Haberkamp, Anke; Schmidt, Filipp
2015-09-01
This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Positive fEMG Patterns with Ambiguity in Paintings.
Jakesch, Martina; Goller, Juergen; Leder, Helmut
2017-01-01
Whereas ambiguity in everyday life is often negatively evaluated, it is considered key in art appreciation. In a facial EMG study, we tested whether the positive role of visual ambiguity in paintings is reflected in a continuous affective evaluation on a subtle level. We presented ambiguous (disfluent) and non-ambiguous (fluent) versions of Magritte paintings and found that M. Zygomaticus major activation was higher and M. corrugator supercilii activation was lower for ambiguous than for non-ambiguous versions. Our findings reflect a positive continuous affective evaluation to visual ambiguity in paintings over the 5 s presentation time. We claim that this finding is indirect evidence for the hypothesis that visual stimuli classified as art, evoke a safe state for indulging into experiencing ambiguity, challenging the notion that processing fluency is generally related to positive affect.
Perceptual uncertainty facilitates creative discovery
NASA Astrophysics Data System (ADS)
Tseng, Winger Sei-Wo
2018-06-01
In this study, unstructured and ambiguous figures used as visual stimuli were classified as having high, moderate, and low ambiguity and presented to participants. The Experiment was designed to explore how the perceptual ambiguity that is inherent within presented visual cues can affect novice and expert designers' visual discovery during design development. A total number of 42 participants, half of them were recruited from non-design departments as novices. The remaining were chosen from design companies regarded as experts. The participants were tasked with discovering a sub-shape from the presented sketch and using this shape as a cue to design a concept. To this end, two types of sub-shapes were defined: known feature sub-shapes and innovative feature sub-shapes (IFSs). The experimental results strongly evidence that with an increase in the ambiguity of the visual stimuli, expert designers produce more ideas and IFSs, whereas novice designers produce fewer. The capability of expert designers to exploit visual ambiguity is interesting, and its absence in novice designers suggests that this capability is likely a unique skill gained, at least in part, through professional practice. Our results can be applied in design learning and education to generalize the principles and strategies of visual discovery by expert designers during concept sketching in order to train novice designers in addressing design problems.
Krug, Kristine; Cicmil, Nela; Parker, Andrew J.; Cumming, Bruce G.
2013-01-01
Summary Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. PMID:23871244
Audio-Visual Speech Perception Is Special
ERIC Educational Resources Information Center
Tuomainen, J.; Andersen, T.S.; Tiippana, K.; Sams, M.
2005-01-01
In face-to-face conversation speech is perceived by ear and eye. We studied the prerequisites of audio-visual speech perception by using perceptually ambiguous sine wave replicas of natural speech as auditory stimuli. When the subjects were not aware that the auditory stimuli were speech, they showed only negligible integration of auditory and…
Krug, Kristine; Cicmil, Nela; Parker, Andrew J; Cumming, Bruce G
2013-08-05
Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Familiarity and Attraction to Stimuli: Developmental Change or Methodological Artifact?
ERIC Educational Resources Information Center
Kail, Robert V., Jr.
1974-01-01
Investigates whether procedural differences or developmental changes account for the ambiguous results obtained in previous research on the affective consequences of mere exposure to visual stimuli with 7-, 9-, and 11-year-old children. (Author/ED)
Ryan, Christian; Stafford, Martina; King, Robert James
2016-12-01
Faces are one of the most socially significant visual stimuli encountered in the environment, whereas pareidolias are illusions of faces arising from ambiguous stimuli in the environment. Autism spectrum disorder (ASD) is characterised by deficits in response to social stimuli. We found that children with ASD (n = 60) identify significantly fewer pareidolic faces in a sequence of ambiguous stimuli than typically developing peers. The two groups did not differ in the number of objects identified, indicating that the children with ASD had a specific lack of attention to faces. Pareidolia have considerable potential as naturalistic and easy-to-create materials for the investigation of spontaneous attention to social stimuli in children with ASD.
Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.
Duncan, Lauren E; Peterson, Bill E
2014-01-01
Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.
ERIC Educational Resources Information Center
Ryan, Christian; Stafford, Martina; King, Robert James
2016-01-01
Faces are one of the most socially significant visual stimuli encountered in the environment, whereas pareidolias are illusions of faces arising from ambiguous stimuli in the environment. Autism spectrum disorder (ASD) is characterised by deficits in response to social stimuli. We found that children with ASD (n = 60) identify significantly fewer…
ERIC Educational Resources Information Center
Squire, Larry R.; Levy, Daniel A.; Shrager, Yael
2005-01-01
The perirhinal cortex is known to be important for memory, but there has recently been interest in the possibility that it might also be involved in visual perceptual functions. In four experiments, we assessed visual discrimination ability and visual discrimination learning in severely amnesic patients with large medial temporal lobe lesions that…
Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723
Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.
Do visually salient stimuli reduce children's risky decisions?
Schwebel, David C; Lucas, Elizabeth K; Pearson, Alana
2009-09-01
Children tend to overestimate their physical abilities, and that tendency is related to risk for unintentional injury. This study tested whether or not children estimate their physical ability differently when exposed to stimuli that were highly visually salient due to fluorescent coloring. Sixty-nine 6-year-olds judged physical ability to complete laboratory-based physical tasks. Half judged ability using tasks that were painted black; the other half judged the same tasks, but the stimuli were striped black and fluorescent lime-green. Results suggest the two groups judged similarly, but children took longer to judge perceptually ambiguous tasks when those tasks were visually salient. In other words, visual salience increased decision-making time but not accuracy of judgment. These findings held true after controlling for demographic and temperament characteristics.
Perceptual grouping across eccentricity.
Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan
2014-10-01
Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Is Syntactic-Category Processing Obligatory in Visual Word Recognition? Evidence from Chinese
ERIC Educational Resources Information Center
Wong, Andus Wing-Kuen; Chen, Hsuan-Chih
2012-01-01
Three experiments were conducted to investigate how syntactic-category and semantic information is processed in visual word recognition. The stimuli were two-character Chinese words in which semantic and syntactic-category ambiguities were factorially manipulated. A lexical decision task was employed in Experiment 1, whereas a semantic relatedness…
Perceptual memory drives learning of retinotopic biases for bistable stimuli.
Murphy, Aidan P; Leopold, David A; Welchman, Andrew E
2014-01-01
The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased toward one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming) or through intermittent presentations of the ambiguous stimulus (stabilization). Similarly, prior presentations of unambiguous stimuli can be used to explicitly "train" a long-lasting association between a percept and a retinal location (perceptual association). These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to 40 min, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of 5 min, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain's tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual organization.
Gamma activity modulated by naming of ambiguous and unambiguous images: intracranial recording
Cho-Hisamoto, Yoshimi; Kojima, Katsuaki; Brown, Erik C; Matsuzaki, Naoyuki; Asano, Eishi
2014-01-01
OBJECTIVE Humans sometimes need to recognize objects based on vague and ambiguous silhouettes. Recognition of such images may require an intuitive guess. We determined the spatial-temporal characteristics of intracranially-recorded gamma activity (at 50–120 Hz) augmented differentially by naming of ambiguous and unambiguous images. METHODS We studied ten patients who underwent epilepsy surgery. Ambiguous and unambiguous images were presented during extraoperative electrocorticography recording, and patients were instructed to overtly name the object as it is first perceived. RESULTS Both naming tasks were commonly associated with gamma-augmentation sequentially involving the occipital and occipital-temporal regions, bilaterally, within 200 ms after the onset of image presentation. Naming of ambiguous images elicited gamma-augmentation specifically involving portions of the inferior-frontal, orbitofrontal, and inferior-parietal regions at 400 ms and after. Unambiguous images were associated with more intense gamma-augmentation in portions of the occipital and occipital-temporal regions. CONCLUSIONS Frontal-parietal gamma-augmentation specific to ambiguous images may reflect the additional cortical processing involved in exerting intuitive guess. Occipital gamma-augmentation enhanced during naming of unambiguous images can be explained by visual processing of stimuli with richer detail. SIGNIFICANCE Our results support the theoretical model that guessing processes in visual domain occur following the accumulation of sensory evidence resulting from the bottom-up processing in the occipital-temporal visual pathways. PMID:24815577
Decision ambiguity is mediated by a late positive potential originating from cingulate cortex.
Sun, Sai; Zhen, Shanshan; Fu, Zhongzheng; Wu, Daw-An; Shimojo, Shinsuke; Adolphs, Ralph; Yu, Rongjun; Wang, Shuo
2017-08-15
People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction. Copyright © 2017 Elsevier Inc. All rights reserved.
Hesse, Janis K; Tsao, Doris Y
2016-11-02
Segmentation and recognition of objects in a visual scene are two problems that are hard to solve separately from each other. When segmenting an ambiguous scene, it is helpful to already know the present objects and their shapes. However, for recognizing an object in clutter, one would like to consider its isolated segment alone to avoid confounds from features of other objects. Border-ownership cells (Zhou et al., 2000) appear to play an important role in segmentation, as they signal the side-of-figure of artificial stimuli. The present work explores the role of border-ownership cells in dorsal macaque visual areas V2 and V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We report two major results. First, compared with previous estimates, we found a smaller percentage of cells that were consistent across artificial stimuli used previously. Second, we found that the average response of those neurons that did respond consistently to the side-of-figure of artificial stimuli also consistently signaled, as a population, the side-of-figure for borders of single faces, occluding faces and, with higher latencies, even stimuli with illusory contours, such as Mooney faces and natural faces completely missing local edge information. In contrast, the local edge or the outlines of the face alone could not always evoke a significant border-ownership signal. Our results underscore that border ownership is coded by a population of cells, and indicate that these cells integrate a variety of cues, including low-level features and global object context, to compute the segmentation of the scene. To distinguish different objects in a natural scene, the brain must segment the image into regions corresponding to objects. The so-called "border-ownership" cells appear to be dedicated to this task, as they signal for a given edge on which side the object is that owns it. Here, we report that individual border-ownership cells are unreliable when tested across a battery of artificial stimuli used previously but can signal border-ownership consistently as a population. We show that these border-ownership population signals are also suited for signaling border-ownership for natural objects and at longer latency, even for stimuli without local edge information. Our results suggest that border-ownership cells integrate both local, low-level and global, high-level cues to segment the scene. Copyright © 2016 the authors 0270-6474/16/3611338-12$15.00/0.
A new cue to figure-ground coding: top-bottom polarity.
Hulleman, Johan; Humphreys, Glyn W
2004-11-01
We present evidence for a new figure-ground cue: top-bottom polarity. In an explicit reporting task, participants were more likely to interpret stimuli with a wide base and a narrow top as a figure. A similar advantage for wide-based stimuli also occurred in a visual short-term memory task, where the stimuli had ambiguous figure-ground relations. Further support comes from a figural search task. Figural search is a discrimination task in which participants are set to search for a symmetric target in a display with ambiguous figure-ground organization. We show that figural search was easier when stimuli with a top-bottom polarity were placed in an orientation where they had a wide base and a narrow top, relative to when this orientation was inverted. This polarity effect was present when participants were set to use color to parse figure from ground, and it was magnified when the participants did not have any foreknowledge of the color of the symmetric target. Taken together the results suggest that top-bottom polarity influences figure-ground assignment, with wide base stimuli being preferred as a figure. In addition, the figural search task can serve as a useful procedure to examine figure-ground assignment.
Wang, Qiandong; Xiao, Naiqi G.; Quinn, Paul C.; Hu, Chao S.; Qian, Miao; Fu, Genyue; Lee, Kang
2014-01-01
Recent studies have shown that participants use different eye movement strategies when scanning own- and other-race faces. However, it is unclear (1) whether this effect is related to face recognition performance, and (2) to what extent this effect is influenced by top-down or bottom-up facial information. In the present study, Chinese participants performed a face recognition task with Chinese faces, Caucasian faces, and racially ambiguous morphed face stimuli. For the racially ambiguous faces, we led participants to believe that they were viewing either own-race Chinese faces or other-race Caucasian faces. Results showed that (1) Chinese participants scanned the nose of the true Chinese faces more than that of the true Caucasian faces, whereas they scanned the eyes of the Caucasian faces more than those of the Chinese faces; (2) they scanned the eyes, nose, and mouth equally for the ambiguous faces in the Chinese condition compared with those in the Caucasian condition; (3) when recognizing the true Chinese target faces, but not the true target Caucasian faces, the greater the fixation proportion on the nose, the faster the participants correctly recognized these faces. The same was true when racially ambiguous face stimuli were thought to be Chinese faces. These results provide the first evidence to show that (1) visual scanning patterns of faces are related to own-race face recognition response time, and (2) it is bottom-up facial physiognomic information of racial categories that mainly contributes to face scanning. However, top-down knowledge of racial categories can influence the relationship between face scanning patterns and recognition response time. PMID:25497461
Multiscale neural connectivity during human sensory processing in the brain
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.
2018-05-01
Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.
Cohen, H E; Hall, J; Harris, N; McCabe, C S; Blake, D R; Jänig, W
2012-02-01
Cortical reorganisation of sensory, motor and autonomic systems can lead to dysfunctional central integrative control. This may contribute to signs and symptoms of Complex Regional Pain Syndrome (CRPS), including pain. It has been hypothesised that central neuroplastic changes may cause afferent sensory feedback conflicts and produce pain. We investigated autonomic responses produced by ambiguous visual stimuli (AVS) in CRPS, and their relationship to pain. Thirty CRPS patients with upper limb involvement and 30 age and sex matched healthy controls had sympathetic autonomic function assessed using laser Doppler flowmetry of the finger pulp at baseline and while viewing a control figure or AVS. Compared to controls, there were diminished vasoconstrictor responses and a significant difference in the ratio of response between affected and unaffected limbs (symmetry ratio) to a deep breath and viewing AVS. While viewing visual stimuli, 33.5% of patients had asymmetric vasomotor responses and all healthy controls had a homologous symmetric pattern of response. Nineteen (61%) CRPS patients had enhanced pain within seconds of viewing the AVS. All the asymmetric vasomotor responses were in this group, and were not predictable from baseline autonomic function. Ten patients had accompanying dystonic reactions in their affected limb: 50% were in the asymmetric sub-group. In conclusion, there is a group of CRPS patients that demonstrate abnormal pain networks interacting with central somatomotor and autonomic integrational pathways. © 2011 European Federation of International Association for the Study of Pain Chapters.
Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry
Einhäuser, Wolfgang; Stout, James; Koch, Christof; Carter, Olivia
2008-01-01
During sustained viewing of an ambiguous stimulus, an individual's perceptual experience will generally switch between the different possible alternatives rather than stay fixed on one interpretation (perceptual rivalry). Here, we measured pupil diameter while subjects viewed different ambiguous visual and auditory stimuli. For all stimuli tested, pupil diameter increased just before the reported perceptual switch and the relative amount of dilation before this switch was a significant predictor of the subsequent duration of perceptual stability. These results could not be explained by blink or eye-movement effects, the motor response or stimulus driven changes in retinal input. Because pupil dilation reflects levels of norepinephrine (NE) released from the locus coeruleus (LC), we interpret these results as suggestive that the LC–NE complex may play the same role in perceptual selection as in behavioral decision making. PMID:18250340
Interpreting Chicken-Scratch: Lexical Access for Handwritten Words
Barnhart, Anthony S.; Goldinger, Stephen D.
2014-01-01
Handwritten word recognition is a field of study that has largely been neglected in the psychological literature, despite its prevalence in society. Whereas studies of spoken word recognition almost exclusively employ natural, human voices as stimuli, studies of visual word recognition use synthetic typefaces, thus simplifying the process of word recognition. The current study examined the effects of handwriting on a series of lexical variables thought to influence bottom-up and top-down processing, including word frequency, regularity, bidirectional consistency, and imageability. The results suggest that the natural physical ambiguity of handwritten stimuli forces a greater reliance on top-down processes, because almost all effects were magnified, relative to conditions with computer print. These findings suggest that processes of word perception naturally adapt to handwriting, compensating for physical ambiguity by increasing top-down feedback. PMID:20695708
Kinesthetic information disambiguates visual motion signals.
Hu, Bo; Knill, David C
2010-05-25
Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.
Self-generated visual imagery alters the mere exposure effect.
Craver-Lemley, Catherine; Bornstein, Robert F
2006-12-01
To determine whether self-generated visual imagery alters liking ratings of merely exposed stimuli, 79 college students were repeatedly exposed to the ambiguous duck-rabbit figure. Half the participants were told to picture the image as a duck and half to picture it as a rabbit. When participants made liking ratings of both disambiguated versions of the figure, they rated the version consistent with earlier encoding more positively than the alternate version. Implications of these findings for theoretical models of the exposure effect are discussed.
de Jong, Peter J.; Georgiadis, Janniko R.
2014-01-01
Lifetime experiences shape people’s attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile–vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-‘hot’ vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-‘hot’) associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli. PMID:23051899
Borg, Charmaine; de Jong, Peter J; Georgiadis, Janniko R
2014-02-01
Lifetime experiences shape people's attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile-vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-'hot' vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-'hot') associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli.
Bottlenose dolphins perceive object features through echolocation.
Harley, Heidi E; Putman, Erika A; Roitblat, Herbert L
2003-08-07
How organisms (including people) recognize distant objects is a fundamental question. The correspondence between object characteristics (distal stimuli), like visual shape, and sensory characteristics (proximal stimuli), like retinal projection, is ambiguous. The view that sensory systems are 'designed' to 'pick up' ecologically useful information is vague about how such mechanisms might work. In echolocating dolphins, which are studied as models for object recognition sonar systems, the correspondence between echo characteristics and object characteristics is less clear. Many cognitive scientists assume that object characteristics are extracted from proximal stimuli, but evidence for this remains ambiguous. For example, a dolphin may store 'sound templates' in its brain and identify whole objects by listening for a particular sound. Alternatively, a dolphin's brain may contain algorithms, derived through natural endowments or experience or both, which allow it to identify object characteristics based on sounds. The standard method used to address this question in many species is indirect and has led to equivocal results with dolphins. Here we outline an appropriate method and test it to show that dolphins extract object characteristics directly from echoes.
Pain and other symptoms of CRPS can be increased by ambiguous visual stimuli--an exploratory study.
Hall, Jane; Harrison, Simon; Cohen, Helen; McCabe, Candida S; Harris, N; Blake, David R
2011-01-01
Visual disturbance, visuo-spatial difficulties, and exacerbations of pain associated with these, have been reported by some patients with Complex Regional Pain Syndrome (CRPS). We investigated the hypothesis that some visual stimuli (i.e. those which produce ambiguous perceptions) can induce pain and other somatic sensations in people with CRPS. Thirty patients with CRPS, 33 with rheumatology conditions and 45 healthy controls viewed two images: a bistable spatial image and a control image. For each image participants recorded the frequency of percept change in 1 min and reported any changes in somatosensation. 73% of patients with CRPS reported increases in pain and/or sensory disturbances including changes in perception of the affected limb, temperature and weight changes and feelings of disorientation after viewing the bistable image. Additionally, 13% of the CRPS group responded with striking worsening of their symptoms which necessitated task cessation. Subjects in the control groups did not report pain increases or somatic sensations. It is possible to worsen the pain suffered in CRPS, and to produce other somatic sensations, by means of a visual stimulus alone. This is a newly described finding. As a clinical and research tool, the experimental method provides a means to generate and exacerbate somaesthetic disturbances, including pain, without moving the affected limb and causing nociceptive interference. This may be particularly useful for brain imaging studies. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Perceptual flexibility is coupled with reduced executive inhibition in students of the visual arts.
Chamberlain, Rebecca; Swinnen, Lena; Heeren, Sarah; Wagemans, Johan
2018-05-01
Artists often report that seeing familiar stimuli in novel and interesting ways plays a role in visual art creation. However, the attentional mechanisms which underpin this ability have yet to be fully investigated. More specifically, it is unclear whether the ability to reinterpret visual stimuli in novel and interesting ways is facilitated by endogenously generated switches of attention, and whether it is linked in turn to executive functions such as inhibition and response switching. To address this issue, the current study explored ambiguous figure reversal and executive function in a sample of undergraduate students studying arts and non-art subjects (N = 141). Art students showed more frequent perceptual reversals in an ambiguous figure task, both when viewing the stimulus passively and when eliciting perceptual reversals voluntarily, but showed no difference from non-art students when asked to actively maintain specific percepts. In addition, art students were worse than non-art students at inhibiting distracting flankers in an executive inhibition task. The findings suggest that art students can elicit endogenous shifts of attention more easily than non-art students but that this faculty is not directly associated with enhanced executive function. It is proposed that the signature of artistic skill may be increased perceptual flexibility accompanied by reduced cognitive inhibition; however, future research will be necessary to determine which particular subskills in the visual arts are linked to aspects of perception and executive function. © 2017 The British Psychological Society.
PFC neurons reflect categorical decisions about ambiguous stimuli.
Roy, Jefferson E; Buschman, Timothy J; Miller, Earl K
2014-06-01
We examined whether PFC neuron activity reflects categorical decisions in monkeys categorizing ambiguous stimuli. A morphing system was used to systematically vary stimulus shape and precisely define category boundaries. Ambiguous stimuli were centered on a category boundary, that is, they were a mix of 50% of two prototypes and therefore had no category information, so monkeys guessed at their category membership. We found that the monkeys' trial-by-trial decision about the category membership of an ambiguous image was reflected in PFC activity. Activity to the same ambiguous image differed significantly, depending on which category the monkey had assigned it to. This effect only occurred when that scheme was behaviorally relevant. These indicate that PFC activity reflects categorical decisions.
Jakesch, Martina; Leder, Helmut; Forster, Michael
2013-01-01
Ambiguity is often associated with negative affective responses, and enjoying ambiguity seems restricted to only a few situations, such as experiencing art. Nevertheless, theories of judgment formation, especially the “processing fluency account”, suggest that easy-to-process (non-ambiguous) stimuli are processed faster and are therefore preferred to (ambiguous) stimuli, which are hard to process. In a series of six experiments, we investigated these contrasting approaches by manipulating fluency (presentation duration: 10ms, 50ms, 100ms, 500ms, 1000ms) and testing effects of ambiguity (ambiguous versus non-ambiguous pictures of paintings) on classification performance (Part A; speed and accuracy) and aesthetic appreciation (Part B; liking and interest). As indicated by signal detection analyses, classification accuracy increased with presentation duration (Exp. 1a), but we found no effects of ambiguity on classification speed (Exp. 1b). Fifty percent of the participants were able to successfully classify ambiguous content at a presentation duration of 100 ms, and at 500ms even 75% performed above chance level. Ambiguous artworks were found more interesting (in conditions 50ms to 1000ms) and were preferred over non-ambiguous stimuli at 500ms and 1000ms (Exp. 2a - 2c, 3). Importantly, ambiguous images were nonetheless rated significantly harder to process as non-ambiguous images. These results suggest that ambiguity is an essential ingredient in art appreciation even though or maybe because it is harder to process. PMID:24040172
Hallucinators find meaning in noises: pareidolic illusions in dementia with Lewy bodies.
Yokoi, Kayoko; Nishio, Yoshiyuki; Uchiyama, Makoto; Shimomura, Tatsuo; Iizuka, Osamu; Mori, Etsuro
2014-04-01
By definition, visual illusions and hallucinations differ in whether the perceived objects exist in reality. A recent study challenged this dichotomy, in which pareidolias, a type of complex visual illusion involving ambiguous forms being perceived as meaningful objects, are very common and phenomenologically similar to visual hallucinations in dementia with Lewy bodies (DLB). We hypothesise that a common psychological mechanism exists between pareidolias and visual hallucinations in DLB that confers meaning upon meaningless visual information. Furthermore, we believe that these two types of visual misperceptions have a common underlying neural mechanism, namely, cholinergic insufficiency. The current study investigated pareidolic illusions using meaningless visual noise stimuli (the noise pareidolia test) in 34 patients with DLB, 34 patients with Alzheimer׳s disease and 28 healthy controls. Fifteen patients with DLB were administered the noise pareidolia test twice, before and after donepezil treatment. Three major findings were discovered: (1) DLB patients saw meaningful illusory images (pareidolias) in meaningless visual stimuli, (2) the number of pareidolic responses correlated with the severity of visual hallucinations, and (3) cholinergic enhancement reduced both the number of pareidolias and the severity of visual hallucinations in patients with DLB. These findings suggest that a common underlying psychological and neural mechanism exists between pareidolias and visual hallucinations in DLB. Copyright © 2014 Elsevier Ltd. All rights reserved.
The activity in the anterior insulae is modulated by perceptual decision-making difficulty.
Lamichhane, Bidhan; Adhikari, Bhim M; Dhamala, Mukesh
2016-07-07
Previous neuroimaging studies provide evidence for the involvement of the anterior insulae (INSs) in perceptual decision-making processes. However, how the insular cortex is involved in integration of degraded sensory information to create a conscious percept of environment and to drive our behaviors still remains a mystery. In this study, using functional magnetic resonance imaging (fMRI) and four different perceptual categorization tasks in visual and audio-visual domains, we measured blood oxygen level dependent (BOLD) signals and examined the roles of INSs in easy and difficult perceptual decision-making. We created a varying degree of degraded stimuli by manipulating the task-specific stimuli in these four experiments to examine the effects of task difficulty on insular cortex response. We hypothesized that significantly higher BOLD response would be associated with the ambiguity of the sensory information and decision-making difficulty. In all of our experimental tasks, we found the INS activity consistently increased with task difficulty and participants' behavioral performance changed with the ambiguity of the presented sensory information. These findings support the hypothesis that the anterior insulae are involved in sensory-guided, goal-directed behaviors and their activities can predict perceptual load and task difficulty. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Unfolding Visual Lexical Decision in Time
Barca, Laura; Pezzulo, Giovanni
2012-01-01
Visual lexical decision is a classical paradigm in psycholinguistics, and numerous studies have assessed the so-called “lexicality effect" (i.e., better performance with lexical than non-lexical stimuli). Far less is known about the dynamics of choice, because many studies measured overall reaction times, which are not informative about underlying processes. To unfold visual lexical decision in (over) time, we measured participants' hand movements toward one of two item alternatives by recording the streaming x,y coordinates of the computer mouse. Participants categorized four kinds of stimuli as “lexical" or “non-lexical:" high and low frequency words, pseudowords, and letter strings. Spatial attraction toward the opposite category was present for low frequency words and pseudowords. Increasing the ambiguity of the stimuli led to greater movement complexity and trajectory attraction to competitors, whereas no such effect was present for high frequency words and letter strings. Results fit well with dynamic models of perceptual decision-making, which describe the process as a competition between alternatives guided by the continuous accumulation of evidence. More broadly, our results point to a key role of statistical decision theory in studying linguistic processing in terms of dynamic and non-modular mechanisms. PMID:22563419
Visual input enhances selective speech envelope tracking in auditory cortex at a "cocktail party".
Zion Golumbic, Elana; Cogan, Gregory B; Schroeder, Charles E; Poeppel, David
2013-01-23
Our ability to selectively attend to one auditory signal amid competing input streams, epitomized by the "Cocktail Party" problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared with responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker's face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a Cocktail Party setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive.
Bias to experience approaching motion in a three-dimensional virtual environment.
Lewis, Clifford F; McBeath, Michael K
2004-01-01
We used two-frame apparent motion in a three-dimensional virtual environment to test whether observers had biases to experience approaching or receding motion in depth. Observers viewed a tunnel of tiles receding in depth, that moved ambiguously either toward or away from them. We found that observers exhibited biases to experience approaching motion. The strengths of the biases were decreased when stimuli pointed away, but size of the display screen had no effect. Tests with diamond-shaped tiles that varied in the degree of pointing asymmetry resulted in a linear trend in which the bias was strongest for stimuli pointing toward the viewer, and weakest for stimuli pointing away. We show that the overall bias to experience approaching motion is consistent with a computational strategy of matching corresponding features between adjacent foreshortened stimuli in consecutive visual frames. We conclude that there are both adaptational and geometric reasons to favor the experience of approaching motion.
Neural responses to ambiguity involve domain-general and domain-specific emotion processing systems.
Neta, Maital; Kelley, William M; Whalen, Paul J
2013-04-01
Extant research has examined the process of decision making under uncertainty, specifically in situations of ambiguity. However, much of this work has been conducted in the context of semantic and low-level visual processing. An open question is whether ambiguity in social signals (e.g., emotional facial expressions) is processed similarly or whether a unique set of processors come on-line to resolve ambiguity in a social context. Our work has examined ambiguity using surprised facial expressions, as they have predicted both positive and negative outcomes in the past. Specifically, whereas some people tended to interpret surprise as negatively valenced, others tended toward a more positive interpretation. Here, we examined neural responses to social ambiguity using faces (surprise) and nonface emotional scenes (International Affective Picture System). Moreover, we examined whether these effects are specific to ambiguity resolution (i.e., judgments about the ambiguity) or whether similar effects would be demonstrated for incidental judgments (e.g., nonvalence judgments about ambiguously valenced stimuli). We found that a distinct task control (i.e., cingulo-opercular) network was more active when resolving ambiguity. We also found that activity in the ventral amygdala was greater to faces and scenes that were rated explicitly along the dimension of valence, consistent with findings that the ventral amygdala tracks valence. Taken together, there is a complex neural architecture that supports decision making in the presence of ambiguity: (a) a core set of cortical structures engaged for explicit ambiguity processing across stimulus boundaries and (b) other dedicated circuits for biologically relevant learning situations involving faces.
Investigating hypervigilance for social threat of lonely children.
Qualter, Pamela; Rotenberg, Ken; Barrett, Louise; Henzi, Peter; Barlow, Alexandra; Stylianou, Maria; Harris, Rebecca A
2013-02-01
The hypothesis that lonely children show hypervigilance for social threat was examined in a series of three studies that employed different methods including advanced eye-tracking technology. Hypervigilance for social threat was operationalized as hostility to ambiguously motivated social exclusion in a variation of the hostile attribution paradigm (Study 1), scores on the Children's Rejection-Sensitivity Questionnaire (Study 2), and visual attention to socially rejecting stimuli (Study 3). The participants were 185 children (11 years-7 months to 12 years-6 months), 248 children (9 years-4 months to 11 years-8 months) and 140 children (8 years-10 months to 12 years-10 months) in the three studies, respectively. Regression analyses showed that, with depressive symptoms covaried, there were quadratic relations between loneliness and these different measures of hypervigilance to social threat. As hypothesized, only children in the upper range of loneliness demonstrated elevated hostility to ambiguously motivated social exclusion, higher scores on the rejection sensitivity questionnaire, and disengagement difficulties when viewing socially rejecting stimuli. We found that very lonely children are hypersensitive to social threat.
Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’
Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David
2013-01-01
Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218
Sekar, Krithiga; Findley, William M.; Poeppel, David; Llinás, Rodolfo R.
2013-01-01
At perceptual threshold, some stimuli are available for conscious access whereas others are not. Such threshold inputs are useful tools for investigating the events that separate conscious awareness from unconscious stimulus processing. Here, viewing unmasked, threshold-duration images was combined with recording magnetoencephalography to quantify differences among perceptual states, ranging from no awareness to ambiguity to robust perception. A four-choice scale was used to assess awareness: “didn’t see” (no awareness), “couldn’t identify” (awareness without identification), “unsure” (awareness with low certainty identification), and “sure” (awareness with high certainty identification). Stimulus-evoked neuromagnetic signals were grouped according to behavioral response choices. Three main cortical responses were elicited. The earliest response, peaking at ∼100 ms after stimulus presentation, showed no significant correlation with stimulus perception. A late response (∼290 ms) showed moderate correlation with stimulus awareness but could not adequately differentiate conscious access from its absence. By contrast, an intermediate response peaking at ∼240 ms was observed only for trials in which stimuli were consciously detected. That this signal was similar for all conditions in which awareness was reported is consistent with the hypothesis that conscious visual access is relatively sharply demarcated. PMID:23509248
Involvement of Right STS in Audio-Visual Integration for Affective Speech Demonstrated Using MEG
Hagan, Cindy C.; Woods, Will; Johnson, Sam; Green, Gary G. R.; Young, Andrew W.
2013-01-01
Speech and emotion perception are dynamic processes in which it may be optimal to integrate synchronous signals emitted from different sources. Studies of audio-visual (AV) perception of neutrally expressed speech demonstrate supra-additive (i.e., where AV>[unimodal auditory+unimodal visual]) responses in left STS to crossmodal speech stimuli. However, emotions are often conveyed simultaneously with speech; through the voice in the form of speech prosody and through the face in the form of facial expression. Previous studies of AV nonverbal emotion integration showed a role for right (rather than left) STS. The current study therefore examined whether the integration of facial and prosodic signals of emotional speech is associated with supra-additive responses in left (cf. results for speech integration) or right (due to emotional content) STS. As emotional displays are sometimes difficult to interpret, we also examined whether supra-additive responses were affected by emotional incongruence (i.e., ambiguity). Using magnetoencephalography, we continuously recorded eighteen participants as they viewed and heard AV congruent emotional and AV incongruent emotional speech stimuli. Significant supra-additive responses were observed in right STS within the first 250 ms for emotionally incongruent and emotionally congruent AV speech stimuli, which further underscores the role of right STS in processing crossmodal emotive signals. PMID:23950977
Involvement of right STS in audio-visual integration for affective speech demonstrated using MEG.
Hagan, Cindy C; Woods, Will; Johnson, Sam; Green, Gary G R; Young, Andrew W
2013-01-01
Speech and emotion perception are dynamic processes in which it may be optimal to integrate synchronous signals emitted from different sources. Studies of audio-visual (AV) perception of neutrally expressed speech demonstrate supra-additive (i.e., where AV>[unimodal auditory+unimodal visual]) responses in left STS to crossmodal speech stimuli. However, emotions are often conveyed simultaneously with speech; through the voice in the form of speech prosody and through the face in the form of facial expression. Previous studies of AV nonverbal emotion integration showed a role for right (rather than left) STS. The current study therefore examined whether the integration of facial and prosodic signals of emotional speech is associated with supra-additive responses in left (cf. results for speech integration) or right (due to emotional content) STS. As emotional displays are sometimes difficult to interpret, we also examined whether supra-additive responses were affected by emotional incongruence (i.e., ambiguity). Using magnetoencephalography, we continuously recorded eighteen participants as they viewed and heard AV congruent emotional and AV incongruent emotional speech stimuli. Significant supra-additive responses were observed in right STS within the first 250 ms for emotionally incongruent and emotionally congruent AV speech stimuli, which further underscores the role of right STS in processing crossmodal emotive signals.
Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume
2016-01-01
There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS.
Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.
Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K
2016-11-01
Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110
Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.
Ambiguous science and the visual representation of the real
NASA Astrophysics Data System (ADS)
Newbold, Curtis Robert
The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in visual representations of science inevitably creates ambiguous meanings. As a means to improve visual literacy in the sciences, I call awareness to the ubiquity of visual ambiguity and its importance and relevance in scientific discourse. To do this, I conduct a literature review that spans interdisciplinary research in communication, science, art, and rhetoric. Furthermore, I create a paradoxically ambiguous taxonomy, which functions to exploit the nuances of visual ambiguities and their role in scientific communication. I then extrapolate the taxonomy of visual ambiguity and from it develop an ambiguous, rhetorical heuristic, the Tetradic Model of Visual Ambiguity. The Tetradic Model is applied to a case example of a scientific image as a demonstration of how scientific communicators may increase their awareness of the epistemological effects of ambiguity in the visual representations of science. I conclude by demonstrating how scientific communicators may make productive use of visual ambiguity, even in communications of objective science, and I argue how doing so strengthens scientific communicators' visual literacy skills and their ability to communicate more ethically and effectively.
ERIC Educational Resources Information Center
Doherty, M.J.; Wimmer, M.C.
2005-01-01
In two experiments involving one hundred and thirty-eight 3- to 5-year-olds we examined the claim that a complex understanding of ambiguity is required to experience reversal of ambiguous stimuli [Gopnik, A., & Rosati, A. (2001). Duck or rabbit? Reversing ambiguous figures and understanding ambiguous representations. Developmental Science, 4,…
Multisensory Integration in Non-Human Primates during a Sensory-Motor Task
Lanz, Florian; Moret, Véronique; Rouiller, Eric Michel; Loquet, Gérard
2013-01-01
Daily our central nervous system receives inputs via several sensory modalities, processes them and integrates information in order to produce a suitable behavior. The amazing part is that such a multisensory integration brings all information into a unified percept. An approach to start investigating this property is to show that perception is better and faster when multimodal stimuli are used as compared to unimodal stimuli. This forms the first part of the present study conducted in a non-human primate’s model (n = 2) engaged in a detection sensory-motor task where visual and auditory stimuli were displayed individually or simultaneously. The measured parameters were the reaction time (RT) between stimulus and onset of arm movement, successes and errors percentages, as well as the evolution as a function of time of these parameters with training. As expected, RTs were shorter when the subjects were exposed to combined stimuli. The gains for both subjects were around 20 and 40 ms, as compared with the auditory and visual stimulus alone, respectively. Moreover the number of correct responses increased in response to bimodal stimuli. We interpreted such multisensory advantage through redundant signal effect which decreases perceptual ambiguity, increases speed of stimulus detection, and improves performance accuracy. The second part of the study presents single-unit recordings derived from the premotor cortex (PM) of the same subjects during the sensory-motor task. Response patterns to sensory/multisensory stimulation are documented and specific type proportions are reported. Characterization of bimodal neurons indicates a mechanism of audio-visual integration possibly through a decrease of inhibition. Nevertheless the neural processing leading to faster motor response from PM as a polysensory association cortical area remains still unclear. PMID:24319421
Wang, Qiandong; Xiao, Naiqi G; Quinn, Paul C; Hu, Chao S; Qian, Miao; Fu, Genyue; Lee, Kang
2015-02-01
Recent studies have shown that participants use different eye movement strategies when scanning own- and other-race faces. However, it is unclear (1) whether this effect is related to face recognition performance, and (2) to what extent this effect is influenced by top-down or bottom-up facial information. In the present study, Chinese participants performed a face recognition task with Chinese, Caucasian, and racially ambiguous faces. For the racially ambiguous faces, we led participants to believe that they were viewing either own-race Chinese faces or other-race Caucasian faces. Results showed that (1) Chinese participants scanned the nose of the true Chinese faces more than that of the true Caucasian faces, whereas they scanned the eyes of the Caucasian faces more than those of the Chinese faces; (2) they scanned the eyes, nose, and mouth equally for the ambiguous faces in the Chinese condition compared with those in the Caucasian condition; (3) when recognizing the true Chinese target faces, but not the true target Caucasian faces, the greater the fixation proportion on the nose, the faster the participants correctly recognized these faces. The same was true when racially ambiguous face stimuli were thought to be Chinese faces. These results provide the first evidence to show that (1) visual scanning patterns of faces are related to own-race face recognition response time, and (2) it is bottom-up facial physiognomic information that mainly contributes to face scanning. However, top-down knowledge of racial categories can influence the relationship between face scanning patterns and recognition response time. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fernyhough, Charles; Bland, Kirsten; Meins, Elizabeth; Coltheart, Max
2007-01-01
Background: Previous research has reported a link between imaginary companions (ICs) in middle childhood and the perception of verbal material in ambiguous auditory stimuli. These findings have been interpreted in terms of commonalities in the cognitive processes underlying children's engagement with ICs and adults' reporting of imaginary verbal…
Modulation of visually evoked movement responses in moving virtual environments.
Reed-Jones, Rebecca J; Vallis, Lori Ann
2009-01-01
Virtual-reality technology is being increasingly used to understand how humans perceive and act in the moving world around them. What is currently not clear is how virtual reality technology is perceived by human participants and what virtual scenes are effective in evoking movement responses to visual stimuli. We investigated the effect of virtual-scene context on human responses to a virtual visual perturbation. We hypothesised that exposure to a natural scene that matched the visual expectancies of the natural world would create a perceptual set towards presence, and thus visual guidance of body movement in a subsequently presented virtual scene. Results supported this hypothesis; responses to a virtual visual perturbation presented in an ambiguous virtual scene were increased when participants first viewed a scene that consisted of natural landmarks which provided 'real-world' visual motion cues. Further research in this area will provide a basis of knowledge for the effective use of this technology in the study of human movement responses.
Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs
van Elk, Michiel
2015-01-01
Previous studies have shown that one’s prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face / house categorization task; Experiment 1) or a visual attention task (i.e. the global / local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical ‘global-to-local’ interference effect, whereas believers in conspiracy theories were characterized by a stronger ‘local-to-global interference effect’. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes. PMID:26114604
Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs.
van Elk, Michiel
2015-01-01
Previous studies have shown that one's prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face/house categorization task; Experiment 1) or a visual attention task (i.e. the global/local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical 'global-to-local' interference effect, whereas believers in conspiracy theories were characterized by a stronger 'local-to-global interference effect'. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes.
Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume
2016-01-01
There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS. PMID:27574507
Thirst modulates a perception.
Changizi, M A; Hall, W G
2001-01-01
Does thirst make you more likely to think you see water? Tales of thirsty desert travelers and oasis mirages are consistent with our intuitions that appetitive state can influence what we see in the world. Yet there has been surprisingly little scrutiny of this appetitive modulation of perception. We tested whether dehydrated subjects would be biased towards perceptions of transparency, a common property of water. We found that thirsty subjects have a greater tendency to perceive transparency in ambiguous stimuli, revealing an ecologically appropriate modulation of the visual system by a basic appetitive motive.
Neuronal pattern separation of motion-relevant input in LIP activity
Berberian, Nareg; MacPherson, Amanda; Giraud, Eloïse; Richardson, Lydia
2016-01-01
In various regions of the brain, neurons discriminate sensory stimuli by decreasing the similarity between ambiguous input patterns. Here, we examine whether this process of pattern separation may drive the rapid discrimination of visual motion stimuli in the lateral intraparietal area (LIP). Starting with a simple mean-rate population model that captures neuronal activity in LIP, we show that overlapping input patterns can be reformatted dynamically to give rise to separated patterns of neuronal activity. The population model predicts that a key ingredient of pattern separation is the presence of heterogeneity in the response of individual units. Furthermore, the model proposes that pattern separation relies on heterogeneity in the temporal dynamics of neural activity and not merely in the mean firing rates of individual neurons over time. We confirm these predictions in recordings of macaque LIP neurons and show that the accuracy of pattern separation is a strong predictor of behavioral performance. Overall, results propose that LIP relies on neuronal pattern separation to facilitate decision-relevant discrimination of sensory stimuli. NEW & NOTEWORTHY A new hypothesis is proposed on the role of the lateral intraparietal (LIP) region of cortex during rapid decision making. This hypothesis suggests that LIP alters the representation of ambiguous inputs to reduce their overlap, thus improving sensory discrimination. A combination of computational modeling, theoretical analysis, and electrophysiological data shows that the pattern separation hypothesis links neural activity to behavior and offers novel predictions on the role of LIP during sensory discrimination. PMID:27881719
Ambiguities and conventions in the perception of visual art.
Mamassian, Pascal
2008-09-01
Vision perception is ambiguous and visual arts play with these ambiguities. While perceptual ambiguities are resolved with prior constraints, artistic ambiguities are resolved by conventions. Is there a relationship between priors and conventions? This review surveys recent work related to these ambiguities in composition, spatial scale, illumination and color, three-dimensional layout, shape, and movement. While most conventions seem to have their roots in perceptual constraints, those conventions that differ from priors may help us appreciate how visual arts differ from everyday perception.
Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon
2011-01-01
Previous research has shown that prism adaptation (prism adaptation) can ameliorate several symptoms of spatial neglect after right-hemisphere damage. But the mechanisms behind this remain unclear. Recently we reported that prisms may increase leftward awareness for neglect in a task using chimeric visual objects, despite apparently not affecting awareness in a task using chimeric emotional faces (Sarri et al., 2006). Here we explored potential reasons for this apparent discrepancy in outcome, by testing further whether the lack of a prism effect on the chimeric face task task could be explained by: i) the specific category of stimuli used (faces as opposed to objects); ii) the affective nature of the stimuli; and/or iii) the particular task implemented, with the chimeric face task requiring forced-choice judgements of lateral ‘preference’ between pairs of identical, but left/right mirror-reversed chimeric face tasks (as opposed to identification for the chimeric object task). We replicated our previous pattern of no impact of prisms on the emotional chimeric face task here in a new series of patients, while also similarly finding no beneficial impact on another lateral ‘preference’ measure that used non-face non-emotional stimuli, namely greyscale gradients. By contrast, we found the usual beneficial impact of prism adaptation (prism adaptation) on some conventional measures of neglect, and improvements for at least some patients in a different face task, requiring explicit discrimination of the chimeric or non-chimeric nature of face stimuli. The new findings indicate that prism therapy does not alter spatial biases in neglect as revealed by ‘lateral preference tasks’ that have no right or wrong answer (requiring forced-choice judgements on left/right mirror-reversed stimuli), regardless of whether these employ face or non-face stimuli. But our data also show that prism therapy can beneficially modulate some aspects of visual awareness in spatial neglect not only for objects, but also for face stimuli, in some cases. PMID:20171612
Perceptual multistability in figure-ground segregation using motion stimuli.
Gori, Simone; Giora, Enrico; Pedersini, Riccardo
2008-11-01
In a series of experiments using ambiguous stimuli, we investigate the effects of displaying ordered, discrete series of images on the dynamics of figure-ground segregation. For low frame presentation speeds, the series were perceived as a sequence of discontinuous, static images, while for high speeds they were perceived as continuous. We conclude that using stimuli varying continuously along one parameter results in stronger hysteresis and reduces spontaneous switching compared to matched static stimuli with discontinuous parameter changes. The additional evidence that the size of the hysteresis effects depended on trial duration is consistent with the stochastic nature of the dynamics governing figure-ground segregation. The results showed that for continuously changing stimuli, alternative figure-ground organizations are resolved via low-level, dynamical competition. A second series of experiments confirmed these results with an ambiguous stimulus based on Petter's effect.
A neuronal network model for context-dependence of pitch change perception.
Huang, Chengcheng; Englitz, Bernhard; Shamma, Shihab; Rinzel, John
2015-01-01
Many natural stimuli have perceptual ambiguities that can be cognitively resolved by the surrounding context. In audition, preceding context can bias the perception of speech and non-speech stimuli. Here, we develop a neuronal network model that can account for how context affects the perception of pitch change between a pair of successive complex tones. We focus especially on an ambiguous comparison-listeners experience opposite percepts (either ascending or descending) for an ambiguous tone pair depending on the spectral location of preceding context tones. We developed a recurrent, firing-rate network model, which detects frequency-change-direction of successively played stimuli and successfully accounts for the context-dependent perception demonstrated in behavioral experiments. The model consists of two tonotopically organized, excitatory populations, E up and E down, that respond preferentially to ascending or descending stimuli in pitch, respectively. These preferences are generated by an inhibitory population that provides inhibition asymmetric in frequency to the two populations; context dependence arises from slow facilitation of inhibition. We show that contextual influence depends on the spectral distribution of preceding tones and the tuning width of inhibitory neurons. Further, we demonstrate, using phase-space analysis, how the facilitated inhibition from previous stimuli and the waning inhibition from the just-preceding tone shape the competition between the E up and E down populations. In sum, our model accounts for contextual influences on the pitch change perception of an ambiguous tone pair by introducing a novel decoding strategy based on direction-selective units. The model's network architecture and slow facilitating inhibition emerge as predictions of neuronal mechanisms for these perceptual dynamics. Since the model structure does not depend on the specific stimuli, we show that it generalizes to other contextual effects and stimulus types.
Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation
NASA Technical Reports Server (NTRS)
O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.
2006-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.
Identifying a "default" visual search mode with operant conditioning.
Kawahara, Jun-ichiro
2010-09-01
The presence of a singleton in a task-irrelevant domain can impair visual search. This impairment, known as the attentional capture depends on the set of participants. When narrowly searching for a specific feature (the feature search mode), only matching stimuli capture attention. When searching broadly (the singleton detection mode), any oddball captures attention. The present study examined which strategy represents the "default" mode using an operant conditioning approach in which participants were trained, in the absence of explicit instructions, to search for a target in an ambiguous context in which one of two modes was available. The results revealed that participants behaviorally adopted the singleton detection as the default mode but reported using the feature search mode. Conscious strategies did not eliminate capture. These results challenge the view that a conscious set always modulates capture, suggesting that the visual system tends to rely on stimulus salience to deploy attention.
Ambiguity Advantage Revisited: Two Meanings Are Better than One when Accessing Chinese Nouns
ERIC Educational Resources Information Center
Lin, Chien-Jer Charles; Ahrens, Kathleen
2010-01-01
This paper revisits the effect of lexical ambiguity in word recognition, which has been controversial as previous research reported advantage, disadvantage, and null effects. We discuss factors that were not consistently treated in previous research (e.g., the level of lexical ambiguity investigated, parts of speech of the experimental stimuli,…
Artificial neural network detects human uncertainty
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.
2018-03-01
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
Human gamma band activity and perception of a gestalt.
Keil, A; Müller, M M; Ray, W J; Gruber, T; Elbert, T
1999-08-15
Neuronal oscillations in the gamma band (above 30 Hz) have been proposed to be a possible mechanism for the visual representation of objects. The present study examined the topography of gamma band spectral power and event-related potentials in human EEG associated with perceptual switching effected by rotating ambiguous (bistable) figures. Eleven healthy human subjects were presented two rotating bistable figures: first, a face figure that allowed perception of a sad or happy face depending on orientation and therefore caused a perceptual switch at defined points in time when rotated, and, second, a modified version of the Rubin vase, allowing perception as a vase or two faces whereby the switch was orientation-independent. Nonrotating figures served as further control stimuli. EEG was recorded using a high-density array with 128 electrodes. We found a negative event-related potential associated with the switching of the sad-happy figure, which was most pronounced at central prefrontal sites. Gamma band activity (GBA) was enhanced at occipital electrode sites in the rotating bistable figures compared with the standing stimuli, being maximal at vertical stimulus orientations that allowed an easy recognition of the sad and happy face or the vase-faces, respectively. At anterior electrodes, GBA showed a complementary pattern, being maximal when stimuli were oriented horizontally. The findings support the notion that formation of a visual percept may involve oscillations in a distributed neuronal assembly.
Arquero, José L; McLain, David L
2010-05-01
Despite widespread interest in ambiguity tolerance and other information-related individual differences, existing measures are conceptually dispersed and psychometrically weak. This paper presents the Spanish version of MSTAT-II, a short, stimulus-oriented, and psychometrically improved measure of an individual's orientation toward ambiguous stimuli. Results obtained reveal adequate reliability, validity, and temporal stability. These results support the use of MSTAT-II as an adequate measure of ambiguity tolerance.
Schoth, Daniel E; Liossi, Christina
2017-01-01
Interpretation biases have been extensively explored in a range of populations, including patients with anxiety and depressive disorders where they have been argued to influence the onset and maintenance of such conditions. Other populations in which interpretation biases have been explored include patients with chronic pain, anorexia nervosa, and alcohol dependency among others, although this literature is more limited. In this research, stimuli with threatening/emotional and neutral meanings are presented, with participant responses indicative of ambiguity resolution. A large number of paradigms have been designed and implemented in the exploration of interpretation biases, some varying in minor features only. This article provides a review of experimental paradigms available for exploring interpretation biases, with the aim to stimulate and inform the design of future research exploring cognitive biases across a range of populations. A systematic search of the experimental literature was conducted in Medline, PsychINFO, Web of Science, CINAHL, and Cochrane Library databases. Search terms were information, stimuli , and ambiguous intersected with the terms interpretation and bias * . Forty-five paradigms were found, categorized into those using ambiguous words, ambiguous images, and ambiguous scenarios. The key features, strengths and limitations of the paradigms identified are discussed.
Visual adaptation enhances action sound discrimination.
Barraclough, Nick E; Page, Steve A; Keefe, Bruce D
2017-01-01
Prolonged exposure, or adaptation, to a stimulus in 1 modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in 1 modality can bias perception in another modality. Here, we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory, or audiovisual hand actions enhanced discrimination between 2 subsequently presented hand action sounds. Discrimination was most enhanced when the visual action "matched" the auditory action. In addition, prior adaptation to a visual, auditory, or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation-induced crossmodal enhancements cannot be explained by postperceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli.
Feature saliency and feedback information interactively impact visual category learning
Hammer, Rubi; Sloutsky, Vladimir; Grill-Spector, Kalanit
2015-01-01
Visual category learning (VCL) involves detecting which features are most relevant for categorization. VCL relies on attentional learning, which enables effectively redirecting attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant features. When features relevant for categorization are not salient, VCL relies also on perceptual learning, which enables becoming more sensitive to subtle yet important differences between objects. Little is known about how attentional learning and perceptual learning interact when VCL relies on both processes at the same time. Here we tested this interaction. Participants performed VCL tasks in which they learned to categorize novel stimuli by detecting the feature dimension relevant for categorization. Tasks varied both in feature saliency (low-saliency tasks that required perceptual learning vs. high-saliency tasks), and in feedback information (tasks with mid-information, moderately ambiguous feedback that increased attentional load, vs. tasks with high-information non-ambiguous feedback). We found that mid-information and high-information feedback were similarly effective for VCL in high-saliency tasks. This suggests that an increased attentional load, associated with the processing of moderately ambiguous feedback, has little effect on VCL when features are salient. In low-saliency tasks, VCL relied on slower perceptual learning; but when the feedback was highly informative participants were able to ultimately attain the same performance as during the high-saliency VCL tasks. However, VCL was significantly compromised in the low-saliency mid-information feedback task. We suggest that such low-saliency mid-information learning scenarios are characterized by a ‘cognitive loop paradox’ where two interdependent learning processes have to take place simultaneously. PMID:25745404
Personality traits affecting judgement bias task performance in dogs (Canis familiaris).
Barnard, Shanis; Wells, Deborah L; Milligan, Adam D S; Arnott, Gareth; Hepper, Peter G
2018-04-27
Certain personality traits (e.g. anxiousness, fearfulness), are known to affect the cognitive processing of environmental stimuli, such as the judgement of ambiguous stimuli (judgement bias). Our aim was to assess if personality traits are predictive of a more or less 'pessimistic' or 'optimistic' judgement bias in the domestic dog. We assessed dog personality (N = 31) using two validated protocols: the Dog Mentality Assessment (standardised battery test) and the CBARQ (owner-based survey). We used a common task based on the animals' latency to approach a bowl placed in one of three ambiguous positions (Near Positive, Middle, Near Negative) between a baited (Positive) and a non-baited food bowl (Negative) to assess judgement bias. Linear Mixed Model analyses revealed that dogs scoring higher on sociability, excitability and non-social-fear had shorter response latencies to bowls in an ambiguous location, indicating a more 'optimistic' bias. In contrast, dogs scoring higher on separation-related-behaviour and dog-directed-fear/aggression traits were more likely to judge an ambiguous stimulus as leading to a negative outcome, indicating a more 'pessimistic' bias. Results, partially consistent with previous findings in humans, indicate that personality plays a role in the cognitive processing of environmental stimuli in the domestic dog.
Schlüns, Helge; Welling, Helena; Federici, Julian René; Lewejohann, Lars
2017-03-01
Honey bees (Apis mellifera) are prone to judge an ambiguous stimulus negatively if they had been agitated through shaking which simulates a predator attack. Such a cognitive bias has been suggested to reflect an internal emotional state analogous to humans who judge more pessimistically when they do not feel well. In order to test cognitive bias experimentally, an animal is conditioned to respond to two different stimuli, where one is punished while the other is rewarded. Subsequently a third, ambiguous stimulus is presented and it is measured whether the subject responds as if it expects a reward or a punishment. Generally, it is assumed that negative experiences lower future expectations, rendering the animals more pessimistic. Here we tested whether a most likely negatively experienced formic acid treatment against the parasitic mite Varroa destructor also affects future expectations of honey bees. We applied an olfactory learning paradigm (i.e., conditioned proboscis extension response) using two odorants and blends of these odorants as the ambiguous stimuli. Unlike agitating honey bees, exposure to formic acid did not significantly change the response to the ambiguous stimuli in comparison with untreated bees. Overall evidence suggests that the commonest treatment against one of the most harmful bee pests has no detrimental effects on cognitive bias in honey bees.
Schoth, Daniel E.; Liossi, Christina
2017-01-01
Interpretation biases have been extensively explored in a range of populations, including patients with anxiety and depressive disorders where they have been argued to influence the onset and maintenance of such conditions. Other populations in which interpretation biases have been explored include patients with chronic pain, anorexia nervosa, and alcohol dependency among others, although this literature is more limited. In this research, stimuli with threatening/emotional and neutral meanings are presented, with participant responses indicative of ambiguity resolution. A large number of paradigms have been designed and implemented in the exploration of interpretation biases, some varying in minor features only. This article provides a review of experimental paradigms available for exploring interpretation biases, with the aim to stimulate and inform the design of future research exploring cognitive biases across a range of populations. A systematic search of the experimental literature was conducted in Medline, PsychINFO, Web of Science, CINAHL, and Cochrane Library databases. Search terms were information, stimuli, and ambiguous intersected with the terms interpretation and bias*. Forty-five paradigms were found, categorized into those using ambiguous words, ambiguous images, and ambiguous scenarios. The key features, strengths and limitations of the paradigms identified are discussed. PMID:28232813
Making Decisions under Ambiguity: Judgment Bias Tasks for Assessing Emotional State in Animals
Roelofs, Sanne; Boleij, Hetty; Nordquist, Rebecca E.; van der Staay, Franz Josef
2016-01-01
Judgment bias tasks (JBTs) are considered as a family of promising tools in the assessment of emotional states of animals. JBTs provide a cognitive measure of optimism and/or pessimism by recording behavioral responses to ambiguous stimuli. For instance, a negative emotional state is expected to produce a negative or pessimistic judgment of an ambiguous stimulus, whereas a positive emotional state produces a positive or optimistic judgment of the same ambiguous stimulus. Measuring an animal’s emotional state or mood is relevant in both animal welfare research and biomedical research. This is reflected in the increasing use of JBTs in both research areas. We discuss the different implementations of JBTs with animals, with a focus on their potential as an accurate measure of emotional state. JBTs have been successfully applied to a very broad range of species, using many different types of testing equipment and experimental protocols. However, further validation of this test is deemed necessary. For example, the often extensive training period required for successful judgment bias testing remains a possible factor confounding results. Also, the issue of ambiguous stimuli losing their ambiguity with repeated testing requires additional attention. Possible improvements are suggested to further develop the JBTs in both animal welfare and biomedical research. PMID:27375454
Reward-associated stimuli capture the eyes in spite of strategic attentional set.
Hickey, Clayton; van Zoest, Wieske
2013-11-01
Theories of reinforcement learning have proposed that the association of reward to visual stimuli may cause these objects to become fundamentally salient and thus attention-drawing. A number of recent studies have investigated the oculomotor correlates of this reward-priming effect, but there is some ambiguity in this literature regarding the involvement of top-down attentional set. Existing paradigms tend to create a situation where participants are actively looking for a reward-associated stimulus before subsequently showing that this selective bias sustains when it no longer has strategic purpose. This perseveration of attentional set is potentially different in nature than the direct impact of reward proposed by theory. Here we investigate the effect of reward on saccadic selection in a paradigm where strategic attentional set is decoupled from the effect of reward. We find that during search for a uniquely oriented target, the receipt of reward following selection of a target characterized by an irrelevant unique color causes subsequent stimuli characterized by this color to be preferentially selected. Importantly, this occurs regardless of whether the color characterizes the target or distractor. Other analyses demonstrate that only features associated with correct selection of the target prime the target representation, and that the magnitude of this effect can be predicted by variability in saccadic indices of feedback processing. These results add to a growing literature demonstrating that reward guides visual selection, often in spite of our strategic efforts otherwise. Copyright © 2013 Elsevier B.V. All rights reserved.
Audiovisual perceptual learning with multiple speakers.
Mitchel, Aaron D; Gerfen, Chip; Weiss, Daniel J
2016-05-01
One challenge for speech perception is between-speaker variability in the acoustic parameters of speech. For example, the same phoneme (e.g. the vowel in "cat") may have substantially different acoustic properties when produced by two different speakers and yet the listener must be able to interpret these disparate stimuli as equivalent. Perceptual tuning, the use of contextual information to adjust phonemic representations, may be one mechanism that helps listeners overcome obstacles they face due to this variability during speech perception. Here we test whether visual contextual cues to speaker identity may facilitate the formation and maintenance of distributional representations for individual speakers, allowing listeners to adjust phoneme boundaries in a speaker-specific manner. We familiarized participants to an audiovisual continuum between /aba/ and /ada/. During familiarization, the "b-face" mouthed /aba/ when an ambiguous token was played, while the "D-face" mouthed /ada/. At test, the same ambiguous token was more likely to be identified as /aba/ when paired with a stilled image of the "b-face" than with an image of the "D-face." This was not the case in the control condition when the two faces were paired equally with the ambiguous token. Together, these results suggest that listeners may form speaker-specific phonemic representations using facial identity cues.
Mismatch and conflict: neurophysiological and behavioral evidence for conflict priming.
Mager, Ralph; Meuth, Sven G; Kräuchi, Kurt; Schmidlin, Maria; Müller-Spahn, Franz; Falkenstein, Michael
2009-11-01
Conflict-related cognitive processes are critical for adapting to sudden environmental changes that confront the individual with inconsistent or ambiguous information. Thus, these processes play a crucial role to cope with daily life. Generally, conflicts tend to accumulate especially in complex and threatening situations. Therefore, the question arises how conflict-related cognitive processes are modulated by the close succession of conflicts. In the present study, we investigated the effect of interactions between different types of conflict on performance as well as on electrophysiological parameters. A task-irrelevant auditory stimulus and a task-relevant visual stimulus were presented successively. The auditory stimulus consisted of a standard or deviant tone, followed by a congruent or incongruent Stroop stimulus. After standard prestimuli, performance deteriorated for incongruent compared to congruent Stroop stimuli, which were accompanied by a widespread negativity for incongruent versus congruent stimuli in the event-related potentials (ERPs). However, after deviant prestimuli, performance was better for incongruent than for congruent Stroop stimuli and an additional early negativity in the ERP emerged with a fronto-central maximum. Our data show that deviant auditory prestimuli facilitate specifically the processing of stimulus-related conflict, providing evidence for a conflict-priming effect.
Paranormal believers are more prone to illusory agency detection than skeptics.
van Elk, Michiel
2013-09-01
It has been hypothesized that illusory agency detection is at the basis of belief in supernatural agents and paranormal beliefs. In the present study a biological motion perception task was used to study illusory agency detection in a group of skeptics and a group of paranormal believers. Participants were required to detect the presence or absence of a human agent in a point-light display. It was found that paranormal believers had a lower perceptual sensitivity than skeptics, which was due to a response bias to 'yes' for stimuli in which no agent was present. The relation between paranormal beliefs and illusory agency detection held only for stimuli with low to intermediate ambiguity, but for stimuli with a high number of visual distractors responses of believers and skeptics were at the same level. Furthermore, it was found that illusory agency detection was unrelated to traditional religious belief and belief in witchcraft, whereas paranormal beliefs (i.e. Psi, spiritualism, precognition, superstition) were strongly related to illusory agency detection. These findings qualify the relation between illusory pattern perception and supernatural and paranormal beliefs and suggest that paranormal beliefs are strongly related to agency detection biases. Copyright © 2013 Elsevier Inc. All rights reserved.
Psychophsyiological reactivity during uncertainty and ambiguity processing in high and low worriers.
Kirschner, Hans; Hilbert, Kevin; Hoyer, Jana; Lueken, Ulrike; Beesdo-Baum, Katja
2016-03-01
Intolerance of uncertainty (IU) has been linked to Generalized Anxiety Disorder (GAD), but studies experimentally manipulating uncertainty have mostly failed to find differences between GAD patients and controls, possible due to a lack of distinction between uncertainty and ambiguity. This study therefore investigated reactivity to ambiguity in addition to uncertainty in high worriers (HW) and low worriers (LW). We hypothesized an interpretation bias between the groups during ambiguity tasks, while uncertainty would facilitate threat processing of subsequent aversive stimuli. HW (N = 23) and LW (N = 23) completed a paradigm comprising the anticipation and perception of pictures with dangerous, safe, or ambiguous content. Anticipatory cues were certain (always correct information about the following picture) or uncertain (no information). Subjective ratings, reaction times and skin conductance responses (SCRs) were recorded. HW rated particularly ambiguous pictures as more aversive and showed longer reaction times to all picture conditions compared to LW. SCRs were also larger in HW compared to LW, particularly during uncertain but also safe anticipation. No group differences were observed during perception of stimuli. All participants were female. HW was used as subclinical phenotype of GAD. Intolerance of ambiguity seems to be related to individual differences in worry and possibly to the development of GAD. Threat-related interpretations differentiating HW and LW occurred particularly for ambiguous pictures but were not accompanied by increased autonomic arousal during the picture viewing. This disparity between subjective rating and arousal may be the result of worrying in response to intolerance of uncertainty, restraining physiological responses. Copyright © 2015 Elsevier Ltd. All rights reserved.
McLain, David L; Kefallonitis, Efstathios; Armani, Kimberly
2015-01-01
Ambiguity tolerance is an increasingly popular subject for study in a wide variety of fields. The definition of ambiguity tolerance has changed since its inception, and accompanying that change are changes in measurement and the research questions that interest researchers. There is a wealth of opportunity for research related to ambiguity tolerance and recent advances in neuroscience, measurement, trait research, perception, problem solving, and other fields highlight areas of interest and point to issues that need further attention. The future of ambiguity tolerance research is promising and it is expected that future studies will yield new insights into individual differences in reactions to the complex, unfamiliar, confusing, indeterminate, and incomplete stimuli that fall within the conceptual domain of ambiguity.
Ambiguity tolerance in organizations: definitional clarification and perspectives on future research
McLain, David L.; Kefallonitis, Efstathios; Armani, Kimberly
2015-01-01
Ambiguity tolerance is an increasingly popular subject for study in a wide variety of fields. The definition of ambiguity tolerance has changed since its inception, and accompanying that change are changes in measurement and the research questions that interest researchers. There is a wealth of opportunity for research related to ambiguity tolerance and recent advances in neuroscience, measurement, trait research, perception, problem solving, and other fields highlight areas of interest and point to issues that need further attention. The future of ambiguity tolerance research is promising and it is expected that future studies will yield new insights into individual differences in reactions to the complex, unfamiliar, confusing, indeterminate, and incomplete stimuli that fall within the conceptual domain of ambiguity. PMID:25972818
Smelling directions: Olfaction modulates ambiguous visual motion perception
Kuang, Shenbing; Zhang, Tao
2014-01-01
Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162
Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults
Rademacher, L.M.; Winkler, L.; Schultz, R.T.; Gründer, G.; Lammertz, S.E.
2016-01-01
Being able to infer the thoughts, feelings and intentions of those around us is indispensable in order to function in a social world. Despite growing interest in social cognition and its neural underpinnings, the factors that contribute to successful mental state attribution remain unclear. Current knowledge is limited because the most widely used tasks suffer from two main constraints: (i) They fail to capture individual variability due to ceiling effects and (ii) they use highly simplistic, often artificial stimuli inapt to mirror real-world socio-cognitive demands. In the present study, we address these problems by employing complex depictions of naturalistic social interactions that vary in both valence (positive vs negative) and ambiguity (high vs low). Thirty-eight healthy participants (20 female) made mental state judgments while brain responses were obtained using functional magnetic resonance imaging (fMRI). Accuracy varied based on valence and ambiguity conditions and women were more accurate than men with highly ambiguous social stimuli. Activity of the orbitofrontal cortex predicted performance in the high ambiguity condition. The results shed light on subtle differences in mentalizing abilities and associated neural activity. PMID:27496338
Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.
2014-01-01
The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674
Urakawa, Tomokazu; Ogata, Katsuya; Kimura, Takahiro; Kume, Yuko; Tobimatsu, Shozo
2015-01-01
Disambiguation of a noisy visual scene with prior knowledge is an indispensable task of the visual system. To adequately adapt to a dynamically changing visual environment full of noisy visual scenes, the implementation of knowledge-mediated disambiguation in the brain is imperative and essential for proceeding as fast as possible under the limited capacity of visual image processing. However, the temporal profile of the disambiguation process has not yet been fully elucidated in the brain. The present study attempted to determine how quickly knowledge-mediated disambiguation began to proceed along visual areas after the onset of a two-tone ambiguous image using magnetoencephalography with high temporal resolution. Using the predictive coding framework, we focused on activity reduction for the two-tone ambiguous image as an index of the implementation of disambiguation. Source analysis revealed that a significant activity reduction was observed in the lateral occipital area at approximately 120 ms after the onset of the ambiguous image, but not in preceding activity (about 115 ms) in the cuneus when participants perceptually disambiguated the ambiguous image with prior knowledge. These results suggested that knowledge-mediated disambiguation may be implemented as early as approximately 120 ms following an ambiguous visual scene, at least in the lateral occipital area, and provided an insight into the temporal profile of the disambiguation process of a noisy visual scene with prior knowledge. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A Neural Signature Encoding Decisions under Perceptual Ambiguity
Sun, Sai; Yu, Rongjun
2017-01-01
Abstract People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making. PMID:29177189
A Neural Signature Encoding Decisions under Perceptual Ambiguity.
Sun, Sai; Yu, Rongjun; Wang, Shuo
2017-01-01
People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.
Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults.
Deuse, L; Rademacher, L M; Winkler, L; Schultz, R T; Gründer, G; Lammertz, S E
2016-11-01
Being able to infer the thoughts, feelings and intentions of those around us is indispensable in order to function in a social world. Despite growing interest in social cognition and its neural underpinnings, the factors that contribute to successful mental state attribution remain unclear. Current knowledge is limited because the most widely used tasks suffer from two main constraints: (i) They fail to capture individual variability due to ceiling effects and (ii) they use highly simplistic, often artificial stimuli inapt to mirror real-world socio-cognitive demands. In the present study, we address these problems by employing complex depictions of naturalistic social interactions that vary in both valence (positive vs negative) and ambiguity (high vs low). Thirty-eight healthy participants (20 female) made mental state judgments while brain responses were obtained using functional magnetic resonance imaging (fMRI). Accuracy varied based on valence and ambiguity conditions and women were more accurate than men with highly ambiguous social stimuli. Activity of the orbitofrontal cortex predicted performance in the high ambiguity condition. The results shed light on subtle differences in mentalizing abilities and associated neural activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Selective auditory grouping by zebra finches: testing the iambic-trochaic law.
Spierings, Michelle; Hubert, Jeroen; Ten Cate, Carel
2017-07-01
Humans have a strong tendency to spontaneously group visual or auditory stimuli together in larger patterns. One of these perceptual grouping biases is formulated as the iambic/trochaic law, where humans group successive tones alternating in pitch and intensity as trochees (high-low and loud-soft) and alternating in duration as iambs (short-long). The grouping of alternations in pitch and intensity into trochees is a human universal and is also present in one non-human animal species, rats. The perceptual grouping of sounds alternating in duration seems to be affected by native language in humans and has so far not been found among animals. In the current study, we explore to which extent these perceptual biases are present in a songbird, the zebra finch. Zebra finches were trained to discriminate between short strings of pure tones organized as iambs and as trochees. One group received tones that alternated in pitch, a second group heard tones alternating in duration, and for a third group, tones alternated in intensity. Those zebra finches that showed sustained correct discrimination were next tested with longer, ambiguous strings of alternating sounds. The zebra finches in the pitch condition categorized ambiguous strings of alternating tones as trochees, similar to humans. However, most of the zebra finches in the duration and intensity condition did not learn to discriminate between training stimuli organized as iambs and trochees. This study shows that the perceptual bias to group tones alternating in pitch as trochees is not specific to humans and rats, but may be more widespread among animals.
Interpreting Quantifier Scope Ambiguity: Evidence of Heuristic First, Algorithmic Second Processing
Dwivedi, Veena D.
2013-01-01
The present work suggests that sentence processing requires both heuristic and algorithmic processing streams, where the heuristic processing strategy precedes the algorithmic phase. This conclusion is based on three self-paced reading experiments in which the processing of two-sentence discourses was investigated, where context sentences exhibited quantifier scope ambiguity. Experiment 1 demonstrates that such sentences are processed in a shallow manner. Experiment 2 uses the same stimuli as Experiment 1 but adds questions to ensure deeper processing. Results indicate that reading times are consistent with a lexical-pragmatic interpretation of number associated with context sentences, but responses to questions are consistent with the algorithmic computation of quantifier scope. Experiment 3 shows the same pattern of results as Experiment 2, despite using stimuli with different lexical-pragmatic biases. These effects suggest that language processing can be superficial, and that deeper processing, which is sensitive to structure, only occurs if required. Implications for recent studies of quantifier scope ambiguity are discussed. PMID:24278439
Cognitive binding in schizophrenia: weakened integration of temporal intersensory information.
Tschacher, Wolfgang; Bergomi, Claudia
2011-09-01
Cognitive functioning is based on binding processes, by which different features and elements of neurocognition are integrated and coordinated. Binding is an essential ingredient of, for instance, Gestalt perception. We have implemented a paradigm of causality perception based on the work of Albert Michotte, in which 2 identical discs move from opposite sides of a monitor, steadily toward, and then past one another. Their coincidence generates an ambiguous percept of either "streaming" or "bouncing," which the subjects (34 schizophrenia spectrum patients and 34 controls with mean age 27.9 y) were instructed to report. The latter perception is a marker of the binding processes underlying perceived causality (type I binding). In addition to this visual task, acoustic stimuli were presented at different times during the task (150 ms before and after visual coincidence), which can modulate perceived causality. This modulation by intersensory and temporally delayed stimuli is viewed as a different type of binding (type II). We show here, using a mixed-effects hierarchical analysis, that type II binding distinguishes schizophrenia spectrum patients from healthy controls, whereas type I binding does not. Type I binding may even be excessive in some patients, especially those with positive symptoms; Type II binding, however, was generally attenuated in patients. The present findings point to ways in which the disconnection (or Gestalt) hypothesis of schizophrenia can be refined, suggesting more specific markers of neurocognitive functioning and potential targets of treatment.
Experience affects the use of ego-motion signals during 3D shape perception.
Jain, Anshul; Backus, Benjamin T
2010-12-29
Experience has long-term effects on perceptual appearance (Q. Haijiang, J. A. Saunders, R. W. Stone, & B. T. Backus, 2006). We asked whether experience affects the appearance of structure-from-motion stimuli when the optic flow is caused by observer ego-motion. Optic flow is an ambiguous depth cue: a rotating object and its oppositely rotating, depth-inverted dual generate similar flow. However, the visual system exploits ego-motion signals to prefer the percept of an object that is stationary over one that rotates (M. Wexler, F. Panerai, I. Lamouret, & J. Droulez, 2001). We replicated this finding and asked whether this preference for stationarity, the "stationarity prior," is modulated by experience. During training, two groups of observers were exposed to objects with identical flow, but that were either stationary or moving as determined by other cues. The training caused identical test stimuli to be seen preferentially as stationary or moving by the two groups, respectively. We then asked whether different priors can exist independently at different locations in the visual field. Observers were trained to see objects either as stationary or as moving at two different locations. Observers' stationarity bias at the two respective locations was modulated in the directions consistent with training. Thus, the utilization of extraretinal ego-motion signals for disambiguating optic flow signals can be updated as the result of experience, consistent with the updating of a Bayesian prior for stationarity.
More than visual literacy: art and the enhancement of tolerance for ambiguity and empathy.
Bentwich, Miriam Ethel; Gilbey, Peter
2017-11-10
Comfort with ambiguity, mostly associated with the acceptance of multiple meanings, is a core characteristic of successful clinicians. Yet past studies indicate that medical students and junior physicians feel uncomfortable with ambiguity. Visual Thinking Strategies (VTS) is a pedagogic approach involving discussions of art works and deciphering the different possible meanings entailed in them. However, the contribution of art to the possible enhancement of the tolerance for ambiguity among medical students has not yet been adequately investigated. We aimed to offer a novel perspective on the effect of art, as it is experienced through VTS, on medical students' tolerance of ambiguity and its possible relation to empathy. Quantitative method utilizing a short survey administered after an interactive VTS session conducted within mandatory medical humanities course for first-year medical students. The intervention consisted of a 90-min session in the form of a combined lecture and interactive discussions about art images. The VTS session and survey were filled by 67 students in two consecutive rounds of first-year students. 67% of the respondents thought that the intervention contributed to their acceptance of multiple possible meanings, 52% thought their visual observation ability was enhanced and 34% thought that their ability to feel the sufferings of other was being enhanced. Statistically significant moderate-to-high correlations were found between the contribution to ambiguity tolerance and contribution to empathy (0.528-0.744; p ≤ 0.01). Art may contribute especially to the development of medical students' tolerance of ambiguity, also related to the enhancement of empathy. The potential contribution of visual art works used in VTS to the enhancement of tolerance for ambiguity and empathy is explained based on relevant literature regarding the embeddedness of ambiguity within art works, coupled with reference to John Dewey's theory of learning. Given the situational nature of the tolerance for ambiguity in this context, VTS provides a path for enhancing ambiguity tolerance that is less conditioned by character traits. Moreover, the modest form of VTS we utilized, not requesting a significant alteration in the pre-clinical curricula, suggests that enhancing the tolerance of ambiguity and empathy among medical students may be particularly feasible.
Intolerance for approach of ambiguity in social anxiety disorder.
Kuckertz, Jennie M; Strege, Marlene V; Amir, Nader
2017-06-01
Previous research has utilised the approach-avoidance task (AAT) to measure approach and avoidance action tendencies in socially anxious individuals. "Neutral" social stimuli may be perceived as ambiguous and hence threatening to socially anxious individuals, however it is unclear whether this results in difficulty approaching ambiguous ("neutral") versus unambiguous threat (e.g. disgust) faces (i.e. intolerance of ambiguity). Thirty participants with social anxiety disorder (SADs) and 29 non-anxious controls completed an implicit AAT in which they were instructed to approach or avoid neutral and disgust faces (i.e. pull or push a joystick) based on colour of the picture border. Results indicated that SADs demonstrated greater difficulty approaching neutral relative to disgust faces. Moreover, intolerance for approach of ambiguity predicted social anxiety severity while controlling for the effects of trait anxiety and depression. Our results provide further support for the role of intolerance of ambiguity in SAD.
Altschuler, Ted S; Molholm, Sophie; Butler, John S; Mercier, Manuel R; Brandwein, Alice B; Foxe, John J
2014-04-15
The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. Copyright © 2013 Elsevier Inc. All rights reserved.
Backus, Benjamin T.; Jain, Anshul
2011-01-01
The apparent direction of rotation of perceptually bistable wire-frame (Necker) cubes can be conditioned to depend on retinal location by interleaving their presentation with cubes that are disambiguated by depth cues (Haijiang, Saunders, Stone & Backus, 2006; Harrison & Backus, 2010a). The long-term nature of the learned bias is demonstrated by resistance to counter-conditioning on a consecutive day. In previous work, either binocular disparity and occlusion, or a combination of monocular depth cues that included occlusion, internal occlusion, haze, and depth-from-shading, were used to control the rotation direction of disambiguated cubes. Here, we test the relative effectiveness of these two sets of depth cues in establishing the retinal location bias. Both cue sets were highly effective in establishing a perceptual bias on Day 1 as measured by the perceived rotation direction of ambiguous cubes. The effect of counter-conditioning on Day 2, on perceptual outcome for ambiguous cubes, was independent of whether the cue set was the same or different as Day 1. This invariance suggests that a common neural population instantiates the bias for rotation direction, regardless of the cue-set used. However, in a further experiment where only disambiguated cubes were presented on Day 1, perceptual outcome of ambiguous cubes during Day 2 counter-conditioning showed that the monocular-only cue set was in fact more effective than disparity-plus-occlusion for causing long-term learning of the bias. These results can be reconciled if the conditioning effect of Day 1 ambiguous trials in the first experiment is taken into account (Harrison & Backus, 2010b). We suggest that monocular disambiguation leads to stronger bias either because it more strongly activates a single neural population that is necessary for perceiving rotation, or because ambiguous stimuli engage cortical areas that are also engaged by monocularly disambiguated stimuli but not by disparity-disambiguated stimuli. PMID:21335023
Harrison, Sarah J; Backus, Benjamin T; Jain, Anshul
2011-05-11
The apparent direction of rotation of perceptually bistable wire-frame (Necker) cubes can be conditioned to depend on retinal location by interleaving their presentation with cubes that are disambiguated by depth cues (Haijiang, Saunders, Stone, & Backus, 2006; Harrison & Backus, 2010a). The long-term nature of the learned bias is demonstrated by resistance to counter-conditioning on a consecutive day. In previous work, either binocular disparity and occlusion, or a combination of monocular depth cues that included occlusion, internal occlusion, haze, and depth-from-shading, were used to control the rotation direction of disambiguated cubes. Here, we test the relative effectiveness of these two sets of depth cues in establishing the retinal location bias. Both cue sets were highly effective in establishing a perceptual bias on Day 1 as measured by the perceived rotation direction of ambiguous cubes. The effect of counter-conditioning on Day 2, on perceptual outcome for ambiguous cubes, was independent of whether the cue set was the same or different as Day 1. This invariance suggests that a common neural population instantiates the bias for rotation direction, regardless of the cue set used. However, in a further experiment where only disambiguated cubes were presented on Day 1, perceptual outcome of ambiguous cubes during Day 2 counter-conditioning showed that the monocular-only cue set was in fact more effective than disparity-plus-occlusion for causing long-term learning of the bias. These results can be reconciled if the conditioning effect of Day 1 ambiguous trials in the first experiment is taken into account (Harrison & Backus, 2010b). We suggest that monocular disambiguation leads to stronger bias either because it more strongly activates a single neural population that is necessary for perceiving rotation, or because ambiguous stimuli engage cortical areas that are also engaged by monocularly disambiguated stimuli but not by disparity-disambiguated stimuli. Copyright © 2011 Elsevier Ltd. All rights reserved.
Crossmodal attention switching: auditory dominance in temporal discrimination tasks.
Lukas, Sarah; Philipp, Andrea M; Koch, Iring
2014-11-01
Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.
Honeybees in a virtual reality environment learn unique combinations of colour and shape.
Rusch, Claire; Roth, Eatai; Vinauger, Clément; Riffell, Jeffrey A
2017-10-01
Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. In this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being crucial for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli was reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicit learned responses as well as elucidating how visual information is processed in the honeybee brain. © 2017. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)
1976-01-01
An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location including a projection system for displaying to a patient a series of visual stimuli. A response switch enables him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system thereby provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.
Study of aggregative behavior of Rhinophrynus dorsalis tadpoles: design and analysis
Foster, M.S.; McDiarmid, R.W.
1982-01-01
We conducted experiments using the apparatus and design followed by Wassersug and Hessler (1971) and Wassersug (1973) to test the aggregative behavior of tadpoles of Rhinophrynus dorsalis in response to visual and olfactory stimuli. Results neither supported nor refuted the hypothesis that either stimulus is used as a mechanism for school formation. The exercise did lead to doubts about the experimental design. Some ambiguity resulted from the fact that the significance of the results depended upon the way in which the data were analyzed. Several alternative methods were considered. We also observed tadpoles reared in isolation to determine the effect of prior social conditioning on aggregative behavior. Isolates grew less than group-reared animals, were less active, and exhibited a strong avoidance reaction when subsequently exposed to conspecifics.
The uncertain response in humans and animals
NASA Technical Reports Server (NTRS)
Smith, J. D.; Shields, W. E.; Schull, J.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)
1997-01-01
There has been no comparative psychological study of uncertainty processes. Accordingly, the present experiments asked whether animals, like humans, escape adaptively when they are uncertain. Human and animal observers were given two primary responses in a visual discrimination task, and the opportunity to escape from some trials into easier ones. In one psychophysical task (using a threshold paradigm), humans escaped selectively the difficult trials that left them uncertain of the stimulus. Two rhesus monkeys (Macaca mulatta) also showed this pattern. In a second psychophysical task (using the method of constant stimuli), some humans showed this pattern but one escaped infrequently and nonoptimally. Monkeys showed equivalent individual differences. The data suggest that escapes by humans and monkeys are interesting cognitive analogs and may reflect controlled decisional processes prompted by the perceptual ambiguity at threshold.
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides. PMID:23799097
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
NASA Technical Reports Server (NTRS)
Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)
1973-01-01
An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location is described. The apparatus includes a projection system for displaying to a patient a series of visual stimuli, a response switch enabling him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.
ERIC Educational Resources Information Center
Imbir, Kamil K.
2017-01-01
The aim of this study was to examine whether the valence and origin of emotional words can alter perception of ambiguous objects in terms of warmth versus competence, fundamental dimensions of social cognition. 60 individuals were invited into the study focusing on the limits of intuition. They were asked to try to guess the meaning of Japanese…
Motorists Vestibular Disorientation Syndrome Revisited
2003-02-01
inappropriate behaviour: a susceptibility to subliminal percepts. Once sensitised to the intrinsic ambiguities of a complex environment it becomes difficult to...for example being disturbed by a subliminal presentation of a word such as "cancer". Here-we propose that a similar phenomenon may exist for ambiguous...various stimuli. Agressologie. 1977;18:335-9. 32: Marme-Karelse AM, Bles W. Circular vection and human posture, 11. Does the auditory system play a
A sLORETA study for gaze-independent BCI speller.
Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming
2017-07-01
EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.
Auditory and visual spatial impression: Recent studies of three auditoria
NASA Astrophysics Data System (ADS)
Nguyen, Andy; Cabrera, Densil
2004-10-01
Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.
Anxiety and the interpretation of ambiguous information: beyond the emotion-congruent effect.
Blanchette, Isabelle; Richards, Anne
2003-06-01
The authors investigated how anxiety influences the use of contextual information in the resolution of ambiguity. Participants heard ambiguous homophones (threat/neutral, positive/neural, and neutral/neutral) with related contextual information. State anxiety was manipulated experimentally. The interpretations of anxious participants were influenced by context to a greater extent than those of control participants. Some mood-incongruent effects were observed where anxious participants were more likely to adopt neutral interpretations of potentially threatening stimuli. Effects were observed in a spelling task (Experiments 1 and 2) and in a lexical decision task (Experiment 3), with supraliminal, and subliminal presentation of contextual cues, and with 2 different anxiety-induction procedures. Results show how anxiety affects both the content and the process of resolution of ambiguity.
Adapting to an Uncertain World: Cognitive Capacity and Causal Reasoning with Ambiguous Observations
Shou, Yiyun; Smithson, Michael
2015-01-01
Ambiguous causal evidence in which the covariance of the cause and effect is partially known is pervasive in real life situations. Little is known about how people reason about causal associations with ambiguous information and the underlying cognitive mechanisms. This paper presents three experiments exploring the cognitive mechanisms of causal reasoning with ambiguous observations. Results revealed that the influence of ambiguous observations manifested by missing information on causal reasoning depended on the availability of cognitive resources, suggesting that processing ambiguous information may involve deliberative cognitive processes. Experiment 1 demonstrated that subjects did not ignore the ambiguous observations in causal reasoning. They also had a general tendency to treat the ambiguous observations as negative evidence against the causal association. Experiment 2 and Experiment 3 included a causal learning task requiring a high cognitive demand in which paired stimuli were presented to subjects sequentially. Both experiments revealed that processing ambiguous or missing observations can depend on the availability of cognitive resources. Experiment 2 suggested that the contribution of working memory capacity to the comprehensiveness of evidence retention was reduced when there were ambiguous or missing observations. Experiment 3 demonstrated that an increase in cognitive demand due to a change in the task format reduced subjects’ tendency to treat ambiguous-missing observations as negative cues. PMID:26468653
Han, Paul K J; Klein, William M P; Lehman, Tom; Killam, Bill; Massett, Holly; Freedman, Andrew N
2011-01-01
To examine the effects of communicating uncertainty regarding individualized colorectal cancer risk estimates and to identify factors that influence these effects. Two Web-based experiments were conducted, in which adults aged 40 years and older were provided with hypothetical individualized colorectal cancer risk estimates differing in the extent and representation of expressed uncertainty. The uncertainty consisted of imprecision (otherwise known as "ambiguity") of the risk estimates and was communicated using different representations of confidence intervals. Experiment 1 (n = 240) tested the effects of ambiguity (confidence interval v. point estimate) and representational format (textual v. visual) on cancer risk perceptions and worry. Potential effect modifiers, including personality type (optimism), numeracy, and the information's perceived credibility, were examined, along with the influence of communicating uncertainty on responses to comparative risk information. Experiment 2 (n = 135) tested enhanced representations of ambiguity that incorporated supplemental textual and visual depictions. Communicating uncertainty led to heightened cancer-related worry in participants, exemplifying the phenomenon of "ambiguity aversion." This effect was moderated by representational format and dispositional optimism; textual (v. visual) format and low (v. high) optimism were associated with greater ambiguity aversion. However, when enhanced representations were used to communicate uncertainty, textual and visual formats showed similar effects. Both the communication of uncertainty and use of the visual format diminished the influence of comparative risk information on risk perceptions. The communication of uncertainty regarding cancer risk estimates has complex effects, which include heightening cancer-related worry-consistent with ambiguity aversion-and diminishing the influence of comparative risk information on risk perceptions. These responses are influenced by representational format and personality type, and the influence of format appears to be modifiable and content dependent.
Procedural Semantics as a Theory of Meaning.
1981-03-01
Aaron Sloman (none of whom can be held responsible, of course, fcor the opinions expressed herein). Special thanks are also due to John Lyons for valuable...Meanings 12 7 Parametric Ambiguity 14 8 The Economic Necessity of Ambiguity 16 9 Semantic Interpretation 19 10 Semantics of the Internal Language 21 11...sufficiently low order organisms, the behavioral characteristics of that organism in response to stimuli are essentially "wired in" by their genes
Attitude Toward Ambiguity: Empirically Robust Factors in Self-Report Personality Scales.
Lauriola, Marco; Foschi, Renato; Mosca, Oriana; Weller, Joshua
2016-06-01
Two studies were conducted to examine the factor structure of attitude toward ambiguity, a broad personality construct that refers to personal reactions to perceived ambiguous stimuli in a variety of context and situations. Using samples from two countries, Study 1 mapped the hierarchical structure of 133 items from seven tolerance-intolerance of ambiguity scales (N = 360, Italy; N = 306, United States). Three major factors-Discomfort with Ambiguity, Moral Absolutism/Splitting, and Need for Complexity and Novelty-were recovered in each country with high replicability coefficients across samples. In Study 2 (N = 405, Italian community sample; N =366, English native speakers sample), we carried out a confirmatory analysis on selected factor markers. A bifactor model had an acceptable fit for each sample and reached the construct-level invariance for general and group factors. Convergent validity with related traits was assessed in both studies. We conclude that attitude toward ambiguity can be best represented a multidimensional construct involving affective (Discomfort with Ambiguity), cognitive (Moral Absolutism/Splitting), and epistemic (Need for Complexity and Novelty) components. © The Author(s) 2015.
Experience affects the use of ego-motion signals during 3D shape perception
Jain, Anshul; Backus, Benjamin T.
2011-01-01
Experience has long-term effects on perceptual appearance (Q. Haijiang, J. A. Saunders, R. W. Stone, & B. T. Backus, 2006). We asked whether experience affects the appearance of structure-from-motion stimuli when the optic flow is caused by observer ego-motion. Optic flow is an ambiguous depth cue: a rotating object and its oppositely rotating, depth-inverted dual generate similar flow. However, the visual system exploits ego-motion signals to prefer the percept of an object that is stationary over one that rotates (M. Wexler, F. Panerai, I. Lamouret, & J. Droulez, 2001). We replicated this finding and asked whether this preference for stationarity, the “stationarity prior,” is modulated by experience. During training, two groups of observers were exposed to objects with identical flow, but that were either stationary or moving as determined by other cues. The training caused identical test stimuli to be seen preferentially as stationary or moving by the two groups, respectively. We then asked whether different priors can exist independently at different locations in the visual field. Observers were trained to see objects either as stationary or as moving at two different locations. Observers’ stationarity bias at the two respective locations was modulated in the directions consistent with training. Thus, the utilization of extraretinal ego-motion signals for disambiguating optic flow signals can be updated as the result of experience, consistent with the updating of a Bayesian prior for stationarity. PMID:21191132
Decreased visual detection during subliminal stimulation.
Bareither, Isabelle; Villringer, Arno; Busch, Niko A
2014-10-17
What is the perceptual fate of invisible stimuli-are they processed at all and does their processing have consequences for the perception of other stimuli? As has been shown previously in the somatosensory system, even stimuli that are too weak to be consciously detected can influence our perception: Subliminal stimulation impairs perception of near-threshold stimuli and causes a functional deactivation in the somatosensory cortex. In a recent study, we showed that subliminal visual stimuli lead to similar responses, indicated by an increase in alpha-band power as measured with electroencephalography (EEG). In the current study, we investigated whether a behavioral inhibitory mechanism also exists within the visual system. We tested the detection of peripheral visual target stimuli under three different conditions: Target stimuli were presented alone or embedded in a concurrent train of subliminal stimuli either at the same location as the target or in the opposite hemifield. Subliminal stimuli were invisible due to their low contrast, not due to a masking procedure. We demonstrate that target detection was impaired by the subliminal stimuli, but only when they were presented at the same location as the target. This finding indicates that subliminal, low-intensity stimuli induce a similar inhibitory effect in the visual system as has been observed in the somatosensory system. In line with previous reports, we propose that the function underlying this effect is the inhibition of spurious noise by the visual system. © 2014 ARVO.
Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E
2014-01-01
In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).
Eberhardt, Silvio P.; Auer Jr., Edward T.; Bernstein, Lynne E.
2014-01-01
In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee’s primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee’s lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT). PMID:25400566
Does bimodal stimulus presentation increase ERP components usable in BCIs?
NASA Astrophysics Data System (ADS)
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
A comparison of form processing involved in the perception of biological and nonbiological movements
Thurman, Steven M.; Lu, Hongjing
2016-01-01
Although there is evidence for specialization in the human brain for processing biological motion per se, few studies have directly examined the specialization of form processing in biological motion perception. The current study was designed to systematically compare form processing in perception of biological (human walkers) to nonbiological (rotating squares) stimuli. Dynamic form-based stimuli were constructed with conflicting form cues (position and orientation), such that the objects were perceived to be moving ambiguously in two directions at once. In Experiment 1, we used the classification image technique to examine how local form cues are integrated across space and time in a bottom-up manner. By comparing with a Bayesian observer model that embodies generic principles of form analysis (e.g., template matching) and integrates form information according to cue reliability, we found that human observers employ domain-general processes to recognize both human actions and nonbiological object movements. Experiments 2 and 3 found differential top-down effects of spatial context on perception of biological and nonbiological forms. When a background does not involve social information, observers are biased to perceive foreground object movements in the direction opposite to surrounding motion. However, when a background involves social cues, such as a crowd of similar objects, perception is biased toward the same direction as the crowd for biological walking stimuli, but not for rotating nonbiological stimuli. The model provided an accurate account of top-down modulations by adjusting the prior probabilities associated with the internal templates, demonstrating the power and flexibility of the Bayesian approach for visual form perception. PMID:26746875
Elevated audiovisual temporal interaction in patients with migraine without aura
2014-01-01
Background Photophobia and phonophobia are the most prominent symptoms in patients with migraine without aura. Hypersensitivity to visual stimuli can lead to greater hypersensitivity to auditory stimuli, which suggests that the interaction between visual and auditory stimuli may play an important role in the pathogenesis of migraine. However, audiovisual temporal interactions in migraine have not been well studied. Therefore, our aim was to examine auditory and visual interactions in migraine. Methods In this study, visual, auditory, and audiovisual stimuli with different temporal intervals between the visual and auditory stimuli were randomly presented to the left or right hemispace. During this time, the participants were asked to respond promptly to target stimuli. We used cumulative distribution functions to analyze the response times as a measure of audiovisual integration. Results Our results showed that audiovisual integration was significantly elevated in the migraineurs compared with the normal controls (p < 0.05); however, audiovisual suppression was weaker in the migraineurs compared with the normal controls (p < 0.05). Conclusions Our findings further objectively support the notion that migraineurs without aura are hypersensitive to external visual and auditory stimuli. Our study offers a new quantitative and objective method to evaluate hypersensitivity to audio-visual stimuli in patients with migraine. PMID:24961903
Translating dynamic defense patterns from rodents to people.
Blanchard, D Caroline
2017-05-01
Specific defensive behaviors of rodents are shaped by features of the eliciting threat stimuli and situation. Threat scenarios confirmed these relationships in people, with results substantially replicated in 4 additional scenario studies. Subsequent human studies involve computer games measuring fear as flight from threat stimuli and anxiety as alternation between two threats. Stabilometric studies have shown reduction in sway (freezing) to inescapable (e.g. with gun pointed at subject) threatening photographs; but enhanced lateral sway (flight attempts) to escapable threats; (gun pointed away from subject). Relationships between threat ambiguity, risk assessment, and anxiety have been validated by identification of videos of facial expressions to ambiguous threats, as anxiety; and systematic biases toward threat stimuli by anxious individuals. Enhanced rumination, interpretable as unsuccessful risk assessment, is a dynamic component of both anxiety and depression, particularly in women. While there is less experimental work on defensive threat/attack, a transdiagnostic "Fear of Harm" phenotype of aggression associated with fear suggests that this is a component of pathological as well as normal human defensive behavior. Copyright © 2016. Published by Elsevier Ltd.
Auditory emotional cues enhance visual perception.
Zeelenberg, René; Bocanegra, Bruno R
2010-04-01
Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by emotional cues as compared to neutral cues. When the cue was presented visually we replicated the emotion-induced impairment found in other studies. Our results suggest emotional stimuli have a twofold effect on perception. They impair perception by reflexively attracting attention at the expense of competing stimuli. However, emotional stimuli also induce a nonspecific perceptual enhancement that carries over onto other stimuli when competition is reduced, for example, by presenting stimuli in different modalities. Copyright 2009 Elsevier B.V. All rights reserved.
Murphy, Kathleen M; Saunders, Muriel D; Saunders, Richard R; Olswang, Lesley B
2004-01-01
The effects of different types and amounts of environmental stimuli (visual and auditory) on microswitch use and behavioral states of three individuals with profound multiple impairments were examined. The individual's switch use and behavioral states were measured under three setting conditions: natural stimuli (typical visual and auditory stimuli in a recreational situation), reduced visual stimuli, and reduced visual and auditory stimuli. Results demonstrated differential switch use in all participants with the varying environmental setting conditions. No consistent effects were observed in behavioral state related to environmental condition. Predominant behavioral state scores and switch use did not systematically covary with any participant. Results suggest the importance of considering environmental stimuli in relationship to switch use when working with individuals with profound multiple impairments.
Gender differences in identifying emotions from auditory and visual stimuli.
Waaramaa, Teija
2017-12-01
The present study focused on gender differences in emotion identification from auditory and visual stimuli produced by two male and two female actors. Differences in emotion identification from nonsense samples, language samples and prolonged vowels were investigated. It was also studied whether auditory stimuli can convey the emotional content of speech without visual stimuli, and whether visual stimuli can convey the emotional content of speech without auditory stimuli. The aim was to get a better knowledge of vocal attributes and a more holistic understanding of the nonverbal communication of emotion. Females tended to be more accurate in emotion identification than males. Voice quality parameters played a role in emotion identification in both genders. The emotional content of the samples was best conveyed by nonsense sentences, better than by prolonged vowels or shared native language of the speakers and participants. Thus, vocal non-verbal communication tends to affect the interpretation of emotion even in the absence of language. The emotional stimuli were better recognized from visual stimuli than auditory stimuli by both genders. Visual information about speech may not be connected to the language; instead, it may be based on the human ability to understand the kinetic movements in speech production more readily than the characteristics of the acoustic cues.
Environmental enrichment reduces signs of boredom in caged mink.
Meagher, Rebecca K; Mason, Georgia J
2012-01-01
Animals housed in impoverished cages are often labelled 'bored'. They have also been called 'apathetic' or 'depressed', particularly when profoundly inactive. However, these terms are rarely operationally defined and validated. As a negative state caused by under-stimulation, boredom should increase interest in stimuli of all kinds. Apathy (lack of interest), by contrast, should manifest as decreased interest in all stimuli, while anhedonia (loss of pleasure, a depressive symptom) should specifically decrease interest in normally rewarding stimuli. We tested the hypotheses that mink, a model carnivore, experience more boredom, depression-like apathy, or anhedonia in non-enriched (NE) cages than in complex, enriched (E) cages. We exposed 29 subjects (13 E, 16 NE) to ten stimuli categorized a priori as aversive (e.g. air puffs), rewarding (e.g. evoking chasing) or ambiguous/neutral (e.g. candles). Interest in stimuli was assessed via latencies to contact, contact durations, and durations oriented to stimuli. NE mink contacted all stimuli faster (P = 0.003) than E mink, and spent longer oriented to/in contact with them, albeit only significantly so for ambiguous ones (treatment*type P<0.013). With stimulus category removed from statistical models, interest in all stimuli was consistently higher among NE mink (P<0.0001 for all measures). NE mink also consumed more food rewards (P = 0.037). Finally, we investigated whether lying down while awake and stereotypic behaviour (both increased by NE housing) predicted these responses. Lying awake positively co-varied with certain measures of increased exploration. In contrast, stereotypic 'scrabbling' or locomotion (e.g. pacing) did not. Overall, NE mink showed no evidence of apathy or depression, but instead a heightened investigation of diverse stimuli consistent with boredom. This state was potentially indicated by spending much time lying still but awake (although this result requires replication). Boredom can thus be operationalized and assessed empirically in non-human animals. It can also be reduced by environmental enrichment.
Environmental Enrichment Reduces Signs of Boredom in Caged Mink
Meagher, Rebecca K.; Mason, Georgia J.
2012-01-01
Animals housed in impoverished cages are often labelled ‘bored’. They have also been called ‘apathetic’ or ‘depressed’, particularly when profoundly inactive. However, these terms are rarely operationally defined and validated. As a negative state caused by under-stimulation, boredom should increase interest in stimuli of all kinds. Apathy (lack of interest), by contrast, should manifest as decreased interest in all stimuli, while anhedonia (loss of pleasure, a depressive symptom) should specifically decrease interest in normally rewarding stimuli. We tested the hypotheses that mink, a model carnivore, experience more boredom, depression-like apathy, or anhedonia in non-enriched (NE) cages than in complex, enriched (E) cages. We exposed 29 subjects (13 E, 16 NE) to ten stimuli categorized a priori as aversive (e.g. air puffs), rewarding (e.g. evoking chasing) or ambiguous/neutral (e.g. candles). Interest in stimuli was assessed via latencies to contact, contact durations, and durations oriented to stimuli. NE mink contacted all stimuli faster (P = 0.003) than E mink, and spent longer oriented to/in contact with them, albeit only significantly so for ambiguous ones (treatment*type P<0.013). With stimulus category removed from statistical models, interest in all stimuli was consistently higher among NE mink (P<0.0001 for all measures). NE mink also consumed more food rewards (P = 0.037). Finally, we investigated whether lying down while awake and stereotypic behaviour (both increased by NE housing) predicted these responses. Lying awake positively co-varied with certain measures of increased exploration. In contrast, stereotypic ‘scrabbling’ or locomotion (e.g. pacing) did not. Overall, NE mink showed no evidence of apathy or depression, but instead a heightened investigation of diverse stimuli consistent with boredom. This state was potentially indicated by spending much time lying still but awake (although this result requires replication). Boredom can thus be operationalized and assessed empirically in non-human animals. It can also be reduced by environmental enrichment. PMID:23155462
What causes the facing-the-viewer bias in biological motion?
Weech, Séamas; McAdam, Matthew; Kenny, Sophie; Troje, Nikolaus F
2014-10-13
Orthographically projected biological motion point-light displays are generally ambiguous with respect to their orientation in depth, yet observers consistently prefer the facing-the-viewer interpretation. There has been discussion as to whether this bias can be attributed to the social relevance of biological motion stimuli or relates to local, low-level stimulus properties. In the present study we address this question. In Experiment 1, we compared the facing-the-viewer bias produced by a series of four stick figures and three human silhouettes that differed in posture, gender, and the presence versus absence of walking motion. Using a paradigm in which we asked observers to indicate the spinning direction of these figures, we found no bias when participants observed silhouettes, whereas a pronounced degree of bias was elicited by most stick figures. We hypothesized that the ambiguous surface normals on the lines and dots that comprise stick figures are prone to a visual bias that assumes surfaces to be convex. The local surface orientations of the occluding contours of silhouettes are unambiguous, and as such the convexity bias does not apply. In Experiment 2, we tested the role of local features in ambiguous surface perception by adding dots to the elbows and knees of silhouettes. We found biases consistent with the facing directions implied by a convex body surface. The results unify a number of findings regarding the facing-the-viewer bias. We conclude that the facing-the-viewer bias is established at the level of surface reconstruction from local image features rather than on a semantic level. © 2014 ARVO.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2011-01-01
During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.
The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.
van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R
2018-05-04
Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Perceptual uncertainty supports design reasoning
NASA Astrophysics Data System (ADS)
Tseng, Winger S. W.
2018-06-01
The unstructured, ambiguous figures used as design cues in the experiment were classified as being at high, moderate, and low ambiguity. Participants were required to use the ideas suggested by the visual cues to design a novel table. Results showed that different levels of ambiguity within the cues significantly influenced the quantity of idea development of expert designers, but not novice designers, whose idea generation remained relatively low across all levels of ambiguity. For experts, as the level of ambiguity in the cue increased so did the number of design ideas that were generated. Most design interpretations created by both experts and novices were affected by geometric contours within the figures. In addition, when viewing cues of high ambiguity, experts produced more interpretative transformations than when viewing cues of moderate or low ambiguity. Furthermore, experts produced significantly more new functions or meanings than novices. We claim that increased ambiguity within presented visual cues engenders uncertainty in designers that facilitates flexible transformations and interpretations that prevent premature commitment to uncreative solutions. Such results could be applied in design learning and education, focused on differences between experts and novices, to generalize the principles and strategies of interpretations by experts during concept sketching to train novices when face design problems, and the development of CACD tools to support designers.
Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B
2012-07-16
Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.
Temporal Influence on Awareness
1995-12-01
43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and
Ambiguity in Speaking Chemistry and Other STEM Content: Educational Implications
ERIC Educational Resources Information Center
Isaacson, Mick D.; Michaels, Michelle
2015-01-01
Ambiguity in speech is a possible barrier to the acquisition of knowledge for students who have print disabilities (such as blindness, visual impairments, and some specific learning disabilities) and rely on auditory input for learning. Chemistry appears to have considerable potential for being spoken ambiguously and may be a barrier to accessing…
Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.
Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B
2017-10-01
This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.
On the origins of the task mixing cost in the cuing task-switching paradigm.
Rubin, Orit; Meiran, Nachshon
2005-11-01
Poorer performance in conditions involving task repetition within blocks of mixed tasks relative to task repetition within blocks of single task is called mixing cost (MC). In 2 experiments exploring 2 hypotheses regarding the origins of MC, participants either switched between cued shape and color tasks, or they performed them as single tasks. Experiment 1 supported the hypothesis that mixed-tasks trials require the resolution of task ambiguity by showing that MC existed only with ambiguous stimuli that afforded both tasks and not with unambiguous stimuli affording only 1 task. Experiment 2 failed to support the hypothesis that holding multiple task sets in working memory (WM) generates MC by showing that systematic manipulation of the number of stimulus-response rules in WM did not affect MC. The results emphasize the role of competition management between task sets during task control.
Object-based spatial attention when objects have sufficient depth cues.
Takeya, Ryuji; Kasai, Tetsuko
2015-01-01
Attention directed to a part of an object tends to obligatorily spread over all of the spatial regions that belong to the object, which may be critical for rapid object-recognition in cluttered visual scenes. Previous studies have generally used simple rectangles as objects and have shown that attention spreading is reflected by amplitude modulation in the posterior N1 component (150-200 ms poststimulus) of event-related potentials, while other interpretations (i.e., rectangular holes) may arise implicitly in early visual processing stages. By using modified Kanizsa-type stimuli that provided less ambiguity of depth ordering, the present study examined early event-related potential spatial-attention effects for connected and separated objects, both of which were perceived in front of (Experiment 1) and in back of (Experiment 2) the surroundings. Typical P1 (100-140 ms) and N1 (150-220 ms) attention effects of ERP in response to unilateral probes were observed in both experiments. Importantly, the P1 attention effect was decreased for connected objects compared to separated objects only in Experiment 1, and the typical object-based modulations of N1 were not observed in either experiment. These results suggest that spatial attention spreads over a figural object at earlier stages of processing than previously indicated, in three-dimensional visual scenes with multiple depth cues.
Furl, N; van Rijsbergen, N J; Treves, A; Dolan, R J
2007-08-01
Previous studies have shown reductions of the functional magnetic resonance imaging (fMRI) signal in response to repetition of specific visual stimuli. We examined how adaptation affects the neural responses associated with categorization behavior, using face adaptation aftereffects. Adaptation to a given facial category biases categorization towards non-adapted facial categories in response to presentation of ambiguous morphs. We explored a hypothesis, posed by recent psychophysical studies, that these adaptation-induced categorizations are mediated by activity in relatively advanced stages within the occipitotemporal visual processing stream. Replicating these studies, we find that adaptation to a facial expression heightens perception of non-adapted expressions. Using comparable behavioral methods, we also show that adaptation to a specific identity heightens perception of a second identity in morph faces. We show both expression and identity effects to be associated with heightened anterior medial temporal lobe activity, specifically when perceiving the non-adapted category. These regions, incorporating bilateral anterior ventral rhinal cortices, perirhinal cortex and left anterior hippocampus are regions previously implicated in high-level visual perception. These categorization effects were not evident in fusiform or occipital gyri, although activity in these regions was reduced to repeated faces. The findings suggest that adaptation-induced perception is mediated by activity in regions downstream to those showing reductions due to stimulus repetition.
Papera, Massimiliano; Richards, Anne
2016-05-01
Exogenous allocation of attentional resources allows the visual system to encode and maintain representations of stimuli in visual working memory (VWM). However, limits in the processing capacity to allocate resources can prevent unexpected visual stimuli from gaining access to VWM and thereby to consciousness. Using a novel approach to create unbiased stimuli of increasing saliency, we investigated visual processing during a visual search task in individuals who show a high or low propensity to neglect unexpected stimuli. When propensity to inattention is high, ERP recordings show a diminished amplification concomitantly with a decrease in theta band power during the N1 latency, followed by a poor target enhancement during the N2 latency. Furthermore, a later modulation in the P3 latency was also found in individuals showing propensity to visual neglect, suggesting that more effort is required for conscious maintenance of visual information in VWM. Effects during early stages of processing (N80 and P1) were also observed suggesting that sensitivity to contrasts and medium-to-high spatial frequencies may be modulated by low-level saliency (albeit no statistical group differences were found). In accordance with the Global Workplace Model, our data indicate that a lack of resources in low-level processors and visual attention may be responsible for the failure to "ignite" a state of high-level activity spread across several brain areas that is necessary for stimuli to access awareness. These findings may aid in the development of diagnostic tests and intervention to detect/reduce inattention propensity to visual neglect of unexpected stimuli. © 2016 Society for Psychophysiological Research.
Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P
2016-06-01
Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain function and inference abilities, suggesting our experiments may inform interventions to alleviate or prevent cognitive dysfunction. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A search asymmetry reversed by figure-ground assignment.
Humphreys, G W; Müller, H
2000-05-01
We report evidence demonstrating that a search asymmetry favoring concave over convex targets can be reversed by altering the figure-ground assignment of edges in shapes. Visual search for a concave target among convex distractors is faster than search for a convex target among concave distractors (a search asymmetry). By using shapes with ambiguous local figure-ground relations, we demonstrated that search can be efficient (with search slopes around 10 ms/item) or inefficient (with search slopes around 30-40 ms/item) with the same stimuli, depending on whether edges are assigned to concave or convex "figures." This assignment process can operate in a top-down manner, according to the task set. The results suggest that attention is allocated to spatial regions following the computation of figure-ground relations in parallel across the elements present. This computation can also be modulated by top-down processes.
Attention, Awareness, and the Perception of Auditory Scenes
Snyder, Joel S.; Gregg, Melissa K.; Weintraub, David M.; Alain, Claude
2011-01-01
Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences. PMID:22347201
Dissociating emotion-induced blindness and hypervision.
Bocanegra, Bruno R; Zeelenberg, René
2009-12-01
Previous findings suggest that emotional stimuli sometimes improve (emotion-induced hypervision) and sometimes impair (emotion-induced blindness) the visual perception of subsequent neutral stimuli. We hypothesized that these differential carryover effects might be due to 2 distinct emotional influences in visual processing. On the one hand, emotional stimuli trigger a general enhancement in the efficiency of visual processing that can carry over onto other stimuli. On the other hand, emotional stimuli benefit from a stimulus-specific enhancement in later attentional processing at the expense of competing visual stimuli. We investigated whether detrimental (blindness) and beneficial (hypervision) carryover effects of emotion in perception can be dissociated within a single experimental paradigm. In 2 experiments, we manipulated the temporal competition for attention between an emotional cue word and a subsequent neutral target word by varying cue-target interstimulus interval (ISI) and cue visibility. Interestingly, emotional cues impaired target identification at short ISIs but improved target identification when competition was diminished by either increasing ISI or reducing cue visibility, suggesting that emotional significance of stimuli can improve and impair visual performance through distinct perceptual mechanisms.
Brodeur, Mathieu B.; Dionne-Dostie, Emmanuelle; Montreuil, Tina; Lepage, Martin
2010-01-01
There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli. PMID:20532245
Brodeur, Mathieu B; Dionne-Dostie, Emmanuelle; Montreuil, Tina; Lepage, Martin
2010-05-24
There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli.
The perception of isoluminant coloured stimuli of amblyopic eye and defocused eye
NASA Astrophysics Data System (ADS)
Krumina, Gunta; Ozolinsh, Maris; Ikaunieks, Gatis
2008-09-01
In routine eye examination the visual acuity usually is determined using standard charts with black letters on a white background, however contrast and colour are important characteristics of visual perception. The purpose of research was to study the perception of isoluminant coloured stimuli in the cases of true and simulated amlyopia. We estimated difference in visual acuity with isoluminant coloured stimuli comparing to that for high contrast black-white stimuli for true amblyopia and simulated amblyopia. Tests were generated on computer screen. Visual acuity was detected using different charts in two ways: standard achromatic stimuli (black symbols on a white background) and isoluminant coloured stimuli (white symbols on a yellow background, grey symbols on blue, green or red background). Thus isoluminant tests had colour contrast only but had no luminance contrast. Visual acuity evaluated with the standard method and colour tests were studied for subjects with good visual acuity, if necessary using the best vision correction. The same was performed for subjects with defocused eye and with true amblyopia. Defocus was realized with optical lenses placed in front of the normal eye. The obtained results applying the isoluminant colour charts revealed worsening of the visual acuity comparing with the visual acuity estimated with a standard high contrast method (black symbols on a white background).
Schwartzman, José Salomão; Velloso, Renata de Lima; D'Antino, Maria Eloísa Famá; Santos, Silvana
2015-05-01
To compare visual fixation at social stimuli in Rett syndrome (RT) and autism spectrum disorders (ASD) patients. Visual fixation at social stimuli was analyzed in 14 RS female patients (age range 4-30 years), 11 ASD male patients (age range 4-20 years), and 17 children with typical development (TD). Patients were exposed to three different pictures (two of human faces and one with social and non-social stimuli) presented for 8 seconds each on the screen of a computer attached to an eye-tracker equipment. Percentage of visual fixation at social stimuli was significantly higher in the RS group compared to ASD and even to TD groups. Visual fixation at social stimuli seems to be one more endophenotype making RS to be very different from ASD.
Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli
Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.
2009-01-01
The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778
Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.
Störmer, Viola S; McDonald, John J; Hillyard, Steven A
2009-12-29
The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.
Representation of visual symbols in the visual word processing network.
Muayqil, Taim; Davies-Thompson, Jodie; Barton, Jason J S
2015-03-01
Previous studies have shown that word processing involves a predominantly left-sided occipitotemporal network. Words are a form of symbolic representation, in that they are arbitrary perceptual stimuli that represent other objects, actions or concepts. Lesions of parts of the visual word processing network can cause alexia, which can be associated with difficulty processing other types of symbols such as musical notation or road signs. We investigated whether components of the visual word processing network were also activated by other types of symbols. In 16 music-literate subjects, we defined the visual word network using fMRI and examined responses to four symbolic categories: visual words, musical notation, instructive symbols (e.g. traffic signs), and flags and logos. For each category we compared responses not only to scrambled stimuli, but also to similar stimuli that lacked symbolic meaning. The left visual word form area and a homologous right fusiform region responded similarly to all four categories, but equally to both symbolic and non-symbolic equivalents. Greater response to symbolic than non-symbolic stimuli occurred only in the left inferior frontal and middle temporal gyri, but only for words, and in the case of the left inferior frontal gyri, also for musical notation. A whole-brain analysis comparing symbolic versus non-symbolic stimuli revealed a distributed network of inferior temporooccipital and parietal regions that differed for different symbols. The fusiform gyri are involved in processing the form of many symbolic stimuli, but not specifically for stimuli with symbolic content. Selectivity for stimuli with symbolic content only emerges in the visual word network at the level of the middle temporal and inferior frontal gyri, but is specific for words and musical notation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond
2015-01-01
Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.
Reimers, Stian; Stewart, Neil
2016-09-01
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.
Compatibility of motion facilitates visuomotor synchronization.
Hove, Michael J; Spivey, Michael J; Krumhansl, Carol L
2010-12-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists.
Attentional load modulates responses of human primary visual cortex to invisible stimuli.
Bahrami, Bahador; Lavie, Nilli; Rees, Geraint
2007-03-20
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.
Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome.
Hove, Michael J; Iversen, John R; Zhang, Allen; Repp, Bruno H
2013-07-01
Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target-distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.
An Automation Framework for Neural Nets that Learn
ERIC Educational Resources Information Center
Kilmer, W. L.; Arbib, M. A.
1973-01-01
A discussion of several types of formal neurons, many of whose functions are modifiable by their own input stimuli. The language of finite automata is used to mathematicize the problem of adaptation sufficiently to remove some ambiguities of Brindley's approach. (Author)
ERIC Educational Resources Information Center
Teubert, Manuel; Lohaus, Arnold; Fassbender, Ina; Vierhaus, Marc; Spangler, Sibylle; Borchert, Sonja; Freitag, Claudia; Goertz, Claudia; Graf, Frauke; Gudi, Helene; Kolling, Thorsten; Lamm, Bettina; Keller, Heidi; Knopf, Monika; Schwarzer, Gudrun
2012-01-01
This longitudinal study examined the influence of stimulus material on attention and expectation learning in the visual expectation paradigm. Female faces were used as attention-attracting stimuli, and non-meaningful visual stimuli of comparable complexity (Greebles) were used as low attention-attracting stimuli. Expectation learning performance…
Borg, Charmaine; Georgiadis, Janniko R; Renken, Remco J; Spoelstra, Symen K; Weijmar Schultz, Willibrord; de Jong, Peter J
2014-01-01
It has been proposed that disgust evolved to protect humans from contamination. Through eliciting the overwhelming urge to withdraw from the disgusting stimuli, it would facilitate avoidance of contact with pathogens. The physical proximity implied in sexual intercourse provides ample opportunity for contamination and may thus set the stage for eliciting pathogen disgust. Building on this, it has been argued that the involuntary muscle contraction characteristic of vaginismus (i.e., inability to have vaginal penetration) may be elicited by the prospect of penetration by potential contaminants. To further investigate this disgust-based interpretation of vaginismus (in DSM-5 classified as a Genito-Pelvic Pain/Penetration Disorder, GPPPD) we used functional magnetic resonance imaging (fMRI) to examine if women with vaginismus (n = 21) show relatively strong convergence in their brain responses towards sexual penetration- and disgust-related pictures compared to sexually asymptomatic women (n = 21) and women suffering from vulvar pain (dyspareunia/also classified as GPPPD in the DSM-5, n = 21). At the subjective level, both clinical groups rated penetration stimuli as more disgusting than asymptomatic women. However, the brain responses to penetration stimuli did not differ between groups. In addition, there was considerable conjoint brain activity in response to penetration and disgust pictures, which yield for both animal-reminder (e.g., mutilation) and core (e.g., rotten food) disgust domains. However, this overlap in brain activation was similar for all groups. A possible explanation for the lack of vaginismus-specific brain responses lies in the alleged female ambiguity (procreation/pleasure vs. contamination/disgust) toward penetration: generally in women a (default) disgust response tendency may prevail in the absence of sexual readiness. Accordingly, a critical next step would be to examine the processing of penetration stimuli following the induction of sexual arousal.
Borg, Charmaine; Georgiadis, Janniko R.; Renken, Remco J.; Spoelstra, Symen K.; Weijmar Schultz, Willibrord; de Jong, Peter J.
2014-01-01
It has been proposed that disgust evolved to protect humans from contamination. Through eliciting the overwhelming urge to withdraw from the disgusting stimuli, it would facilitate avoidance of contact with pathogens. The physical proximity implied in sexual intercourse provides ample opportunity for contamination and may thus set the stage for eliciting pathogen disgust. Building on this, it has been argued that the involuntary muscle contraction characteristic of vaginismus (i.e., inability to have vaginal penetration) may be elicited by the prospect of penetration by potential contaminants. To further investigate this disgust-based interpretation of vaginismus (in DSM-5 classified as a Genito-Pelvic Pain/Penetration Disorder, GPPPD) we used functional magnetic resonance imaging (fMRI) to examine if women with vaginismus (n = 21) show relatively strong convergence in their brain responses towards sexual penetration- and disgust-related pictures compared to sexually asymptomatic women (n = 21) and women suffering from vulvar pain (dyspareunia/also classified as GPPPD in the DSM-5, n = 21). At the subjective level, both clinical groups rated penetration stimuli as more disgusting than asymptomatic women. However, the brain responses to penetration stimuli did not differ between groups. In addition, there was considerable conjoint brain activity in response to penetration and disgust pictures, which yield for both animal-reminder (e.g., mutilation) and core (e.g., rotten food) disgust domains. However, this overlap in brain activation was similar for all groups. A possible explanation for the lack of vaginismus-specific brain responses lies in the alleged female ambiguity (procreation/pleasure vs. contamination/disgust) toward penetration: generally in women a (default) disgust response tendency may prevail in the absence of sexual readiness. Accordingly, a critical next step would be to examine the processing of penetration stimuli following the induction of sexual arousal. PMID:24465445
Boccia, M; Nemmi, F; Tizzani, E; Guariglia, C; Ferlazzo, F; Galati, G; Giannini, A M
2015-02-01
Esthetic experience is a unique, affectively colored, self-transcending subject-object relationship in which cognitive processing is felt to flow differently than during everyday experiences. Notwithstanding previous multidisciplinary investigations, how esthetic experience modulates perception is still obscure. We used Arcimboldo's ambiguous portraits to assess how the esthetic context organizes ambiguous percepts. The study was carried out using functional magnetic resonance imaging (fMRI) in healthy young volunteers (mean age 25.45; S.D. 4.51; 9 females), during both an explicit esthetic judgment task and an artwork/non-artwork classification task. We show that a distinct neural mechanism in the fusiform gyrus contributes to the esthetic experience of ambiguous portraits, according to the valence of the esthetic experience. Ambiguous artworks eliciting a negative esthetic experience lead to more pronounced activation of the fusiform face areas than ambiguous artworks eliciting a positive esthetic experience. We also found an interaction between task and ambiguity in the right superior parietal lobule. Taken together, our results demonstrate that a neural mechanism in the content-dependent brain regions of face processing underlies the esthetic experience of ambiguous portraits. Furthermore, they suggest that esthetic experience interacts with perceptual qualities of stimuli in the right superior parietal lobe, supporting the idea that esthetic experience arises from the interaction between top-down orienting of attention and bottom-up perceptual facilitation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.
Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro
2017-08-01
Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.
Noun-Verb Ambiguity in Chronic Undifferentiated Schizophrenia
ERIC Educational Resources Information Center
Goldfarb, Robert; Bekker, Natalie
2009-01-01
This study investigated noun-verb retrieval patterns of 30 adults with chronic undifferentiated schizophrenia and 67 typical adults, to determine if schizophrenia affected nouns (associated with temporal lobe function) differently from verbs (associated with frontal lobe function). Stimuli were homophonic homographic homonyms, balanced according…
Preferential amygdala reactivity to the negative assessment of neutral faces.
Blasi, Giuseppe; Hariri, Ahmad R; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R; Mattay, Venkata S
2009-11-01
Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues.
Preferential Amygdala Reactivity to the Negative Assessment of Neutral Faces
Blasi, Giuseppe; Hariri, Ahmad R.; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R.; Mattay, Venkata S.
2010-01-01
Background Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. Methods During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Results Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Conclusions Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues. PMID:19709644
Visual memories for perceived length are well preserved in older adults.
Norman, J Farley; Holmin, Jessica S; Bartholomew, Ashley N
2011-09-15
Three experiments compared younger (mean age was 23.7years) and older (mean age was 72.1years) observers' ability to visually discriminate line length using both explicit and implicit standard stimuli. In Experiment 1, the method of constant stimuli (with an explicit standard) was used to determine difference thresholds, whereas the method of single stimuli (where the knowledge of the standard length was only implicit and learned from previous test stimuli) was used in Experiments 2 and 3. The study evaluated whether increases in age affect older observers' ability to learn, retain, and utilize effective implicit visual standards. Overall, the observers' length difference thresholds were 5.85% of the standard when the method of constant stimuli was used and improved to 4.39% of the standard for the method of single stimuli (a decrease of 25%). Both age groups performed similarly in all conditions. The results demonstrate that older observers retain the ability to create, remember, and utilize effective implicit standards from a series of visual stimuli. Copyright © 2011 Elsevier Ltd. All rights reserved.
Interaction between visual and chemical cues in a Liolaemus lizard: a multimodal approach.
Vicente, Natalin S; Halloy, Monique
2017-12-01
Multimodal communication involves the use of signals and cues across two or more sensory modalities. The genus Liolaemus (Iguania: Liolaemidae) offers a great potential for studies on the ecology and evolution of multimodal communication, including visual and chemical signals. In this study, we analyzed the response of male and female Liolaemus pacha to chemical, visual and combined (multimodal) stimuli. Using cue-isolation tests, we registered the number of tongue flicks and headbob displays from exposure to signals in each modality. Number of tongue flicks was greater when a chemical stimulus was presented alone than in the presence of visual or multimodal stimuli. In contrast, headbob displays were fewer in number with visual and chemical stimuli alone, but significantly higher in number when combined. Female signallers triggered significantly more tongue flicks than male signallers, suggesting that chemical cues are involved in sexual recognition. We did not find an inhibition between chemical and visual cues. On the contrary, we observed a dominance of the chemical modality, because when presented with visual stimuli, lizards also responded with more tongue flicks than headbob displays. The total response produced by multimodal stimuli was similar to that of the chemical stimuli alone, possibly suggesting non-redundancy. We discuss whether the visual component of a multimodal signal could attract attention at a distance, increasing the effectiveness of transmission and reception of the information in chemical cues. Copyright © 2017 Elsevier GmbH. All rights reserved.
Filbrich, Lieve; Alamia, Andrea; Burns, Soline; Legrain, Valéry
2017-07-01
Despite their high relevance for defending the integrity of the body, crossmodal links between nociception, the neural system specifically coding potentially painful information, and vision are still poorly studied, especially the effects of nociception on visual perception. This study investigated if, and in which time window, a nociceptive stimulus can attract attention to its location on the body, independently of voluntary control, to facilitate the processing of visual stimuli occurring in the same side of space as the limb on which the visual stimulus was applied. In a temporal order judgment task based on an adaptive procedure, participants judged which of two visual stimuli, one presented next to either hand in either side of space, had been perceived first. Each pair of visual stimuli was preceded (by 200, 400, or 600 ms) by a nociceptive stimulus applied either unilaterally on one single hand, or bilaterally, on both hands simultaneously. Results show that, as compared to the bilateral condition, participants' judgments were biased to the advantage of the visual stimuli that occurred in the same side of space as the hand on which a unilateral, nociceptive stimulus was applied. This effect was present in a time window ranging from 200 to 600 ms, but importantly, biases increased with decreasing time interval. These results suggest that nociceptive stimuli can affect the perceptual processing of spatially congruent visual inputs.
Coding of level of ambiguity within neural systems mediating choice.
Lopez-Paniagua, Dan; Seger, Carol A
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).
Coding of level of ambiguity within neural systems mediating choice
Lopez-Paniagua, Dan; Seger, Carol A.
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common “fronto—parietal—striatal” network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum). PMID:24367286
Duration estimates within a modality are integrated sub-optimally
Cai, Ming Bo; Eagleman, David M.
2015-01-01
Perceived duration can be influenced by various properties of sensory stimuli. For example, visual stimuli of higher temporal frequency are perceived to last longer than those of lower temporal frequency. How does the brain form a representation of duration when each of two simultaneously presented stimuli influences perceived duration in different way? To answer this question, we investigated the perceived duration of a pair of dynamic visual stimuli of different temporal frequencies in comparison to that of a single visual stimulus of either low or high temporal frequency. We found that the duration representation of simultaneously occurring visual stimuli is best described by weighting the estimates of duration based on each individual stimulus. However, the weighting performance deviates from the prediction of statistically optimal integration. In addition, we provided a Bayesian account to explain a difference in the apparent sensitivity of the psychometric curves introduced by the order in which the two stimuli are displayed in a two-alternative forced-choice task. PMID:26321965
Qian, Ning; Dayan, Peter
2013-01-01
A wealth of studies has found that adapting to second-order visual stimuli has little effect on the perception of first-order stimuli. This is physiologically and psychologically troubling, since many cells show similar tuning to both classes of stimuli, and since adapting to first-order stimuli leads to aftereffects that do generalize to second-order stimuli. Focusing on high-level visual stimuli, we recently proposed the novel explanation that the lack of transfer arises partially from the characteristically different backgrounds of the two stimulus classes. Here, we consider the effect of stimulus backgrounds in the far more prevalent, lower-level, case of the orientation tilt aftereffect. Using a variety of first- and second-order oriented stimuli, we show that we could increase or decrease both within- and cross-class adaptation aftereffects by increasing or decreasing the similarity of the otherwise apparently uninteresting or irrelevant backgrounds of adapting and test patterns. Our results suggest that similarity between background statistics of the adapting and test stimuli contributes to low-level visual adaptation, and that these backgrounds are thus not discarded by visual processing but provide contextual modulation of adaptation. Null cross-adaptation aftereffects must also be interpreted cautiously. These findings reduce the apparent inconsistency between psychophysical and neurophysiological data about first- and second-order stimuli. PMID:23732217
Marini, Francesco; Marzi, Carlo A.
2016-01-01
The visual system leverages organizational regularities of perceptual elements to create meaningful representations of the world. One clear example of such function, which has been formalized in the Gestalt psychology principles, is the perceptual grouping of simple visual elements (e.g., lines and arcs) into unitary objects (e.g., forms and shapes). The present study sought to characterize automatic attentional capture and related cognitive processing of Gestalt-like visual stimuli at the psychophysiological level by using event-related potentials (ERPs). We measured ERPs during a simple visual reaction time task with bilateral presentations of physically matched elements with or without a Gestalt organization. Results showed that Gestalt (vs. non-Gestalt) stimuli are characterized by a larger N2pc together with enhanced ERP amplitudes of non-lateralized components (N1, N2, P3) starting around 150 ms post-stimulus onset. Thus, we conclude that Gestalt stimuli capture attention automatically and entail characteristic psychophysiological signatures at both early and late processing stages. Highlights We studied the neural signatures of the automatic processes of visual attention elicited by Gestalt stimuli. We found that a reliable early correlate of attentional capture turned out to be the N2pc component. Perceptual and cognitive processing of Gestalt stimuli is associated with larger N1, N2, and P3 PMID:27630555
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
Listening and Message Interpretation
ERIC Educational Resources Information Center
Edwards, Renee
2011-01-01
Message interpretation, the notion that individuals assign meaning to stimuli, is related to listening presage, listening process, and listening product. As a central notion of communication, meaning includes (a) denotation and connotation, and (b) content and relational meanings, which can vary in ambiguity and vagueness. Past research on message…
Barban, Francesco; Zannino, Gian Daniele; Macaluso, Emiliano; Caltagirone, Carlo; Carlesimo, Giovanni A
2013-06-01
Iconic memory is a high-capacity low-duration visual memory store that allows the persistence of a visual stimulus after its offset. The categorical nature of this store has been extensively debated. This study provides functional magnetic resonance imaging evidence for brain regions underlying the persistence of postcategorical representations of visual stimuli. In a partial report paradigm, subjects matched a cued row of a 3 × 3 array of letters (postcategorical stimuli) or false fonts (precategorical stimuli) with a subsequent triplet of stimuli. The cued row was indicated by two visual flankers presented at the onset (physical stimulus readout) or after the offset of the array (iconic memory readout). The left planum temporale showed a greater modulation of the source of readout (iconic memory vs. physical stimulus) when letters were presented compared to false fonts. This is a multimodal brain region responsible for matching incoming acoustic and visual patterns with acoustic pattern templates. These findings suggest that letters persist after their physical offset in an abstract postcategorical representation. A targeted region of interest analysis revealed a similar pattern of activation in the Visual Word Form Area. These results suggest that multiple higher-order visual areas mediate iconic memory for postcategorical stimuli. Copyright © 2012 Wiley Periodicals, Inc.
Fujisawa, Junya; Touyama, Hideaki; Hirose, Michitaka
2008-01-01
In this paper, alpha band modulation during visual spatial attention without visual stimuli was focused. Visual spatial attention has been expected to provide a new channel of non-invasive independent brain computer interface (BCI), but little work has been done on the new interfacing method. The flickering stimuli used in previous work cause a decline of independency and have difficulties in a practical use. Therefore we investigated whether visual spatial attention could be detected without such stimuli. Further, the common spatial patterns (CSP) were for the first time applied to the brain states during visual spatial attention. The performance evaluation was based on three brain states of left, right and center direction attention. The 30-channel scalp electroencephalographic (EEG) signals over occipital cortex were recorded for five subjects. Without CSP, the analyses made 66.44 (range 55.42 to 72.27) % of average classification performance in discriminating left and right attention classes. With CSP, the averaged classification accuracy was 75.39 (range 63.75 to 86.13) %. It is suggested that CSP is useful in the context of visual spatial attention, and the alpha band modulation during visual spatial attention without flickering stimuli has the possibility of a new channel for independent BCI as well as motor imagery.
Zold, Camila L.
2015-01-01
The primary visual cortex (V1) is widely regarded as faithfully conveying the physical properties of visual stimuli. Thus, experience-induced changes in V1 are often interpreted as improving visual perception (i.e., perceptual learning). Here we describe how, with experience, cue-evoked oscillations emerge in V1 to convey expected reward time as well as to relate experienced reward rate. We show, in chronic multisite local field potential recordings from rat V1, that repeated presentation of visual cues induces the emergence of visually evoked oscillatory activity. Early in training, the visually evoked oscillations relate to the physical parameters of the stimuli. However, with training, the oscillations evolve to relate the time in which those stimuli foretell expected reward. Moreover, the oscillation prevalence reflects the reward rate recently experienced by the animal. Thus, training induces experience-dependent changes in V1 activity that relate to what those stimuli have come to signify behaviorally: when to expect future reward and at what rate. PMID:26134643
Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne
2017-04-01
We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.
[Sound improves distinction of low intensities of light in the visual cortex of a rabbit].
Polianskiĭ, V B; Alymkulov, D E; Evtikhin, D V; Chernyshev, B V
2011-01-01
Electrodes were implanted into cranium above the primary visual cortex of four rabbits (Orictolagus cuniculus). At the first stage, visual evoked potentials (VEPs) were recorded in response to substitution of threshold visual stimuli (0.28 and 0.31 cd/m2). Then the sound (2000 Hz, 84 dB, duration 40 ms) was added simultaneously to every visual stimulus. Single sounds (without visual stimuli) did not produce a VEP-response. It was found that the amplitude ofVEP component N1 (85-110 ms) in response to complex stimuli (visual and sound) increased 1.6 times as compared to "simple" visual stimulation. At the second stage, paired substitutions of 8 different visual stimuli (range 0.38-20.2 cd/m2) by each other were performed. Sensory spaces of intensity were reconstructed on the basis of factor analysis. Sensory spaces of complexes were reconstructed in a similar way for simultaneous visual and sound stimulation. Comparison of vectors representing the stimuli in the spaces showed that the addition of a sound led to a 1.4-fold expansion of the space occupied by smaller intensities (0.28; 1.02; 3.05; 6.35 cd/m2). Also, the addition of the sound led to an arrangement of intensities in an ascending order. At the same time, the sound 1.33-times narrowed the space of larger intensities (8.48; 13.7; 16.8; 20.2 cd/m2). It is suggested that the addition of a sound improves a distinction of smaller intensities and impairs a dis- tinction of larger intensities. Sensory spaces revealed by complex stimuli were two-dimensional. This fact can be a consequence of integration of sound and light in a unified complex at simultaneous stimulation.
[Localization of attention related cortical structures by evoked potentials].
Szelenberger, W
2000-01-01
Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.
Jusyte, Aiste; Schönenberg, Michael
2014-06-30
Facial affect is one of the most important information sources during the course of social interactions, but it is susceptible to distortion due to the complex and dynamic nature. Socially anxious individuals have been shown to exhibit alterations in the processing of social information, such as an attentional and interpretative bias toward threatening information. This may be one of the key factors contributing to the development and maintenance of anxious psychopathology. The aim of the current study was to investigate whether a threat-related interpretation bias is evident for ambiguous facial stimuli in a population of individuals with a generalized Social Anxiety Disorder (gSAD) as compared to healthy controls. Participants judged ambiguous happy/fearful, angry/fearful and angry/happy blends varying in intensity and rated the predominant affective expression. The results obtained in this study do not indicate that gSAD is associated with a biased interpretation of ambiguous facial affect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Threshold of the precedence effect in noise
Freyman, Richard L.; Griffin, Amanda M.; Zurek, Patrick M.
2014-01-01
Three effects that show a temporal asymmetry in the influence of interaural cues were studied through the addition of masking noise: (1) The transient precedence effect—the perceptual dominance of a leading transient over a similar lagging transient; (2) the ongoing precedence effect—lead dominance with lead and lag components that extend in time; and (3) the onset capture effect—determination by an onset transient of the lateral position of an otherwise ambiguous extended trailing sound. These three effects were evoked with noise-burst stimuli and were compared in the presence of masking noise. Using a diotic noise masker, detection thresholds for stimuli with lead/lag interaural delays of 0/500 μs were compared to those with 500/0 μs delays. None of the three effects showed a masking difference between those conditions, suggesting that none of the effects is operative at masked threshold. A task requiring the discrimination between stimuli with 500/0 and 0/500 μs interaural delays was used to determine the threshold for each effect in noise. The results showed similar thresholds in noise (10–13 dB SL) for the transient and ongoing precedence effects, but a much higher threshold (33 dB SL) for onset capture of an ambiguous trailing sound. PMID:24815272
Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi
2018-05-07
Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.
Top-down influences on ambiguous perception: the role of stable and transient states of the observer
Scocchia, Lisa; Valsecchi, Matteo; Triesch, Jochen
2014-01-01
The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays. PMID:25538601
Relativistic compression and expansion of experiential time in the left and right space.
Vicario, Carmelo Mario; Pecoraro, Patrizia; Turriziani, Patrizia; Koch, Giacomo; Caltagirone, Carlo; Oliveri, Massimiliano
2008-03-05
Time, space and numbers are closely linked in the physical world. However, the relativistic-like effects on time perception of spatial and magnitude factors remain poorly investigated. Here we wanted to investigate whether duration judgments of digit visual stimuli are biased depending on the side of space where the stimuli are presented and on the magnitude of the stimulus itself. Different groups of healthy subjects performed duration judgment tasks on various types of visual stimuli. In the first two experiments visual stimuli were constituted by digit pairs (1 and 9), presented in the centre of the screen or in the right and left space. In a third experiment visual stimuli were constituted by black circles. The duration of the reference stimulus was fixed at 300 ms. Subjects had to indicate the relative duration of the test stimulus compared with the reference one. The main results showed that, regardless of digit magnitude, duration of stimuli presented in the left hemispace is underestimated and that of stimuli presented in the right hemispace is overestimated. On the other hand, in midline position, duration judgments are affected by the numerical magnitude of the presented stimulus, with time underestimation of stimuli of low magnitude and time overestimation of stimuli of high magnitude. These results argue for the presence of strict interactions between space, time and magnitude representation on the human brain.
Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments
Martínez, Antígona; Gaspar, Pablo A.; Hillyard, Steven A.; Bickel, Stephan; Lakatos, Peter; Dias, Elisa C.; Javitt, Daniel C.
2015-01-01
Paying attention to visual stimuli is typically accompanied by event-related desynchronizations (ERD) of ongoing alpha (7–14 Hz) activity in visual cortex. The present study used time-frequency based analyses to investigate the role of impaired alpha ERD in visual processing deficits in schizophrenia (Sz). Subjects viewed sinusoidal gratings of high (HSF) and low (LSF) spatial frequency (SF) designed to test functioning of the parvo- vs. magnocellular pathways, respectively. Patients with Sz and healthy controls paid attention selectively to either the LSF or HSF gratings which were presented in random order. Event-related brain potentials (ERPs) were recorded to all stimuli. As in our previous study, it was found that Sz patients were selectively impaired at detecting LSF target stimuli and that ERP amplitudes to LSF stimuli were diminished, both for the early sensory-evoked components and for the attend minus unattend difference component (the Selection Negativity), which is generally regarded as a specific index of feature-selective attention. In the time-frequency domain, the differential ERP deficits to LSF stimuli were echoed in a virtually absent theta-band phase locked response to both unattended and attended LSF stimuli (along with relatively intact theta-band activity for HSF stimuli). In contrast to the theta-band evoked responses which were tightly stimulus locked, stimulus-induced desynchronizations of ongoing alpha activity were not tightly stimulus locked and were apparent only in induced power analyses. Sz patients were significantly impaired in the attention-related modulation of ongoing alpha activity for both HSF and LSF stimuli. These deficits correlated with patients’ behavioral deficits in visual information processing as well as with visually based neurocognitive deficits. These findings suggest an additional, pathway-independent, mechanism by which deficits in early visual processing contribute to overall cognitive impairment in Sz. PMID:26190988
PSYCHOSOCIAL PHENOMENA AND BUILDING DESIGN.
ERIC Educational Resources Information Center
IZUMI, KIYOSHI
THE DEPTH OF PSYCHOSOCIAL CONSIDERATION VARIES WITH ARCHITECTURAL FUNCTION. THESE FACTORS INCREASE AS A BUILDING USAGE BECOMES MORE ANTHROPOPHILIC. SITUATIONS RELATING TO AMBIGUOUS DESIGN MUST BE ELIMINATED IN BUILDING DESIGN. PROBLEMS INVOLVING VISUAL PERCEPTION SUCH AS (1) GLASS DOORS, (2) APPARENT INSECURITY OF STRUCTURE, (3) AMBIGUOUS SYMBOLIC…
Ambiguous Figures – What Happens in the Brain When Perception Changes But Not the Stimulus
Kornmeier, Jürgen; Bach, Michael
2011-01-01
During observation of ambiguous figures our perception reverses spontaneously although the visual information stays unchanged. Research on this phenomenon so far suffered from the difficulty to determine the instant of the endogenous reversals with sufficient temporal precision. A novel experimental paradigm with discontinuous stimulus presentation improved on previous temporal estimates of the reversal event by a factor of three. It revealed that disambiguation of ambiguous visual information takes roughly 50 ms or two loops of recurrent neural activity. Further, the decision about the perceptual outcome has taken place at least 340 ms before the observer is able to indicate the consciously perceived reversal manually. We provide a short review about physiological studies on multistable perception with a focus on electrophysiological data. We further present a new perspective on multistable perception that can easily integrate previous apparently contradicting explanatory approaches. Finally we propose possible extensions toward other research fields where ambiguous figure perception may be useful as an investigative tool. PMID:22461773
Examining the cognitive demands of analogy instructions compared to explicit instructions.
Tse, Choi Yeung Andy; Wong, Andus; Whitehill, Tara; Ma, Estella; Masters, Rich
2016-10-01
In many learning domains, instructions are presented explicitly despite high cognitive demands associated with their processing. This study examined cognitive demands imposed on working memory by different types of instruction to speak with maximum pitch variation: visual analogy, verbal analogy and explicit verbal instruction. Forty participants were asked to memorise a set of 16 visual and verbal stimuli while reading aloud a Cantonese paragraph with maximum pitch variation. Instructions about how to achieve maximum pitch variation were presented via visual analogy, verbal analogy, explicit rules or no instruction. Pitch variation was assessed off-line, using standard deviation of fundamental frequency. Immediately after reading, participants recalled as many stimuli as possible. Analogy instructions resulted in significantly increased pitch variation compared to explicit instructions or no instructions. Explicit instructions resulted in poorest recall of stimuli. Visual analogy instructions resulted in significantly poorer recall of visual stimuli than verbal stimuli. The findings suggest that non-propositional instructions presented via analogy may be less cognitively demanding than instructions that are presented explicitly. Processing analogy instructions that are presented as a visual representation is likely to load primarily visuospatial components of working memory rather than phonological components. The findings are discussed with reference to speech therapy and human cognition.
Postural time-to-contact as a precursor of visually induced motion sickness.
Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A
2018-06-01
The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.
Spatial Scaling of the Profile of Selective Attention in the Visual Field.
Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A
2016-01-01
Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.
Visual field asymmetries in visual evoked responses
Hagler, Donald J.
2014-01-01
Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP. PMID:25527151
Correa-Jaraba, Kenia S.; Cid-Fernández, Susana; Lindín, Mónica; Díaz, Fernando
2016-01-01
The main aim of this study was to examine the effects of aging on event-related brain potentials (ERPs) associated with the automatic detection of unattended infrequent deviant and novel auditory stimuli (Mismatch Negativity, MMN) and with the orienting to these stimuli (P3a component), as well as the effects on ERPs associated with reorienting to relevant visual stimuli (Reorienting Negativity, RON). Participants were divided into three age groups: (1) Young: 21–29 years old; (2) Middle-aged: 51–64 years old; and (3) Old: 65–84 years old. They performed an auditory-visual distraction-attention task in which they were asked to attend to visual stimuli (Go, NoGo) and to ignore auditory stimuli (S: standard, D: deviant, N: novel). Reaction times (RTs) to Go visual stimuli were longer in old and middle-aged than in young participants. In addition, in all three age groups, longer RTs were found when Go visual stimuli were preceded by novel relative to deviant and standard auditory stimuli, indicating a distraction effect provoked by novel stimuli. ERP components were identified in the Novel minus Standard (N-S) and Deviant minus Standard (D-S) difference waveforms. In the N-S condition, MMN latency was significantly longer in middle-aged and old participants than in young participants, indicating a slowing of automatic detection of changes. The following results were observed in both difference waveforms: (1) the P3a component comprised two consecutive phases in all three age groups—an early-P3a (e-P3a) that may reflect the orienting response toward the irrelevant stimulation and a late-P3a (l-P3a) that may be a correlate of subsequent evaluation of the infrequent unexpected novel or deviant stimuli; (2) the e-P3a, l-P3a, and RON latencies were significantly longer in the Middle-aged and Old groups than in the Young group, indicating delay in the orienting response to and the subsequent evaluation of unattended auditory stimuli, and in the reorienting of attention to relevant (Go) visual stimuli, respectively; and (3) a significantly smaller e-P3a amplitude in Middle-aged and Old groups, indicating a deficit in the orienting response to irrelevant novel and deviant auditory stimuli. PMID:27065004
Residual attention guidance in blindsight monkeys watching complex natural scenes.
Yoshida, Masatoshi; Itti, Laurent; Berg, David J; Ikeda, Takuro; Kato, Rikako; Takaura, Kana; White, Brian J; Munoz, Douglas P; Isa, Tadashi
2012-08-07
Patients with damage to primary visual cortex (V1) demonstrate residual performance on laboratory visual tasks despite denial of conscious seeing (blindsight) [1]. After a period of recovery, which suggests a role for plasticity [2], visual sensitivity higher than chance is observed in humans and monkeys for simple luminance-defined stimuli, grating stimuli, moving gratings, and other stimuli [3-7]. Some residual cognitive processes including bottom-up attention and spatial memory have also been demonstrated [8-10]. To date, little is known about blindsight with natural stimuli and spontaneous visual behavior. In particular, is orienting attention toward salient stimuli during free viewing still possible? We used a computational saliency map model to analyze spontaneous eye movements of monkeys with blindsight from unilateral ablation of V1. Despite general deficits in gaze allocation, monkeys were significantly attracted to salient stimuli. The contribution of orientation features to salience was nearly abolished, whereas contributions of motion, intensity, and color features were preserved. Control experiments employing laboratory stimuli confirmed the free-viewing finding that lesioned monkeys retained color sensitivity. Our results show that attention guidance over complex natural scenes is preserved in the absence of V1, thereby directly challenging theories and models that crucially depend on V1 to compute the low-level visual features that guide attention. Copyright © 2012 Elsevier Ltd. All rights reserved.
Heenan, Adam; Troje, Nikolaus F
2014-01-01
Biological motion stimuli, such as orthographically projected stick figure walkers, are ambiguous about their orientation in depth. The projection of a stick figure walker oriented towards the viewer, therefore, is the same as its projection when oriented away. Even though such figures are depth-ambiguous, however, observers tend to interpret them as facing towards them more often than facing away. Some have speculated that this facing-the-viewer bias may exist for sociobiological reasons: Mistaking another human as retreating when they are actually approaching could have more severe consequences than the opposite error. Implied in this hypothesis is that the facing-towards percept of biological motion stimuli is potentially more threatening. Measures of anxiety and the facing-the-viewer bias should therefore be related, as researchers have consistently found that anxious individuals display an attentional bias towards more threatening stimuli. The goal of this study was to assess whether physical exercise (Experiment 1) or an anxiety induction/reduction task (Experiment 2) would significantly affect facing-the-viewer biases. We hypothesized that both physical exercise and progressive muscle relaxation would decrease facing-the-viewer biases for full stick figure walkers, but not for bottom- or top-half-only human stimuli, as these carry less sociobiological relevance. On the other hand, we expected that the anxiety induction task (Experiment 2) would increase facing-the-viewer biases for full stick figure walkers only. In both experiments, participants completed anxiety questionnaires, exercised on a treadmill (Experiment 1) or performed an anxiety induction/reduction task (Experiment 2), and then immediately completed a perceptual task that allowed us to assess their facing-the-viewer bias. As hypothesized, we found that physical exercise and progressive muscle relaxation reduced facing-the-viewer biases for full stick figure walkers only. Our results provide further support that the facing-the-viewer bias for biological motion stimuli is related to the sociobiological relevance of such stimuli.
Heenan, Adam; Troje, Nikolaus F.
2014-01-01
Biological motion stimuli, such as orthographically projected stick figure walkers, are ambiguous about their orientation in depth. The projection of a stick figure walker oriented towards the viewer, therefore, is the same as its projection when oriented away. Even though such figures are depth-ambiguous, however, observers tend to interpret them as facing towards them more often than facing away. Some have speculated that this facing-the-viewer bias may exist for sociobiological reasons: Mistaking another human as retreating when they are actually approaching could have more severe consequences than the opposite error. Implied in this hypothesis is that the facing-towards percept of biological motion stimuli is potentially more threatening. Measures of anxiety and the facing-the-viewer bias should therefore be related, as researchers have consistently found that anxious individuals display an attentional bias towards more threatening stimuli. The goal of this study was to assess whether physical exercise (Experiment 1) or an anxiety induction/reduction task (Experiment 2) would significantly affect facing-the-viewer biases. We hypothesized that both physical exercise and progressive muscle relaxation would decrease facing-the-viewer biases for full stick figure walkers, but not for bottom- or top-half-only human stimuli, as these carry less sociobiological relevance. On the other hand, we expected that the anxiety induction task (Experiment 2) would increase facing-the-viewer biases for full stick figure walkers only. In both experiments, participants completed anxiety questionnaires, exercised on a treadmill (Experiment 1) or performed an anxiety induction/reduction task (Experiment 2), and then immediately completed a perceptual task that allowed us to assess their facing-the-viewer bias. As hypothesized, we found that physical exercise and progressive muscle relaxation reduced facing-the-viewer biases for full stick figure walkers only. Our results provide further support that the facing-the-viewer bias for biological motion stimuli is related to the sociobiological relevance of such stimuli. PMID:24987956
Endogenous Sequential Cortical Activity Evoked by Visual Stimuli
Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael
2015-01-01
Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915
Binocular coordination in response to stereoscopic stimuli
NASA Astrophysics Data System (ADS)
Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.
2009-02-01
Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.
Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.
2013-01-01
The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939
Compatibility of Motion Facilitates Visuomotor Synchronization
ERIC Educational Resources Information Center
Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.
2010-01-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…
Analysis of Social Referencing Skills among Children with Autism
ERIC Educational Resources Information Center
Brim, Devorah; Townsend, Dawn Buffington; DeQuinzio, Jaime Ann; Poulson, Claire L.
2009-01-01
Social referencing, a form of nonverbal communication, involves seeking out discriminative stimuli provided by others about contingencies in an ambiguous context in order to respond in a manner that produces reinforcement. Although demonstrated by typically developing infants, social referencing is notably absent or impaired in individuals with…
Sex differences in adults' relative visual interest in female and male faces, toys, and play styles.
Alexander, Gerianne M; Charles, Nora
2009-06-01
An individual's reproductive potential appears to influence response to attractive faces of the opposite sex. Otherwise, relatively little is known about the characteristics of the adult observer that may influence his or her affective evaluation of male and female faces. An untested hypothesis (based on the proposed role of attractive faces in mate selection) is that most women would show greater interest in male faces whereas most men would show greater interest in female faces. Further, evidence from individuals with preferences for same-sex sexual partners suggests that response to attractive male and female faces may be influenced by gender-linked play preferences. To test these hypotheses, visual attention directed to sex-linked stimuli (faces, toys, play styles) was measured in 39 men and 44 women using eye tracking technology. Consistent with our predictions, men directed greater visual attention to all male-typical stimuli and visual attention to male and female faces was associated with visual attention to gender conforming or nonconforming stimuli in a manner consistent with previous research on sexual orientation. In contrast, women showed a visual preference for female-typical toys, but no visual preference for male faces or female-typical play styles. These findings indicate that sex differences in visual processing extend beyond stimuli associated with adult sexual behavior. We speculate that sex differences in visual processing are a component of the expression of gender phenotypes across the lifespan that may reflect sex differences in the motivational properties of gender-linked stimuli.
Understanding Metaphors: Is the Right Hemisphere Uniquely Involved?
ERIC Educational Resources Information Center
Kacinik, Natalie A.; Chiarello, Christine
2007-01-01
Two divided visual field priming experiments examined cerebral asymmetries for understanding metaphors varying in sentence constraint. Experiment 1 investigated ambiguous words (e.g., SWEET and BRIGHT) with literal and metaphoric meanings in ambiguous and unambiguous sentence contexts, while Experiment 2 involved standard metaphors (e.g., "The…
Chen, Junwen; Milne, Kirby; Dayman, Janet; Kemps, Eva
2018-05-23
Two studies aimed to examine whether high socially anxious individuals are more likely to negatively interpret ambiguous social scenarios and facial expressions compared to low socially anxious individuals. We also examined whether interpretation bias serves as a mediator of the relationship between trait social anxiety and state anxiety responses, in particular current state anxiety, bodily sensations, and perceived probability and cost of negative evaluation pertaining to a speech task. Study 1 used ambiguous social scenarios and Study 2 used ambiguous facial expressions as stimuli to objectively assess interpretation bias. Undergraduate students with high and low social anxiety completed measures of state anxiety responses at three time points: baseline, after the interpretation bias task, and after the preparation for an impromptu speech. Results showed that high socially anxious individuals were more likely to endorse threat interpretations for ambiguous social scenarios and to interpret ambiguous faces as negative than low socially anxious individuals. Furthermore, negative interpretations mediated the relationship between trait social anxiety and perceived probability of negative evaluation pertaining to the speech task in Study 1 but not Study 2. The present studies provide new insight into the role of interpretation bias in social anxiety.
A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.
Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei
2014-09-19
Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2011-01-01
Background Anecdotal reports and a few scientific publications suggest that flyovers of helicopters at low altitude may elicit fear- or anxiety-related behavioral reactions in grazing feral and farm animals. We investigated the behavioral and physiological stress reactions of five individually housed dairy goats to different acoustic and visual stimuli from helicopters and to combinations of these stimuli under controlled environmental (indoor) conditions. The visual stimuli were helicopter animations projected on a large screen in front of the enclosures of the goats. Acoustic and visual stimuli of a tractor were also presented. On the final day of the study the goats were exposed to two flyovers (altitude 50 m and 75 m) of a Chinook helicopter while grazing in a pasture. Salivary cortisol, behavior, and heart rate of the goats were registered before, during and after stimulus presentations. Results The goats reacted alert to the visual and/or acoustic stimuli that were presented in their room. They raised their heads and turned their ears forward in the direction of the stimuli. There was no statistically reliable rise of the average velocity of moving of the goats in their enclosure and no increase of the duration of moving during presentation of the stimuli. Also there was no increase in heart rate or salivary cortisol concentration during the indoor test sessions. Surprisingly, no physiological and behavioral stress responses were observed during the flyover of a Chinook at 50 m, which produced a peak noise of 110 dB. Conclusions We conclude that the behavior and physiology of goats are unaffected by brief episodes of intense, adverse visual and acoustic stimulation such as the sight and noise of overflying helicopters. The absence of a physiological stress response and of elevated emotional reactivity of goats subjected to helicopter stimuli is discussed in relation to the design and testing schedule of this study. PMID:21496239
Auditory Emotional Cues Enhance Visual Perception
ERIC Educational Resources Information Center
Zeelenberg, Rene; Bocanegra, Bruno R.
2010-01-01
Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…
Cortical Integration of Audio-Visual Information
Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.
2013-01-01
We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442
The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns
Duarte, Fabiola; Lemus, Luis
2017-01-01
The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406
Sequential Ideal-Observer Analysis of Visual Discriminations.
ERIC Educational Resources Information Center
Geisler, Wilson S.
1989-01-01
A new analysis, based on the concept of the ideal observer in signal detection theory, is described. It allows: tracing of the flow of discrimination information through the initial physiological stages of visual processing for arbitrary spatio-chromatic stimuli, and measurement of the information content of said visual stimuli. (TJH)
ERIC Educational Resources Information Center
Falkmer, Marita; Bjallmark, Anna; Larsson, Matilda; Falkmer, Torbjorn
2011-01-01
Several studies, using eye tracking methodology, suggest that different visual strategies in persons with autism spectrum conditions, compared with controls, are applied when viewing facial stimuli. Most eye tracking studies are, however, made in laboratory settings with either static (photos) or non-interactive dynamic stimuli, such as video…
Sex Differences in Response to Visual Sexual Stimuli: A Review
Rupp, Heather A.; Wallen, Kim
2009-01-01
This article reviews what is currently known about how men and women respond to the presentation of visual sexual stimuli. While the assumption that men respond more to visual sexual stimuli is generally empirically supported, previous reports of sex differences are confounded by the variable content of the stimuli presented and measurement techniques. We propose that the cognitive processing stage of responding to sexual stimuli is the first stage in which sex differences occur. The divergence between men and women is proposed to occur at this time, reflected in differences in neural activation, and contribute to previously reported sex differences in downstream peripheral physiological responses and subjective reports of sexual arousal. Additionally, this review discusses factors that may contribute to the variability in sex differences observed in response to visual sexual stimuli. Factors include participant variables, such as hormonal state and socialized sexual attitudes, as well as variables specific to the content presented in the stimuli. Based on the literature reviewed, we conclude that content characteristics may differentially produce higher levels of sexual arousal in men and women. Specifically, men appear more influenced by the sex of the actors depicted in the stimuli while women’s response may differ with the context presented. Sexual motivation, perceived gender role expectations, and sexual attitudes are possible influences. These differences are of practical importance to future research on sexual arousal that aims to use experimental stimuli comparably appealing to men and women and also for general understanding of cognitive sex differences. PMID:17668311
Physical Features of Visual Images Affect Macaque Monkey’s Preference for These Images
Funahashi, Shintaro
2016-01-01
Animals exhibit different degrees of preference toward various visual stimuli. In addition, it has been shown that strongly preferred stimuli can often act as a reward. The aim of the present study was to determine what features determine the strength of the preference for visual stimuli in order to examine neural mechanisms of preference judgment. We used 50 color photographs obtained from the Flickr Material Database (FMD) as original stimuli. Four macaque monkeys performed a simple choice task, in which two stimuli selected randomly from among the 50 stimuli were simultaneously presented on a monitor and monkeys were required to choose either stimulus by eye movements. We considered that the monkeys preferred the chosen stimulus if it continued to look at the stimulus for an additional 6 s and calculated a choice ratio for each stimulus. Each monkey exhibited a different choice ratio for each of the original 50 stimuli. They tended to select clear, colorful and in-focus stimuli. Complexity and clarity were stronger determinants of preference than colorfulness. Images that included greater amounts of spatial frequency components were selected more frequently. These results indicate that particular physical features of the stimulus can affect the strength of a monkey’s preference and that the complexity, clarity and colorfulness of the stimulus are important determinants of this preference. Neurophysiological studies would be needed to examine whether these features of visual stimuli produce more activation in neurons that participate in this preference judgment. PMID:27853424
Sublexical Ambiguity Effect in Reading Chinese Disyllabic Compounds
ERIC Educational Resources Information Center
Huang, Hsu-Wen; Lee, Chia-Ying; Tsai, Jie-Li; Tzeng, Ovid J.-L.
2011-01-01
For Chinese compounds, neighbors can share either both orthographic forms and meanings, or orthographic forms only. In this study, central presentation and visual half-field (VF) presentation methods were used in conjunction with ERP measures to investigate how readers solve the sublexical semantic ambiguity of the first constituent character in…
Ambiguity Resolution in Lateralized Arabic
ERIC Educational Resources Information Center
Hayadre, Manar; Kurzon, Dennis; Peleg, Orna; Zohar, Eviatar
2015-01-01
We examined ambiguity resolution in reading in Arabic. Arabic is an abjad orthography and is morphologically similar to Hebrew. However, Arabic literacy occurs in a diglossic context, and its orthography is more visually complex than Hebrew. We therefore tested to see whether hemispheric differences will be similar or different from previous…
Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel
2012-01-01
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200–250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components. PMID:22363479
Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel
2012-01-01
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.
Differences in apparent straightness of dot and line stimuli.
NASA Technical Reports Server (NTRS)
Parlee, M. B.
1972-01-01
An investigation has been made of anisotropic responses to contoured and noncontoured stimuli to obtain an insight into the way these stimuli are processed. For this purpose, eight subjects judged the alignment of minimally contoured (3 dot) and contoured (line) stimuli. Stimuli, presented to each eye separately, vertically subtended either 8 or 32 deg visual angle and were located 10 deg left, center, or 10 deg right in the visual field. Location-dependent deviations from physical straightness were larger for dot stimuli than for lines. The results were the same for the two eyes. In a second experiment, subjects judged the alignment of stimuli composed of different densities of dots. Apparent straightness for these stimuli was the same as for lines. The results are discussed in terms of alternative mechanisms for analysis of contoured and minimally contoured stimuli.
Evolutionary relevance facilitates visual information processing.
Jackson, Russell E; Calvillo, Dusti P
2013-11-03
Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.
Marschall-Lévesque, Shawn; Rouleau, Joanne-Lucine; Renaud, Patrice
2018-02-01
Penile plethysmography (PPG) is a measure of sexual interests that relies heavily on the stimuli it uses to generate valid results. Ethical considerations surrounding the use of real images in PPG have further limited the content admissible for these stimuli. To palliate this limitation, the current study aimed to combine audio and visual stimuli by incorporating computer-generated characters to create new stimuli capable of accurately classifying sex offenders with child victims, while also increasing the number of valid profiles. Three modalities (audio, visual, and audiovisual) were compared using two groups (15 sex offenders with child victims and 15 non-offenders). Both the new visual and audiovisual stimuli resulted in a 13% increase in the number of valid profiles at 2.5 mm, when compared to the standard audio stimuli. Furthermore, the new audiovisual stimuli generated a 34% increase in penile responses. All three modalities were able to discriminate between the two groups by their responses to the adult and child stimuli. Lastly, sexual interest indices for all three modalities could accurately classify participants in their appropriate groups, as demonstrated by ROC curve analysis (i.e., audio AUC = .81, 95% CI [.60, 1.00]; visual AUC = .84, 95% CI [.66, 1.00], and audiovisual AUC = .83, 95% CI [.63, 1.00]). Results suggest that computer-generated characters allow accurate discrimination of sex offenders with child victims and can be added to already validated stimuli to increase the number of valid profiles. The implications of audiovisual stimuli using computer-generated characters and their possible use in PPG evaluations are also discussed.
Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza
2016-05-01
Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.
Bigelow, James; Poremba, Amy
2014-01-01
Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.
Fixating at far distance shortens reaction time to peripheral visual stimuli at specific locations.
Kokubu, Masahiro; Ando, Soichi; Oda, Shingo
2018-01-18
The purpose of the present study was to examine whether the fixation distance in real three-dimensional space affects manual reaction time to peripheral visual stimuli. Light-emitting diodes were used for presenting a fixation point and four peripheral visual stimuli. The visual stimuli were located at a distance of 45cm and at 25° in the left, right, upper, and lower directions from the sagittal axis including the fixation point. Near (30cm), Middle (45cm), Far (90cm), and Very Far (300cm) fixation distance conditions were used. When one of the four visual stimuli was randomly illuminated, the participants released a button as quickly as possible. Results showed that overall peripheral reaction time decreased as the fixation distance increased. The significant interaction between fixation distance and stimulus location indicated that the effect of fixation distance on reaction time was observed at the left, right, and upper locations but not at the lower location. These results suggest that fixating at far distance would contribute to faster reaction and that the effect is specific to locations in the peripheral visual field. The present findings are discussed in terms of viewer-centered representation, the focus of attention in depth, and visual field asymmetry related to neurological and psychological aspects. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli.
Keil, Andreas; Stolarova, Margarita; Moratti, Stephan; Ray, William J
2007-06-01
The ability to react rapidly and efficiently to adverse stimuli is crucial for survival. Neuroscience and behavioral studies have converged to show that visual information associated with aversive content is processed quickly and accurately and is associated with rapid amplification of the neural responses. In particular, unpleasant visual information has repeatedly been shown to evoke increased cortical activity during early visual processing between 60 and 120 ms following the onset of a stimulus. However, the nature of these early responses is not well understood. Using neutral versus unpleasant colored pictures, the current report examines the time course of short-term changes in the human visual cortex when a subject is repeatedly exposed to simple grating stimuli in a classical conditioning paradigm. We analyzed changes in amplitude and synchrony of large-scale oscillatory activity across 2 days of testing, which included baseline measurements, 2 conditioning sessions, and a final extinction session. We found a gradual increase in amplitude and synchrony of very early cortical oscillations in the 20-35 Hz range across conditioning sessions, specifically for conditioned stimuli predicting aversive visual events. This increase for conditioned stimuli affected stimulus-locked cortical oscillations at a latency of around 60-90 ms and disappeared during extinction. Our findings suggest that reorganization of neural connectivity on the level of the visual cortex acts to optimize early perception of specific features indicative of emotional relevance.
Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro
2013-01-01
Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.
Is improved contrast sensitivity a natural consequence of visual training?
Levi, Aaron; Shaked, Danielle; Tadin, Duje; Huxlin, Krystel R.
2015-01-01
Many studies have shown that training and testing conditions modulate specificity of visual learning to trained stimuli and tasks. In visually impaired populations, generalizability of visual learning to untrained stimuli/tasks is almost always reported, with contrast sensitivity (CS) featuring prominently among these collaterally-improved functions. To understand factors underlying this difference, we measured CS for direction and orientation discrimination in the visual periphery of three groups of visually-intact subjects. Group 1 trained on an orientation discrimination task with static Gabors whose luminance contrast was decreased as performance improved. Group 2 trained on a global direction discrimination task using high-contrast random dot stimuli previously used to recover motion perception in cortically blind patients. Group 3 underwent no training. Both forms of training improved CS with some degree of specificity for basic attributes of the trained stimulus/task. Group 1's largest enhancement was in CS around the trained spatial/temporal frequencies; similarly, Group 2's largest improvements occurred in CS for discriminating moving and flickering stimuli. Group 3 saw no significant CS changes. These results indicate that CS improvements may be a natural consequence of multiple forms of visual training in visually intact humans, albeit with some specificity to the trained visual domain(s). PMID:26305736
Beck, Claudia; Kardatzki, Bernd; Ethofer, Thomas
2014-01-01
Expectations and prior knowledge can strongly influence our perception. In vision research, such top-down modulation of perceptual processing has been extensively studied using ambiguous stimuli, such as reversible figures. Here, we propose a novel method to address this issue in the auditory modality during speech perception by means of Mondgreens and Soramimi which represent song lyrics with the potential for misperception within one or across two languages, respectively. We demonstrate that such phenomena can be induced by visual presentation of the alternative percept and occur with a sufficient probability to exploit them in neuroscientific experiments. Song familiarity did not influence the occurrence of such altered perception indicating that this tool can be employed irrespective of the participants’ knowledge of music. On the other hand, previous knowledge of the alternative percept had a strong impact on the strength of altered perception which is in line with frequent reports that these phenomena can have long-lasting effects. Finally, we demonstrate that the strength of changes in perception correlated with the extent to which they were experienced as amusing as well as the vocabulary of the participants as source of potential interpretations. These findings suggest that such perceptional phenomena might be linked to the pleasant experience of resolving ambiguity which is in line with the long-existing theory of Hermann von Helmholtz that perception and problem-solving recruit similar processes. PMID:24416261
Mashal, Nira; Faust, Miriam; Hendler, Talma; Jung-Beeman, Mark
2008-01-01
The present study examined the role of the left (LH) and right (RH) cerebral hemispheres in processing alternative meanings of idiomatic sentences. We conducted two experiments using ambiguous idioms with plausible literal interpretations as stimuli. In the first experiment we tested hemispheric differences in accessing either the literal or the idiomatic meaning of idioms for targets presented to either the left or the right visual field. In the second experiment, we used functional magnetic resonance imaging (fMRI) to define regional brain activation patterns in healthy adults processing either the idiomatic meaning of idioms or the literal meanings of either idioms or literal sentences. According to the Graded Salience Hypothesis (GSH, Giora, 2003), a selective RH involvement in the processing of nonsalient meanings, such as literal interpretations of idiomatic expressions, was expected. Results of the two experiments were consistent with the GSH predictions and show that literal interpretations of idioms are accessed faster than their idiomatic meanings in the RH. The fMRI data showed that processing the idiomatic interpretation of idioms and the literal interpretations of literal sentences involved LH regions whereas processing the literal interpretation of idioms was associated with increased activity in right brain regions including the right precuneus, right middle frontal gyrus (MFG), right posterior middle temporal gyrus (MTG), and right anterior superior temporal gyrus (STG). We suggest that these RH areas are involved in semantic ambiguity resolution and in processing nonsalient meanings of conventional idiomatic expressions.
Cross-Category Adaptation: Objects Produce Gender Adaptation in the Perception of Faces
Javadi, Amir Homayoun; Wee, Natalie
2012-01-01
Adaptation aftereffects have been found for low-level visual features such as colour, motion and shape perception, as well as higher-level features such as gender, race and identity in domains such as faces and biological motion. It is not yet clear if adaptation effects in humans extend beyond this set of higher order features. The aim of this study was to investigate whether objects highly associated with one gender, e.g. high heels for females or electric shavers for males can modulate gender perception of a face. In two separate experiments, we adapted subjects to a series of objects highly associated with one gender and subsequently asked participants to judge the gender of an ambiguous face. Results showed that participants are more likely to perceive an ambiguous face as male after being exposed to objects highly associated to females and vice versa. A gender adaptation aftereffect was obtained despite the adaptor and test stimuli being from different global categories (objects and faces respectively). These findings show that our perception of gender from faces is highly affected by our environment and recent experience. This suggests two possible mechanisms: (a) that perception of the gender associated with an object shares at least some brain areas with those responsible for gender perception of faces and (b) adaptation to gender, which is a high-level concept, can modulate brain areas that are involved in facial gender perception through top-down processes. PMID:23049942
Shades of yellow: interactive effects of visual and odour cues in a pest beetle
Stevenson, Philip C.; Belmain, Steven R.
2016-01-01
Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses. Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species), in an open-loop setup. Results: Some visual stimuli—in particular, one shade of yellow, solid black and high-contrast black-against-white stimuli—elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-on-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus. Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect. PMID:27478707
Virtual reality stimuli for force platform posturography.
Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko
2002-01-01
People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.
Neural Basis of Visual Attentional Orienting in Childhood Autism Spectrum Disorders.
Murphy, Eric R; Norr, Megan; Strang, John F; Kenworthy, Lauren; Gaillard, William D; Vaidya, Chandan J
2017-01-01
We examined spontaneous attention orienting to visual salience in stimuli without social significance using a modified Dot-Probe task during functional magnetic resonance imaging in high-functioning preadolescent children with Autism Spectrum Disorder (ASD) and age- and IQ-matched control children. While the magnitude of attentional bias (faster response to probes in the location of solid color patch) to visually salient stimuli was similar in the groups, activation differences in frontal and temporoparietal regions suggested hyper-sensitivity to visual salience or to sameness in ASD children. Further, activation in a subset of those regions was associated with symptoms of restricted and repetitive behavior. Thus, atypicalities in response to visual properties of stimuli may drive attentional orienting problems associated with ASD.
Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study
Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano
2017-01-01
The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631
Utilization of Prosodic Information in Syntactic Ambiguity Resolution
2010-01-01
Two self paced listening experiments examined the role of prosodic phrasing in syntactic ambiguity resolution. In Experiment 1, the stimuli consisted of early closure sentences (e.g., “While the parents watched, the child sang a song.”) containing transitive-biased subordinate verbs paired with plausible direct objects or intransitive-biased subordinate verbs paired with implausible direct objects. Experiment 2 also contained early closure sentences with transitively and intransitive-biased subordinate verbs, but the subordinate verbs were always followed by plausible direct objects. In both experiments, there were two prosodic conditions. In the subject-biased prosodic condition, an intonational phrase boundary marked the clausal boundary following the subordinate verb. In the object-biased prosodic condition, the clause boundary was unmarked. The results indicate that lexical and prosodic cues interact at the subordinate verb and plausibility further affects processing at the ambiguous noun. Results are discussed with respect to models of the role of prosody in sentence comprehension. PMID:20033849
ERIC Educational Resources Information Center
Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert
2012-01-01
The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…
ERIC Educational Resources Information Center
Guo, Jing; McLeod, Poppy Lauretta
2014-01-01
Drawing upon the Search for Ideas in Associative Memory (SIAM) model as the theoretical framework, the impact of heterogeneity and topic relevance of visual stimuli on ideation performance was examined. Results from a laboratory experiment showed that visual stimuli increased productivity and diversity of idea generation, that relevance to the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
.... Acoustic and visual stimuli generated by: (1) Helicopter landings/takeoffs; (2) noise generated during... minimize acoustic and visual disturbances) as described in NMFS' December 22, 2010 (75 FR 80471) notice of... Activity on Marine Mammals Acoustic and visual stimuli generated by: (1) Helicopter landings/ takeoffs; (2...
Stropahl, Maren; Schellhardt, Sebastian; Debener, Stefan
2017-06-01
The concurrent presentation of different auditory and visual syllables may result in the perception of a third syllable, reflecting an illusory fusion of visual and auditory information. This well-known McGurk effect is frequently used for the study of audio-visual integration. Recently, it was shown that the McGurk effect is strongly stimulus-dependent, which complicates comparisons across perceivers and inferences across studies. To overcome this limitation, we developed the freely available Oldenburg audio-visual speech stimuli (OLAVS), consisting of 8 different talkers and 12 different syllable combinations. The quality of the OLAVS set was evaluated with 24 normal-hearing subjects. All 96 stimuli were characterized based on their stimulus disparity, which was obtained from a probabilistic model (cf. Magnotti & Beauchamp, 2015). Moreover, the McGurk effect was studied in eight adult cochlear implant (CI) users. By applying the individual, stimulus-independent parameters of the probabilistic model, the predicted effect of stronger audio-visual integration in CI users could be confirmed, demonstrating the validity of the new stimulus material.
Mishra, Jyoti; Zanto, Theodore; Nilakantan, Aneesha; Gazzaley, Adam
2013-01-01
Intrasensory interference during visual working memory (WM) maintenance by object stimuli (such as faces and scenes), has been shown to negatively impact WM performance, with greater detrimental impacts of interference observed in aging. Here we assessed age-related impacts by intrasensory WM interference from lower-level stimulus features such as visual and auditory motion stimuli. We consistently found that interference in the form of ignored distractions and secondary task i nterruptions presented during a WM maintenance period, degraded memory accuracy in both the visual and auditory domain. However, in contrast to prior studies assessing WM for visual object stimuli, feature-based interference effects were not observed to be significantly greater in older adults. Analyses of neural oscillations in the alpha frequency band further revealed preserved mechanisms of interference processing in terms of post-stimulus alpha suppression, which was observed maximally for secondary task interruptions in visual and auditory modalities in both younger and older adults. These results suggest that age-related sensitivity of WM to interference may be limited to complex object stimuli, at least at low WM loads. PMID:23791629
Iconic-Memory Processing of Unfamiliar Stimuli by Retarded and Nonretarded Individuals.
ERIC Educational Resources Information Center
Hornstein, Henry A.; Mosley, James L.
1979-01-01
The iconic-memory processing of unfamiliar stimuli by 11 mentally retarded males (mean age 22 years) was undertaken employing a visually cued partial-report procedure and a visual masking procedure. (Author/CL)
Audiovisual Speech Recalibration in Children
ERIC Educational Resources Information Center
van Linden, Sabine; Vroomen, Jean
2008-01-01
In order to examine whether children adjust their phonetic speech categories, children of two age groups, five-year-olds and eight-year-olds, were exposed to a video of a face saying /aba/ or /ada/ accompanied by an auditory ambiguous speech sound halfway between /b/ and /d/. The effect of exposure to these audiovisual stimuli was measured on…
Electrophysiological Evidence for a Multisensory Speech-Specific Mode of Perception
ERIC Educational Resources Information Center
Stekelenburg, Jeroen J.; Vroomen, Jean
2012-01-01
We investigated whether the interpretation of auditory stimuli as speech or non-speech affects audiovisual (AV) speech integration at the neural level. Perceptually ambiguous sine-wave replicas (SWS) of natural speech were presented to listeners who were either in "speech mode" or "non-speech mode". At the behavioral level, incongruent lipread…
Stites, Mallory C.; Federmeier, Kara D.
2015-01-01
We used eye-tracking to investigate the downstream processing consequences of encountering noun/verb (NV) homographs (i.e., park) in semantically neutral but syntactically constraining contexts. Target words were followed by a prepositional phrase containing a noun that was plausible for only one meaning of the homograph. Replicating previous work, we found increased first fixation durations on NV homographs compared to unambiguous words, which persisted into the next sentence region. At the downstream noun, we found plausibility effects following ambiguous words that were correlated with the size of a reader's first fixation effect, suggesting that this effect reflects the recruitment of processing resources necessary to suppress the homograph's context-inappropriate meaning. Using these same stimuli, Lee and Federmeier (2012) found a sustained frontal negativity to the NV homographs, and, on the downstream noun, found a plausibility effect that was also positively correlated with the size of a reader's ambiguity effect. Together, these findings suggest that when only syntactic constraints are available, meaning selection recruits inhibitory mechanisms that can be measured in both first fixation slowdown and ERP ambiguity effects. PMID:25961358
Visual-auditory integration during speech imitation in autism.
Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas
2004-01-01
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.
Influences of selective adaptation on perception of audiovisual speech
Dias, James W.; Cook, Theresa C.; Rosenblum, Lawrence D.
2016-01-01
Research suggests that selective adaptation in speech is a low-level process dependent on sensory-specific information shared between the adaptor and test-stimuli. However, previous research has only examined how adaptors shift perception of unimodal test stimuli, either auditory or visual. In the current series of experiments, we investigated whether adaptation to cross-sensory phonetic information can influence perception of integrated audio-visual phonetic information. We examined how selective adaptation to audio and visual adaptors shift perception of speech along an audiovisual test continuum. This test-continuum consisted of nine audio-/ba/-visual-/va/ stimuli, ranging in visual clarity of the mouth. When the mouth was clearly visible, perceivers “heard” the audio-visual stimulus as an integrated “va” percept 93.7% of the time (e.g., McGurk & MacDonald, 1976). As visibility of the mouth became less clear across the nine-item continuum, the audio-visual “va” percept weakened, resulting in a continuum ranging in audio-visual percepts from /va/ to /ba/. Perception of the test-stimuli was tested before and after adaptation. Changes in audiovisual speech perception were observed following adaptation to visual-/va/ and audiovisual-/va/, but not following adaptation to auditory-/va/, auditory-/ba/, or visual-/ba/. Adaptation modulates perception of integrated audio-visual speech by modulating the processing of sensory-specific information. The results suggest that auditory and visual speech information are not completely integrated at the level of selective adaptation. PMID:27041781
Ambiguity in Units and the Referents: Two Cases in Rational Number Operations
ERIC Educational Resources Information Center
Rathouz, Margaret
2010-01-01
I explore the impact of ambiguous referral to the unit on understanding of decimal and fraction operations during episodes in two different mathematics courses for pre-service teachers (PSTs). In one classroom, the instructor introduces a rectangular area diagram to help the PSTs visualize decimal multiplication. A transcript from this classroom…
Not All Ambiguous Words Are Created Equal: An EEG Investigation of Homonymy and Polysemy
ERIC Educational Resources Information Center
Klepousniotou, Ekaterini; Pike, G. Bruce; Steinhauer, Karsten; Gracco, Vincent
2012-01-01
Event-related potentials (ERPs) were used to investigate the time-course of meaning activation of different types of ambiguous words. Unbalanced homonymous ("pen"), balanced homonymous ("panel"), metaphorically polysemous ("lip"), and metonymically polysemous words ("rabbit") were used in a visual single-word priming delayed lexical decision task.…
Cognate and Word Class Ambiguity Effects in Noun and Verb Processing
ERIC Educational Resources Information Center
Bultena, Sybrine; Dijkstra, Ton; van Hell, Janet G.
2013-01-01
This study examined how noun and verb processing in bilingual visual word recognition are affected by within and between-language overlap. We investigated how word class ambiguous noun and verb cognates are processed by bilinguals, to see if co-activation of overlapping word forms between languages benefits from additional overlap within a…
Visual search and contextual cueing: differential effects in 10-year-old children and adults.
Couperus, Jane W; Hunt, Ruskin H; Nelson, Charles A; Thomas, Kathleen M
2011-02-01
The development of contextual cueing specifically in relation to attention was examined in two experiments. Adult and 10-year-old participants completed a context cueing visual search task (Jiang & Chun, The Quarterly Journal of Experimental Psychology, 54A(4), 1105-1124, 2001) containing stimuli presented in an attended (e.g., red) and unattended (e.g., green) color. When the spatial configuration of stimuli in the attended and unattended color was invariant and consistently paired with the target location, adult reaction times improved, demonstrating learning. Learning also occurred if only the attended stimuli's configuration remained fixed. In contrast, while 10 year olds, like adults, showed incrementally slower reaction times as the number of attended stimuli increased, they did not show learning in the standard paradigm. However, they did show learning when the ratio of attended to unattended stimuli was high, irrespective of the total number of attended stimuli. Findings suggest children show efficient attentional guidance by color in visual search but differences in contextual cueing.
Song, Jae-Jin; Lee, Hyo-Jeong; Kang, Hyejin; Lee, Dong Soo; Chang, Sun O; Oh, Seung Ha
2015-03-01
While deafness-induced plasticity has been investigated in the visual and auditory domains, not much is known about language processing in audiovisual multimodal environments for patients with restored hearing via cochlear implant (CI) devices. Here, we examined the effect of agreeing or conflicting visual inputs on auditory processing in deaf patients equipped with degraded artificial hearing. Ten post-lingually deafened CI users with good performance, along with matched control subjects, underwent H 2 (15) O-positron emission tomography scans while carrying out a behavioral task requiring the extraction of speech information from unimodal auditory stimuli, bimodal audiovisual congruent stimuli, and incongruent stimuli. Regardless of congruency, the control subjects demonstrated activation of the auditory and visual sensory cortices, as well as the superior temporal sulcus, the classical multisensory integration area, indicating a bottom-up multisensory processing strategy. Compared to CI users, the control subjects exhibited activation of the right ventral premotor-supramarginal pathway. In contrast, CI users activated primarily the visual cortices more in the congruent audiovisual condition than in the null condition. In addition, compared to controls, CI users displayed an activation focus in the right amygdala for congruent audiovisual stimuli. The most notable difference between the two groups was an activation focus in the left inferior frontal gyrus in CI users confronted with incongruent audiovisual stimuli, suggesting top-down cognitive modulation for audiovisual conflict. Correlation analysis revealed that good speech performance was positively correlated with right amygdala activity for the congruent condition, but negatively correlated with bilateral visual cortices regardless of congruency. Taken together these results suggest that for multimodal inputs, cochlear implant users are more vision-reliant when processing congruent stimuli and are disturbed more by visual distractors when confronted with incongruent audiovisual stimuli. To cope with this multimodal conflict, CI users activate the left inferior frontal gyrus to adopt a top-down cognitive modulation pathway, whereas normal hearing individuals primarily adopt a bottom-up strategy.
Raymond, J L; Lisberger, S G
1996-12-01
We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1996-01-01
We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.
Multimodal emotion perception after anterior temporal lobectomy (ATL)
Milesi, Valérie; Cekic, Sezen; Péron, Julie; Frühholz, Sascha; Cristinzio, Chiara; Seeck, Margitta; Grandjean, Didier
2014-01-01
In the context of emotion information processing, several studies have demonstrated the involvement of the amygdala in emotion perception, for unimodal and multimodal stimuli. However, it seems that not only the amygdala, but several regions around it, may also play a major role in multimodal emotional integration. In order to investigate the contribution of these regions to multimodal emotion perception, five patients who had undergone unilateral anterior temporal lobe resection were exposed to both unimodal (vocal or visual) and audiovisual emotional and neutral stimuli. In a classic paradigm, participants were asked to rate the emotional intensity of angry, fearful, joyful, and neutral stimuli on visual analog scales. Compared with matched controls, patients exhibited impaired categorization of joyful expressions, whether the stimuli were auditory, visual, or audiovisual. Patients confused joyful faces with neutral faces, and joyful prosody with surprise. In the case of fear, unlike matched controls, patients provided lower intensity ratings for visual stimuli than for vocal and audiovisual ones. Fearful faces were frequently confused with surprised ones. When we controlled for lesion size, we no longer observed any overall difference between patients and controls in their ratings of emotional intensity on the target scales. Lesion size had the greatest effect on intensity perceptions and accuracy in the visual modality, irrespective of the type of emotion. These new findings suggest that a damaged amygdala, or a disrupted bundle between the amygdala and the ventral part of the occipital lobe, has a greater impact on emotion perception in the visual modality than it does in either the vocal or audiovisual one. We can surmise that patients are able to use the auditory information contained in multimodal stimuli to compensate for difficulty processing visually conveyed emotion. PMID:24839437
Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study
Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.
2012-01-01
Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014
Peel, Hayden J.; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A.
2018-01-01
Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features. PMID:29725292
Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study
NASA Astrophysics Data System (ADS)
Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H.
2015-08-01
Objective. Our experiments explored the effect of visual stimuli degradation on cognitive workload. Approach. We investigated the subjective assessment, event-related potentials (ERPs) as well as electroencephalogram (EEG) as measures of cognitive workload. Main results. These experiments confirm that degradation of visual stimuli increases cognitive workload as assessed by subjective NASA task load index and confirmed by the observed P300 amplitude attenuation. Furthermore, the single-trial multi-level classification using features extracted from ERPs and EEG is found to be promising. Specifically, the adopted single-trial oscillatory EEG/ERP detection method achieved an average accuracy of 85% for discriminating 4 workload levels. Additionally, we found from the spatial patterns obtained from EEG signals that the frontal parts carry information that can be used for differentiating workload levels. Significance. Our results show that visual stimuli can modulate cognitive workload, and the modulation can be measured by the single trial EEG/ERP detection method.
Lateral eye-movement responses to visual stimuli.
Wilbur, M P; Roberts-Wilbur, J
1985-08-01
The association of left lateral eye-movement with emotionality or arousal of affect and of right lateral eye-movement with cognitive/interpretive operations and functions was investigated. Participants were junior and senior students enrolled in an undergraduate course in developmental psychology. There were 37 women and 13 men, ranging from 19 to 45 yr. of age. Using videotaped lateral eye-movements of 50 participants' responses to 15 visually presented stimuli (precategorized as neutral, emotional, or intellectual), content and statistical analyses supported the association between left lateral eye-movement and emotional arousal and between right lateral eye-movement and cognitive functions. Precategorized visual stimuli included items such as a ball (neutral), gun (emotional), and calculator (intellectual). The findings are congruent with existing lateral eye-movement literature and also are additive by using visual stimuli that do not require the explicit response or implicit processing of verbal questioning.
Peel, Hayden J; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A
2018-01-01
Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features.
Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R
2017-07-01
Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visual Presentation Effects on Identification of Multiple Environmental Sounds
Masakura, Yuko; Ichikawa, Makoto; Shimono, Koichi; Nakatsuka, Reio
2016-01-01
This study examined how the contents and timing of a visual stimulus affect the identification of mixed sounds recorded in a daily life environment. For experiments, we presented four environment sounds as auditory stimuli for 5 s along with a picture or a written word as a visual stimulus that might or might not denote the source of one of the four sounds. Three conditions of temporal relations between the visual stimuli and sounds were used. The visual stimulus was presented either: (a) for 5 s simultaneously with the sound; (b) for 5 s, 1 s before the sound (SOA between the audio and visual stimuli was 6 s); or (c) for 33 ms, 1 s before the sound (SOA was 1033 ms). Participants reported all identifiable sounds for those audio–visual stimuli. To characterize the effects of visual stimuli on sound identification, the following were used: the identification rates of sounds for which the visual stimulus denoted its sound source, the rates of other sounds for which the visual stimulus did not denote the sound source, and the frequency of false hearing of a sound that was not presented for each sound set. Results of the four experiments demonstrated that a picture or a written word promoted identification of the sound when it was related to the sound, particularly when the visual stimulus was presented for 5 s simultaneously with the sounds. However, a visual stimulus preceding the sounds had a benefit only for the picture, not for the written word. Furthermore, presentation with a picture denoting a sound simultaneously with the sound reduced the frequency of false hearing. These results suggest three ways that presenting a visual stimulus affects identification of the auditory stimulus. First, activation of the visual representation extracted directly from the picture promotes identification of the denoted sound and suppresses the processing of sounds for which the visual stimulus did not denote the sound source. Second, effects based on processing of the conceptual information promote identification of the denoted sound and suppress the processing of sounds for which the visual stimulus did not denote the sound source. Third, processing of the concurrent visual representation suppresses false hearing. PMID:26973478
Multisensory speech perception without the left superior temporal sulcus.
Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S
2012-09-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.
Multisensory Speech Perception Without the Left Superior Temporal Sulcus
Baum, Sarah H.; Martin, Randi C.; Hamilton, A. Cris; Beauchamp, Michael S.
2012-01-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. PMID:22634292
Subjective visual perception: from local processing to emergent phenomena of brain activity.
Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K
2014-05-05
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.
Subjective visual perception: from local processing to emergent phenomena of brain activity
Panagiotaropoulos, Theofanis I.; Kapoor, Vishal; Logothetis, Nikos K.
2014-01-01
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness. PMID:24639588
Visual stimuli and written production of deaf signers.
Jacinto, Laís Alves; Ribeiro, Karen Barros; Soares, Aparecido José Couto; Cárnio, Maria Silvia
2012-01-01
To verify the interference of visual stimuli in written production of deaf signers with no complaints regarding reading and writing. The research group consisted of 12 students with education between the 4th and 5th grade of elementary school, with severe or profound sensorineural hearing loss, users of LIBRAS and with alphabetical writing level. The evaluation was performed with pictures in a logical sequence and an action picture. The analysis used the communicative competence criteria. There were no differences in the writing production of the subjects for both stimuli. In all texts there was no title and punctuation, verbs were in the infinitive mode, there was lack of cohesive links and inclusion of created words. The different visual stimuli did not affect the production of texts.
Infant Attention to Dynamic Audiovisual Stimuli: Look Duration from 3 to 9 Months of Age
ERIC Educational Resources Information Center
Reynolds, Greg D.; Zhang, Dantong; Guy, Maggie W.
2013-01-01
The goal of this study was to examine developmental change in visual attention to dynamic visual and audiovisual stimuli in 3-, 6-, and 9-month-old infants. Infant look duration was measured during exposure to dynamic geometric patterns and Sesame Street video clips under three different stimulus modality conditions: unimodal visual, synchronous…
Do You "See'" What I "See"? Differentiation of Visual Action Words
ERIC Educational Resources Information Center
Dickinson, Joël; Cirelli, Laura; Szeligo, Frank
2014-01-01
Dickinson and Szeligo ("Can J Exp Psychol" 62(4):211--222, 2008) found that processing time for simple visual stimuli was affected by the visual action participants had been instructed to perform on these stimuli (e.g., see, distinguish). It was concluded that these effects reflected the differences in the durations of these various…
Neuronal Response Gain Enhancement prior to Microsaccades.
Chen, Chih-Yang; Ignashchenkova, Alla; Thier, Peter; Hafed, Ziad M
2015-08-17
Neuronal response gain enhancement is a classic signature of the allocation of covert visual attention without eye movements. However, microsaccades continuously occur during gaze fixation. Because these tiny eye movements are preceded by motor preparatory signals well before they are triggered, it may be the case that a corollary of such signals may cause enhancement, even without attentional cueing. In six different macaque monkeys and two different brain areas previously implicated in covert visual attention (superior colliculus and frontal eye fields), we show neuronal response gain enhancement for peripheral stimuli appearing immediately before microsaccades. This enhancement occurs both during simple fixation with behaviorally irrelevant peripheral stimuli and when the stimuli are relevant for the subsequent allocation of covert visual attention. Moreover, this enhancement occurs in both purely visual neurons and visual-motor neurons, and it is replaced by suppression for stimuli appearing immediately after microsaccades. Our results suggest that there may be an obligatory link between microsaccade occurrence and peripheral selective processing, even though microsaccades can be orders of magnitude smaller than the eccentricities of peripheral stimuli. Because microsaccades occur in a repetitive manner during fixation, and because these eye movements reset neurophysiological rhythms every time they occur, our results highlight a possible mechanism through which oculomotor events may aid periodic sampling of the visual environment for the benefit of perception, even when gaze is prevented from overtly shifting. One functional consequence of such periodic sampling could be the magnification of rhythmic fluctuations of peripheral covert visual attention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heightened attentional capture by visual food stimuli in anorexia nervosa.
Neimeijer, Renate A M; Roefs, Anne; de Jong, Peter J
2017-08-01
The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent generation of craving, which might enable AN patients to maintain their strict diet. Participants were 66 restrictive AN spectrum patients and 55 healthy controls. A single-target rapid serial visual presentation task was used with food and disorder-neutral cues as critical distracter stimuli and disorder-neutral pictures as target stimuli. AN spectrum patients showed diminished task performance when visual food cues were presented in close temporal proximity of the to-be-identified target. In contrast to our hypothesis, results indicate that food cues automatically capture AN spectrum patients' attention. One explanation could be that the enhanced attentional capture of food cues in AN is driven by the relatively high threat value of food items in AN. Implications and suggestions for future research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Positive mood broadens visual attention to positive stimuli.
Wadlinger, Heather A; Isaacowitz, Derek M
2006-03-01
In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states.
Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
Barbosa, Sara; Pires, Gabriel; Nunes, Urbano
2016-03-01
Brain computer interfaces (BCIs) are one of the last communication options for patients in the locked-in state (LIS). For complete LIS patients, interfaces must be gaze-independent due to their eye impairment. However, unimodal gaze-independent approaches typically present levels of performance substantially lower than gaze-dependent approaches. The combination of multimodal stimuli has been pointed as a viable way to increase users' performance. A hybrid visual and auditory (HVA) P300-based BCI combining simultaneously visual and auditory stimulation is proposed. Auditory stimuli are based on natural meaningful spoken words, increasing stimuli discrimination and decreasing user's mental effort in associating stimuli to the symbols. The visual part of the interface is covertly controlled ensuring gaze-independency. Four conditions were experimentally tested by 10 healthy participants: visual overt (VO), visual covert (VC), auditory (AU) and covert HVA. Average online accuracy for the hybrid approach was 85.3%, which is more than 32% over VC and AU approaches. Questionnaires' results indicate that the HVA approach was the less demanding gaze-independent interface. Interestingly, the P300 grand average for HVA approach coincides with an almost perfect sum of P300 evoked separately by VC and AU tasks. The proposed HVA-BCI is the first solution simultaneously embedding natural spoken words and visual words to provide a communication lexicon. Online accuracy and task demand of the approach compare favorably with state-of-the-art. The proposed approach shows that the simultaneous combination of visual covert control and auditory modalities can effectively improve the performance of gaze-independent BCIs. Copyright © 2015 Elsevier B.V. All rights reserved.
Dorsal hippocampus is necessary for visual categorization in rats.
Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H
2018-02-23
The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for the trained, novel, relocation, and singleton stimuli. Hippocampus-mediated pattern completion and pattern separation mechanisms may be necessary for visual categorization involving overlapping irrelevant features. © 2018 Wiley Periodicals, Inc.
Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.
Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor
2015-04-01
Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.
Matsuzaki, Naoyuki; Schwarzlose, Rebecca F.; Nishida, Masaaki; Ofen, Noa; Asano, Eishi
2015-01-01
Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli. PMID:25579446
Gradiency and Visual Context in Syntactic Garden-Paths
ERIC Educational Resources Information Center
Farmer, Thomas A.; Anderson, Sarah E.; Spivey, Michael J.
2007-01-01
Through recording the streaming x- and y-coordinates of computer-mouse movements, we report evidence that visual context provides an immediate constraint on the resolution of syntactic ambiguity in the visual-world paradigm. This finding converges with previous eye-tracking results that support a constraint-based account of sentence processing, in…
Visual Creativity across Cultures: A Comparison between Italians and Japanese
ERIC Educational Resources Information Center
Palmiero, Massimiliano; Nakatani, Chie; van Leeuwen, Cees
2017-01-01
Culture-related differences in visual creativity were investigated, comparing Italian and Japanese participants in terms of divergent (figural completion task) and product-oriented thinking (figural combination task). Visual restructuring ability was measured as the ability to reinterpret ambiguous figures and was included as a covariate. Results…
Yahata, Izumi; Kawase, Tetsuaki; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2017-01-01
The effects of visual speech (the moving image of the speaker's face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.
The role of prestimulus activity in visual extinction☆
Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl
2013-01-01
Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. PMID:23680398
The role of prestimulus activity in visual extinction.
Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl
2013-07-01
Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Charbonneau, Geneviève; Véronneau, Marie; Boudrias-Fournier, Colin; Lepore, Franco; Collignon, Olivier
2013-10-28
The relative reliability of separate sensory estimates influences the way they are merged into a unified percept. We investigated how eccentricity-related changes in reliability of auditory and visual stimuli influence their integration across the entire frontal space. First, we surprisingly found that despite a strong decrease in auditory and visual unisensory localization abilities in periphery, the redundancy gain resulting from the congruent presentation of audio-visual targets was not affected by stimuli eccentricity. This result therefore contrasts with the common prediction that a reduction in sensory reliability necessarily induces an enhanced integrative gain. Second, we demonstrate that the visual capture of sounds observed with spatially incongruent audio-visual targets (ventriloquist effect) steadily decreases with eccentricity, paralleling a lowering of the relative reliability of unimodal visual over unimodal auditory stimuli in periphery. Moreover, at all eccentricities, the ventriloquist effect positively correlated with a weighted combination of the spatial resolution obtained in unisensory conditions. These findings support and extend the view that the localization of audio-visual stimuli relies on an optimal combination of auditory and visual information according to their respective spatial reliability. All together, these results evidence that the external spatial coordinates of multisensory events relative to an observer's body (e.g., eyes' or head's position) influence how this information is merged, and therefore determine the perceptual outcome.
Bonnar, Lizann; Gosselin, Frédéric; Schyns, Philippe G
2002-01-01
A generic problem in vision is to know which information drives the perception of a stimulus. We address this problem in a case study that involves the perceptual reversal of an ambiguous image (here, Dali's painting the Slave Market with the Disappearing Bust of Voltaire 1940). In experiment 1, we use 'bubbles' (Gosselin and Schyns, 2001 Vision Research 41 2261-2271) to disambiguate the image and to determine the specific visual information that drives each possible perception (here, the nuns versus the bust of Voltaire). Experiment 2 validates that this information does determine the selective perception of the ambiguous image. We adapted the spatial-frequency channels of observers selectively to the information that mediates one of the two perceptions, to induce the opposite perception of the ambiguous image in a transfer phase. Together, the results suggest a method of revealing the visual information that drives perception.
Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex
Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na
2015-01-01
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604
Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing.
Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin
2016-01-01
Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβposterior Kenyon cells.
Effect of negative emotions evoked by light, noise and taste on trigeminal thermal sensitivity.
Yang, Guangju; Baad-Hansen, Lene; Wang, Kelun; Xie, Qiu-Fei; Svensson, Peter
2014-11-07
Patients with migraine often have impaired somatosensory function and experience headache attacks triggered by exogenous stimulus, such as light, sound or taste. This study aimed to assess the influence of three controlled conditioning stimuli (visual, auditory and gustatory stimuli and combined stimuli) on affective state and thermal sensitivity in healthy human participants. All participants attended four experimental sessions with visual, auditory and gustatory conditioning stimuli and combination of all stimuli, in a randomized sequence. In each session, the somatosensory sensitivity was tested in the perioral region with use of thermal stimuli with and without the conditioning stimuli. Positive and Negative Affect States (PANAS) were assessed before and after the tests. Subject based ratings of the conditioning and test stimuli in addition to skin temperature and heart rate as indicators of arousal responses were collected in real time during the tests. The three conditioning stimuli all induced significant increases in negative PANAS scores (paired t-test, P ≤0.016). Compared with baseline, the increases were in a near dose-dependent manner during visual and auditory conditioning stimulation. No significant effects of any single conditioning stimuli were observed on trigeminal thermal sensitivity (P ≥0.051) or arousal parameters (P ≥0.057). The effects of combined conditioning stimuli on subjective ratings (P ≤0.038) and negative affect (P = 0.011) were stronger than those of single stimuli. All three conditioning stimuli provided a simple way to evoke a negative affective state without physical arousal or influence on trigeminal thermal sensitivity. Multisensory conditioning had stronger effects but also failed to modulate thermal sensitivity, suggesting that so-called exogenous trigger stimuli e.g. bright light, noise, unpleasant taste in patients with migraine may require a predisposed or sensitized nervous system.
Implicit visual learning and the expression of learning.
Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael
2013-03-01
Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.
The Multisensory Attentional Consequences of Tool Use: A Functional Magnetic Resonance Imaging Study
Holmes, Nicholas P.; Spence, Charles; Hansen, Peter C.; Mackay, Clare E.; Calvert, Gemma A.
2008-01-01
Background Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use. PMID:18958150
ERIC Educational Resources Information Center
Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.
2007-01-01
The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…
Ambiguity and Relatedness Effects in Semantic Tasks: Are They Due to Semantic Coding?
ERIC Educational Resources Information Center
Hino, Yasushi; Pexman, Penny M.; Lupker, Stephen J.
2006-01-01
According to parallel distributed processing (PDP) models of visual word recognition, the speed of semantic coding is modulated by the nature of the orthographic-to-semantic mappings. Consistent with this idea, an ambiguity disadvantage and a relatedness-of-meaning (ROM) advantage have been reported in some word recognition tasks in which semantic…
ERIC Educational Resources Information Center
Felson, Richard B.; Bohrnstedt, George W.
1979-01-01
Children's ratings were obtained, examining reciprocal feedback between perceptions of physical attractiveness and ability. Data supported the conclusion that perceptions of ability affect those of physical attractiveness but not vice versa. The role of the relative ambiguity of stimuli associated with physical attractiveness may explain the…
Working Memory Enhances Visual Perception: Evidence from Signal Detection Analysis
ERIC Educational Resources Information Center
Soto, David; Wriglesworth, Alice; Bahrami-Balani, Alex; Humphreys, Glyn W.
2010-01-01
We show that perceptual sensitivity to visual stimuli can be modulated by matches between the contents of working memory (WM) and stimuli in the visual field. Observers were presented with an object cue (to hold in WM or to merely attend) and subsequently had to identify a brief target presented within a colored shape. The cue could be…
Explaining the Colavita visual dominance effect.
Spence, Charles
2009-01-01
The last couple of years have seen a resurgence of interest in the Colavita visual dominance effect. In the basic experimental paradigm, a random series of auditory, visual, and audiovisual stimuli are presented to participants who are instructed to make one response whenever they see a visual target and another response whenever they hear an auditory target. Many studies have now shown that participants sometimes fail to respond to auditory targets when they are presented at the same time as visual targets (i.e., on the bimodal trials), despite the fact that they have no problems in responding to the auditory and visual stimuli when they are presented individually. The existence of the Colavita visual dominance effect provides an intriguing contrast with the results of the many other recent studies showing the superiority of multisensory (over unisensory) information processing in humans. Various accounts have been put forward over the years in order to try and explain the effect, including the suggestion that it reflects nothing more than an underlying bias to attend to the visual modality. Here, the empirical literature on the Colavita visual dominance effect is reviewed and some of the key factors modulating the effect highlighted. The available research has now provided evidence against all previous accounts of the Colavita effect. A novel explanation of the Colavita effect is therefore put forward here, one that is based on the latest findings highlighting the asymmetrical effect that auditory and visual stimuli exert on people's responses to stimuli presented in the other modality.
Visual grouping under isoluminant condition: impact of mental fatigue
NASA Astrophysics Data System (ADS)
Pladere, Tatjana; Bete, Diana; Skilters, Jurgis; Krumina, Gunta
2016-09-01
Instead of selecting arbitrary elements our visual perception prefers only certain grouping of information. There is ample evidence that the visual attention and perception is substantially impaired in the presence of mental fatigue. The question is how visual grouping, which can be considered a bottom-up controlled neuronal gain mechanism, is influenced. The main purpose of our study is to determine the influence of mental fatigue on visual grouping of definite information - color and configuration of stimuli in the psychophysical experiment. Individuals provided subjective data by filling in the questionnaire about their health and general feeling. The objective evidence was obtained in the specially designed visual search task were achromatic and chromatic isoluminant stimuli were used in order to avoid so called pop-out effect due to differences in light intensity. Each individual was instructed to define the symbols with aperture in the same direction in four tasks. The color component differed in the visual search tasks according to the goals of study. The results reveal that visual grouping is completed faster when visual stimuli have the same color and aperture direction. The shortest reaction time is in the evening. What is more, the results of reaction time suggest that the analysis of two grouping processes compete for selective attention in the visual system when similarity in color conflicts with similarity in configuration of stimuli. The described effect increases significantly in the presence of mental fatigue. But it does not have strong influence on the accuracy of task accomplishment.
Dynamics of normalization underlying masking in human visual cortex.
Tsai, Jeffrey J; Wade, Alex R; Norcia, Anthony M
2012-02-22
Stimulus visibility can be reduced by other stimuli that overlap the same region of visual space, a process known as masking. Here we studied the neural mechanisms of masking in humans using source-imaged steady state visual evoked potentials and frequency-domain analysis over a wide range of relative stimulus strengths of test and mask stimuli. Test and mask stimuli were tagged with distinct temporal frequencies and we quantified spectral response components associated with the individual stimuli (self terms) and responses due to interaction between stimuli (intermodulation terms). In early visual cortex, masking alters the self terms in a manner consistent with a reduction of input contrast. We also identify a novel signature of masking: a robust intermodulation term that peaks when the test and mask stimuli have equal contrast and disappears when they are widely different. We fit all of our data simultaneously with family of a divisive gain control models that differed only in their dynamics. Models with either very short or very long temporal integration constants for the gain pool performed worse than a model with an integration time of ∼30 ms. Finally, the absolute magnitudes of the response were controlled by the ratio of the stimulus contrasts, not their absolute values. This contrast-contrast invariance suggests that many neurons in early visual cortex code relative rather than absolute contrast. Together, these results provide a more complete description of masking within the normalization framework of contrast gain control and suggest that contrast normalization accomplishes multiple functional goals.
Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex
Singer, Wolf; Maass, Wolfgang
2009-01-01
It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This information was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs. PMID:20027205
[Intermodal timing cues for audio-visual speech recognition].
Hashimoto, Masahiro; Kumashiro, Masaharu
2004-06-01
The purpose of this study was to investigate the limitations of lip-reading advantages for Japanese young adults by desynchronizing visual and auditory information in speech. In the experiment, audio-visual speech stimuli were presented under the six test conditions: audio-alone, and audio-visually with either 0, 60, 120, 240 or 480 ms of audio delay. The stimuli were the video recordings of a face of a female Japanese speaking long and short Japanese sentences. The intelligibility of the audio-visual stimuli was measured as a function of audio delays in sixteen untrained young subjects. Speech intelligibility under the audio-delay condition of less than 120 ms was significantly better than that under the audio-alone condition. On the other hand, the delay of 120 ms corresponded to the mean mora duration measured for the audio stimuli. The results implied that audio delays of up to 120 ms would not disrupt lip-reading advantage, because visual and auditory information in speech seemed to be integrated on a syllabic time scale. Potential applications of this research include noisy workplace in which a worker must extract relevant speech from all the other competing noises.
The primate amygdala represents the positive and negative value of visual stimuli during learning
Paton, Joseph J.; Belova, Marina A.; Morrison, Sara E.; Salzman, C. Daniel
2008-01-01
Visual stimuli can acquire positive or negative value through their association with rewards and punishments, a process called reinforcement learning. Although we now know a great deal about how the brain analyses visual information, we know little about how visual representations become linked with values. To study this process, we turned to the amygdala, a brain structure implicated in reinforcement learning1–5. We recorded the activity of individual amygdala neurons in monkeys while abstract images acquired either positive or negative value through conditioning. After monkeys had learned the initial associations, we reversed image value assignments. We examined neural responses in relation to these reversals in order to estimate the relative contribution to neural activity of the sensory properties of images and their conditioned values. Here we show that changes in the values of images modulate neural activity, and that this modulation occurs rapidly enough to account for, and correlates with, monkeys’ learning. Furthermore, distinct populations of neurons encode the positive and negative values of visual stimuli. Behavioural and physiological responses to visual stimuli may therefore be based in part on the plastic representation of value provided by the amygdala. PMID:16482160
Black–white asymmetry in visual perception
Lu, Zhong-Lin; Sperling, George
2012-01-01
With eleven different types of stimuli that exercise a wide gamut of spatial and temporal visual processes, negative perturbations from mean luminance are found to be typically 25% more effective visually than positive perturbations of the same magnitude (range 8–67%). In Experiment 12, the magnitude of the black–white asymmetry is shown to be a saturating function of stimulus contrast. Experiment 13 shows black–white asymmetry primarily involves a nonlinearity in the visual representation of decrements. Black–white asymmetry in early visual processing produces even-harmonic distortion frequencies in all ordinary stimuli and in illusions such as the perceived asymmetry of optically perfect sine wave gratings. In stimuli intended to stimulate exclusively second-order processing in which motion or shape are defined not by luminance differences but by differences in texture contrast, the black–white asymmetry typically generates artifactual luminance (first-order) motion and shape components. Because black–white asymmetry pervades psychophysical and neurophysiological procedures that utilize spatial or temporal variations of luminance, it frequently needs to be considered in the design and evaluation of experiments that involve visual stimuli. Simple procedures to compensate for black–white asymmetry are proposed. PMID:22984221
Influence of auditory and audiovisual stimuli on the right-left prevalence effect.
Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim
2014-01-01
When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.
Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces
NASA Astrophysics Data System (ADS)
Waytowich, Nicholas R.; Krusienski, Dean J.
2015-06-01
Objective. Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have proven to achieve among the highest information transfer rates for noninvasive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial separation and boundary positioning. Approach. For the paradigm, the flashing stimuli form a ring that encompasses the intended non-flashing targets, which are spatially separated from the stimuli. The user fixates on the desired target, which is classified using the changes to the EEG induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of targets is also positioned at or near the stimulus boundaries, which decouples targets from direct association with a single stimulus. This allows a greater number of target locations for a fixed number of flashing stimuli. Main results. Results from 11 subjects showed practical classification accuracies for the non-foveal condition, with comparable performance to the direct-foveal condition for longer observation lengths. Online results from 5 subjects confirmed the offline results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline analysis also indicated that targets positioned at or near the boundaries of two stimuli could be classified with the same accuracy as traditional superimposed (non-boundary) targets. Significance. The implications of this research are that c-VEPs can be detected and accurately classified to achieve comparable BCI performance without requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the number of targets beyond the number of stimuli without degrading performance. Given the superior information transfer rate of c-VEP paradigms, these results can lead to the development of more practical and ergonomic BCIs.
NASA Astrophysics Data System (ADS)
Ramirez, Joshua; Mann, Virginia
2005-08-01
Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.
Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA
2015-01-01
Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184
Neural responses to salient visual stimuli.
Morris, J S; Friston, K J; Dolan, R J
1997-01-01
The neural mechanisms involved in the selective processing of salient or behaviourally important stimuli are uncertain. We used an aversive conditioning paradigm in human volunteer subjects to manipulate the salience of visual stimuli (emotionally expressive faces) presented during positron emission tomography (PET) neuroimaging. Increases in salience, and conflicts between the innate and acquired value of the stimuli, produced augmented activation of the pulvinar nucleus of the right thalamus. Furthermore, this pulvinar activity correlated positively with responses in structures hypothesized to mediate value in the brain right amygdala and basal forebrain (including the cholinergic nucleus basalis of Meynert). The results provide evidence that the pulvinar nucleus of the thalamus plays a crucial modulatory role in selective visual processing, and that changes in perceptual salience are mediated by value-dependent plasticity in pulvinar responses. PMID:9178546
Galvez-Pol, A; Calvo-Merino, B; Capilla, A; Forster, B
2018-07-01
Working memory (WM) supports temporary maintenance of task-relevant information. This process is associated with persistent activity in the sensory cortex processing the information (e.g., visual stimuli activate visual cortex). However, we argue here that more multifaceted stimuli moderate this sensory-locked activity and recruit distinctive cortices. Specifically, perception of bodies recruits somatosensory cortex (SCx) beyond early visual areas (suggesting embodiment processes). Here we explore persistent activation in processing areas beyond the sensory cortex initially relevant to the modality of the stimuli. Using visual and somatosensory evoked-potentials in a visual WM task, we isolated different levels of visual and somatosensory involvement during encoding of body and non-body-related images. Persistent activity increased in SCx only when maintaining body images in WM, whereas visual/posterior regions' activity increased significantly when maintaining non-body images. Our results bridge WM and embodiment frameworks, supporting a dynamic WM process where the nature of the information summons specific processing resources. Copyright © 2018 Elsevier Inc. All rights reserved.
Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam
2011-08-03
Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.
Dong, Guangheng; Yang, Lizhu; Shen, Yue
2009-08-21
The present study investigated the course of visual searching to a target in a fixed location, using an emotional flanker task. Event-related potentials (ERPs) were recorded while participants performed the task. Emotional facial expressions were used as emotion-eliciting triggers. The course of visual searching was analyzed through the emotional effects arising from these emotion-eliciting stimuli. The flanker stimuli showed effects at about 150-250 ms following the stimulus onset, while the effect of target stimuli showed effects at about 300-400 ms. The visual search sequence in an emotional flanker task moved from a whole overview to a specific target, even if the target always appeared at a known location. The processing sequence was "parallel" in this task. The results supported the feature integration theory of visual search.
NASA Astrophysics Data System (ADS)
Pardo, P. J.; Pérez, A. L.; Suero, M. I.
2004-01-01
An old fluorescence spectrophotometer was recycled to make a three-channel colorimeter. The various modifications involved in its design and implementation are described. An optical system was added that allows the fusion of two visual stimuli coming from the two monochromators of the spectrofluorimeter. Each of these stimuli has a wavelength and bandwidth control, and a third visual stimulus may be taken from a monochromator, a cathode ray tube, a thin film transistor screen, or any other light source. This freedom in the choice of source of the third chromatic channel, together with the characteristics of the visual stimuli from the spectrofluorimeter, give this design a great versatility in its application to novel visual experiments on color vision.
Verhoef, Bram-Ernst; Bohon, Kaitlin S.
2015-01-01
Binocular disparity is a powerful depth cue for object perception. The computations for object vision culminate in inferior temporal cortex (IT), but the functional organization for disparity in IT is unknown. Here we addressed this question by measuring fMRI responses in alert monkeys to stimuli that appeared in front of (near), behind (far), or at the fixation plane. We discovered three regions that showed preferential responses for near and far stimuli, relative to zero-disparity stimuli at the fixation plane. These “near/far” disparity-biased regions were located within dorsal IT, as predicted by microelectrode studies, and on the posterior inferotemporal gyrus. In a second analysis, we instead compared responses to near stimuli with responses to far stimuli and discovered a separate network of “near” disparity-biased regions that extended along the crest of the superior temporal sulcus. We also measured in the same animals fMRI responses to faces, scenes, color, and checkerboard annuli at different visual field eccentricities. Disparity-biased regions defined in either analysis did not show a color bias, suggesting that disparity and color contribute to different computations within IT. Scene-biased regions responded preferentially to near and far stimuli (compared with stimuli without disparity) and had a peripheral visual field bias, whereas face patches had a marked near bias and a central visual field bias. These results support the idea that IT is organized by a coarse eccentricity map, and show that disparity likely contributes to computations associated with both central (face processing) and peripheral (scene processing) visual field biases, but likely does not contribute much to computations within IT that are implicated in processing color. PMID:25926470
Davis, Chris; Kislyuk, Daniel; Kim, Jeesun; Sams, Mikko
2008-11-25
We used whole-head magnetoencephalograpy (MEG) to record changes in neuromagnetic N100m responses generated in the left and right auditory cortex as a function of the match between visual and auditory speech signals. Stimuli were auditory-only (AO) and auditory-visual (AV) presentations of /pi/, /ti/ and /vi/. Three types of intensity matched auditory stimuli were used: intact speech (Normal), frequency band filtered speech (Band) and speech-shaped white noise (Noise). The behavioural task was to detect the /vi/ syllables which comprised 12% of stimuli. N100m responses were measured to averaged /pi/ and /ti/ stimuli. Behavioural data showed that identification of the stimuli was faster and more accurate for Normal than for Band stimuli, and for Band than for Noise stimuli. Reaction times were faster for AV than AO stimuli. MEG data showed that in the left hemisphere, N100m to both AO and AV stimuli was largest for the Normal, smaller for Band and smallest for Noise stimuli. In the right hemisphere, Normal and Band AO stimuli elicited N100m responses of quite similar amplitudes, but N100m amplitude to Noise was about half of that. There was a reduction in N100m for the AV compared to the AO conditions. The size of this reduction for each stimulus type was same in the left hemisphere but graded in the right (being largest to the Normal, smaller to the Band and smallest to the Noise stimuli). The N100m decrease for the Normal stimuli was significantly larger in the right than in the left hemisphere. We suggest that the effect of processing visual speech seen in the right hemisphere likely reflects suppression of the auditory response based on AV cues for place of articulation.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F
2015-12-01
There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Semantic congruency and the (reversed) Colavita effect in children and adults.
Wille, Claudia; Ebersbach, Mirjam
2016-01-01
When presented with auditory, visual, or bimodal audiovisual stimuli in a discrimination task, adults tend to ignore the auditory component in bimodal stimuli and respond to the visual component only (i.e., Colavita visual dominance effect). The same is true for older children, whereas young children are dominated by the auditory component of bimodal audiovisual stimuli. This suggests a change of sensory dominance during childhood. The aim of the current study was to investigate, in three experimental conditions, whether children and adults show sensory dominance when presented with complex semantic stimuli and whether this dominance can be modulated by stimulus characteristics such as semantic (in)congruency, frequency of bimodal trials, and color information. Semantic (in)congruency did not affect the magnitude of the auditory dominance effect in 6-year-olds or the visual dominance effect in adults, but it was a modulating factor of the visual dominance in 9-year-olds (Conditions 1 and 2). Furthermore, the absence of color information (Condition 3) did not affect auditory dominance in 6-year-olds and hardly affected visual dominance in adults, whereas the visual dominance in 9-year-olds disappeared. Our results suggest that (a) sensory dominance in children and adults is not restricted to simple lights and sounds, as used in previous research, but can be extended to semantically meaningful stimuli and that (b) sensory dominance is more robust in 6-year-olds and adults than in 9-year-olds, implying a transitional stage around this age. Copyright © 2015 Elsevier Inc. All rights reserved.
Primary visual response (M100) delays in adolescents with FASD as measured with MEG.
Coffman, Brian A; Kodituwakku, Piyadasa; Kodituwakku, Elizabeth L; Romero, Lucinda; Sharadamma, Nirupama Muniswamy; Stone, David; Stephen, Julia M
2013-11-01
Fetal alcohol spectrum disorders (FASD) are debilitating, with effects of prenatal alcohol exposure persisting into adolescence and adulthood. Complete characterization of FASD is crucial for the development of diagnostic tools and intervention techniques to decrease the high cost to individual families and society of this disorder. In this experiment, we investigated visual system deficits in adolescents (12-21 years) diagnosed with an FASD by measuring the latency of patients' primary visual M100 responses using MEG. We hypothesized that patients with FASD would demonstrate delayed primary visual responses compared to controls. M100 latencies were assessed both for FASD patients and age-matched healthy controls for stimuli presented at the fovea (central stimulus) and at the periphery (peripheral stimuli; left or right of the central stimulus) in a saccade task requiring participants to direct their attention and gaze to these stimuli. Source modeling was performed on visual responses to the central and peripheral stimuli and the latency of the first prominent peak (M100) in the occipital source timecourse was identified. The peak latency of the M100 responses were delayed in FASD patients for both stimulus types (central and peripheral), but the difference in latency of primary visual responses to central vs. peripheral stimuli was significant only in FASD patients, indicating that, while FASD patients' visual systems are impaired in general, this impairment is more pronounced in the periphery. These results suggest that basic sensory deficits in this population may contribute to sensorimotor integration deficits described previously in this disorder. Copyright © 2012 Wiley Periodicals, Inc.
The impact of uncertain threat on affective bias: Individual differences in response to ambiguity.
Neta, Maital; Cantelon, Julie; Haga, Zachary; Mahoney, Caroline R; Taylor, Holly A; Davis, F Caroline
2017-12-01
Individuals who operate under highly stressful conditions (e.g., military personnel and first responders) are often faced with the challenge of quickly interpreting ambiguous information in uncertain and threatening environments. When faced with ambiguity, it is likely adaptive to view potentially dangerous stimuli as threatening until contextual information proves otherwise. One laboratory-based paradigm that can be used to simulate uncertain threat is known as threat of shock (TOS), in which participants are told that they might receive mild but unpredictable electric shocks while performing an unrelated task. The uncertainty associated with this potential threat induces a state of emotional arousal that is not overwhelmingly stressful, but has widespread-both adaptive and maladaptive-effects on cognitive and affective function. For example, TOS is thought to enhance aversive processing and abolish positivity bias. Importantly, in certain situations (e.g., when walking home alone at night), this anxiety can promote an adaptive state of heightened vigilance and defense mobilization. In the present study, we used TOS to examine the effects of uncertain threat on valence bias, or the tendency to interpret ambiguous social cues as positive or negative. As predicted, we found that heightened emotional arousal elicited by TOS was associated with an increased tendency to interpret ambiguous cues negatively. Such negative interpretations are likely adaptive in situations in which threat detection is critical for survival and should override an individual's tendency to interpret ambiguity positively in safe contexts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
[Ventriloquism and audio-visual integration of voice and face].
Yokosawa, Kazuhiko; Kanaya, Shoko
2012-07-01
Presenting synchronous auditory and visual stimuli in separate locations creates the illusion that the sound originates from the direction of the visual stimulus. Participants' auditory localization bias, called the ventriloquism effect, has revealed factors affecting the perceptual integration of audio-visual stimuli. However, many studies on audio-visual processes have focused on performance in simplified experimental situations, with a single stimulus in each sensory modality. These results cannot necessarily explain our perceptual behavior in natural scenes, where various signals exist within a single sensory modality. In the present study we report the contributions of a cognitive factor, that is, the audio-visual congruency of speech, although this factor has often been underestimated in previous ventriloquism research. Thus, we investigated the contribution of speech congruency on the ventriloquism effect using a spoken utterance and two videos of a talking face. The salience of facial movements was also manipulated. As a result, when bilateral visual stimuli are presented in synchrony with a single voice, cross-modal speech congruency was found to have a significant impact on the ventriloquism effect. This result also indicated that more salient visual utterances attracted participants' auditory localization. The congruent pairing of audio-visual utterances elicited greater localization bias than did incongruent pairing, whereas previous studies have reported little dependency on the reality of stimuli in ventriloquism. Moreover, audio-visual illusory congruency, owing to the McGurk effect, caused substantial visual interference to auditory localization. This suggests that a greater flexibility in responding to multi-sensory environments exists than has been previously considered.
van Gemert, Jan C; Veenman, Cor J; Smeulders, Arnold W M; Geusebroek, Jan-Mark
2010-07-01
This paper studies automatic image classification by modeling soft assignment in the popular codebook model. The codebook model describes an image as a bag of discrete visual words selected from a vocabulary, where the frequency distributions of visual words in an image allow classification. One inherent component of the codebook model is the assignment of discrete visual words to continuous image features. Despite the clear mismatch of this hard assignment with the nature of continuous features, the approach has been successfully applied for some years. In this paper, we investigate four types of soft assignment of visual words to image features. We demonstrate that explicitly modeling visual word assignment ambiguity improves classification performance compared to the hard assignment of the traditional codebook model. The traditional codebook model is compared against our method for five well-known data sets: 15 natural scenes, Caltech-101, Caltech-256, and Pascal VOC 2007/2008. We demonstrate that large codebook vocabulary sizes completely deteriorate the performance of the traditional model, whereas the proposed model performs consistently. Moreover, we show that our method profits in high-dimensional feature spaces and reaps higher benefits when increasing the number of image categories.
Auditory motion processing after early blindness
Jiang, Fang; Stecker, G. Christopher; Fine, Ione
2014-01-01
Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368
Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance
Yahata, Izumi; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2017-01-01
The effects of visual speech (the moving image of the speaker’s face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker’s face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker’s face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information. PMID:28141836
Cell-assembly coding in several memory processes.
Sakurai, Y
1998-01-01
The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.
Body Context and Posture Affect Mental Imagery of Hands
Ionta, Silvio; Perruchoud, David; Draganski, Bogdan; Blanke, Olaf
2012-01-01
Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively. PMID:22479618
Sublexical ambiguity effect in reading Chinese disyllabic compounds.
Huang, Hsu-Wen; Lee, Chia-Ying; Tsai, Jie-Li; Tzeng, Ovid J-L
2011-05-01
For Chinese compounds, neighbors can share either both orthographic forms and meanings, or orthographic forms only. In this study, central presentation and visual half-field (VF) presentation methods were used in conjunction with ERP measures to investigate how readers solve the sublexical semantic ambiguity of the first constituent character in reading a disyllabic compound. The sublexical ambiguity of the first character was manipulated while the orthographic neighborhood sizes of the first and second character (NS1, NS2) were controlled. Subjective rating of number of meanings corresponding to a character was used as an index of sublexical ambiguity. Results showed that low sublexical ambiguity words elicited a more negative N400 than high sublexical ambiguity words when words were centrally presented. Similar patterns were found when words were presented to the left VF. Interestingly, different patterns were observed for pseudowords. With left VF presentation, high sublexical ambiguity psudowords showed a more negative N400 than low sublexical ambiguity pseudowords. In contrast, with right VF presentation, low sublexical ambiguity pseudowords showed a more negative N400 than high sublexical ambiguity pseudowords. These findings indicate that a level of morphological representation between form and meaning needs to be established and refined in Chinese. In addition, hemispheric asymmetries in the use of word information in ambiguity resolution should be taken into account, even at sublexical level. 2011 Elsevier Inc. All rights reserved.
Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli
Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.
2010-01-01
Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356
A Multidimensional Approach to the Study of Emotion Recognition in Autism Spectrum Disorders
Xavier, Jean; Vignaud, Violaine; Ruggiero, Rosa; Bodeau, Nicolas; Cohen, David; Chaby, Laurence
2015-01-01
Although deficits in emotion recognition have been widely reported in autism spectrum disorder (ASD), experiments have been restricted to either facial or vocal expressions. Here, we explored multimodal emotion processing in children with ASD (N = 19) and with typical development (TD, N = 19), considering uni (faces and voices) and multimodal (faces/voices simultaneously) stimuli and developmental comorbidities (neuro-visual, language and motor impairments). Compared to TD controls, children with ASD had rather high and heterogeneous emotion recognition scores but showed also several significant differences: lower emotion recognition scores for visual stimuli, for neutral emotion, and a greater number of saccades during visual task. Multivariate analyses showed that: (1) the difficulties they experienced with visual stimuli were partially alleviated with multimodal stimuli. (2) Developmental age was significantly associated with emotion recognition in TD children, whereas it was the case only for the multimodal task in children with ASD. (3) Language impairments tended to be associated with emotion recognition scores of ASD children in the auditory modality. Conversely, in the visual or bimodal (visuo-auditory) tasks, the impact of developmental coordination disorder or neuro-visual impairments was not found. We conclude that impaired emotion processing constitutes a dimension to explore in the field of ASD, as research has the potential to define more homogeneous subgroups and tailored interventions. However, it is clear that developmental age, the nature of the stimuli, and other developmental comorbidities must also be taken into account when studying this dimension. PMID:26733928
Repetition priming of face recognition in a serial choice reaction-time task.
Roberts, T; Bruce, V
1989-05-01
Marshall & Walker (1987) found that pictorial stimuli yield visual priming that is disrupted by an unpredictable visual event in the response-stimulus interval. They argue that visual stimuli are represented in memory in the form of distinct visual and object codes. Bruce & Young (1986) propose similar pictorial, structural and semantic codes which mediate the recognition of faces, yet repetition priming results obtained with faces as stimuli (Bruce & Valentine, 1985), and with objects (Warren & Morton, 1982) are quite different from those of Marshall & Walker (1987), in the sense that recognition is facilitated by pictures presented 20 minutes earlier. The experiment reported here used different views of familiar and unfamiliar faces as stimuli in a serial choice reaction-time task and found that, with identical pictures, repetition priming survives and intervening item requiring a response, with both familiar and unfamiliar faces. Furthermore, with familiar faces such priming was present even when the view of the prime was different from the target. The theoretical implications of these results are discussed.
Brain activation by visual erotic stimuli in healthy middle aged males.
Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H
2006-01-01
The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.
Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas
2011-01-01
How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432
Effect of eye position during human visual-vestibular integration of heading perception.
Crane, Benjamin T
2017-09-01
Visual and inertial stimuli provide heading discrimination cues. Integration of these multisensory stimuli has been demonstrated to depend on their relative reliability. However, the reference frame of visual stimuli is eye centered while inertia is head centered, and it remains unclear how these are reconciled with combined stimuli. Seven human subjects completed a heading discrimination task consisting of a 2-s translation with a peak velocity of 16 cm/s. Eye position was varied between 0° and ±25° left/right. Experiments were done with inertial motion, visual motion, or a combined visual-inertial motion. Visual motion coherence varied between 35% and 100%. Subjects reported whether their perceived heading was left or right of the midline in a forced-choice task. With the inertial stimulus the eye position had an effect such that the point of subjective equality (PSE) shifted 4.6 ± 2.4° in the gaze direction. With the visual stimulus the PSE shift was 10.2 ± 2.2° opposite the gaze direction, consistent with retinotopic coordinates. Thus with eccentric eye positions the perceived inertial and visual headings were offset ~15°. During the visual-inertial conditions the PSE varied consistently with the relative reliability of these stimuli such that at low visual coherence the PSE was similar to that of the inertial stimulus and at high coherence it was closer to the visual stimulus. On average, the inertial stimulus was weighted near Bayesian ideal predictions, but there was significant deviation from ideal in individual subjects. These findings support visual and inertial cue integration occurring in independent coordinate systems. NEW & NOTEWORTHY In multiple cortical areas visual heading is represented in retinotopic coordinates while inertial heading is in body coordinates. It remains unclear whether multisensory integration occurs in a common coordinate system. The experiments address this using a multisensory integration task with eccentric gaze positions making the effect of coordinate systems clear. The results indicate that the coordinate systems remain separate to the perceptual level and that during the multisensory task the perception depends on relative stimulus reliability. Copyright © 2017 the American Physiological Society.
Huang, Kuo-Chen; Wang, Hsiu-Feng; Chen, Chun-Ching
2010-06-01
Effects of shape, size, and chromaticity of stimuli on participants' errors when estimating the size of simultaneously presented standard and comparison stimuli were examined. 48 Taiwanese college students ages 20 to 24 years old (M = 22.3, SD = 1.3) participated. Analysis showed that the error for estimated size was significantly greater for those in the low-vision group than for those in the normal-vision and severe-myopia groups. The errors were significantly greater with green and blue stimuli than with red stimuli. Circular stimuli produced smaller mean errors than did square stimuli. The actual size of the standard stimulus significantly affected the error for estimated size. Errors for estimations using smaller sizes were significantly higher than when the sizes were larger. Implications of the results for graphics-based interface design, particularly when taking account of visually impaired users, are discussed.
Using Prosopagnosia to Test and Modify Visual Recognition Theory.
O'Brien, Alexander M
2018-02-01
Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.
Neural mechanism for sensing fast motion in dim light.
Li, Ran; Wang, Yi
2013-11-07
Luminance is a fundamental property of visual scenes. A population of neurons in primary visual cortex (V1) is sensitive to uniform luminance. In natural vision, however, the retinal image often changes rapidly. Consequently the luminance signals visual cells receive are transiently varying. How V1 neurons respond to such luminance changes is unknown. By applying large static uniform stimuli or grating stimuli altering at 25 Hz that resemble the rapid luminance changes in the environment, we show that approximately 40% V1 cells responded to rapid luminance changes of uniform stimuli. Most of them strongly preferred luminance decrements. Importantly, when tested with drifting gratings, the preferred speeds of these cells were significantly higher than cells responsive to static grating stimuli but not to uniform stimuli. This responsiveness can be accounted for by the preferences for low spatial frequencies and high temporal frequencies. These luminance-sensitive cells subserve the detection of fast motion under the conditions of dim illumination.
Persistent states in vision break universality and time invariance
Wexler, Mark; Duyck, Marianne; Mamassian, Pascal
2015-01-01
Studies of perception usually emphasize processes that are largely universal across observers and—except for short-term fluctuations—stationary over time. Here we test the universality and stationarity assumptions with two families of ambiguous visual stimuli. Each stimulus can be perceived in two different ways, parameterized by two opposite directions from a continuous circular variable. A large-sample study showed that almost all observers have preferred directions or biases, with directions lying within 90 degrees of the bias direction nearly always perceived and opposite directions almost never perceived. The biases differ dramatically from one observer to the next, and although nearly every bias direction occurs in the population, the population distributions of the biases are nonuniform, featuring asymmetric peaks in the cardinal directions. The biases for the two families of stimuli are independent and have distinct population distributions. Following external perturbations and spontaneous fluctuations, the biases decay over tens of seconds toward their initial values. Persistent changes in the biases are found on time scales of several minutes to 1 hour. On scales of days to months, the biases undergo a variety of dynamical processes such as drifts, jumps, and oscillations. The global statistics of a majority of these long-term time series are well modeled as random walk processes. The measurable fluctuations of these hitherto unknown degrees of freedom show that the assumptions of universality and stationarity in perception may be unwarranted and that models of perception must include both directly observable variables as well as covert, persistent states. PMID:26627250
Stimulus ambiguity elicits response conflict.
Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, André; De Baene, Wouter; Verguts, Tom; Notebaert, Wim
2008-04-18
Conflict monitoring theory [M.M. Botvinick, T. Braver, D. Barch, C. Carter, J.D. Cohen, Conflict monitoring and cognitive control, Psychol. Rev. 108 (2001) 625-652] assumes that perceptual ambiguity among choice stimuli elicits response conflict in choice reaction. It hence predicts that response conflict is also involved in elementary variants of choice reaction time (RT) tasks, i.e., those variants that, by contrast with the Stroop task or the Go/No-Go task for instance, are rarely associated with cognitive control. In order to test this prediction, an experiment was designed in which participants performed a simple RT task and a regular between-hand 2-choice RT task under three different levels of stimulus ambiguity. The data show that response conflict, as measured by the N2 component of the event-related brain potential (ERP), was elicited in the 2-choice RT task but not in the simple RT task and that the degree of response conflict in the 2-choice RT task was a function of stimulus ambiguity. These results show that response conflict is also present in a regular choice RT task which is traditionally not considered to be a measure of cognitive conflict.
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Organic light emitting board for dynamic interactive display
Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin
2017-01-01
Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications. PMID:28406151
Gestalt perception modulates early visual processing.
Herrmann, C S; Bosch, V
2001-04-17
We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.
Attention distributed across sensory modalities enhances perceptual performance
Mishra, Jyoti; Gazzaley, Adam
2012-01-01
This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811
Left hemispheric advantage for numerical abilities in the bottlenose dolphin.
Kilian, Annette; von Fersen, Lorenzo; Güntürkün, Onur
2005-02-28
In a two-choice discrimination paradigm, a bottlenose dolphin discriminated relational dimensions between visual numerosity stimuli under monocular viewing conditions. After prior binocular acquisition of the task, two monocular test series with different number stimuli were conducted. In accordance with recent studies on visual lateralization in the bottlenose dolphin, our results revealed an overall advantage of the right visual field. Due to the complete decussation of the optic nerve fibers, this suggests a specialization of the left hemisphere for analysing relational features between stimuli as required in tests for numerical abilities. These processes are typically right hemisphere-based in other mammals (including humans) and birds. The present data provide further evidence for a general right visual field advantage in bottlenose dolphins for visual information processing. It is thus assumed that dolphins possess a unique functional architecture of their cerebral asymmetries. (c) 2004 Elsevier B.V. All rights reserved.
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
Organic light emitting board for dynamic interactive display
NASA Astrophysics Data System (ADS)
Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin
2017-04-01
Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.
Neural circuits underlying visually evoked escapes in larval zebrafish
Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo
2015-01-01
SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel
2015-01-01
Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation. PMID:25927363
Li, Chenglin; Cao, Xiaohua
2017-01-01
For faces and Chinese characters, a left-side processing bias, in which observers rely more heavily on information conveyed by the left side of stimuli than the right side of stimuli, has been frequently reported in previous studies. However, it remains unclear whether this left-side bias effect is modulated by the reference stimuli's location. The present study adopted the chimeric stimuli task to investigate the influence of the presentation location of the reference stimuli on the left-side bias in face and Chinese character processing. The results demonstrated that when a reference face was presented in the left visual field of its chimeric images, which are centrally presented, the participants showed a preference higher than the no-bias threshold for the left chimeric face; this effect, however, was not observed in the right visual field. This finding indicates that the left-side bias effect in face processing is stronger when the reference face is in the left visual field. In contrast, the left-side bias was observed in Chinese character processing when the reference Chinese character was presented in either the left or right visual field. Together, these findings suggest that although faces and Chinese characters both have a left-side processing bias, the underlying neural mechanisms of this left-side bias might be different. PMID:29018391
Li, Chenglin; Cao, Xiaohua
2017-01-01
For faces and Chinese characters, a left-side processing bias, in which observers rely more heavily on information conveyed by the left side of stimuli than the right side of stimuli, has been frequently reported in previous studies. However, it remains unclear whether this left-side bias effect is modulated by the reference stimuli's location. The present study adopted the chimeric stimuli task to investigate the influence of the presentation location of the reference stimuli on the left-side bias in face and Chinese character processing. The results demonstrated that when a reference face was presented in the left visual field of its chimeric images, which are centrally presented, the participants showed a preference higher than the no-bias threshold for the left chimeric face; this effect, however, was not observed in the right visual field. This finding indicates that the left-side bias effect in face processing is stronger when the reference face is in the left visual field. In contrast, the left-side bias was observed in Chinese character processing when the reference Chinese character was presented in either the left or right visual field. Together, these findings suggest that although faces and Chinese characters both have a left-side processing bias, the underlying neural mechanisms of this left-side bias might be different.
Realigning thunder and lightning: temporal adaptation to spatiotemporally distant events.
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).
Metaphorical Salience in Artistic Text Processing: Evidence From Eye Movement.
Novikova, Eleonora G; Janyan, Armina; Tsaregorodtseva, Oksana V
2015-01-01
The study aimed to explore processing difference between a literal phrase and a metaphoric one. Unlike artificially created stimuli in most experimental research, an artistic text with an ambiguous binary metaphoric phrase was used. Eye tracking methodology was applied. Results suggested difference between the two types of phrases in both early and late processing measures. © The Author(s) 2015.
Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.
Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti
2017-05-10
Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping. SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two stimuli increases the interaction component that is a hallmark for perceptual integration of stimuli. Furthermore, this stimulus-specific interaction is represented in prefrontal and parietal cortex in a task-dependent manner. Copyright © 2017 the authors 0270-6474/17/374942-12$15.00/0.
Sugimoto, Fumie; Kimura, Motohiro; Takeda, Yuji; Katayama, Jun'ichi
2017-08-16
In a three-stimulus oddball task, the amplitude of P3a elicited by deviant stimuli increases with an increase in the difficulty of discriminating between standard and target stimuli (i.e. task-difficulty effect on P3a), indicating that attentional capture by deviant stimuli is enhanced with an increase in task difficulty. This enhancement of attentional capture may be explained in terms of the modulation of modality-nonspecific temporal attention; that is, the participant's attention directed to the predicted timing of stimulus presentation is stronger when the task difficulty increases, which results in enhanced attentional capture. The present study examined this possibility with a modified three-stimulus oddball task consisting of a visual standard, a visual target, and four types of deviant stimuli defined by a combination of two modalities (visual and auditory) and two presentation timings (predicted and unpredicted). We expected that if the modulation of temporal attention is involved in enhanced attentional capture, then the task-difficulty effect on P3a should be reduced for unpredicted compared with predicted deviant stimuli irrespective of their modality; this is because the influence of temporal attention should be markedly weaker for unpredicted compared with predicted deviant stimuli. The results showed that the task-difficulty effect on P3a was significantly reduced for unpredicted compared with predicted deviant stimuli in both the visual and the auditory modalities. This result suggests that the modulation of modality-nonspecific temporal attention induced by the increase in task difficulty is at least partly involved in the enhancement of attentional capture by deviant stimuli.
Interpretive biases in chronic insomnia: an investigation using a priming paradigm.
Ree, Melissa J; Harvey, Allison G
2006-09-01
Disorder-congruent interpretations of ambiguous stimuli characterize several psychological disorders and have been implicated in their maintenance. Models of insomnia have highlighted the importance of cognitive processes, but the possibility that biased interpretations are important has been minimally investigated. Hence, a priming methodology was employed to investigate the presence of an interpretive bias in insomnia. A sample of 78 participants, differing in the presence of a diagnosis of insomnia, severity of sleep disturbance, and sleepiness, was required to read ambiguous sentences and make a lexical decision about target words that followed. Sleepiness at the time of the experiment was associated with the likelihood with which participants made insomnia and threat consistent interpretations of ambiguous sentences. The results suggest that there is a general bias towards threatening interpretations when individuals are sleepy and suggests that cognitive accounts of insomnia require revision to include a role for interpretative bias when people are sleepy. Future research is required to investigate whether this interpretive bias plays a causal role in the maintenance of insomnia.
Biased Interpretation of Ambiguous Social Scenarios in Anorexia Nervosa.
Cardi, Valentina; Turton, Robert; Schifano, Sylvia; Leppanen, Jenni; Hirsch, Colette R; Treasure, Janet
2017-01-01
Patients with anorexia nervosa experience increased sensitivity to the risk of social rejection. The aims of this study were to assess the interpretation of ambiguous social scenarios depicting the risk of rejection and to examine the relationship between interpretation biases and clinical symptoms. Thirty-five women with anorexia nervosa and 30 healthy eaters completed clinical questionnaires, alongside a sentence completion task. This task required participants to generate completions to ambiguous social scenarios and to endorse their best completion. Responses were rated as being negative, neutral or positive. Patients endorsed more negative interpretations and fewer neutral and positive interpretations compared with healthy eaters. The frequency of endorsed negative interpretations correlated with depression, anxiety and fear of weight gain and body disturbance. A negative interpretation bias towards social stimuli is present in women with anorexia nervosa and correlates with clinical symptoms. Interventions aimed at reducing this bias could improve illness prognosis. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
Visser, Renée M.; Haver, Pia; Zwitser, Robert J.; Scholte, H. Steven; Kindt, Merel
2016-01-01
A core symptom of anxiety disorders is the tendency to interpret ambiguous information as threatening. Using electroencephalography and blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), several studies have begun to elucidate brain processes involved in fear-related perceptual biases, but thus far mainly found evidence for general hypervigilance in high fearful individuals. Recently, multi-voxel pattern analysis (MVPA) has become popular for decoding cognitive states from distributed patterns of neural activation. Here, we used this technique to assess whether biased fear generalization, characteristic of clinical fear, is already present during the initial perception and categorization of a stimulus, or emerges during the subsequent interpretation of a stimulus. Individuals with low spider fear (n = 20) and high spider fear (n = 18) underwent functional MRI scanning while viewing series of schematic flowers morphing to spiders. In line with previous studies, individuals with high fear of spiders were behaviorally more likely to classify ambiguous morphs as spiders than individuals with low fear of spiders. Univariate analyses of BOLD-MRI data revealed stronger activation toward spider pictures in high fearful individuals compared to low fearful individuals in numerous areas. Yet, neither average activation, nor support vector machine classification (i.e., a form of MVPA) matched the behavioral results – i.e., a biased response toward ambiguous stimuli – in any of the regions of interest. This may point to limitations of the current design, and to challenges associated with classifying emotional and neutral stimuli in groups that differ in their judgment of emotionality. Improvements for future research are suggested. PMID:27303278
Multisensory integration across the senses in young and old adults
Mahoney, Jeannette R.; Li, Po Ching Clara; Oh-Park, Mooyeon; Verghese, Joe; Holtzer, Roee
2011-01-01
Stimuli are processed concurrently and across multiple sensory inputs. Here we directly compared the effect of multisensory integration (MSI) on reaction time across three paired sensory inputs in eighteen young (M=19.17 yrs) and eighteen old (M=76.44 yrs) individuals. Participants were determined to be non-demented and without any medical or psychiatric conditions that would affect their performance. Participants responded to randomly presented unisensory (auditory, visual, somatosensory) stimuli and three paired sensory inputs consisting of auditory-somatosensory (AS) auditory-visual (AV) and visual-somatosensory (VS) stimuli. Results revealed that reaction time (RT) to all multisensory pairings was significantly faster than those elicited to the constituent unisensory conditions across age groups; findings that could not be accounted for by simple probability summation. Both young and old participants responded the fastest to multisensory pairings containing somatosensory input. Compared to younger adults, older adults demonstrated a significantly greater RT benefit when processing concurrent VS information. In terms of co-activation, older adults demonstrated a significant increase in the magnitude of visual-somatosensory co-activation (i.e., multisensory integration), while younger adults demonstrated a significant increase in the magnitude of auditory-visual and auditory-somatosensory co-activation. This study provides first evidence in support of the facilitative effect of pairing somatosensory with visual stimuli in older adults. PMID:22024545
The “Visual Shock” of Francis Bacon: an essay in neuroesthetics
Zeki, Semir; Ishizu, Tomohiro
2013-01-01
In this paper we discuss the work of Francis Bacon in the context of his declared aim of giving a “visual shock.”We explore what this means in terms of brain activity and what insights into the brain's visual perceptive system his work gives. We do so especially with reference to the representation of faces and bodies in the human visual brain. We discuss the evidence that shows that both these categories of stimuli have a very privileged status in visual perception, compared to the perception of other stimuli, including man-made artifacts such as houses, chairs, and cars. We show that viewing stimuli that depart significantly from a normal representation of faces and bodies entails a significant difference in the pattern of brain activation. We argue that Bacon succeeded in delivering his “visual shock” because he subverted the normal neural representation of faces and bodies, without at the same time subverting the representation of man-made artifacts. PMID:24339812
The "Visual Shock" of Francis Bacon: an essay in neuroesthetics.
Zeki, Semir; Ishizu, Tomohiro
2013-01-01
In this paper we discuss the work of Francis Bacon in the context of his declared aim of giving a "visual shock."We explore what this means in terms of brain activity and what insights into the brain's visual perceptive system his work gives. We do so especially with reference to the representation of faces and bodies in the human visual brain. We discuss the evidence that shows that both these categories of stimuli have a very privileged status in visual perception, compared to the perception of other stimuli, including man-made artifacts such as houses, chairs, and cars. We show that viewing stimuli that depart significantly from a normal representation of faces and bodies entails a significant difference in the pattern of brain activation. We argue that Bacon succeeded in delivering his "visual shock" because he subverted the normal neural representation of faces and bodies, without at the same time subverting the representation of man-made artifacts.
Taniguchi, Darcy A. A.; Gagnon, Yakir; Wheeler, Benjamin R.; Johnsen, Sönke; Jaffe, Jules S.
2015-01-01
Cuttlefish are cephalopods capable of rapid camouflage responses to visual stimuli. However, it is not always clear to what these animals are responding. Previous studies have found cuttlefish to be more responsive to lateral stimuli rather than substrate. However, in previous works, the cuttlefish were allowed to settle next to the lateral stimuli. In this study, we examine whether juvenile cuttlefish (Sepia officinalis) respond more strongly to visual stimuli seen on the sides versus the bottom of an experimental aquarium, specifically when the animals are not allowed to be adjacent to the tank walls. We used the Sub Sea Holodeck, a novel aquarium that employs plasma display screens to create a variety of artificial visual environments without disturbing the animals. Once the cuttlefish were acclimated, we compared the variability of camouflage patterns that were elicited from displaying various stimuli on the bottom versus the sides of the Holodeck. To characterize the camouflage patterns, we classified them in terms of uniform, disruptive, and mottled patterning. The elicited camouflage patterns from different bottom stimuli were more variable than those elicited by different side stimuli, suggesting that S. officinalis responds more strongly to the patterns displayed on the bottom than the sides of the tank. We argue that the cuttlefish pay more attention to the bottom of the Holodeck because it is closer and thus more relevant for camouflage. PMID:26465786
Audio-visual synchrony and feature-selective attention co-amplify early visual processing.
Keitel, Christian; Müller, Matthias M
2016-05-01
Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.
Stone, David B.; Urrea, Laura J.; Aine, Cheryl J.; Bustillo, Juan R.; Clark, Vincent P.; Stephen, Julia M.
2011-01-01
In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder. PMID:21807011
Statistical regularities in art: Relations with visual coding and perception.
Graham, Daniel J; Redies, Christoph
2010-07-21
Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.
Relation of tolerance of ambiguity to global and specific paranormal experience.
Houran, J; Williams, C
1998-12-01
We examined the relationship of tolerance of ambiguity to severe global factors and specific types of anomalous or paranormal experience. 107 undergraduate students completed MacDonald's 1970 AT-20 and the Anomalous Experiences Inventory of Kumar, Pekala, and Gallagher. Scores on the five subscales of the Anomalous Experiences Inventory correlated differently with tolerance of ambiguity. Global paranormal beliefs, abilities, experiences, and drug use were positively associated with tolerance of ambiguity, whereas a fear of paranormal experience showed a negative relation. The specific types of anomalous experiences that correlated with tolerance of ambiguity often involved internal or physiological experience, e.g., precognitive dreams, memories of reincarnation, visual apparitions, and vestibular alterations. We generally found no effects of age of sex. These results are consistent with the idea that some paranormal experiences are misattributions of internal experience to external ('paranormal') sources, a process analogous to mechanisms underpinning delusions and hallucinations.
Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.
Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong
2015-01-01
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.
Testing memory for unseen visual stimuli in patients with extinction and spatial neglect.
Vuilleumier, Patrik; Schwartz, Sophie; Clarke, Karen; Husain, Masud; Driver, Jon
2002-08-15
Visual extinction after right parietal damage involves a loss of awareness for stimuli in the contralesional field when presented concurrently with ipsilesional stimuli, although contralesional stimuli are still perceived if presented alone. However, extinguished stimuli can still receive some residual on-line processing, without awareness. Here we examined whether such residual processing of extinguished stimuli can produce implicit and/or explicit memory traces lasting many minutes. We tested four patients with right parietal damage and left extinction on two sessions, each including distinct study and subsequent test phases. At study, pictures of objects were shown briefly in the right, left, or both fields. Patients were asked to name them without memory instructions (Session 1) or to make an indoor/outdoor categorization and memorize them (Session 2). They extinguished most left stimuli on bilateral presentation. During the test (up to 48 min later), fragmented pictures of the previously exposed objects (or novel objects) were presented alone in either field. Patients had to identify each object and then judge whether it had previously been exposed. Identification of fragmented pictures was better for previously exposed objects that had been consciously seen and critically also for objects that had been extinguished (as compared with novel objects), with no influence of the depth of processing during study. By contrast, explicit recollection occurred only for stimuli that were consciously seen at study and increased with depth of processing. These results suggest implicit but not explicit memory for extinguished visual stimuli in parietal patients.
Visual Memories Bypass Normalization.
Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam
2018-05-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.
Visual Memories Bypass Normalization
Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam
2018-01-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038
Motivationally Significant Stimuli Show Visual Prior Entry: Evidence for Attentional Capture
ERIC Educational Resources Information Center
West, Greg L.; Anderson, Adam A. K.; Pratt, Jay
2009-01-01
Previous studies that have found attentional capture effects for stimuli of motivational significance do not directly measure initial attentional deployment, leaving it unclear to what extent these items produce attentional capture. Visual prior entry, as measured by temporal order judgments (TOJs), rests on the premise that allocated attention…
Visual Categorization of Natural Movies by Rats
Vinken, Kasper; Vermaercke, Ben
2014-01-01
Visual categorization of complex, natural stimuli has been studied for some time in human and nonhuman primates. Recent interest in the rodent as a model for visual perception, including higher-level functional specialization, leads to the question of how rodents would perform on a categorization task using natural stimuli. To answer this question, rats were trained in a two-alternative forced choice task to discriminate movies containing rats from movies containing other objects and from scrambled movies (ordinate-level categorization). Subsequently, transfer to novel, previously unseen stimuli was tested, followed by a series of control probes. The results show that the animals are capable of acquiring a decision rule by abstracting common features from natural movies to generalize categorization to new stimuli. Control probes demonstrate that they did not use single low-level features, such as motion energy or (local) luminance. Significant generalization was even present with stationary snapshots from untrained movies. The variability within and between training and test stimuli, the complexity of natural movies, and the control experiments and analyses all suggest that a more high-level rule based on more complex stimulus features than local luminance-based cues was used to classify the novel stimuli. In conclusion, natural stimuli can be used to probe ordinate-level categorization in rats. PMID:25100598
Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry
O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte
2013-01-01
Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536
Specific excitatory connectivity for feature integration in mouse primary visual cortex
Molina-Luna, Patricia; Roth, Morgane M.
2017-01-01
Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769
Visual feedback in stuttering therapy
NASA Astrophysics Data System (ADS)
Smolka, Elzbieta
1997-02-01
The aim of this paper is to present the results concerning the influence of visual echo and reverberation on the speech process of stutterers. Visual stimuli along with the influence of acoustic and visual-acoustic stimuli have been compared. Following this the methods of implementing visual feedback with the aid of electroluminescent diodes directed by speech signals have been presented. The concept of a computerized visual echo based on the acoustic recognition of Polish syllabic vowels has been also presented. All the research nd trials carried out at our center, aside from cognitive aims, generally aim at the development of new speech correctors to be utilized in stuttering therapy.
Associative visual learning by tethered bees in a controlled visual environment.
Buatois, Alexis; Pichot, Cécile; Schultheiss, Patrick; Sandoz, Jean-Christophe; Lazzari, Claudio R; Chittka, Lars; Avarguès-Weber, Aurore; Giurfa, Martin
2017-10-10
Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS-). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS- after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS- also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.
Liang, Maojin; Chen, Yuebo; Zhao, Fei; Zhang, Junpeng; Liu, Jiahao; Zhang, Xueyuan; Cai, Yuexin; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing
2017-09-01
Although visual processing recruitment of the auditory cortices has been reported previously in prelingually deaf children who have a rapidly developing brain and no auditory processing, the visual processing recruitment of auditory cortices might be different in processing different visual stimuli and may affect cochlear implant (CI) outcomes. Ten prelingually deaf children, 4 to 6 years old, were recruited for the study. Twenty prelingually deaf subjects, 4 to 6 years old with CIs for 1 year, were also recruited; 10 with well-performing CIs, 10 with poorly performing CIs. Ten age and sex-matched normal-hearing children were recruited as controls. Visual ("sound" photo [photograph with imaginative sound] and "nonsound" photo [photograph without imaginative sound]) evoked potentials were measured in all subjects. P1 at Oz and N1 at the bilateral temporal-frontal areas (FC3 and FC4) were compared. N1 amplitudes were strongest in the deaf children, followed by those with poorly performing CIs, controls and those with well-performing CIs. There was no significant difference between controls and those with well-performing CIs. "Sound" photo stimuli evoked a stronger N1 than "nonsound" photo stimuli. Further analysis showed that only at FC4 in deaf subjects and those with poorly performing CIs were the N1 responses to "sound" photo stimuli stronger than those to "nonsound" photo stimuli. No significant difference was found for the FC3 and FC4 areas. No significant difference was found in N1 latencies and P1 amplitudes or latencies. The results indicate enhanced visual recruitment of the auditory cortices in prelingually deaf children. Additionally, the decrement in visual recruitment of auditory cortices was related to good CI outcomes.
Harris, Jill; Kamke, Marc R
2014-11-01
Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Timing the impact of literacy on visual processing
Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas
2014-01-01
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460
Timing the impact of literacy on visual processing.
Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas
2014-12-09
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Visual and vestibular components of motion sickness.
Eyeson-Annan, M; Peterken, C; Brown, B; Atchison, D
1996-10-01
The relative importance of visual and vestibular information in the etiology of motion sickness (MS) is not well understood, but these factors can be manipulated by inducing Coriolis and pseudo-Coriolis effects in experimental subjects. We hypothesized that visual and vestibular information are equivalent in producing MS. The experiments reported here aim, in part, to examine the relative influence of Coriolis and pseudo-Coriolis effects in inducing MS. We induced MS symptoms by combinations of whole body rotation and tilt, and environment rotation and tilt, in 22 volunteer subjects. Subjects participated in all of the experiments with at least 2 d between each experiment to dissipate after-effects. We recorded MS signs and symptoms when only visual stimulation was applied, when only vestibular stimulation was applied, and when both visual and vestibular stimulation were applied under specific conditions of whole body and environmental tilt. Visual stimuli produced more symptoms of MS than vestibular stimuli when only visual or vestibular stimuli were used (ANOVA F = 7.94, df = 1, 21 p = 0.01), but there was no significant difference in MS production when combined visual and vestibular stimulation were used to produce the Coriolis effect or pseudo-Coriolis effect (ANOVA: F = 0.40, df = 1, 21 p = 0.53). This was further confirmed by examination of the order in which the symptoms occurred and the lack of a correlation between previous experience and visually induced MS. Visual information is more important than vestibular input in causing MS when these stimuli are presented in isolation. In conditions where both visual and vestibular information are present, cross-coupling appears to occur between the pseudo-Coriolis effect and the Coriolis effect, as these two conditions are not significantly different in producing MS symptoms.
Can, Wang; Zhuoran, Zhao; Zheng, Jin
2017-04-01
In the past 10 years, thousands of people have claimed to be affected by trypophobia, which is the fear of objects with small holes. Recent research suggests that people do not fear the holes; rather, images of clustered holes, which share basic visual characteristics with venomous organisms, lead to nonconscious fear. In the present study, both self-reported measures and the Preschool Single Category Implicit Association Test were adapted for use with preschoolers to investigate whether discomfort related to trypophobic stimuli was grounded in their visual features or based on a nonconsciously associated fear of venomous animals. The results indicated that trypophobic stimuli were associated with discomfort in children. This discomfort seemed to be related to the typical visual characteristics and pattern properties of trypophobic stimuli rather than to nonconscious associations with venomous animals. The association between trypophobic stimuli and venomous animals vanished when the typical visual characteristics of trypophobic features were removed from colored photos of venomous animals. Thus, the discomfort felt toward trypophobic images might be an instinctive response to their visual characteristics rather than the result of a learned but nonconscious association with venomous animals. Therefore, it is questionable whether it is justified to legitimize trypophobia.
Stekelenburg, Jeroen J; Vroomen, Jean
2012-01-01
In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.
Shape and color conjunction stimuli are represented as bound objects in visual working memory.
Luria, Roy; Vogel, Edward K
2011-05-01
The integrated object view of visual working memory (WM) argues that objects (rather than features) are the building block of visual WM, so that adding an extra feature to an object does not result in any extra cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage capacity so that it may not be represented as bound objects. Additionally, it was argued that two features from the same dimension (i.e., color-color) do not form an integrated object in visual WM. This led some to argue for a "weak" object view of visual WM. We used the contralateral delay activity (the CDA) as an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated object account. In two experiments we presented complex stimuli and color-color conjunction stimuli, and compared performance in displays that had one object but varying degrees of feature complexity. The results supported the integrated object account by showing that the CDA amplitude corresponded to the number of objects regardless of the number of features within each object, even for complex objects or color-color conjunction stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.
Auditory enhancement of visual perception at threshold depends on visual abilities.
Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène
2011-06-17
Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.
Magnetic stimulation of visual cortex impairs perceptual learning.
Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio
2016-12-01
The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.
1980-02-01
ADOAA82 342 OKLAHOMA UNIV NORMAN COLL OF EDUCATION F/B 5/9 TASK ANALYSIS SCHEMA BASED ON COGNITIVE STYLE AND SUPPLANFATION--ETC(U) FEB GO F B AUSBURN...separately- perceived fragments) 6. Tasks requiring use of a. Visual/haptic (pre- kinesthetic or tactile ference for kinesthetic stimuli stimuli; ability...to transform kinesthetic stimuli into visual images; ability to learn directly from tactile or kinesthet - ic impressions) b. Field independence/de
The effect of spatial attention on invisible stimuli.
Shin, Kilho; Stolte, Moritz; Chong, Sang Chul
2009-10-01
The influence of selective attention on visual processing is widespread. Recent studies have demonstrated that spatial attention can affect processing of invisible stimuli. However, it has been suggested that this effect is limited to low-level features, such as line orientations. The present experiments investigated whether spatial attention can influence both low-level (contrast threshold) and high-level (gender discrimination) adaptation, using the same method of attentional modulation for both types of stimuli. We found that spatial attention was able to increase the amount of adaptation to low- as well as to high-level invisible stimuli. These results suggest that attention can influence perceptual processes independent of visual awareness.
Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara
2012-03-01
The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.
Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara
2012-01-01
The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention; memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that: a) biologically emotional images hold attention more strongly than socially emotional images, b) memory for biologically emotional images was enhanced even with limited cognitive resources, but c) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images’ subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in visual cortex and greater functional connectivity between amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between amygdala and MPFC than biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity. PMID:21964552
Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects.
Soldan, Anja; Mangels, Jennifer A; Cooper, Lynn A
2008-11-01
According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalise to priming of unfamiliar visual objects. Implications for theoretical models of object decision priming are discussed.
Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects
Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.
2008-01-01
According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object-decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object-decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalize to priming of unfamiliar visual objects. Implications for theoretical models of object-decision priming are discussed. PMID:18821167
Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness
Pitts, Michael A.; Padwal, Jennifer; Fennelly, Daniel; Martínez, Antígona; Hillyard, Steven A.
2014-01-01
A primary goal in cognitive neuroscience is to identify neural correlates of conscious perception (NCC). By contrasting conditions in which subjects are aware versus unaware of identical visual stimuli, a number of candidate NCCs have emerged, among them induced gamma band activity in the EEG and the P3 event-related potential. In most previous studies, however, the critical stimuli were always directly relevant to the subjects’ task, such that aware versus unaware contrasts may well have included differences in post-perceptual processing in addition to differences in conscious perception per se. Here, in a series of EEG experiments, visual awareness and task relevance were manipulated independently. Induced gamma activity and the P3 were absent for task-irrelevant stimuli regardless of whether subjects were aware of such stimuli. For task-relevant stimuli, gamma and the P3 were robust and dissociable, indicating that each reflects distinct post-perceptual processes necessary for carrying-out the task but not for consciously perceiving the stimuli. Overall, this pattern of results challenges a number of previous proposals linking gamma band activity and the P3 to conscious perception. PMID:25063731
Attention Priority Map of Face Images in Human Early Visual Cortex.
Mo, Ce; He, Dongjun; Fang, Fang
2018-01-03
Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Selective attention determines emotional responses to novel visual stimuli.
Raymond, Jane E; Fenske, Mark J; Tavassoli, Nader T
2003-11-01
Distinct complex brain systems support selective attention and emotion, but connections between them suggest that human behavior should reflect reciprocal interactions of these systems. Although there is ample evidence that emotional stimuli modulate attentional processes, it is not known whether attention influences emotional behavior. Here we show that evaluation of the emotional tone (cheery/dreary) of complex but meaningless visual patterns can be modulated by the prior attentional state (attending vs. ignoring) used to process each pattern in a visual selection task. Previously ignored patterns were evaluated more negatively than either previously attended or novel patterns. Furthermore, this emotional devaluation of distracting stimuli was robust across different emotional contexts and response scales. Finding that negative affective responses are specifically generated for ignored stimuli points to a new functional role for attention and elaborates the link between attention and emotion. This finding also casts doubt on the conventional marketing wisdom that any exposure is good exposure.
Stimulus relevance modulates contrast adaptation in visual cortex
Keller, Andreas J; Houlton, Rachael; Kampa, Björn M; Lesica, Nicholas A; Mrsic-Flogel, Thomas D; Keller, Georg B; Helmchen, Fritjof
2017-01-01
A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex. DOI: http://dx.doi.org/10.7554/eLife.21589.001 PMID:28130922
Cognitive Food Processing in Binge-Eating Disorder: An Eye-Tracking Study.
Sperling, Ingmar; Baldofski, Sabrina; Lüthold, Patrick; Hilbert, Anja
2017-08-19
Studies indicate an attentional bias towards food in binge-eating disorder (BED); however, more evidence on attentional engagement and disengagement and processing of multiple attention-competing stimuli is needed. This study aimed to examine visual attention to food and non-food stimuli in BED. In n = 23 participants with full-syndrome and subsyndromal BED and n = 23 individually matched healthy controls, eye-tracking was used to assess attention to food and non-food stimuli during a free exploration paradigm and a visual search task. In the free exploration paradigm, groups did not differ in their initial fixation position. While both groups fixated non-food stimuli significantly longer than food stimuli, the BED group allocated significantly more attention towards food than controls. In the visual search task, groups did not differ in detection times. However, a significant detection bias for food was found in full-syndrome BED, but not in controls. An increased initial attention towards food was related to greater BED symptomatology and lower body mass index (BMI) only in full-syndrome BED, while a greater maintained attention to food was associated with lower BMI in controls. The results suggest food-biased visual attentional processing in adults with BED. Further studies should clarify the implications of attentional processes for the etiology and maintenance of BED.
Cognitive Food Processing in Binge-Eating Disorder: An Eye-Tracking Study
Sperling, Ingmar; Lüthold, Patrick; Hilbert, Anja
2017-01-01
Studies indicate an attentional bias towards food in binge-eating disorder (BED); however, more evidence on attentional engagement and disengagement and processing of multiple attention-competing stimuli is needed. This study aimed to examine visual attention to food and non-food stimuli in BED. In n = 23 participants with full-syndrome and subsyndromal BED and n = 23 individually matched healthy controls, eye-tracking was used to assess attention to food and non-food stimuli during a free exploration paradigm and a visual search task. In the free exploration paradigm, groups did not differ in their initial fixation position. While both groups fixated non-food stimuli significantly longer than food stimuli, the BED group allocated significantly more attention towards food than controls. In the visual search task, groups did not differ in detection times. However, a significant detection bias for food was found in full-syndrome BED, but not in controls. An increased initial attention towards food was related to greater BED symptomatology and lower body mass index (BMI) only in full-syndrome BED, while a greater maintained attention to food was associated with lower BMI in controls. The results suggest food-biased visual attentional processing in adults with BED. Further studies should clarify the implications of attentional processes for the etiology and maintenance of BED. PMID:28825607
Multisensory Motion Perception in 3–4 Month-Old Infants
Nava, Elena; Grassi, Massimo; Brenna, Viola; Croci, Emanuela; Turati, Chiara
2017-01-01
Human infants begin very early in life to take advantage of multisensory information by extracting the invariant amodal information that is conveyed redundantly by multiple senses. Here we addressed the question as to whether infants can bind multisensory moving stimuli, and whether this occurs even if the motion produced by the stimuli is only illusory. Three- to 4-month-old infants were presented with two bimodal pairings: visuo-tactile and audio-visual. Visuo-tactile pairings consisted of apparently vertically moving bars (the Barber Pole illusion) moving in either the same or opposite direction with a concurrent tactile stimulus consisting of strokes given on the infant’s back. Audio-visual pairings consisted of the Barber Pole illusion in its visual and auditory version, the latter giving the impression of a continuous rising or ascending pitch. We found that infants were able to discriminate congruently (same direction) vs. incongruently moving (opposite direction) pairs irrespective of modality (Experiment 1). Importantly, we also found that congruently moving visuo-tactile and audio-visual stimuli were preferred over incongruently moving bimodal stimuli (Experiment 2). Our findings suggest that very young infants are able to extract motion as amodal component and use it to match stimuli that only apparently move in the same direction. PMID:29187829
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. PMID:24187542
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.
Smets, Karolien; Moors, Pieter; Reynvoet, Bert
2016-01-01
Performance in a non-symbolic comparison task in which participants are asked to indicate the larger numerosity of two dot arrays, is assumed to be supported by the Approximate Number System (ANS). This system allows participants to judge numerosity independently from other visual cues. Supporting this idea, previous studies indicated that numerosity can be processed when visual cues are controlled for. Consequently, distinct types of visual cue control are assumed to be interchangeable. However, a previous study showed that the type of visual cue control affected performance using a simultaneous presentation of the stimuli in numerosity comparison. In the current study, we explored whether the influence of the type of visual cue control on performance disappeared when sequentially presenting each stimulus in numerosity comparison. While the influence of the applied type of visual cue control was significantly more evident in the simultaneous condition, sequentially presenting the stimuli did not completely exclude the influence of distinct types of visual cue control. Altogether, these results indicate that the implicit assumption that it is possible to compare performances across studies with a differential visual cue control is unwarranted and that the influence of the type of visual cue control partly depends on the presentation format of the stimuli. PMID:26869967
Dynamic Prototypicality Effects in Visual Search
ERIC Educational Resources Information Center
Kayaert, Greet; Op de Beeck, Hans P.; Wagemans, Johan
2011-01-01
In recent studies, researchers have discovered a larger neural activation for stimuli that are more extreme exemplars of their stimulus class, compared with stimuli that are more prototypical. This has been shown for faces as well as for familiar and novel shape classes. We used a visual search task to look for a behavioral correlate of these…
ERIC Educational Resources Information Center
Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel
2016-01-01
Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…
Determining the Capacity of Time-Based Selection
ERIC Educational Resources Information Center
Watson, Derrick G.; Kunar, Melina A.
2012-01-01
In visual search, a set of distractor items can be suppressed from future selection if they are presented (previewed) before a second set of search items arrive. This "visual marking" mechanism provides a top-down way of prioritizing the selection of new stimuli, at the expense of old stimuli already in the field (Watson & Humphreys,…
Functional neuronal processing of body odors differs from that of similar common odors.
Lundström, Johan N; Boyle, Julie A; Zatorre, Robert J; Jones-Gotman, Marilyn
2008-06-01
Visual and auditory stimuli of high social and ecological importance are processed in the brain by specialized neuronal networks. To date, this has not been demonstrated for olfactory stimuli. By means of positron emission tomography, we sought to elucidate the neuronal substrates behind body odor perception to answer the question of whether the central processing of body odors differs from perceptually similar nonbody odors. Body odors were processed by a network that was distinctly separate from common odors, indicating a separation in the processing of odors based on their source. Smelling a friend's body odor activated regions previously seen for familiar stimuli, whereas smelling a stranger activated amygdala and insular regions akin to what has previously been demonstrated for fearful stimuli. The results provide evidence that social olfactory stimuli of high ecological relevance are processed by specialized neuronal networks similar to what has previously been demonstrated for auditory and visual stimuli.
Affective Overload: The Effect of Emotive Visual Stimuli on Target Vocabulary Retrieval.
Çetin, Yakup; Griffiths, Carol; Özel, Zeynep Ebrar Yetkiner; Kinay, Hüseyin
2016-04-01
There has been considerable interest in cognitive load in recent years, but the effect of affective load and its relationship to mental functioning has not received as much attention. In order to investigate the effects of affective stimuli on cognitive function as manifest in the ability to remember foreign language vocabulary, two groups of student volunteers (N = 64) aged from 17 to 25 years were shown a Powerpoint presentation of 21 target language words with a picture, audio, and written form for every word. The vocabulary was presented in comfortable rooms with padded chairs and the participants were provided with snacks so that they would be comfortable and relaxed. After the Powerpoint they were exposed to two forms of visual stimuli for 27 min. The different formats contained either visually affective content (sexually suggestive, violent or frightening material) or neutral content (a nature documentary). The group which was exposed to the emotive visual stimuli remembered significantly fewer words than the group which watched the emotively neutral nature documentary. Implications of this finding are discussed and suggestions made for ongoing research.
Fradcourt, B; Peyrin, C; Baciu, M; Campagne, A
2013-10-01
Previous studies performed on visual processing of emotional stimuli have revealed preference for a specific type of visual spatial frequencies (high spatial frequency, HSF; low spatial frequency, LSF) according to task demands. The majority of studies used a face and focused on the appraisal of the emotional state of others. The present behavioral study investigates the relative role of spatial frequencies on processing emotional natural scenes during two explicit cognitive appraisal tasks, one emotional, based on the self-emotional experience and one motivational, based on the tendency to action. Our results suggest that HSF information was the most relevant to rapidly identify the self-emotional experience (unpleasant, pleasant, and neutral) while LSF was required to rapidly identify the tendency to action (avoidance, approach, and no action). The tendency to action based on LSF analysis showed a priority for unpleasant stimuli whereas the identification of emotional experience based on HSF analysis showed a priority for pleasant stimuli. The present study confirms the interest of considering both emotional and motivational characteristics of visual stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.
Bernstein, Lynne E.; Jiang, Jintao; Pantazis, Dimitrios; Lu, Zhong-Lin; Joshi, Anand
2011-01-01
The talking face affords multiple types of information. To isolate cortical sites with responsibility for integrating linguistically relevant visual speech cues, speech and non-speech face gestures were presented in natural video and point-light displays during fMRI scanning at 3.0T. Participants with normal hearing viewed the stimuli and also viewed localizers for the fusiform face area (FFA), the lateral occipital complex (LOC), and the visual motion (V5/MT) regions of interest (ROIs). The FFA, the LOC, and V5/MT were significantly less activated for speech relative to non-speech and control stimuli. Distinct activation of the posterior superior temporal sulcus and the adjacent middle temporal gyrus to speech, independent of media, was obtained in group analyses. Individual analyses showed that speech and non-speech stimuli were associated with adjacent but different activations, with the speech activations more anterior. We suggest that the speech activation area is the temporal visual speech area (TVSA), and that it can be localized with the combination of stimuli used in this study. PMID:20853377
Woi, Pui Juan; Kaur, Sharanjeet; Waugh, Sarah J.; Hairol, Mohd Izzuddin
2016-01-01
The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05]. Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone. PMID:28184281
Perspective image comprehension depends on both visual and proprioceptive information.
Michel, Christian W; Ray, Devin G; Kaup, Barbara; Hesse, Friedrich W
2014-11-01
Proprioceptive information can supplement visual information in the comprehension of ambiguous perspective images. The importance of proprioceptive information in unambiguous perspective image comprehension is untested, however. We explored the role of proprioception in perspective image comprehension using three experiments in which participants took or imagined taking an upward- or downward-oriented posture and then made judgments about images viewed from below or viewed from above. Participants were faster and more accurate in their judgments when their actual or simulated posture was consistent with the posture implied by the perspective of the image they were judging. These results support a role for proprioception in the comprehension of unambiguous perspective images as well as ambiguous perspective images.
Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.
Badgaiyan, Rajendra D
2012-12-01
Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.
[Diagnosis of ambiguous genitalia].
de Sanctis, C; Einaudi, S; De Sanctis, L
1990-03-01
Diagnosis in patients with ambiguous genitalia is based on various investigations. Simple genital examination is not sufficient to attribute sex. Scarce androgenization in a male patient or marked androgenization in a female may both lead to the same stages of genital ambiguity according to Prader. It is important to get information about genital ambiguity in the family, drug consumption during gestation and signs of virilization in pregnant mothers. External genital findings must be integrated by visualization of urogenital sinus by X-rays, ultrasounds and endoscopy. Furthermore, hormonal evaluations on plasma and 24 hours urines allow diagnosis of some disorders of adrenal and gonadal steroidogenesis. To define genetic sex, chromosomal examination is required to integrate X chromatine investigation and fluorescent staining of Y chromosome. Evaluation of psychosexuality in patients who have already got gender identity is mandatory.
Neural theory for the perception of causal actions.
Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A
2012-07-01
The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.
Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.
Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary
2015-01-01
Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila
Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.
2015-01-01
Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183
Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A
2015-05-13
Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.
Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F
2018-01-01
Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.
Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events). PMID:24391928
Xiao, Jianbo
2015-01-01
Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869
Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R.; Jafari, Amir H.
2018-01-01
Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23–30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies. PMID:29892219
Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H
2018-01-01
Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.
Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval
ERIC Educational Resources Information Center
Schneider, Darryl W.; Logan, Gordon D.
2009-01-01
How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…
Age-related differences in audiovisual interactions of semantically different stimuli.
Viggiano, Maria Pia; Giovannelli, Fabio; Giganti, Fiorenza; Rossi, Arianna; Metitieri, Tiziana; Rebai, Mohamed; Guerrini, Renzo; Cincotta, Massimo
2017-01-01
Converging results have shown that adults benefit from congruent multisensory stimulation in the identification of complex stimuli, whereas the developmental trajectory of the ability to integrate multisensory inputs in children is less well understood. In this study we explored the effects of audiovisual semantic congruency on identification of visually presented stimuli belonging to different categories, using a cross-modal approach. Four groups of children ranging in age from 6 to 13 years and adults were administered an object identification task of visually presented pictures belonging to living and nonliving entities. Stimuli were presented in visual, congruent audiovisual, incongruent audiovisual, and noise conditions. Results showed that children under 12 years of age did not benefit from multisensory presentation in speeding up the identification. In children the incoherent audiovisual condition had an interfering effect, especially for the identification of living things. These data suggest that the facilitating effect of the audiovisual interaction into semantic factors undergoes developmental changes and the consolidation of adult-like processing of multisensory stimuli begins in late childhood. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Computer programming for generating visual stimuli.
Bukhari, Farhan; Kurylo, Daniel D
2008-02-01
Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.
Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study
Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong
2015-01-01
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies. PMID:26384256
Neural Mechanisms of Selective Visual Attention.
Moore, Tirin; Zirnsak, Marc
2017-01-03
Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.
Accessory stimulus modulates executive function during stepping task
Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo
2015-01-01
When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321
Brocher, Andreas; Harbecke, Raphael; Graf, Tim; Memmert, Daniel; Hüttermann, Stefanie
2018-03-07
We tested the link between pupil size and the task effort involved in covert shifts of visual attention. The goal of this study was to establish pupil size as a marker of attentional shifting in the absence of luminance manipulations. In three experiments, participants evaluated two stimuli that were presented peripherally, appearing equidistant from and on opposite sides of eye fixation. The angle between eye fixation and the peripherally presented target stimuli varied from 12.5° to 42.5°. The evaluation of more distant stimuli led to poorer performance than did the evaluation of more proximal stimuli throughout our study, confirming that the former required more effort than the latter. In addition, in Experiment 1 we found that pupil size increased with increasing angle and that this effect could not be reduced to the operation of low-level visual processes in the task. In Experiment 2 the pupil dilated more strongly overall when participants evaluated the target stimuli, which required shifts of attention, than when they merely reported on the target's presence versus absence. Both conditions yielded larger pupils for more distant than for more proximal stimuli, however. In Experiment 3, we manipulated task difficulty more directly, by changing the contrast at which the target stimuli were presented. We replicated the results from Experiment 1 only with the high-contrast stimuli. With stimuli of low contrast, ceiling effects in pupil size were observed. Our data show that the link between task effort and pupil size can be used to track the degree to which an observer covertly shifts attention to or detects stimuli in peripheral vision.
Stone, David B; Urrea, Laura J; Aine, Cheryl J; Bustillo, Juan R; Clark, Vincent P; Stephen, Julia M
2011-10-01
In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder. Copyright © 2011 Elsevier Ltd. All rights reserved.
Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation
Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina
2017-01-01
Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this “online” multisensory improvement, there is evidence of long-lasting, “offline” effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced “online” effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual stimuli into short-latency saccades, possibly moving the stimuli into visual detection regions. The retina-SC-extrastriate circuit is related to restitutive effects: visual stimuli can directly elicit visual detection with no need for eye movements. Model predictions and assumptions are critically discussed in view of existing behavioral and neurophysiological data, forecasting that other oculomotor compensatory mechanisms, beyond short-latency saccades, are likely involved, and stimulating future experimental and theoretical investigations. PMID:29326578
Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation.
Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina
2017-01-01
Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this "online" multisensory improvement, there is evidence of long-lasting, "offline" effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced "online" effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual stimuli into short-latency saccades, possibly moving the stimuli into visual detection regions. The retina-SC-extrastriate circuit is related to restitutive effects: visual stimuli can directly elicit visual detection with no need for eye movements. Model predictions and assumptions are critically discussed in view of existing behavioral and neurophysiological data, forecasting that other oculomotor compensatory mechanisms, beyond short-latency saccades, are likely involved, and stimulating future experimental and theoretical investigations.
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1
2017-01-01
Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and the information contained within the neural population. We found that locomotion improved encoding of visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to accommodate an increased load on the visual system when mice are moving. SIGNIFICANCE STATEMENT This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase information in cells of all layers of the visual cortex. Third, we show that the means by which information is enhanced by locomotion differs between the upper layers, where the major effect is the increasing of firing rates, and in layer V, where the major effect is the reduction in noise correlations. PMID:28264980
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Runnova, A. E.; Andreev, A. V.; Zhuravlev, M. O.
2018-04-01
In the present paper, the possibility of classification by artificial neural networks of a certain architecture of ambiguous images is investigated using the example of the Necker cube from the experimentally obtained EEG recording data of several operators. The possibilities of artificial neural network classification of ambiguous images are investigated in the different frequency ranges of EEG recording signals.
Front-Presented Looming Sound Selectively Alters the Perceived Size of a Visual Looming Object.
Yamasaki, Daiki; Miyoshi, Kiyofumi; Altmann, Christian F; Ashida, Hiroshi
2018-07-01
In spite of accumulating evidence for the spatial rule governing cross-modal interaction according to the spatial consistency of stimuli, it is still unclear whether 3D spatial consistency (i.e., front/rear of the body) of stimuli also regulates audiovisual interaction. We investigated how sounds with increasing/decreasing intensity (looming/receding sound) presented from the front and rear space of the body impact the size perception of a dynamic visual object. Participants performed a size-matching task (Experiments 1 and 2) and a size adjustment task (Experiment 3) of visual stimuli with increasing/decreasing diameter, while being exposed to a front- or rear-presented sound with increasing/decreasing intensity. Throughout these experiments, we demonstrated that only the front-presented looming sound caused overestimation of the spatially consistent looming visual stimulus in size, but not of the spatially inconsistent and the receding visual stimulus. The receding sound had no significant effect on vision. Our results revealed that looming sound alters dynamic visual size perception depending on the consistency in the approaching quality and the front-rear spatial location of audiovisual stimuli, suggesting that the human brain differently processes audiovisual inputs based on their 3D spatial consistency. This selective interaction between looming signals should contribute to faster detection of approaching threats. Our findings extend the spatial rule governing audiovisual interaction into 3D space.
Walter, Sabrina; Keitel, Christian; Müller, Matthias M
2016-01-01
Visual attention can be focused concurrently on two stimuli at noncontiguous locations while intermediate stimuli remain ignored. Nevertheless, behavioral performance in multifocal attention tasks falters when attended stimuli fall within one visual hemifield as opposed to when they are distributed across left and right hemifields. This "different-hemifield advantage" has been ascribed to largely independent processing capacities of each cerebral hemisphere in early visual cortices. Here, we investigated how this advantage influences the sustained division of spatial attention. We presented six isoeccentric light-emitting diodes (LEDs) in the lower visual field, each flickering at a different frequency. Participants attended to two LEDs that were spatially separated by an intermediate LED and responded to synchronous events at to-be-attended LEDs. Task-relevant pairs of LEDs were either located in the same hemifield ("within-hemifield" conditions) or separated by the vertical meridian ("across-hemifield" conditions). Flicker-driven brain oscillations, steady-state visual evoked potentials (SSVEPs), indexed the allocation of attention to individual LEDs. Both behavioral performance and SSVEPs indicated enhanced processing of attended LED pairs during "across-hemifield" relative to "within-hemifield" conditions. Moreover, SSVEPs demonstrated effective filtering of intermediate stimuli in "across-hemifield" condition only. Thus, despite identical physical distances between LEDs of attended pairs, the spatial profiles of gain effects differed profoundly between "across-hemifield" and "within-hemifield" conditions. These findings corroborate that early cortical visual processing stages rely on hemisphere-specific processing capacities and highlight their limiting role in the concurrent allocation of visual attention to multiple locations.
Lazar, Aurel A; Slutskiy, Yevgeniy B; Zhou, Yiyin
2015-03-01
Past work demonstrated how monochromatic visual stimuli could be faithfully encoded and decoded under Nyquist-type rate conditions. Color visual stimuli were then traditionally encoded and decoded in multiple separate monochromatic channels. The brain, however, appears to mix information about color channels at the earliest stages of the visual system, including the retina itself. If information about color is mixed and encoded by a common pool of neurons, how can colors be demixed and perceived? We present Color Video Time Encoding Machines (Color Video TEMs) for encoding color visual stimuli that take into account a variety of color representations within a single neural circuit. We then derive a Color Video Time Decoding Machine (Color Video TDM) algorithm for color demixing and reconstruction of color visual scenes from spikes produced by a population of visual neurons. In addition, we formulate Color Video Channel Identification Machines (Color Video CIMs) for functionally identifying color visual processing performed by a spiking neural circuit. Furthermore, we derive a duality between TDMs and CIMs that unifies the two and leads to a general theory of neural information representation for stereoscopic color vision. We provide examples demonstrating that a massively parallel color visual neural circuit can be first identified with arbitrary precision and its spike trains can be subsequently used to reconstruct the encoded stimuli. We argue that evaluation of the functional identification methodology can be effectively and intuitively performed in the stimulus space. In this space, a signal reconstructed from spike trains generated by the identified neural circuit can be compared to the original stimulus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
An exploratory study of temporal integration in the peripheral retina of myopes
NASA Astrophysics Data System (ADS)
Macedo, Antonio F.; Encarnação, Tito J.; Vilarinho, Daniel; Baptista, António M. G.
2017-08-01
The visual system takes time to respond to visual stimuli, neurons need to accumulate information over a time span in order to fire. Visual information perceived by the peripheral retina might be impaired by imperfect peripheral optics leading to myopia development. This study explored the effect of eccentricity, moderate myopia and peripheral refraction in temporal visual integration. Myopes and emmetropes showed similar performance at detecting briefly flashed stimuli in different retinal locations. Our results show evidence that moderate myopes have normal visual integration when refractive errors are corrected with contact lens; however, the tendency to increased temporal integration thresholds observed in myopes deserves further investigation.
On the role of selective attention in visual perception
Luck, Steven J.; Ford, Michelle A.
1998-01-01
What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding. PMID:9448247
Parallel Coding of First- and Second-Order Stimulus Attributes by Midbrain Electrosensory Neurons
McGillivray, Patrick; Vonderschen, Katrin; Fortune, Eric S.; Chacron, Maurice J.
2015-01-01
Natural stimuli often have time-varying first-order (i.e., mean) and second-order (i.e., variance) attributes that each carry critical information for perception and can vary independently over orders of magnitude. Experiments have shown that sensory systems continuously adapt their responses based on changes in each of these attributes. This adaptation creates ambiguity in the neural code as multiple stimuli may elicit the same neural response. While parallel processing of first- and second-order attributes by separate neural pathways is sufficient to remove this ambiguity, the existence of such pathways and the neural circuits that mediate their emergence have not been uncovered to date. We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus to stimuli with first- and second-order attributes that varied independently in time. We found three distinct groups of midbrain neurons: the first group responded to both first- and second-order attributes, the second group responded selectively to first-order attributes, and the last group responded selectively to second-order attributes. In contrast, all afferent hindbrain neurons responded to both first- and second-order attributes. Using computational analyses, we show how inputs from a heterogeneous population of ON- and OFF-type afferent neurons are combined to give rise to response selectivity to either first- or second-order stimulus attributes in midbrain neurons. Our study thus uncovers, for the first time, generic and widely applicable mechanisms by which parallel processing of first- and second-order stimulus attributes emerges in the brain. PMID:22514313
Mental Health Problems in Adolescence and the Interpretation of Unambiguous Threat
Henry, Julie D.; Moses, Ernestina; Castellini, Julieta; Scott, James
2015-01-01
Aberrant threat perception has been linked to paranoia, anxiety and other mental health problems, and is widely considered to be a core, transdiagnostic feature of psychopathology. However, to date there has been only limited investigation of whether mental health problems are associated with a biased interpretation of stimuli that have explicit (as opposed to ambiguous) connotations of threat. In the present study, 41 adolescents diagnosed with a mental illness and 45 demographically matched controls were asked to provide danger ratings of stimuli normatively rated as being either low or high in potential threat. All participants were also asked to complete background measures of cognitive function, mental health and wellbeing. The results indicated that the two groups did not differ in their capacity to discriminate between low and high threat stimuli, nor did they differ in the absolute level of threat that they attributed to these stimuli. However, for the control group, the overall level of threat perceived in facial stimuli was correlated with two important indices of mental health (depression and anxiety). No associations emerged in the clinical group. These data are discussed in relation to their potential implications for the role of aberrant threat perception in transdiagnostic models of mental health. PMID:26039081
The visual attention span deficit in dyslexia is visual and not verbal.
Lobier, Muriel; Zoubrinetzky, Rachel; Valdois, Sylviane
2012-06-01
The visual attention (VA) span deficit hypothesis of dyslexia posits that letter string deficits are a consequence of impaired visual processing. Alternatively, some have interpreted this deficit as resulting from a visual-to-phonology code mapping impairment. This study aims to disambiguate between the two interpretations by investigating performance in a non-verbal character string visual categorization task with verbal and non-verbal stimuli. Results show that VA span ability predicts performance for the non-verbal visual processing task in normal reading children. Furthermore, VA span impaired dyslexic children are also impaired for the categorization task independently of stimuli type. This supports the hypothesis that the underlying impairment responsible for the VA span deficit is visual, not verbal. Copyright © 2011 Elsevier Srl. All rights reserved.
Object perception is selectively slowed by a visually similar working memory load.
Robinson, Alan; Manzi, Alberto; Triesch, Jochen
2008-12-22
The capacity of visual working memory has been extensively characterized, but little work has investigated how occupying visual memory influences other aspects of cognition and perception. Here we show a novel effect: maintaining an item in visual working memory slows processing of similar visual stimuli during the maintenance period. Subjects judged the gender of computer rendered faces or the naturalness of body postures while maintaining different visual memory loads. We found that when stimuli of the same class (faces or bodies) were maintained in memory, perceptual judgments were slowed. Interestingly, this is the opposite of what would be predicted from traditional priming. Our results suggest there is interference between visual working memory and perception, caused by visual similarity between new perceptual input and items already encoded in memory.
NASA Astrophysics Data System (ADS)
Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka
2017-02-01
Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.
Visual categorization of natural movies by rats.
Vinken, Kasper; Vermaercke, Ben; Op de Beeck, Hans P
2014-08-06
Visual categorization of complex, natural stimuli has been studied for some time in human and nonhuman primates. Recent interest in the rodent as a model for visual perception, including higher-level functional specialization, leads to the question of how rodents would perform on a categorization task using natural stimuli. To answer this question, rats were trained in a two-alternative forced choice task to discriminate movies containing rats from movies containing other objects and from scrambled movies (ordinate-level categorization). Subsequently, transfer to novel, previously unseen stimuli was tested, followed by a series of control probes. The results show that the animals are capable of acquiring a decision rule by abstracting common features from natural movies to generalize categorization to new stimuli. Control probes demonstrate that they did not use single low-level features, such as motion energy or (local) luminance. Significant generalization was even present with stationary snapshots from untrained movies. The variability within and between training and test stimuli, the complexity of natural movies, and the control experiments and analyses all suggest that a more high-level rule based on more complex stimulus features than local luminance-based cues was used to classify the novel stimuli. In conclusion, natural stimuli can be used to probe ordinate-level categorization in rats. Copyright © 2014 the authors 0270-6474/14/3410645-14$15.00/0.
Lower pitch is larger, yet falling pitches shrink.
Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E
2014-01-01
Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.
Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D
2017-03-01
Existing evidence suggests a strong relationship between tinnitus and emotion. The objective of this study was to examine the effects of short-term emotional changes along valence and arousal dimensions on tinnitus outcomes. Emotional stimuli were presented in two different modalities: auditory and visual. The authors hypothesized that (1) negative valence (unpleasant) stimuli and/or high arousal stimuli will lead to greater tinnitus loudness and annoyance than positive valence and/or low arousal stimuli, and (2) auditory emotional stimuli, which are in the same modality as the tinnitus, will exhibit a greater effect on tinnitus outcome measures than visual stimuli. Auditory and visual emotive stimuli were administered to 22 participants (12 females and 10 males) with chronic tinnitus, recruited via email invitations send out to the University of Auckland Tinnitus Research Volunteer Database. Emotional stimuli used were taken from the International Affective Digital Sounds- Version 2 (IADS-2) and the International Affective Picture System (IAPS) (Bradley and Lang, 2007a, 2007b). The Emotion Regulation Questionnaire (Gross and John, 2003) was administered alongside subjective ratings of tinnitus loudness and annoyance, and psychoacoustic sensation level matches to external sounds. Males had significantly different emotional regulation scores than females. Negative valence emotional auditory stimuli led to higher tinnitus loudness ratings in males and females and higher annoyance ratings in males only; loudness matches of tinnitus remained unchanged. The visual stimuli did not have an effect on tinnitus ratings. The results are discussed relative to the Adaptation Level Theory Model of Tinnitus. The results indicate that the negative valence dimension of emotion is associated with increased tinnitus magnitude judgements and gender effects may also be present, but only when the emotional stimulus is in the auditory modality. Sounds with emotional associations may be used for sound therapy for tinnitus relief; it is of interest to determine whether the emotional component of sound treatments can play a role in reversing the negative responses discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.
Color categories affect pre-attentive color perception.
Clifford, Alexandra; Holmes, Amanda; Davies, Ian R L; Franklin, Anna
2010-10-01
Categorical perception (CP) of color is the faster and/or more accurate discrimination of colors from different categories than equivalently spaced colors from the same category. Here, we investigate whether color CP at early stages of chromatic processing is independent of top-down modulation from attention. A visual oddball task was employed where frequent and infrequent colored stimuli were either same- or different-category, with chromatic differences equated across conditions. Stimuli were presented peripheral to a central distractor task to elicit an event-related potential (ERP) known as the visual mismatch negativity (vMMN). The vMMN is an index of automatic and pre-attentive visual change detection arising from generating loci in visual cortices. The results revealed a greater vMMN for different-category than same-category change detection when stimuli appeared in the lower visual field, and an absence of attention-related ERP components. The findings provide the first clear evidence for an automatic and pre-attentive categorical code for color. Copyright © 2010 Elsevier B.V. All rights reserved.
Independence between implicit and explicit processing as revealed by the Simon effect.
Lo, Shih-Yu; Yeh, Su-Ling
2011-09-01
Studies showing human behavior influenced by subliminal stimuli mainly focus on implicit processing per se, and little is known about its interaction with explicit processing. We examined this by using the Simon effect, wherein a task-irrelevant spatial distracter interferes with lateralized response. Lo and Yeh (2008) found that the visual Simon effect, although it occurred when participants were aware of the visual distracters, did not occur with subliminal visual distracters. We used the same paradigm and examined whether subliminal and supra-threshold stimuli are processed independently by adding a supra-threshold auditory distracter to ascertain whether it would interact with the subliminal visual distracter. Results showed auditory Simon effect, but there was still no visual Simon effect, indicating that supra-threshold and subliminal stimuli are processed separately in independent streams. In contrast to the traditional view that implicit processing precedes explicit processing, our results suggest that they operate independently in a parallel fashion. Copyright © 2010 Elsevier Inc. All rights reserved.
Visual attention modulates brain activation to angry voices.
Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas
2011-06-29
In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.
Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex
Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.
2015-01-01
Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421
Cortical oscillations related to processing congruent and incongruent grapheme-phoneme pairs.
Herdman, Anthony T; Fujioka, Takako; Chau, Wilkin; Ross, Bernhard; Pantev, Christo; Picton, Terence W
2006-05-15
In this study, we investigated changes in cortical oscillations following congruent and incongruent grapheme-phoneme stimuli. Hiragana graphemes and phonemes were simultaneously presented as congruent or incongruent audiovisual stimuli to native Japanese-speaking participants. The discriminative reaction time was 57 ms shorter for congruent than incongruent stimuli. Analysis of MEG responses using synthetic aperture magnetometry (SAM) revealed that congruent stimuli evoked larger 2-10 Hz activity in the left auditory cortex within the first 250 ms after stimulus onset, and smaller 2-16 Hz activity in bilateral visual cortices between 250 and 500 ms. These results indicate that congruent visual input can modify cortical activity in the left auditory cortex.
Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza
2011-01-01
Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500
Goodale, M A; Murison, R C
1975-05-02
The effects of bilateral removal of the superior colliculus or visual cortex on visually guided locomotor movements in rats performing a brightness discrimination task were investigated directly with the use of cine film. Rats with collicular lesions showed patterns of locomotion comparable to or more efficient than those of normal animals when approaching one of 5 small doors located at one end of a large open area. In contrast, animals with large but incomplete lesions of visual cortex were distinctly impaired in their visual control of approach responses to the same stimuli. On the other hand, rats with collicular damage showed no orienting reflex or evidence of distraction in the same task when novel visual or auditory stimuli were presented. However, both normal and visual-decorticate rats showed various components of the orienting reflex and disturbance in task performance when the same novel stimuli were presented. These results suggest that although the superior colliculus does not appear to be essential to the visual control of locomotor orientation, this midbrain structure might participate in the mediation of shifts in visual fixation and attention. Visual cortex, while contributing to visuospatial guidance of locomotor movements, might not play a significant role in the control and integration of the orienting reflex.
Mo, Lei; Xu, Guiping; Kay, Paul; Tan, Li-Hai
2011-01-01
Previous studies have shown that the effect of language on categorical perception of color is stronger when stimuli are presented in the right visual field than in the left. To examine whether this lateralized effect occurs preattentively at an early stage of processing, we monitored the visual mismatch negativity, which is a component of the event-related potential of the brain to an unfamiliar stimulus among a temporally presented series of stimuli. In the oddball paradigm we used, the deviant stimuli were unrelated to the explicit task. A significant interaction between color-pair type (within-category vs. between-category) and visual field (left vs. right) was found. The amplitude of the visual mismatch negativity component evoked by the within-category deviant was significantly smaller than that evoked by the between-category deviant when displayed in the right visual field, but no such difference was observed for the left visual field. This result constitutes electroencephalographic evidence that the lateralized Whorf effect per se occurs out of awareness and at an early stage of processing. PMID:21844340
Threat as a feature in visual semantic object memory.
Calley, Clifford S; Motes, Michael A; Chiang, H-Sheng; Buhl, Virginia; Spence, Jeffrey S; Abdi, Hervé; Anand, Raksha; Maguire, Mandy; Estevez, Leonardo; Briggs, Richard; Freeman, Thomas; Kraut, Michael A; Hart, John
2013-08-01
Threatening stimuli have been found to modulate visual processes related to perception and attention. The present functional magnetic resonance imaging (fMRI) study investigated whether threat modulates visual object recognition of man-made and naturally occurring categories of stimuli. Compared with nonthreatening pictures, threatening pictures of real items elicited larger fMRI BOLD signal changes in medial visual cortices extending inferiorly into the temporo-occipital (TO) "what" pathways. This region elicited greater signal changes for threatening items compared to nonthreatening from both the natural-occurring and man-made stimulus supraordinate categories, demonstrating a featural component to these visual processing areas. Two additional loci of signal changes within more lateral inferior TO areas (bilateral BA18 and 19 as well as the right ventral temporal lobe) were detected for a category-feature interaction, with stronger responses to man-made (category) threatening (feature) stimuli than to natural threats. The findings are discussed in terms of visual recognition of processing efficiently or rapidly groups of items that confer an advantage for survival. Copyright © 2012 Wiley Periodicals, Inc.
Nelson, D E; Takahashi, J S
1991-01-01
1. Light-induced phase shifts of the circadian rhythm of wheel-running activity were used to measure the photic sensitivity of a circadian pacemaker and the visual pathway that conveys light information to it in the golden hamster (Mesocricetus auratus). The sensitivity to stimulus irradiance and duration was assessed by measuring the magnitude of phase-shift responses to photic stimuli of different irradiance and duration. The visual sensitivity was also measured at three different phases of the circadian rhythm. 2. The stimulus-response curves measured at different circadian phases suggest that the maximum phase-shift is the only aspect of visual responsivity to change as a function of the circadian day. The half-saturation constants (sigma) for the stimulus-response curves are not significantly different over the three circadian phases tested. The photic sensitivity to irradiance (1/sigma) appears to remain constant over the circadian day. 3. The hamster circadian pacemaker and the photoreceptive system that subserves it are more sensitive to the irradiance of longer-duration stimuli than to irradiance of briefer stimuli. The system is maximally sensitive to the irradiance of stimuli of 300 s and longer in duration. A quantitative model is presented to explain the changes that occur in the stimulus-response curves as a function of photic stimulus duration. 4. The threshold for photic stimulation of the hamster circadian pacemaker is also quite high. The threshold irradiance (the minimum irradiance necessary to induce statistically significant responses) is approximately 10(11) photons cm-2 s-1 for optimal stimulus durations. This threshold is equivalent to a luminance at the cornea of 0.1 cd m-2. 5. We also measured the sensitivity of this visual pathway to the total number of photons in a stimulus. This system is maximally sensitive to photons in stimuli between 30 and 3600 s in duration. The maximum quantum efficiency of photic integration occurs in 300 s stimuli. 6. These results suggest that the visual pathways that convey light information to the mammalian circadian pacemaker possess several unique characteristics. These pathways are relatively insensitive to light irradiance and also integrate light inputs over relatively long durations. This visual system, therefore, possesses an optimal sensitivity of 'tuning' to total photons delivered in stimuli of several minutes in duration. Together these characteristics may make this visual system unresponsive to environmental 'noise' that would interfere with the entrainment of circadian rhythms to light-dark cycles. PMID:1895235
Visual and auditory perception in preschool children at risk for dyslexia.
Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina
2014-11-01
Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.
Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica
2013-01-01
Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407
Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo
2015-11-01
Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.
Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg
2016-01-01
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463
Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg
2016-01-01
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.
Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.
2016-01-01
In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315
Lykins, Amy D; Meana, Marta; Kambe, Gretchen
2006-10-01
As a first step in the investigation of the role of visual attention in the processing of erotic stimuli, eye-tracking methodology was employed to measure eye movements during erotic scene presentation. Because eye-tracking is a novel methodology in sexuality research, we attempted to determine whether the eye-tracker could detect differences (should they exist) in visual attention to erotic and non-erotic scenes. A total of 20 men and 20 women were presented with a series of erotic and non-erotic images and tracked their eye movements during image presentation. Comparisons between erotic and non-erotic image groups showed significant differences on two of three dependent measures of visual attention (number of fixations and total time) in both men and women. As hypothesized, there was a significant Stimulus x Scene Region interaction, indicating that participants visually attended to the body more in the erotic stimuli than in the non-erotic stimuli, as evidenced by a greater number of fixations and longer total time devoted to that region. These findings provide support for the application of eye-tracking methodology as a measure of visual attentional capture in sexuality research. Future applications of this methodology to expand our knowledge of the role of cognition in sexuality are suggested.
Split brain: divided perception but undivided consciousness.
Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara
2017-05-01
In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Zupan, Barbra; Sussman, Joan E.
2009-01-01
Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…
Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo
El-Boustani, Sami; Sur, Mriganka
2014-01-01
In the visual cortex, inhibitory neurons alter the computations performed by target cells via combination of two fundamental operations, division and subtraction. The origins of these operations have been variously ascribed to differences in neuron classes, synapse location or receptor conductances. Here, by utilizing specific visual stimuli and single optogenetic probe pulses, we show that the function of parvalbumin-expressing and somatostatin-expressing neurons in mice in vivo is governed by the overlap of response timing between these neurons and their targets. In particular, somatostatin-expressing neurons respond at longer latencies to small visual stimuli compared with their target neurons and provide subtractive inhibition. With large visual stimuli, however, they respond at short latencies coincident with their target cells and switch to provide divisive inhibition. These results indicate that inhibition mediated by these neurons is a dynamic property of cortical circuits rather than an immutable property of neuronal classes. PMID:25504329
Ambiguous Science and the Visual Representation of the Real
ERIC Educational Resources Information Center
Newbold, Curtis Robert
2012-01-01
The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in…
Koelkebeck, Katja; Kohl, Waldemar; Luettgenau, Julia; Triantafillou, Susanna; Ohrmann, Patricia; Satoh, Shinji; Minoshita, Seiko
2015-07-30
A novel emotion recognition task that employs photos of a Japanese mask representing a highly ambiguous stimulus was evaluated. As non-Asians perceive and/or label emotions differently from Asians, we aimed to identify patterns of task-performance in non-Asian healthy volunteers with a view to future patient studies. The Noh mask test was presented to 42 adult German participants. Reaction times and emotion attribution patterns were recorded. To control for emotion identification abilities, a standard emotion recognition task was used among others. Questionnaires assessed personality traits. Finally, results were compared to age- and gender-matched Japanese volunteers. Compared to other tasks, German participants displayed slowest reaction times on the Noh mask test, indicating higher demands of ambiguous emotion recognition. They assigned more positive emotions to the mask than Japanese volunteers, demonstrating culture-dependent emotion identification patterns. As alexithymic and anxious traits were associated with slower reaction times, personality dimensions impacted on performance, as well. We showed an advantage of ambiguous over conventional emotion recognition tasks. Moreover, we determined emotion identification patterns in Western individuals impacted by personality dimensions, suggesting performance differences in clinical samples. Due to its properties, the Noh mask test represents a promising tool in the differential diagnosis of psychiatric disorders, e.g. schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The amygdala and basal forebrain as a pathway for motivationally guided attention.
Peck, Christopher J; Salzman, C Daniel
2014-10-08
Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli. Copyright © 2014 the authors 0270-6474/14/3413757-11$15.00/0.
The dynamic-stimulus advantage of visual symmetry perception.
Niimi, Ryosuke; Watanabe, Katsumi; Yokosawa, Kazuhiko
2008-09-01
It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2-4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.
Quantum cognition based on an ambiguous representation derived from a rough set approximation.
Gunji, Yukio-Pegio; Sonoda, Kohei; Basios, Vasileios
2016-03-01
Over the last years, in a series papers by Arecchi and others, a model for the cognitive processes involved in decision making has been proposed and investigated. The key element of this model is the expression of apprehension and judgment, basic cognitive process of decision making, as an inverse Bayes inference classifying the information content of neuron spike trains. It has been shown that for successive plural stimuli this inference, equipped with basic non-algorithmic jumps, is affected by quantum-like characteristics. We show here that such a decision making process is related consistently with an ambiguous representation by an observer within a universe of discourse. In our work the ambiguous representation of an object or a stimuli is defined as a pair of maps from objects of a set to their representations, where these two maps are interrelated in a particular structure. The a priori and a posteriori hypotheses in Bayes inference are replaced by the upper and lower approximations, correspondingly, for the initial data sets that are derived with respect to each map. Upper and lower approximations herein are defined in the context of "rough set" analysis. The inverse Bayes inference is implemented by the lower approximations with respect to the one map and for the upper approximation with respect to the other map for a given data set. We show further that, due to the particular structural relation between the two maps, the logical structure of such combined approximations can only be expressed as an orthomodular lattice and therefore can be represented by a quantum rather than a Boolean logic. To our knowledge, this is the first investigation aiming to reveal the concrete logic structure of inverse Bayes inference in cognitive processes. Copyright © 2016. Published by Elsevier Ireland Ltd.
Age Differences in the Complexity of Emotion Perception.
Kim, Seungyoun; Geren, Jennifer L; Knight, Bob G
2015-01-01
The current study examined age differences in the number of emotion components used in the judgment of emotion from facial expressions. Fifty-eight younger and 58 older adults were compared on the complexity of perception of emotion from standardized facial expressions that were either clear or ambiguous exemplars of emotion. Using an intra-individual factor analytic approach, results showed that older adults used more emotion components in perceiving emotion in faces than younger adults. Both age groups reported greater emotional complexity for the clear and prototypical emotional stimuli. Age differences in emotional complexity were more pronounced for the ambiguous expressions compared with the clear expressions. These findings demonstrate that older adults showed increased elaboration of emotion, particularly when emotion cues were subtle and provide support for greater emotion differentiation in older adulthood.
Enhanced Associative Memory for Colour (but Not Shape or Location) in Synaesthesia
ERIC Educational Resources Information Center
Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie
2013-01-01
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location…
Challenging Cognitive Control by Mirrored Stimuli in Working Memory Matching
Wirth, Maria; Gaschler, Robert
2017-01-01
Cognitive conflict has often been investigated by placing automatic processing originating from learned associations in competition with instructed task demands. Here we explore whether mirror generalization as a congenital mechanism can be employed to create cognitive conflict. Past research suggests that the visual system automatically generates an invariant representation of visual objects and their mirrored counterparts (i.e., mirror generalization), and especially so for lateral reversals (e.g., a cup seen from the left side vs. right side). Prior work suggests that mirror generalization can be reduced or even overcome by learning (i.e., for those visual objects for which it is not appropriate, such as letters d and b). We, therefore, minimized prior practice on resolving conflicts involving mirror generalization by using kanji stimuli as non-verbal and unfamiliar material. In a 1-back task, participants had to check a stream of kanji stimuli for identical repetitions and avoid miss-categorizing mirror reversed stimuli as exact repetitions. Consistent with previous work, lateral reversals led to profound slowing of reaction times and lower accuracy in Experiment 1. Yet, different from previous reports suggesting that lateral reversals lead to stronger conflict, similar slowing for vertical and horizontal mirror transformations was observed in Experiment 2. Taken together, the results suggest that transformations of visual stimuli can be employed to challenge cognitive control in the 1-back task. PMID:28503160
Zhang, Yi; Chen, Lihan
2016-01-01
Recent studies of brain plasticity that pertain to time perception have shown that fast training of temporal discrimination in one modality, for example, the auditory modality, can improve performance of temporal discrimination in another modality, such as the visual modality. We here examined whether the perception of visual Ternus motion could be recalibrated through fast crossmodal statistical binding of temporal information and stimuli properties binding. We conducted two experiments, composed of three sessions each: pre-test, learning, and post-test. In both the pre-test and the post-test, participants classified the Ternus display as either “element motion” or “group motion.” For the training session in Experiment 1, we constructed two types of temporal structures, in which two consecutively presented sound beeps were dominantly (80%) flanked by one leading visual Ternus frame and by one lagging visual Ternus frame (VAAV) or dominantly inserted by two Ternus visual frames (AVVA). Participants were required to respond which interval (auditory vs. visual) was longer. In Experiment 2, we presented only a single auditory–visual pair but with similar temporal configurations as in Experiment 1, and asked participants to perform an audio–visual temporal order judgment. The results of these two experiments support that statistical binding of temporal information and stimuli properties can quickly and selectively recalibrate the sensitivity of perceiving visual motion, according to the protocols of the specific bindings. PMID:27065910
Visual processing in the central bee brain.
Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila
2009-08-12
Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.
Tan, Bingyao; Mason, Erik; MacLellan, Benjamin; Bizheva, Kostadinka K
2017-03-01
To correlate visually evoked functional and blood flow changes in the rat retina measured simultaneously with a combined optical coherence tomography and electroretinography system (OCT+ERG). Male Brown Norway (n = 6) rats were dark adapted and anesthetized with ketamine/xylazine. Visually evoked changes in the retinal blood flow (RBF) and functional response were measured simultaneously with an OCT+ERG system with 3-μm axial resolution in retinal tissue and 47-kHz image acquisition rate. Both single flash (10 and 200 ms) and flicker (10 Hz, 20% duty cycle, 1- and 2-second duration) stimuli were projected onto the retina with a custom visual stimulator, integrated into the OCT imaging probe. Total axial RBF was calculated from circular Doppler OCT scans by integrating over the arterial and venal flow. Temporary increase in the RBF was observed with the 10- and 200-ms continuous stimuli (∼1% and ∼4% maximum RBF change, respectively) and the 10-Hz flicker stimuli (∼8% for 1-second duration and ∼10% for 2-second duration). Doubling the flicker stimulus duration resulted in ∼25% increase in the RBF peak magnitude with no significant change in the peak latency. Single flash (200 ms) and flicker (10 Hz, 1 second) stimuli of the same illumination intensity and photon flux resulted in ∼2× larger peak RBF magnitude and ∼25% larger RBF peak latency for the flicker stimulus. Short, single flash and flicker stimuli evoked measureable RBF changes with larger RBF magnitude and peak latency observed for the flicker stimuli.
Brain response to visual sexual stimuli in homosexual pedophiles
Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke
2008-01-01
Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269
Brain response to visual sexual stimuli in homosexual pedophiles.
Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke
2008-01-01
The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.
ERIC Educational Resources Information Center
Troche, Stefan J.; Indermuhle, Rebekka; Rammsayer, Thomas H.
2012-01-01
Attentional blink (AB) refers to impaired identification of a target (T2) when this target follows a preceding target (T1) after about 150-450 ms within a stream of rapidly presented stimuli. Previous research on a possible relation between AB and mental ability (MA) turned out to be highly ambiguous. The present study investigated MA-related…
ERIC Educational Resources Information Center
Milner, Joel S.; Rabenhorst, Mandy M.; McCanne, Thomas R.; Crouch, Julie L.; Skowronski, John J.; Fleming, Matthew T.; Hiraoka, Regina; Risser, Heather J.
2011-01-01
Objective: The present investigation used event-related potentials (ERPs, N400 and N300) to determine the extent to which individuals at low and high risk for child physical abuse (CPA) have pre-existing positive and negative child-related schemata that can be automatically activated by ambiguous child stimuli. Methods: ERP data were obtained from…
Psychophysics of Complex Auditory and Speech Stimuli
1993-10-31
unexpected, and does not seem to l:a ý a dice-ct counterpart in the extensive research on pitch perception. Experiment 2 was designed to quantify our...project is to use of different procedures to provide converging evidence on the natuge of perceptual spaces for speech categories. Completed research ...prior speech research on classification procedures may have led to errors. Thus, the opposite (falling F2 & F3) transitions lead somewhat ambiguous
Fiori, Marina; Shuman, Vera
2017-01-01
Carryover effects of emotions that lead to biases in social judgments are commonly observed. We suggest that such effects may be influenced by the ability to engage or disengage attention from emotional stimuli. We assessed the ability to activate and inhibit attention to anger stimuli, experimentally induced anger in a demanding task, and measured social judgment toward an ambiguous target. Results show that higher activation and higher inhibition of anger-related information predicted more biased evaluations of the ambiguous target when individuals were experiencing anger, but not in an emotionally neutral condition. Interestingly, the effect of activation and inhibition in the anger condition emerged only when such variables were entered simultaneously in the regression model, indicating that they had an additive effect in predicting carryover effects of anger on social judgement. Results are consistent with a cooperative suppression effect (Conger, 1974) of activation and inhibition and may be explained by either an increased accessibility of anger-related cues leading to more biased social judgments, or by an instance in which being good at engaging in and disengaging attention from emotional cues might have depleted participants’ resources making carryover effects of anger more likely to occur. Ultimately, the finding highlight that individual differences in attentional processes are important moderators for carryover effects of emotions. PMID:28993743
Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko
2002-07-01
In order to evaluate developmental change of visual perception, the P300 event-related potentials (ERPs) of visual oddball task were recorded in 34 healthy volunteers ranging from 7 to 37 years of age. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. Visual P300 was dominant at parietal area in almost all subjects. There was a significant difference of P300 latency among the three tasks. Reaction time to the both kind of Kanji tasks were significantly shorter than those to the complicated figure task. P300 latencies to the familiar Kanji, unfamiliar Kanji and figure stimuli decreased until 25.8, 26.9 and 29.4 years of age, respectively, and regression analysis revealed that a positive quadratic function could be fitted to the data. Around 9 years of age, the P300 latency/age slope was largest in the unfamiliar Kanji task. These findings suggest that visual P300 development depends on both the complexity of the tasks and specificity of the stimuli, which might reflect the variety in visual information processing.
The sensory components of high-capacity iconic memory and visual working memory.
Bradley, Claire; Pearson, Joel
2012-01-01
EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.
Cross-Modal Matching of Audio-Visual German and French Fluent Speech in Infancy
Kubicek, Claudia; Hillairet de Boisferon, Anne; Dupierrix, Eve; Pascalis, Olivier; Lœvenbruck, Hélène; Gervain, Judit; Schwarzer, Gudrun
2014-01-01
The present study examined when and how the ability to cross-modally match audio-visual fluent speech develops in 4.5-, 6- and 12-month-old German-learning infants. In Experiment 1, 4.5- and 6-month-old infants’ audio-visual matching ability of native (German) and non-native (French) fluent speech was assessed by presenting auditory and visual speech information sequentially, that is, in the absence of temporal synchrony cues. The results showed that 4.5-month-old infants were capable of matching native as well as non-native audio and visual speech stimuli, whereas 6-month-olds perceived the audio-visual correspondence of native language stimuli only. This suggests that intersensory matching narrows for fluent speech between 4.5 and 6 months of age. In Experiment 2, auditory and visual speech information was presented simultaneously, therefore, providing temporal synchrony cues. Here, 6-month-olds were found to match native as well as non-native speech indicating facilitation of temporal synchrony cues on the intersensory perception of non-native fluent speech. Intriguingly, despite the fact that audio and visual stimuli cohered temporally, 12-month-olds matched the non-native language only. Results were discussed with regard to multisensory perceptual narrowing during the first year of life. PMID:24586651
Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine
2014-01-01
Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268
Visual search for emotional expressions: Effect of stimulus set on anger and happiness superiority.
Savage, Ruth A; Becker, Stefanie I; Lipp, Ottmar V
2016-01-01
Prior reports of preferential detection of emotional expressions in visual search have yielded inconsistent results, even for face stimuli that avoid obvious expression-related perceptual confounds. The current study investigated inconsistent reports of anger and happiness superiority effects using face stimuli drawn from the same database. Experiment 1 excluded procedural differences as a potential factor, replicating a happiness superiority effect in a procedure that previously yielded an anger superiority effect. Experiments 2a and 2b confirmed that image colour or poser gender did not account for prior inconsistent findings. Experiments 3a and 3b identified stimulus set as the critical variable, revealing happiness or anger superiority effects for two partially overlapping sets of face stimuli. The current results highlight the critical role of stimulus selection for the observation of happiness or anger superiority effects in visual search even for face stimuli that avoid obvious expression related perceptual confounds and are drawn from a single database.
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
Sequential sensory and decision processing in posterior parietal cortex
Ibos, Guilhem; Freedman, David J
2017-01-01
Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332
Death anxiety and visual oculomotor processing of arousing stimuli in a free view setting.
Wendelberg, Linda; Volden, Frode; Yildirim-Yayilgan, Sule
2017-04-01
The main goal of this study was to determine how death anxiety (DA) affects visual processing when confronted with arousing stimuli. A total of 26 males and females were primed with either DA or a neutral primer and were given a free view/free choice task where eye movement was measured using an eye tracker. The goal was to identify measurable/observable indicators of whether the subjects were under the influence of DA during the free view. We conducted an eye tracking study because this is an area where we believe it is possible to find observable indicators. Ultimately, we observed some changes in the visual behavior, such as a prolonged average latency, altered sensitivity to the repetition of stimuli, longer fixations, less time in saccadic activity, and fewer classifications related to focal and ambient processing, which appear to occur under the influence of DA when the subjects are confronted with arousing stimuli. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Myers, Jeffrey D.
2012-01-01
Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196
Meyer, Aaron M.; Federmeier, Kara D.
2008-01-01
The visual half-field procedure was used to examine hemispheric asymmetries in meaning selection. Event-related potentials were recorded as participants decided if a lateralized ambiguous or unambiguous prime was related in meaning to a centrally-presented target. Prime-target pairs were preceded by a related or unrelated centrally-presented context word. To separate the effects of meaning frequency and associative strength, unambiguous words were paired with concordant weakly-related context words and strongly-related targets (e.g., taste-sweet-candy) that were similar in associative strength to discordant subordinate-related context words and dominant-related targets (e.g., river-bank-deposit) in the ambiguous condition. Context words and targets were reversed in a second experiment. In an unrelated (neutral) context, N400 responses were more positive than baseline (facilitated) in all ambiguous conditions except when subordinate targets were presented on left visual field-right hemisphere (LVF-RH) trials. Thus, in the absence of biasing context information, the hemispheres seem to be differentially affected by meaning frequency, with the left maintaining multiple meanings and the right selecting the dominant meaning. In the presence of discordant context information, N400 facilitation was absent in both visual fields, indicating that the contextually-consistent meaning of the ambiguous word had been selected. In contrast, N400 facilitation occurred in all of the unambiguous conditions; however, the left hemisphere (LH) showed less facilitation for the weakly-related target when a strongly-related context was presented. These findings indicate that both hemispheres use context to guide meaning selection, but that the LH is more likely to focus activation on a single, contextually-relevant sense. PMID:17936727
Transient human auditory cortex activation during volitional attention shifting
Uhlig, Christian Harm; Gutschalk, Alexander
2017-01-01
While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110
Miniature Brain Decision Making in Complex Visual Environments
2008-07-18
release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The grantee investigated, using the honeybee ( Apis mellifera ) as a model...successful for understanding face processing in both human adults and infants. Individual honeybees ( Apis mellifera ) were trained with...for 30 bees (group 3) of the target stimuli. Bernard J, Stach S, Giurfa M (2007) Categorization of visual stimuli in the honeybee Apis mellifera
Deletion of the GluA1 AMPA Receptor Subunit Alters the Expression of Short-Term Memory
ERIC Educational Resources Information Center
Sanderson, David J.; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice.…
Steady-State Visual Evoked Potentials and Phase Synchronization in Migraine Patients
NASA Astrophysics Data System (ADS)
Angelini, L.; Tommaso, M. De; Guido, M.; Hu, K.; Ivanov, P. Ch.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; Stramaglia, S.
2004-07-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in the presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
ERIC Educational Resources Information Center
Patching, Geoffrey R.; Englund, Mats P.; Hellstrom, Ake
2012-01-01
Despite the importance of both response probability and response time for testing models of choice, there is a dearth of chronometric studies examining systematic asymmetries that occur over time- and space-orders in the method of paired comparisons. In this study, systematic asymmetries in discriminating the magnitude of paired visual stimuli are…
Fear Processing in Dental Phobia during Crossmodal Symptom Provocation: An fMRI Study
Maslowski, Nina Isabel; Wittchen, Hans-Ulrich; Lueken, Ulrike
2014-01-01
While previous studies successfully identified the core neural substrates of the animal subtype of specific phobia, only few and inconsistent research is available for dental phobia. These findings might partly relate to the fact that, typically, visual stimuli were employed. The current study aimed to investigate the influence of stimulus modality on neural fear processing in dental phobia. Thirteen dental phobics (DP) and thirteen healthy controls (HC) attended a block-design functional magnetic resonance imaging (fMRI) symptom provocation paradigm encompassing both visual and auditory stimuli. Drill sounds and matched neutral sinus tones served as auditory stimuli and dentist scenes and matched neutral videos as visual stimuli. Group comparisons showed increased activation in the insula, anterior cingulate cortex, orbitofrontal cortex, and thalamus in DP compared to HC during auditory but not visual stimulation. On the contrary, no differential autonomic reactions were observed in DP. Present results are largely comparable to brain areas identified in animal phobia, but also point towards a potential downregulation of autonomic outflow by neural fear circuits in this disorder. Findings enlarge our knowledge about neural correlates of dental phobia and may help to understand the neural underpinnings of the clinical and physiological characteristics of the disorder. PMID:24738049