took a small model glycoprotein and changed the glycan structure and size, amino acid residues near the glycosylation site, and glycosidic linkage while monitoring any corresponding changes to physical stability and cellulose binding affinity. The results of this study reveal the collective importance of all the studied features in controlling the most pronounced effects of O-glycosylation in this system. This study suggests the possibility ofmore » designing proteins with multiple improved properties by simultaneously varying the structures of O-glycans and amino acids local to the glycosylation site.« less

  1. Carbohydrate moieties of myelin-associated glycoprotein, major glycoprotein of the peripheral nervous system myelin and other myelin glycoproteins potentially involved in cell adhesion.

    PubMed

    Badache, A; Burger, D; Villarroya, H; Robert, Y; Kuchler, S; Steck, A J; Zanetta, J P

    1992-01-01

    The myelin-associated glycoprotein (MAG) and the major glycoprotein of the peripheral nervous system myelin (P0) are two members of the family of cell adhesion molecules (CAMs). A role in cell adhesion of the carbohydrate moiety of these molecules has been attributed to the presence of N-glycans bearing the HNK-1 carbohydrate epitope. On the other hand, it has been suggested that these glycoproteins could be ligands of an endogenous mannose-binding lectin present in myelin, the cerebellar soluble lectin (CSL). In order to further document the heterogeneity of the glycans of these two CAMs, we have used several probes: an anti-carbohydrate antibody of the HNK-1 type, called Elec-39, the plant lectin concanavalin A (ConA), and the endogenous lectin CSL involved in myelin compaction. This study shows that CSL binds to a small proportion of the polypeptide chains of MAG found in adult CNS of rats and man and the polypeptide chains of P0 molecules from adult human and rat sciatic nerve. For MAG from adult rat brain, the binding of CSL is restricted to glycans of polypeptide chains which could be separated from the others according to their solubility properties. These MAG molecular entities react also with the Elec-39 antibody and with ConA. These results confirm that P0 and MAG are heterogeneous in their carbohydrate moieties.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Bacterial expression of the phosphodiester-binding site of the cation-independent mannose 6-phosphate receptor for crystallographic and NMR studies

    PubMed Central

    Olson, Linda J.; Jensen, Davin R.; Volkman, Brian F.; Kim, Jung-Ja P.; Peterson, Francis C.; Gundry, Rebekah L.; Dahms, Nancy M.

    2015-01-01

    The cation-independent mannose 6-phosphate receptor (CI-MPR) is a multifunctional protein that interacts with diverse ligands and plays central roles in autophagy, development, and tumor suppression. By delivering newly synthesized phosphomannosyl-containing acid hydrolases from the Golgi to endosomal compartments, CI-MPR is an essential component in the generation of lysosomes that are critical for the maintenance of cellular homeostasis. The ability of CI-MPR to interact with ~60 different acid hydrolases is facilitated by its large extracellular region, with four out of its 15 domains binding phosphomannosyl residues. Although the glycan specificity of CI-MPR has been elucidated, the molecular basis of carbohydrate binding has not been determined for two out of these four carbohydrate recognition domains (CRD). Here we report expression of CI-MPR’s CRD located in domain 5 that preferentially binds phosphodiester-containing glycans. Domain 5 of CI-MPR was expressed in Escherichia coli BL21 (DE3) cells as a fusion protein containing an N-terminal histidine tag and the small ubiquitin-like modifier (SUMO) protein. The His6-SUMO-CRD construct was recovered from inclusion bodies, refolded in buffer to facilitate disulfide bond formation, and subjected to Ni-NTA affinity chromatography and size exclusion chromatography. Surface plasmon resonance analyses demonstrated that the purified protein was active and bound phosphorylated glycans. Characterization by NMR spectroscopy revealed high quality 1H–15N HSQC spectra. Additionally, crystallization conditions were identified and a crystallographic data set of the CRD was collected to 1.8 Å resolution. Together, these studies demonstrate the feasibility of producing CI-MPR’s CRD suitable for three-dimensional structure determination by NMR spectroscopic and X-ray crystallographic approaches. PMID:25863146

  3. CD45-mediated signaling pathway is involved in Rhizoctonia bataticola lectin (RBL)-induced proliferation and Th1/Th2 cytokine secretion in human PBMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer RBL, a potent mitogenic and complex N-glycan specific lectin binds to CD45 on PBMC. Black-Right-Pointing-Pointer RBL triggers CD45-mediated signaling involved in activation of p38MAPK and STAT-5. Black-Right-Pointing-Pointer Inhibition of CD45 PTPase signaling blocks RBL-induced ZAP70 phosphorylation. Black-Right-Pointing-Pointer RBL-CD45 mediated signaling is crucial for RBL-induced immunodulatory activities. -- Abstract: We earlier reported the mitogenic and immunostimulatory activities of Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus R. bataticola in human PBMC. The lectin demonstrates specificity towards glycoproteins containing complex N-glycans. Since CD45-protein tyrosine phosphatase that abundantly expresses N-glycans is important in T-cell signaling, the study aimed to investigate themore » involvement of CD45 in the immunomodulatory activities of RBL. Flowcytometry and confocal microscopy studies revealed that RBL exhibited binding to PBMC and colocalized with CD45. The binding was comparable in cells expressing different CD45 isoforms-RA, -RB and -RO. CD45 blocking antibody reduced the binding and proliferation of PBMC induced by RBL. CD45-PTPase inhibitor dephostatin inhibited RBL-induced proliferation, expression of CD25 and pZAP-70. RBL-induced secretion of Th1/Th2 cytokines were significantly inhibited in presence of dephostatin. Also, dephostatin blocked phosphorylation of p38MAPK and STAT-5 that was crucial for the biological functions of RBL. The study demonstrates the involvement of CD45-mediated signaling in RBL-induced PBMC proliferation and Th1/Th2 cytokine secretion through activation of p38MAPK and STAT-5.« less

  4. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    PubMed Central

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  5. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans.

    PubMed

    Newburg, D S

    2009-04-01

    This review discusses the role of human milk glycans in protecting infants, but the conclusion that the human milk glycans constitute an innate immune system whereby the mother protects her offspring may have general applicability in all mammals, including species of commercial importance. Infants that are not breastfed have a greater incidence of severe diarrhea and respiratory diseases than those who are breastfed. In the past, this had been attributed primarily to human milk secretory antibodies. However, the oligosaccharides are major components of human milk, and milk is also rich in other glycans, including glycoproteins, mucins, glycosaminoglycans, and glycolipids. These milk glycans, especially the oligosaccharides, are composed of thousands of components. The milk factor that promotes gut colonization by Bifidobacterium bifidum was found to be a glycan, and such prebiotic characteristics may contribute to protection against infectious agents. However, the ability of human milk glycans to protect the neonate seems primarily to be due to their inhibition of pathogen binding to their host cell target ligands. Many such examples include specific fucosylated oligosaccharides and glycans that inhibit specific pathogens. Most human milk oligosaccharides are fucosylated, and their production depends on fucosyltransferase enzymes; mutations in these fucosyltransferase genes are common and underlie the various Lewis blood types in humans. Variable expression of specific fucosylated oligosaccharides in milk, also a function of these genes (and maternal Lewis blood type), is significantly associated with the risk of infectious disease in breastfed infants. Human milk also contains major quantities and large numbers of sialylated oligosaccharides, many of which are also present in bovine colostrum. These could similarly inhibit several common viral pathogens. Moreover, human milk oligosaccharides strongly attenuate inflammatory processes in the intestinal mucosa. These results support the hypothesis that oligosaccharides and other glycans are the major constituents of an innate immune system of human milk whereby the mother protects her infant from enteric and other pathogens through breastfeeding. These protective glycans may prove useful as a basis for the development of novel prophylactic and therapeutic agents that inhibit disease by mucosal pathogens in many species.

  6. How to Crack the Sugar Code.

    PubMed

    Gabius, H-J

    2017-01-01

    The known ubiquitous presence of glycans fulfils an essential prerequisite for fundamental roles in cell sociology. Since carbohydrates are chemically predestined to form biochemical messages of a maximum of structural diversity in a minimum of space, coding of biological information by sugars is the reason for the broad occurrence of cellular glycoconjugates. Their glycans originate from sophisticated enzymatic assembly and dynamically adaptable remodelling. These signals are read and translated into effects by receptors (lectins). The functional pairing between lectins and their counterreceptor(s) is highly specific, often orchestrated by intimate co-regulation of the receptor, the cognate glycan and the bioactive scaffold (e.g., an integrin). Bottom-up approaches, teaming up synthetic and supramolecular chemistry to prepare fully programmable nanoparticles as binding partners with systematic network analysis of lectins and rational design of variants, enable us to delineate the rules of the sugar code.

  7. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    PubMed

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P < 0.05). A combination with the clinically used tumour marker CA125 increased the diagnostic performance (AUC 0.8711). We next compared suspension array with standard flow cytometry in plasma samples and found that the level of anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  8. OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.)

    PubMed Central

    Zhang, SaiNa; Lim, Jae-Min; Lee, Kyun Oh; Li, ChuanYou; Qian, Qian; Jiang, De An; Qi, YanHua

    2014-01-01

    SUMMARY N-glycosylation is a major modification of glycoproteins in eukaryotic cells. In Arabidopsis, great progress has been made in functional analysis of N-glycan production; however, there are few studies in monocotyledons. Here, we characterized a rice (Oryza sativa L.) osmogs mutant with shortened roots and isolated a gene coding a putative mannosyl-oligosaccharide glucosidase (OsMOGS), an ortholog of α-glucosidase I in Arabidopsis, which trims the terminal glucosyl residue of the oligosaccharide chain of nascent peptides in the endoplasmic reticulum (ER). OsMOGS is strongly expressed in rapidly cell-dividing tissues and OsMOGS protein is localized in the ER. Mutation of OsMOGS entirely blocked N-glycan maturation and inhibited high-mannose N-glycan formation. The osmogs mutant exhibited severe defects in root cell division and elongation, resulting in a short-root phenotype. In addition, osmogs plants had impaired root hair formation and elongation, and reduced root epidemic cell wall thickness due to decreased cellulose synthesis. Further analysis showed that auxin content and polar transport in osmogs roots were reduced due to incomplete N-glycosylation of the B subfamily of ATP-binding cassette transporter proteins (ABCBs). Our results demonstrate that involvement of OsMOGS in N-glycan formation is required for auxin-mediated root development in rice. PMID:24597623

  9. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    PubMed Central

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis

    2009-01-01

    AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC)1, which causes serious gastrointestinal disease in humans2. SubAB causes haemolytic uraemic syndrome-like pathology in mice3 via SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone4. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesised in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite human lack of Neu5Gc biosynthesis, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, together with the human lack of Neu5Gc-containing body fluid competitors, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin’s receptor is generated by metabolic incorporation of an exogenous factor derived from food. PMID:18971931

  10. Glycans: bioactive signals decoded by lectins.

    PubMed

    Gabius, Hans-Joachim

    2008-12-01

    The glycan part of cellular glycoconjugates affords a versatile means to build biochemical signals. These oligosaccharides have an exceptional talent in this respect. They surpass any other class of biomolecule in coding capacity within an oligomer (code word). Four structural factors account for this property: the potential for variability of linkage points, anomeric position and ring size as well as the aptitude for branching (first and second dimensions of the sugar code). Specific intermolecular recognition is favoured by abundant potential for hydrogen/co-ordination bonds and for C-H/pi-interactions. Fittingly, an array of protein folds has developed in evolution with the ability to select certain glycans from the natural diversity. The thermodynamics of this reaction profits from the occurrence of these ligands in only a few energetically favoured conformers, comparing favourably with highly flexible peptides (third dimension of the sugar code). Sequence, shape and local aspects of glycan presentation (e.g. multivalency) are key factors to regulate the avidity of lectin binding. At the level of cells, distinct glycan determinants, a result of enzymatic synthesis and dynamic remodelling, are being defined as biomarkers. Their presence gains a functional perspective by co-regulation of the cognate lectin as effector, for example in growth regulation. The way to tie sugar signal and lectin together is illustrated herein for two tumour model systems. In this sense, orchestration of glycan and lectin expression is an efficient means, with far-reaching relevance, to exploit the coding potential of oligosaccharides physiologically and medically.

  11. Synthetic Human NOTCH1 EGF Modules Unraveled Molecular Mechanisms for the Structural and Functional Roles of Calcium Ions and O-Glycans in the Ligand-Binding Region.

    PubMed

    Hayakawa, Shun; Koide, Ryosuke; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-02-09

    The Notch signaling pathway is an evolutionarily highly conserved mechanism that operates across multicellular organisms and is critical for cell-fate decisions during development and homeostasis in most tissues. Notch signaling is modified by posttranslational glycosylations of the Notch extracellular EGF-like domain. To evaluate the structural and functional roles of various glycoforms at multiple EGF domains in the human Notch transmembrane receptor, we established a universal method for the construction of NOTCH1 EGF modules displaying the desired O-glycans at the designated glycosylation sites. The versatility of this strategy was demonstrated by the rapid and highly efficient synthesis of NOTCH1 EGF12 concurrently having a β-D-glucopyranose-initiated glycan (Xylα1 → 3Xylα1 → 3Glcβ1 →) at Ser458 and α-L-fucopyranose-initiated glycan (Neu5Acα2 → 3Galβ1 → 4GlcNAcβ1 → 3Fucα1 →) at Thr466. The efficiency of the proper folding of the glycosylated EGF12 was markedly enhanced in the presence of 5 mM CaCl2. A nuclear magnetic resonance study revealed the existence of strong nuclear Overhauser effects between key sugar moieties and neighboring amino acid residues, indicating that both O-glycans contribute independently to the intramolecular stabilization of the antiparallel β-sheet structure in the ligand-binding region of EGF12. A preliminary test using synthetic human NOTCH1 EGF modules showed significant inhibitory effects on the proliferation and adhesiveness of human breast cancer cell line MCF-7 and lung adenocarcinoma epithelial cell line A549, demonstrating for the first time evidence that exogenously applied synthetic EGF modules have the ability to interact with intrinsic Notch ligands on the surface of cancer cells.

  12. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic.

    PubMed

    Glozman, Rina; Okiyoneda, Tsukasa; Mulvihill, Cory M; Rini, James M; Barriere, Herve; Lukacs, Gergely L

    2009-03-23

    N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.

  13. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  14. Glycosylation potential of human prostate cancer cell lines

    PubMed Central

    Gao, Yin; Chachadi, Vishwanath B.; Cheng, Pi-Wan

    2014-01-01

    Altered glycosylation is a universal feature of cancer cells and altered glycans can help cancer cells escape immune surveillance, facilitate tumor invasion, and increase malignancy. The goal of this study was to identify specific glycoenzymes, which could distinguish prostate cancer cells from normal prostatic cells. We investigated enzymatic activities and gene expression levels of key glycosyl- and sulfotransferases responsible for the assembly of O- and N-glycans in several prostatic cells. These cells included immortalized RWPE-1 cells derived from normal prostatic tissues, and prostate cancer cells derived from metastasis in bone (PC-3), brain (DU145), lymph node (LNCaP), and vertebra (VCaP). We found that all cells were capable of synthesizing complex N-glycans and O-glycans with the core 1 structure, and each cell line had characteristic bio-synthetic pathways to modify these structures. The in vitro measured activities corresponded well to the mRNA levels of glycosyltransferases and sulfotransferases. Lectin and antibody binding to whole cells supported these results, which form the basis for the development of tumor cell-specific targeting strategies. PMID:22843320

  15. A Novel Fucose-binding Lectin from Photorhabdus luminescens (PLL) with an Unusual Heptabladed β-Propeller Tetrameric Structure*

    PubMed Central

    Kumar, Atul; Sýkorová, Petra; Demo, Gabriel; Dobeš, Pavel; Hyršl, Pavel

    2016-01-01

    Photorhabdus luminescens is known for its symbiosis with the entomopathogenic nematode Heterorhabditis bacteriophora and its pathogenicity toward insect larvae. A hypothetical protein from P. luminescens was identified, purified from the native source, and characterized as an l-fucose-binding lectin, named P. luminescens lectin (PLL). Glycan array and biochemical characterization data revealed PLL to be specific toward l-fucose and the disaccharide glycan 3,6-O-Me2-Glcβ1–4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2. PLL was discovered to be a homotetramer with an intersubunit disulfide bridge. The crystal structures of native and recombinant PLL revealed a seven-bladed β-propeller fold creating seven putative fucose-binding sites per monomer. The crystal structure of the recombinant PLL·l-fucose complex confirmed that at least three sites were fucose-binding. Moreover, the crystal structures indicated that some of the other sites are masked either by the tetrameric nature of the lectin or by incorporation of the C terminus of the lectin into one of these sites. PLL exhibited an ability to bind to insect hemocytes and the cuticular surface of a nematode, H. bacteriophora. PMID:27758853

  16. Galectin-9 binds to O-glycans on protein disulfide isomerase.

    PubMed

    Schaefer, Katrin; Webb, Nicholas E; Pang, Mabel; Hernandez-Davies, Jenny E; Lee, Katharine P; Gonzalez, Pascual; Douglass, Martin V; Lee, Benhur; Baum, Linda G

    2017-09-01

    Changes in the T cell surface redox environment regulate critical cell functions, such as cell migration, viral entry and cytokine production. Cell surface protein disulfide isomerase (PDI) contributes to the regulation of T cell surface redox status. Cell surface PDI can be released into the extracellular milieu or can be internalized by T cells. We have found that galectin-9, a soluble lectin expressed by T cells, endothelial cells and dendritic cells, binds to and retains PDI on the cell surface. While endogenous galectin-9 is not required for basal cell surface PDI expression, exogenous galectin-9 mediated retention of cell surface PDI shifted the disulfide/thiol equilibrium on the T cell surface. O-glycans on PDI are required for galectin-9 binding, and PDI recognition appears to be specific for galectin-9, as galectin-1 and galectin-3 do not bind PDI. Galectin-9 is widely expressed by immune and endothelial cells in inflamed tissues, suggesting that T cells would be exposed to abundant galectin-9, in cis and in trans, in infectious or autoimmune conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Podocalyxin Is a Glycoprotein Ligand of the Human Pluripotent Stem Cell-Specific Probe rBC2LCN

    PubMed Central

    Tateno, Hiroaki; Matsushima, Asako; Hiemori, Keiko; Onuma, Yasuko; Ito, Yuzuru; Hasehira, Kayo; Nishimura, Ken; Ohtaka, Manami; Takayasu, Satoko; Nakanishi, Mahito; Ikehara, Yuzuru; Nakanishi, Mio; Ohnuma, Kiyoshi; Chan, Techuan; Toyoda, Masashi; Akutsu, Hidenori; Umezawa, Akihiro; Asashima, Makoto

    2013-01-01

    In comprehensive glycome analysis with a high-density lectin microarray, we have previously shown that the recombinant N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia (rBC2LCN) binds exclusively to undifferentiated human induced pluripotent stem (iPS) cells and embryonic stem (ES) cells but not to differentiated somatic cells. Here we demonstrate that podocalyxin, a heavily glycosylated type 1 transmembrane protein, is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. When analyzed by DNA microarray, podocalyxin was found to be highly expressed in both iPS cells and ES cells. Western and lectin blotting revealed that rBC2LCN binds to podocalyxin with a high molecular weight of more than 240 kDa in undifferentiated iPS cells of six different origins and four ES cell lines, but no binding was observed in either differentiated mouse feeder cells or somatic cells. The specific binding of rBC2LCN to podocalyxin prepared from a large set of iPS cells (138 types) and ES cells (15 types) was also confirmed using a high-throughput antibody-overlay lectin microarray. Alkaline digestion greatly reduced the binding of rBC2LCN to podocalyxin, indicating that the major glycan ligands of rBC2LCN are presented on O-glycans. Furthermore, rBC2LCN was found to exhibit significant affinity to a branched O-glycan comprising an H type 3 structure (Ka, 2.5 × 104 M−1) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. PMID:23526252

  18. Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions.

    PubMed

    Khatri, Kshitij; Klein, Joshua A; White, Mitchell R; Grant, Oliver C; Leymarie, Nancy; Woods, Robert J; Hartshorn, Kevan L; Zaia, Joseph

    2016-06-01

    Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers.

    PubMed

    Hamouda, Houda; Ullah, Mujib; Berger, Markus; Sittinger, Michael; Tauber, Rudolf; Ringe, Jochen; Blanchard, Véronique

    2013-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are easy to isolate and expand, develop into several tissues, including fat, migrate to diseased organs, have immunosuppressive properties and secrete regenerative factors. This makes MSCs ideal for regenerative medicine. For application and regulatory purposes, knowledge of (bio)markers characterizing MSCs and their development stages is of paramount importance. The cell surface is coated with glycans that possess lineage-specific nature, which makes glycans to be promising candidate markers. In the context of soft tissue generation, we aimed to identify glycans that could be markers for MSCs and their adipogenically differentiated progeny. MSCs were isolated from human bone marrow, adipogenically stimulated for 15 days and adipogenesis was verified by staining the lipid droplets and quantitative real time polymerase chain reaction of the marker genes peroxisome proliferator-activated receptor gamma (PPARG) and fatty acid binding protein-4 (FABP4). Using matrix-assisted laser desorption-ionization-time of flight mass spectrometry combined with exoglycosidase digestions, we report for the first time the N-glycome of MSCs during adipogenic differentiation. We were able to detect more than 100 different N-glycans, including high-mannose, hybrid, and complex N-glycans, as well as poly-N-acetyllactosamine chains. Adipogenesis was accompanied by an increased amount of biantennary fucosylated structures, decreased amount of fucosylated, afucosylated tri- and tetraantennary structures and increased sialylation. N-glycans H6N5F1 and H7N6F1 were significantly overexpressed in undifferentiated MSCs while H3N4F1 and H5N4F3 were upregulated in adipogenically differentiated MSCs. These glycan structures are promising candidate markers to detect and distinguish MSCs and their adipogenic progeny.

  20. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  1. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community *

    PubMed Central

    Davis, Jasmine C. C.; Totten, Sarah M.; Huang, Julie O.; Nagshbandi, Sadaf; Kirmiz, Nina; Garrido, Daniel A.; Lewis, Zachery T.; Wu, Lauren D.; Smilowitz, Jennifer T.; German, J. Bruce; Mills, David A.; Lebrilla, Carlito B.

    2016-01-01

    Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity. PMID:27435585

  2. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community.

    PubMed

    Davis, Jasmine C C; Totten, Sarah M; Huang, Julie O; Nagshbandi, Sadaf; Kirmiz, Nina; Garrido, Daniel A; Lewis, Zachery T; Wu, Lauren D; Smilowitz, Jennifer T; German, J Bruce; Mills, David A; Lebrilla, Carlito B

    2016-09-01

    Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle

    PubMed Central

    Lamriben, Lydia; Graham, Jill B.; Adams, Benjamin M.; Hebert, Daniel N.

    2015-01-01

    Helenius and colleagues proposed over twenty-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review. PMID:26676362

  4. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    PubMed

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-Ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.

  5. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  6. Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors.

    PubMed

    Kalograiaki, Ioanna; Campanero-Rhodes, María A; Proverbio, Davide; Euba, Begoña; Garmendia, Junkal; Aastrup, Teodor; Solís, Dolores

    2018-01-01

    Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment. © 2018 Elsevier Inc. All rights reserved.

  7. The epitope of monoclonal antibodies blocking erythrocyte invasion by Plasmodium falciparum map to the dimerization and receptor glycan binding sites of EBA-175.

    PubMed

    Ambroggio, Xavier; Jiang, Lubin; Aebig, Joan; Obiakor, Harold; Lukszo, Jan; Narum, David L

    2013-01-01

    The malaria parasite, Plasmodium falciparum, and related parasites use a variety of proteins with Duffy-Binding Like (DBL) domains to bind glycoproteins on the surface of host cells. Among these proteins, the 175 kDa erythrocyte binding antigen, EBA-175, specifically binds to glycophorin A on the surface of human erythrocytes during the process of merozoite invasion. The domain responsible for glycophorin A binding was identified as region II (RII) which contains two DBL domains, F1 and F2. The crystal structure of this region revealed a dimer that is presumed to represent the glycophorin A binding conformation as sialic acid binding sites and large cavities are observed at the dimer interface. The dimer interface is largely composed of two loops from within each monomer, identified as the F1 and F2 β-fingers that contact depressions in the opposing monomers in a similar manner. Previous studies have identified a panel of five monoclonal antibodies (mAbs) termed R215 to R218 and R256 that bind to RII and inhibit invasion of erythrocytes to varying extents. In this study, we predict the F2 β-finger region as the conformational epitope for mAbs, R215, R217, and R256, and confirm binding for the most effective blocking mAb R217 and R215 to a synthetic peptide mimic of the F2 β-finger. Localization of the epitope to the dimerization and glycan binding sites of EBA-175 RII and site-directed mutagenesis within the predicted epitope are consistent with R215 and R217 blocking erythrocyte invasion by Plasmodium falciparum by preventing formation of the EBA-175- glycophorin A complex.

  8. Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins

    PubMed Central

    De, Swastik; Kaus, Katherine; Sinclair, Shada

    2018-01-01

    Vibrio cholerae is an aquatic gram-negative microbe responsible for cholera, a pandemic disease causing life-threatening diarrheal outbreaks in populations with limited access to health care. Like most pathogenic bacteria, V. cholerae secretes virulence factors to assist colonization of human hosts, several of which bind carbohydrate receptors found on cell-surfaces. Understanding how pathogenic virulence proteins specifically target host cells is important for the development of treatment strategies to fight bacterial infections. Vibrio cholerae cytolysin (VCC) is a secreted pore-forming toxin with a carboxy-terminal β-prism domain that targets complex N-glycans found on mammalian cell-surface proteins. To investigate glycan selectivity, we studied the VCC β-prism domain and two additional β-prism domains found within the V. cholerae biofilm matrix protein RbmC. We show that the two RbmC β-prism domains target a similar repertoire of complex N-glycan receptors as VCC and find through binding and modeling studies that a branched pentasaccharide core (GlcNAc2-Man3) represents the likely footprint interacting with these domains. To understand the structural basis of V. cholerae β-prism selectivity, we solved high-resolution crystal structures of fragments of the pentasaccharide core bound to one RbmC β-prism domain and conducted mutagenesis experiments on the VCC toxin. Our results highlight a common strategy for cell-targeting utilized by both toxin and biofilm matrix proteins in Vibrio cholerae and provide a structural framework for understanding the specificity for individual receptors. Our results suggest that a common strategy for disrupting carbohydrate interactions could affect multiple virulence factors produced by V. cholerae, as well as similar β-prism domains found in other vibrio pathogens. PMID:29432487

  9. Inhibin binding protein in rats: alternative transcripts and regulation in the pituitary across the estrous cycle.

    PubMed

    Bernard, D J; Woodruff, T K

    2001-04-01

    Inhibin binding protein (InhBP) and the transforming growth factor-beta (TGF beta) type III receptor, beta glycan, have been identified as putative inhibin coreceptors. Here we cloned the InhBP cDNA in rats and predict that it encodes a large membrane-spanning protein that is part of the Ig superfamily, as has been described for humans. Two abundant InhBP transcripts (4.4 and 1.8 kb) were detected in the adult rat pituitary. The larger transcript encodes the full-length protein while the 1.8-kb transcript (InhBP-short or InhBP-S) corresponds to a splice variant of the receptor. This truncated isoform contains only the N-terminal signal peptide and first two (of 12) Ig-like domains observed in the full-length InhBP (InhBP-long or InhBP-L). InhBP-S does not contain a transmembrane domain and is predicted to be a soluble protein. Beta glycan was also detected in the pituitary; however, it was most abundant within the intermediate lobe. Although we also observed beta glycan immunopositive cells in the anterior pituitary, they rarely colocalized with FSH beta-producing cells. We next examined physiological regulation of the coreceptors across the rat estrous cycle. Like circulating inhibin A and inhibin B levels, pituitary InhBP-L and InhBP-S mRNA levels were dynamically regulated across the cycle and were negatively correlated with serum FSH levels. Expression of both forms of InhBP was also positively correlated with serum inhibin B, but not inhibin A, levels. These data are particularly interesting in light of our in vitro observations that InhBP may function as an inhibin B-specific coreceptor. Pituitary beta glycan mRNA levels did not fluctuate across the cycle nor did they correlate with serum FSH. These observations, coupled with its pattern of expression within the pituitary, indicate that beta glycan likely functions as more than merely an inhibin coreceptor within the pituitary. A direct role for InhBP or beta glycan in regulation of pituitary FSH by inhibin in vivo has yet to be determined, but the demonstration of dynamic regulation of pituitary InhBP and its negative relation to serum FSH across the estrous cycle is an important step in this direction.

  10. Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses.

    PubMed

    Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Yokoyama, Shigeyuki

    2014-07-01

    Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Conserved Neutralizing Epitope at Globular Head of Hemagglutinin in H3N2 Influenza Viruses

    PubMed Central

    Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Yokoyama, Shigeyuki

    2014-01-01

    ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines. PMID:24719430

  12. Antibody Evasion by a Gammaherpesvirus O-Glycan Shield

    PubMed Central

    Machiels, Bénédicte; Lété, Céline; Guillaume, Antoine; Mast, Jan; Stevenson, Philip G.; Vanderplasschen, Alain; Gillet, Laurent

    2011-01-01

    All gammaherpesviruses encode a major glycoprotein homologous to the Epstein-Barr virus gp350. These glycoproteins are often involved in cell binding, and some provide neutralization targets. However, the capacity of gammaherpesviruses for long-term transmission from immune hosts implies that in vivo neutralization is incomplete. In this study, we used Bovine Herpesvirus 4 (BoHV-4) to determine how its gp350 homolog - gp180 - contributes to virus replication and neutralization. A lack of gp180 had no impact on the establishment and maintenance of BoHV-4 latency, but markedly sensitized virions to neutralization by immune sera. Antibody had greater access to gB, gH and gL on gp180-deficient virions, including neutralization epitopes. Gp180 appears to be highly O-glycosylated, and removing O-linked glycans from virions also sensitized them to neutralization. It therefore appeared that gp180 provides part of a glycan shield for otherwise vulnerable viral epitopes. Interestingly, this O-glycan shield could be exploited for neutralization by lectins and carbohydrate-specific antibody. The conservation of O-glycosylation sites in all gp350 homologs suggests that this is a general evasion mechanism that may also provide a therapeutic target. PMID:22114560

  13. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *

    PubMed Central

    Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce

    2016-01-01

    Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157

  14. Development of sugar chain-binding single-chain variable fragment antibody to adult T-cell leukemia cells using glyco-nanotechnology and phage display method.

    PubMed

    Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo

    2018-04-01

    Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.

  15. Absence of Capsule Reveals Glycan-Mediated Binding and Recognition of Salivary Mucin MUC7 by Streptococcus pneumoniae

    PubMed Central

    Thamadilok, Supaporn; Roche-Håkansson, Hazeline; Håkansson, Anders P.; Ruhl, Stefan

    2015-01-01

    SUMMARY Salivary proteins modulate bacterial colonization in the oral cavity and interact with systemic pathogens that pass through the oropharynx. An interesting example is the opportunistic respiratory pathogen Streptococcus pneumoniae that normally resides in the nasopharynx, but belongs to the greater Mitis group of streptococci, most of which colonize the oral cavity. S. pneumoniae also expresses a serine-rich repeat (SRR) adhesin, PsrP, that is a homologue to oral Mitis group SRR adhesins, such as Hsa of S. gordonii and SrpA of S. sanguinis. Since the latter bind to salivary glycoproteins through recognition of terminal sialic acids, we wanted to determine whether S. pneumoniae also binds to salivary proteins through possibly the same mechanism. We found that only a capsule-free mutant of S. pneumoniae TIGR4 binds to salivary proteins, most prominently to mucin MUC7, but that this binding was not mediated through PsrP or recognition of sialic acid. We also found, however, that PsrP is involved in agglutination of human red blood cells (RBCs). After removal of PsrP, an additional previously masked lectin-like adhesin activity mediating agglutination of sialidase-treated RBCs becomes revealed. Using a custom-spotted glycoprotein and neoglycoprotein dot blot array, we identify candidate glycan motifs recognized by PsrP and by the putative S. pneumoniae adhesin that could perhaps be responsible for pneumococcal binding to salivary MUC7 and glycoproteins on RBCs. PMID:26172471

  16. Functional integrins from normal and glycosylation-deficient baby hamster kidney cells. Terminal processing of asparagine-linked oligosaccharides is not correlated with fibronectin-binding activity.

    PubMed

    Koyama, T; Hughes, R C

    1992-12-25

    We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.

  17. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody.

    PubMed

    Morales, Javier F; Yu, Bin; Perez, Gerardo; Mesa, Kathryn A; Alexander, David L; Berman, Phillip W

    2016-09-01

    The V1/V2 domain of the HIV-1 envelope protein gp120 possesses two important epitopes: a glycan-dependent epitope recognized by the prototypic broadly neutralizing monoclonal antibody (bN-mAb), PG9, as well as an epitope recognized by non-neutralizing antibodies that has been associated with protection from HIV infection in the RV144 HIV vaccine trial. Because both of these epitopes are poorly immunogenic in the context of full length envelope proteins, immunization with properly folded and glycosylated fragments (scaffolds) represents a potential way to enhance the immune response to these specific epitopes. Previous studies showed that V1/V2 domain scaffolds could be produced from a few selected isolates, but not from many of the isolates that would be advantageous in a multivalent vaccine. In this paper, we used a protein engineering approach to improve the conformational stability and antibody binding activity of V1/V2 domain scaffolds from multiple diverse isolates, including several that were initially unable to bind the prototypic PG9 bN-mAb. Significantly, this effort required replicating both the correct glycan structure as well as the β-sheet structure required for PG9 binding. Although scaffolds incorporating the glycans required for PG9 binding (e.g., mannose-5) can be produced using glycosylation inhibitors (e.g., swainsonine), or mutant cell lines (e.g. GnTI(-) 293 HEK), these are not practical for biopharmaceutical production of proteins intended for clinical trials. In this report, we describe engineered glycopeptide scaffolds from three different clades of HIV-1 that bind PG9 with high affinity when expressed in a wildtype cell line suitable for biopharmaceutical production. The mutations that improved PG9 binding to scaffolds produced in normal cells included amino acid positions outside of the antibody contact region designed to stabilize the β-sheet and turn structures. The scaffolds produced address three major problems in HIV vaccine development: (1) improving antibody responses to poorly immunogenic epitopes in the V1/V2 domain; (2) eliminating antibody responses to highly immunogenic (decoy) epitopes outside the V1/V2 domain; and (3) enabling the production of V1/V2 scaffolds in a cell line suitable for biopharmaceutical production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes

    PubMed Central

    Foley, Matthew H.; Cockburn, Darrell W.; Koropatkin, Nicole M.

    2016-01-01

    Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-up-take system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex. PMID:27137179

  19. Lectin-Based Assay for Glycoform-Specific Detection of α2,6-sialylated Transferrin and Carcinoembryonic Antigen in Tissue and Body Fluid.

    PubMed

    Ito, Hiromi; Hoshi, Kyoka; Honda, Takashi; Hashimoto, Yasuhiro

    2018-05-30

    Antibodies are useful for detecting glycoprotein antigens, but a conventional antibody recognizes only a protein epitope rather than a glycan. Thus, glycan isoform detection generally requires time- and labor-consuming processes such as lectin affinity column chromatography followed by sandwich ELISA. We recently found antigen-antibody reactions that were inhibited by lectin binding to glycans on the glycoprotein antigen, leading to a convenient glycoform-specific assay. Indeed, Sambucus sieboldiana agglutinin (SSA) lectin, a binder to sialylα2,6galactose residue, inhibited antibody binding to α2,6-sialylated transferrin (Tf) (SSA inhibition). SSA inhibition was not observed with other glycoforms, such as periodate-treated, sialidase-treated and sialidase/galactosidase-treated Tf, suggesting that the assay was glycoform-specific. SSA inhibition was also applicable for visualizing localization of α2,6-sialylated-Tf in a liver section. This is the first immunohistochemical demonstration of glycoform localization in a tissue section. SSA inhibition was utilized for establishing ELISA to quantify α2,6-sialylated carcinoembryonic antigen (CEA), a marker for various cancers. In addition, α2,6-sialylated-CEA was visualized in a colonic adenocarcinoma section by SSA inhibition. The method would further be applicable to a simple and rapid estimation of other α2,6-sialylated glycoproteins and have a potential aid to histopathological diagnosis.

  20. Structure and Specificity of a Binary Tandem Domain F-Lectin from Striped Bass (Morone saxatilis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchet, M.; Odom, E; Vasta, J

    2010-01-01

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysismore » of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking 'non-self' carbohydrate ligands and 'self' carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.« less

  1. Glycomic Characterization of Respiratory Tract Tissues of Ferrets

    PubMed Central

    Jia, Nan; Barclay, Wendy S.; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W. Y.; Lam, Alfred K. Y.; Air, Gillian; Peiris, J. S. Malik; Dell, Anne; Nicholls, John M.; Haslam, Stuart M.

    2014-01-01

    The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2–3- or α2–6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2–3 binding being associated with avian influenza viruses and α2–6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2–3- and α2–6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1–4)Galβ1–4GlcNAc) and sialylated N,N′-diacetyllactosamine (NeuAcα2–6GalNAcβ1–4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. PMID:25135641

  2. Glycomic characterization of respiratory tract tissues of ferrets: implications for its use in influenza virus infection studies.

    PubMed

    Jia, Nan; Barclay, Wendy S; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W Y; Lam, Alfred K Y; Air, Gillian; Peiris, J S Malik; Dell, Anne; Nicholls, John M; Haslam, Stuart M

    2014-10-10

    The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2-3- or α2-6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2-3 binding being associated with avian influenza viruses and α2-6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2-3- and α2-6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1-4)Galβ1-4GlcNAc) and sialylated N,N'-diacetyllactosamine (NeuAcα2-6GalNAcβ1-4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver

    PubMed Central

    Yang, Chih-Ya; Chen, Jiun-Bo; Tsai, Ting-Fen; Tsai, Yi-Chen; Tsai, Ching-Yen; Liang, Pi-Hui; Hsu, Tsui-Ling; Wu, Chung-Yi; Netea, Mihai G.; Wong, Chi-Huey; Hsieh, Shie-Liang

    2013-01-01

    CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal), N-acetylgalactosamine (GalNAc), and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f−/−) mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5) but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes) infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer) in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT) cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells. PMID:23762286

  4. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man*

    PubMed Central

    Macauley, Matthew S.; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M.; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C.

    2015-01-01

    CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. PMID:26507663

  5. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man.

    PubMed

    Macauley, Matthew S; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C

    2015-12-11

    CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2-6Galβ1-4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Individual N-Glycans Added at Intervals along the Stalk of the Nipah Virus G Protein Prevent Fusion but Do Not Block the Interaction with the Homologous F Protein

    PubMed Central

    Zhu, Qiyun; Biering, Scott B.; Mirza, Anne M.; Grasseschi, Brittany A.; Mahon, Paul J.; Lee, Benhur; Aguilar, Hector C.

    2013-01-01

    The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F. PMID:23283956

  7. Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5'-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins.

    PubMed Central

    Rancour, D M; Menon, A K

    1998-01-01

    Much of the enzymic machinery required for the assembly of cell surface carbohydrates is located in the endoplasmic reticulum (ER) of eukaryotic cells. Structural information on these proteins is limited and the identity of the active polypeptide(s) is generally unknown. This paper describes the synthesis and characteristics of a photoaffinity reagent that can be used to identify and analyse members of the ER glycan assembly apparatus, specifically those glycosyltransferases, nucleotide phosphatases and nucleotide-sugar transporters that recognize uridine nucleotides or UDP-sugars. The photoaffinity reagent, P3-(4-azidoanilido)uridine 5'-triphosphate (AAUTP), was synthesized easily from commercially available precursors. AAUTP inhibited the activity of ER glycosyltransferases that utilize UDP-GlcNAc and UDP-Glc, indicating that it is recognized by UDP-sugar-binding proteins. In preliminary tests AAUTP[alpha-32P] labelled bovine milk galactosyltransferase, a model UDP-sugar-utilizing enzyme, in a UV-light-dependent, competitive and saturable manner. When incubated with rat liver ER vesicles, AAUTP[alpha-32P] labelled a discrete subset of ER proteins; labelling was light-dependent and metal ion-specific. Photolabelling of intact ER vesicles with AAUTP[alpha-32P] caused selective incorporation of radioactivity into proteins with cytoplasmically disposed binding sites; UDP-Glc:glycoprotein glucosyltransferase, a lumenal protein, was labelled only when the vesicle membrane was disrupted. These data indicate that AAUTP is a membrane topological probe of catalytic sites in target proteins. Strategies for using AAUTP to identify and study novel ER proteins involved in glycan assembly are discussed. PMID:9677326

  8. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies.

    PubMed

    Krumm, Stefanie A; Mohammed, Hajer; Le, Khoa M; Crispin, Max; Wrin, Terri; Poignard, Pascal; Burton, Dennis R; Doores, Katie J

    2016-02-02

    Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the (323)IGDIR(327) motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch.

  9. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans

    PubMed Central

    Garcia-Campos, Andres; Cwiklinski, Krystyna; Dalton, John P.; Hokke, Cornelis H.; O’Neill, Sandra; Mulcahy, Grace

    2016-01-01

    Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F. hepatica NEJ glycosylation and the first report of N-glycosylation of F. hepatica cathepsins. The significance of these findings for immunological studies and vaccine development is discussed. PMID:27139907

  10. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans.

    PubMed

    Pagel, Kevin; Harvey, David J

    2013-05-21

    Currently, the vast majority of complex carbohydrates are characterized using mass spectrometry (MS)-based techniques. Measuring the molecular mass of a sugar, however, immediately poses a fundamental problem: entire classes of the constituting monosaccharide building blocks exhibit an identical atomic composition and, consequently, also an identical mass. Therefore, carbohydrate MS data can be highly ambiguous and often it is simply not possible to clearly assign a particular molecular structure. A promising approach to overcome the above-mentioned limitation is to implement an additional gas-phase separation dimension using ion mobility spectrometry (IMS), which is a method in which molecules of identical mass and structure but different structure can be separated according to their shape and collision cross section (CCS). With the emergence of commercially available hybrid ion mobility-mass spectrometry (IM-MS) instruments in 2006, IMS technology became readily available. Because of the nonhomogeneous, traveling wave (TW) field utilized in these instruments, however, CCS values currently cannot be determined directly from the drift times measured. Instead, an external calibration using compounds of known CCS and similar molecular identity is required. Here, we report a calibration protocol for TW IMS instruments using a series of sodiated N-glycans that were released from commercially available glycoproteins using an easy-to-follow protocol. The underlying CCS values were determined using a modified Synapt HDMS instrument with a linear drift tube, which was described in detail previously. Our data indicate that, under in-source fragmentation conditions, only a few glycans are required to obtain a TW IMS calibration of sufficient quality. In this context, however, the type of glycan was shown to be of tremendous importance. Furthermore, our data clearly demonstrate that carbohydrate isomers with identical mass but different conformation can be distinguished based on their CCS when all the associated errors are taken into account.

  11. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35.

    PubMed

    Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2005-08-01

    The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.

  12. The Distal Short Consensus Repeats 1 and 2 of the Membrane Cofactor Protein CD46 and Their Distance from the Cell Membrane Determine Productive Entry of Species B Adenovirus Serotype 35

    PubMed Central

    Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F.; Hemmi, Silvio

    2005-01-01

    The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90°; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface. PMID:16014961

  13. β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3-N-Glycan Complex.

    PubMed

    Kariya, Yukiko; Oyama, Midori; Hashimoto, Yasuhiro; Gu, Jianguo; Kariya, Yoshinobu

    2018-06-01

    Malignant transformation is associated with aberrant N -glycosylation, but the role of protein N -glycosylation in cancer progression remains poorly defined. β4-integrin is a major carrier of N -glycans and is associated with poor prognosis, tumorigenesis, and metastasis. Here, N -glycosylation of β4-integrin contributes to the activation of signaling pathways that promote β4-dependent tumor development and progression. Increased expression of β1,6GlcNAc-branched N -glycans was found to be colocalized with β4-integrin in human cutaneous squamous cell carcinoma tissues, and that the β1,6GlcNAc residue was abundant on β4-integrin in transformed keratinocytes. Interruption of β1,6GlcNAc-branching formation on β4-integrin with the introduction of bisecting GlcNAc by N -acetylglucosaminyltransferase III overexpression was correlated with suppression of cancer cell migration and tumorigenesis. N -Glycan deletion on β4-integrin impaired β4-dependent cancer cell migration, invasion, and growth in vitro and diminished tumorigenesis and proliferation in vivo The reduced abilities of β4-integrin were accompanied with decreased phosphoinositol-3 kinase (PI3K)/Akt signals and were restored by the overexpression of the constitutively active p110 PI3K subunit. Binding of galectin-3 to β4-integrin via β1,6GlcNAc-branched N -glycans promoted β4-integrin-mediated cancer cell adhesion and migration. In contrast, a neutralizing antibody against galectin-3 attenuated β4-integrin N -glycan-mediated PI3K activation and inhibited the ability of β4-integrin to promote cell motility. Furthermore, galectin-3 knockdown by shRNA suppressed β4-integrin N -glycan-mediated tumorigenesis. These findings provide a novel role for N -glycosylation of β4-integrin in tumor development and progression, and the regulatory mechanism for β4-integrin/PI3K signaling via the galectin-3- N -glycan complex. Implications: N -Glycosylation of β4-integrin plays a functional role in promoting tumor development and progression through PI3K activation via the galectin-3- N -glycan complex. Mol Cancer Res; 16(6); 1024-34. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment.

    PubMed

    Ito, Koichi; Stannard, Kimberley; Gabutero, Elwyn; Clark, Amanda M; Neo, Shi-Yong; Onturk, Selda; Blanchard, Helen; Ralph, Stephen J

    2012-12-01

    The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.

  15. Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins.

    PubMed

    Gray, Christopher J; Sánchez-Ruíz, Antonio; Šardzíková, Ivana; Ahmed, Yassir A; Miller, Rebecca L; Reyes Martinez, Juana E; Pallister, Edward; Huang, Kun; Both, Peter; Hartmann, Mirja; Roberts, Hannah N; Šardzík, Robert; Mandal, Santanu; Turnbull, Jerry E; Eyers, Claire E; Flitsch, Sabine L

    2017-04-18

    The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.

  16. The α-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain

    PubMed Central

    Miller, Michelle C; Klyosov, Anatole; Mayo, Kevin H

    2009-01-01

    Galectins are a sub-family of lectins, defined by their highly conserved β-sandwich structures and ability to bind to β-galactosides, like Gal β1-4 Glc (lactose). Here, we used 15N-1H HSQC and pulse field gradient (PFG) NMR spectroscopy to demonstrate that galectin-1 (gal-1) binds to the relatively large galactomannan Davanat, whose backbone is composed of β1-4-linked d-mannopyranosyl units to which single d-galactopyranosyl residues are periodically attached via α1-6 linkage (weight-average MW of 59 kDa). The Davanat binding domain covers a relatively large area on the surface of gal-1 that runs across the dimer interface primarily on that side of the protein opposite to the lactose binding site. Our data show that gal-1 binds Davanat with an apparent equilibrium dissociation constant (Kd) of 10 × 10−6 M, compared to 260 × 10−6 M for lactose, and a stiochiometry of about 3 to 6 gal-1 molecules per Davanat molecule. Mannan also interacts at the same galactomannan binding domain on gal-1, but with at least 10-fold lower avidity, supporting the role of galactose units in Davanat for relatively strong binding to gal-1. We also found that the β-galactoside binding domain remains accessible in the gal-1/Davanat complex, as lactose can still bind with no apparent loss in affinity. In addition, gal-1 binding to Davanat also modifies the supermolecular structure of the galactomannan and appears to reduce its hydrodynamic radius and disrupt inter-glycan interactions thereby reducing glycan-mediated solution viscosity. Overall, our findings contribute to understanding gal-1–carbohydrate interactions and provide insight into gal-1 function with potentially significant biological consequences. PMID:19541770

  17. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  18. Entry Inhibition of Influenza Viruses with High Mannose Binding Lectin ESA-2 from the Red Alga Eucheuma serra through the Recognition of Viral Hemagglutinin

    PubMed Central

    Sato, Yuichiro; Morimoto, Kinjiro; Kubo, Takanori; Sakaguchi, Takemasa; Nishizono, Akira; Hirayama, Makoto; Hori, Kanji

    2015-01-01

    Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells. PMID:26035023

  19. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy.

    PubMed

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D; Deperalta, Galahad; Wecksler, Aaron T

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. Graphical Abstract ᅟ.

  20. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-03-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  1. Short stop mediates axonal compartmentalization of mucin-type core 1 glycans

    PubMed Central

    Kinoshita, Takaaki; Sato, Chikara; Fuwa, Takashi J.; Nishihara, Shoko

    2017-01-01

    T antigen, mucin-type core 1 O-glycan, is highly expressed in the embryonic central nervous system (CNS) and co-localizes with a Drosophila CNS marker, BP102 antigen. BP102 antigen and Derailed, an axon guidance receptor, are localized specifically in the proximal axon segment of isolated primary cultured neurons, and their mobility is restricted at the intra-axonal boundary by a diffusion barrier. However, the preferred trafficking mechanism remains unknown. In this study, the major O-glycan T antigen was found to localize within the proximal compartments of primary cultured Drosophila neurons, whereas the N-glycan HRP antigen was not. Ultrastructural analysis by atmospheric scanning electron microscopy revealed that microtubule bundles cross one another at the intra-axonal boundary, and that T antigens form circular pattern before the boundary. We then identified Short stop (Shot), a crosslinker protein between F-actin and microtubules, as a mediator for the proximal localization of T antigens; null mutation of shot cancelled preferential localization of T antigens. Moreover, F-actin binding domain of Shot was required for their proximal localization. Together, our results allow us to propose a novel trafficking pathway where Shot crosslinks F-actin and microtubules around the intra-axonal boundary, directing T antigen-carrying vesicles toward the proximal plasma membrane. PMID:28150729

  2. Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models.

    PubMed

    Saunders, Kevin O; Verkoczy, Laurent K; Jiang, Chuancang; Zhang, Jinsong; Parks, Robert; Chen, Haiyan; Housman, Max; Bouton-Verville, Hilary; Shen, Xiaoying; Trama, Ashley M; Scearce, Richard; Sutherland, Laura; Santra, Sampa; Newman, Amanda; Eaton, Amanda; Xu, Kai; Georgiev, Ivelin S; Joyce, M Gordon; Tomaras, Georgia D; Bonsignori, Mattia; Reed, Steven G; Salazar, Andres; Mascola, John R; Moody, M Anthony; Cain, Derek W; Centlivre, Mireille; Zurawski, Sandra; Zurawski, Gerard; Erickson, Harold P; Kwong, Peter D; Alam, S Munir; Levy, Yves; Montefiori, David C; Haynes, Barton F

    2017-12-26

    The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (V H DJ H ) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs V H  chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define V H replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Platelet GpIbα Binding to von Willebrand Factor Under Fluid Shear: Contributions of the D'D3‐Domain, A1‐Domain Flanking Peptide and O‐Linked Glycans

    PubMed Central

    Madabhushi, Sri R.; Zhang, Changjie; Kelkar, Anju; Dayananda, Kannayakanahalli M.; Neelamegham, Sriram

    2014-01-01

    Background Von Willebrand Factor (VWF) A1‐domain binding to platelet receptor GpIbα is an important fluid‐shear dependent interaction that regulates both soluble VWF binding to platelets, and platelet tethering onto immobilized VWF. We evaluated the roles of different structural elements at the N‐terminus of the A1‐domain in regulating shear dependent platelet binding. Specifically, the focus was on the VWF D′D3‐domain, A1‐domain N‐terminal flanking peptide (NFP), and O‐glycans on this peptide. Methods and Results Full‐length dimeric VWF (ΔPro‐VWF), dimeric VWF lacking the D′D3 domain (ΔD′D3‐VWF), and ΔD′D3‐VWF variants lacking either the NFP (ΔD′D3NFP─‐VWF) or just O‐glycans on this peptide (ΔD′D3OG─‐VWF) were expressed. Monomeric VWF‐A1 and D′D3‐A1 were also produced. In ELISA, the apparent dissociation constant (KD) of soluble ΔPro‐VWF binding to immobilized GpIbα (KD≈100 nmol/L) was 50‐ to 100‐fold higher than other proteins lacking the D′D3 domain (KD~0.7 to 2.5 nmol/L). Additionally, in surface plasmon resonance studies, the on‐rate of D′D3‐A1 binding to immobilized GpIbα (kon=1.8±0.4×104 (mol/L)−1·s−1; KD=1.7 μmol/L) was reduced compared with the single VWF‐A1 domain (kon=5.1±0.4×104 (mol/L)−1·s−1; KD=1.2 μmol/L). Thus, VWF‐D′D3 primarily controls soluble VWF binding to GpIbα. In contrast, upon VWF immobilization, all molecular features regulated A1‐GpIbα binding. Here, in ELISA, the number of apparent A1‐domain sites available for binding GpIbα on ΔPro‐VWF was ≈50% that of the ΔD′D3‐VWF variants. In microfluidics based platelet adhesion measurements on immobilized VWF and thrombus formation assays on collagen, human platelet recruitment varied as ΔPro‐VWF<ΔD′D3‐VWF<ΔD′D3NFP─‐VWF<ΔD′D3OG─‐VWF. Conclusions Whereas VWF‐D′D3 is the major regulator of soluble VWF binding to platelet GpIbα, both the D′D3‐domain and N‐terminal peptide regulate platelet translocation and thrombus formation. PMID:25341886

  4. Glycan-functionalized graphene-FETs toward selective detection of human-infectious avian influenza virus

    NASA Astrophysics Data System (ADS)

    Ono, Takao; Oe, Takeshi; Kanai, Yasushi; Ikuta, Takashi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Watanabe, Yohei; Nakakita, Shin-ichi; Suzuki, Yasuo; Kawahara, Toshio; Matsumoto, Kazuhiko

    2017-03-01

    There are global concerns about threat of pandemic caused by the human-infectious avian influenza virus. To prevent the oncoming pandemic, it is crucial to analyze the viral affinity to human-type or avian-type sialoglycans with high sensitivity at high speed. Graphene-FET (G-FET) realizes such high-sensitive electrical detection of the targets, owing to graphene’s high carrier mobility. In the present study, G-FET was functionalized using sialoglycans and employed for the selective detection of lectins from Sambucus sieboldiana and Maackia amurensis as alternatives of the human and avian influenza viruses. Glycan-functionalized G-FET selectively monitored the sialoglycan-specific binding reactions at subnanomolar sensitivity.

  5. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus.

    PubMed

    Sjöwall, C; Zapf, J; von Löhneysen, S; Magorivska, I; Biermann, M; Janko, C; Winkler, S; Bilyy, R; Schett, G; Herrmann, M; Muñoz, L E

    2015-05-01

    In addition to the redundancy of the receptors for the Fc portion of immunoglobulins, glycans result in potential ligands for a plethora of lectin receptors found in immune effector cells. Here we analysed the exposure of glycans containing fucosyl residues and the fucosylated tri-mannose N-type core by complexed native IgG in longitudinal serum samples of well-characterized patients with systemic lupus erythematosus. Consecutive serum samples of a cohort of 15 patients with systemic lupus erythematosus during periods of increased disease activity and remission were analysed. All patients fulfilled the 1982 American College of Rheumatology classification criteria. Sera of 15 sex- and age-matched normal healthy blood donors served as controls. The levels and type of glycosylation of complexed random IgG was measured with lectin enzyme-immunosorbent assays. After specifically gathering IgG complexes from sera, biotinylated lectins Aleuria aurantia lectin and Lens culinaris agglutinin were employed to detect IgG-associated fucosyl residues and the fucosylated tri-mannose N-glycan core, respectively. In sandwich-ELISAs, IgG-associated IgM, IgA, C1q, C3c and C-reactive protein (CRP) were detected as candidates for IgG immune complex constituents. We studied associations of the glycan of complexed IgG and disease activity according to the physician's global assessment of disease activity and the systemic lupus erythematosus disease activity index 2000 documented at the moment of blood taking. Our results showed significantly higher levels of Aleuria aurantia lectin and Lens culinaris agglutinin binding sites exposed on IgG complexes of patients with systemic lupus erythematosus than on those of normal healthy blood donors. Disease activity in systemic lupus erythematosus correlated with higher exposure of Aleuria aurantia lectin-reactive fucosyl residues by immobilized IgG complexes. Top levels of Aleuria aurantia lectin-reactivity were found in samples taken during the highest activity of systemic lupus erythematosus. Our results show that native circulating IgG complexes from active systemic lupus erythematosus patients expose fucosyl residues and their glycan core is accessible to soluble lectins. Two putative mechanisms may contribute to the increased exposure of these glycans: (1) the canonical N-glycosylation site of the IgG-CH2 domain; (2) an IgG binding non-IgG molecule, like complement or C-reactive protein. In both cases the complexed IgG may be alternatively targeted to lectin receptors of effector cells, e.g. dendritic cells. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.

    PubMed

    Reiter, Dirk M; Frierson, Johnna M; Halvorson, Elizabeth E; Kobayashi, Takeshi; Dermody, Terence S; Stehle, Thilo

    2011-08-01

    Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.

  7. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops.

    PubMed

    Kolchinsky, P; Kiprilov, E; Bartley, P; Rubinstein, R; Sodroski, J

    2001-04-01

    The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.

  8. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    PubMed

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-07

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study.

    PubMed

    Lane, Jonathan A; Mariño, Karina; Naughton, Julie; Kavanaugh, Devon; Clyne, Marguerite; Carrington, Stephen D; Hickey, Rita M

    2012-07-02

    Campylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host. Heavily colonized chickens often fail to display intestinal disease, and no cellular attachment or invasion has been demonstrated in-vivo. Recently, researchers have shown that the reason for the attenuation of C. jejuni virulence may be attributed to the presence of chicken intestinal mucus and more specifically chicken mucin. Since mucins are heavily glycosylated molecules this observation would suggest that glycan-based compounds may act as anti-infectives against C. jejuni. Considering this, we have investigated naturally sourced foods for potential anti-infective glycans. Bovine colostrum rich in neutral and acidic oligosaccharides has been identified as a potential source of anti-infective glycans. In this study, we tested oligosaccharides isolated and purified from the colostrum of Holstein Friesian cows for anti-infective activity against a highly invasive strain of C. jejuni. During our initial studies we structurally defined 37 bovine colostrum oligosaccharides (BCO) by HILIC-HPLC coupled with exoglycosidase digests and off-line mass spectroscopy, and demonstrated the ability of C. jejuni to bind to some of these structures, in-vitro. We also examined the effect of BCO on C. jejuni adhesion to, invasion of and translocation of HT-29 cells. BCO dramatically reduced the cellular invasion and translocation of C. jejuni, in a concentration dependent manner. Periodate treatment of the BCO prior to inhibition studies resulted in a loss of the anti-infective activity of the glycans suggesting a direct oligosaccharide-bacterial interaction. This was confirmed when the BCO completely prevented C. jejuni binding to chicken intestinal mucin, in-vitro. This study builds a strong case for the inclusion of oligosaccharides sourced from cow's milk in functional foods. However, it is only through further understanding the structure and function of milk oligosaccharides that such compounds can reach their potential as food ingredients. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Mechanism of human antibody-mediated neutralization of Marburg virus.

    PubMed

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E

    2015-02-26

    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  12. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.

    PubMed

    Bradel-Tretheway, Birgit G; Liu, Qian; Stone, Jacquelyn A; McInally, Samantha; Aguilar, Hector C

    2015-07-01

    Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. C-type lectins: their network and roles in pathogen recognition and immunity.

    PubMed

    Mayer, Sabine; Raulf, Marie-Kristin; Lepenies, Bernd

    2017-02-01

    C-type lectins (CTLs) represent the most complex family of animal/human lectins that comprises 17 different groups. During evolution, CTLs have developed by diversification to cover a broad range of glycan ligands. However, ligand binding by CTLs is not necessarily restricted to glycans as some CTLs also bind to proteins, lipids, inorganic molecules, or ice crystals. CTLs share a common fold that harbors a Ca 2+ for contact to the sugar and about 18 invariant residues in a phylogenetically conserved pattern. In vertebrates, CTLs have numerous functions, including serum glycoprotein homeostasis, pathogen sensing, and the initiation of immune responses. Myeloid CTLs in innate immunity are mainly expressed by antigen-presenting cells and play a prominent role in the recognition of a variety of pathogens such as fungi, bacteria, viruses, and parasites. However, myeloid CTLs such as the macrophage inducible CTL (Mincle) or Clec-9a may also bind to self-antigens and thus contribute to immune homeostasis. While some CTLs induce pro-inflammatory responses and thereby lead to activation of adaptive immune responses, other CTLs act as inhibitory receptors and dampen cellular functions. Since CTLs are key players in pathogen recognition and innate immunity, targeting CTLs may be a promising strategy for cell-specific delivery of drugs or vaccine antigens and to modulate immune responses.

  14. Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength

    NASA Astrophysics Data System (ADS)

    Ghasemi, Farshid; Eftekhar, Ali A.; Gottfried, David S.; Song, Xuezheng; Cummings, Richard D.; Adibi, Ali

    2013-02-01

    We report on application of on-chip referencing to improve the limit-of-detection (LOD) in compact silicon nitride (SiN) microring arrays. Microring resonators, fabricated by e-beam lithography and fluorine-based etching, are designed for visible wavelengths (656nm) and have a footprint of 20 x 20 μm. GM1 ganglioside is used as the specific ligand for recognition of Cholera Toxin Subunit B (CTB), with Ricinus Communis Agglutinin I (RCA I) as a negative control. Using micro-cantilever based printing less than 10 pL of glycan solution is consumed per microring. Real-time data on analyte binding is extracted from the shifts in resonance wavelengths of the microrings.

  15. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin.

    PubMed

    Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P

    1995-10-01

    P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.

  16. The Galectin CvGal1 from the Eastern Oyster (Crassostrea virginica) Binds to Blood Group A Oligosaccharides on the Hemocyte Surface*

    PubMed Central

    Feng, Chiguang; Ghosh, Anita; Amin, Mohammed N.; Giomarelli, Barbara; Shridhar, Surekha; Banerjee, Aditi; Fernández-Robledo, José A.; Bianchet, Mario A.; Wang, Lai-Xi; Wilson, Iain B. H.; Vasta, Gerardo R.

    2013-01-01

    The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is “hijacked” by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288,) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 “self”-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection. PMID:23824193

  17. Fabrication of Carbohydrate Microarrays by Boronate Formation.

    PubMed

    Adak, Avijit K; Lin, Ting-Wei; Li, Ben-Yuan; Lin, Chun-Cheng

    2017-01-01

    The interactions between soluble carbohydrates and/or surface displayed glycans and protein receptors are essential to many biological processes and cellular recognition events. Carbohydrate microarrays provide opportunities for high-throughput quantitative analysis of carbohydrate-protein interactions. Over the past decade, various techniques have been implemented for immobilizing glycans on solid surfaces in a microarray format. Herein, we describe a detailed protocol for fabricating carbohydrate microarrays that capitalizes on the intrinsic reactivity of boronic acid toward carbohydrates to form stable boronate diesters. A large variety of unprotected carbohydrates ranging in structure from simple disaccharides and trisaccharides to considerably more complex human milk and blood group (oligo)saccharides have been covalently immobilized in a single step on glass slides, which were derivatized with high-affinity boronic acid ligands. The immobilized ligands in these microarrays maintain the receptor-binding activities including those of lectins and antibodies according to the structures of their pendant carbohydrates for rapid analysis of a number of carbohydrate-recognition events within 30 h. This method facilitates the direct construction of otherwise difficult to obtain carbohydrate microarrays from underivatized glycans.

  18. A DNA Aptamer Against Influenza A Virus: An Effective Inhibitor to the Hemagglutinin-Glycan Interactions.

    PubMed

    Li, Wenkai; Feng, Xinru; Yan, Xing; Liu, Keyi; Deng, Le

    2016-06-01

    Most therapeutical nucleic acid aptamers tend to inhibit protein-protein interactions and thereby function as antagonists. Attachment of the influenza virus surface glycoprotein hemagglutinin (HA) to sialic acid-containing host cell receptors (glycan) facilitates the initial stage of viral infection. Inhibition of the attachment may result in an antiviral effect on the proliferation of the influenza virus. To develop therapeutically interesting agents, we selected two single-stranded DNA (ssDNA) aptamers specific to the HA protein of H1N1 influenza virus (A/Puerto Rico/8/1934) through a procedure of systematic evolution of ligands by exponential enrichment. As it showed a higher binding affinity for HA protein (Kd = 78 ± 1 nM), aptamer 1 was tested for its ability to interfere with HA-glycan interactions using chicken red blood cell hemagglutination and microneutralization assays, which demonstrated that it significantly suppressed the viral infection in host cells. These results indicate that the isolated ssDNA aptamer may be developed as an antiviral agent against influenza through appropriate therapeutic formulation.

  19. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy

    PubMed Central

    Walls, Alexandra C.; Tortorici, M. Alejandra; Frenz, Brandon; Snijder, Joost; Li, Wentao; Rey, Félix A.; DiMaio, Frank; Bosch, Berend-Jan; Veesler, David

    2017-01-01

    The threat of a major coronavirus pandemic urges the development of suitable strategies to combat these pathogens. HCoV-NL63 is an α-coronavirus that can cause severe lower respiratory tract infections requiring hospitalization. We report here the 3.4 Å resolution cryo-electron microscopy reconstruction of the HCoV-NL63 coronavirus spike glycoprotein trimer, which is the conformational machine responsible for entry into host cells and the sole target of neutralizing antibodies during infection. The map resolves the extensive glycan shield obstructing the protein surface and, in combination with mass-spectrometry, provides a structural framework to understand accessibility to antibodies. The structure also reveals a remarkable modular architecture of the receptor-binding subunit and the complete architecture of the fusion machinery including the triggering loop and the C-terminal domains, which contribute to anchoring the trimer to the viral membrane. Our data further suggest that HCoV-NL63 and other coronaviruses use molecular trickery, based on masking of epitopes with glycans and activating conformational changes, to evade the immune system of infected hosts. PMID:27617430

  20. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration.

    PubMed

    Sackstein, Robert

    2009-07-01

    During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.

  1. Galectin-3: A Friend but Not a Foe during Trypanosoma cruzi Experimental Infection.

    PubMed

    da Silva, Aline A; Teixeira, Thaise L; Teixeira, Samuel C; Machado, Fabrício C; Dos Santos, Marlus A; Tomiosso, Tatiana C; Tavares, Paula C B; Brígido, Rebecca T E Silva; Martins, Flávia Alves; Silva, Nadjania S de Lira; Rodrigues, Cassiano C; Roque-Barreira, Maria C; Mortara, Renato A; Lopes, Daiana S; Ávila, Veridiana de Melo Rodrigues; da Silva, Claudio V

    2017-01-01

    Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for β-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.

  2. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Wang, Man; Yin, Yalin; Pan, Yongfu; Gu, Bianli; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo. PMID:22268569

  3. Novel Monoclonal Antibody LpMab-17 Developed by CasMab Technology Distinguishes Human Podoplanin from Monkey Podoplanin.

    PubMed

    Kato, Yukinari; Ogasawara, Satoshi; Oki, Hiroharu; Honma, Ryusuke; Takagi, Michiaki; Fujii, Yuki; Nakamura, Takuro; Saidoh, Noriko; Kanno, Hazuki; Umetsu, Mitsuo; Kamata, Satoshi; Kubo, Hiroshi; Yamada, Mitsuhiro; Sawa, Yoshihiko; Morita, Kei-Ichi; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika Kato

    2016-04-01

    Podoplanin (PDPN) is a type-I transmembrane sialoglycoprotein, which possesses a platelet aggregation-stimulating (PLAG) domain in its N-terminus. Among the three PLAG domains, O-glycan on Thr52 of PLAG3 is critical for the binding with C-type lectin-like receptor-2 (CLEC-2) and is essential for platelet-aggregating activity of PDPN. Although many anti-PDPN monoclonal antibodies (mAbs) have been established, almost all mAbs bind to PLAG domains. We recently established CasMab technology to produce mAbs against membranous proteins. Using CasMab technology, we produced a novel anti-PDPN mAb, LpMab-17, which binds to non-PLAG domains. LpMab-17 clearly detected endogenous PDPN of cancer cells and normal cells in Western-blot, flow cytometry, and immunohistochemistry. LpMab-17 recognized glycan-deficient PDPN in flow cytometry, indicating that the interaction between LpMab-17 and PDPN is independent of its glycosylation. The minimum epitope of LpMab-17 was identified as Gly77-Asp82 of PDPN using enzyme-linked immunosorbent assay. Of interest, LpMab-17 did not bind to monkey PDPN, whereas the homology is 94% between human PDPN and monkey PDPN, indicating that the epitope of LpMab-17 is unique compared with the other anti-PDPN mAbs. The combination of different epitope-possessing mAbs could be advantageous for the PDPN-targeting diagnosis or therapy.

  4. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acα2-6Galβ1-4GlcNAc human-type influenza receptor

    PubMed Central

    Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J

    2011-01-01

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237

  5. Microglial Lectins in Health and Neurological Diseases

    PubMed Central

    Siew, Jian Jing; Chern, Yijuang

    2018-01-01

    Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases. PMID:29867350

  6. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers.

    PubMed

    Ringe, Rajesh P; Ozorowski, Gabriel; Rantalainen, Kimmo; Struwe, Weston B; Matthews, Katie; Torres, Jonathan L; Yasmeen, Anila; Cottrell, Christopher A; Ketas, Thomas J; LaBranche, Celia C; Montefiori, David C; Cupo, Albert; Crispin, Max; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W; Klasse, P J; Moore, John P

    2017-08-01

    Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such "off-target" immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N -glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man 6 GlcNAc 2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes. Copyright © 2017 Ringe et al.

  7. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers

    PubMed Central

    Ringe, Rajesh P.; Ozorowski, Gabriel; Rantalainen, Kimmo; Struwe, Weston B.; Matthews, Katie; Torres, Jonathan L.; Yasmeen, Anila; Cottrell, Christopher A.; Ketas, Thomas J.; LaBranche, Celia C.; Montefiori, David C.; Cupo, Albert; Crispin, Max; Wilson, Ian A.; Ward, Andrew B.; Sanders, Rogier W.; Klasse, P. J.

    2017-01-01

    ABSTRACT Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such “off-target” immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes. PMID:28539451

  8. In situ characterization of glycans in the urothelium of donkey bladder: evidence of secretion of sialomucins.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana

    2013-09-01

    The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Characteristic glycopeptides associated with extreme human longevity identified through plasma glycoproteomics.

    PubMed

    Miura, Yuri; Hashii, Noritaka; Ohta, Yuki; Itakura, Yoko; Tsumoto, Hiroki; Suzuki, Junya; Takakura, Daisuke; Abe, Yukiko; Arai, Yasumichi; Toyoda, Masashi; Kawasaki, Nana; Hirose, Nobuyoshi; Endo, Tamao

    2018-06-01

    Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105 years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity. Plasma proteins from Japanese semi-supercentenarians (SSCs, 106-109 years), aged controls (70-88 years), and young controls (20-38 years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured. We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases. Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity. We found abundant glycans in SSCs, which may be associated with human longevity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID:24789779

  11. Glycosylation Effects on FSH-FSHR Interaction Dynamics: A Case Study of Different FSH Glycoforms by Molecular Dynamics Simulations

    PubMed Central

    Meher, Biswa Ranjan; Dixit, Anshuman; Bousfield, George R.; Lushington, Gerald H.

    2015-01-01

    The gonadotropin known as follicle-stimulating hormone (FSH) plays a key role in regulating reproductive processes. Physiologically active FSH is a glycoprotein that can accommodate glycans on up to four asparagine residues, including two sites in the FSHα subunit that are critical for biochemical function, plus two sites in the β subunit, whose differential glycosylation states appear to correspond to physiologically distinct functions. Some degree of FSHβ hypo-glycosylation seems to confer advantages toward reproductive fertility of child-bearing females. In order to identify possible mechanistic underpinnings for this physiological difference we have pursued computationally intensive molecular dynamics simulations on complexes between the high affinity site of the gonadal FSH receptor (FSHR) and several FSH glycoforms including fully-glycosylated (FSH24), hypo-glycosylated (e.g., FSH15), and completely deglycosylated FSH (dgFSH). These simulations suggest that deviations in FSH/FSHR binding profile as a function of glycosylation state are modest when FSH is adorned with only small glycans, such as single N-acetylglucosamine residues. However, substantial qualitative differences emerge between FSH15 and FSH24 when FSH is decorated with a much larger, tetra-antennary glycan. Specifically, the FSHR complex with hypo-glycosylated FSH15 is observed to undergo a significant conformational shift after 5–10 ns of simulation, indicating that FSH15 has greater conformational flexibility than FSH24 which may explain the more favorable FSH15 kinetic profile. FSH15 also exhibits a stronger binding free energy, due in large part to formation of closer and more persistent salt-bridges with FSHR. PMID:26402790

  12. High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex.

    PubMed

    Lee, Kwangkook; Lam, Kwok-Ho; Kruel, Anna Magdalena; Perry, Kay; Rummel, Andreas; Jin, Rongsheng

    2014-04-04

    Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46Å resolution. The structural comparisons among HA33 of serotypes A-D reveal two different HA33-glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B-lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense

    PubMed Central

    Waespy, Mario; Gbem, Thaddeus T.; Elenschneider, Leroy; Jeck, André-Philippe; Day, Christopher J.; Hartley-Tassell, Lauren; Bovin, Nicolai; Tiralongo, Joe; Haselhorst, Thomas; Kelm, Sørge

    2015-01-01

    Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented. PMID:26474304

  14. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates*

    PubMed Central

    Fredslund, Folmer; Vujičić Žagar, Andreja; Andersen, Thomas Lars; Svensson, Birte; Slotboom, Dirk Jan

    2016-01-01

    The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria. PMID:27502277

  15. On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli.

    PubMed

    Fibriansah, Guntur; Gliubich, Francesca I; Thunnissen, Andy-Mark W H

    2012-11-13

    The lytic transglycosylase MltE from Escherichia coli is a periplasmic, outer membrane-attached enzyme that cleaves the β-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine residues in the cell wall peptidoglycan, producing 1,6-anhydromuropeptides. Here we report three crystal structures of MltE: in a substrate-free state, in a binary complex with chitopentaose, and in a ternary complex with the glycopeptide inhibitor bulgecin A and the murodipeptide N-acetylglucosaminyl-N-acetylmuramyl-l-Ala-d-Glu. The substrate-bound structures allowed a detailed analysis of the saccharide-binding interactions in six subsites of the peptidoglycan-binding groove (subsites -4 to +2) and, combined with site-directed mutagenesis analysis, confirmed the role of Glu64 as catalytic acid/base. The structures permitted the precise modeling of a short glycan strand of eight saccharide residues, providing evidence for two additional subsites (+3 and +4) and revealing the productive conformational state of the substrate at subsites -1 and +1, where the glycosidic bond is cleaved. Full accessibility of the peptidoglycan-binding groove and preferential binding of an N-acetylmuramic acid residue in a (4)C(1) chair conformation at subsite +2 explain why MltE shows only endo- and no exo-specific activity toward glycan strands. The results further indicate that catalysis of glycosidic bond cleavage by MltE proceeds via distortion toward a sofa-like conformation of the N-acetylmuramic acid sugar ring at subsite -1 and by anchimeric assistance of the sugar's N-acetyl group, as shown previously for the lytic transglycosylases Slt70 and MltB.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2more » and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.« less

  17. Why human anti-Galα1-4Galβ1-4Glc natural antibodies do not recognize the trisaccharide on erythrocyte membrane? Molecular dynamics and immunochemical investigation.

    PubMed

    Volynsky, Pavel; Efremov, Roman; Mikhalev, Ilya; Dobrochaeva, Kira; Tuzikov, Alexander; Korchagina, Elena; Obukhova, Polina; Rapoport, Evgenia; Bovin, Nicolai

    2017-10-01

    Human blood contains a big variety of natural antibodies, circulating throughout life at constant concentration. Previously, we have found natural antibodies capable of binding to trisaccharide Galα1-4Galβ1-4Glc (P k ) practically in all humans. Intriguingly, the same trisaccharide is a key fragment of glycosphingolipid globotriaosylceramide (Gb3Cer) - normal component of erythrocyte and endothelial cell membrane, i.e. the antibodies and their cognate antigen coexist without any immunological reaction. To explain the inertness of human anti-P k antibodies towards own cells. We used a combination of immunochemical and molecular dynamics (MD) experiments. Antibodies were isolated using affinity media with P k trisaccharide, their epitope specificity was characterized using ELISA (enzyme-linked immunosorbent assay) with a set of synthetic glycans related to P k synthetic glycans and FACS (Fluorescence-Activated Cell Sorting) analysis of cells with inserted natural Gb3Cer and its synthetic analogue. Conformations and clustering of glycolipids immersed into a lipid bilayer were studied using MD simulations. Isolated specific antibodies were completely unable to bind natural Gb3Cer both inserted into cells and in artificial membrane, whereas strong interaction took place with synthetic analogue differing by the presence of a spacer between trisaccharide and lipid part. MD simulations revealed: i) although membrane-bound glycans do not form stable long-living aggregates, their transient packing is more compact in natural Gb3 as compared with the synthetic analog, ii) similar conformation of P k glycan in composition of the glycolipids, iii) no effect on the mentioned above results when cholesterol was inserted into membrane, and iv) better accessibility of the synthetic version for interaction with proteins. Both immunochemical and molecular dynamics data argue that the reason of the "tolerance" of natural anti-P k antibodies towards cell-bound Gb3Cer is the spatial inaccessibility of P k glycotope for interaction. We can conclude that the antibodies are not related to the blood group P system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis.

    PubMed

    Takeshita, Masaru; Kuno, Atsushi; Suzuki, Katsuya; Matsuda, Atsushi; Shimazaki, Hiroko; Nakagawa, Tomomi; Otomo, Yuki; Kabe, Yasuaki; Suematsu, Makoto; Narimatsu, Hisashi; Takeuchi, Tsutomu

    2016-05-21

    Nearly all secreted proteins are glycosylated, and serum glycoproteins that exhibit disease-associated glycosylation changes have potential to be biomarkers. In rheumatoid arthritis (RA), C-reactive protein (CRP), and matrix metalloproteinase-3 (MMP-3) are widely used as serologic biomarkers, but they lack sufficient specificity or precision. We performed comparative glycosylation profiling of MMP-3 using a recently developed antibody-overlay lectin microarray technology that allows semicomprehensive and quantitative analysis of specific protein glycosylation to develop an RA-specific disease activity biomarker. Serum was taken from patients with RA (n = 24) whose disease activity was scored using composite measures, and MMP-3 was immunoprecipitated and subjected to lectin microarray analysis. A disease activity index (DAI) based on lectin signal was developed and validated using another cohort (n = 60). Synovial fluid MMP-3 in patients with RA and patients with osteoarthritis (OA) was also analyzed. Intense signals were observed on a sialic acid-binding lectin (Agrocybe cylindracea galectin [ACG]) and O-glycan-binding lectins (Jacalin, Agaricus bisporus agglutinin [ABA], and Amaranthus caudatus agglutinin [ACA]) by applying subnanogram levels of serum MMP-3. ACG, ABA, and ACA revealed differences in MMP-3 quantity, and Jacalin revealed differences in MMP-3 quality. The resultant index, ACG/Jacalin, correlated well with disease activity. Further validation using another cohort confirmed that this index correlated well with several DAIs and their components, and reflected DAI changes following RA treatment, with correlations greater than those for MMP-3 and CRP. Furthermore, MMP-3, which generated a high ACG/Jacalin score, accumulated in synovial fluid of patients with RA but not in that of patients with OA. Sialidase digestion revealed that the difference in quality was derived from O-glycan α-2,6-sialylation. This is the first report of a glycoprotein biomarker using glycan change at a local lesion to assess disease activity in autoimmune diseases. Differences in the degree of serum MMP-3 α-2,6-sialylation may be a useful index for estimating disease activity.

  19. Quantitative assessment of the multivalent protein-carbohydrate interactions on silicon.

    PubMed

    Yang, Jie; Chazalviel, Jean-Noël; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal

    2014-10-21

    A key challenge in the development of glycan arrays is that the sensing interface be fabricated reliably so as to ensure the sensitive and accurate analysis of the protein-carbohydrate interaction of interest, reproducibly. These goals are complicated in the case of glycan arrays as surface sugar density can influence dramatically the strength and mode of interaction of the sugar ligand at any interface with lectin partners. In this Article, we describe the preparation of carboxydecyl-terminated crystalline silicon (111) surfaces onto which are grafted either mannosyl moieties or a mixture of mannose and spacer alcohol molecules to provide "diluted" surfaces. The fabrication of the silicon surfaces was achieved efficiently through a strategy implicating a "click" coupling step. The interactions of these newly fabricated glycan interfaces with the lectin, Lens culinaris, have been characterized using quantitative infrared (IR) spectroscopy in the attenuated total geometry (ATR). The density of mannose probes and lectin targets was precisely determined for the first time by the aid of special IR calibration experiments, thus allowing for the interpretation of the distribution of mannose and its multivalent binding with lectins. These experimental findings were accounted for by numerical simulations of lectin adsorption.

  20. Glycoconjugates in human milk: protecting infants from disease.

    PubMed

    Peterson, Robyn; Cheah, Wai Yuen; Grinyer, Jasmine; Packer, Nicolle

    2013-12-01

    Breastfeeding is known to have many health benefits for a newborn. Not only does human milk provide an excellent source of nutrition, it also contains components that protect against infection from a wide range of pathogens. Some of the protective properties of human milk can be attributed to the immunoglobulins. Yet, there is another level of defense provided by the "sweet" protective agents that human milk contains, including free oligosaccharides, glycoproteins and glycolipids. Sugar epitopes in human milk are similar to the glycan receptors that serve as pathogen adhesion sites in the human gastrointestinal tract and other epithelial cell surfaces; hence, the milk glycans can competitively bind to and remove the disease-causing microorganisms before they cause infection. The protective value of free oligosaccharides in human milk has been well researched and documented. Human milk glycoconjugates have received less attention but appear to play an equally important role. Here, we bring together the breadth of research that has focused on the protective mechanisms of human milk glycoconjugates, with a particular focus on the glycan moieties that may play a role in disease prevention. In addition, human milk glycoconjugates are compared with bovine milk glycoconjugates in terms of their health benefits for the human infant.

  1. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression.

    PubMed

    Bacigalupo, María L; Carabias, Pablo; Troncoso, María F

    2017-08-07

    Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.

  2. The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.

    PubMed Central

    Nikolova, E B; Tomana, M; Russell, M W

    1994-01-01

    In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504

  3. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review.

    PubMed

    Safina, Gulnara

    2012-01-27

    Carbohydrates (glycans) and their conjugates with proteins and lipids contribute significantly to many biological processes. That makes these compounds important targets to be detected, monitored and identified. The identification of the carbohydrate content in their conjugates with proteins and lipids (glycoforms) is often a challenging task. Most of the conventional instrumental analytical techniques are time-consuming and require tedious sample pretreatment and utilising various labeling agents. Surface plasmon resonance (SPR) has been intensively developed during last two decades and has received the increasing attention for different applications, from the real-time monitoring of affinity bindings to biosensors. SPR does not require any labels and is capable of direct measurement of biospecific interaction occurring on the sensing surface. This review provides a critical comparison of modern analytical instrumental techniques with SPR in terms of their analytical capabilities to detect carbohydrates, their conjugates with proteins and lipids and to study the carbohydrate-specific bindings. A few selected examples of the SPR approaches developed during 2004-2011 for the biosensing of glycoforms and for glycan-protein affinity studies are comprehensively discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome.

    PubMed

    Comelli, Elena M; Head, Steven R; Gilmartin, Tim; Whisenant, Thomas; Haslam, Stuart M; North, Simon J; Wong, Nyet-Kui; Kudo, Takashi; Narimatsu, Hisashi; Esko, Jeffrey D; Drickamer, Kurt; Dell, Anne; Paulson, James C

    2006-02-01

    Glycosylation is the most common posttranslational modification of proteins, yet genes relevant to the synthesis of glycan structures and function are incompletely represented and poorly annotated on the commercially available arrays. To fill the need for expression analysis of such genes, we employed the Affymetrix technology to develop a focused and highly annotated glycogene-chip representing human and murine glycogenes, including glycosyltransferases, nucleotide sugar transporters, glycosidases, proteoglycans, and glycan-binding proteins. In this report, the array has been used to generate glycogene-expression profiles of nine murine tissues. Global analysis with a hierarchical clustering algorithm reveals that expression profiles in immune tissues (thymus [THY], spleen [SPL], lymph node, and bone marrow [BM]) are more closely related, relative to those of nonimmune tissues (kidney [KID], liver [LIV], brain [BRN], and testes [TES]). Of the biosynthetic enzymes, those responsible for synthesis of the core regions of N- and O-linked oligosaccharides are ubiquitously expressed, whereas glycosyltransferases that elaborate terminal structures are expressed in a highly tissue-specific manner, accounting for tissue and ultimately cell-type-specific glycosylation. Comparison of gene expression profiles with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) profiling of N-linked oligosaccharides suggested that the alpha1-3 fucosyltransferase 9, Fut9, is the enzyme responsible for terminal fucosylation in KID and BRN, a finding validated by analysis of Fut9 knockout mice. Two families of glycan-binding proteins, C-type lectins and Siglecs, are predominately expressed in the immune tissues, consistent with their emerging functions in both innate and acquired immunity. The glycogene chip reported in this study is available to the scientific community through the Consortium for Functional Glycomics (CFG) (http://www.functionalglycomics.org).

  5. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination.

    PubMed

    Gopinath, Subash C B; Kumar, Penmetcha K R

    2013-11-01

    Influenza virus hemagglutinin (HA) mediates both receptor (glycan) binding and membrane fusion for cell entry and has been the basis for typing influenza A viruses. In this study we have selected RNA aptamers (D-12 and D-26) that specifically target the HA protein of the recent pandemic influenza virus pdmH1N1 (A/California/07/2009). Among the selected aptamers the D-26 aptamer showed higher affinity for the HA of pdmH1N1 and was able to distinguish HA derived from other sub-types of influenza A viruses. The affinity of the D-26 aptamer was further improved upon incorporation of 2'-fluoropyrimidines to a level of 67 fM. Furthermore, the high affinity D-12 and D-26 aptamers were tested for their ability to interfere with HA-glycan interactions using a chicken red blood cell (RBC) agglutination assay. At a concentration of 200 nM the D-26 aptamer completely abolished the agglutination of RBCs, whereas D-12 only did so at 400 nM. These studies suggest that the selected aptamer D-26 not only has a higher affinity and specificity for the HA of pdmH1N1 but also has a better ability to efficiently interfere with HA-glycan interactions compared with the D-12 aptamer. The D-26 aptamer warrants further study regarding its application in developing topical virucidal products against the pdmH1N1 virus and also in surveillance of the pdmH1N1 influenza virus. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs.

    PubMed

    Kosik, Ivan; Ince, William L; Gentles, Lauren E; Oler, Andrew J; Kosikova, Martina; Angel, Matthew; Magadán, Javier G; Xie, Hang; Brooke, Christopher B; Yewdell, Jonathan W

    2018-01-01

    Rapid antigenic evolution enables the persistence of seasonal influenza A and B viruses in human populations despite widespread herd immunity. Understanding viral mechanisms that enable antigenic evolution is critical for designing durable vaccines and therapeutics. Here, we utilize the primerID method of error-correcting viral population sequencing to reveal an unexpected role for hemagglutinin (HA) glycosylation in compensating for fitness defects resulting from escape from anti-HA neutralizing antibodies. Antibody-free propagation following antigenic escape rapidly selected viruses with mutations that modulated receptor binding avidity through the addition of N-linked glycans to the HA globular domain. These findings expand our understanding of the viral mechanisms that maintain fitness during antigenic evolution to include glycan addition, and highlight the immense power of high-definition virus population sequencing to reveal novel viral adaptive mechanisms.

  7. Linkage specificity and role of properdin in activation of the alternative complement pathway by fungal glycans.

    PubMed

    Agarwal, Sarika; Specht, Charles A; Haibin, Huang; Ostroff, Gary R; Ram, Sanjay; Rice, Peter A; Levitz, Stuart M

    2011-01-01

    Fungal cell walls are predominantly composed of glucans, mannans, and chitin. Recognition of these glycans by the innate immune system is a critical component of host defenses against the mycoses. Complement, an important arm of innate immunity, plays a significant role in fungal pathogenesis, especially the alternative pathway (AP). Here we determine that the glycan monosaccharide composition and glycosidic linkages affect AP activation and C3 deposition. Furthermore, properdin, a positive regulator of the AP, contributes to these functions. AP activation by glycan particles that varied in composition and linkage was measured by C3a generation in serum treated with 10 mM EGTA and 10 mM Mg(2+) (Mg-EGTA-treated serum) (AP specific; properdin functional) or Mg-EGTA-treated serum that lacked functional properdin. Particles that contained either β1→3 or β1→6 glucans or both generated large and similar amounts of C3a when the AP was intact. Blocking properdin function resulted in 5- to 10-fold-less C3a production by particulate β1→3 glucans. However, particulate β1→6 glucans generated C3a via the AP only in the presence of intact properdin. Interestingly, zymosan and glucan-mannan particles (GMP), which contain both β-glucans and mannans, also required properdin to generate C3a. The β1→4 glycans chitin and chitosan minimally activated C3 even when properdin was functional. Finally, properdin binding to glucan particles (GP) and zymosan in serum required active C3. Properdin colocalized with bound C3, suggesting that in the presence of serum, properdin bound indirectly to glycans through C3 convertases. These findings provide a better understanding of how properdin facilitates AP activation by fungi through interaction with the cell wall components. Invasive fungal infections have increased in incidence with the widespread use of immunosuppressive therapy and invasive procedures. Activation of the complement system contributes to innate immunity against fungi by generating chemoattractants that recruit white blood cells and by coating the pathogen with complement fragments that "mark" them for phagocytosis. The fungal cell wall activates complement in an antibody-independent manner through the alternative pathway (AP). Properdin is a positive regulator of the AP. This study elucidates how the specificity of cell wall glycan linkages affects AP activation and the role properdin plays in this process. Particulate β1→3 glucans activated the AP even in the absence of properdin, while β1→6 glucans required properdin for AP activation. In contrast, the β1→4 glycans chitin and chitosan failed to activate the AP. These findings enhance our mechanistic understanding of how fungi activate complement and have implications for the use of glycans in biomedical applications.

  8. Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics.

    PubMed

    Price, Joshua L; Shental-Bechor, Dalit; Dhar, Apratim; Turner, Maurice J; Powers, Evan T; Gruebele, Martin; Levy, Yaakov; Kelly, Jeffery W

    2010-11-03

    Asparagine glycosylation is one of the most common and important post-translational modifications of proteins in eukaryotic cells. N-glycosylation occurs when a triantennary glycan precursor is transferred en bloc to a nascent polypeptide (harboring the N-X-T/S sequon) as the peptide is cotranslationally translocated into the endoplasmic reticulum (ER). In addition to facilitating binding interactions with components of the ER proteostasis network, N-glycans can also have intrinsic effects on protein folding by directly altering the folding energy landscape. Previous work from our laboratories (Hanson et al. Proc. Natl. Acad. Sci. U.S.A. 2009, 109, 3131-3136; Shental-Bechor, D.; Levy, Y. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8256-8261) suggested that the three sugar residues closest to the protein are sufficient for accelerating protein folding and stabilizing the resulting structure in vitro; even a monosaccharide can have a dramatic effect. The highly conserved nature of these three proximal sugars in N-glycans led us to speculate that introducing an N-glycosylation site into a protein that is not normally glycosylated would stabilize the protein and increase its folding rate in a manner that does not depend on the presence of specific stabilizing protein-saccharide interactions. Here, we test this hypothesis experimentally and computationally by incorporating an N-linked GlcNAc residue at various positions within the Pin WW domain, a small β-sheet-rich protein. The results show that an increased folding rate and enhanced thermodynamic stability are not general, context-independent consequences of N-glycosylation. Comparison between computational predictions and experimental observations suggests that generic glycan-based excluded volume effects are responsible for the destabilizing effect of glycosylation at highly structured positions. However, this reasoning does not adequately explain the observed destabilizing effect of glycosylation within flexible loops. Our data are consistent with the hypothesis that specific, evolved protein-glycan contacts must also play an important role in mediating the beneficial energetic effects on protein folding that glycosylation can confer.

  9. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    PubMed

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

    PubMed Central

    Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of available polysaccharides, a theme that likely applies to disparate bacteria from the gut and other habitats. PMID:22205877

  11. Psathyrella velutina Mushroom Lectin Exhibits High Affinity toward Sialoglycoproteins Possessing Terminal N-Acetylneuraminic Acid alpha 2,3-Linked to Penultimate Galactose Residues of Trisialyl N-Glycans. Comparison with other sialic acid-specific lectins.

    PubMed

    Ueda, Haruko; Matsumoto, Hanako; Takahashi, Noriko; Ogawa, Haruko

    2002-07-12

    A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.

  12. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2014-07-01

    Huflejt ME. Processing and analysis of serum antibody binding signals from Printed Glycan Arrays for diagnostic and prognostic applications. Int J...rats 542 LeCLex1-6’(LeC1-3’)Lac-sp4 543 Lex1-6’(LeB1-3’)Lac-sp4 641 E.coli oligosaccharide -2 (1208) 642 E.coli oligosaccharide -3 (1210) 254 More

  13. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    PubMed Central

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E; Cervin, Jakob; Dedic, Benjamin; Rodriguez, Andrea C; Nischan, Nicole; Bond, Michelle R; Mettlen, Marcel; Trudgian, David C; Lemoff, Andrew; Quiding-Järbrink, Marianne; Gustavsson, Bengt; Steentoft, Catharina; Clausen, Henrik; Mirzaei, Hamid; Teneberg, Susann; Yrlid, Ulf; Kohler, Jennifer J

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI: http://dx.doi.org/10.7554/eLife.09545.001 PMID:26512888

  14. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array.

    PubMed

    Yamada, Keita; Hirabayashi, Jun; Kakehi, Kazuaki

    2013-03-19

    A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.

  15. Assessment of Molecular, Antigenic, and Pathological Features of Canine Influenza A(H3N2) Viruses That Emerged in the United States

    PubMed Central

    Pulit-Penaloza, Joanna A.; Simpson, Natosha; Yang, Hua; Creager, Hannah M.; Jones, Joyce; Carney, Paul; Belser, Jessica A.; Yang, Genyan; Chang, Jessie; Zeng, Hui; Thor, Sharmi; Jang, Yunho; Killian, Mary Lea; Jenkins-Moore, Melinda; Janas-Martindale, Alicia; Dubovi, Edward; Wentworth, David E.; Stevens, James; Tumpey, Terrence M.; Davis, C. Todd; Maines, Taronna R.

    2017-01-01

    Background A single subtype of canine influenza virus (CIV), A(H3N8), was circulating in the United States until a new subtype, A(H3N2), was detected in Illinois in spring 2015. Since then, this CIV has caused thousands of infections in dogs in multiple states. Methods In this study, genetic and antigenic properties of the new CIV were evaluated. In addition, structural and glycan array binding features of the recombinant hemagglutinin were determined. Replication kinetics in human airway cells and pathogenesis and transmissibility in animal models were also assessed. Results A(H3N2) CIVs maintained molecular and antigenic features related to low pathogenicity avian influenza A(H3N2) viruses and were distinct from A(H3N8) CIVs. The structural and glycan array binding profile confirmed these findings and revealed avian-like receptor-binding specificity. While replication kinetics in human airway epithelial cells was on par with that of seasonal influenza viruses, mild-to-moderate disease was observed in infected mice and ferrets, and the virus was inefficiently transmitted among cohoused ferrets. Conclusions Further adaptation is needed for A(H3N2) CIVs to present a likely threat to humans. However, the potential for coinfection of dogs and possible reassortment of human and other animal influenza A viruses presents an ongoing risk to public health. PMID:28934454

  16. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  17. Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Recognizes a Novel Ligand, Mac-2-binding Protein, Characteristically Expressed on Human Colorectal Carcinomas*

    PubMed Central

    Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke

    2011-01-01

    Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA. PMID:21515679

  18. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  19. Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1.

    PubMed

    Clark, Anthony J; Gindin, Tatyana; Zhang, Baoshan; Wang, Lingle; Abel, Robert; Murret, Colleen S; Xu, Fang; Bao, Amy; Lu, Nina J; Zhou, Tongqing; Kwong, Peter D; Shapiro, Lawrence; Honig, Barry; Friesner, Richard A

    2017-04-07

    Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal. However, despite substantial efforts, no generally applicable computational method has been described. Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the VRC01 class. The protocol has been adapted from successful studies of small molecules to address the challenges associated with modeling protein-protein interactions. Specifically, we built homology models of the three antibody-gp120 complexes, extended the sampling times for large bulky residues, incorporated the modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large set (55 total cases) of FEP tests as compared to these experiments, 0.68kcal/mol, is near experimental accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The correlation coefficient for the combined data set including residues with glycan contacts, R 2 =0.49, should be sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard to the possibility of using an FEP approach to calculate the magnitude of protein-protein binding affinities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa

    PubMed Central

    Magalhães, Ana; Gomes, Joana; Ismail, Mohd Nazri; Haslam, Stuart M; Mendes, Nuno; Osório, Hugo; David, Leonor; Le Pendu, Jacques; Haas, Rainer; Dell, Anne; Borén, Thomas; Reis, Celso A

    2009-01-01

    Glycoconjugates expressed on gastric mucosa play a crucial role in host–pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal α(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Leb and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of α(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucα(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected. PMID:19706747

  1. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Y.; Li, H.; Li, Hua

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less

  2. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    PubMed Central

    Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.

    2009-01-01

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066

  3. Fluorescence polarization-based assay using N-glycan-conjugated quantum dots for screening in hemagglutinin blockers for influenza A viruses.

    PubMed

    Okamatsu, Masatoshi; Feng, Fei; Ohyanagi, Tatsuya; Nagahori, Noriko; Someya, Kazuhiko; Sakoda, Yoshihiro; Miura, Nobuaki; Nishimura, Shin-Ichiro; Kida, Hiroshi

    2013-02-01

    Attachment of influenza virus to susceptible cells is mediated by viral protein hemagglutinin (HA), which recognizes cell surface glycoconjugates that terminate in α-sialosides. To develop anti-influenza drugs based on inhibition of HA-mediated infection, novel fluorescent nanoparticles displaying multiple biantennary N-glycan chains with α-sialosides (A2-PC-QDs) that have high affinity for the HA were designed and constructed. The A2-PC-QDs enabled an easy and efficient fluorescence polarization (FP) assay for detection of interaction with the HA and competitive inhibition even by small molecule compounds against A2-PC-QDs-HA binding. The quantum dot (QD)-based FP assay established in the present study is a useful tool for high-throughput screening and to accelerate the development of novel and more effective blockers of the viral attachment of influenza virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Apparent ambiguities in the post-Newtonian expansion for binary systems

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.; Rothstein, Ira Z.

    2017-07-01

    We discuss the source of the apparent ambiguities arising in the calculation of the dynamics of binary black holes within the post-Newtonian framework. Divergences appear in both the near and far zone calculations, and may be of either ultraviolet (UV) or infrared (IR) nature. The effective field theory (EFT) formalism elucidates the origin of the singularities which may introduce apparent ambiguities. In particular, the only (physical) "ambiguity parameters" that necessitate a matching calculation correspond to unknown finite size effects, which first appear at fifth post-Newtonian (5PN) order for nonspinning bodies. We demonstrate that the ambiguities linked to IR divergences in the near zone, that plague the recent derivations of the binding energy at 4PN order, both in the Arnowitt, Deser, and Misner (ADM) and "Fokker-action" approach, can be resolved by implementing the so-called zero-bin subtraction in the EFT framework. The procedure yields ambiguity-free results without the need of additional information beyond the PN expansion.

  5. Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling.

    PubMed

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures.

  6. Restricted N-glycan Conformational Space in the PDB and Its Implication in Glycan Structure Modeling

    PubMed Central

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. PMID:23516343

  7. In vitro evidence for the participation of Drosophila melanogaster sperm β-N-acetylglucosaminidases in the interactions with glycans carrying terminal N-acetylglucosamine residues on the egg's envelopes.

    PubMed

    Intra, Jari; Veltri, Concetta; De Caro, Daniela; Perotti, Maria Elisa; Pasini, Maria Enrica

    2017-09-01

    Fertilization is a complex and multiphasic process, consisting of several steps, where egg-coating envelope's glycoproteins and sperm surface receptors play a critical role. Sperm-associated β-N-acetylglucosaminidases, also known as hexosaminidases, have been identified in a variety of organisms. Previously, two isoforms of hexosaminidases, named here DmHEXA and DmHEXB, were found as intrinsic proteins in the sperm plasma membrane of Drosophila melanogaster. In the present work, we carried out different approaches using solid-phase assays in order to analyze the oligosaccharide recognition ability of D. melanogaster sperm hexosaminidases to interact with well-defined carbohydrate chains that might functionally mimic egg glycoconjugates. Our results showed that Drosophila hexosaminidases prefer glycans carrying terminal β-N-acetylglucosamine, but not core β-N-acetylglucosamine residues. The capacity of sperm β-N-acetylhexosaminidases to bind micropylar chorion and vitelline envelope was examined in vitro assays. Binding was completely blocked when β-N-acetylhexosaminidases were preincubated with the glycoproteins ovalbumin and transferrin, and the monosaccharide β-N-acetylglucosamine. Overall, these data support the hypothesis of the potential role of these glycosidases in sperm-egg interactions in Drosophila. © 2017 Wiley Periodicals, Inc.

  8. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut.

    PubMed

    Hemsworth, Glyn R; Thompson, Andrew J; Stepper, Judith; Sobala, Łukasz F; Coyle, Travis; Larsbrink, Johan; Spadiut, Oliver; Goddard-Borger, Ethan D; Stubbs, Keith A; Brumer, Harry; Davies, Gideon J

    2016-07-01

    The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. © 2016 The Authors.

  9. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    NASA Astrophysics Data System (ADS)

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-02-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.

  10. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    PubMed Central

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-01-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development. PMID:26831207

  11. Regulation of Glycan Structures in Animal Tissues

    PubMed Central

    Nairn, Alison V.; York, William S.; Harris, Kyle; Hall, Erica M.; Pierce, J. Michael; Moremen, Kelley W.

    2008-01-01

    Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes. PMID:18411279

  12. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation

    PubMed Central

    Samuelson, John; Robbins, Phillips W.

    2014-01-01

    Asparagine-linked glycans (N-glycans) of medically important protists have much to tell us about the evolution of N-glycosylation and of N-glycan-dependent quality control (N-glycan QC) of protein folding in the endoplasmic reticulum. While host N-glycans are built upon a dolichol-pyrophosphate-linked precursor with 14 sugars (Glc3Man9GlcNAc2), protist N-glycan precursors vary from Glc3Man9GlcNAc2 (Acanthamoeba) to Man9GlcNAc2 (Trypanosoma) to Glc3Man5GlcNAc2 (Toxoplasma) to Man5GlcNAc2 (Entamoeba, Trichomonas, and Eimeria) to GlcNAc2 (Plasmodium and Giardia) to zero (Theileria). As related organisms have differing N-glycan lengths (e.g. Toxoplasma, Eimeria, Plasmodium, and Theileria), the present N-glycan variation is based upon secondary loss of Alg genes, which encode enzymes that add sugars to the N-glycan precursor. An N-glycan precursor with Man5GlcNAc2 is necessary but not sufficient for N-glycan QC, which is predicted by the presence of the UDP-glucose:glucosyltransferase (UGGT) plus calreticulin and/or calnexin. As many parasites lack glucose in their N-glycan precursor, UGGT product may be identified by inhibition of glucosidase II. The presence of an armless calnexin in Toxoplasma suggests secondary loss of N-glycan QC from coccidia. Positive selection for N-glycan sites occurs in secreted proteins of organisms with NG-QC and is based upon an increased likelihood of threonine but not serine in the second position versus asparagine. In contrast, there appears to be selection against N-glycan length in Plasmodium and N-glycan site density in Toxoplasma. Finally, there is suggestive evidence for N-glycan-dependent ERAD in Trichomonas, which glycosylates and degrades the exogenous reporter mutant carboxypeptidase Y (CPY*). PMID:25475176

  13. A spin column-free approach to sodium hydroxide-based glycan permethylation.

    PubMed

    Hu, Yueming; Borges, Chad R

    2017-07-24

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues-yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based "glycan node" analysis results. When applied to blood plasma samples from stage III-IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p < 0.01). In summary, the SCF permethylation procedure expedites and economizes both intact glycan analysis and linkage analysis of glycans from whole biospecimens.

  14. A spin column-free approach to sodium hydroxide-based glycan permethylation†

    PubMed Central

    Hu, Yueming; Borges, Chad R.

    2018-01-01

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues—yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based “glycan node” analysis results. When applied to blood plasma samples from stage III–IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p < 0.01). In summary, the SCF permethylation procedure expedites and economizes both intact glycan analysis and linkage analysis of glycans from whole biospecimens. PMID:28635997

  15. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.

    PubMed

    Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-11-06

    Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.

  16. Altered trafficking and unfolded protein response induction as a result of M3 muscarinic receptor impaired N-glycosylation.

    PubMed

    Romero-Fernandez, Wilber; Borroto-Escuela, Dasiel O; Alea, Mileidys Perez; Garcia-Mesa, Yoelvis; Garriga, Pere

    2011-12-01

    The human M(3) muscarinic acetylcholine receptor is present in both the central and peripheral nervous system, and it is involved in the pathophysiology of several neurodegenerative and autoimmune diseases. We suggested a possible N-glycosylation map for the M(3) muscarinic receptor expressed in COS-7 cells. Here, we examined the role that N-linked glycans play in the folding and in the cell surface trafficking of this receptor. The five potential asparagine-linked glycosylation sites in the muscarinic receptor were mutated and transiently expressed in COS-7 cells. The elimination of N-glycan attachment sites did not affect the cellular expression levels of the receptor. However, proper receptor localization to the plasma membrane was affected as suggested by reduced [(3)H]-N-methylscopolamine binding. Confocal microscopy confirmed this observation and showed that the nonglycosylated receptor was primarily localized in the intracellular compartments. The mutant variant showed an increase in phosphorylation of the α-subunit of eukaryote initiation factor 2, and other well-known endoplasmic reticulum stress markers of the unfolded protein response pathway, which further supports the proposal of the improper intracellular accumulation of the nonglycosylated receptor. The receptor devoid of glycans showed more susceptibility to events that culminate in apoptosis reducing cell viability. Our findings suggest up-regulation of pro-apoptotic Bax protein, down-regulation of anti-apoptotic Bcl-2, and cleavage of caspase-3 effectors. Collectively, our data provide experimental evidence of the critical role that N-glycan chains play in determining muscarinic receptor distribution, localization, as well as cell integrity. © The Author 2011. Published by Oxford University Press. All rights reserved.

  17. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.

    PubMed

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H J; Hensbergen, Paul J; Reiding, Karli R; Hazes, Johanna M W; Dolhain, Radboud J E M; Wuhrer, Manfred

    2014-11-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes*

    PubMed Central

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H. J.; Hensbergen, Paul J.; Reiding, Karli R.; Hazes, Johanna M. W.; Dolhain, Radboud J. E. M.; Wuhrer, Manfred

    2014-01-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. PMID:25004930

  19. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basismore » for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.« less

  20. Glycan fragment database: a database of PDB-based glycan 3D structures.

    PubMed

    Jo, Sunhwan; Im, Wonpil

    2013-01-01

    The glycan fragment database (GFDB), freely available at http://www.glycanstructure.org, is a database of the glycosidic torsion angles derived from the glycan structures in the Protein Data Bank (PDB). Analogous to protein structure, the structure of an oligosaccharide chain in a glycoprotein, referred to as a glycan, can be characterized by the torsion angles of glycosidic linkages between relatively rigid carbohydrate monomeric units. Knowledge of accessible conformations of biologically relevant glycans is essential in understanding their biological roles. The GFDB provides an intuitive glycan sequence search tool that allows the user to search complex glycan structures. After a glycan search is complete, each glycosidic torsion angle distribution is displayed in terms of the exact match and the fragment match. The exact match results are from the PDB entries that contain the glycan sequence identical to the query sequence. The fragment match results are from the entries with the glycan sequence whose substructure (fragment) or entire sequence is matched to the query sequence, such that the fragment results implicitly include the influences from the nearby carbohydrate residues. In addition, clustering analysis based on the torsion angle distribution can be performed to obtain the representative structures among the searched glycan structures.

  1. A comparison of Helicobacter pylori and non-Helicobacter pylori Helicobacter spp. Binding to canine gastric mucosa with defined gastric glycophenotype.

    PubMed

    Amorim, Irina; Freitas, Daniela P; Magalhães, Ana; Faria, Fátima; Lopes, Célia; Faustino, Augusto M; Smet, Annemieke; Haesebrouck, Freddy; Reis, Celso A; Gärtner, Fátima

    2014-08-01

    The gastric mucosa of dogs is often colonized by non-Helicobacter pylori helicobacters (NHPH), while H. pylori is the predominant gastric Helicobacter species in humans. The colonization of the human gastric mucosa by H. pylori is highly dependent on the recognition of host glycan receptors. Our goal was to define the canine gastric mucosa glycophenotype and to evaluate the capacity of different gastric Helicobacter species to adhere to the canine gastric mucosa. The glycosylation profile in body and antral compartments of the canine gastric mucosa, with focus on the expression of histo-blood group antigens was evaluated. The in vitro binding capacity of FITC-labeled H. pylori and NHPH to the canine gastric mucosa was assessed in cases representative of the canine glycosylation pattern. The canine gastric mucosa lacks expression of type 1 Lewis antigens and presents a broad expression of type 2 structures and A antigen, both in the surface and glandular epithelium. Regarding the canine antral mucosa, H. heilmannii s.s. presented the highest adhesion score whereas in the body region the SabA-positive H. pylori strain was the strain that adhered more. The canine gastric mucosa showed a glycosylation profile different from the human gastric mucosa suggesting that alternative glycan receptors may be involved in Helicobacter spp. binding. Helicobacter pylori and NHPH strains differ in their ability to adhere to canine gastric mucosa. Among the NHPH, H. heilmannii s.s. presented the highest adhesion capacity in agreement with its reported colonization of the canine stomach. © 2014 John Wiley & Sons Ltd.

  2. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    PubMed

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Informatic innovations in glycobiology: relevance to drug discovery.

    PubMed

    Mamitsuka, Hiroshi

    2008-02-01

    The recent development and applications of tree-based informatics on glycans have accelerated the biological analysis on glycans, particularly from structural viewpoints. We review three major aspects of recent informatics innovations on glycan structures: maturity of well-organized databases on glycan structures linking with other biological information, implementation of glycan structure matching algorithms and extensive development of methods for mining frequent patterns from glycan structures.

  4. Hydrazinonicotinic acid derivatization for selective ionization and improved glycan structure characterization by MALDI-MS.

    PubMed

    Jiao, Jing; Yang, Lijun; Zhang, Ying; Lu, Haojie

    2015-08-21

    The analysis of glycan is important for understanding cell biology and disease processes because the glycans play a key role in many important biological behaviors, such as cell division, cellular localization, tumor immunology and inflammation. Nevertheless, it is still hard work to analyze glycans by MALDI-MS, which generally stems from the inherent low abundance and the low ionization efficiency of glycans. Moreover, the difficulty in generating informative fragmentations further hinders glycans structure characterization. In this work, hydrazinonicotinic acid (HYNIC) was used as a novel derivatized reagent for improved and selective detection of glycans. Through tagging the reducing terminus of glycans with the diazanyl group of HYNIC, significant enhancement of the ionization efficiency of glycans was achieved. After derivatization, the signal to noise ratio (S/N) of the maltoheptaose was improved by more than one order of magnitude in positive mode. HYNIC derivatization also allowed the sensitive detection of sialylated glycan in negative mode, with a 15 fold enhancement of S/N. Interestingly, it is noteworthy that the HYNIC reagent not only effectively labeled the reducing end of glycans in the presence of tryptic peptides, but also suppressed the ionization of peptides, enabling the direct detection of glycans from glycoprotein without separation. Therefore, analysis of glycans became easier due to the omission of a pre-separation step. Importantly, by using different acid reagents as the catalyst, derivatized product signals corresponding to [M + Na](+) or [M + H](+) were obtained respectively, which yield complementary fragmentation patterns for the structure elucidation of glycans. Finally, more than 40 N-glycans were successfully detected in 10 μL human serum using this method.

  5. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    PubMed

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  6. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells.

    PubMed

    Frederiksen, Rikki F; Yoshimura, Yayoi; Storgaard, Birgit G; Paspaliari, Dafni K; Petersen, Bent O; Chen, Kowa; Larsen, Tanja; Duus, Jens Ø; Ingmer, Hanne; Bovin, Nicolai V; Westerlind, Ulrika; Blixt, Ola; Palcic, Monica M; Leisner, Jørgen J

    2015-02-27

    There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1-4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1-4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1-4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1-6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1-6 bond in LacNAcβ1-6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer.

    PubMed

    Carrascal, M A; Silva, M; Ferreira, J A; Azevedo, R; Ferreira, D; Silva, A M N; Ligeiro, D; Santos, L L; Sackstein, R; Videira, P A

    2018-05-17

    The glycan moieties sialyl-Lewis-X and/or -A (sLe X/A ) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. We observed that the CF1_T cell line expressed sLe X , but not sLe A and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLe X -CD44 and sLe X -CD13 was confirmed in clinical breast cancer tissue samples. Both CD44 and CD13 glycoforms display sLe X in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Tromantadine inhibits HSV-1 induced syncytia formation and viral glycoprotein processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ickes, D.E.

    1989-01-01

    Tromantadine inhibits a late event in Herpes Simplex Virus Type 1 (HSV-1) replication, visualized by the inhibition of both the size and number of syncytia. Tromantadine can be added at any time between 1 and 9 h post infection with complete inhibition of syncytia formation. Glycan synthesis of the viral glycoproteins, important for syncytia formation, is incomplete due to tromantadine treatment. Tromantadine does not inhibit the initiation of glycosylation, since viral glycoproteins, gX{sub t}, synthesized in the presence of tromantadine still incorporate {sup 3}H-glucosamine. Tromantadine does not inhibit the transport of t e viral glycoproteins to the cell surface, sincemore » glycoproteins B, C, and D are expressed, as demonstrated by immunofluorescence. Tromantadine inhibition of HSV-1 glycoprotein processing is demonstrated by an increase in mobility of the radioimmunoprecipitated gX{sub t}, on SDS-PAGE. The gX{sub t} of KOS, a non-syncytial strain of HSV-1, had a similar increase in mobility, suggesting that the block in glycoprotein processing is a general effect of tromantadine treatment. Fucose, which is incorporated into oligosaccharides in the medial Golgi, is incorporated into gX{sub t}, indicating that the tromantadine block in glycoprotein processing occurs after this step. Lectin binding studies and SDS-PAGE analysis of gC processed in the presence of tromantadine, gC{sub t}, indicates that it has terminal galactose residues in both N- and O-linked glycans (binds Peanut and Ricin Agglutinins, respectively). The inhibition of sialylation of N-linked glycans by tromantadine was indicated by the extent of the increase in SDS-PAGE mobility of the G protein from Vesicular Stomatitis Virus. O-glycanase digestion and SDS-PAGE analysis of gC{sub t} indicate that the O-linked disaccharide NAcGal-Galactose is present.« less

  9. Glycoprofiling of Early Gastric Cancer Using Lectin Microarray Technology.

    PubMed

    Li, Taijie; Mo, Cuiju; Qin, Xue; Li, Shan; Liu, Yinkun; Liu, Zhiming

    2018-01-01

    Recently, studies have reported that protein glycosylation plays an important role in the occurrence and development of cancer. Gastric cancer is a common cancer with high morbidity and mortality owing to most gastric cancers are discovered only at an advanced stage. Here, we aim to discover novel specific serum glycanbased biomarkers for gastric cancer. A lectin microarray with 50 kinds of tumor-associated lectin was used to detect the glycan profiles of serum samples between early gastric cancer and healthy controls. Then lectin blot was performed to validate the differences. The result of the lectin microarray showed that the signal intensities of 13 lectins showed significant differences between the healthy controls and early gastric cancer. Compared to the healthy, the normalized fluorescent intensities of the lectins PWA, LEL, and STL were significantly increased, and it implied that their specifically recognized GlcNAc showed an especially elevated expression in early gastric cancer. Moreover, the binding affinity of the lectins EEL, RCA-II, RCA-I, VAL, DSA, PHA-L, UEA, and CAL were higher in the early gastric cancer than in healthy controls. These glycan structures containing GalNAc, terminal Galβ 1-4 GlcNAc, Tri/tetraantennary N-glycan, β-1, 6GlcNAc branching structure, α-linked fucose residues, and Tn antigen were elevated in gastric cancer. While the two lectins CFL GNL reduced their binding ability. In addition, their specifically recognized N-acetyl-D-galactosamine structure and (α-1,3) mannose residues were decreased in early gastric cancer. Furthermore, lectin blot results of LEL, STL, PHA-L, RCA-I were consistent with the results of the lectin microarray. The findings of our study clarify the specific alterations for glycosylation during the pathogenesis of gastric cancer. The specific high expression of GlcNAc structure may act as a potential early diagnostic marker for gastric cancer.

  10. Large scale preparation of high mannose and paucimannose N-glycans from soybean proteins by oxidative release of natural glycans (ORNG).

    PubMed

    Zhu, Yuyang; Yan, Maomao; Lasanajak, Yi; Smith, David F; Song, Xuezheng

    2018-07-15

    Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Glycan reductive isotope labeling for quantitative glycomics.

    PubMed

    Xia, Baoyun; Feasley, Christa L; Sachdev, Goverdhan P; Smith, David F; Cummings, Richard D

    2009-04-15

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.

  12. GLYCAN REDUCTIVE ISOTOPE LABELING (GRIL) FOR QUANTITATIVE GLYCOMICS

    PubMed Central

    Xia, Baoyun; Feasley, Christa L.; Sachdev, Goverdhan P.; Smith, David F.; Cummings, Richard D.

    2009-01-01

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed Glycan Reductive Isotope Labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]-aniline and [13C6]-aniline. These dual-labeled aniline-tagged glycans can be recovered by reversed-phase chromatography and quantified based on UV-absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins using this method. This technique allows for linear, relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of Glycomics. PMID:19454239

  13. Simple Sugars to Complex Disease—Mucin-Type O-Glycans in Cancer

    PubMed Central

    Kudelka, Matthew R.; Ju, Tongzhong; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2017-01-01

    Mucin-type O-glycans are a class of glycans initiated with N-acetylgalactosamine (GalNAc) α-linked primarily to Ser/Thr residues within glycoproteins and often extended or branched by sugars or saccharides. Most secretory and membrane-bound proteins receive this modification, which is important in regulating many biological processes. Alterations in mucin-type O-glycans have been described across tumor types and include expression of relatively small-sized, truncated O-glycans and altered terminal structures, both of which are associated with patient prognosis. New discoveries in the identity and expression of tumor-associated O-glycans are providing new avenues for tumor detection and treatment. This chapter describes mucin-type O-glycan biosynthesis, altered mucin-type O-glycans in primary tumors, including mechanisms for structural changes and contributions to the tumor phenotype, and clinical approaches to detect and target altered O-glycans for cancer treatment and management. PMID:25727146

  14. Chemoenzymatic method for glycomics: isolation, identification, and quantitation

    PubMed Central

    Yang, Shuang; Rubin, Abigail; Eshghi, Shadi Toghi; Zhang, Hui

    2015-01-01

    Over the past decade, considerable progress has been made with respect to the analytical methods for analysis of glycans from biological sources. Regardless of the specific methods that are used, glycan analysis includes isolation, identification, and quantitation. Derivatization is indispensable to increase their identification. Derivatization of glycans can be performed by permethylation or carbodiimide coupling / esterification. By introducing a fluorophore or chromophore at their reducing end, glycans can be separated by electrophoresis or chromatography. The fluorogenically labeled glycans can be quantitated using fluorescent detection. The recently developed approaches using solid-phase such as glycoprotein immobilization for glycan extraction and on-tissue glycan mass spectrometry imaging demonstrate advantages over methods performed in solution. Derivatization of sialic acids is favorably implemented on the solid support using carbodiimide coupling, and the released glycans can be further modified at the reducing end or permethylated for quantitative analysis. In this review, methods for glycan isolation, identification, and quantitation are discussed. PMID:26390280

  15. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS.

    PubMed

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  16. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  17. Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2

    PubMed Central

    Kulkarni, Ashish A.; Fuller-Schaefer, Cynthia; Korman, Henry; Weiss, Alison A.; Iyer, Suri S.

    2011-01-01

    Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae, cause life-threatening conditions that include hemolytic-uremic syndrome (HUS), kidney failure and neurological complications. Cellular entry is mediated by the B subunit of the AB5 toxin, which recognizes cell surface glycolipids present in lipid raft like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These highly soluble glyconanoparticles were nontoxic to the Vero monkey kidney cell line and protected Vero cells from Stx-mediated toxicity in a dose dependent manner. The inhibition is highly dependent on the structure and density of the glycans; selective inhibition of Stx1 and the more clinically relevant Stx2 was achieved. Interestingly, natural variants of Stx2, Stx2c and Stx2d, possessing minimal amino acid variation in the receptor binding site of the B subunit or changes in the A subunit were not neutralized by either the Stx1- or Stx2-specific gold glyconanoparticles. Our results suggest that tailored glyconanoparticles that mimic the natural display of glycans in lipid rafts could serve as potential therapeutics for Stx1 and Stx2. However, a few amino acid changes in emerging Stx2 variants can change receptor specificity, and further research is needed to develop receptor mimics for the emerging variants of Stx2. PMID:20669970

  18. Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase.

    PubMed

    Liang, Jing; Aleksanyan, Heghush; Metzenberg, Stan; Oppenheimer, Steven B

    2016-06-01

    The sea urchin embryo is recognized as a model system to reveal developmental mechanisms involved in human health and disease. In Part I of this series, six carbohydrates were tested for their effects on gastrulation in embryos of the sea urchin Lytechinus pictus. Only l-rhamnose caused dramatic increases in the numbers of unattached archenterons and exogastrulated archenterons in living, swimming embryos. It was found that at 30 h post-fertilization the l-rhamnose had an unusual inverse dose-dependent effect, with low concentrations (1-3 mM) interfering with development and higher concentrations (30 mM) having little to no effect on normal development. In this study, embryos were examined for inhibition of archenteron development after treatment with α-l-rhamnosidase, an endoglycosidase that removes terminal l-rhamnose sugars from glycans. It was observed that the enzyme had profound effects on gastrulation, an effect that could be suppressed by addition of l-rhamnose as a competitive inhibitor. The involvement of l-rhamnose-containing glycans in sea urchin gastrulation was unexpected, since there are no characterized biosynthetic pathways for rhamnose utilization in animals. It is possible there exists a novel l-rhamnose-containing glycan in sea urchins, or that the enzyme and sugar interfere with the function of rhamnose-binding lectins, which are components of the innate immune system in many vertebrate and invertebrate species.

  19. The underestimated N-glycomes of lepidopteran species

    PubMed Central

    Stanton, Rhiannon; Hykollari, Alba; Eckmair, Barbara; Malzl, Daniel; Dragosits, Martin; Palmberger, Dieter; Wang, Ping; Wilson, Iain B. H.; Paschinger, Katharina

    2017-01-01

    Background Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. Methods Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. Results We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. Conclusion The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. Significance The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production. PMID:28077298

  20. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells.

    PubMed

    Nishida, Atsushi; Nagahama, Kiyotaka; Imaeda, Hirotsugu; Ogawa, Atsuhiro; Lau, Cindy W; Kobayashi, Taku; Hisamatsu, Tadakazu; Preffer, Frederic I; Mizoguchi, Emiko; Ikeuchi, Hiroki; Hibi, Toshifumi; Fukuda, Minoru; Andoh, Akira; Blumberg, Richard S; Mizoguchi, Atsushi

    2012-12-17

    Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1-expressing O-glycan. Development of CAG may be mediated by down-regulation of the expression of core-2 β1,6-N-acetylglucosaminyltransferase (C2GnT) 1, a key enzyme responsible for the production of core-2 O-glycan branch through addition of N-acetylglucosamine (GlcNAc) to a core-1 O-glycan structure. Mechanistically, the CAG seems to contribute to super raft formation associated with the immunological synapse on colonic memory CD4+ T cells and to the consequent stabilization of protein kinase C θ activation, resulting in the stimulation of memory CD4+ T cell expansion in the inflamed intestine. Functionally, CAG-mediated CD4+ T cell expansion contributes to the exacerbation of T cell-mediated experimental intestinal inflammations. Therefore, the CAG may be an attractive therapeutic target to specifically suppress the expansion of effector memory CD4+ T cells in intestinal inflammation such as that seen in inflammatory bowel disease.

  1. Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway.

    PubMed

    Kelly, Ronan M; Kowle, Ronald L; Lian, Zhirui; Strifler, Beth A; Witcher, Derrick R; Parekh, Bhavin S; Wang, Tongtong; Frye, Christopher C

    2018-03-01

    Cross-linking of the Fcγ receptors expressed on the surface of hematopoietic cells by IgG immune complexes triggers the activation of key immune effector mechanisms, including antibody-dependent cell mediated cytotoxicity (ADCC). A conserved N-glycan positioned at the N-terminal region of the IgG C H 2 domain is critical in maintaining the quaternary structure of the molecule for Fcγ receptor engagement. The removal of a single core fucose residue from the N-glycan results in a considerable increase in affinity for FcγRIIIa leading to an enhanced receptor-mediated immunoeffector function. The enhanced potency of the molecule translates into a number of distinct advantages in the development of IgG antibodies for cancer therapy. In an effort to significantly increase the potency of an anti-CD20, IgG1 molecule, we selectively targeted the de novo GDP-fucose biosynthesis pathway of the host CHO cell line to generate >80% afucosylated IgG1 resulting in enhanced FcγRIIIa binding (13-fold) and in vitro ADCC cell-based activity (11-fold). In addition, this effective glycoengineering strategy also allowed for the utilization of the alternate GDP-fucose salvage pathway to provide a fast and efficient mechanism to manipulate the N-glycan fucosylation level to modulate IgG immune effector function. © 2017 Wiley Periodicals, Inc.

  2. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures.

    PubMed

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Khaja, Siraj D; Piskorz, Conrad F; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L

    2016-10-01

    Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.

  3. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    PubMed

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  5. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  6. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and dried cell walls of the yeast...

  7. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome.

    PubMed

    Kronewitter, Scott R; An, Hyun Joo; de Leoz, Maria Lorna; Lebrilla, Carlito B; Miyamoto, Suzanne; Leiserowitz, Gary S

    2009-06-01

    Annotation of the human serum N-linked glycome is a formidable challenge but is necessary for disease marker discovery. A new theoretical glycan library was constructed and proposed to provide all possible glycan compositions in serum. It was developed based on established glycobiology and retrosynthetic state-transition networks. We find that at least 331 compositions are possible in the serum N-linked glycome. By pairing the theoretical glycan mass library with a high mass accuracy and high-resolution MS, human serum glycans were effectively profiled. Correct isotopic envelope deconvolution to monoisotopic masses and the high mass accuracy instruments drastically reduced the amount of false composition assignments. The high throughput capacity enabled by this library permitted the rapid glycan profiling of large control populations. With the use of the library, a human serum glycan mass profile was developed from 46 healthy individuals. This paper presents a theoretical N-linked glycan mass library that was used for accurate high-throughput human serum glycan profiling. Rapid methods for evaluating a patient's glycome are instrumental for studying glycan-based markers.

  8. N-Linked Glycan Profiling of Mature Human Milk by High Performance Microfluidic Chip Liquid Chromatography Time-of-Flight Tandem Mass Spectrometry

    PubMed Central

    Dallas, David C.; Martin, William F.; Strum, John S.; Zivkovic, Angela M.; Smilowitz, Jennifer T.; Underwood, Mark A.; Affolter, Michael; Lebrilla, Carlito B.; German, J. Bruce

    2015-01-01

    N-linked glycans of skim human milk proteins were determined for three mothers. N-linked glycans are linked to immune defense, cell growth, and cell-cell adhesion, but their functions in human milk are undetermined. Protein-bound N-linked glycans were released with Peptidyl N-glycosidase F (PNGase F), enriched by graphitized carbon chromatography and analyzed with Chip-TOF MS. To be defined as N-glycans, compounds were required, in all three procedural replicates, to match, within 6 ppm, against a theoretical human N-glycan library, be at least two-fold higher in abundance in PNGase F-treated than in control samples. Fifty-two N-linked glycan compositions were identified and 24 were confirmed via tandem mass spectra analysis. Twenty-seven compositions have been found previously in human milk and 25 are novel compositions. By abundance, 84% of N-glycans were fucosylated and 47% were sialylated. The majority (70%) of total N-glycan abundance was comprised of N-glycans found in all three milk samples. PMID:21384928

  9. Glycan array data management at Consortium for Functional Glycomics.

    PubMed

    Venkataraman, Maha; Sasisekharan, Ram; Raman, Rahul

    2015-01-01

    Glycomics or the study of structure-function relationships of complex glycans has reshaped post-genomics biology. Glycans mediate fundamental biological functions via their specific interactions with a variety of proteins. Recognizing the importance of glycomics, large-scale research initiatives such as the Consortium for Functional Glycomics (CFG) were established to address these challenges. Over the past decade, the Consortium for Functional Glycomics (CFG) has generated novel reagents and technologies for glycomics analyses, which in turn have led to generation of diverse datasets. These datasets have contributed to understanding glycan diversity and structure-function relationships at molecular (glycan-protein interactions), cellular (gene expression and glycan analysis), and whole organism (mouse phenotyping) levels. Among these analyses and datasets, screening of glycan-protein interactions on glycan array platforms has gained much prominence and has contributed to cross-disciplinary realization of the importance of glycomics in areas such as immunology, infectious diseases, cancer biomarkers, etc. This manuscript outlines methodologies for capturing data from glycan array experiments and online tools to access and visualize glycan array data implemented at the CFG.

  10. Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection.

    PubMed

    Flyak, Andrew I; Shen, Xiaoli; Murin, Charles D; Turner, Hannah L; David, Joshua A; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E

    2016-01-28

    Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. CROSS-REACTIVE AND POTENT NEUTRALIZING ANTIBODY RESPONSES IN HUMAN SURVIVORS OF NATURAL EBOLAVIRUS INFECTION

    PubMed Central

    Flyak, Andrew I.; Shen, Xiaoli; Murin, Charles D.; Turner, Hannah L.; David, Joshua A.; Fusco, Marnie L.; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A.; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J.; Slaughter, James C.; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G.; Saphire, Erica Ollmann; Ward, Andrew B.; Bukreyev, Alexander; Crowe, James E.

    2015-01-01

    Summary Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV) and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. PMID:26806128

  12. Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals.

    PubMed

    Moore, Jennifer S; Wu, Xueling; Kulhavy, Rose; Tomana, Milan; Novak, Jan; Moldoveanu, Zina; Brown, Rhubell; Goepfert, Paul A; Mestecky, Jiri

    2005-03-04

    The IgG from sera of patients with chronic inflammatory diseases of autoimmune character or some chronic microbial infections is frequently deficient in galactose on N-linked glycans. However, this phenomenon has not been investigated at length in human viral infections. To evaluate the glycosylation of serum IgG in HIV-1-positive patients. Psathyrella velutina lectin was used in enzyme-linked immunosorbent and Western blot assays to determine glycosylation. In addition, gas-liquid chromatography and mass spectrometry were utilized to confirm the galactose deficiency observed in the lectin-binding assays. HIV-1-infected individuals had significantly higher levels of galactose-deficient IgG than healthy controls. In fact, the galactose deficiency of the N-linked glycans observed in other diseases was even more profound in HIV-1 infection. This deficiency was primarily restricted to IgG when total serum glycoproteins were evaluated and IgG1 was the subclass most affected in all patients. Also, a significant increase in lectin binding was observed on IgG2 and IgG4 from HIV-1-positive females compared with HIV-1-negative females. Identification of deficient galactosylation of serum IgG from HIV-1-infected patients extended the spectrum of diseases in which this phenomenon has been observed. In addition, the results suggest yet another aspect of immune dysfunction as a result of HIV-1 infection.

  13. Glycopattern analysis of acidic secretion in the intestine of the red-eared slender turtle; Trachemys scripta elegans (Testudines: Emydidae).

    PubMed

    Scillitani, Giovanni; Mentino, Donatella; Mastrodonato, Maria

    2017-10-01

    The secretion of the goblet cells in the intestine of Trachemys scripta elegans was studied in situ by histochemical methods to analyze the diversity of sugar chains, with particular regard to the acidic glycans. Conventional histochemical stains (Periodic acid-Schiff, Alcian Blue pH 2.5, High Iron Diamine) and binding with ten FITC-labelled lectins combined with chemical and enzymatic pre-treatments were used to characterize the oligosaccharidic chains. The intestine can be divided into three regions, i.e. a duodenum, a small intestine and a large intestine. Goblet cells were observed in all the three tracts and presented an acidic secretion. WGA, LFA, PNA and SBA binding was observed only after desulfation. Glycans secreted by the three tracts consist mainly of sulfosialomucins with 1,2-linked fucose, mannosylated, glucosaminylated and subterminal galactosyl/galactosaminylated residuals. Differences among tracts are quantitative rather than qualitative, with sulfated, galactosaminylated and glycosaminylated residuals increasing from duodenum to large intestine, and galactosylated and fucosylated residuals showing an opposite trend. Variation is observed also between apices and bases of villi in both duodenum and small intestine, where sulphation decreases from the base to the apex and glycosylation shows an opposite trend. Functional implication of these findings is discussed in a comparative context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fragments of Bacterial Endoglycosidase S and Immunoglobulin G Reveal Subdomains of Each That Contribute to Deglycosylation*

    PubMed Central

    Dixon, Emma V.; Claridge, Jolyon K.; Harvey, David J.; Baruah, Kavitha; Yu, Xiaojie; Vesiljevic, Snezana; Mattick, Susan; Pritchard, Laura K.; Krishna, Benjamin; Scanlan, Christopher N.; Schnell, Jason R.; Higgins, Matthew K.; Zitzmann, Nicole; Crispin, Max

    2014-01-01

    Endoglycosidase S (EndoS) is a glycoside-hydrolase secreted by the bacterium Streptococcus pyogenes. EndoS preferentially hydrolyzes the N-linked glycans from the Fc region of IgG during infection. This hydrolysis impedes Fc functionality and contributes to the immune evasion strategy of S. pyogenes. Here, we investigate the mechanism of human serum IgG deactivation by EndoS. We expressed fragments of IgG1 and demonstrated that EndoS was catalytically active against all of them including the isolated CH2 domain of the Fc domain. Similarly, we sought to investigate which domains within EndoS could contribute to activity. Bioinformatics analysis of the domain organization of EndoS confirmed the previous predictions of a chitinase domain and leucine-rich repeat but also revealed a putative carbohydrate binding module (CBM) followed by a C-terminal region. Using expressed fragments of EndoS, circular dichroism of the isolated CBM, and a CBM-C-terminal region fusion revealed folded domains dominated by β sheet and α helical structure, respectively. Nuclear magnetic resonance analysis of the CBM with monosaccharides was suggestive of carbohydrate binding functionality. Functional analysis of truncations of EndoS revealed that, whereas the C-terminal of EndoS is dispensable for activity, its deletion impedes the hydrolysis of IgG glycans. PMID:24668806

  15. Functional divergence between 2 chemokines is conferred by single amino acid change.

    PubMed

    Dubrac, Alexandre; Quemener, Cathy; Lacazette, Eric; Lopez, Fréderic; Zanibellato, Catherine; Wu, Wen-Guey; Bikfalvi, Andréas; Prats, Hervé

    2010-11-25

    CXCL4 and CXCL4L1 are 2 closely related CXC chemokines that exhibit potent antiangiogenic activity. Because interactions with glycosaminoglycans play a crucial role in chemokines activity, we determined the binding parameters of CXCL4 and CXCL4L1 for heparin, heparan sulfate, and chondroitin sulfate B. We further demonstrated that the Leu67/His67 substitution is critical for the decrease in glycan binding of CXCL4L1 but also for the increase of its angiostatic activities. Using a set of mutants, we show that glycan affinity and angiostatic properties are not completely related. These data are reinforced using a monoclonal antibody that specifically recognizes structural modifications in CXCL4L1 due to the presence of His67 and that blocks its biologic activity. In vivo, half-life and diffusibility of CXCL4L1 compared with CXCL4 is strongly increased. As opposed to CXCL4L1, CXCL4 is preferentially retained at its site of expression. These findings establish that, despite small differences in the primary structure, CXCL4L1 is highly distinct from CXCL4. These observations are not only of great significance for the antiangiogenic activity of CXCL4L1 and for its potential use in clinical development but also for other biologic processes such as inflammation, thrombosis or tissue repair.

  16. Modulation of ionotropic glutamate receptor function by vertebrate galectins.

    PubMed

    Copits, Bryan A; Vernon, Claire G; Sakai, Ryuichi; Swanson, Geoffrey T

    2014-05-15

    AMPA and kainate receptors are glutamate-gated ion channels whose function is known to be altered by a variety of plant oligosaccharide-binding proteins, or lectins, but the physiological relevance of this activity has been uncertain because no lectins with analogous allosteric modulatory effects have been identified in animals. We report here that members of the prototype galectin family, which are β-galactoside-binding lectins, exhibit subunit-specific allosteric modulation of desensitization of recombinant homomeric and heteromeric AMPA and kainate receptors. Galectin modulation of GluK2 kainate receptors was dependent upon complex oligosaccharide processing of N-glycosylation sites in the amino-terminal domain and downstream linker region. The sensitivity of GluA4 AMPA receptors to human galectin-1 could be enhanced by supplementation of culture media with uridine and N-acetylglucosamine (GlcNAc), precursors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides. Neuronal kainate receptors in dorsal root ganglia were sensitive to galectin modulation, whereas AMPA receptors in cultured hippocampal neurons were insensitive, which could be a reflection of differential N-glycan processing or receptor subunit selectivity. Because glycan content of integral proteins can be modified dynamically, we postulate that physiological or pathological conditions in the CNS could arise in which galectins alter excitatory neurotransmission or neuronal excitability through their actions on AMPA or kainate receptors. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  17. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine.

    PubMed

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-05-26

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.

  18. Modulation of ionotropic glutamate receptor function by vertebrate galectins

    PubMed Central

    Copits, Bryan A; Vernon, Claire G; Sakai, Ryuichi; Swanson, Geoffrey T

    2014-01-01

    AMPA and kainate receptors are glutamate-gated ion channels whose function is known to be altered by a variety of plant oligosaccharide-binding proteins, or lectins, but the physiological relevance of this activity has been uncertain because no lectins with analogous allosteric modulatory effects have been identified in animals. We report here that members of the prototype galectin family, which are β-galactoside-binding lectins, exhibit subunit-specific allosteric modulation of desensitization of recombinant homomeric and heteromeric AMPA and kainate receptors. Galectin modulation of GluK2 kainate receptors was dependent upon complex oligosaccharide processing of N-glycosylation sites in the amino-terminal domain and downstream linker region. The sensitivity of GluA4 AMPA receptors to human galectin-1 could be enhanced by supplementation of culture media with uridine and N-acetylglucosamine (GlcNAc), precursors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides. Neuronal kainate receptors in dorsal root ganglia were sensitive to galectin modulation, whereas AMPA receptors in cultured hippocampal neurons were insensitive, which could be a reflection of differential N-glycan processing or receptor subunit selectivity. Because glycan content of integral proteins can be modified dynamically, we postulate that physiological or pathological conditions in the CNS could arise in which galectins alter excitatory neurotransmission or neuronal excitability through their actions on AMPA or kainate receptors. PMID:24614744

  19. Demonstration of hydrazide tagging for O-glycans and a central composite design of experiments optimization using the INLIGHT™ reagent.

    PubMed

    King, Samuel R; Hecht, Elizabeth S; Muddiman, David C

    2018-02-01

    The INLIGHT™ strategy for N-linked glycan derivatization has been shown to overcome many of the challenges associated with glycan analysis. The hydrazide tag reacts efficiently with the glycans, increasing their non-polar surface area, allowing for reversed-phase separations and increased ionization efficiency. We have taken the INLIGHT™ strategy and adopted it for use with O-linked glycans. A central composite design was utilized to find optimized tagging conditions (45% acetic acid, 0.1 μg/μL tag concentration, 37 C, 1.75 h). Derivatization at optimized conditions was much quicker than any hydrazide derivatization strategy used previously. Human immunoglobulin A (IgA) and bovine submaxillary mucin (BSM) were then deglycosylated through hydrazinolysis and the removed glycans were tagged under optimum conditions. XIC of tagged glycans and MS2 data show successful hydrazide tagging of O-linked glycans for the first time. Graphical abstract The INLIGHT™ hydrazide tag was optimized using a central composite design for derivatization of O-linked glycans. Two glycoprotein standards were deglycosylated through hydrazinolysis and tagged at the optimized conditions. MS/MS data shows INLIGHT™ derivatization of glycans demonstrating successful hydrazide tagging of O-glycans for the first time.

  20. The logic of automated glycan assembly.

    PubMed

    Seeberger, Peter H

    2015-05-19

    Carbohydrates are the most abundant biopolymers on earth and part of every living creature. Glycans are essential as materials for nutrition and for information transfer in biological processes. To date, in few cases a detailed correlation between glycan structure and glycan function has been established. A molecular understanding of glycan function will require pure glycans for biological, immunological, and structural studies. Given the immense structural complexity of glycans found in living organisms and the lack of amplification methods or expression systems, chemical synthesis is the only means to access usable quantities of pure glycan molecules. While the solid-phase synthesis of DNA and peptides has become routine for decades, access to glycans has been technically difficult, time-consuming and confined to a few expert laboratories. In this Account, the development of a comprehensive approach to the automated synthesis of all classes of mammalian glycans, including glycosaminoglycans and glycosylphosphatidyl inositol (GPI) anchors, as well as bacterial and plant carbohydrates is described. A conceptual advance concerning the logic of glycan assembly was required in order to enable automated execution of the synthetic process. Based on the central glycosidic bond forming reaction, a general concept for the protecting groups and leaving groups has been developed. Building blocks that can be procured on large scale, are stable for prolonged periods of time, but upon activation result in high yields and selectivities were identified. A coupling-capping and deprotection cycle was invented that can be executed by an automated synthesis instrument. Straightforward postsynthetic protocols for cleavage from the solid support as well as purification of conjugation-ready oligosaccharides have been established. Introduction of methods to install selectively a wide variety of glycosidic linkages has enabled the rapid assembly of linear and branched oligo- and polysaccharides as large as 30-mers. Fast, reliable access to defined glycans that are ready for conjugation has given rise to glycan arrays, glycan probes, and synthetic glycoconjugate vaccines. While an ever increasing variety of glycans are accessible by automated synthesis, further methodological advances in carbohydrate chemistry are needed to make all possible glycans found in nature. These tools begin to fundamentally impact the medical but also materials aspects of the glycosciences.

  1. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures.

    PubMed

    Ceroni, Alessio; Dell, Anne; Haslam, Stuart M

    2007-08-07

    Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format. A software tool for building and displaying glycan structures using a chosen symbolic notation is described here. The "GlycanBuilder" uses an automatic rendering algorithm to draw the saccharide symbols and to place them on the drawing board. The information about the symbolic notation is derived from a configurable graphical model as a set of rules governing the aspect and placement of residues and linkages. The algorithm is able to represent a structure using only few traversals of the tree and is inherently fast. The tool uses an XML format for import and export of encoded structures. The rendering algorithm described here is able to produce high-quality representations of glycan structures in a chosen symbolic notation. The automated rendering process enables the "GlycanBuilder" to be used both as a user-independent component for displaying glycans and as an easy-to-use drawing tool. The "GlycanBuilder" can be integrated in web pages as a Java applet for the visual editing of glycans. The same component is available as a web service to render an encoded structure into a graphical format. Finally, the "GlycanBuilder" can be integrated into other applications to create intuitive and appealing user interfaces: an example is the "GlycoWorkbench", a software tool for assisted annotation of glycan mass spectra. The "GlycanBuilder" represent a flexible, reliable and efficient solution to the problem of input and output of glycan structures in any glycomic tool or database.

  2. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus.

    PubMed

    Owen, C David; Tailford, Louise E; Monaco, Serena; Šuligoj, Tanja; Vaux, Laura; Lallement, Romane; Khedri, Zahra; Yu, Hai; Lecointe, Karine; Walshaw, John; Tribolo, Sandra; Horrex, Marc; Bell, Andrew; Chen, Xi; Taylor, Gary L; Varki, Ajit; Angulo, Jesus; Juge, Nathalie

    2017-12-19

    Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.

  3. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by themore » SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.« less

  4. N-glycans in liver-secreted and immunoglogulin-derived protein fractions

    PubMed Central

    Bekesova, S.; Kosti, O.; Chandler, K.B.; Wu, J.; Madej, H.L.; Brown, K.C.; Simonyan, V.; Goldman, R.

    2013-01-01

    N-glycosylation of proteins provides a rich source of information on liver disease progression because majority of serum glycoproteins, with the exception of immunoglobulins, are secreted by the liver. In this report, we present results of an optimized workflow for MALDI-TOF analysis of permethylated N-glycans detached from serum proteins and separated into liver secreted and immunoglobulin fractions. We have compared relative intensities of N-glycans in 23 healthy controls and 23 cirrhosis patients. We were able to detect 82 N-glycans associated primarily with liver secreted glycoproteins, 54 N-glycans in the protein G bound fraction and 52 N-glycans in the fraction bound to protein A. The N-glycan composition of the fractions differed substantially, independent of liver disease. The relative abundance of approximately 53% N-glycans in all fractions was significantly altered in the cirrhotic liver. The removal of immunoglobulins allowed detection of an increase in a series of high mannose and hybrid N-glycans associated with the liver secreted protein fraction. PMID:22326963

  5. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc.

    PubMed

    Anumula, Kalyan Rao

    2012-08-31

    Typical clinical grade human IgG (intravenous immunoglobulin, IVIG), used for carbohydrate analysis, is derived from thousands of healthy donors. Quantitative high-resolution glycan profiles of IgG and its Fc-Fab fragments are presented here. Glycan profiles were established following digestions with Fc specific endoglycosidase S and generic PNGase F under denaturing and non-denaturing (native) conditions. The native PNGase F glycan profile of IgG was similar (but not identical) to that of Endo S. Endo S profiles did not contain the glycans with bisecting GlcNAc. PNGase F glycan profiles were the same for Fc fragments that were isolated from pepsin and Ide S protease digests. Both isolated Fab fragments and the previously deglycosylated IVIG (native conditions) yielded the same glycan profile. Glycan profiles were established using high resolution HPLC with 2-aminobenzoic acid (2AA) labeling. An accurate determination of sialylation levels can be made by this method. Carbohydrate content in Fc and Fab was determined using an internal standard and corrected for both protein and glycan recoveries. Fab portion contained about 14% of the total carbohydrate which translates to 2.3 sugar chains per mol in IVIG where 2 chains are located in the CH2 domain of the Fc. Fc glycans consisted of neutral (N) 84.5%; mono-sialylated (S1) 15% and di-sialylated (S2) 0.5%. In contrast, Fab contained N, 21%; S1, 43% and S2, 36%. The distribution of bisecting N-acetylglucosamine and fucose was found to be very different in various glycans (N, S1 and S2) found in Fab and Fc. Total IgG glycan profile (Fab plus Fc) contained N, 78.5%; S1, 17% and S2, 4.5%. Percent distribution of glycans G0, G1 and G2 (with 0, 1 and 2 two galactoses) was 26, 49 and 25 respectively within the 78% of the neutral glycans. Glycan profiles were nearly the same for various clinical grade IVIG preparations from various manufacturers. A fast HPLC profiling method was developed for the separation and quantitation of IgG glycans (neutral (G0, G1, and G2), mono- and di-sialylated) using simple procedures. The method should prove useful for monitoring glycan changes in clinical settings. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Simple and Robust N-Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins.

    PubMed

    Jeong, Yeong Ran; Kim, Sun Young; Park, Young Sam; Lee, Gyun Min

    2018-03-21

    N-glycans of therapeutic glycoproteins are critical quality attributes that should be monitored throughout all stages of biopharmaceutical development. To reduce both the time for sample preparation and the variations in analytical results, we have developed an N-glycan analysis method that includes improved 2-aminobenzoic acid (2-AA) labeling to easily remove deglycosylated proteins. Using this analytical method, 15 major 2-AA-labeled N-glycans of Enbrel ® were separated into single peaks in hydrophilic interaction chromatography mode and therefore could be quantitated. 2-AA-labeled N-glycans were also highly compatible with in-line quadrupole time-of-flight mass spectrometry (MS) for structural identification. The structures of 15 major and 18 minor N-glycans were identified from their mass values determined by quadrupole time-of-flight MS. Furthermore, the structures of 14 major N-glycans were confirmed by interpreting the MS/MS data of each N-glycan. This analytical method was also successfully applied to neutral N-glycans of Humira ® and highly sialylated N-glycans of NESP ® . Furthermore, the analysis data of Enbrel ® that were accumulated for 2.5 years demonstrated the high-level consistency of this analytical method. Taken together, the results show that a wide repertoire of N-glycans of therapeutic glycoproteins can be analyzed with high efficiency and consistency using the improved 2-AA labeling-based N-glycan analysis method. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Reductive chemical release of N-glycans as 1-amino-alditols and subsequent 9-fluorenylmethyloxycarbonyl labeling for MS and LC/MS analysis.

    PubMed

    Wang, Chengjian; Qiang, Shan; Jin, Wanjun; Song, Xuezheng; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2018-06-06

    Glycoproteins play pivotal roles in a series of biological processes and their glycosylation patterns need to be structurally and functionally characterized. However, the lack of versatile methods to release N-glycans as functionalized forms has been undermining glycomics studies. Here a novel method is developed for dissociation of N-linked glycans from glycoproteins for analysis by MS and online LC/MS. This new method employs aqueous ammonia solution containing NaBH 3 CN as the reaction medium to release glycans from glycoproteins as 1-amino-alditol forms. The released glycans are conveniently labeled with 9-fluorenylmethyloxycarbonyl (Fmoc) and analyzed by ESI-MS and online LC/MS. Using the method, the neutral and acidic N-glycans were successfully released without peeling degradation of the core α-1,3-fucosylated structure or detectable de-N-acetylation, revealing its general applicability to various types of N-glycans. The Fmoc-derivatized N-glycans derived from chicken ovalbumin, Fagopyrum esculentum Moench Pollen and FBS were successfully analyzed by online LC/MS to distinguish isomers. The 1-amino-alditols were also permethylated to form quaternary ammonium cations at the reducing end, which enhance the MS sensitivity and are compatible with sequential multi-stage mass spectrometry (MS n ) fragmentation for glycan sequencing. The Fmoc-labeled N-glycans were further permethylated to produce methylated carbamates for determination of branches and linkages by sequential MS n fragmentation. N-Glycosylation represents one of the most common post-translational modification forms and plays pivotal roles in the structural and functional regulation of proteins in various biological activities, relating closely to human health and diseases. As a type of informational molecule, the N-glycans of glycoproteins participate directly in the molecular interactions between glycan epitopes and their corresponding protein receptors. Detailed structural and functional characterization of different types of N-glycans is essential for understanding the functional mechanisms of many biological activities and the pathologies of many diseases. Here we describe a simple, versatile method to indistinguishably release all types of N-glycans as functionalized forms without remarkable side reactions, enabling convenient, rapid analysis and preparation of released N-glycans from various complex biological samples. It is very valuable for studies on the complicated structure-function relationship of N-glycans, as well as for the search of N-glycan biomarkers of some major diseases and N-glycan related targets of some drugs. Copyright © 2018. Published by Elsevier B.V.

  8. Structural features of N-glycans linked to glycoproteins expressed in three kinds of water plants: Predominant occurrence of the plant complex type N-glycans bearing Lewis a epitope.

    PubMed

    Maeda, Megumi; Tani, Misato; Yoshiie, Takeo; Vavricka, Christopher J; Kimura, Yoshinobu

    2016-11-29

    The Japanese cedar pollen allergen (Cry j1) and the mountain cedar pollen allergen (Jun a1) are glycosylated with plant complex type N-glycans bearing Lewis a epitope(s) (Galβ1-3[Fucα1-4]GlcNAc-). The biological significance of Lewis a type plant N-glycans and their effects on the human immune system remain to be elucidated. Since a substantial amount of such plant specific N-glycans are required to evaluate immunological activity, we have searched for good plant-glycan sources to characterize Lewis a epitope-containing plant N-glycans. In this study, we have found that three water plants, Elodea nuttallii, Egeria densa, and Ceratophyllum demersum, produce glycoproteins bearing Lewis a units. Structural analysis of the N-glycans revealed that almost all glycoproteins expressed in these three water plants predominantly carry plant complex type N-glycans including the Lewis a type, suggesting that these water plants are good sources for preparation of Lewis a type plant N-glycans in substantial amounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Molecular galactose-galectin association in neuroblastoma cells: An unconventional tool for qualitative/quantitative screening.

    PubMed

    Pastorino, Fabio; Ponzoni, Mirco; Simone, Giuseppina

    2017-05-01

    Galectin decorates the cell membrane and forms an extracellular molecular association with galactoside units. Here, galactoside probes have been used to study galectin expression in neuroblastoma cells. The hypothesis behind this investigation has been that the molecular mechanisms by which glycans modulate neural metastatic cells involve a protein-carbohydrate association, galectin-galactose. Preliminary screening to validate the hypothesis has been performed with galactose moieties anchored to beads. The molecular association has been studied by FACS. In vitro experiments reveal the molecular binding preferences of the metastatic neuroblastoma cells. Ex vivo, the galactose probes discriminate healthy tissues. The unconventional assay in microfluidics used in this study displayed results analogous to the above (GI-LI-N cell capture efficiency overcomes IMR-32). At the point of equilibrium of shear and binding forces, the capture yield inside the chamber was measured to 60 ± 4.4% in GI-LI-N versus 40 ± 2.1% in IMR-32. Staining of the fished cells and subsequent conjugation with red beads bearing the galactose also have evidenced that microfluidics can be used to study and quantify the molecular association of galectin-galactose. Most importantly, a crucial insight for obtaining single-cell qualitative/quantitative glycome analysis has been achieved. Finally, the specificity of the assay performed in microfluidics is demonstrated by comparing GI-LI-N fishing efficiency in galactose and fucose environments. The residual adhesion to fucose confirmed the existence of receptors for this glycan and that its eventual unspecific binding (i.e. due to electrostatic interactions) is insignificant compared with the molecular binding. Identification and understanding of this mechanism of discrimination can be relevant for diagnostic monitoring and for producing probes tailored to interfere with galectin activities associated with the malignant phenotype. Besides, the given strategy has implications for the rational design of galectin-specific ligands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes.

    PubMed

    Nakjang, Sirintra; Ndeh, Didier A; Wipat, Anil; Bolam, David N; Hirt, Robert P

    2012-01-01

    The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS database were also identified with carbohydrate-binding modules defining a new functional context for these glycan-binding domains and providing opportunities to engineer proteases targeting specific glycoproteins for both biomedical and industrial applications.

  11. Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates.

    PubMed

    Hayakawa, Toshiyuki; Khedri, Zahra; Schwarz, Flavio; Landig, Corinna; Liang, Suh-Yuen; Yu, Hai; Chen, Xi; Fujito, Naoko T; Satta, Yoko; Varki, Ajit; Angata, Takashi

    2017-11-23

    Siglecs-11 and -16 are members of the sialic acid recognizing Ig-like lectin family, and expressed in same cells. Siglec-11 functions as an inhibitory receptor, whereas Siglec-16 exhibits activating properties. In humans, SIGLEC11 and SIGLEC16 gene sequences are extremely similar in the region encoding the extracellular domain due to gene conversions. Human SIGLEC11 was converted by the nonfunctional SIGLEC16P allele, and the converted SIGLEC11 allele became fixed in humans, possibly because it provides novel neuroprotective functions in brain microglia. However, the detailed evolutionary history of SIGLEC11 and SIGLEC16 in other primates remains unclear. We analyzed SIGLEC11 and SIGLEC16 gene sequences of multiple primate species, and examined glycan binding profiles of these Siglecs. The phylogenetic tree demonstrated that gene conversions between SIGLEC11 and SIGLEC16 occurred in the region including the exon encoding the sialic acid binding domain in every primate examined. Functional assays showed that glycan binding preference is similar between Siglec-11 and Siglec-16 in all analyzed hominid species. Taken together with the fact that Siglec-11 and Siglec-16 are expressed in the same cells, Siglec-11 and Siglec-16 are regarded as paired receptors that have maintained similar ligand binding preferences via gene conversions. Relaxed functional constraints were detected on the SIGLEC11 and SIGLEC16 exons that underwent gene conversions, possibly contributing to the evolutionary acceptance of repeated gene conversions. The frequency of nonfunctional SIGLEC16P alleles is much higher than that of SIGLEC16 alleles in every human population. Our findings indicate that Siglec-11 and Siglec-16 have been maintained as paired receptors by repeated gene conversions under relaxed functional constraints in the primate lineage. The high prevalence of the nonfunctional SIGLEC16P allele and the fixation of the converted SIGLEC11 imply that the loss of Siglec-16 and the gain of Siglec-11 in microglia might have been favored during the evolution of human lineage.

  12. Partial characterization of the cross-reacting determinant, a carbohydrate epitope shared by decay accelerating factor and the variant surface glycoprotein of the African Trypanosoma brucei.

    PubMed

    Shak, S; Davitz, M A; Wolinsky, M L; Nussenzweig, V; Turner, M J; Gurnett, A

    1988-03-15

    The variant surface glycoprotein (VSG) of the African trypanosome is anchored in the cell membrane by a complex glycan attached to phosphatidylinositol. The carboxyl terminal portion of VSG contains a cryptic carbohydrate epitope, the cross-reacting determinant (CRD), that is revealed only after removal of the diacylglycerol by phosphatidylinositol-specific phospholipase C (PIPLC) or VSG lipase. Recently, we have shown that after hydrolysis by PIPLC, decay-accelerating factor (DAF)--a mammalian phosphatidylinositol-anchored protein--also contains the CRD epitope. Using a two site immunoradiometric assay in which the capturing antibody is a monoclonal antibody to DAF and the revealing antibody is anti-CRD, we now show that sugar phosphates significantly inhibited the binding of anti-CRD antibody to DAF released by PIPLC. DL-myo-inositol 1,2-cyclic phosphate was the most potent inhibitor of binding (IC50 less than 10(-8) M). Other sugar phosphates, such as alpha-D-glucose-1-phosphate, which also possess adjacent hydroxyl and phosphate moieties in cis also inhibited binding at low concentrations (IC50 = 10(-5) to 10(-4) M). In contrast, sugar phosphates which do not possess adjacent hydroxyl and phosphate moieties in cis and simple sugars weakly inhibited binding (IC50 greater than 10(-3) M). These results suggest that myo-inositol 1,2-cyclic phosphate contributes significantly to the epitope recognized by the anti-CRD antibody and is consistent with analysis of the carboxyl terminus of VSG, which also suggested the presence of the cyclic inositol phosphate. In light of the recent findings that human serum contains a glycan-phosphatidyl-inositol-specific phospholipase D, which converts DAF from a hydrophobic to a hydrophilic form lacking the CRD, the observation that the phosphate is crucial for expression of the epitope may be relevant in understanding the origin of CRD-negative DAF in urine and plasma.

  13. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    PubMed

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  14. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    PubMed

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-04-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  15. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama.

    PubMed

    Klisch, K; Contreras, D A; Sun, X; Brehm, R; Bergmann, M; Alberio, R

    2011-11-01

    Spermatogonia are a potential source of adult pluripotent stem cells and can be used for testis germ cell transplantation. Markers for the isolation of these cells are of great importance for biomedical applications. Primordial germ cells and prepubertal spermatogonia in many species can be identified by their binding of Dolichos biflorus agglutinin (DBA). This lectin binds to two different types of glycans, which are α-linked N-acetylgalactosamine (GalNac) and β-linked GalNac, if this is part of the Sda or GM2 glycotopes. We used the MAB CT1, which is specific for the trisaccharides motif NeuAcα2-3(GalNAcβ1-4)Galβ1-, which is common to both Sda and GM2 glycotopes, to further define the glycosylation of DBA binding germ cells. In porcine embryos, CT1 bound to migratory germ cells and gonocytes. CT1/DBA double staining showed that the mesonephros was CT1 negative but contained DBA-positive cells. Gonocytes in the female gonad became CT1 negative, while male gonocytes remained CT1 positive. In immunohistological double staining of cattle, pig, horse and llama testis, DBA and CT1 staining was generally colocalised in a subpopulation of spermatogonia. These spermatogonia were mainly single, sometimes paired or formed chains of up to four cells. Our data show that the Sda/GM2 glycotope is present in developing germ cells and spermatogonia in several species. Owing to the narrower specificity of the CT1 antibody, compared with DBA, the former is likely to be a useful tool for labelling and isolation of these cells.

  16. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    PubMed

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  17. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E*

    PubMed Central

    Siddiqui, Shoib; Schwarz, Flavio; Springer, Stevan; Khedri, Zahra; Yu, Hai; Deng, Lingquan; Verhagen, Andrea; Naito-Matsui, Yuko; Jiang, Weiping; Kim, Daniel; Zhou, Jie; Ding, Beibei; Chen, Xi; Varki, Nissi; Varki, Ajit

    2017-01-01

    CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer. PMID:27920204

  18. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence

    PubMed Central

    Tuncil, Yunus E.; Xiao, Yao; Porter, Nathan T.; Reuhs, Bradley L.

    2017-01-01

    ABSTRACT When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron, we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome. PMID:29018117

  19. Glycomics: revealing the dynamic ecology and evolution of sugar molecules.

    PubMed

    Springer, Stevan A; Gagneux, Pascal

    2016-03-01

    Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems—The taliglucerase alfa story

    PubMed Central

    Rup, Bonita; Alon, Sari; Amit-Cohen, Bat-Chen; Brill Almon, Einat; Chertkoff, Raul; Rudd, Pauline M.

    2017-01-01

    Plants are a promising alternative for the production of biotherapeutics. Manufacturing in-planta adds plant specific glycans. To understand immunogenic potential of these glycans, we developed a validated method to detect plant specific glycan antibodies in human serum. Using this assay, low prevalence of pre-existing anti-plant glycan antibodies was found in healthy humans (13.5%) and in glucocerebrosidase-deficient Gaucher disease (GD) patients (5%). A low incidence (9% in naïve patient and none in treatment experienced patients) of induced anti-plant glycan antibodies was observed in GD patients after up to 30 months replacement therapy treatment with taliglucerase alfa, a version of human glucocerebrosidase produced in plant cells. Detailed evaluation of clinical safety and efficacy endpoints indicated that anti-plant glycan antibodies did not affect the safety or efficacy of taliglucerase alfa in patients. This study shows the benefit of using large scale human trials to evaluate the immunogenicity risk of plant derived glycans, and indicates no apparent risk related to anti-plant glycan antibodies. PMID:29088235

  1. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems-The taliglucerase alfa story.

    PubMed

    Rup, Bonita; Alon, Sari; Amit-Cohen, Bat-Chen; Brill Almon, Einat; Chertkoff, Raul; Tekoah, Yoram; Rudd, Pauline M

    2017-01-01

    Plants are a promising alternative for the production of biotherapeutics. Manufacturing in-planta adds plant specific glycans. To understand immunogenic potential of these glycans, we developed a validated method to detect plant specific glycan antibodies in human serum. Using this assay, low prevalence of pre-existing anti-plant glycan antibodies was found in healthy humans (13.5%) and in glucocerebrosidase-deficient Gaucher disease (GD) patients (5%). A low incidence (9% in naïve patient and none in treatment experienced patients) of induced anti-plant glycan antibodies was observed in GD patients after up to 30 months replacement therapy treatment with taliglucerase alfa, a version of human glucocerebrosidase produced in plant cells. Detailed evaluation of clinical safety and efficacy endpoints indicated that anti-plant glycan antibodies did not affect the safety or efficacy of taliglucerase alfa in patients. This study shows the benefit of using large scale human trials to evaluate the immunogenicity risk of plant derived glycans, and indicates no apparent risk related to anti-plant glycan antibodies.

  2. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  3. Dual Modifications Strategy to Quantify Neutral and Sialylated N-Glycans Simultaneously by MALDI-MS

    PubMed Central

    2015-01-01

    Differences in ionization efficiency among neutral and sialylated glycans prevent direct quantitative comparison by their respective mass spectrometric signals. To overcome this challenge, we developed an integrated chemical strategy, Dual Reactions for Analytical Glycomics (DRAG), to quantitatively compare neutral and sialylated glycans simultaneously by MALDI-MS. Initially, two glycan samples to be compared undergo reductive amination with 2-aminobenzoic acid and 2-13[C6]-aminobenzoic acid, respectively. The different isotope-incorporated glycans are then combined and subjected to the methylamidation of the sialic acid residues in one mixture, homogenizing the ionization responses for all neutral and sialylated glycans. By this approach, the expression change of relevant glycans between two samples is proportional to the ratios of doublet signals with a static 6 Da mass difference in MALDI-MS and the change in relative abundance of any glycan within samples can also be determined. The strategy was chemically validated using well-characterized N-glycans from bovine fetuin and IgG from human serum. By comparing the N-glycomes from a first morning (AM) versus an afternoon (PM) urine sample obtained from a single donor, we further demonstrated the ability of DRAG strategy to measure subtle quantitative differences in numerous urinary N-glycans. PMID:24766348

  4. Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS.

    PubMed

    Zhou, Hui; Warren, Peter G; Froehlich, John W; Lee, Richard S

    2014-07-01

    Differences in ionization efficiency among neutral and sialylated glycans prevent direct quantitative comparison by their respective mass spectrometric signals. To overcome this challenge, we developed an integrated chemical strategy, Dual Reactions for Analytical Glycomics (DRAG), to quantitatively compare neutral and sialylated glycans simultaneously by MALDI-MS. Initially, two glycan samples to be compared undergo reductive amination with 2-aminobenzoic acid and 2-(13)[C6]-aminobenzoic acid, respectively. The different isotope-incorporated glycans are then combined and subjected to the methylamidation of the sialic acid residues in one mixture, homogenizing the ionization responses for all neutral and sialylated glycans. By this approach, the expression change of relevant glycans between two samples is proportional to the ratios of doublet signals with a static 6 Da mass difference in MALDI-MS and the change in relative abundance of any glycan within samples can also be determined. The strategy was chemically validated using well-characterized N-glycans from bovine fetuin and IgG from human serum. By comparing the N-glycomes from a first morning (AM) versus an afternoon (PM) urine sample obtained from a single donor, we further demonstrated the ability of DRAG strategy to measure subtle quantitative differences in numerous urinary N-glycans.

  5. The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different Host Surfaces

    PubMed Central

    Wong, Edmond; Vaaje-Kolstad, Gustav; Ghosh, Avishek; Hurtado-Guerrero, Ramon; Konarev, Peter V.; Ibrahim, Adel F. M.; Svergun, Dmitri I.; Eijsink, Vincent G. H.; Chatterjee, Nabendu S.; van Aalten, Daan M. F.

    2012-01-01

    Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons. PMID:22253590

  6. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  7. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    PubMed

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division.

    PubMed

    Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S

    2017-07-15

    Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.

  9. Advancing a High Throughput Glycotope-centric Glycomics Workflow Based on nanoLC-MS2-product Dependent-MS3 Analysis of Permethylated Glycans.

    PubMed

    Hsiao, Cheng-Te; Wang, Po-Wei; Chang, Hua-Chien; Chen, Yen-Ying; Wang, Shui-Hua; Chern, Yijuang; Khoo, Kay-Hooi

    2017-12-01

    The intrinsic nature of glycosylation, namely nontemplate encoded, stepwise elongation and termination with a diverse range of isomeric glyco-epitopes (glycotopes), translates into ambiguity in most cases of mass spectrometry (MS)-based glycomic mapping. It is arguable that whether one needs to delineate every single glycomic entity, which may be counterproductive. Instead, one should focus on identifying as many structural features as possible that would collectively define the glycomic characteristics of a cell or tissue, and how these may change in response to self-programmed development, immuno-activation, and malignant transformation. We have been pursuing this line of analytical strategy that homes in on identifying the terminal sulfo-, sialyl, and/or fucosylated glycotopes by comprehensive nanoLC-MS 2 -product dependent MS 3 analysis of permethylated glycans, in conjunction with development of a data mining computational tool, GlyPick, to enable an automated, high throughput, semi-quantitative glycotope-centric glycomic mapping amenable to even nonexperts. We demonstrate in this work that diagnostic MS 2 ions can be relied on to inform the presence of specific glycotopes, whereas their possible isomeric identities can be resolved at MS 3 level. Both MS 2 and associated MS 3 data can be acquired exhaustively and processed automatically by GlyPick. The high acquisition speed, resolution, and mass accuracy afforded by top-notch Orbitrap Fusion MS system now allow a sensible spectral count and/or summed ion intensity-based glycome-wide glycotope quantification. We report here the technical aspects, reproducibility and optimization of such an analytical approach that uses the same acidic reverse phase C18 nanoLC conditions fully compatible with proteomic analysis to allow rapid hassle-free switching. We further show how this workflow is particularly effective when applied to larger, multiply sialylated and fucosylated N-glycans derived from mouse brain. The complexity of their terminal glycotopes including variants of fucosylated and disialylated type 1 and 2 chains would otherwise not be adequately delineated by any conventional LC-MS/MS analysis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis.

    PubMed

    Wang, Chengjian; Zhang, Ping; Jin, Wanjun; Li, Lingmei; Qiang, Shan; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2017-01-06

    Rapid, simple and versatile methods for quantitative analysis of glycoprotein O-glycans are urgently required for current studies on protein O-glycosylation patterns and the search for disease O-glycan biomarkers. Relative quantitation of O-glycans using stable isotope labeling followed by mass spectrometric analysis represents an ideal and promising technique. However, it is hindered by the shortage of reliable nonreductive O-glycan release methods as well as the too large or too small inconstant mass difference between the light and heavy isotope form derivatives of O-glycans, which results in difficulties during the recognition and quantitative analysis of O-glycans by mass spectrometry. Herein we report a facile and versatile O-glycan relative quantification strategy, based on an improved one-pot method that can quantitatively achieve nonreductive release and in situ chromophoric labeling of intact mucin-type O-glycans in one step. In this study, the one-pot method is optimized and applied for quantitative O-glycan release and tagging with either non-deuterated (d 0 -) or deuterated (d 5 -) 1-phenyl-3-methyl-5-pyrazolone (PMP). The obtained O-glycan derivatives feature a permanent 10-Da mass difference between the d 0 - and d 5 -PMP forms, allowing complete discrimination and comparative quantification of these isotopically labeled O-glycans by mass spectrometric techniques. Moreover, the d 0 - and d 5 -PMP derivatives of O-glycans also have a relatively high hydrophobicity as well as a strong UV adsorption, especially suitable for high-resolution separation and high-sensitivity detection by RP-HPLC-UV. We have refined the conditions for the one-pot reaction as well as the corresponding sample purification approach. The good quantitation feasibility, reliability and linearity of this strategy have been verified using bovine fetuin and porcine stomach mucin as model O-glycoproteins. Additionally, we have also successfully applied this method to the quantitative O-glycomic comparison between perch and salmon eggs by ESI-MS, MS/MS and online RP-HPLC-UV-ESI-MS/MS, demonstrating its excellent applicability to various complex biological samples. O-Linked glycoproteins, generated via a widely existing glycosylation modification process on serine (Ser) or threonine (Thr) residues of nascent proteins, play essential roles in a series of biological processes. As a type of informational molecule, the O-glycans of these glycoproteins participate directly in these biological mechanisms. Thus, the characteristic differences or changes of O-glycans in expression level usually relate to pathologies of many diseases and represent an important opportunity to uncover the functional mechanisms of various glycoprotein O-glycans. The novel strategy introduced here provides a simple and versatile analytical method for the precise quantitation of glycoprotein O-glycans by mass spectrometry, enabling rapid evaluation of the differences or changes of O-glycans in expression level. It is attractive for the field of quantitative/comparative O-glycomics, which has great significance for exploring the complex structure-function relationship of O-glycans, as well as for the search of O-glycan biomarkers of some major diseases and O-glycan related targets of some drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression.

    PubMed

    Chen, Huanhuan; Deng, Zaian; Huang, Chuncui; Wu, Hongmei; Zhao, Xia; Li, Yan

    2017-07-01

    Aberrant changes of N-glycan modifications on proteins have been linked to various diseases including different cancers, suggesting possible avenue for exploring their etiologies based on N-glycomic analysis. Changes in N-glycan patterns during epithelial ovarian cancer development have so far been investigated mainly using serum, plasma, ascites, and cell lines. However, changes in patterns of N-glycans in tumor tissues during epithelial ovarian cancer progression have remained largely undefined. To investigate whether changes in N-glycan patterns correlate with oncogenesis and progression of epithelial ovarian cancer, we profiled N-glycans from formalin-fixed paraffin-embedded tissue slides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitatively compared among different pathological grades of epithelial ovarian cancer and healthy controls. Our results show that among the 80 compositions of N-glycan detected, expression levels of high-mannose type were higher in epithelial ovarian cancer samples than that observed in healthy controls, accompanied by reduced levels of hybrid-type glycans. By applying receiver operating characteristic analysis, we show that a combined panel composed of four high-mannose and three fucosylated neutral complex N-glycans allows for good discrimination of epithelial ovarian cancer from healthy controls. Furthermore, using a statistical analysis of variance assay, we found that different N-glycan patterns, including 2 high-mannose-type, 2 fucosylated and sialylated complex structures, and 10 fucosylated neutral complex N-glycans, exhibited specific changes in N-glycan abundance across epithelial ovarian cancer grades. Together, our results provide strong evidence that N-glycomic changes are a strong indicator for epithelial ovarian cancer pathological grades and should provide avenues to identify novel biomarkers for epithelial ovarian cancer diagnosis and monitoring.

  12. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Sheng, Ju; Baggen, Jim

    Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon’ on the virus surface. The sialic acid receptor induces a cascade of conformational changes inmore » the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Furthermore, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry.« less

  14. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models.

    PubMed

    Castillo-Acosta, Víctor M; Ruiz-Pérez, Luis M; Etxebarria, Juan; Reichardt, Niels C; Navarro, Miguel; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan; González-Pacanowska, Dolores

    2016-09-01

    Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.

  15. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Reichardt, Niels C.; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan

    2016-01-01

    Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT. PMID:27662652

  16. Molecular and immunological characterisation of the glycosylated orange allergen Cit s 1

    PubMed Central

    Pöltl, Gerald; Ahrazem, Oussama; Paschinger, Katharina; Ibañez, M. Dolores; Salcedo, Gabriel; Wilson, Iain B. H.

    2010-01-01

    The IgE of sera from patients with a history of allergy to oranges (Citrus sinensis) bind a number of proteins in orange extract, including Cit s 1, a germin-like protein. In the present study, we have analysed its immunological cross-reactivity and its molecular nature. Sera from many of the patients examined recognise a range of glycoproteins and neoglycoconjugates containing β1,2-xylose and core α1,3-fucose on their N-glycans. These reagents also inhibited the interaction of Cit s 1 with patients’ sera, thus underlining the critical role of glycosylation in the recognition of this protein by patients’ IgE and extending previous data showing that deglycosylated Cit s 1 does not possess IgE epitopes. In parallel, we examined the peptide sequence and glycan structure of Cit s 1 using mass spectrometric techniques. Indeed, we achieved complete sequence coverage of the mature protein as compared to the translation of an expressed sequence tag cDNA clone and demonstrated that the single N-glycosylation site of this protein carries oligosaccharides with xylose and fucose residues. Due to the presumed requirement for multivalency for in vivo allergenicity, our molecular data showing that Cit s 1 is monovalent as regards glycosylation and that the single N-glycan is the target of the IgE response to this protein, therefore, explain the immunological cross-reactive properties of Cit s 1 as well as its equivocal nature as a clinically-relevant allergen. PMID:17095532

  17. Biophysical characterization and structural determination of the potent cytotoxic Psathyrella asperospora lectin.

    PubMed

    Ribeiro, João P; Ali Abol Hassan, Mohamed; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Day, Christopher J; Imberty, Anne; Tiralongo, Joe; Varrot, Annabelle

    2017-05-01

    A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Botulinum neurotoxin A complex recognizes host carbohydrates through its hemagglutinin component.

    PubMed

    Yao, Guorui; Lee, Kwangkook; Gu, Shenyan; Lam, Kwok-Ho; Jin, Rongsheng

    2014-02-12

    Botulinum neurotoxins (BoNTs) are potent bacterial toxins. The high oral toxicity of BoNTs is largely attributed to the progenitor toxin complex (PTC), which is assembled from BoNT and nontoxic neurotoxin-associated proteins (NAPs) that are produced together with BoNT in bacteria. Here, we performed ex vivo studies to examine binding of the highly homogeneous recombinant NAPs to mouse small intestine. We also carried out the first comprehensive glycan array screening with the hemagglutinin (HA) component of NAPs. Our data confirmed that intestinal binding of the PTC is partly mediated by the HA moiety through multivalent interactions between HA and host carbohydrates. The specific HA-carbohydrate recognition could be inhibited by receptor-mimicking saccharides.

  19. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  20. Imaging specific cellular glycan structures using glycosyltransferases via click chemistry.

    PubMed

    Wu, Zhengliang L; Person, Anthony D; Anderson, Matthew; Burroughs, Barbara; Tatge, Timothy; Khatri, Kshitij; Zou, Yonglong; Wang, Lianchun; Geders, Todd; Zaia, Joseph; Sackstein, Robert

    2018-02-01

    Heparan sulfate (HS) is a polysaccharide fundamentally important for biologically activities. T/Tn antigens are universal carbohydrate cancer markers. Here, we report the specific imaging of these carbohydrates using a mesenchymal stem cell line and human umbilical vein endothelial cells (HUVEC). The staining specificities were demonstrated by comparing imaging of different glycans and validated by either removal of target glycans, which results in loss of signal, or installation of target glycans, which results in gain of signal. As controls, representative key glycans including O-GlcNAc, lactosaminyl glycans and hyaluronan were also imaged. HS staining revealed novel architectural features of the extracellular matrix (ECM) of HUVEC cells. Results from T/Tn antigen staining suggest that O-GalNAcylation is a rate-limiting step for O-glycan synthesis. Overall, these highly specific approaches for HS and T/Tn antigen imaging should greatly facilitate the detection and functional characterization of these biologically important glycans. © The Author(s) 2017. Published by Oxford University Press.

  1. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE PAGES

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.; ...

    2016-06-23

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  2. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice

    PubMed Central

    Takamatsu, Shinji; Antonopoulos, Aristotelis; Ohtsubo, Kazuaki; Ditto, David; Chiba, Yasunori; Le, Dzung T.; Morris, Howard R.; Haslam, Stuart M.; Dell, Anne; Marth, Jamey D.; Taniguchi, Naoyuki

    2010-01-01

    N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcβ1-4 branch synthesis on the Manα1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physiological significance of GnT-IV, we engineered and characterized GnT-IVb-deficient mice and further generated GnT-IVa/-IVb double deficient mice. In wild-type mice, GnT-IVa expression is restricted to gastrointestinal tissues, whereas GnT-IVb is broadly expressed among organs. GnT-IVb deficiency induced aberrant GnT-IVa expression corresponding to the GnT-IVb distribution pattern that might be attributed to increased Ets-1, which conceivably activates the Mgat4a promoter, and thereafter preserved apparent GnT-IV activity. The compensative GnT-IVa expression might contribute to amelioration of the GnT-IVb-deficient phenotype. GnT-IVb deficiency showed mild phenotypic alterations in hematopoietic cell populations and hemostasis. GnT-IVa/-IVb double deficiency completely abolished GnT-IV activity that resulted in the disappearance of the GlcNAcβ1-4 branch on the Manα1-3 arm that was confirmed by MALDI-TOF MS and GC-MS linkage analyses. Comprehensive glycomic analyses revealed that the abundance of terminal moieties was preserved in GnT-IVa/-IVb double deficiency that was due to the elevated expression of glycosyltransferases regarding synthesis of terminal moieties. Thereby, this may maintain the expression of glycan ligands for endogenous lectins and prevent cellular dysfunctions. The fact that the phenotype of GnT-IVa/-IVb double deficiency largely overlapped that of GnT-IVa single deficiency can be attributed to the induced glycomic compensation. This is the first report that mammalian organs have highly organized glycomic compensation systems to preserve N-glycan branch complexity. PMID:20015870

  3. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation

    PubMed Central

    Qian, Xiaoqian; Sands, Jeff M.; Song, Xiang; Chen, Guangping

    2016-01-01

    Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 kDa and 65 kDa. Using sugar specific-binding lectins, the UT-A3 glycosylation profile was examined. The 45 kDa form was pulled down by lectin Con A and GNL, indicating an immature glycan with a high amount of mannose (Man); whereas the 65 kDa form is a mature glycan composed of acetylglucosamine (GlcNAc), poly-N-acetyllactosame (poly-LacNAc) that was pulled down by WGA and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2, 6-sialylation. Activation of PKC by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important in kidney urea reabsorption and the urinary concentrating mechanism. PMID:26972907

  4. Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities.

    PubMed

    Banerjee, Dipak K; Zhang, Zhenbo; Baksi, Krishna; Serrano-Negrón, Jesús E

    2017-08-01

    N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc 3 Man 9 GlcNAc 2 -PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org ). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.

  5. Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission.

    PubMed

    Mathys, Leen; Balzarini, Jan

    2015-01-01

    The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection and transmission.

  6. Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission

    PubMed Central

    Mathys, Leen; Balzarini, Jan

    2015-01-01

    The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection and transmission. PMID:26121645

  7. Dealing with Organizational Double Binds: Three-way Interactive Effects of Role Stressors and Coping on Worker Exhaustion.

    PubMed

    Hornung, Severin; Lampert, Bettina; Glaser, Jürgen

    2016-04-01

    Based on theory regarding the dynamics of organizational double binds, hypotheses were developed about interactive effects of role conflict, role ambiguity, and coping on psychological exhaustion. Hypotheses were tested in a sample of 948 civil servants employed by a government administration in Germany. The sample included 250 (26.4%) women (M age = 43.6 year, SD = 8.3) and average organizational tenure was 17.1 year (SD = 10.0). Moderated multiple regression supported the two hypothesized three-way interactions. Under conditions of high role conflict and high role ambiguity, exhaustion was lower in workers reporting high control coping than in workers reporting low control coping. Under conditions of high role conflict and high role ambiguity, worker exhaustion was more pronounced when support coping was high than when it was low. Problem-focused control coping seems crucial to maintain mental health in dealing with contradictory and unclear work role expectations. Emotion-focused support coping appears symptomatic of prolonged involvement in psychologically dysfunctional work situations that cannot otherwise be addressed. Implications are discussed in the context of growing awareness of the contradictory demands organizations impose on employees. © The Author(s) 2016.

  8. Lamb shift and the gravitational binding energy for binary black holes

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.

    2017-07-01

    We show that the correction to the gravitational binding energy for binary black holes due to the tail effect resembles the Lamb shift in the Hydrogen atom. In both cases a conservative effect arises from interactions with radiation modes, and moreover an explicit cancelation between near and far zone divergences is at work. In addition, regularization scheme-dependence may introduce "ambiguity parameters." This is remediated—within an effective field theory approach—by the implementation of the zero-bin subtraction. We illustrate the procedure explicitly for the Lamb shift, by performing an ambiguity-free derivation within the framework of nonrelativistic electrodynamics. We also derive the renormalization group equations from which we reproduce Bethe logarithm (at order αe5log αe), and likewise the contribution to the gravitational potential from the tail effect (proportional to v8log v ).

  9. Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111.

    PubMed

    Pulido, David; Hussain, Sadaf-Ahmahni; Hohenester, Erhard

    2017-03-07

    Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin-binding fragment of mouse laminin-111, consisting of ∼50 residues of α1β1γ1 coiled coil and the first three laminin G-like (LG) domains of the α1 chain. The LG domains adopt a triangular arrangement, with the C terminus of the coiled coil situated between LG1 and LG2. The critical integrin-binding glutamic acid residue in the γ1 chain tail is surface exposed and predicted to bind to the metal ion-dependent adhesion site in the integrin β1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ1 chain tail, which are notably conserved and free of obstructing glycans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans

    NASA Astrophysics Data System (ADS)

    Hecht, Elizabeth S.; Loziuk, Philip L.; Muddiman, David C.

    2017-04-01

    Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows.

  11. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.

  12. Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes.

    PubMed

    Kim, Yeong Hun; Kang, Ji-Yeon; Gil, Jin Young; Kim, Sang-Yoon; Shin, Keun Koo; Kang, Hyun Ah; Kim, Jeong-Yoon; Kwon, Ohsuk; Oh, Doo-Byoung

    2017-04-01

    Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  13. High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins.

    PubMed

    Zhou, Shiyue; Hu, Yunli; Mechref, Yehia

    2016-06-01

    Various glycomic analysis methods have been developed due to the essential roles of glycans in biological processes as well as the potential application of glycomics in biomarker discovery in many diseases. Permethylation is currently considered to be one of the most common derivatization methods in MS-based glycomic analysis. Permethylation not only improves ionization efficiency and stability of sialylated glycans in positive mode but also allows for enhanced separation performance on reversed-phase liquid chromatography (RPLC). Recently, RPLC-MS analysis of permethylated glycans exhibited excellent performance in sensitivity and reproducibility and became a widely-applied comprehensive strategy in glycomics. However, separating permethylated glycans by RPLC always suffers from peak broadening for high-molecular-weight branched glycans, which probably due to the low exchange rate between the stationary phase and mobile phase limited by intermolecular interactions of the methyl groups associated with the branching of the glycan structures. In this study, we employed high separation temperature conditions for RPLC of permethylated glycans, thus achieving enhanced peak capacity, improving peak shape, and enhancing separation efficiency. Additionally, partial isomeric separation were observed in RPLC of permethylated glycans at high-temperature. Mathematical processing of the correlation between retention time and molecular weight also revealed the advantage of high-temperature LC method for both manual and automatic glycan identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In-depth analyses of native N-linked glycans facilitated by high-performance anion exchange chromatography-pulsed amperometric detection coupled to mass spectrometry.

    PubMed

    Szabo, Zoltan; Thayer, James R; Agroskin, Yury; Lin, Shanhua; Liu, Yan; Srinivasan, Kannan; Saba, Julian; Viner, Rosa; Huhmer, Andreas; Rohrer, Jeff; Reusch, Dietmar; Harfouche, Rania; Khan, Shaheer H; Pohl, Christopher

    2017-05-01

    Characterization of glycans present on glycoproteins has become of increasing importance due to their biological implications, such as protein folding, immunogenicity, cell-cell adhesion, clearance, receptor interactions, etc. In this study, the resolving power of high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) was applied to glycan separations and coupled to mass spectrometry to characterize native glycans released from different glycoproteins. A new, rapid workflow generates glycans from 200 μg of glycoprotein supporting reliable and reproducible annotation by mass spectrometry (MS). With the relatively high flow rate of HPAE-PAD, post-column splitting diverted 60% of the flow to a novel desalter, then to the mass spectrometer. The delay between PAD and MS detectors is consistent, and salt removal after the column supports MS. HPAE resolves sialylated (charged) glycans and their linkage and positional isomers very well; separations of neutral glycans are sufficient for highly reproducible glycoprofiling. Data-dependent MS 2 in negative mode provides highly informative, mostly C- and Z-type glycosidic and cross-ring fragments, making software-assisted and manual annotation reliable. Fractionation of glycans followed by exoglycosidase digestion confirms MS-based annotations. Combining the isomer resolution of HPAE with MS 2 permitted thorough N-glycan annotation and led to characterization of 17 new structures from glycoproteins with challenging glycan profiles.

  15. Extracting Both Peptide Sequence and Glycan Structural Information by 157 nm Photodissociation of N-Linked Glycopeptides

    PubMed Central

    Zhang, Liangyi; Reilly, James P.

    2009-01-01

    157 nm photodissociation of N-linked glycopeptides was investigated in MALDI tandem time-of-flight (TOF) and linear ion trap mass spectrometers. Singly-charged glycopeptides yielded abundant peptide and glycan fragments. The peptide fragments included a series of x-, y-, v- and w- ions with the glycan remaining intact. These provide information about the peptide sequence and the glycosylation site. In addition to glycosidic fragments, abundant cross-ring glycan fragments that are not observed in low-energy CID were detected. These fragments provide insight into the glycan sequence and linkages. Doubly-charged glycopeptides generated by nanospray in the linear ion trap mass spectrometer also yielded peptide and glycan fragments. However, the former were dominated by low-energy fragments such as b- and y- type ions while glycan was primarily cleaved at glycosidic bonds. PMID:19113943

  16. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans.

    PubMed

    Song, Xuezheng; Johns, Brian A; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F; Cummings, Richard D

    2013-11-15

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here, we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or retagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker.

  17. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans

    PubMed Central

    Song, Xuezheng; Johns, Brian A.; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F.; Cummings, Richard D.

    2014-01-01

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or re-tagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker. PMID:23992636

  18. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    PubMed Central

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-01-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan structures was determined to be 30% while it was found to be 35% for either fucosylated or sialylated structures The optimum CE for mannose and complex type N-glycan structures was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan structures in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these structures was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitudes. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan structures enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples. PMID:25698222

  19. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion.

    PubMed

    Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Sanz-Nebot, Victòria

    2016-10-12

    In this study, a ZIC-HILIC-MS methodology for the analysis of N-glycan isomers was optimized to obtain greater detection sensitivity and thus identify more glycan structures in hAGP. In a second step, this method was combined with glycan reductive isotope labelling (GRIL) through [(12)C6]/[(13)C6]-aniline and exoglycosidase digestion to characterize the different glycan isomers. The GRIL method allows the peak areas resulting from two different labelled samples to be compared, since neither retention time shifts nor variations in the ionization of glycans between these samples are obtained. First, sialic acid linkage assignations were performed for most hAGP glycan isomers with α2-3 sialidase digestion. Bi-, tri- and tetraantennary glycan isomers with different terminal sialic acid linkages to galactose (α2-3 or α2-6) were assigned, and the potential of this technique for the structural characterization of isobaric isomers was therefore demonstrated. Furthermore, fucose linkage isomers of hAGP glycans were also characterized using this isotope-labelling approach in combination with α1-3,4 fucosidase and β1-4 galactosidase digestion. α1-3 antennary fucoses and α1-6 core fucosylation were detected in hAGP fucosylated glycans. These established methodologies can be extremely useful for patho-glycomic studies to characterize glycoproteins of biomedical interest and find novel glycan isomers that could be used as biomarkers in cancer research. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multivalent Interactions of Human Primary Amine Oxidase with the V and C22 Domains of Sialic Acid-Binding Immunoglobulin-Like Lectin-9 Regulate Its Binding and Amine Oxidase Activity

    PubMed Central

    Fair-Mäkelä, Ruth; Salo-Ahen, Outi M. H.; Guédez, Gabriela; Bligt-Lindén, Eva; Grönholm, Janne; Jalkanen, Sirpa; Salminen, Tiina A.

    2016-01-01

    Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3–Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9–hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9–hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools. PMID:27893774

  1. Genome-wide screen of Saccharomyces cerevisiae for killer toxin HM-1 resistance.

    PubMed

    Miyamoto, Masahiko; Furuichi, Yasuhiro; Komiyama, Tadazumi

    2011-01-01

    We screened a set of Saccharomyces cerevisiae deletion mutants for resistance to killer toxin HM-1, which kills susceptible yeasts through inhibiting 1,3-beta-glucan synthase. By using HM-1 plate assay, we found that eight gene-deletion mutants had higher HM-1-resistance compared with the wild-type. Among these eight genes, five--ALG3, CAX4, MNS1, OST6 and YBL083C--were associated with N-glycan formation and maturation. The ALG3 gene has been shown before to be highly resistant to HM-1. The YBL083C gene may be a dubious open reading frame that overlaps partially the ALG3 gene. The deletion mutant of the MNS1 gene that encodes 1,2-alpha-mannosidase showed with a 13-fold higher HM-1 resistance compared with the wild-type. By HM-1 binding assay, the yeast plasma membrane fraction of alg3 and mns1 cells had less binding ability compared with wild-type cells. These results indicate that the presence of the terminal 1,3-alpha-linked mannose residue of the B-chain of the N-glycan structure is essential for interaction with HM-1. A deletion mutant of aquaglyceroporin Fps1p also showed increased HM-1 resistance. A deletion mutant of osmoregulatory mitogen-activated protein kinase Hog1p was more sensitive to HM-1, suggesting that high-osmolarity glycerol pathways plays an important role in the compensatory response to HM-1 action. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    PubMed

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1

    PubMed Central

    Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450

  4. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    PubMed Central

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-01-01

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093

  5. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    PubMed

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  6. Structural analysis of N-linked glycans in Caenorhabditis elegans.

    PubMed

    Natsuka, Shunji; Adachi, Jiro; Kawaguchi, Masahumi; Nakakita, Shin-ichi; Hase, Sumihiro; Ichikawa, Akira; Ikura, Koji

    2002-06-01

    Caenorhabditis elegans is an excellent model for morphogenetic research. However, little information is available on the structure of cell-surface glycans in C. elegans, although several lines of evidence have suggested a role for these glycans in cell-cell interactions during development. In this study, we analyzed N-glycan structures. Oligosaccharides liberated by hydrazinolysis from a total membrane fraction were labeled by pyridylamination, and around 90% of the N-glycans were detected as neutral oligosaccharides. The most dominant structure was Man(alpha)1-6(Man(alpha)1-3)Man(beta)1-4GlcNAc(beta)1-4GlcNAc, which is commonly found in insects. Branching structures of major oligomannose-type glycans were the same as those found in mammals. Structures that had a core fucose or non-reducing end N-acetylglucosamine were also identified, but ordinary complex-type glycans with N-acetyllactosamine were not detected as major components.

  7. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  8. Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample

    NASA Astrophysics Data System (ADS)

    Benktander, John D.; Gizaw, Solomon T.; Gaunitz, Stefan; Novotny, Milos V.

    2018-05-01

    Glycoconjugates are directly or indirectly involved in many biological processes. Due to their complex structures, the structural elucidation of glycans and the exploration of their role in biological systems have been challenging. Glycan pools generated through release from glycoprotein or glycolipid mixtures can often be very complex. For the sake of procedural simplicity, many glycan profiling studies choose to concentrate on a single class of glycoconjugates. In this paper, we demonstrate it feasible to cover glycosphingolipids, N-glycans, and O-glycans isolated from the same sample. Small volumes of human blood serum and ascites fluid as well as small mouse brain tissue samples are sufficient to profile sequentially glycans from all three classes of glycoconjugates and even positively identify some mixture components through MALDI-MS and LC-ESI-MS. The results show that comprehensive glycan profiles can be obtained from the equivalent of 500-μg protein starting material or possibly less. These methodological improvements can help accelerating future glycomic comprehensive studies, especially for precious clinical samples.

  9. N-Glycan Structure Annotation of Glycopeptides Using a Linearized Glycan Structure Database (GlyDB)

    PubMed Central

    Ren, Jian Min; Rejtar, Tomas; Li, Lingyun; Karger, Barry L.

    2008-01-01

    While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation. PMID:17625816

  10. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    NASA Astrophysics Data System (ADS)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  11. Relative Quantification and Higher-Order Modeling of the Plasma Glycan Cancer Burden Ratio in Ovarian Cancer Case-Control Samples

    PubMed Central

    Hecht, Elizabeth S.; Scholl, Elizabeth H.; Walker, S. Hunter; Taylor, Amber D.; Cliby, William A.; Motsinger-Reif, Alison A.; Muddiman, David C.

    2016-01-01

    An early-stage, population-wide biomarker for ovarian cancer (OVC) is essential to reverse its high mortality rate. Aberrant glycosylation by OVC has been reported, but studies have yet to identify an N-glycan with sufficiently high specificity. We curated a human biorepository of 82 case-control plasma samples, with 27%, 12%, 46%, and 15% falling across stages I–IV, respectively. For relatve quantitation, glycans were analyzed by the individuality normalization when labeling with glycan hydrazide tags (INLIGHT) strategy for enhanced electrospray ionization, MS/MS analysis. Sixty-three glycan cancer burden ratios (GBRs), defined as the log10 ratio of the case-control extracted ion chromatogram abundances, were calculated above the limit of detection. The final GBR models, built using stepwise forward regression, included three significant terms: OVC stage, normalized mean GBR, and tag chemical purity; glycan class, fucosylation, or sialylation were not significant variables. After Bonferroni correction, seven N-glycans were identified as significant (p < 0.05), and after false discovery rate correction, an additional four glycans were determined to be significant (p < 0.05), with one borderline (p = 0.05). For all N-glycans, the vectors of the effects from stages II–IV were sequentially reversed, suggesting potential biological changes in OVC morphology or in host response. PMID:26347193

  12. Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.

    PubMed

    Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung

    2013-08-06

    Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.

  13. Role of Glycans in Cholesteryl Ester Transfer Protein revealed by MD simulation.

    PubMed

    Hao, Dongxiao; Yang, Zhiwei; Gao, Teng; Tian, Zhiqi; Zhang, Lei; Zhang, Shengli

    2018-05-03

    Current cholesteryl ester transfer protein (CETP) inhibitors are designed based on the unglycosylated crystal structure, and most of them have failed to cure cardiovascular disease (CVD). It is particularly important for us to investigate the glycosylation structure of CETP (CETP-G) and effect of glycans on the structure and function of CETP. Here, we used a total of 3.0-μs molecular dynamics trajectories of nascent structure of CETP (CETP-N) and CETP-G to study their structural differentiations, to shed new light on the CETP-mediated lipid exchange. In accordance with our simulations and previous mutation studies, relative to CETP-N, CETP-G adopts a more stretched shape with higher hydrophobic and hydrophilic SASA of N-terminal oscillating with larger amplitude, in which Glycan88 provides partial assistance for CEs through the N-terminal. Glycan341 reduces the flexibility of neck flap, with the interference of CEs through the neck region. Besides, Glycan240 reduces the flexibility of Helix-X to interfere the CEs transfer. Glycan396 decreases the flexibility and increases the hydrophobic SASA of C-terminal. Overall, these glycans affect the dynamics and structure of CETP through forming H-bonds with surrounding residues, and the sampled conformations of glycan is also affected by its surrounding residues. Thus, glycans are an integral part of CETP, further studies on the CETP inhibition and treatment of CVD should fully consider the effect of glycans. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  14. Glycan analysis of glycoprotein pharmaceuticals: Evaluation of analytical approaches to Z number determination in pharmaceutical erythropoietin products.

    PubMed

    Yuen, Chun-Ting; Zhou, Yong; Wang, Qing-Zhou; Hou, Ji-Feng; Bristow, Adrian; Wang, Jun-Zhi

    2011-11-01

    N-Glycosylation of many glycoprotein drugs is important for biological activity and should therefore be the target of specific and quantitative analytical methods. In this study, we focus on the two N-glycan mapping approaches that are used in pharmacopoeial monograph to analyse N-glycans released from fifteen preparations of recombinant human erythropoietin supplied by ten Chinese manufacturers. Underivatised N-glycans were analysed by high performance anion-exchange chromatography with pulsed amperometric detection and fluorophore-labelled N-glycans were analysed by weak anion-exchange and normal-phase high performance liquid chromatography. N-glycans were also analysed by matrix assisted laser desorption ionisation mass spectrometry. The release of N-glycans by PNGase F was shown to be consistent. Z number, a mathematical expression of the total negatively charged N-glycans composition has provided a convenient way to summarise the complex dataset and it might be suitable for product consistency monitoring. However, this Z number reduces the information of individual acidic N-glycan structure and is also found to be method dependent. Therefore, its use requires clear specification and validation. In this study, we only found weak but positive correlation between the Z number and its bioactivity. Wide range of N-glycans yields were obtained from the fifteen preparations but the significance of their differences is unclear. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. Discrimination of Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS

    NASA Astrophysics Data System (ADS)

    Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.

    2018-03-01

    Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.

  16. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improvemore » quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.« less

  17. The multiple roles of epidermal growth factor repeat O-glycans in animal development

    PubMed Central

    Haltom, Amanda R; Jafar-Nejad, Hamed

    2015-01-01

    The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457

  18. Automated High-Throughput Permethylation for Glycosylation Analysis of Biologics Using MALDI-TOF-MS.

    PubMed

    Shubhakar, Archana; Kozak, Radoslaw P; Reiding, Karli R; Royle, Louise; Spencer, Daniel I R; Fernandes, Daryl L; Wuhrer, Manfred

    2016-09-06

    Monitoring glycoprotein therapeutics for changes in glycosylation throughout the drug's life cycle is vital, as glycans significantly modulate the stability, biological activity, serum half-life, safety, and immunogenicity. Biopharma companies are increasingly adopting Quality by Design (QbD) frameworks for measuring, optimizing, and controlling drug glycosylation. Permethylation of glycans prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a valuable tool for glycan characterization and for screening of large numbers of samples in QbD drug realization. However, the existing protocols for manual permethylation and liquid-liquid extraction (LLE) steps are labor intensive and are thus not practical for high-throughput (HT) studies. Here we present a glycan permethylation protocol, based on 96-well microplates, that has been developed into a kit suitable for HT work. The workflow is largely automated using a liquid handling robot and includes N-glycan release, enrichment of N-glycans, permethylation, and LLE. The kit has been validated according to industry analytical performance guidelines and applied to characterize biopharmaceutical samples, including IgG4 monoclonal antibodies (mAbs) and recombinant human erythropoietin (rhEPO). The HT permethylation enabled glycan characterization and relative quantitation with minimal side reactions: the MALDI-TOF-MS profiles obtained were in good agreement with hydrophilic liquid interaction chromatography (HILIC) and ultrahigh performance liquid chromatography (UHPLC) data. Automated permethylation and extraction of 96 glycan samples was achieved in less than 5 h and automated data acquisition on MALDI-TOF-MS took on average less than 1 min per sample. This automated and HT glycan preparation and permethylation showed to be convenient, fast, and reliable and can be applied for drug glycan profiling and clinical glycan biomarker studies.

  19. GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with High-Performance Computing and GlycoGrid 4D Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Slysz, Gordon W.; Marginean, Ioan

    2014-05-31

    Dense LC-MS datasets have convoluted extracted ion chromatograms with multiple chromatographic peaks that cloud the differentiation between intact compounds with their overlapping isotopic distributions, peaks due to insource ion fragmentation, and noise. Making this differentiation is critical in glycomics datasets because chromatographic peaks correspond to different intact glycan structural isomers. The GlyQ-IQ software is targeted chromatography centric software designed for chromatogram and mass spectra data processing and subsequent glycan composition annotation. The targeted analysis approach offers several key advantages to LC-MS data processing and annotation over traditional algorithms. A priori information about the individual target’s elemental composition allows for exactmore » isotope profile modeling for improved feature detection and increased sensitivity by focusing chromatogram generation and peak fitting on the isotopic species in the distribution having the highest intensity and data quality. Glycan target annotation is corroborated by glycan family relationships and in source fragmentation detection. The GlyQ-IQ software is developed in this work (Part 1) and was used to profile N-glycan compositions from human serum LC-MS Datasets. The companion manuscript GlyQ-IQ Part 2 discusses developments in human serum N-glycan sample preparation, glycan isomer separation, and glycan electrospray ionization. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad N-glycan profile from a high resolution (100K/60K) nESI-LS-MS/MS dataset including CID and HCD fragmentation acquired on a Velos Pro Mass spectrometer. 101 glycan compositions and 353 isomer peaks were detected from a single sample. 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high resolution mass spectra and mass accuracies less than 7 ppm.« less

  20. Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken.

    PubMed

    de Geus, Eveline D; Tefsen, Boris; van Haarlem, Daphne A; van Eden, Willem; van Die, Irma; Vervelde, Lonneke

    2013-12-01

    To increase our understanding of the interaction between avian influenza virus and its chicken host, we identified receptors for putative avian influenza virus (AIV) glycan determinants on chicken dendritic cells. Chicken dendritic cells (DCs) were found to recognize glycan determinants containing terminal αGalNAc, Galα1-3Gal, GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ (chitotriose) and Galα1-2Gal. Infection of chicken dendritic cells with either low pathogenic (LP) or highly pathogenic (HP) AIV results in elevated mRNA expression of homologs of the mouse C-type lectins DEC205 and macrophage mannose receptor (MMR), whereas expression levels of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) homolog remained unchanged. Following uptake and subsequent presentation of avian influenza virus by DCs, adaptive immunity, including humoral immune responses are induced. We have investigated the antibody responses against virus glycan epitopes after avian influenza virus infection. Using glycan micro-array analysis we showed that chicken contained antibodies that predominantly recognize terminal Galα1-3Gal-R, chitotriose and Fucα1-2Galβ1-4GlcNAc-R (H-type 2). After influenza-infection, glycan array analysis showed that both levels and repertoire of glycan-recognizing antibodies decreased. However, analysis of the sera by ELISA indicated that the levels of different isotypes of anti-glycan Abs against specific glycan antigens was increased after influenza-infection, suggesting that the presentation of the glycan antigens and iso-type of the Abs are critical parameters to take into account when measuring anti-glycan Abs. This novel approach in avian influenza research may contribute to the development of a broad spectrum vaccine and improves our mechanistic understanding of innate and adaptive responses to glycans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.

    PubMed

    Tuncil, Yunus E; Xiao, Yao; Porter, Nathan T; Reuhs, Bradley L; Martens, Eric C; Hamaker, Bruce R

    2017-10-10

    When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron , we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome. IMPORTANCE The microorganisms that reside in the human colon fulfill their energy requirements mainly from diet- and host-derived complex carbohydrates. Members of this ecosystem possess poorly understood strategies to prioritize and compete for these nutrients. Based on direct carbohydrate measurements and corresponding transcriptional analyses, our findings showed that individual bacterial species exhibit different preferences for the same set of glycans and that this prioritization is maintained in a competitive environment, which may promote stable coexistence. Such understanding of gut bacterial glycan utilization will be essential to eliciting predictable changes in the gut microbiota to improve health through the diet. Copyright © 2017 Tuncil et al.

  2. Timing of Galectin-1 Exposure Differentially Modulates Nipah Virus Entry and Syncytium Formation in Endothelial Cells

    PubMed Central

    Garner, Omai B.; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C.; Park, Arnold; Bowden, Thomas A.; Freiberg, Alexander N.

    2014-01-01

    ABSTRACT Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. IMPORTANCE Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by “bridging” the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. PMID:25505064

  3. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Bianchet, Mario A.; Fernández-Robledo, José A.; Amzel, L. Mario

    2013-01-01

    Although lectins are “hard-wired” in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins—the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc—has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity. PMID:22973821

  4. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.

    PubMed

    Blattner, Claudia; Lee, Jeong Hyun; Sliepen, Kwinten; Derking, Ronald; Falkowska, Emilia; de la Peña, Alba Torrents; Cupo, Albert; Julien, Jean-Philippe; van Gils, Marit; Lee, Peter S; Peng, Wenjie; Paulson, James C; Poignard, Pascal; Burton, Dennis R; Moore, John P; Sanders, Rogier W; Wilson, Ian A; Ward, Andrew B

    2014-05-15

    All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Carbohydrates and T cells: A sweet twosome

    PubMed Central

    Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.

    2013-01-01

    Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291

  6. Cell shape acquisition and maintenance in rodlike bacteria

    NASA Astrophysics Data System (ADS)

    van Teeffelen, Sven; Wingreen, Ned; Gitai, Zemer

    2010-03-01

    The shape of rodlike bacteria such as Escherichia coli is mainly governed by the expansion and reorganization of the peptidoglycan cell wall. The cell wall is a huge, mostly single-layered molecule of stiff glycan strands that typically run perpendicular to the long axis and are crosslinked by short peptides. The wall resists the excess pressure from inside the cell. Although much is known about the enzymes that synthesize the wall, the mechanisms by which the cell maintains a constant rod diameter and uniform glycan strand orientation during growth remain unknown. Here we present quantitative results on the structure and dynamics of two essential proteins, which are believed to play an important role in cell wall synthesis. In particular, we have focused on the filament-forming protein MreB, an actin homolog that forms a long helical bundle along the inner membrane of the cell, and penicillin-binding protein 2, an essential protein for peptide bond formation in the periplasm. Based on their interplay we discuss the possibility of MreB serving as a guide and ruler for cell wall synthesis.

  7. Glycan antagonists and inhibitors: a fount for drug discovery.

    PubMed

    Brown, Jillian R; Crawford, Brett E; Esko, Jeffrey D

    2007-01-01

    Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.

  8. Structural characterization of the N-glycans of gpMuc from Mucuna pruriens seeds.

    PubMed

    Di Patrizi, Lisa; Rosati, Floriana; Guerranti, Roberto; Pagani, Roberto; Gerwig, Gerrit J; Kamerling, Johannis P

    2006-11-01

    Mucuna pruriens seeds are used in some countries as a human prophylactic oral anti-snake remedy. Aqueous extracts of M. pruriens seeds possess in vivo activity against cobra and viper venoms, and protect mice against Echis carinatus venom. It was recently demonstrated that the seed immunogen generating the antibody that cross-reacts with the venom proteins is a multiform glycoprotein (gpMuc), and the immunogenic properties of gpMuc seemed to mainly reside in its glycan chains. In the present study, gpMuc was found to contain only N-glycans. Part of the N-glycans could be released with peptide-(N (4)-(N-acetyl-beta -glucosaminyl)asparagine amidase F (PNGase F-sensitive N-glycans); the PNGase F-resistant N-glycans were PNGase A-sensitive. The oligosaccharides released were analyzed by a combination of MALDI-TOF mass spectrometry, HPLC profiling of 2-aminobenzamide-labelled derivatives and (1)H NMR spectroscopy. The PNGase F-sensitive N-glycans comprised a mixture of oligomannose-type structures ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2), and two xylosylated structures, Xyl(1)Man(3)GlcNAc(2) and Xyl(1)Man(4)GlcNAc(2). The PNGase A-sensitive N-glycans, containing (alpha 1-3)-linked fucose, were identified as Fuc(1)Xyl(1)Man(2)GlcNAc(2) and Fuc(1)Xyl(1)Man(3)GlcNAc(2). In view of the determined N-glycan ensemble, the immunoreactivity of gpMuc was ascribed to the presence of core (beta 1-2)-linked xylose- and core alpha (1-3)-linked fucose-modified N-glycan chains.

  9. Zwitterionic-hydrophilic interaction capillary liquid chromatography coupled to tandem mass spectrometry for the characterization of human alpha-acid-glycoprotein N-glycan isomers.

    PubMed

    Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Peracaula, Rosa; Sanz-Nebot, Victòria

    2017-10-23

    In this work, a μZIC-HILIC-MS/MS methodology was established in negative ion mode for the characterization of glycan isomers. The possibility to separate the glycan isomers by the μZIC-HILIC strategy coupled to a high resolution tandem mass spectrometry detection permitted us to obtain valuable information about each glycan structure. The most important diagnostic ion fragments previously described to characterize structural features of glycans, were evaluated in this study using hAGP as model glycoprotein. The assignation of hAGP glycan isomers performed in our previous work using the GRIL strategy in combination with exoglycosidase digestion [1] was used in this paper to confirm or discard some ion fragments reported in the literature and delve into the structural characterization of glycan isomers. Sialic acid as well as fucose linkage-type glycan isomers were assigned using this approach and daughter ions with higher diagnostic value were determined. The location of α2-3/α2-6 sialic acids on antennas and a deeper characterization of several highly sialylated tri- and tetraantennary glycans was also possible using the established MS/MS method. Moreover, relying on the characterization performed in Ref. [1], core and antenna fucosylation were differentiated in this work using specific ion fragments obtained in the tandem mass spectra. This methodology was also applied to hAGP purified from control and pathological serum samples, which corroborated its robustness and its potential for finding novel glycan-based biomarkers in patho-glycomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family.

    PubMed

    Stone, Jacquelyn A; Nicola, Anthony V; Baum, Linda G; Aguilar, Hector C

    2016-02-01

    O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.

  11. Qualitative and Quantitative Analysis of Carbohydrate Modification on Glycoproteins from Seeds of Ginkgo biloba.

    PubMed

    Wang, Ting; Hu, Xiao-Chun; Cai, Zhi-Peng; Voglmeir, Josef; Liu, Li

    2017-09-06

    Recent progress in the relationship between carbohydrate cross-reactive determinants (CCDs) and allergic response highlights the importance of carbohydrate moieties in the innate immune system. Previous research pointed out that the protein allergen in Ginkgo biloba seeds is glycosylated, and the oligosaccharides conjugated to these proteins might also contribute to the allergy. The aim of this study was to analyze carbohydrate moieties, especially N-linked glycans, of glycoproteins from Ginkgo seeds originating from different places for detailed structures, to enable further research on the role played by N-glycans in Ginkgo-caused allergy. Results of monosaccharide composition and immunoblotting assays indicated the existence of N-glycans. Detailed structural elucidation of the N-glycans was further carried out by means of hydrophilic interaction ultraperformance liquid chromatography (HILIC-UPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 14 out of 16 structures detected by UPLC were confirmed by MALDI-TOF-MS and tandem mass spectrometry, among which complex-type N-glycans bearing Lewis A determinants and high-mannose-type N-glycans were identified from Ginkgo seeds for the first time. Precise quantification of N-glycans was performed by use of an external standard, and both the absolute amount of each N-glycan and the percentage of different types of N-glycan showed significant diversity among the samples without any pattern of geographic variation.

  12. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.

    PubMed

    Manya, Hiroshi; Endo, Tamao

    2017-10-01

    O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycanmore » standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.« less

  14. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation

    PubMed Central

    Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich

    2015-01-01

    We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753

  15. Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia

    PubMed Central

    Sun, Chenxia; Wen, Fuping; Wang, Haifeng; Guo, Huaizu; Gao, Xu; Xu, Chuanliang; Xu, Chuanliang; Yang, Chenghua; Sun, Yinghao

    2017-01-01

    The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa. PMID:29100363

  16. Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia.

    PubMed

    Jia, Gaozhen; Dong, Zhenyang; Sun, Chenxia; Wen, Fuping; Wang, Haifeng; Guo, Huaizu; Gao, Xu; Xu, Chuanliang; Xu, Chuanliang; Yang, Chenghua; Sun, Yinghao

    2017-09-29

    The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa.

  17. Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag.

    PubMed

    Song, Xuezheng; Lasanajak, Yi; Rivera-Marrero, Carlos; Luyai, Anthony; Willard, Margaret; Smith, David F; Cummings, Richard D

    2009-12-15

    Glycan microarray technology has become a successful tool for studying protein-carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by Pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core alpha1,3-fucose and core alpha1,2-xylose. After simple Fmoc deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants.

  18. Neutral glycans from sandfish skin can reduce friction of polymers

    PubMed Central

    Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-01-01

    The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038

  19. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    PubMed Central

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  20. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.

    PubMed

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-06-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]).

Top