Science.gov

Sample records for ameliorates cognition deficits

  1. The prolyl oligopeptidase inhibitor IPR19 ameliorates cognitive deficits in mouse models of schizophrenia.

    PubMed

    Prades, Roger; Munarriz-Cuezva, Eva; Urigüen, Leyre; Gil-Pisa, Itziar; Gómez, Lídia; Mendieta, Laura; Royo, Soledad; Giralt, Ernest; Tarragó, Teresa; Meana, J Javier

    2017-02-01

    Cognitive deficits are considered a key feature of schizophrenia, and they usually precede the onset of the illness and continue after psychotic symptoms appear. Current antipsychotic drugs have little or no effect on the cognitive deficits of this disorder. Prolyl oligopeptidase (POP) is an 81-kDa monomeric serine protease that is expressed in brain and other tissues. POP inhibitors have shown neuroprotective, anti-amnesic and cognition-enhancing properties. Here we studied the potential of IPR19, a new POP inhibitor, for the treatment of the cognitive symptoms related to schizophrenia. The efficacy of the inhibitor was evaluated in mouse models based on subchronic phencyclidine and acute dizocilpine administration, and in adult offspring from mothers with immune reaction induced by polyinosinic:polycytidylic acid administration during pregnancy. Acute IPR19 administration (5mg/kg, i.p.) reversed the cognitive performance deficits of the three mouse models in the novel object recognition test, T-maze, and eight-arm radial maze. The compound also ameliorates deficits of the prepulse inhibition response. The in vitro inhibitory efficacy and selectivity, brain penetration and exposure time after injection of IPR19 were also addressed. Our results indicate that the inhibition of POP using IPR19 may offer a promising strategy to develop drugs to ameliorate the cognitive deficits of schizophrenia.

  2. A Mitochondrion-Targeted Antioxidant Ameliorates Isoflurane-Induced Cognitive Deficits in Aging Mice.

    PubMed

    Wu, Jing; Li, Huihui; Sun, Xiaoru; Zhang, Hui; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu

    2015-01-01

    Isoflurane possesses neurotoxicity and can induce cognitive deficits, particularly in aging mammals. Mitochondrial reactive oxygen species (mtROS) have been linked to the early pathogenesis of this disorder. However, the role of mtROS remains to be evaluated due to a lack of targeted method to treat mtROS. Here, we determined in aging mice the effects of the mitochondrion-targeted antioxidant SS-31, on cognitive deficits induced by isoflurane, a general inhalation anesthetic. We further investigated the possible mechanisms underlying the effects of SS-31 on hippocampal neuro-inflammation and apoptosis. The results showed that isoflurane induced hippocampus-dependent memory deficit, which was associated with mitochondrial dysfunction including reduced ATP contents, increased ROS levels, and mitochondrial swelling. Treatment with SS-31 significantly ameliorated isoflurane-induced cognitive deficits through the improvement of mitochondrial integrity and function. Mechanistically, SS-31 treatment suppressed pro-inflammatory responses by decreasing the levels of NF-κB, NLRP3, caspase 1, IL-1β, and TNF-α; and inhibited the apoptotic pathway by decreasing the Bax/Bcl-2 ratio, reducing the release of cytochrome C, and blocking the cleavage of caspase 3. Our results indicate that isoflurane-induced cognitive deficits may be attenuated by mitochondrion-targeted antioxidants, such as SS-31. Therefore, SS-31 may have therapeutic potentials in preventing injuries from oxidative stresses that contribute to anesthetic-induced neurotoxicity.

  3. Modafinil ameliorates cognitive deficits induced by maternal separation and sleep deprivation.

    PubMed

    Garcia, Vanessa Athaíde; Hirotsu, Camila; Matos, Gabriela; Alvarenga, Tathiana; Pires, Gabriel Natan; Kapczinski, Flávio; Schröder, Nadja; Tufik, Sergio; Andersen, Monica Levy

    2013-09-15

    Animals exposed to an early adverse event may be more susceptible to a second source of stress later in life, and these stressors may have additive deleterious effects. Sleep deprivation is known to be a stressor, affecting multiple body functions such as the cognition. Modafinil enhances working memory and attention in healthy non-sleep deprived subjects and in animal models of sleep deprivation. The first aim of the present study was to investigate the effects of maternal separation (MS) combined with paradoxical sleep deprivation (PSD) in adulthood on recognition memory in rats. Second, we aimed to evaluate whether the administration of modafinil would be able to ameliorate memory deficits induced by MS and PSD. Wistar rat pups were initially distributed into MS and handling (H) groups, with their litters standardized in 4 females and 4 males. In adulthood, the male rats were submitted to PSD or control condition, being redistributed afterwards in modafinil- or vehicle-treatment immediately after the training session of object recognition task. PSD did not potentiate the cognitive deficit due to MS. However, modafinil was able to recover memory impairments associated to PSD and also to MS in the neonatal period. This study demonstrates for the first time that modafinil ameliorates cognitive deficits associated to MS and to PSD in adulthood, independent from MS in the neonatal period.

  4. Smart Soup, a Traditional Chinese Medicine Formula, Ameliorates Amyloid Pathology and Related Cognitive Deficits

    PubMed Central

    Li, Xiaohang; Cui, Jin; Ding, Jianqing; Wang, Ying; Zeng, Xianglu; Ling, Yun; Shen, Xiaoheng; Chen, Shengdi; Huang, Chenggang; Pei, Gang

    2014-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe disease-modifying treatment and symptomatic intervention alternatives against AD. Smart Soup (SS), a Chinese medicine formula composed of Rhizoma Acori Tatarinowii (AT), Poria cum Radix Pini (PRP) and Radix Polygalae (RP), is a typical prescription against memory deficits. Here, we assessed the efficacy of SS against AD. Oral administration of SS ameliorated the cognitive impairment of AD transgenic mice, with reduced Aβ levels, retarded Aβ amyloidosis and reduced Aβ-induced gliosis and neuronal loss in the brains of AD mice. Consistently, SS treatment reduced amyloid-related locomotor dysfunctions and premature death of AD transgenic Drosophila. Mechanistic studies showed that RP reduced Aβ generation, whereas AT and PRP exerted neuroprotective effects against Aβ. Taken together, our study indicates that SS could be effective against AD, providing a practical therapeutic strategy against the disease. PMID:25386946

  5. T cell immunity to glatiramer acetate ameliorates cognitive deficits induced by chronic cerebral hypoperfusion by modulating the microenvironment.

    PubMed

    Chen, Li; Yao, Yang; Wei, Changjuan; Sun, Yanan; Ma, Xiaofeng; Zhang, Rongxin; Xu, Xiaolin; Hao, Junwei

    2015-09-22

    Vascular dementia (VaD) is a progressive and highly prevalent disorder. However, in a very large majority of cases, a milieu of cellular and molecular events common for multiple neurodegenerative diseases is involved. Our work focused on whether the immunomodulating effect of glatiramer acetate (GA) could restore normalcy to the microenvironment and ameliorate cognitive decline induced by chronic cerebral hypoperfusion. We assessed cognitive function by rats' performance in a Morris water maze (MWM), electrophysiological recordings and by pathologic changes. The results suggest that GA reduced cognitive deficits by reestablishing an optimal microenvironment such as increasing expression of the brain-derived neurotrophic factor (BDNF) and modulating the Th1/Th2 cytokine balance in the hippocampus. When microenvironmental homeostasis is restored, cholinergic activity becomes involved in ameliorating cellular damage. Since vaccination with GA can boost "protective autoimmunity" in this way, a similar strategy may have therapeutic potential for alleviating VaD disease.

  6. ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice.

    PubMed

    Yildirim, Emre; Connor, David A; Gould, Thomas J

    2015-04-01

    Nicotine withdrawal produces cognitive deficits that can predict relapse. Amelioration of these cognitive deficits emerges as a target in current smoking cessation therapies. In rodents, withdrawal from chronic nicotine disrupts contextual fear conditioning (CFC), whereas acute nicotine enhances this hippocampus-specific learning and memory. These modifications are mediated by β2-subunit-containing (β2*) nicotinic acetylcholine receptors in the hippocampus. We aimed to test ABT-089, a partial agonist of α4β2*, and ABT-107, an α7 nicotinic acetylcholine receptor agonist, for amelioration of cognitive deficits induced by withdrawal from chronic nicotine in mice. Mice underwent chronic nicotine administration (12.6 mg/kg/day or saline for 12 days), followed by 24 h of withdrawal. At the end of withdrawal, mice received 0.3 or 0.6 mg/kg ABT-089 or 0.3 mg/kg ABT-107 (doses were determined through initial dose-response experiments and prior studies) and were trained and tested for CFC. Nicotine withdrawal produced deficits in CFC that were reversed by acute ABT-089, but not ABT-107. Cued conditioning was not affected. Taken together, our results suggest that modulation of hippocampal learning and memory using ABT-089 may be an effective component of novel therapeutic strategies for nicotine addiction.

  7. ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice

    PubMed Central

    Yildirim, Emre; Connor, David A.; Gould, Thomas J.

    2015-01-01

    Nicotine withdrawal produces cognitive deficits that can predict relapse. Amelioration of these cognitive deficits emerges as a target in current smoking cessation therapies. In rodents, withdrawal from chronic nicotine disrupts contextual fear conditioning (CFC), whereas acute nicotine enhances this hippocampus-specific learning and memory. These modifications are mediated by β2-subunit-containing (β2*) nicotinic acetylcholine receptors in the hippocampus. We aimed to test ABT-089, a partial agonist of α4β2*, and ABT-107, an α7 nicotinic acetylcholine receptor agonist, for amelioration of cognitive deficits induced by withdrawal from chronic nicotine in mice. Mice underwent chronic nicotine administration (12.6 mg/kg/day or saline for 12 days), followed by 24 h of withdrawal. At the end of withdrawal, mice received 0.3 or 0.6 mg/kg ABT-089 or 0.3 mg/kg ABT-107 (doses were determined through initial dose–response experiments and prior studies) and were trained and tested for CFC. Nicotine withdrawal produced deficits in CFC that were reversed by acute ABT-089, but not ABT-107. Cued conditioning was not affected. Taken together, our results suggest that modulation of hippocampal learning and memory using ABT-089 may be an effective component of novel therapeutic strategies for nicotine addiction. PMID:25426579

  8. Voluntary exercise ameliorates cognitive deficits in morphine dependent rats: the role of hippocampal brain-derived neurotrophic factor.

    PubMed

    Miladi-Gorji, Hossein; Rashidy-Pour, Ali; Fathollahi, Yaghoub; Akhavan, Maziar M; Semnanian, Saeed; Safari, Manouchehr

    2011-10-01

    Chronic exposure to opiates impairs spatial learning and memory. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we investigated whether voluntary exercise would ameliorate the cognitive deficits that are induced by morphine dependence. If an effect of exercise was observed, we aimed to investigate the possible role of hippocampal brain-derived neurotrophic factor (BDNF) in the exercise-induced enhancement of learning and memory in morphine-dependent rats. The rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10 days of voluntary exercise. Following these injections, a water maze task was performed twice a day for five consecutive days, followed by a probe trial 2 days later. A specific BDNF inhibitor (TrkB-IgG chimera) was used to block the hippocampal BDNF action during the 10 days of voluntary exercise. We found that voluntary exercise blocked the ability of chronic morphine to impair spatial memory retention. A blockade of the BDNF action blunted the exercise-induced improvement of spatial memory in the dependent rats. Moreover, the voluntary exercise diminished the severity of the rats' dependency on morphine. This study demonstrates that voluntary exercise ameliorates, via a TrkB-mediated mechanism, the cognitive deficits that are induced by chronic morphine. Thus, voluntary exercise might be a potential method to ameliorate some of the deleterious behavioral consequences of the abuse of morphine and other opiates.

  9. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    PubMed Central

    Waterhouse, Uta; Roper, Vic E.; Brennan, Katharine A.

    2016-01-01

    ABSTRACT Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin) at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg) at one of three neurodevelopmental time periods [gestation days (GD) 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND) 60] and included: prepulse inhibition (PPI), latent inhibition (LI) and delayed non-matching to sample (DNMTS). Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously) were administered, and animals were re-tested in the same tasks (PND 110). Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11) resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI) and selective (LI) improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI) and induced a global enhancement of sensorimotor gating (PPI). PMID:27483346

  10. mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits.

    PubMed

    Yang, Fengying; Chu, Xiaolei; Yin, Miaomiao; Liu, Xiaolei; Yuan, Hairui; Niu, Yanmei; Fu, Li

    2014-05-01

    Defect of autophagy is common to many neurodegenerative disorders because it serves as a major degradation pathway for the clearance of various aggregate-prone proteins. Mammalian target of rapamycin (mTOR) signaling, which is recognized as the most important negative regulator of autophagy, is also involved in neurodegenerative diseases. However, the role of mTOR and its dependent autophagy in normal brain during aging remains unknown. Furthermore, caloric restriction (CR) is frequently used as a tool to study mechanisms behind aging and age-associated diseases because CR can prevent age-related diseases and prolong lifespan in several model organisms. Inhibiting mTOR and promoting autophagy activity play roles in aging delayed by CR. However, whether CR can ameliorate age-related cognition deficits by inhibiting mTOR and activate autophagy in hippocampus needs to be further investigated. Here we showed a decline of autophagic degradation in mice hippocampus in correlation with age-dependent cognitive dysfunction, whereas the activity of mTOR and its upstream brain-derived neurotrophic factor (BDNF)/phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling was decreased with aging. In addition, facilitating the mTOR pathway successfully declines and sustains autophagic degradation with aging in hippocampus by CR treatment and is involved in CR by ameliorating age-related cognitive deficits. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Small molecule LX2343 ameliorates cognitive deficits in AD model mice by targeting both amyloid β production and clearance

    PubMed Central

    Guo, Xiao-dan; Sun, Guang-long; Zhou, Ting-ting; Xu, Xin; Zhu, Zhi-yuan; Rukachaisirikul, Vatcharin; Hu, Li-hong; Shen, Xu

    2016-01-01

    Aim: Streptozotocin (STZ) is widely used to induce oxidative damage and to impair glucose metabolism, apoptosis, and tau/Aβ pathology, eventually leading to cognitive deficits in both in vitro and in vivo models of Alzheimer's disease (AD). In this study, we constructed a cell-based platform using STZ to induce stress conditions mimicking the complicated pathologies of AD in vitro, and evaluated the anti-amyloid effects of a small molecule, N-(1,3-benzodioxol-5-yl)-2-[5-chloro-2-methoxy(phenylsulfonyl)anilino]acetamide (LX2343) in the amelioration of cognitive deficits in AD model mice. Methods: Cell-based assays for screening anti-amyloid compounds were established by assessing Aβ accumulation in HEK293-APPsw and CHO-APP cells, and Aβ clearance in primary astrocytes and SH-SY5Y cells after the cells were treated with STZ in the presence of the test compounds. Autophagic flux was observed using confocal laser scanning microscopy. APP/PS1 transgenic mice were administered LX2343 (10 mg·kg−1·d−1, ip) for 100 d. After LX2343 administration, cognitive ability of the mice was evaluated using Morris water maze test, and senile plaques in the brains were detected using Thioflavine S staining. ELISA assay was used to evaluate Aβ and sAPPβ levels, while Western blot analysis was used to measure the signaling proteins in both cell and animal brains. Results: LX2343 (5–20 μmol/L) dose-dependently decreased Aβ accumulation in HEK293-APPsw and CHO-APP cells, and promoted Aβ clearance in SH-SY5Y cells and primary astrocytes. The anti-amyloid effects of LX2343 were attributed to suppressing JNK-mediated APPThr668 phosphorylation, thus inhibiting APP cleavage on one hand, and inhibiting BACE1 enzymatic activity with an IC50 value of 11.43±0.36 μmol/L, on the other hand. Furthermore, LX2343 acted as a non-ATP competitive PI3K inhibitor to negatively regulate AKT/mTOR signaling, thus promoting autophagy, and increasing Aβ clearance. Administration of LX2343 in APP

  12. Chotosan, a Kampo formula, ameliorates hippocampal LTD and cognitive deficits in juvenile-onset diabetes rats.

    PubMed

    Sasaki-Hamada, Sachie; Tamaki, Keita; Otsuka, Hayuma; Ueno, Tatsuto; Sacai, Hiroaki; Niu, Yimin; Matsumoto, Kinzo; Oka, Junichiro

    2014-01-01

    Childhood-onset type 1 diabetes is associated with modest impairments in cognition and has an elevated risk of cognitive decline. Our previous study showed that working memory and hippocampal long-term depression (LTD) were impaired in juvenile-onset diabetes mellitus (JDM) rats. In this study, we investigated the effect of chotosan (CTS), a traditional herbal formula called a Kampo medicine, which has been clinically demonstrated to be effective for the treatment of vascular dementia, on JDM rats. The repeated treatment with CTS (1 g/kg per day) for 3 - 7 days restored spatial working memory and hippocampal LTD in JDM rats. The expression level of NR2B glutamate receptor subunits, but not other glutamate receptor subunits was enhanced in the hippocampus of JDM rats, and repeated treatment with CTS reversed these changes. These results suggest that CTS improves diabetes-induced cognitive deficits by modulating NMDA-receptor subunit expression.

  13. Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle-aged Alzheimer model mice.

    PubMed

    Zhao, Chunhui; Zhang, Haijing; Li, Hang; Lv, Cui; Liu, Xiaoli; Li, Zhi; Xin, Wenfeng; Wang, Yongyan; Zhang, Wensheng

    2017-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory deficits and cognitive decline. Amyloid-β (Aβ) deposition and cholinergic defect are widely thought to be the underlying mechanism of learning and memory impairment. Geniposide, which is the main active component of the traditional Chinese herbal Gardenia jasminoides Ellis, elicits neuroprotective effects by alleviating inflammation responses and oxidative damages. In this study, we investigated the protective effect of geniposide on levels of cholinergic markers, RAGE, RAGE-dependent signalling pathways and amyloid accumulation in the APPswe/PS1dE9 AD model mouse. Geniposide suppressed MAPK signaling over-activation mediated by Aβ-RAGE interaction, resulting in reduced Aβ accumulation and amelioration of cholinergic deficits in the cerebral hippocampus. Furthermore, geniposide inhibited the toxic effect of oligomeric Aβ1-42 induced cholinergic deficit by increasing ChAT levels and activity but decreasing AChE activity in cultured primary hippocampal neurons. These results indicated that geniposide enhanced cholinergic neurotransmission, which likely contributes to its memory enhancing effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    PubMed

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases.

  15. Glucose-Dependent Insulinotropic Polypeptide Ameliorates Mild Traumatic Brain Injury-Induced Cognitive and Sensorimotor Deficits and Neuroinflammation in Rats

    PubMed Central

    Yu, Yu-Wen; Hsieh, Tsung-Hsun; Chen, Kai-Yun; Wu, John Chung-Che; Hoffer, Barry J.; Greig, Nigel H.; Li, Yazhou; Lai, Jing-Huei; Chang, Cheng-Fu; Lin, Jia-Wei; Chen, Yu-Hsin

    2016-01-01

    Abstract Mild traumatic brain injury (mTBI) is a major public health issue, representing 75–90% of all cases of TBI. In clinical settings, mTBI, which is defined as a Glascow Coma Scale (GCS) score of 13–15, can lead to various physical, cognitive, emotional, and psychological-related symptoms. To date, there are no pharmaceutical-based therapies to manage the development of the pathological deficits associated with mTBI. In this study, the neurotrophic and neuroprotective properties of glucose-dependent insulinotropic polypeptide (GIP), an incretin similar to glucagon-like peptide-1 (GLP-1), was investigated after its steady-state subcutaneous administration, focusing on behavior after mTBI in an in vivo animal model. The mTBI rat model was generated by a mild controlled cortical impact (mCCI) and used to evaluate the therapeutic potential of GIP. We used the Morris water maze and novel object recognition tests, which are tasks for spatial and recognition memory, respectively, to identify the putative therapeutic effects of GIP on cognitive function. Further, beam walking and the adhesive removal tests were used to evaluate locomotor activity and somatosensory functions in rats with and without GIP administration after mCCI lesion. Lastly, we used immunohistochemical (IHC) staining and Western blot analyses to evaluate the inflammatory markers, glial fibrillary acidic protein (GFAP), amyloid-β precursor protein (APP), and bone marrow tyrosine kinase gene in chromosome X (BMX) in animals with mTBI. GIP was well tolerated and ameliorated mTBI-induced memory impairments, poor balance, and sensorimotor deficits after initiation in the post-injury period. In addition, GIP mitigated mTBI-induced neuroinflammatory changes on GFAP, APP, and BMX protein levels. These findings suggest GIP has significant benefits in managing mTBI-related symptoms and represents a novel strategy for mTBI treatment. PMID:26972789

  16. Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD mice.

    PubMed

    Hu, Yu; Lai, Jinsheng; Wan, Baoquan; Liu, Xingfa; Zhang, Yemao; Zhang, Jiangong; Sun, Dongsheng; Ruan, Guoran; Liu, Enjie; Liu, Gong-Ping; Chen, Chen; Wang, Dao Wen

    2016-03-01

    Although numerous studies have reported the influence of extremely low frequency magnetic field (ELF-MF) exposure on human health, its effects on cognitive deficits in Alzheimer's disease (AD) have remained under debate. Moreover, the influence of ELF-MF on hyperphosphorylated tau, which is one of the most common pathological hallmarks of AD, has not been reported to date. Therefore, transgenic mice (3xTg) were used in the present study. 3xTg mice, which express an APP/PS1 mutation combined with a tau (P301L) mutation and that develop cognitive deficits at 6 months of age, were subjected to ELF-MF (50Hz, 500μT) exposure or sham exposure daily for 3 months. We discovered that ELF-MF exposure ameliorated cognitive deficits and increased synaptic proteins in 3xTg mice. The protective effects of ELF-MF exposure may have also been caused by the inhibition of apoptosis and/or decreased oxidative stress levels that were observed in the hippocampus tissues of treated mice. Furthermore, tau hyperphosphorylation was decreased in vivo because of ELF-MF exposure, and this decrease was induced by the inhibition of GSK3β and CDK5 activities and activation of PP2Ac. We are the first to report that exposure to ELF-MF can attenuate tau phosphorylation. These findings suggest that ELF-MF exposure could act as a valid therapeutic strategy for ameliorating cognitive deficits and attenuating tau hyperphosphorylation in AD.

  17. Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors.

    PubMed

    Kunitachi, Shinsui; Fujita, Yuko; Ishima, Tamaki; Kohno, Mami; Horio, Mao; Tanibuchi, Yuko; Shirayama, Yukihiko; Iyo, Masaomi; Hashimoto, Kenji

    2009-07-07

    This study was undertaken to examine the effects of two acetylcholinesterase inhibitors (donepezil and physostigmine) on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). In the novel object recognition test, PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were significantly improved by subsequent subchronic (14 days) administration of donepezil (1.0 mg/kg/day), but not donepezil (0.1 mg/kg/day). Furthermore, the effect of donepezil (1.0 mg/kg/day) on PCP-induced cognitive deficits was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist NE-100 (1.0 mg/kg/day), suggesting the role of sigma-1 receptors in the active mechanisms of donepezil. In contrast, PCP-induced cognitive deficits were not improved by subsequent subchronic (14 days) administration of physostigmine (0.25 mg/kg/day). Moreover, repeated administration of PCP significantly caused the reduction of sigma-1 receptors in the hippocampus. The present study suggests that agonistic activity of donepezil at sigma-1 receptors plays a role in the active mechanisms of donepezil on PCP-induced cognitive deficits in mice. Therefore, it is likely that donepezil would be potential therapeutic drugs for the treatment of the cognitive deficits in schizophrenia.

  18. Salidroside ameliorates arthritis-induced brain cognition deficits by regulating Rho/ROCK/NF-κB pathway.

    PubMed

    Zhu, Lingpeng; Chen, Tong; Chang, Xiayun; Zhou, Rui; Luo, Fen; Liu, Jingyan; Zhang, Kai; Wang, Yue; Yang, Ying; Long, Hongyan; Liu, Yu; Yan, Tianhua; Ma, Chunhua

    2016-04-01

    The prevalence of cognitive impairment in rheumatoid arthritis (RA) patients was increasingly serious nowadays. The purpose of the current study was to explore whether salidroside (Sal) could alleviate arthritis-induced cognition deficits and examine the relationship between the impairment and Rho/ROCK/NF-κB pathway. Collagen-induced arthritis (CIA) was established by the injection of chicken type II collagen (CII), complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA). Arthritic lesions of CIA rats were assessed by arthritis index score, swelling of paws and histological analysis. Cognitive deficits symptoms of CIA rats were monitored through Morris water maze test. The contents of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) in hippocampus and serum were significantly reduced with salidroside (20 mg/kg, 40 mg/kg) treatment compared with those in the CIA group. In parallel, we demonstrated that the expressions of RhoA, ROCK1, ROCK2, p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ were enhanced accompanying the investigation arthritis-induced cognition deficits, which were remarkably down-regulated by salidroside and confirmed by the results obtained from western blot and immunohistochemistry. LC-MS/MS results ascertained that Sal could enter into the blood and brain tissues to exhibit the protective effect on arthritis-induced cognitive dysfunction. Therefore, it was assumed that Sal might be a potential therapeutic candidate to treat arthritis-induced brain cognition deficits through the regulation of Rho/ROCK/NF-κB signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer's type (SDAT).

    PubMed

    Ishrat, Tauheed; Hoda, Md Nasrul; Khan, M Badruzzaman; Yousuf, Seema; Ahmad, Muzamil; Khan, Mohd Moshahid; Ahmad, Ajmal; Islam, Fakhrul

    2009-09-01

    Recent evidence indicates that curcumin (CUR), the principal curcuminoid of turmeric, exhibits antioxidant potential and protects the brain against various oxidative stressors. The aim of the present study was to examine the modulating impacts of CUR against cognitive deficits and oxidative damage in intracerebroventricular-streptozotocin (ICV-STZ) infused rats. Rats were injected bilaterally with ICV-STZ (3 mg/kg), while sham rats received the same volume of vehicle and then supplemented with CUR (80 mg/kg) for three weeks. After two weeks of ICV-STZ infusion, rats were tested for cognitive performance using passive avoidance and water maze tasks and then sacrificed for biochemical and histopathological assays. ICV-STZ rats showed significant cognitive deficits, which were significantly improved by CUR supplementation. CUR supplementation significantly augmented increased 4-hydroxynonenal (4-HNE) and malonaldehyde (MDA), thiobarbituric reactive substances (TBARS), hydrogen peroxide (H2O2), protein carbonyl (PC) and oxidized glutathione (GSSG); decreased levels of reduced glutathione (GSH) and its dependent enzymes (Glutathione peroxidase [GPx] and glutathione reductase [GR]) in the hippocampus and cerebral cortex; and increased choline acetyltransferase (ChAT) activity in the hippocampus of ICV-STZ rats. The study suggests that CUR is effective in preventing cognitive deficits, and might be beneficial for the treatment of sporadic dementia of Alzheimer's type (SDAT).

  20. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    PubMed

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  1. Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists.

    PubMed

    Kleschevnikov, Alexander M; Belichenko, Pavel V; Faizi, Mehrdad; Jacobs, Lucia F; Htun, Khin; Shamloo, Mehrdad; Mobley, William C

    2012-07-04

    Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABA(B) receptors is significantly increased in the dentate gyrus of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABA(B) receptors in cognitive deficits in DS by defining the effect of selective GABA(B) receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABA(B) receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition, and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor, equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABA(B) receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABA(B) receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABA(B) receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS.

  2. Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists

    PubMed Central

    Kleschevnikov, A.M.; Belichenko, P.V.; Faizi, M.; Jacobs, L.F.; Htun, K.; Shamloo, M.; Mobley, W.C.

    2012-01-01

    Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABAB receptors is significantly increased in the dentate gyrus (DG) of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABAB receptors in cognitive deficits in DS by defining the effect of selective GABAB receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABAB receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor (BDNF), equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABAB receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABAB receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABAB receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS. PMID:22764230

  3. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice

    PubMed Central

    Wang, Zigao; Xiong, Lu; Wan, Wenbin; Duan, Lijie; Bai, Xiaojing; Zu, Hengbing

    2017-01-01

    Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis. PMID:28228716

  4. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer's Disease.

    PubMed

    Deng, Yulei; Wei, Jing; Cheng, Jia; Zhong, Ping; Xiong, Zhe; Liu, Aiyi; Lin, Lin; Chen, Shengdi; Yan, Zhen

    2016-06-28

    The loss of synaptic structure and function has been linked to the cognitive impairment of Alzheimer's disease (AD). Dysregulation of the actin cytoskeleton, which plays a key role in regulating the integrity of synapses and the transport of synaptic proteins, has been suggested to contribute to the pathology of AD. In this study, we found that glutamate receptor surface expression and synaptic function in frontal cortical neurons were significant diminished in a familial AD (FAD) model, which was correlated with the reduction of phosphorylated cofilin, a key protein regulating the dynamics of actin filaments. Injecting a cofilin dephosphorylation inhibitory peptide to FAD mice led to the partial rescue of the surface expression of AMPA and NMDA receptor subunits, as well as the partial restoration of AMPAR- and NMDAR-mediated synaptic currents. Moreover, the impaired working memory and novel object recognition memory in FAD mice were partially ameliorated by injections of the cofilin dephosphorylation inhibitory peptide. These results suggest that targeting the cofilin-actin signaling holds promise to mitigate the physiological and behavioral abnormality in AD.

  5. Bis(9)-(-)-nor-meptazinol as a novel dual-binding AChEI potently ameliorates scopolamine-induced cognitive deficits in mice.

    PubMed

    Liu, Ting; Xia, Zheng; Zhang, Wei-Wei; Xu, Jian-rong; Ge, Xin-Xing; Li, Juan; Cui, Yongyao; Qiu, Zhui-Bai; Xu, Jun; Xie, Qiong; Wang, Hao; Chen, Hong-Zhuan

    2013-03-01

    Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder which is characterized by the progressive deterioration of cognition and the emergence of behavioral and psychological symptoms in aging patients. Given that the clinical effectiveness of acetylcholinesterase inhibitors (AChEIs) has still been questioned due to dubious disease-modifying effects, the multi-target directed ligand (MTDL) design has become an emerging strategy for developing new drugs for AD treatment. Bis(9)-(-)-nor-meptazinol (Bis-Mep) was firstly reported by us as a novel MTDL for both potent cholinesterase and amyloid-β aggregation inhibition. In this study, we further explored its AChE inhibition kinetic features and cognitive amelioration. Bis-Mep was found to be a mixed-type inhibitor on electric eel AChE by enzyme kinetic study. Molecular docking revealed that two "water bridges" located at the two wings of Bis-Mep stabilized its interaction with both catalytic and peripheral anionic sites of AChE. Furthermore, subcutaneous administration of Bis-Mep (10, 100 or 1000 ng/kg) significantly reversed the scopolamine-induced memory deficits in a typical bell-shaped dose-response manner. The maximal cognitive amelioration of Bis-Mep was achieved at 100 ng/kg, comparable with the effect of a reference drug Huperzine A at 1 mg/kg and also the relevant AChE inhibition in brain. These findings suggested that Bis-Mep might be a promising dual-binding AChE inhibitor for potential AD therapeutics.

  6. Long-term Ameliorative Effects of the Antidepressant Fluoxetine Exposure on Cognitive Deficits in 3 × TgAD Mice.

    PubMed

    Jin, Li; Gao, Li-Feng; Sun, Dong-Sheng; Wu, Hao; Wang, Qun; Ke, Dan; Lei, Hao; Wang, Jian-Zhi; Liu, Gong-Ping

    2016-06-21

    Fluoxetine, a selective serotonin reuptake inhibitor, is neuroprotective; therefore, it has been applied to treat some neurodegenerative disorders. For instance, chronic fluoxetine exposure has short-term effects on Alzheimer's disease (AD). However, the long-term ameliorative effects of fluoxetine exposure on AD have not been reported. In the present study, 6-month-old 3 × TgAD mice were treated with fluoxetine for 15 days, and then the influence of fluoxetine was detected at 20 days after the drug withdrawal. We found that chronic fluoxetine treatment ameliorated cognitive deficits of 3 × TgAD mice and increased the volume of the hippocampal CA1 and dentate gyrus (DG) with increased neuron number and dendritic spine density. Meanwhile, fluoxetine exposure also stimulated the long-term potentiation (LTP) in hippocampal DG. The synaptic-related protein expression increased via activation of the cyclic AMP response element binding (CREB) protein/brain-derived neurotrophic factor (BDNF) signaling pathway induced by fluoxetine exposure. Lastly, we found that fluoxetine treatment decreased beta-amyloid (Aβ) levels. These results further certified that fluoxetine may be a potent effective drug for AD.

  7. [Alcohol induced cognitive deficits].

    PubMed

    Weiss, Elisabeth; Singewald, Evelin M; Ruepp, Beatrix; Marksteiner, Josef

    2014-01-01

    Previous studies could show a complex relationship between alcohol consumption and cognition but also with processes of ageing both social and biological. Acute effects of alcohol during intoxication include clinical signs such as excitation and reduced inhibition, slurred speech, and increased reaction time but also cognitive dysfunction, especially deficits in memory functions. However, these cognitive deficits during alcohol intoxication are reversible while patients with alcohol addiction and chronic alcohol intake show severe impairments of cognitive functions especially deficits in executive functions. Frontal executive impairments in these patients include deficits in problem solving, abstraction, planning, organizing, and working memory.Additionally, gender specific deficits are relevant for the course of the disease and its concomitant health problems with female alcoholics showing a higher vulnerability for cognitive dysfunction and brain atrophy at earlier stages of alcoholism history.

  8. Amelioration of penetrating ballistic-like brain injury induced cognitive deficits after neuronal differentiation of transplanted human neural stem cells.

    PubMed

    Spurlock, Markus S; Ahmed, Aminul Islam; Rivera, Karla N; Yokobori, Shoji; Lee, Stephanie W; Sam, Pingdewinde N; Shear, Deborah A; Hefferan, Michael P; Hazel, Thomas G; Johe, Karl K; Gajavelli, Shyam; Tortella, Frank C; Bullock, Ross

    2017-03-01

    Penetrating traumatic brain injury (PTBI) is one of the major cause of death and disability worldwide. Previous studies in penetrating ballistic-like brain injury (PBBI), a PTBI rat model revealed widespread peri-lesional neurodegeneration, similar to that seen in humans following gunshot wound to head, which is unmitigated by any available therapies to date. Therefore, we evaluated human neural stem cell (hNSC) engraftment to putatively exploit the potential of cell therapy that has been seen in other central nervous system injury models. Towards this, green fluorescent protein (GFP) labeled hNSCs (400,000 per animal) were transplanted in immunosuppressed Sprague Dawley (SD), Fisher, and athymic (ATN) PBBI rats one week after injury. Tacrolimus (3mg/kg two days prior to transplantation, then 1mg/kg/day), Methylprednisolone (10mg/kg on day of transplant, 1mg/kg/week thereafter), and Mycophenolate mofetil (30mg/kg/day) for seven days following transplantation were used to confer immunosuppression. Engraftment in SD and ATN was comparable at 8-weeks post transplantation. Evaluation of hNSC differentiation and distribution revealed increased neuronal differentiation of transplanted cells with time. At 16-weeks post-transplantation neither cell proliferation nor glial lineage markers expression was detected. Transplanted cell morphology was similar to neighboring host neurons and there was relatively little migration of cells from the peri-transplant site. By 16 weeks, GFP positive processes extended both rostro-caudally and bilaterally into parenchyma, spreading along host white matter tracts, traversing internal capsule, extending ~13 mm caudally from transplantation site reaching into the brain stem. In a Morris water maze test at 8-weeks post-transplantation, animals with transplants had shorter latency to platform compared to vehicle treated animals. However, weak injury-induced cognitive deficits in the control group at the delayed time point confounded benefits

  9. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  10. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    PubMed Central

    2012-01-01

    Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS) protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive. PMID:22433906

  11. Sarsasapogenin-AA13 ameliorates Aβ-induced cognitive deficits via improving neuroglial capacity on Aβ clearance and antiinflammation.

    PubMed

    Huang, Cui; Dong, Dong; Jiao, Qian; Pan, Hui; Ma, Lei; Wang, Rui

    2017-06-01

    Sarsasapogenin has been reported to improve dementia symptoms somehow, probably through modulating the function of cholinergic system, suppressing neurofibrillary tangles, and inhibiting inflammation. However, the role of sarsasapogenin in response to beta-amyloid (Aβ) remains to be delineated. This study aimed to determine the therapeutic effect of sarsasapogenin-13 (AA13, a sarsasapogenin derivative) on learning and memory impairments in Aβ-injected mice, as well as the role of AA13 in neuroglia-mediated antiinflammation and Aβ clearance. Focusing on the role of AA13 in regulating glial responses to Aβ, we conducted behavioral, morphological, and protein expression studies to explore the effects of AA13 on Aβ clearance and inflammatory regulation. The results indicated that oral administration of AA13 attenuated the memory deficits of intracerebroventricular (i.c.v.) Aβ-injected mice; also, AA13 protected neuroglial cells against Aβ-induced cytotoxicity. The further mechanical studies demonstrated that AA13 reversed the upregulation of proinflammatory M1 markers and increased the expression of antiinflammatory M2 markers in Aβ-treated cells. Furthermore, AA13 facilitated Aβ clearance through promoting Aβ phagocytosis and degradation. AA13 modulated the expression of fatty acid translocase (CD36), insulin-degrading enzyme (IDE), neprilysin (NEP), and endothelin-converting enzyme (ECE) in neuroglia. The present study indicated that the neuroprotective effect of AA13 might relate to its modulatory effects on microglia activation state, phagocytic ability, and expression of Aβ-degrading enzymes, which makes it a promising therapeutic agent in the early stage of Alzheimer's disease (AD). © 2017 John Wiley & Sons Ltd.

  12. Amantadine Ameliorates Dopamine-Releasing Deficits and Behavioral Deficits in Rats after Fluid Percussion Injury

    PubMed Central

    Huang, Eagle Yi-Kung; Tsui, Pi-Fen; Kuo, Tung-Tai; Tsai, Jing-Jr.; Chou, Yu-Ching; Ma, Hsin-I; Chiang, Yung-Hsiao; Chen, Yuan-Hao

    2014-01-01

    Aims To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery. Materials and Methods In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury. Results Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion. Conclusion Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury. PMID:24497943

  13. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway.

    PubMed

    Pei, Bing; Yang, Miaomiao; Qi, Xiaoyan; Shen, Xin; Chen, Xing; Zhang, Fayong

    2016-09-09

    Cerebral ischemia/reperfusion (I/R) is a major cause of severe disability and death all worldwide. However, therapeutic options to minimize the detrimental effects of cerebral I/R injury are limited. Recent research has demonstrated that quercetin mediates neuroprotective effects associated with the activation of the Akt signaling pathway in the cerebral I/R brain. Therefore, the aim of this study was to further investigate the mechanisms of cognitive deficits induced by cerebral I/R injury and the effects of quercetin on these mechanisms. First, we assessed anxiety-like behavioral and cognitive impairment using the open field test and the Morris water maze test, respectively. Next, we examined the severity of apoptosis by staining hippocampal neurons by the Cresyl violet method. Third, we used western blot analysis to investigate the expression of total and phosphorylated Akt, ASK1, JNK3, c-Jun and caspase-3 after I/R injury. Our results revealed that mice subjected to bilateral common carotid occlusion exhibited severe anxiety-like behavior, learning and memory impairment, cell damage and apoptosis. These severe effects were attenuated by administration of quercetin. Further, western blot analysis revealed that quercetin increased p-Akt expression and decreased p-ASK1, p-JNK3 and cleaved caspase-3 expression after cerebral I/R injury and led to inhibition of neuronal apoptosis. Conversely, treatment with LY294002 (a selective inhibitor of Akt1) reversed the effects of quercetin. In conclusion, these findings highlight the important role of quercetin in protecting against cognitive deficits and inhibiting neuronal apoptosis via the Akt signaling pathway. We believe that quercetin might prove to be a useful therapeutic component in treating cerebral I/R diseases in the near future. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    PubMed

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Bushen-Yizhi formula ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in scopolamine-induced senescence in mice

    PubMed Central

    HOU, XUE-QIN; WU, DIAN-WEI; ZHANG, CHUN-XIA; YAN, RONG; YANG, CONG; RONG, CUI-PING; ZHANG, LEI; CHANG, XIANG; SU, RU-YU; ZHANG, SHI-JIE; HE, WEN-QING; QU, ZHAO; LI, SHI; SU, ZI-REN; CHEN, YUN-BO; WANG, QI; FANG, SHU-HUAN

    2014-01-01

    Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula consisting of six herbs has been reported to possess a neuroprotective effect. The present study aimed to investigate the effects of BSYZ on learning and memory abilities, as well as oxidative stress and neuronal apoptosis in the hippocampus of scopolamine (SCOP)-induced senescence in mice, in order to reveal whether BSYZ is a potential therapeutic agent for Alzheimer’s disease (AD). A high-performance liquid chromatography (HPLC) fingerprint was applied to provide a chemical profile of BSYZ. Extracts of BSYZ were orally administered to mice with SCOP-induced memory impairment for two weeks. The learning and memory abilities were determined by the Morris water maze test. The oxidant stress-related indices, such as activity of superoxide dismutase (SOD) and levels of glutathione (GSH) and malondialdehyde (MDA) were examined in hippocampus of SCOP-treated mice. The cell death ratio was assessed by TUNEL staining, while apoptotic-related proteins including Bcl-2 and Bax were determined by immunofluorescent staining and western blot analysis. Caspase-3 was determined by western blot analysis. Consequently, a chromatographic condition, which was conducted at 35°C with a flow rate of 0.8 ml/min on the Gemini C18 column with mobile phase of acetonitrile and water-phosphoric acid (100:0.1, v/v), was established to yield common fingerprint chromatography under 203 nm with a similarity index of 0.986 within 10 batches of BSYZ samples. BSYZ at a dose of 2.92 g/kg significantly improved the cognitive ability, restored the abnormal activity of SOD and increased the levels of MDA and GSH induced by SCOP. Moreover, the neural apoptosis in the hippocampus of SCOP-treated mice was reversed by BSYZ by regulating the expression of Bcl-2, Bax and caspase-3. The results demonstrated that BSYZ had neuroprotective effects in SCOP-induced senescence in mice by ameliorating oxidative stress and neuronal apoptosis in the

  16. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  17. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats

    PubMed Central

    Yu, Xiao-Wen; Curlik, Daniel M; Oh, M Matthew; Yin, Jerry CP; Disterhoft, John F

    2017-01-01

    The molecular mechanisms underlying age-related cognitive deficits are not yet fully elucidated. In aged animals, a decrease in the intrinsic excitability of CA1 pyramidal neurons is believed to contribute to age-related cognitive impairments. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents facilitates cognition, and increases intrinsic excitability. However, it has yet to be tested if increasing CREB expression also ameliorates age-related behavioral and biophysical deficits. To test this hypothesis, we virally overexpressed CREB in CA1 of dorsal hippocampus. Rats received CREB or control virus, before undergoing water maze training. CREB overexpression in aged animals ameliorated the long-term memory deficits observed in control animals. Concurrently, cells overexpressing CREB in aged animals had reduced post-burst afterhyperpolarizations, indicative of increased intrinsic excitability. These results identify CREB modulation as a potential therapy to treat age-related cognitive decline. DOI: http://dx.doi.org/10.7554/eLife.19358.001 PMID:28051768

  18. Cognitive deficits after traumatic coma.

    PubMed

    Azouvi, Philippe; Vallat-Azouvi, Claire; Belmont, Angelique

    2009-01-01

    Survivors from a coma due to severe traumatic brain injury (TBI) frequently suffer from long-lasting disability, which is mainly related to cognitive deficits. Such deficits include slowed information processing, deficits of learning and memory, of attention, of working memory, and of executive functions, associated with behavioral and personality modifications. This review presents a survey of the main neuropsychological studies of patients with remote severe TBI, with special emphasis on recent studies on working memory, divided attention (dual-task processing), and mental fatigue. These studies found that patients have difficulties in dealing with two simultaneous tasks, or with tasks requiring both storage and processing of information, at least if these tasks require some degree of controlled processing (i.e., if they cannot be carried out automatically). However, strategic aspects of attention (such as allocation of attentional resources, task switching) seem to be relatively well preserved. These data suggest that severe TBI is associated with a reduction of resources within the central executive of working memory. Working memory limitations are probably related to impaired (i.e., disorganized and augmented) activation of brain executive networks, due to diffuse axonal injury. These deficits have disabling consequences in everyday life.

  19. [Neurocognitive deficit and social cognition in schizophrenia].

    PubMed

    Rychkova, O V; Gurevich, G L

    2012-01-01

    To study the association between neurocognitive deficit and impairment of social cognition in schizophrenia, we assessed 30 patients and 30 healthy people (controls) using clinical, psychometric and psychological tests. Based on the results obtained in the study, authors could single out a specific block of impairment which was not associated with perceptive and gnostic deficits. The data confirmed the significant contribution of deficit neurodynamic and regulatory parameters in the impairment of social cognition in schizophrenia.

  20. Familial cognitive deficits in schizophrenia.

    PubMed

    Hoff, Anne L; Svetina, Christine; Maurizio, Andrea M; Crow, Timothy J; Spokes, Kate; DeLisi, Lynn E

    2005-02-05

    Susceptibility to schizophrenia is considered familial, but the mechanism for transmission has not been found. Since widespread cognitive deficits have been found in patients with schizophrenia, several of these have been proposed as candidate familial endophenotypes that may or may not be predictive of who develops the illness. The current study examines these candidates in individuals from 32 families with at least 2 members having the diagnosis of chronic schizophrenia and normal comparison subjects using an extensive neuropsychological battery. Consistent with previous literature, family members with schizophrenia were significantly impaired on all measures compared with controls. Well relatives demonstrated significantly worse performance on a measure of verbal learning, delayed visual recall, perceptual-motor, and pure motor speed. Expressive and receptive language, but not other functions, were highly correlated within both concordant for schizophrenia and discordant sibling pairs, suggesting that they are familial vulnerability endophenotypes, but not predictive of whom becomes ill. On the other hand, some measures of perceptual-motor, pure motor speed, and frontal/executive functioning were significantly correlated in concordant, but not discordant pairs. These latter correlations suggest that some cognitive measures may be genetically related to the illness.

  1. [Evaluation of cognitive deficits after craniocerebral injury].

    PubMed

    Misić-Pavkov, G; Pejakov, L; Bozić, K; Filipović, D

    1997-01-01

    The study included 90 persons, one year after experiencing closed craniocerebral trauma. The purpose was to determine, by neuropsychological and neurophysiological methods, the presence of cognitive deficit as a result of cerebral trauma. It is possible to objectivize the organically conditioned cognitive deficit in case of a significant number of patients, and also, by the application of certain methodology, to grade the intensity of existing changes. When compared with other examined parameters, the presence of cognitive deficit was more often in patients of older ages and in those with more serious craniocerebral trauma. A special attention was made to the sensitivity of the used instruments for the verification of cognitive deficit. Among them, Wisconsin test and the method of cognitive evoked potential P-300 appeared to be the most reliable ones.

  2. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    PubMed

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.

  3. Piromelatine ameliorates memory deficits associated with chronic mild stress-induced anhedonia in rats.

    PubMed

    Fu, Wan; Xie, Heng; Laudon, Moshe; Zhou, Shouhong; Tian, Shaowen; You, Yong

    2016-06-01

    Previous studies have demonstrated that piromelatine (a melatonin and serotonin 5-HT1A and 5-HT1D agonist) exerts an antidepressant activity in rodent models of acute stress and improves cognitive impairments in a rat model of Alzheimer's disease (AD). However, the role of piromelatine in chronic stress-induced memory dysfunction remains unclear. The aim of this study was to determine whether piromelatine ameliorates chronic mild stress (CMS)-induced memory deficits and explore the underlying mechanisms. Rats were exposed randomly to chronic mild stressors for 7 weeks to induce anhedonia (reflected by a significant decrease in sucrose intake), which was used to select rats vulnerable (CMS-anhedonic, CMSA) or resistant (CMS-resistant, CMSR) to stress. Piromelatine (50 mg/kg) was administered daily during the last 2 weeks of CMS. The tail suspension and forced swimming tests were adopted to further characterize vulnerable and resilient rats. The Y-maze and novel object recognition (NOR) tests were used to evaluate memory performance. Brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB), and cytogenesis were measured in the hippocampus. We found that only CMSA rats displayed significant increases in immobility time in the tail suspension and forced swimming tests; memory deficits in the Y-maze and NOR tests; significant decreases in hippocampal BDNF, CREB, and pCREB expression; and cytogenesis. All these anhedonia-associated effects were reversed by piromelatine. Piromelatine ameliorates memory deficits associated with CMS-induced anhedonia in rats and this effect may be mediated by restoring hippocampal BDNF, CREB, and cytogenesis deficits.

  4. Cognitive Deficits in the Pathogenesis of Autism.

    ERIC Educational Resources Information Center

    Rutter, M.

    1983-01-01

    Reports empirical findings indicating that autistic children have a basic cognitive deficit that is not a secondary consequence of social withdrawal. The precise nature of the deficit is discussed, as are studies of autistic children's general intelligence, language abnormalities, and social impairments. (RH)

  5. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  6. Social-Cognitive Deficits in Schizophrenia.

    PubMed

    Mier, Daniela; Kirsch, Peter

    Patients with schizophrenia not only suffer from prototypical psychotic symptoms such as delusions and hallucinations and from cognitive deficits, but also from tremendous deficits in social functioning. However, little is known about the interplay between the cognitive and the social-cognitive deficits in schizophrenia. Our chapter gives an overview on behavioral, as well as functional imaging studies on social cognition in schizophrenia. Main findings on cognitive and motivational deficits in schizophrenia are reviewed and introduced within the context of the dopamine hypothesis of schizophrenia. The reviewed findings suggest that disturbed "social brain" functioning in schizophrenia, depending on the specific context, can either lead to a neglect of the emotions and intentions of others or to the false attribution of these emotions and intentions in an emotionally neutral social content. We integrate these findings with the current knowledge about aberrant dopaminergic firing in schizophrenia by presenting a comprehensive model explaining core symptoms of the disorder. The main implication of the presented model is that neither cognitive-motivational, nor social-cognitive deficits alone cause schizophrenia symptoms, but that symptoms only emerge by the interplay of disturbed social brain functioning with aberrant dopaminergic firing.

  7. Gastrodin Attenuates Cognitive Deficits Induced by 3,3'-Iminodipropionitrile.

    PubMed

    Wang, Xiaona; Li, Peng; Liu, Jingsheng; Jin, Xunbo; Li, Lianjun; Zhang, Dong; Sun, Peng

    2016-06-01

    3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce persistent neurotoxicity, and therefore cause dyskinesia and cognitive impairments. Gastrodin, a main bioactive ingredient of Gastrodia elata Blume, is shown to greatly improve cognitive function. The aim of this study was to further determine whether administration of gastrodin can ameliorate IDPN-induced cognitive deficits in the Morris water maze (MWM) and novel object recognition (NOR) task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (100 mg/kg/day, for 8 days) significantly impaired spatial and object recognition memory and that repeated treatment with gastrodin (150 mg/kg/day, for 6 weeks) could effectively alleviate the IDPN-induced cognitive impairments as indicated by increased spatial memory and discrimination ratio in the MWM and NOR tests. Gastrodin treatment also reverted IDPN-induced decreases of γ-aminobutyric acid (GABA) levels and increases of a2 GABAA receptor protein expression in the prefrontal cortex and hippocampus of IDPN-treated rats. These results suggest that gastrodin treatment may provide a novel pharmacological strategy for IDPN-induced cognitive deficits, which was mediated, at least in part, by normalizing the GABAergic system.

  8. Depression and cognitive deficits in geriatric schizophrenia.

    PubMed

    D'Antonio, Emily; Serper, Mark R

    2012-01-01

    Past reports have found patients with comorbid depression and schizophrenia spectrum disorders exhibit greater deficits in memory and attention compared to schizophrenia spectrum disorder patients without depressive symptoms. However, in contrast to younger schizophrenia patients, the few past studies using cognitive screens to examine the relationship between depression and cognition in inpatient geriatric schizophrenia have found that depressive symptomatology was associated with relatively enhanced cognitive performance. In the current study we examined the relationship between depressive symptoms and cognitive deficits in geriatric schizophrenia spectrum disorder patients (n=71; mean age=63.7) on an acute psychiatric inpatient service. Patients completed a battery of cognitive tests assessing memory, attention and global cognition. Symptom severity was assessed via the PANSS and Calgary Depression Scale for Schizophrenia. Results revealed that geriatric patients' depression severity predicted enhancement of their attentional and verbal memory performance. Patients' global cognitive functioning and adaptive functioning were not associated with their depression severity. Contrary to patterns typically seen in younger patients and non-patient groups, increasing depression severity is associated with enhancement of memory and attention in geriatric schizophrenia spectrum disorder patients. Also, diverging from younger samples, depression severity was unassociated with patients adaptive and global cognitive functioning. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Non-literal language deficits in mild cognitive impairment.

    PubMed

    Cardoso, Sandra; Silva, Dina; Maroco, João; de Mendonça, Alexandre; Guerreiro, Manuela

    2014-12-01

    verbal interactions with the others. Amelioration of these deficits should be an important intervention target as part of a comprehensive rehabilitation strategy for patients with cognitive decline. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.

  10. Effects of Stimulant Drugs on Attention and Cognitive Deficits.

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.

    1981-01-01

    Research on the effects of stimulant drugs on attention and cognitive deficits in children with hyperactivity is reviewed. Topics covered include: attention and impulsivity, paired associate learning, school achievement, and drug induced attention and cognitive deficits. (CL)

  11. Cognitive Remediation Therapy for Brain Tumor Survivors with Cognitive Deficits

    PubMed Central

    Sacks-Zimmerman, Amanda; Liberta, Taylor

    2015-01-01

    Cognitive deficits have been widely observed in patients with primary brain tumors consequent to diagnosis and treatment. Given the early onset and the relatively long survival rate of patients, it seems pertinent to study and refine the techniques used to treat these deficits. The purpose of this article is to discuss cognitive deficits that follow neurosurgical treatment for low-grade gliomas as well as to outline a neuropsychological intervention to treat these deficits, specifically working memory and attention. Cognitive remediation therapy is a neuropsychological intervention that aims to enhance attention, working memory, and executive functioning, thereby diminishing the impact of these deficits on daily functioning. Computerized cognitive remediation training programs facilitate access to treatment through providing online participation. The authors include preliminary results of three participants who have completed the computerized training program as part of an ongoing study that is investigating the efficacy of this program in patients who have undergone treatment for low-grade gliomas. The results so far suggest some improvement in working memory and attention from baseline scores. It is the hope of the present authors to highlight the importance of this treatment in the continuity of care of brain tumor survivors. PMID:26623205

  12. Recognition memory deficits in mild cognitive impairment.

    PubMed

    Algarabel, Salvador; Fuentes, Manuel; Escudero, Joaquín; Pitarque, Alfonso; Peset, Vicente; Mazón, José-Francisco; Meléndez, Juan-Carlos

    2012-09-01

    There is no agreement on the pattern of recognition memory deficits characteristic of patients diagnosed with mild cognitive impairment (MCI). Whereas lower performance in recollection is the hallmark of MCI, there is a strong controversy about possible deficits in familiarity estimates when using recognition memory tasks. The aim of this research is to shed light on the pattern of responding in recollection and familiarity in MCI. Five groups of participants were tested. The main participant samples were those formed by two MCI groups differing in age and an Alzheimer's disease group (AD), which were compared with two control groups. Whereas one of the control groups served to assess the performance of the MCI and AD people, the other one, composed of young healthy participants, served the purpose of evaluating the adequacy of the experimental tasks used in the evaluation of the different components of recognition memory. We used an associative recognition task as a direct index of recollection and a choice task on a pair of stimuli, one of which was perceptually similar to those studied in the associative recognition phase, as an index of familiarity. Our results indicate that recollection decreases with age and neurological status, and familiarity remains stable in the elderly control sample but it is deficient in MCI. This research shows that a unique encoding situation generated deficits in recollective and familiarity mechanisms in mild cognitive impaired individuals, providing evidence for the existence of deficits in both retrieval processes in recognition memory in a MCI stage.

  13. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System.

    PubMed

    Jin, Yang; Peng, Jian; Wang, Xiaona; Zhang, Dong; Wang, Tianyin

    2017-01-11

    Bacterial endotoxin lipopolysaccharide (LPS) can induce systemic inflammation, and therefore disrupt learning and memory processes. Ginsenoside Rg1, a major bioactive component of ginseng, is shown to greatly improve cognitive function. The present study was designed to further investigate whether administration of ginsenoside Rg1 can ameliorate LPS-induced cognitive impairment in the Y-maze and Morris water maze (MWM) task, and to explore the underlying mechanisms. Results showed that exposure to LPS (500 μg/kg) significantly impaired working and spatial memory and that repeated treatment with ginsenoside Rg1 (200 mg/kg/day, for 30 days) could effectively alleviate the LPS-induced cognitive decline as indicated by increased working and spatial memory in the Y-maze and MWM tests. Furthermore, ginsenoside Rg1 treatment prevented LPS-induced decrease of acetylcholine (ACh) levels and increase of acetylcholinesterase (AChE) activity. Ginsenoside Rg1 treatment also reverted the decrease of alpha7 nicotinic acetylcholine receptor (α7 nAChR) protein expression in the prefrontal cortex (PFC) and hippocampus of LPS-treated rats. These findings suggest that ginsenoside Rg1 has protective effect against LPS-induced cognitive deficit and that prevention of LPS-induced changes in cholinergic system is crucial to this ameliorating effect.

  14. Electroacupuncture Ameliorates Propofol-Induced Cognitive Impairment via an Opioid Receptor-Independent Mechanism.

    PubMed

    Liu, Yan; Wang, Xin-Juan; Wang, Na; Cui, Cai-Lian; Wu, Liu-Zhen

    2016-01-01

    While general anesthesia is known to induce cognitive deficits in elderly and pediatric patients, its influence on adults is less well-characterized. The present study was designed to evaluate the influence of propofol on the learning and memory of young adult rats, as well as the potential neuroprotective role of electroacupuncture (EA) in propofol-induced cognitive impairment. Intravenous anesthesia with propofol was administered to young adult male Sprague-Dawley (SD) rats for 6 h, and EA was administered three times before and after anesthesia. The Morris Water Maze (MWM) test was conducted to determine the rat's cognitive performance following the anesthesia treatment. Our results showed that propofol induced obvious cognitive impairment in young adult rats, which could be ameliorated by multiple EA treatments. Moreover, the decreased level of phosphorylated glycogen synthase kinase 3 β (pGSK-3β) in the CA1 region of the hippocampus accompanying the cognitive impairment was also reversed by EA treatment. Further experiments demonstrated that neither 2 nor 10 mg/kg (I.P.) naloxone blocked the effect of EA, indicating that the neuroprotective effect of EA on propofol-induced cognitive impairment was not mediated via the opioid receptors. The present study suggests that EA could ameliorate the cognitive impairment induced by prolonged anesthesia with propofol in young adult rats, which is likely associated with pGSK-3β levels in the CA1 independently of opioid receptors. These findings imply that EA may be used as a potential neuroprotective therapy for post-operative cognitive dysfunction (POCD).

  15. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats

    PubMed Central

    Ramalingayya, Grandhi Venkata; Cheruku, Sri Pragnya; Nayak, Pawan G; Kishore, Anoop; Shenoy, Rekha; Rao, Chamallamudi Mallikarjuna; Krishnadas, Nandakumar

    2017-01-01

    Doxorubicin (DOX) is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors’ quality of life. The study objective was to evaluate rutin (RUT) for its neuroprotective effect against DOX in human neuroblastoma (IMR32) cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide) staining, intracellular reactive oxygen species (ROS) assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT). Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM) neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intra-peritoneal, once in 5 days), as we observed significant impairment of episodic memory in ORT. Coadministration with RUT (50 mg/kg, per os) significantly prevented memory deficits in vivo without any confounding influence on locomotor activity. RUT also offered protection against DOX-induced myelosuppression, cardiotoxicity, and

  16. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats.

    PubMed

    Ramalingayya, Grandhi Venkata; Cheruku, Sri Pragnya; Nayak, Pawan G; Kishore, Anoop; Shenoy, Rekha; Rao, Chamallamudi Mallikarjuna; Krishnadas, Nandakumar

    2017-01-01

    Doxorubicin (DOX) is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors' quality of life. The study objective was to evaluate rutin (RUT) for its neuroprotective effect against DOX in human neuroblastoma (IMR32) cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide) staining, intracellular reactive oxygen species (ROS) assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT). Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM) neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intra-peritoneal, once in 5 days), as we observed significant impairment of episodic memory in ORT. Coadministration with RUT (50 mg/kg, per os) significantly prevented memory deficits in vivo without any confounding influence on locomotor activity. RUT also offered protection against DOX-induced myelosuppression, cardiotoxicity, and

  17. Chotosan, a kampo formula, ameliorates chronic cerebral hypoperfusion-induced deficits in object recognition behaviors and central cholinergic systems in mice.

    PubMed

    Zhao, Qi; Murakami, Yukihisa; Tohda, Michihisa; Obi, Ryosuke; Shimada, Yutaka; Matsumoto, Kinzo

    2007-04-01

    We previously demonstrated that the Kampo formula chotosan (CTS) ameliorated spatial cognitive impairment via central cholinergic systems in a chronic cerebral hypoperfusion (P2VO) mouse model. In this study, the object discrimination tasks were used to determine if the ameliorative effects of CTS on P2VO-induced cognitive deficits are a characteristic pharmacological profile of this formula, with the aim of clarifying the mechanisms by which CTS enhances central cholinergic function in P2VO mice. The cholinesterase inhibitor tacrine (THA) and Kampo formula saikokeishito (SKT) were used as controls. P2VO impaired object discrimination performance in the object recognition, location, and context tests. Daily administration of CTS (750 mg/kg, p.o.) and THA (2.5 mg/kg, i.p.) improved the object discrimination deficits, whereas SKT (750 mg/kg, p.o.) did not. In ex vivo assays, tacrine but not CTS or SKT inhibited cortical cholinesterase activity. P2VO reduced the mRNA expression of m(3) and m(5) muscarinic receptors and choline acetyltransferase but not that of other muscarinic receptor subtypes in the cerebral cortex. Daily administration of CTS and THA but not SKT reversed these expression changes. These results suggest that CTS and THA improve P2VO-induced cognitive impairment by normalizing the deficit of central cholinergic systems and that the beneficial effect on P2VO-induced cognitive deficits is a distinctive pharmacological characteristic of CTS.

  18. Cognitive deficits in psychiatric disorders: Current status

    PubMed Central

    Trivedi, J.K.

    2006-01-01

    Cognition denotes a relatively high level of processing of specific information including thinking, memory, perception, motivation, skilled movements and language. Cognitive psychology has become an important discipline in the research of a number of psychiatric disorders, ranging from severe psychotic illness such as schizophrenia to relatively benign, yet significantly disabling, non-psychotic illnesses such as somatoform disorder. Research in the area of neurocognition has started unlocking various secrets of psychiatric disorders, such as revealing the biological underpinnings, explaining the underlying psychopathology and issues related to course, outcome and treatment strategies. Such research has also attempted to uproot a number of previously held concepts, such as Kraepelin's dichotomy. Although the range of cognitive problems can be diverse, there are several cognitive domains, including executive function, attention and information processing, and working memory, which appear more frequently at risk. A broad range of impairment across and within the psychiatric disorders are highlighted in this oration. The oration summarizes the studies investigating cognitive processing in different psychiatric disorders. I will also discuss the findings of my own research on neurocognitive deficits in mood disorders, schizophrenia, obsessive–compulsive disorder, somatoform disorder, including studies on ‘high-risk’ individuals. Tracing the evaluation of neurocognitive science may provide new insights into the pathophysiology and treatment of psychiatric disorders. PMID:20703409

  19. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease

    PubMed Central

    Caccamo, Antonella; Maldonado, Monica A.; Bokov, Alex F.; Majumder, Smita; Oddo, Salvatore

    2010-01-01

    Cognitive dysfunction and memory loss are common features of Alzheimer's disease (AD). Abnormalities in the expression profile of immediate early genes that play a critical role in memory formation, such as the cAMP-response element binding protein (CREB), have been reported in the brains of AD patients. Here we show that amyloid-β (Aβ) accumulation, which plays a primary role in the cognitive deficits of AD, interferes with CREB activity. We further show that restoring CREB function via brain viral delivery of the CREB-binding protein (CBP) improves learning and memory deficits in an animal model of AD. Notably, such improvements occur without changes in Aβ and tau pathology, and instead are linked to an increased level of brain-derived neurotrophic factor. The resulting data suggest that Aβ-induced learning and memory deficits are mediated by alterations in CREB function, based on the finding that restoring CREB activity by directly modulating CBP levels in the brains of adult mice is sufficient to ameliorate learning and memory. Therefore, increasing CBP expression in adult brains may be a valid therapeutic approach not only for AD, but also for various brain disorders characterized by alterations in immediate early genes, further supporting the concept that viral vector delivery may be a viable therapeutic approach in neurodegenerative diseases. PMID:21149712

  20. Cognitive Deficits in HIV Infected Children

    PubMed Central

    Ravindran, O. S.; Rani, Mrudula P.; Priya, G.

    2014-01-01

    Background and Objectives: Children infected with HIV are at risk for significant neurological and neuropsychological problems. This study is aimed at identifying cognitive deficits in HIV-infected children and to compare them with equal number of normal controls. Materials and Methods: Twenty children with HIV infection who are currently on antiretroviral therapy were recruited. They were assessed for their intelligence using Malin's Intelligence Scale for Indian Children and also evaluated for their cognitive abilities with a comprehensive neuropsychological battery. They were matched with equal number of normal controls. Results: HIV-infected children have shown substantial impairments in the domains of attention, language, verbal learning and memory, visuomotor functions, fine motor performance, and executive functions. Conclusion: HIV-infected children have average intelligence, but they performed poorly on several neuropsychological measures. PMID:25035547

  1. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  2. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats.

    PubMed

    Cheruku, Sri Pragnya; Ramalingayya, Grandhi Venkata; Chamallamudi, Mallikarjuna Rao; Biswas, Subhankar; Nandakumar, Krishnadas; Nampoothiri, Madhavan; Gourishetti, Karthik; Kumar, Nitesh

    2017-09-13

    Cognitive dysfunction by chemotherapy compromises the quality of life in cancer patients. Tea polyphenols are known chemopreventive agents. The present study was designed to evaluate the neuroprotective potential of (+) catechin hydrate (catechin), a tea polyphenol, in IMR-32 neuroblastoma cells in vitro and alleviation of episodic memory deficit in Wistar rats in vivo against a widely used chemotherapeutic agent, Doxorubicin (DOX). In vitro, neuroprotective studies were assessed in undifferentiated IMR-32 cells using percentage viability and in differentiated cells by neurite length. These studies showed catechin increased percentage viability of undifferentiated IMR-32 cells. Catechin pretreatment also showed an increase in neurite length of differentiated cells. In vivo neuroprotection of catechin was evaluated using novel object recognition task in time-induced memory deficit model at 50, 100 and 200 mg/kg dose and DOX-induced memory deficit models at 100 mg/kg dose. The latter model was developed by injection of DOX (2.5 mg/kg, i.p.) in 10 cycles over 50 days in Wistar rats. Catechin showed a significant reversal of time-induced memory deficit in a dose-dependent manner and prevention of DOX-induced memory deficit at 100 mg/kg. In addition, catechin treatment showed a significant decrease in oxidative stress, acetylcholine esterase and neuroinflammation in the hippocampus and cerebral cortex in DOX-induced toxicity model. Hence, catechin may be a potential adjuvant therapy for the amelioration of DOX-induced cognitive impairment which may improve the quality of life of cancer survivors. This improvement might be due to the elevation of antioxidant defense, prevention of neuroinflammation and inhibition of acetylcholine esterase enzyme.

  3. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  4. Amelioration of deficit syndrome of schizophrenia by norepinephrine reuptake inhibitor

    PubMed Central

    Shoja Shafti, Saeed; Jafarabad, Mohammad Sadeghe; Azizi, Reza

    2015-01-01

    Objective: Negative symptoms are a significant barrier to successful functional outcome and recovery in individuals with schizophrenia and their management is not unproblematic. Reboxetine is a norepinephrine reuptake inhibitor (NRI). Previous studies regarding the useful effects of reboxetine on deficit symptoms of schizophrenia have resulted in inconsistent results. The present study therefore evaluated the effectiveness of reboxetine as an adjunctive treatment in a group of schizophrenic patients with prominent negative symptoms. Method: A total of 50 male inpatients meeting diagnosis of schizophrenia entered into a 12-week parallel group, double-blind study for random assignment to reboxetine (n = 25 patients) or placebo (n = 25 patients). The inclusion criterion, in addition to the diagnosis of schizophrenia, was the existence of obvious negative symptoms for a duration of at least 2 years. The Scale for Assessment of Negative Symptoms (SANS) was used as the primary outcome measure. The Scale for Assessment of Positive Symptoms (SAPS), Simpson Angus Scale (SAS), Hamilton Rating Scale for Depression (HAM-D) and Mini-Mental Status Examination (MMSE) were used for comparison of the intervening parameters in this study. Results: According to the findings, 76% of patients in the target group showed some positive response to reboxetine compared with 24% in the control group (p < 0.01). The mean total score of SANS in the reboxetine group decreased significantly from 79.94 ± 1.20 to 74.23 ± 4.07 (p < 0.0001) at the end of the study; such an improvement was not significant in the placebo group with a decrease from 80.42 ± 2.46 to 79.08 ± 5.83 (p < 0.29). Changes of SAPS were insignificant in both groups. Effect size analysis for changes of SANS at the end of assessment indicated a large improvement with reboxetine (Cohen’s d = 2.91). Conclusion: Reboxetine, as an adjuvant to haloperidol, may have a helpful effect on the deficit syndrome of schizophrenia. PMID

  5. Characterization of Cognitive Deficits in Mice With an Alternating Hemiplegia-Linked Mutation

    PubMed Central

    2015-01-01

    Cognitive impairment is a prominent feature in a range of different movement disorders. Children with Alternating Hemiplegia of Childhood are prone to developmental delay, with deficits in cognitive functioning becoming progressively more evident as they grow older. Heterozygous mutations of the ATP1A3 gene, encoding the Na+,K+-ATPase α3 subunit, have been identified as the primary cause of Alternating Hemiplegia. Heterozygous Myshkin mice have an amino acid change (I810N) in Na+,K+-ATPase α3 that is also found in Alternating Hemiplegia. To investigate whether Myshkin mice exhibit learning and memory deficits resembling the cognitive impairments of patients with Alternating Hemiplegia, we subjected them to a range of behavioral tests that interrogate various cognitive domains. Myshkin mice showed impairments in spatial memory, spatial habituation, locomotor habituation, object recognition, social recognition, and trace fear conditioning, as well as in the visible platform version of the Morris water maze. Increasing the duration of training ameliorated the deficit in social recognition but not in spatial habituation. The deficits of Myshkin mice in all of the learning and memory tests used are consistent with the cognitive impairment of the vast majority of AHC patients. These mice could thus help advance our understanding of the underlying neural mechanisms influencing cognitive impairment in patients with ATP1A3-related disorders. PMID:26501181

  6. Characterization of cognitive deficits in mice with an alternating hemiplegia-linked mutation.

    PubMed

    Kirshenbaum, Greer S; Dachtler, James; Roder, John C; Clapcote, Steven J

    2015-12-01

    Cognitive impairment is a prominent feature in a range of different movement disorders. Children with Alternating Hemiplegia of Childhood are prone to developmental delay, with deficits in cognitive functioning becoming progressively more evident as they grow older. Heterozygous mutations of the ATP1A3 gene, encoding the Na+,K+-ATPase α3 subunit, have been identified as the primary cause of Alternating Hemiplegia. Heterozygous Myshkin mice have an amino acid change (I810N) in Na+,K+-ATPase α3 that is also found in Alternating Hemiplegia. To investigate whether Myshkin mice exhibit learning and memory deficits resembling the cognitive impairments of patients with Alternating Hemiplegia, we subjected them to a range of behavioral tests that interrogate various cognitive domains. Myshkin mice showed impairments in spatial memory, spatial habituation, locomotor habituation, object recognition, social recognition, and trace fear conditioning, as well as in the visible platform version of the Morris water maze. Increasing the duration of training ameliorated the deficit in social recognition but not in spatial habituation. The deficits of Myshkin mice in all of the learning and memory tests used are consistent with the cognitive impairment of the vast majority of AHC patients. These mice could thus help advance our understanding of the underlying neural mechanisms influencing cognitive impairment in patients with ATP1A3-related disorders.

  7. Immuno-modulator inter-alpha inhibitor proteins ameliorate complex auditory processing deficits in rats with neonatal hypoxic-ischemic brain injury.

    PubMed

    Threlkeld, Steven W; Lim, Yow-Pin; La Rue, Molly; Gaudet, Cynthia; Stonestreet, Barbara S

    2017-03-10

    Hypoxic-ischemic (HI) brain injury is recognized as a significant problem in the perinatal period, contributing to life-long language-learning and other cognitive impairments. Central auditory processing deficits are common in infants with hypoxic-ischemic encephalopathy and have been shown to predict language learning deficits in other at risk infant populations. Inter-alpha inhibitor proteins (IAIPs) are a family of structurally related plasma proteins that modulate the systemic inflammatory response to infection and have been shown to attenuate cell death and improve learning outcomes after neonatal brain injury in rats. Here, we show that systemic administration of IAIPs during the early HI injury cascade ameliorates complex auditory discrimination deficits as compared to untreated HI injured subjects, despite reductions in brain weight. These findings have significant clinical implications for improving central auditory processing deficits linked to language learning in neonates with HI related brain injury.

  8. GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice.

    PubMed

    Arai, Sawako; Takuma, Kazuhiro; Mizoguchi, Hiroyuki; Ibi, Daisuke; Nagai, Taku; Kamei, Hiroyuki; Kim, Hyoung-Chun; Yamada, Kiyofumi

    2009-01-05

    In this study, we investigated the effects of GABA(A) and GABA(B) receptor agonists on the methamphetamine-induced impairment of recognition memory in mice. Repeated treatment with methamphetamine at a dose of 1 mg/kg for 7 days induced an impairment of recognition memory. Baclofen, a GABA(B) receptor agonist, ameliorated the repeated methamphetamine-induced cognitive impairment, although gaboxadol, a GABA(A) receptor agonist, had no significant effect. GABA(B) receptors may constitute a putative new target in treating cognitive deficits in patients suffering from schizophrenia, as well as methamphetamine psychosis.

  9. A Multiple Deficit Model of Reading Disability and Attention-Deficit/Hyperactivity Disorder: Searching for Shared Cognitive Deficits

    ERIC Educational Resources Information Center

    McGrath, Lauren M.; Pennington, Bruce F.; Shanahan, Michelle A.; Santerre-Lemmon, Laura E.; Barnard, Holly D.; Willcutt, Erik G.; DeFries, John C.; Olson, Richard K.

    2011-01-01

    Background: This study tests a multiple cognitive deficit model of reading disability (RD), attention-deficit/hyperactivity disorder (ADHD), and their comorbidity. Methods: A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique…

  10. A Multiple Deficit Model of Reading Disability and Attention-Deficit/Hyperactivity Disorder: Searching for Shared Cognitive Deficits

    ERIC Educational Resources Information Center

    McGrath, Lauren M.; Pennington, Bruce F.; Shanahan, Michelle A.; Santerre-Lemmon, Laura E.; Barnard, Holly D.; Willcutt, Erik G.; DeFries, John C.; Olson, Richard K.

    2011-01-01

    Background: This study tests a multiple cognitive deficit model of reading disability (RD), attention-deficit/hyperactivity disorder (ADHD), and their comorbidity. Methods: A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique…

  11. Xanthoceraside modulates neurogenesis to ameliorate cognitive impairment in APP/PS1 transgenic mice.

    PubMed

    Zhu, Lin; Chi, Tianyan; Zhao, Xuemei; Yang, Lei; Song, Shijie; Lu, Qiaohui; Ji, Xuefei; Liu, Peng; Wang, Lihua; Zou, Libo

    2017-07-25

    Neuronal loss is reported to be an important pathological process in Alzheimer's disease (AD). Neurogenesis is a process of generation of new neurons to fill the neuronal loss. Xanthoceraside has been shown to attenuate the cognitive deficits in several AD animal models. However, little is known about the effect of xanthoceraside on neurogenesis in APP/PS1 transgenic mice. Thus, in this study, we investigated whether xanthoceraside can ameliorate learning and memory impairment by promoting NSCs proliferation and neuronal differentiation. The results suggested that xanthoceraside significantly ameliorated the cognitive impairment and induced NSCs proliferation and neuronal differentiation in APP/PS1 transgenic mice. Meanwhile, in vitro study revealed that xanthoceraside increased the size of NSCs and induced NSCs differentiation into neurons compared with amyloid beta-peptide (25-35) (Aβ25-35) treatment. Furthermore, we found that xanthoceraside significantly increased the expression of Wnt3a and p-GSK3β, decreased the expression of p-β-catenin, and induced nuclear translocation of β-catenin in APP/PS1 transgenic mice. Furthermore, in vitro study found that the effect of xanthoceraside on inducing NSCs proliferation and neuronal differentiation were inhibited by Wnt pathway inhibitor Dickkopf-1 (Dkk-1). Our data demonstrated that xanthoceraside may promote the proliferation and differentiation of NSCs into neurons by up-regulating the Wnt/β-catenin pathway to fill the neuronal loss, thereby improving learning and memory impairment in APP/PS1 transgenic mice.

  12. Hypericin inhibits oligomeric amyloid β42-induced inflammation response in microglia and ameliorates cognitive deficits in an amyloid β injection mouse model of Alzheimer's disease by suppressing MKL1.

    PubMed

    Zhang, Mu; Wang, Yanyan; Qian, Fei; Li, Ping; Xu, Xiaojun

    2016-12-02

    Amyloid β (Aβ) provokes severe inflammation response in the central nervous system, which is a key risk factor for the progression of Alzheimer's disease (AD). Anti-inflammation medications shed light on treating AD. In this study, we found hypericin is a potent anti-AD constituent through anti-inflammation. Pretreatment with hypericin (5 μM and 15 μM) significantly suppresses oligomeric Aβ42 (oAβ42)-induced expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF α) and inducible nitric oxide synthase (iNOS) and production of NO in microglia without cytotoxicity. We further found that hypericin ameliorates inflammatory response by suppressing MKL1, which is the essential cofactor of p65 during the transcription process. In an Aβ injection AD mouse model, animals orally administrated hypericin (50 mg/kg) for seven days significantly decreased pro-inflammatory cytokines expression and NO production in hippocampus, meanwhile, hypericin improved oAβ42-induced learning and memory impairment in mice in the Morris water maze test. Therefore, hypericin could be considered as a potential candidate for treating AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    PubMed

    Petit, Géraldine H; Berkovich, Elijahu; Hickery, Mark; Kallunki, Pekka; Fog, Karina; Fitzer-Attas, Cheryl; Brundin, Patrik

    2013-01-01

    Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  14. Rasagiline Ameliorates Olfactory Deficits in an Alpha-Synuclein Mouse Model of Parkinson's Disease

    PubMed Central

    Petit, Géraldine H.; Berkovich, Elijahu; Hickery, Mark; Kallunki, Pekka; Fog, Karina; Fitzer-Attas, Cheryl; Brundin, Patrik

    2013-01-01

    Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease. PMID:23573275

  15. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats.

    PubMed

    Kougias, Daniel G; Hankosky, Emily R; Gulley, Joshua M; Juraska, Janice M

    2017-03-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats.

  16. Mangiferin regulates cognitive deficits and heme oxygenase-1 induced by lipopolysaccharide in mice.

    PubMed

    Fu, Yanyan; Liu, Hongzhi; Song, Chengjie; Zhang, Fang; Liu, Yi; Wu, Jian; Wen, Xiangru; Liang, Chen; Ma, Kai; Li, Lei; Zhang, Xunbao; Shao, Xiaoping; Sun, Yafeng; Du, Yang; Song, Yuanjian

    2015-12-01

    Accumulating evidence reveals that lipopolysaccharide (LPS) can induce neuroinflammation, ultimately leading to cognitive deficits. Mangiferin, a natural glucoxilxanthone, is known to possess various biological activities. The present study aimed to investigate the effects of mangiferin on LPS-induced cognitive deficits and explore the underlying mechanisms. Brain injury was induced in mice via intraperitoneal LPS injection (1mg/kg) for five consecutive days. Mangiferin was orally pretreatmented (50mg/kg) for seven days and then treatmented (50mg/kg) for five days after LPS injection. The Morris water maze was used to detect changes in cognitive function. Immunohistochemical and immunoblotting were respectively performed to measure the expression of interleukin-6 (IL-6) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that mangiferin can ameliorate cognitive deficits. Moreover, mangiferin decreased LPS-induced IL-6 production and increase HO-1 in the hippocampus. Taken together, these results suggest that mangiferin attenuates LPS-induced cognitive deficits, which may be potentially linked to modulating HO-1 in the hippocampus.

  17. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    PubMed

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Tangeretin ameliorates renal failure via regulating oxidative stress, NF-κB-TNF-α/iNOS signalling and improves memory and cognitive deficits in 5/6 nephrectomized rats.

    PubMed

    Wu, Jing; Zhao, Yu-Mei; Deng, Zhi-Kuan

    2017-09-04

    Chronic kidney disease (CKD) is a significant global health concern with limited treatment options. Oxidative stress and inflammatory responses have been implicated in the pathology of CKD. Patients with CKD are frequently affected with neurological complications that affect both the central and peripheral nervous system. Identification of effective treatment strategies are of much clinical value in the therapy of CKD. Tangeretin, a plant-derived flavonoid has been described to retain extensive pharmacological properties. In the present study, we explored whether tangeretin exerted protective effects in 5/6 nephrectomized rats. CKD was induced in Sprague-Dawley rats by 5/6 nephrectomy (Nx). Separate groups of 5/6 Nx rats were treated with tangeretin (50, 100 or 200 mg/kg b.wt.) or enalapril for 30 days (starting 5 days after surgery for 35 days). Control animals were not subjected to Nx nor were treated with tangeretin or enalapril. Renal dysfunction, as evinced by raised serum urea, serum creatinine, proteinuria, and histological alterations were significantly reduced by tangeretin and enalapril treatment. 5/6 Nx animals exhibited raised levels of malondialdehyde (MDA) and reactive oxygen species. Elevated TNF-α, nitric oxide (NO) and cytokines-IL-6 and IL-1β with upregulated NF-κB/TNF-α/iNOS signalling pathways were effectively down-regulated by tangeretin. Cognitive disturbances and memory impairments observed in Nx rats were substantially improved by tangeretin. Collectively, the experimental data indicate that the anti-oxidant and anti-inflammatory effects of tangeretin effectively improved renal function and reduced the cognitive and memory impairments in CKD-induced animals.

  19. Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions.

    PubMed

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2015-08-12

    It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated) and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF). Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments.

  20. Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions

    PubMed Central

    Beilharz, Jessica E.; Maniam, Jayanthi; Morris, Margaret J.

    2015-01-01

    It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated) and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF). Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments. PMID:26274972

  1. Perceived cognitive deficits, emotional distress and disability following whiplash injury.

    PubMed

    Sullivan, Michael J L; Hall, Erin; Bartolacci, Rosita; Sullivan, Maureen E; Adams, Heather

    2002-01-01

    To describe the pattern of perceived cognitive deficits in patients with whiplash injury, to examine the relation between perceived cognitive deficits and disability, and to examine the determinants of perceived cognitive deficits in patients with whiplash injury. A total of 81 individuals participated in the study. There were 29 patients (13 men, 16 women) with a diagnosis of whiplash, grade I or II. Patients with work-related soft-tissue injuries (n=24) and nonclinical controls (n=28) were included as comparison groups. Participants completed measures of perceived cognitive deficits, pain severity, depression, anxiety and pain-related disability. Both patient groups scored significantly higher than the nonpatient control group on the measure of perceived cognitive deficits, but did not differ significantly from each other. Perceptions of cognitive deficits were significantly correlated with pain-related disability. A hierarchical regression examining the relative contribution of anxiety, depression and pain showed that only anxiety and depression contributed significant unique variance to the prediction of perceived cognitive deficits. The potential benefits of focusing interventions on the management of anxiety and depression in the rehabilitation of patients with whiplash injuries are discussed.

  2. Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI

    PubMed Central

    Temple, Elise; Deutsch, Gayle K.; Poldrack, Russell A.; Miller, Steven L.; Tallal, Paula; Merzenich, Michael M.; Gabrieli, John D. E.

    2003-01-01

    Developmental dyslexia, characterized by unexplained difficulty in reading, is associated with behavioral deficits in phonological processing. Functional neuroimaging studies have shown a deficit in the neural mechanisms underlying phonological processing in children and adults with dyslexia. The present study examined whether behavioral remediation ameliorates these dysfunctional neural mechanisms in children with dyslexia. Functional MRI was performed on 20 children with dyslexia (8–12 years old) during phonological processing before and after a remediation program focused on auditory processing and oral language training. Behaviorally, training improved oral language and reading performance. Physiologically, children with dyslexia showed increased activity in multiple brain areas. Increases occurred in left temporo-parietal cortex and left inferior frontal gyrus, bringing brain activation in these regions closer to that seen in normal-reading children. Increased activity was observed also in right-hemisphere frontal and temporal regions and in the anterior cingulate gyrus. Children with dyslexia showed a correlation between the magnitude of increased activation in left temporo-parietal cortex and improvement in oral language ability. These results suggest that a partial remediation of language-processing deficits, resulting in improved reading, ameliorates disrupted function in brain regions associated with phonological processing and produces additional compensatory activation in other brain regions. PMID:12604786

  3. Mitochondria-Targeted Peptide Reverses Mitochondrial Dysfunction and Cognitive Deficits in Sepsis-Associated Encephalopathy.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Hao, Shuangying; Jia, Ming; Ji, Muhuo; Qiu, Lili; Sun, Xiaoyan; Yang, Jianjun; Li, Kuanyu

    2015-08-01

    Sepsis-associated encephalopathy (SAE) is associated with increased mortality, morbidity, and long-term cognitive impairments. Its pathophysiology remains to be determined and an effective pharmacologic treatment is lacking. The goal of this study was to investigate the effects of the mitochondria-targeted peptide SS-31 on mitochondrial function and cognitive deficits in SAE mice. C57BL/6 male mice were randomly divided into sham, sham + SS-31, cecal ligation and puncture (CLP), and CLP + SS-31 groups. Peptide SS-31 (5 mg/kg) was intraperitoneally administrated immediately after operation and afterwards once daily for six consecutive days. Surviving mice were subjected to behavioral tests and the hippocampus was collected for biochemical analysis 7 days after operation. The results showed that CLP resulted in high mortality rate and cognitive deficits, representative characteristics of SAE. A physiological mechanistic investigation revealed that mitochondrial function of hippocampus was severely impaired, coupled with reactive oxygen species (ROS) generation, triggering neuronal apoptosis and inflammation. Notably, administration of peptide SS-31 protected the integrity of mitochondria, reversed the mitochondrial dysfunction, inhibited the apoptosis resulting from the release of cytochrome c, diminished the response of inflammation, and ultimately reversed the behavior deficits in the SAE mice. In conclusion, our data demonstrate that daily treatment with mitochondria-targeted peptide SS-31 reduces mortality rate and ameliorates cognitive deficits, which is possibly through a mechanism of reversing mitochondrial dysfunction and partial inhibition of neuronal apoptosis and inflammation in the hippocampus of the SAE mice.

  4. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice.

    PubMed

    Rajagopal, Lakshmi; Burgdorf, Jeffrey S; Moskal, Joseph R; Meltzer, Herbert Y

    2016-02-15

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-D-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg.i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications. Copyright © 2015. Published by Elsevier B.V.

  5. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice

    PubMed Central

    Rajagopal, Lakshmi; Burgdorf, Jeffrey S.; Moskal, Joseph R.; Meltzer, Herbert Y.

    2016-01-01

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-d-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg. i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications. PMID:26632337

  6. Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia.

    PubMed

    Yang, Li-Chao; Guo, Han; Zhou, Hao; Suo, Da-Qin; Li, Wen-Jun; Zhou, Yu; Zhao, Yun; Yang, Wu-Shuang; Jin, Xin

    2015-04-15

    Oleoylethanolamide (OEA) has been shown to have neuroprotective effects after acute cerebral ischemic injury. The aim of this study was to investigate the effects of chronic OEA treatment on ischemia-induced spatial cognitive impairments, electrophysiology behavior and hippocampal neurogenesis. Daily treatments of 30 mg/kg OEA significantly ameliorated spatial cognitive deficits and attenuated the inhibition of long-term potentiation (LTP) in the middle cerebral artery occlusion (MCAO) rat model. Moreover, OEA administration improved cognitive function in a manner associated with enhanced neurogenesis in the hippocampus. Further study demonstrated that treatment with OEA markedly increased the expressions of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptors α (PPARα). Our data suggest that chronic OEA treatment can exert functional recovery of cognitive impairments and neuroprotective effects against cerebral ischemic insult in rats via triggering of neurogenesis in the hippocampus, which supports the therapeutic use of OEA for cerebral ischemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Pharmacologic treatment of cognitive deficits and hypersexuality due to "shaken-baby syndrome".

    PubMed

    Schmidt, J G; Schneider, W N

    2000-01-01

    To describe the clinical effects of amantadine and propranolol in an agitated pediatric patient with cognitive deficits, hyperactivity, and hypersexualism secondary to "shaken-baby syndrome." Patients with shaken-baby syndrome can present with cognitive and behavioral impairments. A 9-year-old girl presented with cognitive impairments secondary to shaken-baby syndrome at 3 weeks of age. She was receiving many medications, including dextroamphetamine, methylphenidate, and clonidine, that were not effective in improving her cognitive status or decreasing her hypersexuality. She was weaned from stimulants and clonidine and prescribed amantadine 100 mg bid with improvement of attention, concentration, and cognition, although hypersexuality remained. She was then started on propranolol 10 mg tid and a gradual increase to 40 mg tid with amelioration of hypersexuality and hyperactivity and no unwanted effects noted. Self-weaning of propranolol was associated with the return of hypersexuality. The combination of amantadine and propranolol led to improvement of cognition and behavior, especially intellectual functioning and appropriate socialization with peers, respectively. Cognitive deficits and hypersexuality with hyperactive features due to shaken-baby syndrome may respond to the drug regimen of amantadine and propranolol.

  8. Early acoustic discrimination experience ameliorates auditory processing deficits in male rats with cortical developmental disruption

    PubMed Central

    Threlkeld, Steven W.; Hill, Courtney A.; Rosen, Glenn D.; Fitch, R. Holly

    2014-01-01

    Auditory temporal processing deficits have been suggested to play a causal role in language learning impairments, and evidence of cortical developmental anomalies (microgyria (MG), ectopia) has been reported for language-impaired populations. Rodent models have linked these features, by showing deficits in auditory temporal discrimination for rats with neuronal migration anomalies (MG, ectopia). Since evidence from human studies suggests that training with both speech and non-speech acoustic stimuli may improve language performance in developmentally language-disabled populations, we were interested in whether/how maturation and early experience might influence auditory processing deficits seen in male rats with induced focal cortical MG. Results showed that for both simple (Normal single tone), as well as increasingly complex auditory discrimination tasks (Silent gap in white noise and FM sweep), prior experience significantly improved acoustic discrimination performance -- in fact, beyond improvements seen with maturation only. Further, we replicated evidence that young adult rats with MG were significantly impaired at discriminating FM sweeps compared to shams. However, these MG effects were no longer seen when experienced subjects were retested in adulthood (even though deficits in short duration FM sweep detection were seen for adult MG rats with no early experience). Thus while some improvements in auditory processing were seen with normal maturation, the effects of early experience were even more profound, in fact resulting in amelioration of MG effects seen at earlier ages. These findings support the clinical view that early training intervention with appropriate acoustic stimuli could similarly ameliorate long-term processing impairments seen in some language-impaired children. PMID:19460626

  9. Cognitive control deficits associated with antisocial personality disorder and psychopathy.

    PubMed

    Zeier, Joshua D; Baskin-Sommers, Arielle R; Hiatt Racer, Kristina D; Newman, Joseph P

    2012-07-01

    Antisociality has been linked to a variety of executive functioning deficits, including poor cognitive control. Surprisingly, cognitive control deficits are rarely found in psychopathic individuals, despite their notoriously severe and persistent antisocial behavior. In fact, primary (low-anxious) psychopathic individuals display superior performance on cognitive control-type tasks under certain circumstances. To clarify these seemingly contradictory findings, we administered a response competition (i.e., flanker) task to incarcerated offenders, who were assessed for Antisocial Personality Disorder (APD) symptoms and psychopathy. As hypothesized, APD related to poorer accuracy, especially on incongruent trials. Contrary to expectation, however, the same pattern of results was found in psychopathy. Additional analyses indicated that these effects of APD and psychopathy were associated with overlapping variance. The findings suggest that psychopathy and APD symptoms are both associated with deficits in cognitive control, and that this deficit relates to general antisociality as opposed to a specific antisocial syndrome.

  10. Cognitive Control Deficits Associated with Antisocial Personality Disorder and Psychopathy

    PubMed Central

    Zeier, Joshua D.; Baskin-Sommers, Arielle R.; Newman, Joseph P.; Racer, Kristina Hiatt

    2011-01-01

    Antisociality has been linked to a variety of executive functioning deficits, including poor cognitive control. Surprisingly, cognitive control deficits are rarely found in psychopathic individuals, despite their notoriously severe and persistent antisocial behavior. In fact, primary (low-anxious) psychopathic individuals display superior performance on cognitive control-type tasks under certain circumstances. To clarify these seemingly contradictory findings, we administered a response competition (i.e. flanker) task to incarcerated offenders, who were assessed for Antisocial Personality Disorder (APD) symptoms and psychopathy. As hypothesized, APD related to poorer accuracy, especially on incongruent trials. Contrary to expectation, however, the same pattern of results was found in psychopathy. Additional analyses indicated that these effects of APD and psychopathy were associated with overlapping variance. The findings suggest that psychopathy and APD symptoms are both associated with deficits in cognitive control, and that this deficit relates to general antisociality as opposed to a specific antisocial syndrome. PMID:22452754

  11. Common Cognitive Deficits in Children with Attention-Deficit/Hyperactivity Disorder and Autism: Working Memory and Visual-Motor Integration

    ERIC Educational Resources Information Center

    Englund, Julia A.; Decker, Scott L.; Allen, Ryan A.; Roberts, Alycia M.

    2014-01-01

    Cognitive deficits in working memory (WM) are characteristic features of Attention-Deficit/Hyperactivity Disorder (ADHD) and autism. However, few studies have investigated cognitive deficits using a wide range of cognitive measures. We compared children with ADHD ("n" = 49) and autism ("n" = 33) with a demographically matched…

  12. Common Cognitive Deficits in Children with Attention-Deficit/Hyperactivity Disorder and Autism: Working Memory and Visual-Motor Integration

    ERIC Educational Resources Information Center

    Englund, Julia A.; Decker, Scott L.; Allen, Ryan A.; Roberts, Alycia M.

    2014-01-01

    Cognitive deficits in working memory (WM) are characteristic features of Attention-Deficit/Hyperactivity Disorder (ADHD) and autism. However, few studies have investigated cognitive deficits using a wide range of cognitive measures. We compared children with ADHD ("n" = 49) and autism ("n" = 33) with a demographically matched…

  13. Oculomotor Performance Identifies Underlying Cognitive Deficits in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Loe, Irene M.; Feldman, Heidi M.; Yasui, Enami; Luna, Beatriz

    2009-01-01

    The evaluation of the cognitive control in children with attention-deficit hyperactivity disorder through the use of oculomotor tests reveal that this group showed susceptibility to peripheral distractors and deficits in response inhibition. All subjects were found to have intact sensorimotor function and working memory.

  14. Oculomotor Performance Identifies Underlying Cognitive Deficits in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Loe, Irene M.; Feldman, Heidi M.; Yasui, Enami; Luna, Beatriz

    2009-01-01

    The evaluation of the cognitive control in children with attention-deficit hyperactivity disorder through the use of oculomotor tests reveal that this group showed susceptibility to peripheral distractors and deficits in response inhibition. All subjects were found to have intact sensorimotor function and working memory.

  15. Cognitive Mapping Deficits in Schizophrenia: A Critical Overview

    PubMed Central

    Bose, Anushree; Agarwal, Sri Mahavir; Kalmady, Sunil V.; Venkatasubramanian, Ganesan

    2014-01-01

    Hippocampal deficits are an established feature of schizophrenia and are complementary with recent evidences of marked allocentric processing deficits being reported in this disorder. By “Cognitive mapping” we intend to refer to the concepts from the seminal works of O’Keefe and Nadel (1978) that led to the development of cognitive map theory of hippocampal function. In this review, we summarize emerging evidences and issues that indicate that “Cognitive mapping deficits” form one of the important cognitive aberrations in schizophrenia. The importance has been placed upon hippocampally mediated allocentric processing deficits and their role in pathology of schizophrenia, for spatial/representational cognitive deficits and positive symptoms in particular. It is modestly summarized that emerging evidences point toward a web of spatial and cognitive representation errors concurrent with pronounced hippocampal dysfunction. In general, it can be stated that there are clear and consistent evidences that favor the cognitive mapping theory in explaining certain deficits of schizophrenia and for drawing out a possible and promising endophenotype/biomarkers. Further research in this regard demands attention. PMID:24701005

  16. Amusia and cognitive deficits after stroke: is there a relationship?

    PubMed

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja

    2009-07-01

    We studied the relationship between musical and cognitive deficits by testing middle cerebral arterial (MCA) stroke patients (n= 53) with a shortened version of the Montreal Battery of Evaluation of Amusia (MBEA) and an extensive neuropsychological test battery. Results showed that amusic patients (n= 32) had more severe cognitive deficits, especially in working memory and executive functioning, than did non-amusic patients (n= 21), and the severity of amusia also correlated with attention deficits. These findings thus suggest that domain-general attention, executive, and working memory processes are associated with amusia after stroke.

  17. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington's disease

    PubMed Central

    Wright, D J; Renoir, T; Smith, Z M; Frazier, A E; Francis, P S; Thorburn, D R; McGee, S L; Hannan, A J; Gray, L J

    2015-01-01

    Huntington's disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington's disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy. PMID:25562842

  18. Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning

    PubMed Central

    Lesh, Tyler A; Niendam, Tara A; Minzenberg, Michael J; Carter, Cameron S

    2011-01-01

    Although schizophrenia is an illness that has been historically characterized by the presence of positive symptomatology, decades of research highlight the importance of cognitive deficits in this disorder. This review proposes that the theoretical model of cognitive control, which is based on contemporary cognitive neuroscience, provides a unifying theory for the cognitive and neural abnormalities underlying higher cognitive dysfunction in schizophrenia. To support this model, we outline converging evidence from multiple modalities (eg, structural and functional neuroimaging, pharmacological data, and animal models) and samples (eg, clinical high risk, genetic high risk, first episode, and chronic subjects) to emphasize how dysfunction in cognitive control mechanisms supported by the prefrontal cortex contribute to the pathophysiology of higher cognitive deficits in schizophrenia. Our model provides a theoretical link between cellular abnormalities (eg, reductions in dentritic spines, interneuronal dysfunction), functional disturbances in local circuit function (eg, gamma abnormalities), altered inter-regional cortical connectivity, a range of higher cognitive deficits, and symptom presentation (eg, disorganization) in the disorder. Finally, we discuss recent advances in the neuropharmacology of cognition and how they can inform a targeted approach to the development of effective therapies for this disabling aspect of schizophrenia. PMID:20844478

  19. Cognitive control deficits in schizophrenia: mechanisms and meaning.

    PubMed

    Lesh, Tyler A; Niendam, Tara A; Minzenberg, Michael J; Carter, Cameron S

    2011-01-01

    Although schizophrenia is an illness that has been historically characterized by the presence of positive symptomatology, decades of research highlight the importance of cognitive deficits in this disorder. This review proposes that the theoretical model of cognitive control, which is based on contemporary cognitive neuroscience, provides a unifying theory for the cognitive and neural abnormalities underlying higher cognitive dysfunction in schizophrenia. To support this model, we outline converging evidence from multiple modalities (eg, structural and functional neuroimaging, pharmacological data, and animal models) and samples (eg, clinical high risk, genetic high risk, first episode, and chronic subjects) to emphasize how dysfunction in cognitive control mechanisms supported by the prefrontal cortex contribute to the pathophysiology of higher cognitive deficits in schizophrenia. Our model provides a theoretical link between cellular abnormalities (eg, reductions in dentritic spines, interneuronal dysfunction), functional disturbances in local circuit function (eg, gamma abnormalities), altered inter-regional cortical connectivity, a range of higher cognitive deficits, and symptom presentation (eg, disorganization) in the disorder. Finally, we discuss recent advances in the neuropharmacology of cognition and how they can inform a targeted approach to the development of effective therapies for this disabling aspect of schizophrenia.

  20. Stroke, cognitive deficits, and rehabilitation: still an incomplete picture.

    PubMed

    Cumming, Toby B; Marshall, Randolph S; Lazar, Ronald M

    2013-01-01

    Cognitive impairment after stroke is common and can cause disability with major impacts on quality of life and independence. There are also indirect effects of cognitive impairment on functional recovery after stroke through reduced participation in rehabilitation and poor adherence to treatment guidelines. In this article, we attempt to establish the following: ● whether there is a distinct profile of cognitive impairment after stroke; ● whether the type of cognitive deficit can be associated with the features of stroke-related damage; and ● whether interventions can improve poststroke cognitive performance. There is not a consistent profile of cognitive deficits in stroke, though slowed information processing and executive dysfunction tend to predominate. Our understanding of structure-function relationships has been advanced using imaging techniques such as lesion mapping and will be further enhanced through better characterization of damage to functional networks and identification of subtle white matter abnormalities. Effective cognitive rehabilitation approaches have been reported for focal cortical deficits such as neglect and aphasia, but treatments for more diffusely represented cognitive impairment remain elusive. In the future, the hope is that different techniques that have been shown to promote neural plasticity (e.g., exercise, brain stimulation, and pharmacological agents) can be applied to improve the cognitive function of stroke survivors.

  1. Premorbid Cognitive Deficits in Young Relatives of Schizophrenia Patients

    PubMed Central

    Keshavan, Matcheri S.; Kulkarni, Shreedhar; Bhojraj, Tejas; Francis, Alan; Diwadkar, Vaibhav; Montrose, Debra M.; Seidman, Larry J.; Sweeney, John

    2009-01-01

    Neurocognitive deficits in schizophrenia (SZ) are thought to be stable trait markers that predate the illness and manifest in relatives of patients. Adolescence is the age of maximum vulnerability to the onset of SZ and may be an opportune “window” to observe neurocognitive impairments close to but prior to the onset of psychosis. We reviewed the extant studies assessing neurocognitive deficits in young relatives at high risk (HR) for SZ and their relation to brain structural alterations. We also provide some additional data pertaining to the relation of these deficits to psychopathology and brain structural alterations from the Pittsburgh Risk Evaluation Program (PREP). Cognitive deficits are noted in the HR population, which are more severe in first-degree relatives compared to second-degree relatives and primarily involve psychomotor speed, memory, attention, reasoning, and social-cognition. Reduced general intelligence is also noted, although its relationship to these specific domains is underexplored. Premorbid cognitive deficits may be related to brain structural and functional abnormalities, underlining the neurobiological basis of this illness. Cognitive impairments might predict later emergence of psychopathology in at-risk subjects and may be targets of early remediation and preventive strategies. Although evidence for neurocognitive deficits in young relatives abounds, further studies on their structural underpinnings and on their candidate status as endophenotypes are needed. PMID:20300465

  2. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure.

    PubMed

    Wellmann, Kristen A; George, Finney; Brnouti, Fares; Mooney, Sandra M

    2015-06-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects.

  3. DOCOSAHEXAENOIC ACID PARTIALLY AMELIORATES DEFICITS IN SOCIAL BEHAVIOR AND ULTRASONIC VOCALIZATIONS CAUSED BY PRENATAL ETHANOL EXPOSURE

    PubMed Central

    Wellmann, Kristen A.; George, Finney; Brnouti, Fares; Mooney, Sandra M.

    2015-01-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10 g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol’s damaging effects. PMID:25746516

  4. CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE

    PubMed Central

    Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.

    2015-01-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462

  5. A neurobiological approach to the cognitive deficits of psychiatric disorders.

    PubMed

    Etkin, Amit; Gyurak, Anett; O'Hara, Ruth

    2013-12-01

    Deficits in brain networks that support cognitive regulatory functions are prevalent in many psychiatric disorders. Findings across neuropsychology and neuroimaging point to broad-based impairments that cross traditional diagnostic boundaries. These dysfunctions are largely separate from the classical symptoms of the disorders, and manifest in regulatory problems in both traditional cognitive and emotional domains. As such, they relate to the capacity of patients to engage effectively in their daily lives and activity, often persist even in the face of symptomatically effective treatment, and are poorly targeted by current treatments. Advances in cognitive neuroscience now allow us to ground an understanding of these cognitive regulatory deficits in the function and interaction of key brain networks. This emerging neurobiological understanding furthermore points to several promising routes for novel neuroscience-informed treatments targeted more specifically at improving cognitive function in a range of psychiatric disorders.

  6. Chronic fluoxetine ameliorates adolescent chronic nicotine exposure-induced long-term adult deficits in trace conditioning.

    PubMed

    Connor, David A; Gould, Thomas J

    2017-10-01

    Development of the brain, including the prefrontal cortex and hippocampus, continues through adolescence. Chronic nicotine exposure during adolescence may contribute to long-term deficits in forebrain-dependent learning. It is unclear if these deficits emerge immediately after exposure and if they can be ameliorated. In this study, C57BL/6J mice were treated with chronic nicotine (6.3 or 12.6 mg/kg/day) over 12 days beginning at adolescence, postnatal day (PND) 38, or adulthood, PND 56-63 ± 3. We investigated the effects of short-term (24 h) abstinence on trace fear conditioning and found that adult treatment resulted in deficits (6.3 and 12.6 mg/kg/day), but adolescent chronic nicotine treatment had no effect. In contrast, adolescent treatment with chronic nicotine (12.6 mg/kg/day) elicited a long-term (30 days) learning deficit, but adult chronic nicotine treatment did not. Using the elevated plus maze (EPM) we found no long-term changes in anxiety-related behavior after chronic nicotine exposure at either time-point. We investigated if chronic fluoxetine (FLX) could ameliorate adolescent chronic nicotine-associated long-term deficits in trace conditioning. We found that chronic FLX (160 mg/L) in drinking water ameliorated the long-term deficit in trace fear conditioning associated with nicotine exposure during adolescence. Additionally, in the same animals, we examined changes in total BDNF protein in the dorsal hippocampus (DH), ventral hippocampus (VH), and prefrontal cortex (PFC). Chronic FLX increased DH BDNF. Our data indicate nicotine administration during adolescence leads to late onset, long-lasting deficits in hippocampus-dependent learning that chronic FLX treatment ameliorate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Social perception deficits, cognitive distortions, and empathy deficits in sex offenders: a brief review.

    PubMed

    Blake, Emily; Gannon, Theresa

    2008-01-01

    This literature review examines the differences between sex offenders and nonoffenders with regard to social perception skills, cognitive distortions, and empathy skills in order to investigate sex offenders' cognition. The literature on cognitive distortions is discussed, with reference to the confusion surrounding its definition, and the debate between cognitive distortions as offense-supportive beliefs or justifications is examined. In terms of social perception, particular reference is made to sex offenders' misinterpretations of women's social cues and the source of this deficit. The authors discuss possibilities for this deficit, including offense-supportive beliefs that are driven by underlying implicit theories or schemata held by offenders. The concept of empathy and its relation to both social perception skills and cognitive distortions is discussed, and the integration of these factors is represented in a new model.

  8. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice.

    PubMed

    Ma, Tuo; Gong, Kai; Ao, Qiang; Yan, Yufang; Song, Bo; Huang, Hongyun; Zhang, Xiufang; Gong, Yandao

    2013-01-01

    Recent studies suggest that transplantation of mesenchymal stem cells might have therapeutic effects in preventing pathogenesis of several neurodegenerative disorders. Adipose-derived mesenchymal stem cells (ADSCs) are a promising new cell source for regenerative therapy. However, whether transplantation of ADSCs could actually ameliorate the neuropathological deficits in Alzheimer's disease (AD) and the mechanisms involved has not yet been established. Here, we evaluated the therapeutic effects of intracerebral ADSC transplantation on AD pathology and spatial learning/memory of APP/PS1 double transgenic AD model mice. Results showed that ADSC transplantation dramatically reduced β-amyloid (Aβ) peptide deposition and significantly restored the learning/memory function in APP/PS1 transgenic mice. It was observed that in both regions of the hippocampus and the cortex there were more activated microglia, which preferentially surrounded and infiltrated into plaques after ADSC transplantation. The activated microglia exhibited an alternatively activated phenotype, as indicated by their decreased expression levels of proinflammatory factors and elevated expression levels of alternative activation markers, as well as Aβ-degrading enzymes. In conclusion, ADSC transplantation could modulate microglial activation in AD mice, mitigate AD symptoms, and alleviate cognitive decline, all of which suggest ADSC transplantation as a promising choice for AD therapy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.

  9. Ameliorative effects of amide derivatives of 1,3,4-thiadiazoles on scopolamine induced cognitive dysfunction.

    PubMed

    Kulshreshtha, Akanksha; Piplani, Poonam

    2016-10-21

    The present study reports the effect of amide derivatives of 1,3,4-thiadizoles on scopolamine induced deficit cholinergic neurotransmission and oxidative stress serving as promising leads for the therapeutics of cognitive dysfunction. Fourteen compounds (2c-8d) have been synthesised and evaluated against behavioural alterations using step down passive avoidance protocol and morris water maze and at a dose of 0.5 mg/kg with reference to the standard, Rivastigmine. All the synthesised compounds were evaluated for their in vitro acetylcholinesterase (AChE) inhibition at five different concentrations using mice brain homogenate as the source of the enzyme. Biochemical estimation of markers of oxidative stress (lipid peroxidation, superoxide dismutase, glutathione, plasma nitrite, catalase) has also been carried out to assess the role of synthesised molecules on the oxidative damage induced by scopolamine. The compounds 5c, 6c and 8c displayed appreciable activity with an IC50 value of 3 μM, 3.033 μM and 2.743 μM, respectively towards acetylcholinesterase inhibition. These compounds also decreased scopolamine induced oxidative stress, thus serving as promising leads for the amelioration of oxidative stress induced cognitive decline. The molecular docking study performed to predict the binding mode of the compounds also suggested that these compounds bind appreciably with the amino acids present in the active site of recombinant human acetylcholinesterase (rhAChE). The results indicated that these compounds could be further traversed as inhibitors of AChE and oxidative stress for the treatment of cognitive dysfunction.

  10. Decline of cognition in multiple sclerosis: dissociable deficits.

    PubMed Central

    Jennekens-Schinkel, A; Sanders, E A

    1986-01-01

    Three female patients (ages 32, 37 and 27 years) developed progressive deficits of cognition in stages of multiple sclerosis in which physical disability ratings were low. Neuropsychological examination revealed severe cognitive impairments in the first two patients. Cognitive functioning was essentially intact in the third patient, although her work pace was significantly slowed. CT scanning of the brain showed cortical atrophy as well as white matter lesions in patients 1 and 2, and multiple lesions and oedema of predominantly white matter in patient 3. The differences of cognitive dysfunction between the third and the first two patients may be related to involvement of different anatomical structures. Images PMID:3806111

  11. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury.

    PubMed

    Morán, Javier; Stokowska, Anna; Walker, Frederik R; Mallard, Carina; Hagberg, Henrik; Pekna, Marcela

    2017-04-01

    Perinatal asphyxia-induced brain injury is often associated with irreversible neurological complications such as intellectual disability and cerebral palsy but available therapies are limited. Novel neuroprotective therapies as well as approaches stimulating neural plasticity mechanism that can compensate for cell death after hypoxia-ischemia (HI) are urgently needed. We previously reported that single i.c.v. injection of complement-derived peptide C3a 1h after HI induction prevented HI-induced cognitive impairment when mice were tested as adults. Here, we tested the effects of intranasal treatment with C3a on HI-induced cognitive deficit. Using the object recognition test, we found that intranasal C3a treated mice were protected from HI-induced impairment of memory function assessed 6weeks after HI induction. C3a treatment ameliorated HI-induced reactive gliosis in the hippocampus, while it did not affect the extent of hippocampal tissue loss, neuronal cell density, expression of the pan-synaptic marker synapsin I or the expression of growth associated protein 43. In conclusion, our results reveal that brief pharmacological treatment with C3a using a clinically feasible non-invasive mode of administration ameliorates HI-induced cognitive impairment. Intranasal administration is a plausible route to deliver C3a into the brain of asphyxiated infants at high risk of developing hypoxic-ischemic encephalopathy.

  12. Speech deficits in serious mental illness: a cognitive resource issue?

    PubMed

    Cohen, Alex S; McGovern, Jessica E; Dinzeo, Thomas J; Covington, Michael A

    2014-12-01

    Speech deficits, notably those involved in psychomotor retardation, blunted affect, alogia and poverty of content of speech, are pronounced in a wide range of serious mental illnesses (e.g., schizophrenia, unipolar depression, bipolar disorders). The present project evaluated the degree to which these deficits manifest as a function of cognitive resource limitations. We examined natural speech from 52 patients meeting criteria for serious mental illnesses (i.e., severe functional deficits with a concomitant diagnosis of schizophrenia, unipolar and/or bipolar affective disorders) and 30 non-psychiatric controls using a range of objective, computer-based measures tapping speech production ("alogia"), variability ("blunted vocal affect") and content ("poverty of content of speech"). Subjects produced natural speech during a baseline condition and while engaging in an experimentally-manipulated cognitively-effortful task. For correlational analysis, cognitive ability was measured using a standardized battery. Generally speaking, speech deficits did not differ as a function of SMI diagnosis. However, every speech production and content measure was significantly abnormal in SMI versus control groups. Speech variability measures generally did not differ between groups. For both patients and controls as a group, speech during the cognitively-effortful task was sparser and less rich in content. Relative to controls, patients were abnormal under cognitive load with respect only to average pause length. Correlations between the speech variables and cognitive ability were only significant for this same variable: average pause length. Results suggest that certain speech deficits, notably involving pause length, may manifest as a function of cognitive resource limitations. Implications for treatment, research and assessment are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Speech Deficits in Serious mental Illness: A Cognitive Resource Issue?

    PubMed Central

    Cohen, Alex S.; McGovern, Jessica E.; Dinzeo, Thomas J.; Covington, Michael A.

    2014-01-01

    Speech deficits, notably those involved in psychomotor retardation, blunted affect, alogia and poverty of content of speech, are pronounced in a wide range of serious mental illnesses (e.g., schizophrenia, unipolar depression, bipolar disorders). The present project evaluated the degree to which these deficits manifest as a function of cognitive resource limitations. We examined natural speech from 52 patients meeting criteria for serious mental illnesses (i.e., severe functional deficits with a concomitant diagnosis of schizophrenia, unipolar and/or bipolar affective disorders) and 30 non-psychiatric controls using a range of objective, computer-based measures tapping speech production (“alogia”), variability (“blunted vocal affect”) and content (“poverty of content of speech”). Subjects produced natural speech during a baseline condition and while engaging in an experimentally-manipulated cognitively-effortful task. For correlational analysis, cognitive ability was measured using a standardized battery. Generally speaking, speech deficits did not differ as a function of SMI diagnosis. However, every speech production and content measure was significantly abnormal in SMI versus control groups. Speech variability measures generally did not differ between groups. For both patients and controls as a group, speech during the cognitively-effortful task was sparser and less rich in content. Relative to controls, patients were abnormal under cognitive load with respect only to average pause length. Correlations between the speech variables and cognitive ability were only significant for this same variable: average pause length. Results suggest that certain speech deficits, notably involving pause length, may manifest as a function of cognitive resource limitations. Implications for treatment, research and assessment are discussed. PMID:25464920

  14. Nonpharmacological amelioration of age-related learning deficits: The impact of hippocampal θ-triggered training

    PubMed Central

    Asaka, Yukiko; Mauldin, Kristin N.; Griffin, Amy L.; Seager, Matthew A.; Shurell, Elizabeth; Berry, Stephen D.

    2005-01-01

    Age-related learning deficits are often attributed to deterioration of hippocampal function. Conversely, a well studied index of hippocampal activity, the θ rhythm, is known to enhance hippocampal plasticity and accelerate learning rate in young subjects, suggesting that manipulations of θ activity might be used as a means to counteract impairments related to the aging process. Here, young and older rabbits were given eyeblink conditioning trials either when exhibiting hippocampal θ (θ+) or regardless of hippocampal activity (yoked control). Although, as expected, older-yoked control animals showed a learning deficit, the older θ+ group learned as fast as young controls, demonstrating that aging deficits, at least in eyeblink classical conditioning, can be overcome by giving trials during episodes of hippocampal θ activity. The use of several learning criteria showed that the benefits of hippocampal θ occur in multiple phases of learning that may depend on different cognitive or motor processes. Whereas there was a benefit of θ-triggered training in both age groups during the early phase of acquisition, the enhancement persisted in older animals, peaking during later performance. These findings have implications for theories of age-related memory deficits and may contribute to the development of beneficial treatments. PMID:16150707

  15. Withdrawal From Chronic Nicotine Reduces Thyroid Hormone Levels and Levothyroxine Treatment Ameliorates Nicotine Withdrawal-Induced Deficits in Hippocampus-Dependent Learning in C57BL/6J Mice.

    PubMed

    Leach, Prescott T; Holliday, Erica; Kutlu, Munir G; Gould, Thomas J

    2015-06-01

    Cigarette smoking alters a variety of endocrine systems including thyroid hormones. Altered thyroid hormone signaling may lead to a subclinical or overt hypothyroid condition that could contribute to nicotine withdrawal-related symptoms, such as cognitive deficits. Thus, normalizing thyroid hormone levels may represent a novel therapeutic target for ameliorating nicotine withdrawal-associated cognitive deficits. The current studies conducted an analysis of serum thyroid hormone levels after chronic and withdrawal from chronic nicotine treatment in C57BL/6J mice using an enzyme-linked immunosorbent assay. The present studies also evaluated the effect of synthetic thyroid hormone (levothyroxine) on contextual and cued memory. The current studies found that nicotine withdrawal reduces secreted thyroid hormone levels by 9% in C57BL/6J mice. Further, supplemental thyroid hormone not only enhanced memory in naïve animals, but also ameliorated deficits in hippocampus-dependent learning associated with nicotine withdrawal. These results suggest that smokers attempting to quit should be monitored closely for changes in thyroid function. If successfully treated, normalization of thyroid hormone levels may ameliorate some deficits associated with nicotine withdrawal and this may lead to higher rates of successful abstinence. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The role of nicotinic receptors in the amelioration of cholinesterase inhibitors in scopolamine-induced memory deficits.

    PubMed

    Masuoka, Takayoshi; Kamei, Chiaki

    2009-10-01

    Nicotine receptors in the brain are closely related with memory amelioration induced by cholinesterase inhibitors. The present study was undertaken to clarify the role of nicotinic receptors in the ameliorative effects of cholinesterase inhibitors on scopolamine-induced memory deficit. Drug effects were measured using an eight-arm radial maze with four arms baited. Hippocampal theta rhythm during the radial maze task was also recorded with a polygraph system using a telemetric technique. Scopolamine (0.5 mg/kg, i.p.) caused a spatial memory deficit as well as an increase in hippocampal theta power during radial maze performance. Pilocarpine, nicotine, physostigmine, and donepezil antagonized the effects of scopolamine. The ameliorative effects of nicotine, physostigmine, and donepezil but not piocarpine on memory performance and hippocampal theta activity were reversed by mecamylamine. These results indicate that nicotinic receptors have an essential role in the ameliorative effects of cholinesterase inhibitors in both scopolamine-induced memory deficit and the increase in hippocampal theta activity.

  17. Awareness of cognitive deficits in older adults with epilepsy and mild cognitive impairment.

    PubMed

    Galioto, Rachel; Thamilavel, Selvan; Blum, Andrew S; Tremont, Geoffrey

    2015-01-01

    A significant portion of individuals with mild cognitive impairment (MCI) experience limited awareness of cognitive deficits. Although older adults with epilepsy have comparable cognitive deficits to individuals with MCI, little is known about awareness of cognitive deficit in epilepsy. This study compared deficit awareness in epilepsy and MCI and examined its relationship with neuropsychological performance. Sixty-two older adults (31 epilepsy, 31 MCI) completed neuropsychological testing and the Cognitive Difficulties Scale (CDS), a self-report measure of everyday cognitive skills. Informants completed the CDS only. Cognitive domain scores were created. CDS composite scores were created by summing attention-concentration and language and delayed memory factors. Awareness was defined as the difference between patient and informant CDS scores, with limited awareness defined as greater informant complaints. Neuropsychological performance was similar between groups for all domains except that MCI participants had worse delayed memory, t(60) = 2.49, p < .05. CDS scores were similar between patient groups (p > .05). Epilepsy informant CDS scores were related to poorer immediate memory (r = -.41, p = .02). MCI informant CDS scores were related to worse delayed memory (r = -.41, p = .02). Limited awareness was found in 29.0% of epilepsy and 61.3% of MCI participants. Awareness was not related to cognition in epilepsy but was related to worse delayed memory (r = -.41, p = .02) for MCI participants. Older adults with epilepsy and MCI had similar cognitive deficits with the exception of greater impairment in delayed memory for MCI patients. There was less awareness of deficit in the MCI group, suggesting that delayed memory may be a critical factor for deficit awareness. Results argue against executive dysfunction as a major contributor to deficit awareness.

  18. Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits.

    PubMed

    Mathew, Jobin; Paul, Jes; Nandhu, M S; Paulose, C S

    2010-07-01

    Bacopa monnieri is an outstanding nervine tonic used for raising the mental performance. It helps in concentration, comprehension, recall and alertness, Brahmi is particularly beneficial as it aids in categorizing information in brain and its subsequent expression. Bacopa is also called as a natural antioxidant which may give details its neuroprotective role seen in the memory centers of the brain. Epilepsy is neuronal disorder characterized by learning, cognitive and memory impairments. The present review summarizes information concerning botany, chemistry and beneficial effect of Bacopa monnieri on epilepsy associated behavioral deficits.

  19. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    PubMed

    Olajide, Olayemi Joseph; Yawson, Emmanuel Olusola; Gbadamosi, Ismail Temitayo; Arogundade, Tolulope Timothy; Lambe, Ezra; Obasi, Kosisochukwu; Lawal, Ismail Tayo; Ibrahim, Abdulmumin; Ogunrinola, Kehinde Yomi

    2017-03-01

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl3)-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural

  20. A multiple deficit model of Reading Disability and Attention-Deficit/Hyperactivity Disorder: Searching for shared cognitive deficits

    PubMed Central

    McGrath, Lauren M.; Pennington, Bruce F.; Shanahan, Michelle A.; Santerre-Lemmon, Laura E.; Barnard, Holly D.; Willcutt, Erik G.; DeFries, John C.; Olson, Richard K.

    2010-01-01

    Background This study tests a multiple cognitive deficit model of Reading Disability (RD), Attention-Deficit/Hyperactivity Disorder (ADHD), and their comorbidity. Methods A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique predictor of RD and response inhibition as a unique predictor of ADHD. Processing speed, naming speed, and verbal working memory were modeled as potential shared cognitive deficits. Results Model fit indices from the SEM indicated satisfactory fit. Closer inspection of the path weights revealed that processing speed was the only cognitive variable with significant unique relationships to RD and ADHD dimensions, particularly inattention. Moreover, the significant correlation between reading and inattention was reduced to nonsignificance when processing speed was included in the model, suggesting that processing speed primarily accounted for the phenotypic correlation (or comorbidity) between reading and inattention. Conclusions This study illustrates the power of a multiple deficit approach to complex developmental disorders and psychopathologies, particularly for exploring comorbidities. The theoretical role of processing speed in the developmental pathways of RD and ADHD and directions for future research are discussed. PMID:21126246

  1. A multiple deficit model of reading disability and attention-deficit/hyperactivity disorder: searching for shared cognitive deficits.

    PubMed

    McGrath, Lauren M; Pennington, Bruce F; Shanahan, Michelle A; Santerre-Lemmon, Laura E; Barnard, Holly D; Willcutt, Erik G; Defries, John C; Olson, Richard K

    2011-05-01

    This study tests a multiple cognitive deficit model of reading disability (RD), attention-deficit/hyperactivity disorder (ADHD), and their comorbidity. A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique predictor of RD and response inhibition as a unique predictor of ADHD. Processing speed, naming speed, and verbal working memory were modeled as potential shared cognitive deficits. Model fit indices from the SEM indicated satisfactory fit. Closer inspection of the path weights revealed that processing speed was the only cognitive variable with significant unique relationships to RD and ADHD dimensions, particularly inattention. Moreover, the significant correlation between reading and inattention was reduced to non-significance when processing speed was included in the model, suggesting that processing speed primarily accounted for the phenotypic correlation (or comorbidity) between reading and inattention. This study illustrates the power of a multiple deficit approach to complex developmental disorders and psychopathologies, particularly for exploring comorbidities. The theoretical role of processing speed in the developmental pathways of RD and ADHD and directions for future research are discussed. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.

  2. Cognitive Deficits in Adults with ADHD Go beyond Comorbidity Effects

    ERIC Educational Resources Information Center

    Silva, Katiane L.; Guimaraes-da-Silva, Paula O.; Grevet, Eugenio H.; Victor, Marcelo M.; Salgado, Carlos A. I.; Vitola, Eduardo S.; Mota, Nina R.; Fischer, Aline G.; Contini, Veronica; Picon, Felipe A.; Karam, Rafael G.; Belmonte-de-Abreu, Paulo; Rohde, Luis A.; Bau, Claiton H. D.

    2013-01-01

    Objective: This study addresses if deficits in cognitive, attention, and inhibitory control performance in adults with ADHD are better explained by the disorder itself or by comorbid conditions. Method Adult patients with ADHD ("n" = 352) and controls ("n" = 94) were evaluated in the ADHD program of a tertiary hospital. The…

  3. Cognitive Deficits in Adults with ADHD Go beyond Comorbidity Effects

    ERIC Educational Resources Information Center

    Silva, Katiane L.; Guimaraes-da-Silva, Paula O.; Grevet, Eugenio H.; Victor, Marcelo M.; Salgado, Carlos A. I.; Vitola, Eduardo S.; Mota, Nina R.; Fischer, Aline G.; Contini, Veronica; Picon, Felipe A.; Karam, Rafael G.; Belmonte-de-Abreu, Paulo; Rohde, Luis A.; Bau, Claiton H. D.

    2013-01-01

    Objective: This study addresses if deficits in cognitive, attention, and inhibitory control performance in adults with ADHD are better explained by the disorder itself or by comorbid conditions. Method Adult patients with ADHD ("n" = 352) and controls ("n" = 94) were evaluated in the ADHD program of a tertiary hospital. The…

  4. Cognitive Deficits in Symptomatic and Asymptomatic Carotid Endarterectomy Surgical Candidates

    PubMed Central

    Jackson, Daren C.; Sandoval-Garcia, Carolina; Rocque, Brandon G.; Wilbrand, Stephanie M.; Mitchell, Carol C.; Hermann, Bruce P.; Dempsey, Robert J.

    2016-01-01

    The role played by vessel disease in stroke-related cognition dysfunction is unclear. We assessed the impact of significant atherosclerotic disease on cognition—even in patients asymptomatic for stroke. We hypothesized that patients would perform poorly relative to controls, but that symptomatic/asymptomatic status (history of stroke/transient ischemic attack) would have no effect. Fifty-two carotid endarterectomy candidates with >60% carotid stenosis and 17 controls underwent a 60-min neuropsychological test protocol. Symptomatic and asymptomatic patients showed deficits in executive function, delayed verbal recall, and general knowledge. Patients symptomatic for stroke also performed worse on tests of language and motor/visuomotor ability. Symptomatic and asymptomatic patients differed in working memory and language task performance. Although all patients showed deficits in executive function and memory, only symptomatic patients showed additional deficits in language and motor function. Cognitive abnormalities in patients viewed as “asymptomatic” for stroke underscore the need for early identification and treatment. PMID:26663810

  5. DADS Analogues Ameliorated the Cognitive Impairments of Alzheimer-Like Rat Model Induced by Scopolamine.

    PubMed

    Manral, Apra; Meena, Poonam; Saini, Vikas; Siraj, Fouzia; Shalini, Shruti; Tiwari, Manisha

    2016-10-01

    The development of agents that affect two or more relevant targets has drawn considerable attention in treatment of AD. Diallyl disulfide (DADS), an active principle of garlic, has been reported to prevent APP processing by amyloidogenic pathway. Recently, we have reported a new series of DADS derivatives and our findings revealed that compound 7k and 7l could provide good templates for developing new multifunctional agents for AD treatment. Thus, the present study was constructed to investigate the neuroprotective effect of DADS analogues (7k and 7l) against Aβ-induced neurotoxicity in SH-SY5Y human neuroblastoma cells and in ameliorating the cognition deficit induced by scopolamine in rat model. The results indicated that compound 7k and 7l significantly inhibited Aβ1-42-induced neuronal cell death by inhibiting ROS generation. Moreover, they prevented apoptosis, in response to ROS, by restoring normal Bax/Bcl-2 ratio. Furthermore, it was observed that scopolamine-induced memory impairment was coupled by alterations in neurotransmitters, acetylcholinesterase activity and oxidative stress markers. Histological analysis revealed severe damaging effects of scopolamine on the structure of cerebral cortex and hippocampus. Administration of compounds 7k and 7l at 5 mg/kg significantly reversed scopolamine-induced behavioural, biochemical, neurochemical and histological changes in a manner comparable to standard donepezil. Together the present findings and previous studies indicate that compounds 7k and 7l have neuroprotective and cognition-enhancing effects, which makes them a promising multi-target candidate for addressing the complex nature of AD.

  6. Suicidal behaviours in affective disorders: a deficit of cognitive inhibition?

    PubMed

    Richard-Devantoy, Stéphane; Gorwood, Philip; Annweiler, Cédric; Olié, Jean-Pierre; Le Gall, Didier; Beauchet, Olivier

    2012-04-01

    Suicide has been related to affective disorders. We hypothesized that suicide could be associated with cognitive inhibition deficit. Our study aimed to systematically review all published articles that examined the relation between cognitive inhibition deficit and suicidal behaviours (that is, suicide attempt or suicidal ideation) in patients with affective disorders. We performed an English and French MEDLINE and EMBASE search, ranging from 1970 to 2010, indexed under the MeSH terms of suicide, neuropsychology, neuropsychological tests, and executive function, combined with the following title and abstract terms: neuropsychological functions, executive functioning, and executive performance. Among the 164 selected studies, 9 observational studies met the selection criteria and were included in the final analysis. The number of participants ranged from 57 to 244 (28% to 66%, respectively, were men). Executive dysfunction was more frequently found among patients with suicidal behaviours. In particular, higher cognitive inhibition deficit was observed in depressed subjects with suicide behaviours, compared with depressed subjects without any suicidal behaviour. The results of the meta-analysis showed a higher impairment in inhibition score, according to the number of perseverations in the Wisconsin Card Sorting Test (Cohen d = 0.68) than in inhibition according to the time needed to perform the Trail-Making Test part B (d = 0.01) among patients with suicidal behaviour, compared with patients with no suicidal behaviour. This systematic review and meta-analysis showed a positive association between cognitive inhibition deficit and suicide attempts in patients with affective disorders. Future research should examine whether cognitive inhibition deficit precedes the suicidal behaviour.

  7. Cognitive deficits in patients with a chronic vestibular failure.

    PubMed

    Popp, Pauline; Wulff, Melanie; Finke, Kathrin; Rühl, Maxine; Brandt, Thomas; Dieterich, Marianne

    2017-03-01

    Behavioral studies in rodents and humans have demonstrated deficits of spatial memory and orientation in bilateral vestibular failure (BVF). Our aim was to explore the functional consequences of chronic vestibular failure on different cognitive domains including spatial as well as non-spatial cognitive abilities. Sixteen patients with a unilateral vestibular failure (UVF), 18 patients with a BVF, and 17 healthy controls (HC) participated in the study. To assess the cognitive domains of short-term memory, executive function, processing speed and visuospatial abilities the following tests were used: Theory of Visual Attention (TVA), TAP Alertness and Visual Scanning, the Stroop Color-Word, and the Corsi Block Tapping Test. The cognitive scores were correlated with the degree of vestibular dysfunction and the duration of the disease, respectively. Groups did not differ significantly in age, sex, or handedness. BVF patients were significantly impaired in all of the examined cognitive domains but not in all tests of the particular domain, whereas UVF patients exhibited significant impairments in their visuospatial abilities and in one of the two processing speed tasks when compared independently with HC. The degree of vestibular dysfunction significantly correlated with some of the cognitive scores. Neither the side of the lesion nor the duration of disease influenced cognitive performance. The results demonstrate that vestibular failure can lead to cognitive impairments beyond the spatial navigation deficits described earlier. These cognitive impairments are more significant in BVF patients, suggesting that the input from one labyrinth which is distributed into bilateral vestibular circuits is sufficient to maintain most of the cognitive functions. These results raise the question whether BVF patients may profit from specific cognitive training in addition to physiotherapy.

  8. Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by aβ1-42.

    PubMed

    Zhang, Lu; Fang, Yu; Lian, Yajun; Chen, Yuan; Wu, Tianwen; Zheng, Yake; Zong, Huili; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua; Xu, Yuming

    2015-01-01

    An emerging body of data suggests that the early onset of Alzheimer's disease (AD) is associated with decreased brain-derived neurotrophic factor (BDNF). Because BDNF plays a critical role in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, the up-regulation of BDNF may rescue cognitive impairments and learning deficits in AD. In the present study, we investigated the effects of hippocampal BDNF in a rat model of AD produced by a ventricle injection of amyloid-β1-42 (Aβ1-42). We found that a ventricle injection of Aβ1-42 caused learning deficits in rats subjected to the Morris water maze and decreased BDNF expression in the hippocampus. Chronic intra-hippocampal BDNF administration rescued learning deficits in the water maze, whereas infusions of NGF and NT-3 did not influence the behavioral performance of rats injected with Aβ1-42. Furthermore, the BDNF-related improvement in learning was ERK-dependent because the inhibition of ERK, but not JNK or p38, blocked the effects of BDNF on cognitive improvement in rats injected with Aβ1-42. Together, our data suggest that the up-regulation of BDNF in the hippocampus via activation of the ERK signaling pathway can ameliorate Aβ1-42-induced learning deficits, thus identifying a novel pathway through which BDNF protects against AD-related cognitive impairments. The results of this research may shed light on a feasible therapeutic approach to control the progression of AD.

  9. Psychosocial support and cognitive deficits in adults with schizophrenia.

    PubMed

    Dalagdi, Aikaterini; Arvaniti, Aikaterini; Papatriantafyllou, John; Xenitidis, Kiriakos; Samakouri, Maria; Livaditis, Miltos

    2014-08-01

    In recent decades there has been an increasing interest in cognitive deficits in schizophrenia. However, only a few studies have examined the impact of psychosocial support on the prevention of cognitive deterioration in patients who suffer from schizophrenia. The aims of the present study are: (1) to confirm the presence of cognitive deficits among patients with schizophrenia; (2) to explore any correlations between such deficits and a range of clinical and/or demographic characteristics of the patients; and (3) to investigate any association between cognitive deficits and psychosocial support. A total of 118 patients with schizophrenia (the patient group) and 102 healthy volunteers (the control group) had a cognitive assessment using a battery of neuropsychological tests. The patients were allocated to one of the following groups: (1) patients under routine outpatient follow-up; or (2) patients receiving or having recently received intensive psychosocial support, in addition to follow-up. This included daily participation in vocational and recreational activities provided by dedicated mental health day centers. The findings of the neuropsychological testing of individuals in all groups were compared, after controlling for clinical or demographic factors. The scores in the neuropsychological tests were lower overall in the patients group compared to healthy volunteers. Within the patients group, those receiving/having received psychosocial support had higher scores compared to those on routine follow-up alone. There were no significant differences between patients currently receiving psychosocial support and those having received it in the past. Lower education, age and illness duration (but not severity of positive or negative symptoms) were factors associated with lower test scores. The study provides some evidence that psychosocial support may be beneficial for the cognitive functioning of patients with schizophrenia and this benefit may be a lasting one.

  10. Ceftriaxone Ameliorates Motor Deficits and Protects Dopaminergic Neurons in 6-Hydroxydopamine-Lesioned Rats

    PubMed Central

    2011-01-01

    Parkinson’s disease is caused by the degeneration of dopaminergic neurons in substantia nigra. There is no current promising treatment for neuroprotection of dopaminergic neurons. Ceftriaxone is a beta-lactam antibiotic and has been reported to offer neuroprotective effects (Rothstein, J.-D., Patel, S., Regan, M.-R., Haenggeli, C., Huang, Y.-H., Bergles, D.-E., Jin, L., Dykes, H.-M., Vidensky, S., Chung, D.-S., Toan, S.-V., Bruijn, L.-I., Su, Z.-Z., Gupta, P., and Fisher, P.-B. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression Nature433, 73–77). In the present study, efficacy of ceftriaxone in neuroprotection of dopaminergic neurons and amelioration of motor deficits in a rat model of Parkinson’s disease were investigated. Ceftriaxone was administrated in 6-hydroxydopamine-lesioned rats. Using behavioral tests, grip strength and numbers of apomorphine-induced contralateral rotation were declined in the ceftriaxone-treated group. More importantly, cell death of dopaminergic neurons was found to decrease. In addition, both the protein expression and immunoreactivity for GLT-1 were up-regulated. The present results strongly indicate that ceftriaxone is a potential agent in the treatment of Parkinson’s disease. PMID:22860178

  11. A neuropathic deficit, decreased sweating, is prevented and ameliorated by euglycemia in streptozocin diabetes in rats.

    PubMed Central

    Cardone, C; Dyck, P J

    1990-01-01

    Decreased sweating, especially of feet and legs, occurs in human diabetic neuropathy. It might be studied in experimental diabetes to characterize it, elucidate its mechanisms, and determine whether it can be prevented or treated. The pilocarpine-induced sweat responses (SR) in the hind foot pads of groups of control and streptozocin diabetic rats, in good (GC) and in poor (PC) glycemic control and with a crossover design after 20 wk of diabetes, were evaluated with the silicone mold sweat test to determine the number of sweat droplets per group of foot pads. The SR was dose dependent and reproducible. The SR disappeared with denervation and reappeared with reinnervation; denervation hypersensitivity did not develop. In the GC group, euglycemia was achieved by regulating the caloric intake and using multiple daily injections of Ultralente insulin. The SR was not different from that of the control group for up to 136 d. In the PC group, the SR became abnormal (P less than 0.005) at 16 d and progressively worsened: 40% of baseline values at 14 wk (P less than 0.001). After restoring euglycemia in the PC group, a normal SR occurred at 12 d. These results show that one human neuropathic deficit, failure of sweating, can be prevented or ameliorated by good glycemic control. Images PMID:2195061

  12. Specific Cognitive Deficits in Young Children with Cystinosis

    PubMed Central

    Trauner, Doris A.; Spilkin, Amy M.; Williams, Jennifer; Babchuck, Lynne

    2007-01-01

    Objectives Infantile nephropathic cystinosis is associated with a specific cognitive deficit in visual spatial processing in older children and adults. The cause of this deficit is unknown. This study was designed to determine whether the cognitive deficit is present in young children with cystinosis, suggesting an early effect of the genetic disorder on brain development. Study design Young children (n=25; ages 3− 8 years) with cystinosis, and 25 matched controls, underwent cognitive testing including tests of intelligence, visual perceptual, visual spatial, and visual motor functions. Results Children with cystinosis performed significantly more poorly on tests of visual spatial and visual motor function than did controls. Visual perceptual abilities were equivalent in the two groups. Conclusion The fact that the same pattern of visual spatial deficit is present in very young children with cystinosis as has previously been demonstrated in older children and adults suggests that there may be an influence of the cystinosis gene on brain development, rather than an adverse effect of prolonged cystine accumulation in the brain during childhood. PMID:17643777

  13. Ovarian hormones ameliorate memory impairment, cholinergic deficit, neuronal apoptosis and astrogliosis in a rat model of Alzheimer's disease

    PubMed Central

    HU, ZHIYING; YANG, YANG; GAO, KEQIANG; RUDD, JOHN A.; FANG, MARONG

    2016-01-01

    Ovarian hormones, including progesterone (P4) and 17 β-estradiol (E2), have been shown to affect memory functions; however, the underlying mechanism whereby ovarian hormone replacement therapy may decrease the risk of Alzheimer's disease (AD) is currently unclear. The present study aimed to investigate the effects of P4 and E2 on spatial and learning memory in an ovariectomized rat model of AD. β-amyloid (Aβ) or saline were stereotaxically injected into the hippocampus of the rats and, after 1 day, ovariectomy or sham operations were performed. Subsequently, the rats were treated with P4 alone, E2 alone, or a combination of P4 and E2. Treatment with E2 and/or P4 was shown to improve the learning and memory functions of the rats, as demonstrated by the Morris water maze test. In addition, treatment with E2 and P4 was associated with increased expression levels of choline acetyltransferase and 5-hydroxytryptamine receptor 2A (5-HT2A), and decreased expression levels of the glial fibrillary acidic protein in the hippocampus of the rats. Furthermore, E2 and P4 treatment significantly attenuated neuronal cell apoptosis, as demonstrated by terminal deoxynucleotidyl transferase dUTP nick end labeling assays; thus suggesting that the ovarian hormones were able to protect against Aβ-induced neuronal cell toxicity. The results of the present study suggested that the neuroprotective effects of P4 and E2 were associated with amelioration of the cholinergic deficit, suppression of apoptotic signals and astrogliosis, and upregulation of 5-HT2A expression levels. Therefore, hormone replacement therapy may be considered an effective strategy for the treatment of patients with cognitive disorders and neurodegenerative diseases. PMID:26889223

  14. Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury.

    PubMed

    Dundon, Neil M; Dockree, Suvi P; Buckley, Vanessa; Merriman, Niamh; Carton, Mary; Clarke, Sarah; Roche, Richard A P; Lalor, Edmund C; Robertson, Ian H; Dockree, Paul M

    2015-08-01

    Patients who suffer traumatic brain injury frequently report difficulty concentrating on tasks and completing routine activities in noisy and distracting environments. Such impairments can have long-term negative psychosocial consequences. A cognitive control function that may underlie this impairment is the capacity to select a goal-relevant signal for further processing while safeguarding it from irrelevant noise. A paradigmatic investigation of this problem was undertaken using a dichotic listening task (study 1) in which comprehension of a stream of speech to one ear was measured in the context of increasing interference from a second stream of irrelevant speech to the other ear. Controls showed an initial decline in performance in the presence of competing speech but thereafter showed adaptation to increasing audibility of irrelevant speech, even at the highest levels of noise. By contrast, patients showed linear decline in performance with increasing noise. Subsequently attempts were made to ameliorate this deficit (study 2) using a cognitive training procedure based on attention process training (APT) that included graded exposure to irrelevant noise over the course of training. Patients were assigned to adaptive and non-adaptive training schedules or to a no-training control group. Results showed that both types of training drove improvements in the dichotic listening and in naturalistic tasks of performance in noise. Improvements were also seen on measures of selective attention in the visual domain suggesting transfer of training. We also observed augmentation of event-related potentials (ERPs) linked to target processing (P3b) but no change in ERPs evoked by distractor stimuli (P3a) suggesting that training heightened tuning of target signals, as opposed to gating irrelevant noise. No changes in any of the above measures were observed in a no-training control group. Together these findings present an ecologically valid approach to measure selective

  15. Autologous transplantation of intestine-isolated glia cells improves neuropathology and restores cognitive deficits in β amyloid-induced neurodegeneration.

    PubMed

    Esposito, Giuseppe; Sarnelli, Giovanni; Capoccia, Elena; Cirillo, Carla; Pesce, Marcella; Lu, Jie; Calì, Gaetano; Cuomo, Rosario; Steardo, Luca

    2016-03-04

    Alzheimer's disease (AD) is characterized by chronic deposition of β-amyloid (Aβ) in the brain, progressive neurodegeneration and consequent cognitive and behavioral deficits that typify the disease. Astrocytes are pivotal in this process because they are activated in the attempt to digest Aβ which starts a neuroinflammatory response that further contributes to neurodegeneration. The intestine is a good source of astrocytes-like cells-referred to as enteric glial cells (EGCs). Here we show that the autologous transplantation of EGCs into the brain of Aβ-injected rats arrested the development of the disease after their engraftment. Transplanted EGCs showed anti-amyloidogenic activity, embanked Aβ-induced neuroinflammation and neurodegeneration, and released neutrophic factors. The overall result was the amelioration of the pathological hallmarks and the cognitive and behavioral deficits typical of Aβ-associated disease. Our data indicate that autologous EGCs transplantation may provide an efficient alternative for applications in cell-replacement therapies to treat neurodegeneration in AD.

  16. The role of α5 GABAA receptor agonists in the treatment of cognitive deficits in schizophrenia

    PubMed Central

    Gill, Kathryn M.; Grace, Anthony A.

    2014-01-01

    Currently available pharmacotherapies for the treatment of schizophrenia are ineffective in restoring the disrupted cognitive function associated with this disorder. As such, there is a continued search for more viable novel drug targets. Engaging in cognitive behaviors is associated with distinct coordinated oscillatory activity across brain regions, in particular the hippocampus and prefrontal cortex. In schizophrenia patients, pathological alterations in the functionality of GABAergic interneurons in the PFC and HPC responsible for generating network oscillations are thought to contribute to impaired cognition. Destabilized GABAergic interneuron activity in the HPC is further associated with aberrant increases in HPC output and enhanced dopamine neuron activity. Consequently, drugs directed at restoring HPC function could impact both oscillatory activity along with dopamine tone. There is compelling evidence from animal models of schizophrenia that allosteric modulation of the α5 subunit of the GABAA receptor is a viable means of resolving aberrant dopamine system activity through indirect alteration of HPC output. Consequently, these compounds are promising for their potential in also ameliorating cognitive deficits attributed to dysfunction in HPC network activity. PMID:24345268

  17. Evidence for distinct cognitive deficits after focal cerebellar lesions

    PubMed Central

    Gottwald, B; Wilde, B; Mihajlovic, Z; Mehdorn, H

    2004-01-01

    Objectives: Anatomical evidence and lesion studies, as well as functional magnetic resonance imaging (fMRI) studies, indicate that the cerebellum contributes to higher cognitive functions. Cerebellar posterior lateral regions seem to be relevant for cognition, while vermal lesions seem to be associated with changes in affect. However, the results remain controversial. Deficits of patients are sometimes still attributed to motor impairment. Methods: We present data from a detailed neuropsychological examination of 21 patients with cerebellar lesions due to tumour or haematoma, and 21 controls matched for age, sex, and years of education. Results: Patients showed deficits in executive function, and in attentional processes such as working memory and divided attention. Further analysis revealed that patients with right-sided lesions were in general more impaired than those with left-sided lesions. Conclusions: Those hypotheses that suggest that lesions of the right cerebellar hemisphere lead to verbal deficits, while those of the left lead to non-verbal deficits, have in part been confirmed. The generally greater impairment of those patients with a right-sided lesion has been interpreted as resulting from the connection of the right cerebellum to the left cerebral hemisphere, which is dominant for language functions and crucial for right hand movements. Motor impairment was correlated with less than half of the cognitive measures, with no stronger tendency for correlation with cognitive tests that require motor responses discernible. The results are discussed on the basis of an assumption that the cerebellum has a predicting and preparing function, indicating that cerebellar lesions lead to a "dysmetria of thought." PMID:15489381

  18. Neurally dissociable cognitive components of reading deficits in subacute stroke.

    PubMed

    Boukrina, Olga; Barrett, A M; Alexander, Edward J; Yao, Bing; Graves, William W

    2015-01-01

    According to cognitive models of reading, words are processed by interacting orthographic (spelling), phonological (sound), and semantic (meaning) information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here, we report on one such study. We have performed neuropsychological testing and magnetic resonance imaging on 11 patients with left-hemisphere stroke (<=5 weeks post-stroke). Patients completed tasks assessing cognitive components of reading such as semantics (matching picture or word choices to a target based on meaning), phonology (matching word choices to a target based on rhyming), and orthography (a two-alternative forced choice of the most plausible non-word). They also read aloud pseudowords and words with high or low levels of usage frequency, imageability, and spelling-sound consistency. As predicted by the cognitive model, when averaged across patients, the influence of semantics was most salient for low-frequency, low-consistency words, when phonological decoding is especially difficult. Qualitative subtraction analyses revealed lesion sites specific to phonological processing. These areas were consistent with those shown previously to activate for phonology in healthy participants, including supramarginal, posterior superior temporal, middle temporal, inferior frontal gyri, and underlying white matter. Notable divergence between this analysis and previous functional imaging is the association of lesions in the mid-fusiform gyrus and anterior temporal lobe with phonological reading deficits. This study represents progress toward identifying brain lesion-deficit relationships in the cognitive components of reading. Such correspondences are expected to help not only better understand the neural mechanisms of reading, but may also help tailor reading therapy to individual neurocognitive

  19. Neurally dissociable cognitive components of reading deficits in subacute stroke

    PubMed Central

    Boukrina, Olga; Barrett, A. M.; Alexander, Edward J.; Yao, Bing; Graves, William W.

    2015-01-01

    According to cognitive models of reading, words are processed by interacting orthographic (spelling), phonological (sound), and semantic (meaning) information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here, we report on one such study. We have performed neuropsychological testing and magnetic resonance imaging on 11 patients with left-hemisphere stroke (<=5 weeks post-stroke). Patients completed tasks assessing cognitive components of reading such as semantics (matching picture or word choices to a target based on meaning), phonology (matching word choices to a target based on rhyming), and orthography (a two-alternative forced choice of the most plausible non-word). They also read aloud pseudowords and words with high or low levels of usage frequency, imageability, and spelling-sound consistency. As predicted by the cognitive model, when averaged across patients, the influence of semantics was most salient for low-frequency, low-consistency words, when phonological decoding is especially difficult. Qualitative subtraction analyses revealed lesion sites specific to phonological processing. These areas were consistent with those shown previously to activate for phonology in healthy participants, including supramarginal, posterior superior temporal, middle temporal, inferior frontal gyri, and underlying white matter. Notable divergence between this analysis and previous functional imaging is the association of lesions in the mid-fusiform gyrus and anterior temporal lobe with phonological reading deficits. This study represents progress toward identifying brain lesion-deficit relationships in the cognitive components of reading. Such correspondences are expected to help not only better understand the neural mechanisms of reading, but may also help tailor reading therapy to individual neurocognitive

  20. Environmental enrichment restores cognitive deficits induced by prenatal maternal seizure.

    PubMed

    Xie, Tao; Wang, Wei-ping; Jia, Li-jing; Mao, Zhuo-feng; Qu, Zhen-zhen; Luan, Shao-qun; Kan, Min-chen

    2012-08-27

    Maternal seizure has adverse effects on brain histology as well as on learning and memory ability in progeny. An enriched environment (EE) is known to promote structural changes in the brain and improve cognitive and motor deficits following a variety of brain injuries. Whether EE treatment in early postnatal periods could restore cognitive impairment induced by prenatal maternal seizure is unknown. Adult female Sprague-Dawley rats were randomly separated into two groups and were injected intraperitoneally either saline or pentylenetetrazol (PTZ) for 30 days. Then the fully kindled rats and control animals were allowed to mate. PTZ administration was continued until delivery, while the control group received saline at the same time. After weaning at postnatal day 22, one-half of the male offspring in the control and in the prenatal maternal group were given the environmental enrichment treatment through all the experiments until they were tested. Morris water maze testing was performed at 8 weeks of age. Western blot and synaptic ultrastructure analysis were then performed. We found that EE treatment reversed spatial learning deficits induced by prenatal maternal seizure. An EE also reversed the changes in synaptic ultrastructure following prenatal maternal seizure. In addition, prenatal maternal seizure significantly decreased phosphorylation states of cAMP response element binding (CREB) in the hippocampus, whereas EE reversed this reduced expression. These findings suggest that EE treatment on early postnatal periods could be a potential therapy for improving cognitive deficits induced by prenatal maternal seizure.

  1. Toxoplasma Gondii and Cognitive Deficits in Schizophrenia: An Animal Model Perspective

    PubMed Central

    Pletnikov, Mikhail V.

    2012-01-01

    Cognitive deficits are a core feature of schizophrenia. Epidemiological evidence indicates that microbial pathogens may contribute to cognitive impairment in patients with schizophrenia. Exposure to Toxoplasma gondii (T. gondii) has been associated with cognitive deficits in humans. However, the mechanisms whereby the parasite impacts cognition remain poorly understood. Animal models of T. gondii infection may aid in elucidating the underpinnings of cognitive dysfunction. Here, we (1) overview the literature on the association of T. gondii infection and cognitive impairment, (2) critically analyze current rodent models of cognitive deficits resulting from T. gondii infection, and (3) explore possible mechanisms whereby the parasite may affect cognitive function. PMID:22941742

  2. Individually modifiable risk factors to ameliorate cognitive aging: a systematic review and meta-analysis.

    PubMed

    Lehert, P; Villaseca, P; Hogervorst, E; Maki, P M; Henderson, V W

    2015-10-01

    A number of health and lifestyle factors are thought to contribute to cognitive decline associated with age but cannot be easily modified by the individual patient. We identified 12 individually modifiable interventions that can be implemented during midlife or later with the potential to ameliorate cognitive aging. For ten of these, we used PubMed databases for a systematic review of long-duration (at least 6 months), randomized, controlled trials in midlife and older adults without dementia or mild cognitive impairment with objective measures of neuropsychological performance. Using network meta-analysis, we performed a quantitative synthesis for global cognition (primary outcome) and episodic memory (secondary outcome). Of 1038 publications identified by our search strategy, 24 eligible trials were included in the network meta-analysis. Results suggested that the Mediterranean diet supplemented by olive oil and tai chi exercise may improve global cognition, and the Mediterranean diet plus olive oil and soy isoflavone supplements may improve memory. Effect sizes were no more than small (standardized mean differences 0.11-0.22). Cognitive training may have cognitive benefit as well. Most individually modifiable risk factors have not yet been adequately studied. We conclude that some interventions that can be self-initiated by healthy midlife and older adults may ameliorate cognitive aging.

  3. Individually modifiable risk factors to ameliorate cognitive aging: a systematic review and meta-analysis

    PubMed Central

    Lehert, Philippe; Villaseca, Paulina; Hogervorst, Eef; Maki, Pauline M.; Henderson, Victor W.

    2016-01-01

    A number of health and lifestyle factors are thought to contribute to cognitive decline associated with age but cannot be easily modified by the individual patient. We identified 12 individually-modifiable interventions that can be implemented during midlife or later with the potential to ameliorate cognitive aging. For 10 of these, we used PubMed databases for a systematic review of long-duration (at least six months), randomized controlled trials in midlife and older adults without dementia or mild cognitive impairment with objective measures of neuropsychological performance. Using network meta-analysis, we performed a quantitative synthesis for global cognition (primary outcome) and episodic memory (secondary outcome). Of 1038 publications identified by our search strategy, 24 eligible trials were included in the network meta-analysis. Results suggested that the Mediterranean diet supplemented by olive oil and tai chi exercise may improve global cognition, and the Mediterranean diet plus olive oil and soy isoflavone supplements may improve memory. Effect sizes were no more than small (standardized mean differences 0.11 to 0.22). Cognitive training may have cognitive benefit as well. Most individually modifiable risk factors have not yet been adequately studied. We conclude that some interventions that can be self-initiated by healthy midlife and older adults may ameliorate cognitive aging. PMID:26361790

  4. Mitigation of postnatal ethanol-induced neuroinflammation ameliorates trace fear memory deficits in juvenile rats.

    PubMed

    Goodfellow, Molly J; Shin, Youn Ju; Lindquist, Derick H

    2017-10-04

    Impairments in behavior and cognition are common in individuals diagnosed with fetal alcohol spectrum disorders (FASD). In this study, FASD model rats were intragastrically intubated with ethanol (5g/kg/day; 5E), sham-intubated (SI), or maintained as naïve controls (NC) over postnatal days (PD) 4 to 9. Ethanol exposure during this human third trimester-equivalent period induces persistent impairments in hippocampus-dependent learning and memory. The ability of ibuprofen (IBU), a non-steroidal anti-inflammatory drug, to diminish ethanol-induced neuroinflammation and rescue deficits in hippocampus-dependent trace fear conditioning (TFC) was investigated in 5E rats. Phosphate buffered saline vehicle (VEH) or IBU was injected 2h following ethanol exposure over PD4-9, followed by quantification of inflammation-related genes in the dorsal hippocampus of PD10 rats. The 5E-VEH rats exhibited significant increases in Il1b and Tnf, but not Itgam or Gfap, relative to NC, SI-VEH, and 5E-IBU rats. In separate groups of PD31-33 rats, conditioned fear (freezing) was significantly reduced in 5E-VEH rats during TFC testing, but not acquisition, compared to SI-VEH and, critically, 5E-IBU rats. Results suggest neuroimmune activation in response to ethanol within the neonate hippocampus contributes to later-life cognitive dysfunction. Copyright © 2017. Published by Elsevier B.V.

  5. Nutrition and cognitive deficit in the elderly: a population study.

    PubMed

    Corrêa Leite, M L; Nicolosi, A; Cristina, S; Hauser, W A; Nappi, G

    2001-12-01

    To investigate the association between a healthy diet indicator and the prevalence of cognitive impairment in the elderly. Cross-sectional study. Population based. A total of 1651 subjects (560 men and 1091 women) including everybody aged 70 y or more, and a random sample of people (about 40%) aged 65-69 y resident in four rural towns in the province of Pavia, Italy in 1992-1993. The healthy diet indicator based on the WHO guidelines for the prevention of chronic diseases was calculated as reported by Huijbregts et al (1998; Eur. J. Clin. Nutr. 52, 826-831). Food intake was estimated by means of a 180-item food-frequency questionnaire and nutrient intake was calculated using the food composition database compiled for epidemiologic studies in Italy. The cognitive function was categorized into four levels-normal cognition, mild, moderate and severe cognitive deficit-according to the neuropsychological test score. The relationship between the dietary and the ordinal cognitive function variables was studied using the proportional-odds model. After adjustment for age, sex, education, total energy intake, cigarette smoking, alcohol consumption and physical activity, a better healthy diet score was associated with a lower prevalence of cognitive deficit. The cumulative odds ratio was 0.85 (95% CI 0.77-0.93). Our results suggest an association between a globally satisfactory diet and better cognitive performance in the elderly. However, the specific aspects of a 'healthy diet' for the elderly should be clarified. National Research Council (Italy), 'Invecchiamento' Project no. 95.01048.PF40.

  6. The Roles of Exercise and Yoga in Ameliorating Depression as a Risk Factor for Cognitive Decline

    PubMed Central

    Rosenbaum, Simon

    2016-01-01

    Currently, there are no effective pharmaceutical treatments to reduce cognitive decline or prevent dementia. At the same time, the global population is aging, and rates of dementia and mild cognitive impairment (MCI) are on the rise. As such, there is an increasing interest in complementary and alternative interventions to treat or reduce the risk of cognitive decline. Depression is one potentially modifiable risk factor for cognitive decline and dementia. Notably, exercise and yoga are two interventions known to both reduce symptoms of depression and improve cognitive function. The current review discusses the efficacy of exercise and yoga to ameliorate depression and thereby reduce the risk of cognitive decline and potentially prevent dementia. Potential mechanisms of change, treatment implications, and future directions are discussed. PMID:28044084

  7. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse.

    PubMed

    Nakajima, Akira; Aoyama, Yuki; Nguyen, Thuy-Ty Lan; Shin, Eun-Joo; Kim, Hyoung-Chun; Yamada, Shinnosuke; Nakai, Tsuyoshi; Nagai, Taku; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Yamada, Kiyofumi

    2013-08-01

    Senescence-accelerated mouse prone 8 (SAMP8) is a model of aging characterized by the early onset of learning and memory impairment and various pathological features of Alzheimer's disease (AD). Our recent studies have demonstrated that nobiletin, a polymethoxylated flavone from citrus peels, ameliorates learning and memory impairment in olfactory-bulbectomized mice, amyloid precursor protein transgenic mice, and NMDA receptor antagonist-treated mice. Here, we present evidence that this natural compound improves age-related cognitive impairment and reduces oxidative stress and tau phosphorylation in SAMP8 mice. Treatment with nobiletin (10 or 50mg/kg) reversed the impairment of recognition memory and context-dependent fear memory in SAMP8 mice. Treatment with nobiletin also restored the decrease in the GSH/GSSG ratio in the brain of SAMP8 mice. In addition, increases in glutathione peroxidase and manganese-superoxide dismutase activities, as well as a decrease in protein carbonyl level, were observed in the brain of nobiletin-treated SAMP8 mice. Furthermore, nobiletin reduced tau phosphorylation in the hippocampus of SAMP8 mice. Together, the markedly beneficial effects of nobiletin represent a potentially useful treatment for ameliorating the learning and memory deficits, oxidative stress, and hyperphosphorylation of tau in aging as well as age-related neurodegenerative diseases such as AD.

  8. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  9. Ameliorative effect of Asparagus racemosus root extract against pentylenetetrazol-induced kindling and associated depression and memory deficit.

    PubMed

    Pahwa, Priyanka; Goel, Rajesh Kumar

    2016-04-01

    Asparagus racemosus (A. racemosus) roots are extensively used in traditional medicine for the management of epilepsy. The aim of the present study was to investigate the ameliorative effect of A. racemosus root extract (ARE) against pentylenetetrazol-induced kindling and associated depression and memory deficit. Kindling was successfully induced by repeated administration of a subconvulsant dose of PTZ (35 mg/kg; i.p.) at an interval of 48 ± 2 h in 43 days (21 injections). Pretreatment with valproate (300 mg/kg; i.p.), a major antiepileptic drug as well as ARE significantly suppressed the progression of kindling. Moreover, ARE also ameliorated the kindling-associated depression and memory deficit as indicated by decreased immobility time and increased step-down latency, respectively, as compared to vehicle control animals. Further, these behavioral observations were complemented with analogous neurochemical changes. In conclusion, the results of the present study showed that ARE treatment has an ameliorative effect against PTZ-induced kindling and associated behavioral comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mild cognitive deficits in patients with primary adrenal insufficiency.

    PubMed

    Tiemensma, Jitske; Andela, Cornelie D; Biermasz, Nienke R; Romijn, Johannes A; Pereira, Alberto M

    2016-01-01

    The brain is a major target organ for cortisol considering its high density of glucocorticoid receptors. Several states of hypothalamus-pituitary-adrenal dysregulation point towards impairments in cognitive functioning. However, there is a very limited body of research on the effects of hypocortisolism on cognitive functioning. To evaluate cognitive functioning in patients with hypocortisolism (i.e., primary adrenal insufficiency (PAI)) and to examine the possible effect of postponing early-morning hydrocortisone intake on cognitive functioning. Thirty-one patients with PAI on regular morning hydrocortisone intake and 31 healthy matched controls underwent nine neuropsychological tests, evaluating memory and executive functioning. In addition, the effect of normal timing and postponement of morning hydrocortisone intake on neuropsychological tests were assessed in an additional 29 patients with PAI. Compared to controls, patients with PAI performed worse on auditory and visual memory tasks (all P ≤ 0.024) and executive functioning tasks (all P ≤ 0.012). In contrast, patients performed better on a concentration and an attention task (both P<0.05). Postponement of hydrocortisone intake in the morning did not affect the outcomes of neuropsychological tests. Patients on long-term hydrocortisone replacement for PAI show mild cognitive deficits compared to controls. There was no effect of postponement of regular hydrocortisone intake on cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cognitive Deficits and Positively Biased Self-Perceptions in Children with ADHD

    ERIC Educational Resources Information Center

    McQuade, Julia D.; Tomb, Meghan; Hoza, Betsy; Waschbusch, Daniel A.; Hurt, Elizabeth A.; Vaughn, Aaron J.

    2011-01-01

    This study examined the relation between cognitive deficits and positive bias in a sample of 272 children with and without Attention Deficit Hyperactivity Disorder (ADHD; 7-12 years old). Results indicated that children with ADHD with and without biased self-perceptions exhibit differences in specific cognitive deficits (executive processes,…

  12. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    PubMed

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Role of acetyl-L-carnitine in the treatment of cognitive deficit in chronic alcoholism.

    PubMed

    Tempesta, E; Troncon, R; Janiri, L; Colusso, L; Riscica, P; Saraceni, G; Gesmundo, E; Calvani, M; Benedetti, N; Pola, P

    1990-01-01

    Preliminary data are reported from a multicentred double-blind placebo-controlled study concerned with the effects of acetyl-L-carnitine (LAC) on some cognitive deficits of at least one month-abstinent alcoholics. Fifty-five patients, showing impaired performance in at least two out of six mnemonic, praxic and verbal tasks, were randomly assigned to either LAC 2 g/day or a placebo group. They were tested by means of a neuropsychological battery exploring the areas of memory, constructional praxia, deductive-logical functions and language. Testing time was on baseline (T0), after 45 (T45) and 90 (T90) days. On the Rey's 15 word memory test (long-term), the Wechsler memory scale (logical memory), and the Similarities WAIS subtest, the T90 difference between LAC and the placebo was significant in favour of the former treatment. On the copying drawing test (simple copy), the placebo group did not show any T0-T90 variation, while significant improvement in the LAC group was greater than in the placebo group. As LAC has proved to ameliorate the performance or to accelerate the recovery on tests representative of all cognitive areas explored, it is conceivable that the drug acts diffusely, either at the cholinergic transmission or at the neuronal metabolism level. It is concluded that acetyl-L-carnitine can be a useful and safe therapeutic agent in the subtle cognitive disturbances of chronic alcoholics.

  14. Concurrent cognitive processing and letter sequence transcription deficits in stutterers.

    PubMed

    Webster, W G

    1990-03-01

    Previous research has indicated that men who stutter transcribe rapidly presented sequences of letters more slowly and less accurately than nonstutterer controls. Experiment 1 demonstrated that the transcription deficit is not limited to task conditions that demand concurrent monitoring and responding. This was evidenced by comparable deficits on a successive response condition that required subjects to write letters after the presentation was complete. The results of Experiment 2 indicated that the deficit is not due to a difficulty by stutterers in parsing streams of stimulus information internally. Their performance did not differentially improve when letters were grouped with brief pauses, nor with experience in transcribing preparsed letter sequences. This experiment also demonstrated that the phenomenon is generalizable to women. In related testing, stutterers were slower than controls in writing internally generated sequences of letters, those of the alphabet forwards and backwards, but not in writing the same two letters, A and B, repetitively nor in the cognitively more demanding task of writing numbers backwards by three's. These results parallel those obtained with finger tapping of same versus unique sequences by stutterers and were interpreted as being consistent with the idea that while stutterers are not generally slower motorically than nonstutterers, they experience difficulty when required to organize and carry out tasks with new multiple response transitions. The two experiments have replicated and extended, under different conditions, the earlier findings of a letter sequence transcription deficit in stutterers, but the nature of the interference still remains to be clarified.

  15. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    PubMed Central

    Tan, Yang; Nie, Shuke; Zhu, Wende; Liu, Fang; Guo, Hailong; Chu, Jiewen; Cao, Xue B.; Jiang, Xingjun; Zhang, Yunjian; Li, Yuzhen

    2016-01-01

    7,8-Dihydroxyflavone (7,8-DHF), a tyrosine kinase B agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO) mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. Five-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5 mg/kg) or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterward, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP) as well as AEP-derived truncated tau N368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope). These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tau N368. PMID:27965573

  16. Cognitive Deficits as a Mediator of Poor Occupational Function in Remitted Major Depressive Disorder Patients

    PubMed Central

    Woo, Young Sup; Rosenblat, Joshua D.; Kakar, Ron; Bahk, Won-Myong; McIntyre, Roger S.

    2016-01-01

    Cognitive deficits in major depressive disorder (MDD) patients have been described in numerous studies. However, few reports have aimed to describe cognitive deficits in the remitted state of MDD and the mediational effect of cognitive deficits on occupational outcome. The aim of the current review is to synthesize the literature on the mediating and moderating effects of specific domains of cognition on occupational impairment among people with remitted MDD. In addition, predictors of cognitive deficits found to be vocationally important will be examined. Upon examination of the extant literature, attention, executive function and verbal memory are areas of consistent impairment in remitted MDD patients. Cognitive domains shown to have considerable impact on vocational functioning include deficits in memory, attention, learning and executive function. Factors that adversely affect cognitive function related to occupational accommodation include higher age, late age at onset, residual depressive symptoms, history of melancholic/psychotic depression, and physical/psychiatric comorbidity, whereas higher levels of education showed a protective effect against cognitive deficit. Cognitive deficits are a principal mediator of occupational impairment in remitted MDD patients. Therapeutic interventions specifically targeting cognitive deficits in MDD are needed, even in the remitted state, to improve functional recovery, especially in patients who have a higher risk of cognitive deficit. PMID:26792035

  17. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA.

    PubMed

    Zhao, Ting Ting; Kim, Kyung Sook; Shin, Keon Sung; Park, Hyun Jin; Kim, Hyun Jeong; Lee, Kyung Eun; Lee, Myung Koo

    2017-09-06

    Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson's disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant

  18. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder: Current Status and Working Hypotheses

    ERIC Educational Resources Information Center

    Vaidya, Chandan J.; Stollstorff, Melanie

    2008-01-01

    Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…

  19. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder: Current Status and Working Hypotheses

    ERIC Educational Resources Information Center

    Vaidya, Chandan J.; Stollstorff, Melanie

    2008-01-01

    Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…

  20. Cognitive deficits in geriatric depression: clinical correlates and implications for current and future treatment.

    PubMed

    Morimoto, Sarah Shizuko; Alexopoulos, George S

    2013-12-01

    The purpose of this article is to identify the cognitive deficits commonly associated with geriatric depression and describe their clinical significance. The complex relationship between geriatric depression and dementia is summarized and possible shared mechanisms discussed. Evidence regarding whether the cognitive deficits in depression may be mitigated with medication or with computerized cognitive remediation is presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Cognitive Deficits in Geriatric Depression: Clinical Correlates and Implications for Current and Future Treatment

    PubMed Central

    Morimoto, Sarah Shizuko; Alexopoulos, George S.

    2013-01-01

    Synopsis The purpose of this article is to identify the cognitive deficits commonly associated with geriatric depression, and describe their clinical significance. We then summarize the complex relationship between geriatric depression and dementia and discuss possible shared mechanisms. Last, we present evidence regarding whether the cognitive deficits in depression may be mitigated with medication or with computerized cognitive remediation. PMID:24229654

  2. Converging on a core cognitive deficit: the impact of various neurodevelopmental insults on cognitive control.

    PubMed

    O'Reilly, Kally C; Kao, Hsin-Yi; Lee, Heekyung; Fenton, André A

    2014-01-01

    Despite substantial effort and immense need, the treatment options for major neuropsychiatric illnesses like schizophrenia are limited and largely ineffective at improving the most debilitating cognitive symptoms that are central to mental illness. These symptoms include cognitive control deficits, the inability to selectively use information that is currently relevant and ignore what is currently irrelevant. Contemporary attempts to accelerate progress are in part founded on an effort to reconceptualize neuropsychiatric illness as a disorder of neural development. This neuro-developmental framework emphasizes abnormal neural circuits on the one hand, and on the other, it suggests there are therapeutic opportunities to exploit the developmental processes of excitatory neuron pruning, inhibitory neuron proliferation, elaboration of myelination, and other circuit refinements that extend through adolescence and into early adulthood. We have crafted a preclinical research program aimed at cognition failures that may be relevant to mental illness. By working with a variety of neurodevelopmental rodent models, we strive to identify a common pathophysiology that underlies cognitive control failure as well as a common strategy for improving cognition in the face of neural circuit abnormalities. Here we review our work to characterize cognitive control deficits in rats with a neonatal ventral hippocampus lesion and rats that were exposed to Methylazoxymethanol acetate (MAM) in utero. We review our findings as they pertain to early developmental processes, including neurogenesis, as well as the power of cognitive experience to refine neural circuit function within the mature and maturing brain's cognitive circuitry.

  3. Associations among measures of awareness of cognitive deficits in dementia

    PubMed Central

    Okonkwo, Ozioma C.; Spitznagel, Mary B.; Alosco, Michael L.; Tremont, Geoffrey

    2010-01-01

    Background To examine the relationships among various measures of awareness of cognitive deficits in dementia, and investigate the unique association between clinician rating and alternative approaches to assessing awareness. Methods Participants were 108 patients with very mild (n = 50) or mild (n = 58) dementia. Awareness of cognitive difficulties was assessed by clinician rating, informant rating, patients’ report of cognitive difficulties, discrepancy between patients’ and informants’ report of cognitive difficulties, and patients’ perception of performance on neuropsychological tests. Correlational analyses were used to assess associations among these measures of awareness; and ordinal logistic regression was used to examine the unique relationship between clinician rating of awareness and the other approaches. Results All measures of awareness were significantly correlated with one another, with coefficients ranging from 0.26 to −0.64. Patients categorized as being unaware by either clinicians or informants reported fewer cognitive difficulties. Of the awareness measures evaluated, clinician rating had the strongest correlation with a measure of global cognition. In the regression analysis, only informant global rating and patients’ report of cognitive difficulties were significantly associated with clinician rating. The model’s classification accuracy was satisfactory for patients in the “intact awareness” and “severe unawareness” categories, but not for those in the “mild unawareness” category. Conclusion Though they likely share overlapping variance, measures of awareness are not interchangeable. Each potentially elucidates unique aspects of the complex phenomenon of awareness, with clinician assessment most suited for ambiguous cases. Even so, when clinician assessment is not feasible, informant rating (but not patient-informant discrepancy) would be a valid substitute. PMID:20630413

  4. Reading-Related Cognitive Deficits in Developmental Dyslexia, Attention-Deficit/Hyperactivity Disorder, and Developmental Coordination Disorder Among Chinese Children

    ERIC Educational Resources Information Center

    Ho, Connie Suk-Han; Chan, David Wai-Ock; Leung, Patrick W. L.; Lee, Suk-Han; Tsang, Suk-Man

    2005-01-01

    Most past research findings suggest that phonological deficit is unique to developmental dyslexia insofar as alphabetic languages are concerned. The present study investigated the existence of any similar unique reading-related cognitive deficits associated with developmental dyslexia in a nonalphabetic script, Chinese. The pattern of comorbidity…

  5. The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice

    PubMed Central

    Stoker, Astrid; Markou, Athina

    2010-01-01

    Rationale Mice lacking metabotropic glutamate receptors 5 (mGluR5) exhibit reduced glutamatergic function and behavioral abnormalities, including deficits in prepulse inhibition (PPI) of the startle response that may be relevant to schizophrenia. Thus, these mice are an animal model that may be used for preclinical evaluation of potentially new classes of antipsychotic compounds. Recent clinical studies have suggested several compounds that modulate glutamatergic transmission through distinct mechanisms, such as potentiation of the N-methyl-d-aspartate (NMDA) receptor glycine site, activation of group II mGluR, and activation of glutamate-cysteine antiporters, as being efficacious in the treatment of schizophrenia. Objectives The aim of this work is to evaluate the effects of sarcosine (a selective inhibitor of the glycine transporter 1 [GlyT1]), LY379268 (a group II mGluR agonist), and N-acetylcysteine (a cysteine prodrug that indirectly activates cystine-glutamate antiporters to increase glutamate levels in the extrasynaptic space) on PPI deficits in mGluR5 knockout mice. Results Sarcosine and N-acetylcysteine, but not LY379268, ameliorated PPI deficits in mGluR5 knockout mice. The ability of N-acetylcysteine to restore PPI deficits was not blocked by the group II mGluR antagonist LY341495, indicating that the effects of N-acetylcysteine were not attributable to activation of group II mGluRs by glutamate. Conclusions These findings provide evidence that the interactions between mGluR5 and NMDA receptors are involved in the regulation of PPI and suggest that activation of glutamate receptors, other than group II receptors, by increased endogenous glutamate transmission, may ameliorate the behavioral abnormalities associated with mGluR5 deficiency. PMID:20217053

  6. Histamine H3 receptor antagonists ameliorate attention deficit/hyperactivity disorder-like behavioral changes caused by neonatal habenula lesion.

    PubMed

    Kim, Yu-Jeong; Goto, Yukiori; Lee, Young-A

    2017-08-31

    A partial agonist and a full antagonist of the histamine H3 receptor have been suggested to have therapeutic effects on cognitive deficits in psychiatric disorders. We have previously shown that neonatal habenula lesion (NHL) induces behavioral deficits that resemble the symptoms of attention deficit/hyperactivity disorder (ADHD). In this study, we examined the effects of three H3 antagonists on ADHD-like behavioral changes caused by NHL in rats. Behavioral tests and administration of the H3 receptor antagonists were performed in juvenile rats with NHL. H3 antagonist administration to juvenile rats dose dependently improved NHL-induced hyperlocomotion, impulsive behavior, and attention deficit. These results suggest that histamine H3 antagonists may be used as alternative therapeutic drugs for the treatment of ADHD.

  7. Nobiletin Ameliorates the Deficits in Hippocampal BDNF, TrkB, and Synapsin I Induced by Chronic Unpredictable Mild Stress.

    PubMed

    Li, Jing; Zhou, Ying; Liu, Bin-Bin; Liu, Qing; Geng, Di; Weng, Lian-Jin; Yi, Li-Tao

    2013-01-01

    Background. Our previous study has demonstrated that nobiletin could reverse the behavioral alterations in stressed mice. However, the relation of its antidepressant-like action with neurotrophic molecular expression remains unknown. This study aimed to explore the antidepressant-like mechanism of nobiletin related to the neurotrophic system in rats exposed to chronic unpredictable mild stress (CUMS). Methods. Depressive-like anhedonia (assessed by sucrose preference) and serum corticosterone secretion were evaluated in the CUMS, followed by brain-derived neurotrophic factor (BDNF), its tropomyosin-related kinase receptor B (TrkB), and the downstream target synapsin I expressions in the hippocampus. Results. Anhedonia, which occurred within week 2, was rapidly ameliorated by nobiletin. While fluoxetine needed additional 2 weeks to improve the anhedonia. In addition, nobiletin administration for 5 weeks significantly ameliorated CUMS-induced increase in serum corticosterone levels. Furthermore, we also found that CUMS-induced deficits of hippocampal BDNF, TrkB, and synapsin I were ameliorated by nobiletin. Conclusions. Taken together, these findings suggest that nobiletin produces rapidly acting antidepressant-like responses in the CUMS and imply that BDNF-TrkB pathway may play an important role in the antidepressant-like effect of nobiletin.

  8. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice

    PubMed Central

    Wang, Wei; Zhang, Liming; Zhang, Xiaoying; Xue, Rui; Li, Lei; Zhao, Weixing; Fu, Qiang; Mi, Weidong; Li, Yunfeng

    2016-01-01

    The 18 kDa translocator protein (TSPO) is involved in the immune/inflammatory response. However, the exact role that TSPO plays in neuroinflammation-induced cognitive impairment is still elusive. The purpose of our present study was to investigate the effects of lentiviral-mediated hippocampal overexpression of the TSPO in a mouse model of LPS-induced cognitive impairment. We established a mouse cognitive impairment model using systematic daily administration of lipopolysaccharide (LPS) (0.5 mg/kg). Microinjection of the dentate gyrus of the mouse with lentiviral vectors, which contained a cDNA targeting TSPO (Lv-TSPO), resulted in a significant increase in TSPO expression and allopregnanolone production. Mice treated with LPS showed cognitive deficits in the novel object recognition test and the Morris water maze test that could be ameliorated by TSPO overexpression. In addition, TSPO overexpression reversed LPS-induced microglial activation and accumulation of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, TSPO overexpression attenuated the LPS-induced impairment of hippocampal neurogenesis. Our results suggest that local overexpression of TSPO in the hippocampal dentate gyrus alleviated LPS-induced cognitive deficits, and its effects might be mediated by the attenuation of inflammatory cytokines, inhibition of microglial activation, and promotion of neurogenesis. PMID:27803668

  9. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and D-serine.

    PubMed

    Hashimoto, Kenji; Fujita, Yuko; Ishima, Tamaki; Chaki, Shigeyuki; Iyo, Masaomi

    2008-06-01

    Accumulating evidence suggests that the glycine modulatory site on the NMDA receptor could be potential therapeutic target for cognitive deficits in schizophrenia. The present study was undertaken to examine the effects of the glycine transporter-1 (GlyT-1) inhibitor, (R)-(N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (NFPS), on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were significantly improved by subsequent subchronic (2-week) administration of NFPS (1.0 and 3.0 mg/kg/day) or D-serine (600 mg/kg/day). However, PCP-induced cognitive deficits were not improved by a single administration of NFPS (3.0 mg/kg). Furthermore, Western blot analysis revealed that levels of GlyT-1 in the hippocampus, but not frontal cortex, of the PCP (10 mg/kg/day for 10 days)-treated mice were significantly higher than those of saline-treated mice. An in vivo microdialysis study revealed that repeated PCP administration significantly decreased the extracellular levels of glycine in the hippocampus, but not frontal cortex, of mice. These findings suggest that repeated PCP administration increased the density of GlyT-1 in the hippocampus of mouse brain, and that the GlyT-1 inhibitor NFPS could ameliorate cognitive deficits in mice after repeated administration of PCP.

  10. A novel phosphodiesterase-5 Inhibitor: Yonkenafil modulates neurogenesis, gliosis to improve cognitive function and ameliorates amyloid burden in an APP/PS1 transgenic mice model.

    PubMed

    Zhu, Lei; Yang, Jing-yu; Xue, Xue; Dong, Ying-xu; Liu, Yang; Miao, Feng-rong; Wang, Yong-feng; Xue, Hong; Wu, Chun-fu

    2015-09-01

    In Alzheimer's disease (AD), activated microglia invade and surround β-amyloid plaques, possibly contributing to the aggregation of amyloid β (Aβ), which affect the survival of neurons and lead to memory loss. Phosphodiesterase-5 (PDE-5) inhibitors have recently been shown a potential therapeutic effect on AD. In this study, the effects of yonkenafil (yonk), a novel PDE-5 inhibitor, on cognitive behaviors as well as the pathological features in transgenic AD mice were investigated. Seven-month-old APP/PS1 transgenic mice were treated with yonk (2, 6, or 18 mg/kg, intraperitoneal injection (i.p.)) or sildenafil (sild) (6 mg/kg, i.p.) daily for 3 months and then behavioral tests were performed. The results demonstrated that yonk improved nesting-building ability, ameliorated working memory deficits in the Y-maze tasks, and significantly improved learning and memory function in the Morris water maze (MWM) tasks. In addition, yonk reduced the area of Aβ plaques, and inhibited over-activation of microglia and astrocytes. Furthermore, yonk increased neurogenesis in the dentate granule brain region of APP/PS1 mice, indicated by increased BrdU(+)/NeuN(+) and BrdU(+)/DCX(+) cells compared to vehicle-treated transgenic mice. These results suggest that yonk could rescue cognitive deficits by ameliorated amyloid burden through regulating APP processing, inhibited the over-activation of microglia and astrocytes as well as restored neurogenesis.

  11. Facilitative effects of bi-hemispheric tDCS in cognitive deficits of Parkinson disease patients.

    PubMed

    Leite, Jorge; Gonçalves, Oscar F; Carvalho, Sandra

    2014-02-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily characterized by motor symptoms such as tremor, rigidity, bradykinesia, stiffness, slowness and impaired equilibrium. Although the motor symptoms have been the focus in PD, slight cognitive deficits are commonly found in non-demented and non-depressed PD patients, even in early stages of the disease, which have been linked to the subsequent development of pathological dementia. Thus, strongly reducing the quality of life (QoL). Both levodopa therapy and deep brain stimulation (DBS) have yield controversial results concerning the cognitive symptoms amelioration in PD patients. That does not seems to be the case with transcranial direct current stimulation (tDCS), although better stimulation parameters are needed. Therefore we hypothesize that simultaneously delivering cathodal tDCS (or ctDCS), over the right prefrontal cortex delivered with anodal tDCS (or atDCS) to left prefrontal cortex could be potentially beneficial for PD patients, either by mechanisms of homeostatic plasticity and by increases in the extracellular dopamine levels over the striatum.

  12. Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity

    PubMed Central

    Medina, David X.; Caccamo, Antonella; Oddo, Salvatore

    2010-01-01

    Promising results have emerged from a phase II clinical trial testing Methylene blue (MB) as a potential therapeutic for Alzheimer disease (AD), where improvements in cognitive functions of AD patients after 6 months of MB administration have been reported. Despite these reports, no preclinical testing of MB in mammals has been published, and thus its mechanism of action in relation to AD pathology remains unknown. In order to elucidate the effects of MB on AD pathology and to determine its mechanism of action, we used a mouse model (3xTg-AD) that develops age-dependent accumulation of Aβ and tau and cognitive decline. Here, we report that chronic dietary MB treatment reduces Aβ levels and improves learning and memory deficits in the 3xTg-AD mice. The mechanisms underlying the effects of MB on Aβ pathology appears to be mediated by an increase in Aβ clearance as we show that MB increases the chymotrypsin-and trypsin-like activities of the proteasome in the brain. To our knowledge, this is the first report showing that MB increases proteasome function and ameliorates AD-like pathology in vivo. Overall, the data presented here support the use of MB for the treatment of AD and offer a possible mechanism of action. PMID:20731659

  13. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa

    PubMed Central

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-01-01

    Background Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Methods Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Results Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. Conclusions The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis. PMID:27904421

  14. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    PubMed

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  15. Cognitive Deficits in Breast Cancer Survivors After Chemotherapy and Hormonal Therapy.

    PubMed

    Frank, Jennifer Sandson; Vance, David E; Triebel, Kristen L; Meneses, Karen M

    2015-12-01

    Adjuvant treatments, specifically chemotherapy and hormonal therapy, have dramatically increased breast cancer survival, resulting in increased attention to the residual effects of treatment. Breast cancer survivors (BCS) frequently report that cognitive deficits are a particular source of distress, interfering with many aspects of quality of life. The literature on neuropsychological performance measures in BCS supports the reality of subtle cognitive deficits after both chemotherapy and hormonal therapy. This premise is supported by recent imaging studies, which reveal anatomical changes after chemotherapy as well as changes in patterns of neural activation while performing cognitive tasks. This review suggests that, even when performance on neuropsychological performance measures is within normal limits, BCS may be using increased cognitive resources in the face of reduced cognitive reserve. Potential interventions for cognitive deficits after adjuvant therapy include prescriptions for healthy living, pharmacotherapy, complementary therapy, and cognitive remediation therapy directed toward specific cognitive deficits or a combination of several strategies.

  16. Novel Dopamine Therapeutics for Cognitive Deficits in Schizophrenia.

    PubMed

    Arnsten, Amy F T; Girgis, Ragy R; Gray, David L; Mailman, Richard B

    2017-01-01

    Schizophrenia is characterized by profound cognitive deficits that are not alleviated by currently available medications. Many of these cognitive deficits involve dysfunction of the newly evolved, dorsolateral prefrontal cortex (dlPFC). The brains of patients with schizophrenia show evidence of dlPFC pyramidal cell dendritic atrophy, likely reductions in cortical dopamine, and possible changes in dopamine D1 receptors (D1R). It has been appreciated for decades that optimal levels of dopamine are essential for dlPFC working memory function, with many beneficial actions arising from D1R stimulation. D1R are concentrated on dendritic spines in the primate dlPFC, where their stimulation produces an inverted-U dose response on dlPFC neuronal firing and cognitive performance during working memory tasks. Research in both academia and the pharmaceutical industry has led to the development of selective D1 agonists, e.g., the first full D1 agonist, dihydrexidine, which at low doses improved working memory in monkeys. Dihydrexidine has begun to be tested in patients with schizophrenia or schizotypal disorder. Initial results are encouraging, but studies are limited by the pharmacokinetics of the drug. These data, however, have spurred efforts toward the discovery and development of improved or novel new compounds, including D1 agonists with better pharmacokinetics, functionally selective D1 ligands, and D1R positive allosteric modulators. One or several of these approaches should allow optimization of the beneficial effects of D1R stimulation in the dlPFC that can be translated into clinical practice. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Modelling Alzheimer-like cognitive deficits in rats using biperiden as putative cognition impairer.

    PubMed

    Szczodry, Olga; van der Staay, Franz Josef; Arndt, Saskia S

    2014-11-01

    To enable the development of effective treatments for dementias such as Alzheimer's disease (AD), it is important to establish valid animal models of cognitive impairments. Scopolamine is widely used to induce cognitive deficits in animal models of AD, but also causes non-cognitive side effects. We assessed whether biperiden, a selective antagonist of M1 muscarinic receptors, which are predominantly expressed in brain areas involved in cognitive processes, causes cognitive deficits without inducing peripheral side-effects. Two different doses of biperiden (3 or 10mgkg(-1)) on the acquisition of a spatial cone field task were assessed in male Lister Hooded rats. This task measures, among others, spatial working (WM) - and reference memory (RM) simultaneously. Biperiden did not impair learning of the task. The animals reached asymptotic levels for all variables except reference memory and the number of rewards collected. However, the 10mgkg(-1) dose decreased the tendency of rats to use searching strategies to solve the task and made them slower to start searching and completing the task. In conclusion, though no effects on WM and RM performance were seen, the present study cannot conclude that biperiden acts as a more selective cognition impairer than scopolamine in other rats strains and/or other doses than those tested.

  18. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice.

    PubMed

    Zhou, Xiaoyan; Zhang, Fang; Hu, Xiaotong; Chen, Jing; Wen, Xiangru; Sun, Ying; Liu, Yonghai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2015-11-01

    Neurons in the hippocampal and cortical functional regions are more susceptible to damage induced by hyperglycemia, which can result in severe spatial learning and memory impairment. Neuroprotection ameliorates cognitive impairment induced by hyperglycemia in diabetic encephalopathy (DE). Astaxanthin has been widely studied in diabetes mellitus and diabetic complications due to its hypoglycemic, antioxidant and anti-apoptotic effects. However, whether astaxanthin can alleviate cognition deficits induced by DE and its precise mechanisms remain undetermined. In this study, DE was induced by streptozotocin (STZ, 150 mg/kg) in ICR mice. We observed the effect of astaxanthin on cognition and investigated its potential mechanisms in DE mice. Results showed that astaxanthin treatment significantly decreased the latency and enhanced the distance and time spent in the target quadrant in the Morris water maze test. Furthermore, neuronal survival was significantly increased in the hippocampal CA3 region and the frontal cortex following treatment with astaxanthin. Meanwhile, immunoblotting was used to observe the nuclear translocation of nuclear factor-kappaB (NF-κB) p65 and the expression of tumor necrosis factor-α (TNF-α) in the hippocampus and frontal cortex. The results indicated that astaxanthin could inhibit NF-κB nuclear translocation and downregulate TNF-α expression in the hippocampus and frontal cortex. Overall, the present study implied that astaxanthin could improve cognition by protecting neurons against inflammation injury potentially through inhibiting the nuclear translocation of NF-κB and down-regulating TNF-α. Copyright © 2015. Published by Elsevier Inc.

  19. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease.

    PubMed

    Jankowsky, Joanna L; Melnikova, Tatiana; Fadale, Daniel J; Xu, Guilian M; Slunt, Hilda H; Gonzales, Victoria; Younkin, Linda H; Younkin, Steven G; Borchelt, David R; Savonenko, Alena V

    2005-05-25

    Epidemiological studies suggest that individuals with greater education or more cognitively demanding occupations have diminished risk of developing dementia. We wanted to test whether this effect could be recapitulated in rodents using environmental enrichment, a paradigm well documented to attenuate behavioral deficits induced by various pathological insults. Here, we demonstrate that learning and memory deficits observed in a transgenic mouse model of Alzheimer's disease can be ameliorated by enrichment. Female transgenic mice overexpressing amyloid precursor protein and/or presenilin-1 and nontransgenic controls were placed into enriched or standard cages at 2 months of age and tested for cognitive behavior after 6 months of differential housing. Enrichment significantly improved performance of all genotypes in the radial water maze and in the classic and repeated-reversal versions of the Morris water maze. However, enrichment did not benefit all genotypes equally. Mice overproducing amyloid-beta (Abeta), particularly those with amyloid deposits, showed weaker memory for the platform location in the classic Morris water maze and learned new platform positions in the repeated-reversals task less quickly than their nontransgenic cagemates. Nonetheless, enrichment normalized the performance of Abeta-overproducing mice to the level of standard-housed nontransgenic mice. Moreover, this functional preservation occurred despite increased neuritic plaque burden in the hippocampus of double-transgenic animals and elevated steady-state Abeta levels, because both endogenous and transgene-derived Abeta are increased in enriched animals. These results demonstrate that the generation of Abeta in vivo and its impact on the function of the nervous system can be strongly modulated by environmental factors.

  20. Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1α after traumatic brain injury (TBI).

    PubMed

    Shenaq, Mohammed; Kassem, Hassan; Peng, Changya; Schafer, Steven; Ding, Jamie Y; Fredrickson, Vance; Guthikonda, Murali; Kreipke, Christian W; Rafols, José A; Ding, Yuchuan

    2012-12-15

    The present study, using a rodent model of closed-head diffuse traumatic brain injury (TBI), investigated the role of dysregulated aquaporins (AQP) 4 and 9, as well as hypoxia inducible factor -1α(HIF-1α) on brain edema formation, neuronal injury, and functional deficits. TBI was induced in adult (400-425 g), male Sprague-Dawley rats using a modified Marmarou's head impact-acceleration device (450 g weight dropped from 2m height). Animals in each treatment group were administered intravenous anti-AQP4 or -AQP9 antibodies or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) 30 min after injury. At 24h post-TBI, animals (n=6 each group) were sacrificed to examine the extent of brain edema by water content, as well as protein expression of AQP and HIF-1α by Western immune-blotting. At 48-hours post-TBI, neuronal injury (n=8 each group) was assessed by FluoroJade (FJ) histochemistry. Spatial learning and memory deficits were evaluated by radial arm maze (n=8 each group) up to 21 days post-TBI. Compared to non-injured controls, significant (p<0.05) increases in the expression of AQP4 and -9 were detected in the brains of injured animals. In addition, significant (p<0.05) brain edema after TBI was associated with increases (p <0.05) both in neuronal injury (FJ labeling) and neurobehavioral deficits. Selective inhibition of either AQP4 or -9, or HIF-1α significantly (p<0.05) decreased the expression of the proteins. In addition, inhibition of the AQPs and HIF-1α significantly (p<0.05) ameliorated brain edema, as well as the number of injured neurons in cortical layers II/III and V/VI, striatum and hippocampal regions CA1/CA3. Finally, compared to the non-treated TBI animals, AQP or HIF-1α inhibition significantly (p<0.01) improved neurobehavioral outcomes after TBI. Taken together, the present data supports a causal relation between HIF-AQP mediated cerebral edema, secondary neuronal injury, and tertiary behavioral deficits post-TBI. The data further suggests that

  1. Cognitive Profiling in Chinese Developmental Dyslexia with Attention-Deficit/Hyperactivity Disorders

    ERIC Educational Resources Information Center

    Chan, Won Shing Raymond; Hung, Se Fong; Liu, Suet Nga; Lee, Cheuk Kiu Kathy

    2008-01-01

    The cognitive profiles of children with Developmental Reading Disorder (RD) and Attention-Deficit/Hyperactivity Disorders (ADHD) have been extensively studied in alphabetic language communities. Deficits in phonological processing and rapid naming have been implicated as core features of RD although whether the latter is a deficit specific to RD…

  2. Offenders with Cognitive Deficits in a Canadian Prison Population: Prevalence, Profile, and Outcomes.

    PubMed

    Stewart, Lynn A; Wilton, Geoff; Sapers, Jeremy

    2016-01-01

    Impaired cognitive function has been associated with criminal behavior. In Canada it is unknown the extent to which this disorder affects federal inmates or its impact on key correctional outcomes. In this study, 488 incoming male offenders were assessed on the Cognistat, a neuropsychological screening tool. Twenty-five percent of offenders were found to have some level of cognitive deficit. Lower levels of educational achievement, unstable employment history, learning disability, serious alcohol problems, and symptoms of Attention Deficit Hyperactivity Disorder (ADHD) were significantly associated with the presence of cognitive deficits in this sample. Although there was a significant trend for offenders with cognitive deficits to have more admissions to segregation, level of cognitive deficit was not consistently related to rates of institutional charges or rates of completion of required correctional programs. On release, cognitive deficits were not related to returns to custody or returns to custody with an offence. These results indicate that while offenders with cognitive deficits may require assistance with educational upgrading and employment to improve their reintegration potential, they do not pose a particular management problem in the community after release relative to offenders without cognitive deficits. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. Attention and Other Cognitive Deficits in Aphasia: Presence and Relation to Language and Communication Measures

    ERIC Educational Resources Information Center

    Murray, Laura L.

    2012-01-01

    Purpose: This study was designed to further elucidate the relationship between cognition and aphasia, with a focus on attention. It was hypothesized that individuals with aphasia would display variable deficit patterns on tests of attention and other cognitive functions and that their attention deficits, particularly those of complex attention…

  4. Attention and Other Cognitive Deficits in Aphasia: Presence and Relation to Language and Communication Measures

    ERIC Educational Resources Information Center

    Murray, Laura L.

    2012-01-01

    Purpose: This study was designed to further elucidate the relationship between cognition and aphasia, with a focus on attention. It was hypothesized that individuals with aphasia would display variable deficit patterns on tests of attention and other cognitive functions and that their attention deficits, particularly those of complex attention…

  5. Deficits in cognitive control, timing and reward sensitivity appear to be dissociable in ADHD.

    PubMed

    de Zeeuw, Patrick; Weusten, Juliette; van Dijk, Sarai; van Belle, Janna; Durston, Sarah

    2012-01-01

    Recent neurobiological models of ADHD suggest that deficits in different neurobiological pathways may independently lead to symptoms of this disorder. At least three independent pathways may be involved: a dorsal frontostriatal pathway involved in cognitive control, a ventral frontostriatal pathway involved in reward processing and a frontocerebellar pathway related to temporal processing. Importantly, we and others have suggested that disruptions in these three pathways should lead to separable deficits at the cognitive level. Furthermore, if these truly represent separate biological pathways to ADHD, these cognitive deficits should segregate between individuals with ADHD. The present study tests these hypotheses in a sample of children, adolescents and young adults with ADHD and controls. 149 Subjects participated in a short computerized battery assessing cognitive control, timing and reward sensitivity. We used Principal Component Analysis to find independent components underlying the variance in the data. The segregation of deficits between individuals was tested using Loglinear Analysis. We found four components, three of which were predicted by the model: Cognitive control, reward sensitivity and timing. Furthermore, 80% of subjects with ADHD that had a deficit were deficient on only one component. Loglinear Analysis statistically confirmed the independent segregation of deficits between individuals. We therefore conclude that cognitive control, timing and reward sensitivity were separable at a cognitive level and that deficits on these components segregated between individuals with ADHD. These results support a neurobiological framework of separate biological pathways to ADHD with separable cognitive deficits.

  6. Cognitive deficits and its relation with psychopathology and global functioning in first episode schizophrenia.

    PubMed

    Hegde, Shantala; Thirthalli, Jagadhisha; Rao, Shobini L; Raguram, Ahalya; Philip, Mariamma; Gangadhar, B N

    2013-12-01

    The aim was to examine the cognitive deficits profile in first episode schizophrenia patients as well as examine the correlation between cognitive deficits, psychopathology and global functioning. Better understanding of these various facets of this debilitating illness is imperative in planning treatment, thereby limiting decline in global functioning. Forty-nine schizophrenia patients with illness duration less than two years comprised the sample. A comprehensive battery of neuropsychological tests, the Positive and Negative Syndrome Scale and WHO Disability Assessment schedule were administered to assess cognitive functions, psychopathology and global functioning respectively. Cognitive deficit quotient for each patient was calculated. In this cohort 16.3% of patients had less than 25% of cognitive deficits, 38.8% had 25-50% of cognitive deficits, 36.7% had 50-75% of cognitive deficits and 8.2% of patients had more than 75% cognitive deficits. More than 50% of the patients in the present cohort showed deficits in the domains of attention, executive functions and learning and memory. Psychopathology significantly correlated with global functioning. Negative symptoms significantly correlated with cognitive functions of motor speed, attention and executive functions. Step wise linear regression analysis showed that duration of illness, attention (sustained attention), executive function (response inhibition), negative and positive psychopathology predicted level of global functioning at varied levels. Cognitive deficits in multiple domains were observed in the present cohort. Attention and executive functions predicted global functioning. There is a need for longitudinal studies with larger sample to examine the course of the cognitive deficits with progress in illness. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Cognitive Control Deficits Differentiate Adolescent Suicide Ideators From Attempters.

    PubMed

    Stewart, Jeremy G; Glenn, Catherine R; Esposito, Erika C; Cha, Christine B; Nock, Matthew K; Auerbach, Randy P

    2017-06-01

    Mental illness and suicidal ideation are among the strongest correlates of suicidal behaviors, but few adolescents with these risk factors make a suicide attempt. Therefore, it is critical to identify factors associated with the transition from suicide ideation to attempts. The present study tested whether deficits in cognitive control in the context of suicide-relevant stimuli (ie, suicide interference) reliably differentiated adolescent ideators and attempters. Adolescents (n = 99; 71 girls) aged 13-18 years (mean = 15.53, SD = 1.34) with recent suicide ideation (n = 60) or a recent suicide attempt (n = 39) were recruited from an acute residential treatment facility between August 2012 and December 2013. We measured interference to suicide-related, negative, and positive words using the Suicide Stroop Task (SST). When stimuli were analyzed separately, suicide attempters showed greater interference for suicide (t₉₇ = 2.04, P = .044, d = 0.41) and positive (t₉₇ = 2.63, P = .010, d = 0.53) stimuli compared to suicide ideators. An additional omnibus interference (suicide, negative, positive) x group (suicide ideator, suicide attempter) analysis of variance revealed a main effect of group (F₁,₉₇ = 4.31, P = .041, ηp² = 0.04) but no interaction (P = .166), indicating that attempters showed greater interference for emotional stimuli, regardless of valence. Multiple attempters drove this effect; single attempters and ideators did not differ in SST performance (P = .608). General deficits in cognitive control in the context of emotional stimuli may be a marker of adolescent suicide risk.

  8. Electro-acupuncture ameliorates cognitive impairment via improvement of brain-derived neurotropic factor-mediated hippocampal synaptic plasticity in cerebral ischemia-reperfusion injured rats

    PubMed Central

    Lin, Ruhui; Li, Xiaojie; Liu, Weilin; Chen, Wenlie; Yu, Kunqiang; Zhao, Congkuai; Huang, Jia; Yang, Shanli; Peng, Hongwei; Tao, Jing; Chen, Lidian

    2017-01-01

    A previous study by our group found that electro-acupuncture (EA) at the Shenting (DU24) and Baihui (DU20) acupoints ameliorates cognitive impairment in rats with cerebral ischemia-reperfusion (I/R) injury. However, the precise mechanism of action has remained largely unknown. The present study investigated whether brain-derived neurotropic factor (BDNF) mediates hippocampal synaptic plasticity as the underlying mechanism. Rats were randomly divided into three groups: The sham operation control (Sham) group, the focal cerebral ischemia-reperfusion (I/R) group, and the I/R with EA treatment (I/R+EA) group. The I/R+EA group received EA treatment at the Shenting (DU24) and Baihui (DU20) acupoints after the operation. EA treatment was found to ameliorate neurological deficits (P<0.05) and reduce the cerebral infarct volume (P<0.01). In addition, EA improved cognitive function in cerebral I/R-injured rats (P<0.05). Furthermore, EA treatment promoted synaptic plasticity. Simultaneously, EA increased the hippocampal expression of BDNF, its high-affinity tropomyosin receptor kinase B (TrkB) and post-synaptic density protein-95 (PSD-95) in the rats with cerebral I/R injury. Collectively, the findings suggested that BDNF-mediated hippocampal synaptic plasticity may be one mechanism via which EA treatment at the Shenting (DU24) and Baihui (DU20) acupoints improves cognitive function in cerebral I/R injured rats. PMID:28962170

  9. Self-Instructional Cognitive Training to Reduce Impulsive Cognitive Style in Children with Attention Deficit with Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Rivera-Flores, Gladys Wilma

    2015-01-01

    Introduction: Children with attention deficit with hyperactivity disorder (ADHD) have an impulsive, rigid and field-dependent cognitive style. This study examines whether self-instructional cognitive training reduces impulsive cognitive style in children diagnosed with this disorder. Method: The subjects were 10 children between the ages of 6 and…

  10. Self-Instructional Cognitive Training to Reduce Impulsive Cognitive Style in Children with Attention Deficit with Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Rivera-Flores, Gladys Wilma

    2015-01-01

    Introduction: Children with attention deficit with hyperactivity disorder (ADHD) have an impulsive, rigid and field-dependent cognitive style. This study examines whether self-instructional cognitive training reduces impulsive cognitive style in children diagnosed with this disorder. Method: The subjects were 10 children between the ages of 6 and…

  11. The memory ameliorating effects of DHP1402, an herbal mixture, on cholinergic blockade-induced cognitive dysfunction in mice.

    PubMed

    Kim, Haneul; Lee, Hyung Eun; Jung, In Ho; Jeon, Se Jin; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-09-14

    The seeds of Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F Chow (Rhamnaceae) and the roots of Codonopsis lanceolata (Siedbold & Zucc.) Benth. & Hook. f ex Trautv. (Campanulaceae), contained in the DHP1402, have long been used for treating dementia or hypomnesia as folk medicine. It has been reported that Z. jujuba var. spinosa and C. lanceolata are effective in improving cognitive function, but via different mechanisms. Therefore, in the present study, we evaluated the synergistic effects of Z. jujuba var. spinosa and C. lanceolata on scopolamine-induced memory impairment. Scopolamine, a cholinergic muscarinic receptor antagonist, was used to induce cognitive dysfunction. We employed several behavioral tasks to estimate the synergistic effect of the seeds of Z. jujuba var. spinosa and the roots of C. lanceolata. In addition, we introduced the Western blotting, the antagonism passive avoidance task to investigate a synergistic effect of an herbal formulation. Synergistic effects of a combination of Z. jujuba var. spinosa and C. lanceolata at a 5:1 ratio [(w/w), DHP1402] were observed against cognitive dysfunction in the passive avoidance and Y-maze tasks. DHP1402 also ameliorated memory deficits in a dose-dependent manner in these behavioral tasks, as well as in the Morris water maze task. According to the Western blot results, the phosphorylation levels of protein kinase A (PKA), extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus were also increased in a synergistic manner after the administration of DHP1402. In addition, we found that the effects of DHP1402 on cognitive function were mediated by N-methyl-D-aspartate (NMDA) receptor signalling, based on the antagonism studies. Furthermore, we found that DHP1402 has inhibitory activity against acetylcholinesterase (AChE). DHP1402 attenuates cholinergic blockade-induced cognitive dysfunction through NMDA receptor modulation, PKA-ERK-CREB pathway activation

  12. Deletion of Selenoprotein M Leads to Obesity without Cognitive Deficits*

    PubMed Central

    Pitts, Matthew W.; Reeves, Mariclair A.; Hashimoto, Ann C.; Ogawa, Ashley; Kremer, Penny; Seale, Lucia A.; Berry, Marla J.

    2013-01-01

    Selenium is an essential trace element that is co-translationally incorporated into selenoproteins in the form of the 21st amino acid, selenocysteine. This class of proteins largely functions in oxidation-reduction reactions and is critically involved in maintaining proper redox balance essential to health. Selenoprotein M (SelM) is a thioredoxin-like endoplasmic reticulum-resident protein that is highly expressed in the brain and possesses neuroprotective properties. In this study, we first assessed the regional pattern of SelM expression in the mouse brain to provide insights into the potential functional implications of this protein in physiology and behavior. Next, we generated transgenic mice with a targeted deletion of the SelM gene and subjected them to a battery of neurobehavioral tests to evaluate motor coordination, locomotion, and cognitive function in comparison with wild-type controls. Finally, these mice were tested for several measures of metabolic function and body composition. Our results show that SelM knock-out (KO) mice display no deficits in measures of motor coordination and cognitive function but exhibit increased weight gain, elevated white adipose tissue deposition, and diminished hypothalamic leptin sensitivity. These findings suggest that SelM plays an important role in the regulation of body weight and energy metabolism. PMID:23880772

  13. Bacopaside I ameliorates cognitive impairment in APP/PS1 mice via immune-mediated clearance of β-amyloid

    PubMed Central

    Li, Yuanyuan; Yuan, Xing; Shen, Yunheng; Zhao, Jing; Yue, Rongcai; Liu, Fang; He, Weiwei; Wang, Rui; Shan, Lei; Zhang, Weidong

    2016-01-01

    Standardized extracts of Bacopa monniera (BME) have been shown to exert a neuroprotective effect against mental diseases, such as depression, anxiety and Alzheimer's disease (AD), in chronic administration studies. However, its mechanism of action has remained unclear. In this study, we evaluated the therapeutic effect of Bacopaside I (BS-I), a major triterpenoid saponin of BME, on the cognitive impairment and neuropathology in APP/PS1 transgenic mice and explored the possible mechanism from a biological systems perspective. We found that BS-I treatment significantly ameliorated learning deficits, improved long-term spatial memory, and reduced plaque load in APP/PS1 mice. We constructed BS-I's therapeutic effect network by mapping the nodes onto the protein-protein interaction (PPI) network constructed according to their functional categories based on genomic and proteomic data. Because many of the top enrichment categories related to the processes of the immune system and phagocytosis were detected, we proposed that BS-I promotes amyloid clearance via the induction of a suitable degree of innate immune stimulation and phagocytosis. Our research may help to clarify the neuroprotective effect of BME and indicated that natural saponins target the immune system, which may offer new research avenues to discover novel treatments for AD. PMID:26946062

  14. Caregivers' perception of patients' cognitive deficit in schizophrenia and its influence on their quality of life.

    PubMed

    Caqueo-Urízar, Alejandra; Urzúa, Alfonso; Boyer, Laurent

    2016-05-01

    The aim of the study was to explore the relationship between the caregivers’ perception of patients’ cognitive deficits (i.e., neurocognition and social cognition) and their quality of life (QoL), after adjusting on clinicians’ assessment of neurocognitive deficits and sociodemographic confounding factors. The study included 253 patients with schizophrenia and their caregivers from public mental health clinics in Bolivia, Chile, and Peru. The caregivers’ perception of patients’ neurocognitive and social cognitive deficits was assessed using the the GEOPTE scale, caregivers’ QoL was assessed using the schizophrenia caregiver quality of life questionnaire (S-CGQoL) and clinicians’ ratings of patients’ neurocognitive deficits was based on the cognitive factor of the positive and negative syndrome scale for schizophrenia (PANSS). The degree of agreement between caregivers’ perception and health care professionals’ assessment of cognitive deficit of patients with schizophrenia was moderate. Caregivers’ perceptions of neurocognitive and social cognitive deficits were significantly associated with their QoL, contrary to clinicians’ assessment. Caregivers’ perception of patients’ cognitive deficit was significantly associated with their QoL. The caregivers’ perception regarding patients’ neurocognition and social cognition may enrich the knowledge of clinicians on patients and is important to be considered by clinicians to improve caregiver’s QoL.

  15. Learning and cognitive deficits in hypoxic neonatal rats intensified by BAX mediated apoptosis: protective role of glucose, oxygen, and epinephrine.

    PubMed

    Raveendran, Anju Thoppil; Skaria, Paulose Cheramadatikudiyil

    2013-02-01

    Hypoxic brain injury during neonatal development can lead to neuronal damage and produce learning and cognitive impairments. TOPRO-3 staining was used to visualize cell loss and real-time polymerase chain reaction (PCR) analysis of BAX mRNA was used to evaluate the level of apoptosis in the cerebral cortex, cerebellum, brain stem, and striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen, and epinephrine. The long-term effects of neonatal hypoxic insult on cognition and behavior were studied using Morris water maze experiment on 1-month-old rats exposed to neonatal hypoxia. In hypoxic neonatal rats, a significant cell loss (p < .001) within the brain regions was observed in TOPRO-3 staining and BAX mRNA expression was significantly upregulated (p < .001). Immediate resuscitation of hypoxic neonates with glucose, alone and along with oxygen, significantly downregulated (p < .001) BAX mRNA expression. The BAX expression in epinephrine resuscitated and 100% oxygen resuscitated groups were found to be upregulated in the brain regions. In water maze experiment, 1-month-old rats exposed to neonatal hypoxia spent lesser time in the platform quadrant (p < .001) and showed longer escape latency (p < .001) highlighting the learning and cognitive deficits. Our study revealed the effect of glucose resuscitation alone and along with oxygenation in ameliorating the spatial memory and learning deficits induced by neonatal hypoxic insult mediated brain cell loss.

  16. Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging.

    PubMed

    Greenwood, Pamela M; Parasuraman, Raja

    2010-01-01

    What is the neurocognitive basis for the considerable individual differences observed in functioning of the adult mind and brain late in life? We review the evidence that in healthy old age the brain remains capable of both neuronal and cognitive plasticity, including in response to environmental and experiential factors. Neuronal plasticity (e.g., neurogenesis, synaptogenesis, cortical re-organization) refers to neuron-level changes that can be stimulated by experience. Cognitive plasticity (e.g., increased dependence on executive function) refers to adaptive changes in patterns of cognition related to brain activity. We hypothesize that successful cognitive aging requires interactions between these two forms of plasticity. Mechanisms of neural plasticity underpin cognitive plasticity and in turn, neural plasticity is stimulated by cognitive plasticity. We examine support for this hypothesis by considering evidence that neural plasticity is stimulated by learning and novelty and enhanced by both dietary manipulations (low-fat, dietary restriction) and aerobic exercise. We also examine evidence that cognitive plasticity is affected by education and training. This is a testable hypothesis which could be assessed in humans in randomized trials comparing separate and combined effects of cognitive training, exercise, and diet on measures of cognitive and brain integrity. Greater understanding of the factors influencing the course of cognitive aging and of the mechanisms underlying those factors could provide information on which people could base choices that improve their ability to age successfully.

  17. Neuronal and Cognitive Plasticity: A Neurocognitive Framework for Ameliorating Cognitive Aging

    PubMed Central

    Greenwood, Pamela M.; Parasuraman, Raja

    2010-01-01

    What is the neurocognitive basis for the considerable individual differences observed in functioning of the adult mind and brain late in life? We review the evidence that in healthy old age the brain remains capable of both neuronal and cognitive plasticity, including in response to environmental and experiential factors. Neuronal plasticity (e.g., neurogenesis, synaptogenesis, cortical re-organization) refers to neuron-level changes that can be stimulated by experience. Cognitive plasticity (e.g., increased dependence on executive function) refers to adaptive changes in patterns of cognition related to brain activity. We hypothesize that successful cognitive aging requires interactions between these two forms of plasticity. Mechanisms of neural plasticity underpin cognitive plasticity and in turn, neural plasticity is stimulated by cognitive plasticity. We examine support for this hypothesis by considering evidence that neural plasticity is stimulated by learning and novelty and enhanced by both dietary manipulations (low-fat, dietary restriction) and aerobic exercise. We also examine evidence that cognitive plasticity is affected by education and training. This is a testable hypothesis which could be assessed in humans in randomized trials comparing separate and combined effects of cognitive training, exercise, and diet on measures of cognitive and brain integrity. Greater understanding of the factors influencing the course of cognitive aging and of the mechanisms underlying those factors could provide information on which people could base choices that improve their ability to age successfully. PMID:21151819

  18. Multimodal cognitive therapy: combining treatments that bypass cognitive deficits and deal with reasoning and appraisal biases.

    PubMed

    Velligan, Dawn I; Draper, Meredith; Stutes, Donna; Maples, Natalie; Mintz, Jim; Tai, Sara; Turkington, Douglas

    2009-09-01

    The process of recovery in schizophrenia involves resolving persistent symptoms, addressing cognitive impairments, and improving functional outcomes. Our research group has demonstrated the efficacy of cognitive adaptation training (CAT)--a home-based psychosocial treatment utilizing environmental supports such as medication containers, signs, checklists, and the organization of belongings to bypass deficits in cognitive functioning and cue and sequence adaptive behavior) for improving adherence to medications and functional outcomes in schizophrenia. Early CAT pilot studies utilizing some therapists with training in cognitive behavior therapy (CBT) techniques for psychosis found significant improvements in positive symptoms. More recent larger scale randomized clinical trials failed to replicate this finding with CAT therapists not trained in CBT techniques. Persistent psychotic symptoms substantially impair patients' ability to adapt to life in the community. Cognitive behavior therapy for psychosis (CBTp) is an evidence-based practice for addressing persistent positive symptoms and the distress associated with them. CBTp decreases symptomatology and minimizes the negative effect of persisting symptoms upon individuals with this disorder. We now describe a home-delivered, multimodal cognitive treatment targeting functional outcomes and persistent positive symptoms for individuals with schizophrenia by utilizing both CAT and CBT techniques. We discuss the advantages and challenges of combining these 2 interventions, present a small retrospective data analysis to support their combination into a multimodal treatment, and describe the design of an ongoing randomized trial to investigate efficacy.

  19. Insulin Signaling Misregulation underlies Circadian and Cognitive Deficits in a Drosophila Fragile X Model

    PubMed Central

    Monyak, Rachel E.; Emerson, Danielle; Schoenfeld, Brian P.; Zheng, Xiangzhong; Chambers, Daniel B.; Rosenfelt, Cory; Langer, Steven; Hinchey, Paul; Choi, Catherine H.; McDonald, Thomas V.; Bolduc, Francois V.; Sehgal, Amita; McBride, Sean M.J.; Jongens, Thomas A.

    2016-01-01

    Fragile X syndrome (FXS) is an undertreated neurodevelopmental disorder characterized by low IQ and a wide range of other symptoms including disordered sleep and autism. Although FXS is the most prevalent inherited cause of intellectual disability, its mechanistic underpinnings are not well understood. Using Drosophila as a model of FXS, we showed that select expression of dfmr1 in the insulin-producing cells (IPCs) of the brain was sufficient to restore normal circadian behavior and to rescue the memory deficits in the fragile X mutant fly. Examination of the insulin-signaling (IS) pathway revealed elevated levels of Drosophila insulin-like peptide 2 (Dilp2) in the IPCs and elevated IS in the dfmr1 mutant brain. Consistent with a causal role for elevated IS in dfmr1 mutant phenotypes, expression of dfmr1 specifically in the IPCs reduced IS, and genetic reduction of the insulin pathway also led to amelioration of circadian and memory defects. Furthermore we showed that treatment with the FDA approved drug metformin also rescued memory. Finally, we showed that reduction of IS is required at different time points to rescue circadian behavior and memory. Our results indicate that insulin misregulation underlies the circadian and cognitive phenotypes displayed by the Drosophila fragile X model, and thus reveal a metabolic pathway that can be targeted by new and already approved drugs to treat fragile X patients. PMID:27090306

  20. Mitochondrial modulators in experimental Huntington's disease: reversal of mitochondrial dysfunctions and cognitive deficits.

    PubMed

    Mehrotra, Arpit; Kanwal, Abhinav; Banerjee, Sanjay Kumar; Sandhir, Rajat

    2015-06-01

    Huntington's disease (HD) is a chronic neurodegenerative condition involving impaired mitochondrial functions. The present study evaluates the therapeutic potential of combined administration of mitochondrial modulators: alpha-lipoic acid and acetyl-l-carnitine on mitochondrial dysfunctions in 3-NP-induced HD. Our results reveal 3-NP administration resulted in compromise of mitochondrial functions in terms of: (1) impaired activity of mitochondrial respiratory chain enzymes, altered cytochrome levels, reduced histochemical staining of complex-II and IV, reduced in-gel activity of complex-I to V, and reduced mRNA expression of respiratory chain complexes; (2) enhanced mitochondrial oxidative stress indicated by increased malondialdehyde, protein carbonyls, reactive oxygen species and nitrite levels, along with decreased Mn-superoxide dismutase and catalase activity; (3) mitochondrial structural changes measured by mitochondrial swelling, reduced mitochondrial membrane potential and ultra-structure changes; (4) increased cytosolic cytochrome c levels, caspase-3 and -9 activity along with altered expression of apoptotic proteins (AIF, Bim, Bad, and Bax); and (5) impaired cognitive functions assessed using Morris water maze and Y-maze. Combination of mitochondrial modulators (alpha-lipoic acid + acetyl-l-carnitine) on the other hand ameliorated 3-NP-induced mitochondrial dysfunctions, oxidative stress, histologic alterations, and behavioral deficits, suggesting their therapeutic efficacy in the management of HD.

  1. Varenicline ameliorates nicotine withdrawal-induced learning deficits in C57BL/6 mice.

    PubMed

    Raybuck, Jonathan D; Portugal, George S; Lerman, Caryn; Gould, Thomas J

    2008-10-01

    Varenicline, a partial agonist for a4ss2 nicotinic acetylcholine receptors (nAChRs) and full agonist for a7 nAChRs, has been approved for the treatment of smoking cessation. Although recent clinical trials support the efficacy of varenicline for managing global nicotine withdrawal symptoms and for smoking cessation, its effects on animal models of specific withdrawal-associated behaviors have not been tested. The present study evaluated the effects of varenicline on contextual fear conditioning and its effects on nicotine (6.3 mg/kg/day) withdrawal-induced deficits in contextual fear conditioning. Varenicline (0.01, 0.1, 1.0 mg/kg) had no effect on contextual fear conditioning when administered alone, but (0.1 mg/kg) prevented nicotine withdrawal-associated deficits in contextual fear conditioning. These data demonstrate, for the first time, that varenicline reverses nicotine withdrawal-induced deficits in an animal model and suggest that varenicline may be effective at treating nicotine withdrawal-associated deficits in learning and memory.

  2. Comparison of Montreal Cognitive Assessment and Mini-Mental State Examination in Evaluating Cognitive Domain Deficit Following Aneurysmal Subarachnoid Haemorrhage

    PubMed Central

    Wong, George Kwok Chu; Lam, Sandy Wai; Wong, Adrian; Ngai, Karine; Poon, Wai Sang; Mok, Vincent

    2013-01-01

    Objective Cognitive deficits are common after aneurysmal subarachnoid haemorrhage (aSAH), and clinical evaluation is important for their management. Our hypothesis was that the Montreal Cognitive Assessment (MoCa) is superior to the Mini-Mental State Examination (MMSE) in screening for cognitive domain deficit in aSAH patients. Methods We carried out a prospective observational and diagnostic accuracy study on Hong Kong aSAH patients aged 21 to 75 years who had been admitted within 96 hours of ictus. The domain-specific neuropsychological assessment battery, the MoCA and MMSE were administered 2–4 weeks and 1 year after ictus. A cognitive domain deficit was defined as a cognitive domain z score <−1.65 (below the fifth percentile). Cognitive impairment was defined as two or more cognitive domain deficits. The study is registered at ClinicalTrials.gov of the US National Institutes of Health (NCT01038193). Results Both the MoCA and the MMSE were successful in differentiating between patients with and without cognitive domain deficits and cognitive impairment at both assessment periods. At 1 year post-ictus, the MoCA produced higher area under the curve scores for cognitive impairment than the MMSE (MoCA, 0.92; 95% CI, 0.83 to 0.97 versus MMSE, 0.77; 95% CI, 0.66 to 0.83, p = 0.009). Interpretation Cognitive domain deficits and cognitive impairment in patients with aSAH can be screened with the MoCA in both the subacute and chronic phases. PMID:23573223

  3. Subjective deficits of attention, cognition and depression in patients with narcolepsy.

    PubMed

    Zamarian, Laura; Högl, Birgit; Delazer, Margarete; Hingerl, Katharina; Gabelia, David; Mitterling, Thomas; Brandauer, Elisabeth; Frauscher, Birgit

    2015-01-01

    Patients with narcolepsy often complain about attention deficits in everyday situations. In comparison with these subjective complaints, deficits in objective testing are subtler. The present study assessed the relationships between subjective complaints, objectively measured cognitive performance, disease-related variables, and mood. A total of 51 patients with narcolepsy and 35 healthy controls responded to questionnaires regarding subjectively perceived attention deficits, sleepiness, anxiety and depression. Moreover, they performed an extensive neuropsychological assessment tapping into attention, executive functions, and memory. Patients rated their level of attention in everyday situations to be relatively poor. In an objective assessment of cognitive functioning, they showed only slight attention and executive function deficits. The subjective ratings of attention deficits significantly correlated with ratings of momentary sleepiness, anxiety, and depression, but not with objectively measured cognitive performance. Momentary sleepiness and depression predicted almost 39% of the variance in the ratings of subjectively perceived attention deficits. The present study showed that sleepiness and depression, more than objective cognitive deficits, might play a role in the subjectively perceived attention deficits of patients with narcolepsy. The results suggested that when counselling and treating patients with narcolepsy, clinicians should pay attention to potential depression because subjective cognitive complaints may not relate to objective cognitive impairments. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Donepezil reverses nicotine withdrawal-induced deficits in contextual fear conditioning in C57BL/6J mice.

    PubMed

    Poole, Rachel L; Connor, David A; Gould, Thomas J

    2014-10-01

    Withdrawal from chronic nicotine is associated with cognitive deficits. Therapies that ameliorate cognitive deficits during withdrawal aid in preventing relapse during quit attempts. Withdrawal-induced deficits in contextual learning are associated with nicotinic acetylcholine receptor upregulation. The aim of the present study was to determine if the acetylcholinesterase inhibitor donepezil has the ability to reverse nicotine withdrawal-induced deficits in contextual learning. Results demonstrated that low doses of donepezil, which do not enhance contextual learning or alter locomotor activity/anxiety-related behavior, can reverse nicotine withdrawal-induced deficits in contextual learning. Thus, donepezil may have therapeutic value for ameliorating cognitive deficits associated with nicotine withdrawal and for preventing relapse.

  5. Paeoniflorin ameliorates cognitive dysfunction via regulating SOCS2/IRS-1 pathway in diabetic rats.

    PubMed

    Sun, Xiaoxu; Li, Shanshan; Xu, Lixing; Wang, Hao; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-03-16

    Paeoniflorin is a natural monoterpene glycoside in Paeonia lactiflora pall with various biological properties including promising anti-inflammatory activity. Current evidences support that inflammatory reaction, oxidative stress, as well as abnormal insulin signaling in the hippocampus are potential causes of tau hyperphosphorylation and finally induce cognitive dysfunction. The present study aims to explore the effects of paeoniflorin on the cognitive deficits and investigate the underlying mechanisms in diabetic rats induced by a high-sucrose, high-fat diet and low dose of streptozotocin (STZ). Paeoniflorin treatment effectively improved the performance of diabetic rats in the Morris water maze test via decreasing escape latency and increasing the spent time in the target quadrant. Immunohistochemistry staining also had shown that tau hyperphosphorylation in the hippocampus was prevented after paeoniflorin administration. This function was correlated with its abilities of reducing the brain inflammatory cytokines (IL-1β and TNF-α), decreasing suppressor of cytokine signaling 2 (SOCS2) expressions and promoting insulin receptor substrate-1 (IRS-1) activity. Additionally, we also found paeoniflorin administration significantly promoted the phosphorylation levels of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β). Together, these results showed that paeoniflorin had beneficial effects on relieving diabetes-associated cognitive deficits via regulating SOCS2/IRS-1 pathway and might provide a feasible method for the treatment of diabetes-associated cognitive dysfunction.

  6. Using the Diffusion Model to Explain Cognitive Deficits in Attention Deficit Hyperactivity Disorder.

    PubMed

    Huang-Pollock, Cynthia; Ratcliff, Roger; McKoon, Gail; Shapiro, Zvi; Weigard, Alex; Galloway-Long, Hilary

    2017-01-01

    Slow, variable, and error-prone performance on speeded reaction time (RT) tasks has been well documented in childhood ADHD, but equally well documented is the context-dependent nature of those deficits, particularly with respect to event rate. As event rates increase (or, as the interstimulus intervals become shorter), RTs decrease, a pattern of performance that has long been interpreted as evidence that cognitive deficits in ADHD are a downstream consequence of a fundamental difficulty in the regulation of arousal to meet task demands. We test the extent to which this is a misinterpretation of the data that occurs when RT and accuracy are considered separately, as is common in neurocognitive research. In two samples of children aged 8-10 with (N = 97; 33 girls) and without (N = 39; 26 girls) ADHD, we used the diffusion model, an influential computational model of RT, to examine the effect of event rate on inhibitory control in a go-no-go task. Contrary to longstanding belief, we found that fast event rates slowed the rate at which children with ADHD accumulated evidence to make a decision to "no-go", as indexed by drift rate. This in turn resulted in a higher proportion of failed inhibits, and occurred despite increased task engagement, as reflected by changes in the starting point of the decision process. Thus, although faster event rates increased task engagement among children with ADHD, the increased engagement was unable to counteract the concurrent slowing of processing speed to "no-go" decisions. Implications for theoretical models of ADHD and treatments are discussed.

  7. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice.

    PubMed

    Li, Zhigui; Hao, Shuang; Yin, Hongqiang; Gao, Jing; Yang, Zhuo

    2016-05-15

    The underlying mechanisms of cognitive impairment in diabetes remain incompletely characterized. Here we show that the autophagic inhibition by 3-methyladenine (3-MA) aggravates cognitive impairment in streptozotocin-induced diabetic mice, including exacerbation of anxiety-like behaviors and aggravation in spatial learning and memory, especially the spatial reversal memory. Further neuronal function identification confirmed that both long term potentiation (LTP) and depotentiation (DPT) were exacerbated by autophagic inhibition in diabetic mice, which indicating impairment of synaptic plasticity. However, no significant change of pair-pulse facilitation (PPF) was recorded in diabetic mice with autophagic suppression compared with the diabetic mice, which indicated that presynaptic function was not affected by autophagic inhibition in diabetes. Subsequent hippocampal neuronal cell death analysis showed that the apoptotic cell death, but not the regulated necrosis, significantly increased in autophagic suppression of diabetic mice. Finally, molecular mechanism that may lead to cell death was identified. The long non-coding RNA PVT1 (plasmacytoma variant translocation 1) expression was analyzed, and data revealed that PVT1 was decreased significantly by 3-MA in diabetes. These findings show that PVT1-mediated autophagy may protect hippocampal neurons from impairment of synaptic plasticity and apoptosis, and then ameliorates cognitive impairment in diabetes. These intriguing findings will help pave the way for exciting functional studies of autophagy in cognitive impairment and diabetes that may alter the existing paradigms.

  8. Temporal Processing Deficits of Language-Learning Impaired Children Ameliorated by Training

    NASA Astrophysics Data System (ADS)

    Merzenich, Michael M.; Jenkins, William M.; Johnston, Paul; Schreiner, Christoph; Miller, Steven L.; Tallal, Paula

    1996-01-01

    Children with language-based learning impairments (LLIs) have major deficits in their recognition of some rapidly successive phonetic elements and nonspeech sound stimuli. In the current study, LLI children were engaged in adaptive training exercises mounted as computer "games" designed to drive improvements in their "temporal processing" skills. With 8 to 16 hours of training during a 20-day period, LLI children improved markedly in their abilities to recognize brief and fast sequences of nonspeech and speech stimuli.

  9. Cross-training in hemispatial neglect: auditory sustained attention training ameliorates visual attention deficits.

    PubMed

    Van Vleet, Thomas M; DeGutis, Joseph M

    2013-03-01

    Prominent deficits in spatial attention evident in patients with hemispatial neglect are often accompanied by equally prominent deficits in non-spatial attention (e.g., poor sustained and selective attention, pronounced vigilance decrement). A number of studies now show that deficits in non-spatial attention influence spatial attention. Treatment strategies focused on improving vigilance or sustained attention may effectively remediate neglect. For example, a recent study employing Tonic and Phasic Alertness Training (TAPAT), a task that requires monitoring a constant stream of hundreds of novel scenes, demonstrated group-level (n=12) improvements after training compared to a test-retest control group or active treatment control condition on measures of visual search, midpoint estimation and working memory (DeGutis and Van Vleet, 2010). To determine whether the modality of treatment or stimulus novelty are key factors to improving hemispatial neglect, we designed a similar continuous performance training task in which eight patients with chronic and moderate to severe neglect were challenged to rapidly and continuously discriminate a limited set of centrally presented auditory tones once a day for 9 days (36-min/day). All patients demonstrated significant improvement in several, untrained measures of spatial and non-spatial visual attention, and as a group failed to demonstrate a lateralized attention deficit 24-h post-training compared to a control group of chronic neglect patients who simply waited during the training period. The results indicate that TAPAT-related improvements in hemispatial neglect are likely due to improvements in the intrinsic regulation of supramodal, non-spatial attentional resources.

  10. The Efficacy of a Computer-Assisted Cognitive Rehabilitation Program for Patients with Mild Cognitive Deficits: A Pilot Study.

    PubMed

    Mansbach, William E; Mace, Ryan A; Clark, Kristen M

    2017-01-01

    Background/Study Context: Whereas computer-assisted cognitive rehabilitation (CR) programs show promise as tools for improving cognition in certain populations, there is not a consensus regarding their efficacy. This study focuses on restorative CR, a treatment designed to improve cognitive functioning affected by progressive brain changes due to disease or aging, through computer-assisted cognitive exercises. The purpose of this study was to investigate the efficacy of a computer-assisted restorative CR intervention for improving cognitive functioning in older rehabilitation patients with relatively mild cognitive deficits.

  11. Pharmacological Cognitive Enhancement in Healthy Individuals: A Compensation for Cognitive Deficits or a Question of Personality?

    PubMed

    Maier, Larissa J; Wunderli, Michael D; Vonmoos, Matthias; Römmelt, Andreas T; Baumgartner, Markus R; Seifritz, Erich; Schaub, Michael P; Quednow, Boris B

    2015-01-01

    The ongoing bioethical debate on pharmacological cognitive enhancement (PCE) in healthy individuals is often legitimated by the assumption that PCE will widely spread and become desirable for the general public in the near future. This assumption was questioned as PCE is not equally save and effective in everyone. Additionally, it was supposed that the willingness to use PCE is strongly personality-dependent likely preventing a broad PCE epidemic. Thus, we investigated whether the cognitive performance and personality of healthy individuals with regular nonmedical methylphenidate (MPH) use for PCE differ from stimulant-naïve controls. Twenty-five healthy individuals using MPH for PCE were compared with 39 age-, sex-, and education-matched healthy controls regarding cognitive performance and personality assessed by a comprehensive neuropsychological test battery including social cognition, prosocial behavior, decision-making, impulsivity, and personality questionnaires. Substance use was assessed through self-report in an interview and quantitative hair and urine analyses. Recently abstinent PCE users showed no cognitive impairment but superior strategic thinking and decision-making. Furthermore, PCE users displayed higher levels of trait impulsivity, novelty seeking, and Machiavellianism combined with lower levels of social reward dependence and cognitive empathy. Finally, PCE users reported a smaller social network and exhibited less prosocial behavior in social interaction tasks. In conclusion, the assumption that PCE use will soon become epidemic is not supported by the present findings as PCE users showed a highly specific personality profile that shares a number of features with illegal stimulant users. Lastly, regular MPH use for PCE is not necessarily associated with cognitive deficits.

  12. Pharmacological Cognitive Enhancement in Healthy Individuals: A Compensation for Cognitive Deficits or a Question of Personality?

    PubMed Central

    Maier, Larissa J.; Wunderli, Michael D.; Vonmoos, Matthias; Römmelt, Andreas T.; Baumgartner, Markus R.; Seifritz, Erich

    2015-01-01

    The ongoing bioethical debate on pharmacological cognitive enhancement (PCE) in healthy individuals is often legitimated by the assumption that PCE will widely spread and become desirable for the general public in the near future. This assumption was questioned as PCE is not equally save and effective in everyone. Additionally, it was supposed that the willingness to use PCE is strongly personality-dependent likely preventing a broad PCE epidemic. Thus, we investigated whether the cognitive performance and personality of healthy individuals with regular nonmedical methylphenidate (MPH) use for PCE differ from stimulant-naïve controls. Twenty-five healthy individuals using MPH for PCE were compared with 39 age-, sex-, and education-matched healthy controls regarding cognitive performance and personality assessed by a comprehensive neuropsychological test battery including social cognition, prosocial behavior, decision-making, impulsivity, and personality questionnaires. Substance use was assessed through self-report in an interview and quantitative hair and urine analyses. Recently abstinent PCE users showed no cognitive impairment but superior strategic thinking and decision-making. Furthermore, PCE users displayed higher levels of trait impulsivity, novelty seeking, and Machiavellianism combined with lower levels of social reward dependence and cognitive empathy. Finally, PCE users reported a smaller social network and exhibited less prosocial behavior in social interaction tasks. In conclusion, the assumption that PCE use will soon become epidemic is not supported by the present findings as PCE users showed a highly specific personality profile that shares a number of features with illegal stimulant users. Lastly, regular MPH use for PCE is not necessarily associated with cognitive deficits. PMID:26107846

  13. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  14. Autologous transplantation of intestine-isolated glia cells improves neuropathology and restores cognitive deficits in β amyloid-induced neurodegeneration

    PubMed Central

    Esposito, Giuseppe; Sarnelli, Giovanni; Capoccia, Elena; Cirillo, Carla; Pesce, Marcella; Lu, Jie; Calì, Gaetano; Cuomo, Rosario; Steardo, Luca

    2016-01-01

    Alzheimer’s disease (AD) is characterized by chronic deposition of β-amyloid (Aβ) in the brain, progressive neurodegeneration and consequent cognitive and behavioral deficits that typify the disease. Astrocytes are pivotal in this process because they are activated in the attempt to digest Aβ which starts a neuroinflammatory response that further contributes to neurodegeneration. The intestine is a good source of astrocytes-like cells-referred to as enteric glial cells (EGCs). Here we show that the autologous transplantation of EGCs into the brain of Aβ-injected rats arrested the development of the disease after their engraftment. Transplanted EGCs showed anti-amyloidogenic activity, embanked Aβ-induced neuroinflammation and neurodegeneration, and released neutrophic factors. The overall result was the amelioration of the pathological hallmarks and the cognitive and behavioral deficits typical of Aβ-associated disease. Our data indicate that autologous EGCs transplantation may provide an efficient alternative for applications in cell-replacement therapies to treat neurodegeneration in AD. PMID:26940982

  15. PPARα Agonist Fenofibrate Ameliorates Learning and Memory Deficits in Rats Following Global Cerebral Ischemia.

    PubMed

    Xuan, Ai-Guo; Chen, Yan; Long, Da-Hong; Zhang, Meng; Ji, Wei-Dong; Zhang, Wen-Juan; Liu, Ji-Hong; Hong, Le-Peng; He, Xiao-Song; Chen, Wen-Liang

    2015-08-01

    Increasing evidence demonstrates that local inflammation contributes to neuronal death following cerebral ischemia. Peroxisome proliferator-activated receptor α (PPARα) activation has been reported to exhibit many pharmacological effects including anti-inflammatory functions. The aim of this study was to investigate the neuroprotective effects of PPARα agonist fenofibrate on the behavioral dysfunction induced by global cerebral ischemia/reperfusion (GCI/R) injury in rats. The present study showed that fenofibrate treatment significantly reduced hippocampal neuronal death, and improved memory impairment and hippocampal neurogenesis after GCI/R. Fenofibrate administration also inhibited GCI/R-induced over-activation of microglia but not astrocytes and prevented up-regulations of pro-inflammatory mediators in hippocampus. Further study demonstrated that treatment with fenofibrate suppressed GCI/R-induced activations of P65 NF-κB and P38 MAPK. Our data suggest that the PPARα agonist fenofibrate can exert functional recovery of memory deficits and neuroprotective effect against GCI/R in rats via triggering of neurogenesis and anti-inflammatory effect mediated by inhibiting activation of P65 NF-κB and P38 MAPK in the hippocampus, which can contribute to improvement in neurological deficits.

  16. Emotion Perception or Social Cognitive Complexity: What Drives Face Processing Deficits in Autism Spectrum Disorder?

    PubMed

    Walsh, Jennifer A; Creighton, Sarah E; Rutherford, M D

    2016-02-01

    Some, but not all, relevant studies have revealed face processing deficits among those with autism spectrum disorder (ASD). In particular, deficits are revealed in face processing tasks that involve emotion perception. The current study examined whether either deficits in processing emotional expression or deficits in processing social cognitive complexity drive face processing deficits in ASD. We tested adults with and without ASD on a battery of face processing tasks that varied with respect to emotional expression processing and social cognitive complexity. Results revealed significant group differences on tasks involving emotional expression processing, but typical performance on a non-emotional but socially complex task. These results support an emotion processing rather than a social complexity explanation for face processing deficits in ASD.

  17. Cognitive control in closed head injury: context maintenance dysfunction or prepotent response inhibition deficit?

    PubMed

    Seignourel, Paul J; Robins, Diana L; Larson, Michael J; Demery, Jason A; Cole, Michael; Perlstein, William M

    2005-09-01

    The authors contrasted 2 potential explanations for the cognitive control deficits observed in closed head injury (CHI): a prepotent response inhibition deficit or a deficit in context maintenance, defined as the guidance of appropriate responding by task-relevant information. Healthy and CHI participants performed the traditional card Stroop task and a single-trial Stroop task sensitive to context maintenance deficits. As predicted by a context maintenance deficit, moderate to severe CHI participants showed higher error rates in the single-trial Stroop task only, and only when task instructions had to be maintained over a long delay. Moreover, context maintenance impairment and generalized slowing were both related to reports of daily functioning in CHI participants. Thus, context maintenance could be a useful framework for characterizing cognitive control deficits in CHI. Copyright (c) 2005 APA, all rights reserved.

  18. Environmental Enrichment Ameliorates Neonatal Sevoflurane Exposure-Induced Cognitive and Synaptic Plasticity Impairments.

    PubMed

    Ji, Mu-huo; Wang, Xing-ming; Sun, Xiao-ru; Zhang, Hui; Ju, Ling-sha; Qiu, Li-li; Yang, Jiao-jiao; Jia, Min; Wu, Jing; Yang, Jianjun

    2015-11-01

    Early exposure to sevoflurane, an inhalation anesthetic, induces neurodegeneration in the developing brain and subsequent long-term neurobehavioral abnormalities. Here, we investigated whether an enriched environment could mitigate neonatal sevoflurane exposure-induced long-term cognitive and synaptic plasticity impairments. Male C57BL/6 mice were exposed to 3 % sevoflurane 2 h daily for 3 days from postnatal day 6 (P6) to P8. The exposed mice were randomly allocated to an enriched environment for 2 h daily between P8 and P42 or to a standard environment. Their behavior and cognition were assessed using open field (P35) and fear conditioning tests (P41-P42). Hematoxylin-eosin staining was used to study morphological changes in pyramidal neurons of hippocampal CA1 and CA3 regions. Synaptic plasticity alternations were assessed using western blotting, Golgi staining, and electrophysiological recording. We found that sevoflurane-exposed mice housed in a standard environment exhibited a reduced freezing response in the contextual test, decreased number of dendritic spines on pyramidal neurons and synaptic plasticity-related proteins in the hippocampus, and impaired long-term potentiation. However, in an enriched environment, some of these abnormities induced by repeated sevoflurane exposure. In conclusion, neonatal sevoflurane exposure-induced cognitive and synaptic plasticity impairments are ameliorated by an enriched environment.

  19. Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder.

    PubMed

    Hermens, Daniel F; Soei, Eleonore X C; Clarke, Simon D; Kohn, Michael R; Gordon, Evian; Williams, Leanne M

    2005-04-01

    Quantitative electroencephalography has contributed significantly to elucidating the neurobiologic mechanisms of attention-deficit hyperactivity disorder. The most consistent and robust electroencephalographic disturbance in attention-deficit hyperactivity disorder has been abnormally increased theta band during resting conditions. Separate research using attention-demanding tests has elucidated cognitive disturbances that differentiate attention-deficit hyperactivity disorder. This study attempts to integrate electroencephalographic and neuropsychological indices to determine whether cognitive performance is specifically related to increased theta. Theta activity was recorded during a resting condition for 46 children/adolescents with attention-deficit hyperactivity disorder and their sex- and age-matched control subjects. Accuracy and reaction time during an auditory oddball and a visual continuous performance test were then recorded. Compared with control subjects, the attention-deficit hyperactivity disorder group manifested significantly increased (primarily left) frontal theta. Furthermore, the attention-deficit hyperactivity disorder group scored significantly delayed reaction time and decreased accuracy in both tasks. Correlation analysis revealed a significant relationship between frontal (primarily left) theta and oddball accuracy for the attention-deficit hyperactivity disorder group compared with a significant relationship between posterior (primarily right) theta and reaction time in the continuous performance test for the control group. These results indicate that spatial neurophysiologic deficits in attention-deficit hyperactivity disorder may be related to disturbances in signal detection. This observation has important implications for the role of trait-like biologic deficits in attention-deficit hyperactivity disorder predicting performance in information processing.

  20. How to Cheat and Not Feel Guilty: Cognitive Dissonance and Its Amelioration in the Domain of Academic Dishonesty

    ERIC Educational Resources Information Center

    Stephens, Jason M.

    2017-01-01

    The belief that cheating is wrong doesn't prevent its enactment. For example, many students cheat despite believing that is wrong or unjustifiable. The question taken up in this article concerns how the resulting cognitive dissonance is ameliorated; that is, how do students cheat and not feel guilty? This article will describe two "good"…

  1. Serum ApoB levels in depressive patients: associated with cognitive deficits

    PubMed Central

    Hui, Li; Han, Mei; Du, Xiang Dong; Zhang, Bao Hua; He, Shu Chang; Shao, Tian Nan; Yin, Guang Zhong

    2017-01-01

    Cognitive deficits have been regarded as one of the most significant clinical symptoms of depressive disorder. Accumulating evidence has shown that apolipoprotein B (ApoB) levels, which are responsible for inducing neurodegeneration, may be involved in cognitive deficits. This study examines cognitive deficits, and the correlation of serum ApoB levels with cognitive deficits of depressive disorder. 90 depressive patients and 90 healthy controls with matched age and gender were recruited. Cognition was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Serum ApoB levels in depressive patients were measured by immunoturbidimetric method. Our results showed that depressive patients had lower scores of cognition including RBANS total score and subscales of language and delayed memory (all, p < 0.001) than healthy controls after controlling for the variables. The differences in cognitive functions also passed Bonferroni corrections. Serum ApoB levels were negatively correlated with delayed memory score in depressive patients (r = −0.30, p = 0.01). Furthermore, stepwise multivariate regression analysis indicated that serum ApoB levels independently contributed to delayed memory in depressive patients (t = −2.68, p = 0.01). Our findings support that serum ApoB levels may be involved in delayed memory decline in depressive patients. Depressive patients also experience greater cognitive deficits, especially in delayed memory and language than healthy controls. PMID:28054633

  2. Blockade of Nociceptin Signaling Reduces Biochemical, Structural and Cognitive Deficits after Traumatic Brain Injury

    DTIC Science & Technology

    2010-07-01

    Blockade of Nociceptin Signaling Reduces Biochemical, Structural and Cognitive Deficits after Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Structural and Cognitive Deficits after Traumatic Brain I j 5b. GRANT NUMBER W81XWH-09-1-0443 Injury 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...blast-induced traumatic brain injury (TBI) has been a tremendous challenge. TBI results in hypoxia and ischemia reperfusion injury to the brain

  3. Number Processing and Heterogeneity of Developmental Dyscalculia: Subtypes with Different Cognitive Profiles and Deficits

    ERIC Educational Resources Information Center

    Skagerlund, Kenny; Träff, Ulf

    2016-01-01

    This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with…

  4. Cognitive Patterns and Learning Disabilities in Cleft Palate Children with Verbal Deficits.

    ERIC Educational Resources Information Center

    Richman, Lynn C.

    1980-01-01

    The study examined patterns of cognitive ability in 57 cleft lip and palate children (ages 7 to 9) with verbal deficit, but without general intellectual retardation to evaluate whether the verbal disability displayed by these children was related primarily to a specific verbal expression deficit or a more general symbolic mediation problem.…

  5. Cognitive Patterns and Learning Disabilities in Cleft Palate Children with Verbal Deficits.

    ERIC Educational Resources Information Center

    Richman, Lynn C.

    1980-01-01

    The study examined patterns of cognitive ability in 57 cleft lip and palate children (ages 7 to 9) with verbal deficit, but without general intellectual retardation to evaluate whether the verbal disability displayed by these children was related primarily to a specific verbal expression deficit or a more general symbolic mediation problem.…

  6. Number Processing and Heterogeneity of Developmental Dyscalculia: Subtypes with Different Cognitive Profiles and Deficits

    ERIC Educational Resources Information Center

    Skagerlund, Kenny; Träff, Ulf

    2016-01-01

    This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with…

  7. Gastrodin ameliorates memory deficits in 3,3'-iminodipropionitrile-induced rats: possible involvement of dopaminergic system.

    PubMed

    Wang, Xiaona; Yan, Shaofeng; Wang, Aiqin; Li, Yanli; Zhang, Feng

    2014-08-01

    3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce neurotoxicity, and therefore cause motor dysfunction and cognitive deficits. Gastrodin is a main bioactive constituent of a Chinese herbal medicine (Gastrodia elata Blume) widely used for treating various neurological disorders and showed greatly improved mental function. This study was designed to determine whether administration of gastrodin attenuates IDPN-induced working memory deficits in Y-maze task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (150 mg/kg/day, v.o.) significantly impaired working memory and that long-term gastrodin (200 mg/kg/day, v.o.) could effectively rescue these IDPN-induced memory impairments as indicated by increased spontaneous alternation in the Y-maze test. Additionally, gastrodin treatment prevented IDPN-induced reductions of dopamine (DA) and its metabolites, as well as elevation of dopamine turnover ratio (DOPAC + HVA)/DA. Gastrodin treatment also prevented alterations in dopamine D2 receptor and dopamine transporter protein levels in the rat hippocampus. Our results suggest that long-term gastrodin treatment may have potential therapeutic values for IDPN-induced cognitive impairments, which was mediated, in part, by normalizing the dopaminergic system.

  8. Deficits in latent inhibition induced by estradiol replacement are ameliorated by haloperidol treatment

    PubMed Central

    Almey, Anne; Hafez, Nada M.; Hantson, Arne; Brake, Wayne G.

    2013-01-01

    There are sex differences in the symptomatology of schizophrenia, and in the response to antipsychotic treatments. One hallmark symptom of schizophrenia is a deficit in selective attention. Selective attention can be measured using a latent inhibition (LI) paradigm in humans; LI can be measured in rodents, and is used as an animal model of the selective attention deficits observed in schizophrenia. In the current experiments LI was used to clarify whether selective attention differs between male rats and ovariectomized (OVX) female rats receiving different estradiol (E2) replacement regimens. An additional aim was to determine whether haloperidol’s (HAL) facilitation of LI is enhanced by E2. Males and OVX female rats were trained in a conditioned emotional response LI paradigm. Females received no E2 replacement, a chronic low dose of E2 via silastic capsule, or a high phasic dose of E2 via silastic capsule accompanied by E2 (10 µg/kg subcutaneous (SC)) injections every 4th day. Actual plasma levels of E2 were determined using an enzyme linked immunosorbent assay. Rats were also administered a vehicle treatment, a 0.05 mg/kg, or a 0.1 mg/kg IP injection of HAL. Males and OVX females that did not receive E2 replacement both exhibited LI, but LI was not observed in the low and high E2 replacement groups. HAL restored LI at a lower dose in the females receiving high E2 replacement compared to females receiving low E2 replacement, indicating that E2 replacement facilitates HAL in restoring LI. PMID:24101897

  9. The use of listening devices to ameliorate auditory deficit in children with autism.

    PubMed

    Rance, Gary; Saunders, Kerryn; Carew, Peter; Johansson, Marlin; Tan, Johanna

    2014-02-01

    To evaluate both monaural and binaural processing skills in a group of children with autism spectrum disorder (ASD) and to determine the degree to which personal frequency modulation (radio transmission) (FM) listening systems could ameliorate their listening difficulties. Auditory temporal processing (amplitude modulation detection), spatial listening (integration of binaural difference cues), and functional hearing (speech perception in background noise) were evaluated in 20 children with ASD. Ten of these subsequently underwent a 6-week device trial in which they wore the FM system for up to 7 hours per day. Auditory temporal processing and spatial listening ability were poorer in subjects with ASD than in matched controls (temporal: P = .014 [95% CI -6.4 to -0.8 dB], spatial: P = .003 [1.0 to 4.4 dB]), and performance on both of these basic processing measures was correlated with speech perception ability (temporal: r = -0.44, P = .022; spatial: r = -0.50, P = .015). The provision of FM listening systems resulted in improved discrimination of speech in noise (P < .001 [11.6% to 21.7%]). Furthermore, both participant and teacher questionnaire data revealed device-related benefits across a range of evaluation categories including Effect of Background Noise (P = .036 [-60.7% to -2.8%]) and Ease of Communication (P = .019 [-40.1% to -5.0%]). Eight of the 10 participants who undertook the 6-week device trial remained consistent FM users at study completion. Sustained use of FM listening devices can enhance speech perception in noise, aid social interaction, and improve educational outcomes in children with ASD. Copyright © 2014 Mosby, Inc. All rights reserved.

  10. Effect of Treating Anxiety Disorders on Cognitive Deficits and Behaviors Associated with Attention Deficit Hyperactivity Disorder: A Preliminary Study.

    PubMed

    Denis, Isabelle; Guay, Marie-Claude; Foldes-Busque, Guillaume; BenAmor, Leila

    2016-06-01

    Twenty-five percent of children with ADHD also have an anxiety disorder (AD). As per Quay and in light of Barkley's model, anxiety may have a protective effect on cognitive deficits and behaviors associated with ADHD. This study aimed to evaluate the effect of treating AD on cognitive deficits and behaviors associated with ADHD in children with both disorders. Twenty-four children with ADHD and AD were divided into two groups: treatment for AD, and wait list. Participants were assessed at pre-treatment, post-treatment, and 6-month follow-up with the ADIS-C, the CBCL, and neuropsychological measures. The results revealed a significant improvement in automatic response inhibition and flexibility, and a decrease in inattention/hyperactivity behaviors following the treatment for AD. No significant differences were observed in motor response inhibition, working memory, or attention deficits. The results do not seem to support Quay's hypothesis: treating AD did not exacerbate cognitive deficits and behaviors associated with ADHD in our sample.

  11. Behavioral response inhibition in psychotic disorders: diagnostic specificity, familiality and relation to generalized cognitive deficit.

    PubMed

    Ethridge, Lauren E; Soilleux, Melanie; Nakonezny, Paul A; Reilly, James L; Hill, S Kristian; Keefe, Richard S E; Gershon, Elliot S; Pearlson, Godfrey D; Tamminga, Carol A; Keshavan, Matcheri S; Sweeney, John A

    2014-11-01

    Difficulty inhibiting context-inappropriate behavior is a common deficit in psychotic disorders. The diagnostic specificity of this impairment, its familiality, and its degree of independence from the generalized cognitive deficit associated with psychotic disorders remain to be clarified. Schizophrenia, schizoaffective and bipolar patients with history of psychosis (n=523), their available first-degree biological relatives (n=656), and healthy participants (n=223) from the multi-site B-SNIP study completed a manual Stop Signal task. A nonlinear mixed model was used to fit logistic curves to success rates on Stop trials as a function of parametrically varied Stop Signal Delay. While schizophrenia patients had greater generalized cognitive deficit than bipolar patients, their deficits were similar on the Stop Signal task. Further, only bipolar patients showed impaired inhibitory control relative to healthy individuals after controlling for generalized cognitive deficit. Deficits accounted for by the generalized deficit were seen in relatives of schizophrenia and schizoaffective patients, but not in relatives of bipolar patients. In clinically stable patients with psychotic bipolar disorder, impaired inhibitory behavioral control was a specific cognitive impairment, distinct from the generalized neuropsychological impairment associated with psychotic disorders. Thus, in bipolar disorder with psychosis, a deficit in inhibitory control may contribute to risk for impulsive behavior. Because the deficit was not familial in bipolar families and showed a lack of independence from the generalized cognitive deficit in schizophrenia spectrum disorders, it appears to be a trait related to illness processes rather than one tracking familial risk factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Minocycline ameliorates D-galactose-induced memory deficits and loss of Arc/Arg3.1 expression.

    PubMed

    Li, Xu; Lu, Fen; Li, Wei; Xu, Jun; Sun, Xiao-Jing; Qin, Ling-Zhi; Zhang, Qian-Lin; Yao, Yong; Yu, Qing-Kai; Liang, Xin-Liang

    2016-10-01

    Dysfunction of learning and memory is widely found in many neurological diseases. Understanding how to preserve the normal function of learning and memory will be extremely beneficial for the treatment of these diseases. However, the possible protective effect of minocycline in memory impairment is unknown. We used the well-established D-galactose rat amnesia model and two behavioral tasks, the Morris water maze and the step-down task, for memory evaluation. Western blot and PCR were used to examine the protein and mRNA levels of Arc/Arg3.1. We report that minocycline supplementation ameliorates both the spatial and fear memory deficits caused by D-galactose. We also found that Arc/Arg3.1, c-fos, and brain-derived neurotrophic factor levels are decreased in the D-galactose animal model, and that minocycline reverses the protein and mRNA levels of Arc in the hippocampus, suggesting the potential role of Arc/Arg3.1 in minocycline's neuroprotective mechanism. Our study strongly suggests that minocycline can be used as a novel treatment for memory impairment in neurological diseases.

  13. Amelioration of sensory attention and sensorimotor deficits by chromaffin cell grafts to the cerebral cortex of nucleus basalis magnocellularis lesioned rats.

    PubMed

    Welner, S A; Koty, Z C

    1993-12-31

    Rats that have received lesions to the nucleus basalis magnocellularis display with a variety of behavioral deficits; among these are decreases in performance of maze tests as well as deficiencies on measures of general health, sensory attention and sensorimotor abilities. We have previously shown that grafts of chromaffin cells placed in the cerebral cortex of nucleus basalis magnocellularis lesioned rats can ameliorate the lesion-induced deficits in performance of a task involving spatial memory. In the present study, we find that lesion-induced deficits in the sensory attention measure of exploration of the environment (head scanning) as well as the sensorimotor behavior involving a rat righting itself when placed nose down on an inclined grid are evident at 8 weeks post-lesion in lesioned-alone rats; these deficits are significantly ameliorated by chromaffin cell grafts in the cerebral cortex placed two weeks following the lesion procedure. These findings may have relevance to the use of chromaffin cells for grafting in neurodegenerative disorders in which sensorimotor or attention deficit components are involved.

  14. Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models

    PubMed Central

    Xu, Jian; Phillips, Andre; Topol, Aaron; Xu, Meiyu; Ononenyi, Chimezie; Foscue, Ethan; Ho, Seok-Man; Baguley, Tyler D.; Carty, Nikisha; Barros, Claudia S.; Müller, Ulrich; Gupta, Sounak; Gochman, Peter A.; Rapoport, Judith; Ellman, Jonathan A.; Pittenger, Christopher; Aronow, Bruce; Nairn, Angus C.; Nestor, Michael W.; Lombroso, Paul J.; Brennand, Kristen J.

    2016-01-01

    The brain-specific tyrosine phosphatase, STEP (STriatal-Enriched protein tyrosine Phosphatase) is an important regulator of synaptic function. STEP normally opposes synaptic strengthening by increasing N-methyl D-aspartate glutamate receptors (NMDARs) internalization through dephosphorylation of GluN2B and inactivation of the kinases ERK1/2 and Fyn. Here we show that STEP61 is elevated in the cortex in the Nrg1+/− knockout mouse model of SZ. Genetic reduction or pharmacological inhibition of STEP prevents the loss of NMDA receptors from synaptic membranes and reverses behavioral deficits in Nrg1+/− mice. STEP61 protein is also increased in cortical lysates from the CNS-specific ErbB2/4 mouse model of SZ, as well as in human induced pluripotent stem cell (hiPSC)-derived forebrain neurons and Ngn2-induced excitatory neurons from two independent SZ patient cohorts. In these selected SZ models, increased STEP61 protein levels likely reflect reduced ubiquitination and degradation. These convergent findings from mouse and hiPSC SZ models provide evidence for STEP61 dysfunction in SZ. PMID:27752082

  15. Intracerebroventricular Infusion of Angiotensin-(1-7) Ameliorates Cognitive Impairment and Memory Dysfunction in a Mouse Model of Alzheimer's Disease.

    PubMed

    Uekawa, Ken; Hasegawa, Yu; Senju, Satoru; Nakagata, Naomi; Ma, Mingjie; Nakagawa, Takashi; Koibuchi, Nobutaka; Kim-Mitsuyama, Shokei

    2016-04-23

    This work was performed to test our hypothesis that angiotensin-(1-7) can ameliorate cognitive impairment and cerebrovascular reactivity in 5XFAD mice, a useful model of Alzheimer's disease. 5XFAD mice received intracerebroventricular infusion of (1) vehicle, (2) angiotensin-(1-7), or (3) angiotensin-(1-7)+A779, a specific Mas receptor antagonist, for 4 weeks. Angiotensin-(1-7), through Mas receptor, significantly ameliorated cognitive impairment in 5XFAD mice. As estimated by acetazolamide-induced increase in cerebral blood flow, angiotensin-(1-7), through Mas receptor, enhanced cerebrovascular reactivity in 5XFAD mice. In conclusion, angiotensin-(1-7)/Mas receptor axis improves cognitive function and cerebrovascular function in a mouse model of Alzheimer's disease.

  16. Metacognition-augmented cognitive remediation training reduces jumping to conclusions and overconfidence but not neurocognitive deficits in psychosis

    PubMed Central

    Moritz, Steffen; Thoering, Teresa; Kühn, Simone; Willenborg, Bastian; Westermann, Stefan; Nagel, Matthias

    2015-01-01

    The majority of patients with schizophrenia display neurocognitive deficits (e.g., memory impairment) as well as inflated cognitive biases (e.g., jumping to conclusions). Both cognitive domains are implicated in the pathogenesis of the disorder and are known to compromise functional outcome. At present, there is a dearth of effective treatment options. A total of 90 patients with schizophrenia were recruited online (a diagnosis of schizophrenia had been confirmed in a large subgroup during a previous hospital admission). Subsequent to a baseline assessment encompassing psychopathology, self-reported cognition as well as objective memory and reasoning tests, patients were randomized to one of three conditions: standard cognitive remediation (mybraintraining), metacognition-augmented cognition remediation (CR) condition (variant of mybraintraining which encouraged patients to reduce speed of decision-making and attenuate response confidence when participants made high-confidence judgements and hasty incorrect decisions) and a waitlist control group. Patients were retested after 6 weeks and again 3 months after the second assessment. Groups did not differ on psychopathology and neurocognitive parameters at any timepoint. However, at follow-up the metacognitive-augmented CR group displayed a significant reduction on jumping to conclusions and overconfidence. Treatment adherence correlated with a reduction of depression; gains in the training exercises from the standard mybraintraining condition were correlated with improved objective memory performance. The study suggests that metacognition-augmented CR may ameliorate cognitive biases but not neurocognition. The study ties in well with prior research showing that neurocognitive dysfunctions are rather resistant to change; the failure to detect significant improvement of CR or metacognition-augmented CR on psychopathology and neurocognition over time may partly be attributed to a number of methodological limitations of

  17. Cognitive deficits in a mouse model of pre-manifest Parkinson's disease

    PubMed Central

    Magen, Iddo; Fleming, Sheila M.; Zhu, Chunni; Garcia, Eddie C.; Cardiff, Katherine M.; Dinh, Diana; De La Rosa, Krystal; Sanchez, Maria; Torres, Eileen Ruth; Masliah, Eliezer; Jentsch, J. David; Chesselet, Marie-Françoise

    2014-01-01

    Early cognitive deficits are increasingly recognized in patients with Parkinson's disease (PD), and represent an unmet need for the treatment of PD. These early deficits have been difficult to model in mice, and their mechanisms are poorly understood. α-Synuclein is linked to both familial and sporadic forms of PD, and is believed to accumulate in brains of patients with PD before cell loss. Mice expressing human wild-type a-synuclein under the Thy1 promoter (Thy1-aSyn mice) exhibit broad overexpression of α-synuclein throughout the brain and dynamic alterations in dopamine release several months before striatal dopamine loss. We now show that these mice exhibit deficits in cholinergic systems involved in cognition, and cognitive deficits in domains affected in early PD. Together with an increase in extracellular dopamine and a decrease in cortical acetylcholine at 4–6 months of age, Thy1-aSyn mice made fewer spontaneous alternations in the Y-maze and showed deficits in tests of novel object recognition (NOR), object–place recognition, and operant reversal learning, as compared with age-matched wild-type littermates. These data indicate that cognitive impairments that resemble early PD manifestations are reproduced by α-synuclein overexpression in a murine genetic model of PD. With high power to detect drug effects, these anomalies provide a novel platform for testing improved treatments for these pervasive cognitive deficits. PMID:22356593

  18. Reinforcement and stimulant medication ameliorate deficient response inhibition in children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Rosch, Keri S.; Fosco, Whitney D.; Pelham, William E.; Waxmonsky, James G.; Bubnik, Michelle G.; Hawk, Larry W.

    2015-01-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n=111, 25 girls) and typically-developing (TD) controls (n=33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions. PMID:25985978

  19. Reinforcement and Stimulant Medication Ameliorate Deficient Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Rosch, Keri S; Fosco, Whitney D; Pelham, William E; Waxmonsky, James G; Bubnik, Michelle G; Hawk, Larry W

    2016-02-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n = 111, 25 girls) and typically-developing (TD) controls (n = 33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions.

  20. A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing α-Synuclein.

    PubMed

    Richter, Franziska; Subramaniam, Sudhakar R; Magen, Iddo; Lee, Patrick; Hayes, Jane; Attar, Aida; Zhu, Chunni; Franich, Nicholas R; Bove, Nicholas; De La Rosa, Krystal; Kwong, Jacky; Klärner, Frank-Gerrit; Schrader, Thomas; Chesselet, Marie-Françoise; Bitan, Gal

    2017-06-05

    Aberrant accumulation and self-assembly of α-synuclein are tightly linked to several neurodegenerative diseases called synucleinopathies, including idiopathic Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Deposition of fibrillar α-synuclein as insoluble inclusions in affected brain cells is a pathological hallmark of synucleinopathies. However, water-soluble α-synuclein oligomers may be the actual culprits causing neuronal dysfunction and degeneration in synucleinopathies. Accordingly, therapeutic approaches targeting the toxic α-synuclein assemblies are attractive for these incurable disorders. The "molecular tweezer" CLR01 selectively remodels abnormal protein self-assembly through reversible binding to Lys residues. Here, we treated young male mice overexpressing human wild-type α-synuclein under control of the Thy-1 promoter (Thy1-aSyn mice) with CLR01 and examined motor behavior and α-synuclein in the brain. Intracerebroventricular administration of CLR01 for 28 days to the mice improved motor dysfunction in the challenging beam test and caused a significant decrease of buffer-soluble α-synuclein in the striatum. Proteinase-K-resistant, insoluble α-synuclein deposits remained unchanged in the substantia nigra, whereas levels of diffuse cytoplasmic α-synuclein in dopaminergic neurons increased in mice receiving CLR01 compared with vehicle. More moderate improvement of motor deficits was also achieved by subcutaneous administration of CLR01, in 2/5 trials of the challenging beam test and in the pole test, which requires balance and coordination. The data support further development of molecular tweezers as therapeutic agents for synucleinopathies.

  1. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder.

    PubMed

    Gong, Liang; Yin, Yingying; He, Cancan; Ye, Qing; Bai, Feng; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun

    2017-01-01

    Neuroimaging studies have demonstrated that major depressive disorder (MDD) patients show blunted activity responses to reward-related tasks. However, whether abnormal reward circuits affect cognition and depression in MDD patients remains unclear. Seventy-five drug-naive MDD patients and 42 cognitively normal (CN) subjects underwent a resting-state functional magnetic resonance imaging scan. The bilateral nucleus accumbens (NAc) were selected as seeds to construct reward circuits across all subjects. A multivariate linear regression analysis was employed to investigate the neural substrates of cognitive function and depression severity on the reward circuits in MDD patients. The common pathway underlying cognitive deficits and depression was identified with conjunction analysis. Compared with CN subjects, MDD patients showed decreased reward network connectivity that was primarily located in the prefrontal-striatal regions. Importantly, distinct and common neural pathways underlying cognition and depression were identified, implying the independent and synergistic effects of cognitive deficits and depression severity on reward circuits. This study demonstrated that disrupted topological organization within reward circuits was significantly associated with cognitive deficits and depression severity in MDD patients. These findings suggest that in addition to antidepressant treatment, normalized reward circuits should be a focus and a target for improving depression and cognitive deficits in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Should Sluggish Cognitive Tempo Symptoms Be Included in the Diagnosis of Attention-Deficit/hyperactivity Disorder?

    ERIC Educational Resources Information Center

    Todd, Richard D.; Rasmussen, Erik R.; Wood, Catherine; Levy, Florence; Hay, David A.

    2004-01-01

    Objective: To determine the impact of including sluggish cognitive tempo items on the factor and latent class structure of attention-deficit/hyperactivity disorder (ADHD) subtypes in boys and girls. Method: Parent report of two sluggish cognitive tempo items on a population-based sample of 1,430 female twins and 1,414 male twins were analyzed…

  3. Cognitive-Linguistic Deficit and Speech Intelligibility in Chronic Progressive Multiple Sclerosis

    ERIC Educational Resources Information Center

    Mackenzie, Catherine; Green, Jan

    2009-01-01

    Background: Multiple sclerosis is a disabling neurological disease with varied symptoms, including dysarthria and cognitive and linguistic impairments. Association between dysarthria and cognitive-linguistic deficit has not been explored in clinical multiple sclerosis studies. Aims: In patients with chronic progressive multiple sclerosis, the…

  4. Social Cognition Deficits: Current Position and Future Directions for Neuropsychological Interventions in Cerebrovascular Disease

    PubMed Central

    2017-01-01

    Neuropsychological assessments of cognitive dysfunction in cerebrovascular illness commonly target basic cognitive functions involving aspects of memory, attention, language, praxis, and number processing. Here, I highlight the clinical importance of often-neglected social cognition functions. These functions recruit a widely distributed neural network, making them vulnerable in most cerebrovascular diseases. Sociocognitive deficits underlie most of the problematic social conduct observed in patients and are associated with more negative clinical outcomes (compared to nonsocial cognitive deficits). In clinical settings, social cognition deficits are normally gleaned from collateral information from caregivers or from indirect inferences made from patients' performance on standard nonsocial cognitive tests. Information from these sources is however inadequate. I discuss key social cognition functions, focusing initially on deficits in emotion perception and theory of mind, two areas that have gained sizeable attention in neuroscientific research, and then extend the discussion into relatively new, less covered but crucial functions involving empathic behaviour, social awareness, social judgements, and social decision making. These functions are frequently impaired following neurological change. At present, a wide range of psychometrically robust social cognition tests is available, and this review also makes the case for their inclusion in neuropsychological assessments. PMID:28729755

  5. Cognitive-Linguistic Deficit and Speech Intelligibility in Chronic Progressive Multiple Sclerosis

    ERIC Educational Resources Information Center

    Mackenzie, Catherine; Green, Jan

    2009-01-01

    Background: Multiple sclerosis is a disabling neurological disease with varied symptoms, including dysarthria and cognitive and linguistic impairments. Association between dysarthria and cognitive-linguistic deficit has not been explored in clinical multiple sclerosis studies. Aims: In patients with chronic progressive multiple sclerosis, the…

  6. Should Sluggish Cognitive Tempo Symptoms Be Included in the Diagnosis of Attention-Deficit/hyperactivity Disorder?

    ERIC Educational Resources Information Center

    Todd, Richard D.; Rasmussen, Erik R.; Wood, Catherine; Levy, Florence; Hay, David A.

    2004-01-01

    Objective: To determine the impact of including sluggish cognitive tempo items on the factor and latent class structure of attention-deficit/hyperactivity disorder (ADHD) subtypes in boys and girls. Method: Parent report of two sluggish cognitive tempo items on a population-based sample of 1,430 female twins and 1,414 male twins were analyzed…

  7. Cognitive domain deficits in patients with aneurysmal subarachnoid haemorrhage at 1 year

    PubMed Central

    Wong, George Kwok Chu; Lam, Sandy Wai; Ngai, Karine; Wong, Adrian; Siu, Deyond; Poon, Wai Sang; Mok, Vincent

    2013-01-01

    Background Cognitive domain deficits can occur after aneurysmal subarachnoid haemorrhage (aSAH) though few studies systemically evaluate its impact on 1-year outcomes. Objective We aimed to evaluate the pattern and functional outcome impact of cognitive domain deficits in aSAH patients at 1 year. Methods We carried out a prospective observational study in Hong Kong, during which, 168 aSAH patients (aged 21–75 years and had been admitted within 96 h of ictus) were recruited over a 26-month period. The cognitive function was assessed by a domain-specific neuropsychological assessment battery at 1 year after ictus. The current study is registered at ClinicalTrials.gov of the US National Institutes of Health (NCT01038193). Results Prevalence of individual domain deficits varied between 7% to 15%, and 13% had two or more domain deficits. After adjusting for abbreviated National Institute of Health Stroke Scale and Geriatric Depressive Scale scores, unfavourable outcome (Modified Rankin Scale 3–5) and dependent instrumental activity of daily living (Lawton Instrumental Activity of Daily Living<15) were significantly associated with two or more domain deficits and number of cognitive domain deficits at 1 year. Two or more domain deficits was independently associated with age (OR, 1.1; 95% CI 1.1 to 1.2; p<0.001) and delayed cerebral infarction (OR, 6.1; 95% CI 1.1 to 33.5; p=0.036), after adjustment for years of school education. Interpretation In patients with aSAH, cognitive domain deficits worsened functional outcomes at 1 year. Delayed cerebral infarction was an independent risk factor for two or more domain deficits at 1 year. PMID:23606736

  8. Computerized Cognitive Training for Amelioration of Cognitive Late Effects Among Childhood Cancer Survivors: A Randomized Controlled Trial

    PubMed Central

    Conklin, Heather M.; Ogg, Robert J.; Ashford, Jason M.; Scoggins, Matthew A.; Zou, Ping; Clark, Kellie N.; Martin-Elbahesh, Karen; Hardy, Kristina K.; Merchant, Thomas E.; Jeha, Sima; Huang, Lu; Zhang, Hui

    2015-01-01

    Purpose Children receiving CNS-directed therapy for cancer are at risk for cognitive problems, with few available empirically supported interventions. Cognitive problems indicate neurodevelopmental disruption that may be modifiable with intervention. This study evaluated short-term efficacy of a computerized cognitive training program and neural correlates of cognitive change. Patient and Methods A total of 68 survivors of childhood acute lymphoblastic leukemia (ALL) or brain tumor (BT) with identified cognitive deficits were randomly assigned to computerized cognitive intervention (male, n = 18; female, n = 16; ALL, n = 23; BT, n = 11; mean age ± standard deviation, 12.21 ± 2.47 years) or waitlist (male, n = 18; female, n = 16; ALL, n = 24; BT, n = 10; median age ± standard deviation, 11.82 ± 2.42 years). Intervention participants were asked to complete 25 training sessions at home with weekly, telephone-based coaching. Cognitive assessments and functional magnetic resonance imaging scans (intervention group) were completed pre- and postintervention, with immediate change in spatial span backward as the primary outcome. Results Survivors completing the intervention (n = 30; 88%) demonstrated greater improvement than controls on measures of working memory (mean ± SEM; eg, Wechsler Intelligence Scale for Children [fourth edition; WISC-IV] spatial span backward, 3.13 ± 0.58 v 0.75 ± 0.43; P = .002; effect size [ES], 0.84), attention (eg, WISC-IV spatial span forward, 3.30 ± 0.71 v 1.25 ± 0.39; P = .01; ES, 0.65), and processing speed (eg, Conners' Continuous Performance Test hit reaction time, −2.10 ± 1.47 v 2.54 ± 1.25; P = .02; ES, .61) and showed greater reductions in reported executive dysfunction (eg, Conners' Parent Rating Scale III, −6.73 ± 1.51 v 0.41 ± 1.53; P = .002; ES, 0.84). Functional magnetic resonance imaging revealed significant pre- to post-training reduction in activation of left lateral prefrontal and bilateral medial frontal

  9. [Cognitive functions of children with attention deficit/hyperactivity disorder].

    PubMed

    Liu, Yuxin; Wang, Yufeng

    2002-03-25

    To investigate the features of cognitive function in children with attention deficit/hyperactivity disorder (ADHD). Wechsler Intelligence Scale for Children-RC, Wechsler Memory Scale (WMS), Number Cancellation Test, Ravin's Standard Progressive Matrices, and Stroop test were conducted among 60 7 approximately 12-year-old children diagnosed with ADHD and 60 children matched by age, sex, and maternal education level. The verbal intelligence quotient, performance IQ, full scale IQ, verbal comprehension IQ, perceptual organization IQ, and freedom from distractibility IQ of the ADHD CHILDREN were 104 +/- 13, 98 +/- 14, 102 +/- 13, 100 +/- 15, and 102 +/- 15, all less than those of the controls (112 +/- 11, 108 +/- 13, 112 +/- 12, 111 +/- 12, 107 +/- 13, and 116 +/- 13, all P < 0.01). The scores of long-term memory, short-term memory, immediate memory, memory quotient, and reverse digit span in the children with ADHD were 40 +/- 7, 58 +/- 12, 7 +/- 3, 95 +/- 15, and 4.2 +/- 1.7 respectively, all less than those in the controls (49 +/- 5, 63 +/- 10, 8.4 +/- 3.0, 109 +/- 12.5, and 5.0 +/- 1.4 respectively, all P < 0.05). Number cancellation test showed significantly lower total score and higher error rate in ADHD children than in the controls (51.5 and 76.4 VS 77.3 and 38.0, both P = 0.000). In Stroop test, the ADHD children spent more time for all the four parts, had to make more effort to eliminate the interference of word meaning, and made more errors in the C and D parts. The average standard score of Raven's Standard Progressive Matrices was 4.0 +/- 1.5, significantly higher than that in the controls (2.7 +/- 1.2, P = 0.000). The levels of intelligence, memory, and attention in ADHD children are lower that those in normal children. ADHD children have deficiency in executive functions, such as selective inhibition, working memory and plan implementation.

  10. Subjective perceptions of cognitive deficits and their influences on quality of life among patients with schizophrenia.

    PubMed

    Caqueo-Urízar, Alejandra; Boyer, Laurent; Baumstarck, Karine; Gilman, Stephen E

    2015-11-01

    Functional outcomes in schizophrenia may be more closely related to social cognition than to neurocognition; however, the extent to which social cognition influences quality of life (QoL) remains unclear. We conducted a cross-sectional survey study of the impact of patients' and clinicians' subjective perceptions of neurocognitive and social cognitive deficits on quality of life. The study included 253 patients with schizophrenia and their clinicians from public mental health clinics in Bolivia, Chile, and Peru. We utilized the GEOPTE Scale of Social Cognition for Psychosis, the Schizophrenia Quality of Life Questionnaire, and the Positive and Negative Syndrome Scale for schizophrenia. Patients' subjective perceptions of their neurocognitive deficits (B = -1.13; CI -1.56 to -0.70) were significantly associated with QoL, whereas there was no independent association between the clinicians' ratings of the patients' neurocognitive deficits and QoL (B = -0.33; CI -0.98 to 0.31). However, patients' subjective perceptions of their neurocognitive deficits were no longer associated with QoL (B = -0.23; CI -0.71 to 0.24) once their perceptions of social cognitive impairments were accounted for (B = -1.03; CI -1.39 to -0.68). Patients' perceptions of their social cognitive function (but not neurocognitive functioning) have a significant impact on their QoL. Clinicians' ratings of patients' cognitive deficits were only weakly correlated with patients' subjective perceptions of their own neurocognitive, suggesting a mismatch between clinician and patient assessments of such deficits. Closer attention should therefore be paid toward patients' perception of their own deficits by clinicians in order to improve QoL.

  11. Course of psychopathology, cognition and neurobiological abnormality in schizophrenia: developmental origins and amelioration by antipsychotics?

    PubMed

    Waddington, J L; Buckley, P F; Scully, P J; Lane, A; O'Callaghan, E; Larkin, C

    1998-01-01

    It is argued that schizophrenia has origins in events occurring during the first or early second trimester that are reflected in minor physical anomalies and which may at least in part predispose to later obstetric complications. This neurodevelopmental basis underlies certain neuromotor and psychosocial abnormalities of infancy and childhood, which are the early manifestations of what will be reconceptualised later as negative symptoms and (particularly frontal) cognitive dysfunction, but gives rise to positive symptoms only on the maturation of other systems necessary for their expression. This later emergence of psychosis may reflect an active morbid process that is associated with increased accrual of negative symptoms and of general (but not frontal) cognitive impairment that may be ameliorated by effective antipsychotic treatment. The psychological or biological basis of this heuristic process is poorly understood. Contemporary re-appraisal of any impact of antipsychotics on the long-term course of schizophrenia must take into account what is known of the origins of the disease process with which such drugs might interact. Much recent work continues to indicate that very early events, during the embryonic/fetal period, are important in, if not fundamental to, the genesis of schizophrenia; i.e. that there is a neurodevelopmental basis to the disorder. The present article seeks to establish a time-line relating early intrauterine adversity and dysmorphogenesis, through the onset of psychosis, to the chronic phase of the illness over adulthood; from this time-line, a schema is elaborated for a beneficial impact of antipsychotics on the course of psychopathology, cognition and, less clearly, neurobiological abnormality.

  12. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model

    PubMed Central

    Guo, Zhangyu; Chen, Yanxing; Mao, Yan-Fang; Zheng, Tingting; Jiang, Yasi; Yan, Yaping; Yin, Xinzhen; Zhang, Baorong

    2017-01-01

    Recent evidence reveals that aberrant brain insulin signaling plays an important role in the pathology of Alzheimer’s disease (AD). Intranasal insulin administration has been reported to improve memory and attention in healthy participants and in AD patients. However, the underlying molecular mechanisms are poorly understood. Here, we treated intracerebroventricular streptozotocin-injected (ICV-STZ) rats, a commonly used animal model of sporadic AD, with daily intranasal delivery of insulin (2 U/day) for 6 consecutive weeks and then studied their cognitive function with the Morris water maze test and biochemical changes via Western blotting. We observed cognitive deficits, tau hyperphosphorylation, and neuroinflammation in the brains of ICV-STZ rats. Intranasal insulin treatment for 6 weeks significantly improved cognitive function, attenuated the level of tau hyperphosphorylation, ameliorated microglial activation, and enhanced neurogenesis in ICV-STZ rats. Additionally, our results indicate that intranasal delivery of insulin probably attenuates tau hyperphosphorylation through the down-regulation of ERK1/2 and CaMKII in the brains of ICV-STZ rats. Our findings demonstrate a beneficial effect of intranasal insulin and provide the mechanistic basis for treating AD patients with intranasal insulin. PMID:28382978

  13. Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice.

    PubMed

    Wang, Sen; Huang, Xu-Feng; Zhang, Peng; Newell, Kelly A; Wang, Hongqin; Zheng, Kuiyang; Yu, Yinghua

    2017-09-22

    A high-fat (HF) diet alters gut microbiota and promotes obesity related inflammation and cognitive impairment. Teasaponin is the major active component of tea, and has been associated with anti-inflammatory effects and improved microbiota composition. However, the potential protective effects of teasaponin, against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, obesity was induced in C57BL/6 J male mice by feeding a HF diet for 8 weeks, followed by treatment with oral teasaponin (0.5%) mixed in HF diet for a further 6 weeks. Teasaponin treatment prevented the HF diet-induced recognition memory impairment and improved neuroinflammation, gliosis and brain-derived neurotrophic factor (BDNF) deficits in the hippocampus. Furthermore, teasaponin attenuated the HF diet-induced endotoxemia, pro-inflammatory macrophage accumulation in the colon and gut microbiota alterations. Teasaponin also improved glucose tolerance and reduced body weight gain in HF diet-induced obese mice. The behavioral and neurochemical improvements suggest that teasaponin could limit unfavorable gut microbiota alterations and cognitive decline in HF diet-induced obesity.

  14. Ameliorative effect of a hippocampal metabotropic glutamate- receptor agonist on histamine H1 receptor antagonist-induced memory deficit in rats.

    PubMed

    Masuoka, Takayoshi; Mikami, Azusa; Kamei, Chiaki

    2010-01-01

    This study was performed to investigate the ameliorative effects of metabotropic glutamate (mGlu)-receptor agonists on histamine H(1) receptor antagonist-induced spatial memory deficit and the decrease in hippocampal theta activity in rats. Intraperitoneal injection of pyrilamine (35 mg/kg) resulted in impaired reference and working memory in the radial maze task and decreased hippocampal theta amplitude and power. The working memory deficit and decreased hippocampal theta power induced by pyrilamine were ameliorated by intrahippocampal injection of (RS)-3,5-dihydroxyphenylglycine (DHPG) (1 and 10 microg/side), a group I mGlu-receptor agonist; however, intrahippocampal injection of (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC), a group II mGlu-receptor agonist, and L-(+)-2-amino-4-phosphonobutyric acid (L-AP4), a group III mGlu-receptor agonist, showed no significant effect on the pyrilamine-induced memory deficit and decreased hippocampal theta activity. These results indicate that the activation of hippocampal group I mGlu receptors, but not group II and III mGlu receptors, improve the histamine H(1) receptor antagonist-induced working memory deficit and decreased hippocampal theta activity.

  15. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    PubMed

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI4P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ42-expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ42 release and that PI4P facilitated the assembly or oligomerization of Aβ42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ42 release and consequently reduces neuronal Aβ42 accumulation likely via decreasing Aβ42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment.SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ42-expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI4P-against the defects caused by Aβ42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ42 accumulation, and interestingly increased neuronal Aβ42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright © 2017 the authors

  16. The cognitive deficits responsible for developmental dyslexia: review of evidence for a selective visual attentional disorder.

    PubMed

    Valdois, Sylviane; Bosse, Marie-Line; Tainturier, Marie-Josèphe

    2004-11-01

    There is strong converging evidence suggesting that developmental dyslexia stems from a phonological processing deficit. However, this hypothesis has been challenged by the widely admitted heterogeneity of the dyslexic population, and by several reports of dyslexic individuals with no apparent phonological deficit. In this paper, we discuss the hypothesis that a phonological deficit may not be the only core deficit in developmental dyslexia and critically examine several alternative proposals. To establish that a given cognitive deficit is causally related to dyslexia, at least two conditions need to be fulfilled. First, the hypothesized deficit needs to be associated with developmental dyslexia independently of additional phonological deficits. Second, the hypothesized deficit must predict reading ability, on both empirical and theoretical grounds. While most current hypotheses fail to fulfil these criteria, we argue that the visual attentional deficit hypothesis does. Recent studies providing evidence for the independence of phonological and visual attentional deficits in developmental dyslexia are reviewed together with empirical data showing that phonological and visual attentional processing skills contribute independently to reading performance. A theoretical model of reading is outlined in support of a causal link between a visual attentional disorder and a failure in reading acquisition.

  17. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1).

    PubMed

    Winblad, Stefan; Lindberg, Christopher; Hansen, Stefan

    2006-05-15

    This study was designed to investigate cognitive abilities and their correlations with CTG repeat expansion size in classical Myotonic dystrophy type 1 (DM1), given that earlier studies have indicated cognitive deficits, possibly correlating with blood CTG repeats expansion size. A measurement of CTG repeat expansion in lymphocytes and an extensive neuropsychological examination was made in 47 patients (25 women and 22 men). Individual results in the examination were compared with normative data. A substantial proportion of patients with DM1 (> 40%) scored worse in comparison to normative collectives on tests measuring executive, arithmetic, attention, speed and visuospatial abilities. We found significant correlations between longer CTG repeat expansion size and lower results on most tests associated with these abilities. Furthermore, the association between executive (frontal) deficits and DM1 were strengthened when considering both test results and correlations with CTG repeat expansion size in lymphocytes. This study showed deficits in several cognitive abilities when patients with DM1 are compared to normative collectives. Some of the neuropsychological tests associated with these abilities are correlated to CTG repeat expansion size in blood. These data highlight the importance of considering cognitive deficits when seeing patients with classical DM1 in clinical practice, but also the utility of using blood CTG repeat expansion size as a broad predictor of finding cognitive deficit in DM1.

  18. Ursolic acid improves domoic acid-induced cognitive deficits in mice.

    PubMed

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1)

    PubMed Central

    Winblad, Stefan; Lindberg, Christopher; Hansen, Stefan

    2006-01-01

    Background This study was designed to investigate cognitive abilities and their correlations with CTG repeat expansion size in classical Myotonic dystrophy type 1 (DM1), given that earlier studies have indicated cognitive deficits, possibly correlating with blood CTG repeats expansion size. Methods A measurement of CTG repeat expansion in lymphocytes and an extensive neuropsychological examination was made in 47 patients (25 women and 22 men). Individual results in the examination were compared with normative data. Results A substantial proportion of patients with DM1 (> 40%) scored worse in comparison to normative collectives on tests measuring executive, arithmetic, attention, speed and visuospatial abilities. We found significant correlations between longer CTG repeat expansion size and lower results on most tests associated with these abilities. Furthermore, the association between executive (frontal) deficits and DM1 were strengthened when considering both test results and correlations with CTG repeat expansion size in lymphocytes. Conclusion This study showed deficits in several cognitive abilities when patients with DM1 are compared to normative collectives. Some of the neuropsychological tests associated with these abilities are correlated to CTG repeat expansion size in blood. These data highlight the importance of considering cognitive deficits when seeing patients with classical DM1 in clinical practice, but also the utility of using blood CTG repeat expansion size as a broad predictor of finding cognitive deficit in DM1. PMID:16696870

  20. Oxytocin, Dopamine, and the Amygdala: A Neurofunctional Model of Social Cognitive Deficits in Schizophrenia

    PubMed Central

    Rosenfeld, Andrew J.; Lieberman, Jeffrey A.; Jarskog, L. Fredrik

    2011-01-01

    Until recently, the social cognitive impairment in schizophrenia has been underappreciated and remains essentially untreated. Deficits in emotional processing, social perception and knowledge, theory of mind, and attributional bias may contribute to functional social cognitive impairments in schizophrenia. The amygdala has been implicated as a key component of social cognitive circuitry in both animal and human studies. In addition, structural and functional studies of schizophrenia reproducibly demonstrate abnormalities in the amygdala and dopaminergic signaling. Finally, the neurohormone oxytocin plays an important role in multiple social behaviors in several mammals, including humans. We propose a model of social cognitive dysfunction in schizophrenia and discuss its therapeutic implications. The model comprises abnormalities in oxytocinergic and dopaminergic signaling in the amygdala that result in impaired emotional salience processing with consequent social cognitive deficits. PMID:20308198

  1. Oxytocin, dopamine, and the amygdala: a neurofunctional model of social cognitive deficits in schizophrenia.

    PubMed

    Rosenfeld, Andrew J; Lieberman, Jeffrey A; Jarskog, L Fredrik

    2011-09-01

    Until recently, the social cognitive impairment in schizophrenia has been underappreciated and remains essentially untreated. Deficits in emotional processing, social perception and knowledge, theory of mind, and attributional bias may contribute to functional social cognitive impairments in schizophrenia. The amygdala has been implicated as a key component of social cognitive circuitry in both animal and human studies. In addition, structural and functional studies of schizophrenia reproducibly demonstrate abnormalities in the amygdala and dopaminergic signaling. Finally, the neurohormone oxytocin plays an important role in multiple social behaviors in several mammals, including humans. We propose a model of social cognitive dysfunction in schizophrenia and discuss its therapeutic implications. The model comprises abnormalities in oxytocinergic and dopaminergic signaling in the amygdala that result in impaired emotional salience processing with consequent social cognitive deficits.

  2. Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats.

    PubMed

    Tanehkar, Fatemeh; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Sameni, Hamid Reza; Haghighi, Saeed; Miladi-Gorji, Hossien; Motamedi, Fereshteh; Akhavan, Maziar Mohammad; Bavarsad, Kowsar

    2013-01-01

    Chronic exposure to the anabolic androgenic steroids (AAS) nandrolone decanoate (ND) in supra-physiological doses is associated with learning and memory impairments. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we examined whether voluntary exercise would improve the cognitive deficits induced by chronic administration of ND. We also investigated the effects of ND and voluntary exercise on hippocampal BDNF levels. The rats were randomly distributed into 4 experimental groups: the vehicle-sedentary group, the ND-sedentary group, the vehicle-exercise group, and the ND-exercise group. The vehicle-exercise and the ND-exercise groups were allowed to freely exercise in a running wheel for 15 days. The vehicle-sedentary and the ND-sedentary groups were kept sedentary for the same period. Vehicle or ND injections were started 14 days prior to the voluntary exercise and continued throughout the 15 days of voluntary exercise. After the 15-day period, the rats were trained and tested on a water maze spatial task using four trials per day for 5 consecutive days followed by a probe trial two days later. Exercise significantly improved performance during both the training and retention of the water maze task, and enhanced hippocampal BDNF. ND impaired spatial learning and memory, and this effect was not rescued by exercise. ND also potentiated the exercise-induced increase in hippocampal BDNF levels. These results seem to indicate that voluntary exercise is unable to improve the disruption of cognitive functions by chronic ND. Moreover, increased levels of BDNF may play a role in ND-induced impairments in learning and memory. The harmful effects of ND and other AAS on learning and memory should be taken into account when athletes decide to use AAS for performance or body image improvement.

  3. The Origins of Cognitive Deficits in Victimized Children: Implications for Neuroscientists and Clinicians.

    PubMed

    Danese, Andrea; Moffitt, Terrie E; Arseneault, Louise; Bleiberg, Ben A; Dinardo, Perry B; Gandelman, Stephanie B; Houts, Renate; Ambler, Antony; Fisher, Helen L; Poulton, Richie; Caspi, Avshalom

    2017-04-01

    Individuals reporting a history of childhood violence victimization have impaired brain function. However, the clinical significance, reproducibility, and causality of these findings are disputed. The authors used data from two large cohort studies to address these research questions directly. The authors tested the association between prospectively collected measures of childhood violence victimization and cognitive functions in childhood, adolescence, and adulthood among 2,232 members of the U.K. E-Risk Study and 1,037 members of the New Zealand Dunedin Study who were followed up from birth until ages 18 and 38 years, respectively. Multiple measures of victimization and cognition were used, and comparisons were made of cognitive scores for twins discordant for victimization. Individuals exposed to childhood victimization had pervasive impairments in clinically relevant cognitive functions, including general intelligence, executive function, processing speed, memory, perceptual reasoning, and verbal comprehension in adolescence and adulthood. However, the observed cognitive deficits in victimized individuals were largely explained by cognitive deficits that predated childhood victimization and by confounding genetic and environmental risks. Findings from two population-representative birth cohorts totaling more than 3,000 individuals and born 20 years and 20,000 km apart suggest that the association between childhood violence victimization and later cognition is largely noncausal, in contrast to conventional interpretations. These findings support the adoption of a more circumspect approach to causal inference in the neuroscience of stress. Clinically, cognitive deficits should be conceptualized as individual risk factors for victimization as well as potential complicating features during treatment.

  4. Long-term beneficial effects of BW619C89 on neurological deficit, cognitive deficit and brain damage after middle cerebral artery occlusion in the rat.

    PubMed

    Smith, S E; Hodges, H; Sowinski, P; Man, C M; Leach, M J; Sinden, J D; Gray, J A; Meldrum, B S

    1997-04-01

    4-Amino-2-(4-methyl-1-piperazinyl)-5-(2,3,5-trichlorophenyl)pyrimidine (BW619C89) is a sodium channel antagonist which when administered parenterally reduces neurological deficit and infarct volume after middle cerebral artery occlusion in rats. We have investigated whether BW619C89 administered orally before middle cerebral artery occlusion is cerebroprotective when rats are assessed at one day after stroke, and whether cerebroprotection is long lasting and related to functional recovery. A cerebroprotective oral dose of BW619C89 (20 mg/kg) was used to determine whether reduction in infarct volume is long lasting and can be enhanced with continued therapy, and whether behavioural deficits occurring after middle cerebral artery occlusion such as disturbances in cognition and motor coordination are ameliorated by treatment with BW619C89. Rats received sham surgery or middle cerebral artery occlusion with a single treatment of BW619C89 (20 mg/kg) 1 h before middle cerebral artery occlusion, a double treatment group receiving 20 mg/kg BW619C89 1 h before and 10 mg/kg 5 h after middle cerebral artery occlusion, or continued treatment with BW619C89 for up to five days. Neurological deficit, assessed from days 1 to 21, and at 70 days after middle cerebral artery occlusion, was reduced to a similar extent in all three groups of rats treated with BW619C89, compared with vehicle-treated controls. At 70 days after middle cerebral artery occlusion, all groups performed at control level. Vehicle-treated rats were impaired in the Morris water maze and step-through passive avoidance paradigm five to eight weeks after middle cerebral artery occlusion, when neurological deficit was minimal. These deficits were partially alleviated, to a similar extent, by all of the three treatments with BW619C89. Total volumes of brain damage, assessed at 70 days after middle cerebral artery occlusion in Luxol Fast Blue- and Cresyl Violet-stained coronal sections, were reduced in all three groups

  5. Amelioration of Cognitive Dysfunction in APP/PS1 Double Transgenic Mice by Long-Term Treatment of 4-O-Methylhonokiol.

    PubMed

    Jung, Yu-Yeon; Lee, Young-Jung; Choi, Dong-Young; Hong, Jin Tae

    2014-05-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease without known ways to cure. A key neuropathologic manifestation of the disease is extracellular deposition of beta-amyloid peptide (Aβ). Specific mechanisms underlying the development of the disease have not yet been fully understood. In this study, we investigated effects of 4-O-methylhonokiol on memory dysfunction in APP/PS1 double transgenic mice. 4-O-methylhonokiol (1 mg/kg for 3 month) significantly reduced deficit in learning and memory of the transgenic mice, as determined by the Morris water maze test and step-through passive avoidance test. Our biochemical analysis suggested that 4-O-methylhonokiol ameliorated Aβ accumulation in the cortex and hippocampus via reduction in beta-site APP-cleaving enzyme 1 expression. In addition, 4-O-methylhonokiol attenuated lipid peroxidation and elevated glutathione peroxidase activity in the double transgenic mice brains. Thus, suppressive effects of 4-O-methylhonokiol on Aβ generation and oxidative stress in the brains of transgenic mice may be responsible for the enhancement in cognitive function. These results suggest that the natural compound has potential to intervene memory deficit and progressive neurodegeneration in AD patients.

  6. Cognitive deficits in adults with obstructive sleep apnea compared to children and adolescents.

    PubMed

    Krysta, Krzysztof; Bratek, Agnieszka; Zawada, Karolina; Stepańczak, Radosław

    2017-02-01

    Obstructive sleep apnea (OSA) can negatively affect the patient's physical and psychological functioning, as well as their quality of life. A major consequence of OSA is impaired cognitive functioning. Indeed, several studies have shown that OSA mainly leads to deficits in executive functions, attention, and memory. As OSA can present in all age groups, these associated cognitive deficits have been observed in adults, as well as in children and adolescents. However, these cognitive deficits may have a different clinical picture in young patients compared to adults. In this review, we analyze the most affected cognitive domains in adults and children/adolescents with OSA, as evaluated by neuropsychological and neuroimaging studies. We found that deficits in working memory, attention, or executive functions cognitive domains are found in both adults and children with OSA. However, children with OSA also show changes in behavior and phonological processing necessary for proper development. Moreover, we examine the possible OSA treatments in children and adults that can have a positive influence on cognition, and therefore, improve patients' general functioning and quality of life.

  7. Anxiety Sensitivity Amelioration Training (ASAT): a longitudinal primary prevention program targeting cognitive vulnerability.

    PubMed

    Schmidt, Norman B; Eggleston, A Meade; Woolaway-Bickel, Kelly; Fitzpatrick, Kathleen Kara; Vasey, Michael W; Richey, J Anthony

    2007-01-01

    Fear of arousal symptoms, often referred to as anxiety sensitivity (AS) appears to be associated with risk for anxiety pathology and other Axis I conditions. Findings from a longitudinal prevention program targeting AS are reported. Participants (n=404) scoring high on the Anxiety Sensitivity Index (ASI) were randomly assigned to receive a brief intervention designed to reduce AS (Anxiety Sensitivity Amelioration Training (ASAT)) or a control condition. Participants were followed for up to 24 months. Findings indicate that ASAT produced greater reductions in ASI levels compared with the control condition. Moreover, reductions were specific to anxiety sensitivity relative to related cognitive risk factors for anxiety. ASAT also produced decreased subjective fear responding to a 20% CO(2) challenge delivered postintervention. Data from the follow-up period show a lower incidence of Axis I diagnoses in the treated condition though the overall group difference was not statistically different at all follow-up intervals. Overall, findings are promising for the preventative efficacy of a brief, computer-based intervention designed to decrease anxiety sensitivity.

  8. VISUOSPATIAL AND NUMERICAL COGNITIVE DEFICITS IN CHILDREN WITH CHROMOSOME 22Q11.2 DELETION SYNDROME

    PubMed Central

    Simon, Tony J.; Bearden, Carrie E.; Mc-Ginn, Donna McDonald; Zackai, Elaine

    2015-01-01

    This article presents some of the earliest evidence of visuospatial and numerical cognitive deficits in children with the chromosome 22q11.2 deletion syndrome; a common but ill-understood genetic disorder resulting in medical complications, cognitive impairment, and brain morphologic changes. Relative to a group of typically developing controls, deleted children performed more poorly on tests of visual attentional orienting, visual enumeration and relative numerical magnitude judgment. Results showed that performance deficits in children with the deletion could not be explained by a global deficit in psychomotor speed. Instead, our findings are supportive of the hypothesis that visuospatial and numerical deficits in children with the chromosome 22q11.2 deletion are due, at least in part, to posterior parietal dysfunction. PMID:15714897

  9. Reversing roles: a cognitive strategy for undoing memory deficits associated with token status.

    PubMed

    Saenz, D S; Lord, C G

    1989-05-01

    Tested whether having tokens (Ts) adopt the role of judge reduces cognitive deficits; examined several hypotheses to explain these deficits. In 3 experiments, Ss were asked to remember as many as possible of opinions exchanged in a group interaction with 3 actors. Experiment 1 demonstrated that judging majority members helped gender Ts improve their memory and ruled out self-denigration as a mediator of token deficits. Experiment 2 indicated that judging others was effective regardless of whether the others were said to know about it or not, ruling out insulation from evaluative scrutiny as a viable mediator for the judge role. Experiment 3 suggested the judge role restores completely the Ts, cognitive capacities and ruled out heightened responsibility as an explanation for the improved memory of judges. This work suggests that Ts may perform better if they can restructure cognitively their social environments.

  10. APOE-epsilon4 polymorphism and cognitive deficit among the elderly population of Fernando de Noronha.

    PubMed

    Garcia, Anália Nusya; Silva, Helker Albuquerque da; Silva, Renan Carlos; Leal, Eliane Maria Medeiros; Rodrigues, Lorena; Silva, Vanessa Cavalcante da; Dellalibera, Edileine; Freitas, Elizabete Malaquias; Ataíde, Luiz; Muniz, Maria Tereza Cartaxo

    2008-06-01

    Polymorphism of the gene for apolipoprotein E (APOE) is an important risk factor for the development of Alzheimer's disease. The epsilon4 allele of the APOE gene has been linked with a number of neuropsychiatric illnesses, and also with stress and depression among geriatric populations. To identify APOE-epsilon4 polymorphism and correlate this with cognitive deficit among the elderly population of the island of Fernando de Noronha. Neuropsychiatric tests (mini-mental state examination, verbal fluency test and clock drawing test) were applied to 52 elderly people without Alzheimer's disease. DNA was isolated from peripheral blood and genotyping of APOE was done by the PCR-RFLP method. 87% of the elderly population (mean age 69.6+/-7.0) had cognitive deficit. The observed frequency of the epsilon4 allele was 10%, but the correlation between the presence of epsilon4 and cognitive deficit in this population was not statistically significant.

  11. Cognitive deficits in problematic drinkers with and without mild to borderline intellectual disability.

    PubMed

    van Duijvenbode, Neomi; Didden, Robert; VanDerNagel, Joanne El; Korzilius, Hubert Plm; Engels, Rutger Cme

    2016-01-01

    We examined cognitive deficits in problematic drinkers with and without mild to borderline intellectual disability (MBID). Problematic drinkers were expected to show a significantly lower estimated performance IQ (PIQ), but not a lower estimated verbal IQ (VIQ), compared to light drinkers. Participants ( N = 474) were divided into four groups based on IQ and severity of alcohol use-related problems. IQ was estimated using (a short form of) the Wechsler Adult Intelligence Scale third edition. Severity of alcohol use-related problems was assessed using the Alcohol Use Disorder Identification Test. Overall, there were no significant differences between light and problematic drinkers on estimated VIQ. Within the group without MBID, estimated PIQ was significantly lower. Estimated PIQ was not lower in problematic drinkers with MBID compared to light drinkers with MBID. The results are indicative of cognitive deficits in problematic drinkers without MBID. Screening for cognitive deficits with additional instruments is advised.

  12. Cognitive Deficits in Nonretarded Adults with Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Kerns, Kimberley A.; Don, Audrey; Mateer, Catherine A.; Streissguth, Ann P.

    1997-01-01

    Sixteen nonretarded young adults with fetal alcohol syndrome were divided into two groups, one with average to above average IQ and one with borderline to low average IQ. Subjects in both groups manifested clear deficits on neuropsychological measures sensitive to complex attention, verbal learning, and executive function at a frequency and…

  13. Cognitive Deficits in Nonretarded Adults with Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Kerns, Kimberley A.; Don, Audrey; Mateer, Catherine A.; Streissguth, Ann P.

    1997-01-01

    Sixteen nonretarded young adults with fetal alcohol syndrome were divided into two groups, one with average to above average IQ and one with borderline to low average IQ. Subjects in both groups manifested clear deficits on neuropsychological measures sensitive to complex attention, verbal learning, and executive function at a frequency and…

  14. Spatial but not verbal cognitive deficits at age 3 years in persistently antisocial individuals.

    PubMed

    Raine, Adrian; Yaralian, Pauline S; Reynolds, Chandra; Venables, Peter H; Mednick, Sarnoff A

    2002-01-01

    Previous studies have repeatedly shown verbal intelligence deficits in adolescent antisocial individuals, but it is not known whether these deficits are in place prior to kindergarten or, alternatively, whether they are acquired throughout childhood. This study assesses whether cognitive deficits occur as early as age 3 years and whether they are specific to persistently antisocial individuals. Verbal and spatial abilities were assessed at ages 3 and 11 years in 330 male and female children, while antisocial behavior was assessed at ages 8 and 17 years. Persistently antisocial individuals (N = 47) had spatial deficits in the absence of verbal deficits at age 3 years compared to comparisons (N = 133), and also spatial and verbal deficits at age 11 years. Age 3 spatial deficits were independent of social adversity, early hyperactivity, poor test motivation, poor test comprehension, and social discomfort during testing, and they were found in females as well as males. Findings suggest that early spatial deficits contribute to persistent antisocial behavior whereas verbal deficits are developmentally acquired. An early-starter model is proposed whereby early spatial impairments interfere with early bonding and attachment, reflect disrupted right hemisphere affect regulation and expression, and predispose to later persistent antisocial behavior.

  15. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  16. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury

    PubMed Central

    Chou, Austin; Krukowski, Karen; Jopson, Timothy; Zhu, Ping Jun; Costa-Mattioli, Mauro; Rosi, Susanna

    2017-01-01

    Traumatic brain injury (TBI) is a leading cause of long-term neurological disability, yet the mechanisms underlying the chronic cognitive deficits associated with TBI remain unknown. Consequently, there are no effective treatments for patients suffering from the long-lasting symptoms of TBI. Here, we show that TBI persistently activates the integrated stress response (ISR), a universal intracellular signaling pathway that responds to a variety of cellular conditions and regulates protein translation via phosphorylation of the translation initiation factor eIF2α. Treatment with ISRIB, a potent drug-like small-molecule inhibitor of the ISR, reversed the hippocampal-dependent cognitive deficits induced by TBI in two different injury mouse models—focal contusion and diffuse concussive injury. Surprisingly, ISRIB corrected TBI-induced memory deficits when administered weeks after the initial injury and maintained cognitive improvement after treatment was terminated. At the physiological level, TBI suppressed long-term potentiation in the hippocampus, which was fully restored with ISRIB treatment. Our results indicate that ISR inhibition at time points late after injury can reverse memory deficits associated with TBI. As such, pharmacological inhibition of the ISR emerges as a promising avenue to combat head trauma-induced chronic cognitive deficits. PMID:28696288

  17. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury.

    PubMed

    Chou, Austin; Krukowski, Karen; Jopson, Timothy; Zhu, Ping Jun; Costa-Mattioli, Mauro; Walter, Peter; Rosi, Susanna

    2017-08-01

    Traumatic brain injury (TBI) is a leading cause of long-term neurological disability, yet the mechanisms underlying the chronic cognitive deficits associated with TBI remain unknown. Consequently, there are no effective treatments for patients suffering from the long-lasting symptoms of TBI. Here, we show that TBI persistently activates the integrated stress response (ISR), a universal intracellular signaling pathway that responds to a variety of cellular conditions and regulates protein translation via phosphorylation of the translation initiation factor eIF2α. Treatment with ISRIB, a potent drug-like small-molecule inhibitor of the ISR, reversed the hippocampal-dependent cognitive deficits induced by TBI in two different injury mouse models-focal contusion and diffuse concussive injury. Surprisingly, ISRIB corrected TBI-induced memory deficits when administered weeks after the initial injury and maintained cognitive improvement after treatment was terminated. At the physiological level, TBI suppressed long-term potentiation in the hippocampus, which was fully restored with ISRIB treatment. Our results indicate that ISR inhibition at time points late after injury can reverse memory deficits associated with TBI. As such, pharmacological inhibition of the ISR emerges as a promising avenue to combat head trauma-induced chronic cognitive deficits.

  18. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse

    PubMed Central

    Dinkins, Michael B.; Enasko, John; Hernandez, Caterina; Wang, Guanghu; Kong, Jina; Helwa, Inas; Liu, Yutao; Terry, Alvin V.

    2016-01-01

    Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro. Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. SIGNIFICANCE STATEMENT We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome

  19. CB1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal.

    PubMed

    Saravia, Rocio; Flores, África; Plaza-Zabala, Ainhoa; Busquets-Garcia, Arnau; Pastor, Antoni; de la Torre, Rafael; Di Marzo, Vincenzo; Marsicano, Giovanni; Ozaita, Andrés; Maldonado, Rafael; Berrendero, Fernando

    2017-04-01

    Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. We investigated in mice the role of CB1 cannabinoid receptors (CB1Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. Memory impairment during nicotine withdrawal was blocked by the CB1R antagonist rimonabant or the genetic deletion of CB1R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB1R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB1R conditional knockout mice and after subchronic treatment with rimonabant. These findings underline the interest of CB1R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Color discrimination deficits in Parkinson's disease are related to cognitive impairment and white-matter alterations.

    PubMed

    Bertrand, Josie-Anne; Bedetti, Christophe; Postuma, Ronald B; Monchi, Oury; Génier Marchand, Daphné; Jubault, Thomas; Gagnon, Jean-François

    2012-12-01

    Color discrimination deficit is a common nonmotor manifestation of Parkinson's disease (PD). However, the pathophysiology of this dysfunction remains poorly understood. Although retinal structure changes found in PD have been suggested to cause color discrimination deficits, the impact of cognitive impairment and cortical alterations remains to be determined. We investigated the contribution of cognitive impairment to color discrimination deficits in PD and correlated them with cortical anomalies. Sixty-six PD patients without dementia and 20 healthy controls performed the Farnsworth-Munsell 100 hue test and underwent a comprehensive neuropsychological assessment for mild cognitive impairment diagnosis. In a subgroup of 26 PD patients, we also used high-definition neuroanatomical magnetic resonance imaging for cortical thickness and diffusion tensor analysis. PD patients with mild cognitive impairment performed poorly on the Farnsworth-Munsell 100 hue test compared with PD patients without mild cognitive impairment and controls. In PD patients, performance on the Farnsworth-Munsell 100 hue test was correlated with measures of visuospatial abilities and executive functions. Neuroimaging analysis revealed higher mean and radial diffusivity values in right posterior white-matter structures that correlated with poor performance on the Farnsworth-Munsell 100 hue test. No cortical thickness correlation reached significance. This study showed that cognitive impairment makes a major contribution to the color discrimination deficits reported in PD. Thus, performance on the Farnsworth-Munsell 100 hue test may reflect cognitive impairment more than color discrimination deficits in PD. Poor performance on the Farnsworth-Munsell 100 hue test was also associated with white-matter alterations in right posterior brain regions.

  1. Structural correlates of cognitive deficit and elevated gamma noise power in schizophrenia.

    PubMed

    Suazo, Vanessa; Díez, Álvaro; Montes, Carlos; Molina, Vicente

    2014-03-01

    The aim of this study was to assess the relation between cognition, gray matter (GM) volumes and gamma noise power (amount of background oscillatory activity in the gamma band) in schizophrenia. We explored the relation between cognitive performance and regional GM volumes using voxel-based morphometry (VBM), in order to discover if the association between gamma noise power (an electroencephalography measurement of background activity in the gamma band) and cognition is observed through structural deficits related to the disease. Noise power, magnetic resonance imaging and cognitive assessments were obtained in 17 drug-free paranoid patients with schizophrenia and 13 healthy controls. In comparison with controls, patients showed GM deficits at posterior cingulate (bilateral),left inferior parietal (supramarginal gyrus) and left inferior dorsolateral prefrontal regions. Patients exhibited a direct association between performance in working memory and right temporal (superior and inferior gyri) GM densities. They also displayed a negative association between right anterior cerebellum volume and gamma noise power at the frontal midline (Fz) site. A structural deficit in the cerebellum may be involved in gamma activity disorganization in schizophrenia. Temporal structural deficits may relate to cognitive dysfunction in this illness. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  2. Cognitive deficits in the elderly: interactive theories and a study of environmental effects on psychometric intelligence.

    PubMed

    Canestrari, R; Godino, A

    1997-08-01

    Problems related to psychometric measures of intelligence are discussed with regard to both the general characteristics and metric properties (validity, reliability and sensibility) of mental tests, and interindividual differences (cultural background, education, life contents and age-cohorts). Currently used standard intelligence tests explore the structure of intelligence only in part, so a distinction must be made between true actual intelligence, potential inheritance of intelligence, and psychometrical or scored intelligence. The correct use of intelligence testing, however, does provide some relevant and objective information regarding the evolution of cognitive structure during adulthood and in relationship to aging. Cognitive performance in the elderly follows a downward curve that is not explained as a result of aging on physiological responses (i.e., reaction time delay, signal-noise ratio in the CNS, degenerative loss of cortical cells, etc.). Biologically based theories of intelligence cannot explain the large individual differences in cognitive abilities observed in subjects who have very similar physical characteristics. Cognitive approaches to intelligence enable us to better understand the causal factors of the cognitive deficits in the elderly, and an interactive model permits us to fully integrate both the individual differences in cognitive abilities and the large consistency in performances. We compared the cognitive performances of two groups of elderly subjects, ranging in age from 65 to 97 years; we observed some statistically significant effects on cognitive deficit that could be explained as fully deriving from emotional and extra-cognitive responses to environmental changes.

  3. Cognitive Deficits Correlate with White Matter Deterioration in Spinocerebellar Ataxia Type 2.

    PubMed

    Hernandez-Castillo, Carlos R; Vaca-Palomares, Israel; Galvez, Víctor; Campos-Romo, Aurelio; Diaz, Rosalinda; Fernandez-Ruiz, Juan

    2016-04-01

    The aim of this study was to explore the relationship between cognitive and white matter deterioration in a group of participants with spinocerebellar ataxia type 2 (SCA2). Fourteen genetically confirmed participants with SCA2 and 14 aged-matched controls participated in the study. Diffusion tensor imaging tract-based spatial statistics were performed to analyze structural white matter integrity. Significant group differences in the mean diffusivity were correlated with SCA2 cognitive deficits. Our analysis revealed higher mean diffusivity in the SCA2 group in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Cognitive scores correlated with white matter mean diffusivity in the parahippocampal area, inferior frontal and supramarginal gyri and the stria terminalis. Our findings show significant correlations between white matter microstructural damage in key areas affected in SCA2 and cognitive deficits. These findings result in a more comprehensive understanding of the effect of the neurodegenerative process in people with SCA2.

  4. Cognition in African children with attention-deficit hyperactivity disorder.

    PubMed

    Kashala, Espérance; Elgen, Irene; Sommerfelt, Kristian; Tylleskär, Thorkild; Lundervold, Astri

    2005-11-01

    The aims of the study were: (1) to describe the performance of African children with symptoms of attention-deficit hyperactivity disorder on selected neuropsychologic tests and compare it with performance among peers of the same age without symptoms; (2) to explore through a factor analysis if the selected tests cover the same functions as known from studies in Europe and North America. A nested case-control approach was used to select the two groups of children. The tests were selected to measure aspects of executive functions, attention and memory functions as well as motor skills. A total of 185 schoolchildren (28 cases and 157 control subjects) aged 85 to 119 months old were included. The findings indicate only minor difference between children with symptoms of attention-deficit hyperactivity disorder and control subjects in most of the tasks. However, children with symptoms of attention-deficit hyperactivity disorder performed more poorly on tests of motor skills and had more violations of rules on the planning task. The factor analysis indicated a three-factor model, confirming that the selected tests could be used as measures of executive/motor functions, attention, and memory functions. Similar findings have been reported among children in Europe and North America.

  5. Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer's Disease.

    PubMed

    Huang, Zhilin; Tan, Tao; Du, Yehong; Chen, Long; Fu, Min; Yu, Yanzhi; Zhang, Lu; Song, Weihong; Dong, Zhifang

    2017-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS) may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of high-frequency rTMS on cognitive function, and little is known about low-frequency rTMS in AD treatment. Furthermore, the potential mechanisms of rTMS on the improvement of learning and memory also remain poorly understood. In the present study, we reported that severe deficits in spatial learning and memory were observed in APP23/PS45 double transgenic mice, a well known mouse model of AD. Furthermore, these behavioral changes were accompanied by the impairment of long-term potentiation (LTP) in the CA1 region of hippocampus, a brain region vital to spatial learning and memory. More importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment of spatial learning and memory as well as hippocampal CA1 LTP. In addition, low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP) and its C-terminal fragments (CTFs) including C99 and C89, as well as β-site APP-cleaving enzyme 1 (BACE1) in the hippocampus. These results indicate that low-frequency rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced reduction in Aβ neuropathology.

  6. Social cognitive deficits and their neural correlates in progressive supranuclear palsy.

    PubMed

    Ghosh, Boyd C P; Calder, Andrew J; Peers, Polly V; Lawrence, Andrew D; Acosta-Cabronero, Julio; Pereira, João M; Hodges, John R; Rowe, James B

    2012-07-01

    Although progressive supranuclear palsy is defined by its akinetic rigidity, vertical supranuclear gaze palsy and falls, cognitive impairments are an important determinant of patients' and carers' quality of life. Here, we investigate whether there is a broad deficit of modality-independent social cognition in progressive supranuclear palsy and explore the neural correlates for these. We recruited 23 patients with progressive supranuclear palsy (using clinical diagnostic criteria, nine with subsequent pathological confirmation) and 22 age- and education-matched controls. Participants performed an auditory (voice) emotion recognition test, and a visual and auditory theory of mind test. Twenty-two patients and 20 controls underwent structural magnetic resonance imaging to analyse neural correlates of social cognition deficits using voxel-based morphometry. Patients were impaired on the voice emotion recognition and theory of mind tests but not auditory and visual control conditions. Grey matter atrophy in patients correlated with both voice emotion recognition and theory of mind deficits in the right inferior frontal gyrus, a region associated with prosodic auditory emotion recognition. Theory of mind deficits also correlated with atrophy of the anterior rostral medial frontal cortex, a region associated with theory of mind in health. We conclude that patients with progressive supranuclear palsy have a multimodal deficit in social cognition. This deficit is due, in part, to progressive atrophy in a network of frontal cortical regions linked to the integration of socially relevant stimuli and interpretation of their social meaning. This impairment of social cognition is important to consider for those managing and caring for patients with progressive supranuclear palsy.

  7. Olfactory Deficits in MCI as Predictor of Improved Cognition on Donepezil

    DTIC Science & Technology

    2013-04-01

    cognitively with ACheI treatment is important. Hypotheses. 1. The acute decrease in UPSIT (Odor identification test) scores from pre- to post- atropine...baseline to 24 weeks and 52 weeks of donepezil treatment . 2. Increase in UPSIT scores from baseline to 8 weeks of donepezil treatment will be associated...due to mild cognitive impairment, may improve with donepezil treatment . Olfactory identification deficits may be an early test that can identify who

  8. Subtle deficits of cognitive theory of mind in unaffected first-degree relatives of schizophrenia patients.

    PubMed

    Montag, Christiane; Neuhaus, Kathrin; Lehmann, Anja; Krüger, Katja; Dziobek, Isabel; Heekeren, Hauke R; Heinz, Andreas; Gallinat, Jürgen

    2012-04-01

    Alterations of theory of mind (ToM) and empathy were implicated in the formation of psychotic experiences, and deficits in psychosocial functioning of schizophrenia patients. Inspired by concepts of neurocognitive endophenotypes, the existence of a distinct, potentially neurobiologically based social-cognitive vulnerability marker for schizophrenia is a matter of ongoing debate. The fact that previous research on social-cognitive deficits in individuals at risk yielded contradictory results may partly be due to an insufficient differentiation between qualitative aspects of ToM. Thirty-four unaffected first-degree relatives of schizophrenia patients (21 parents, 8 siblings, 5 children; f/m: 30/4; mean age: 48.1 ± 12.7 years) and 34 controls subjects (f/m: 25/9; mean age: 45.9 ± 10.9 years) completed the 'Movie for the Assessment of Social Cognition'-a video-based ToM test-and an empathy questionnaire (Interpersonal Reactivity Index, IRI). Outcome parameters comprised (1) 'cognitive' versus 'emotional' ToM, (2) error counts representing 'undermentalizing' versus 'overmentalizing', (3) empathic abilities and (4) non-social neurocognition. MANCOVA showed impairments in cognitive but not emotional ToM in the relatives' group, when age, gender and neurocognition were controlled for. Relatives showed elevated error counts for 'undermentalizing' but not for 'overmentalizing'. No alterations were detected in self-rated dimensions of empathy. Of all measures of ToM and empathy, only the IRI subscale 'fantasy' was associated with measures of psychotic risk, i.e. a history of subclinical delusional ideation. The present study confirmed subtle deficits in cognitive, but not emotional ToM in first-degree relatives of schizophrenia patients, which were not explained by global cognitive deficits. Findings corroborate the assumption of distinct social-cognitive abilities as an intermediate phenotype for schizophrenia.

  9. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment.

    PubMed

    Jeong, Ji Hee; Jeong, Hee Rok; Jo, Yu Na; Kim, Hyeon Ju; Shin, Jeong Hae; Heo, Ho Jin

    2013-10-18

    In vitro antioxidant activities and neuron-like PC12 cell protective effects of solvent fractions from aged garlic extracts were investigated to evaluate their anti-amnesic functions. Ethyl acetate fractions of aged garlic had higher total phenolics than other fractions. Antioxidant activities of ethyl acetate fractions from aged garlic were examined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and malondialdehyde (MDA) inhibitory effect using mouse whole brain homogenates. Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). PC12 cell viability was investigated by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydtrogenase (LDH) assay. The learning and memory impairment in institute of cancer research (ICR) mice was induced by neurotoxic amyloid beta protein (Aβ) to investigate in vivo anti-amnesic effects of aged garlic extracts by using Y-maze and passive avoidance tests. We discovered that ethyl acetate fractions showed the highest ABTS radical scavenging activity and MDA inhibitory effect. Intracellular ROS accumulation resulting from Aβ treatment in PC12 cells was significantly reduced when ethyl acetate fractions were presented in the medium compare to PC12 cells which was only treated with Aβ only. Ethyl acetate fractions from aged garlic extracts showed protection against Aβ-induced neurotoxicity. Pre-administration with aged garlic extracts attenuated Aβ-induced learning and memory deficits in both in vivo tests. Our findings suggest that aged garlic extracts with antioxidant activities may improve cognitive impairment against Aβ-induced neuronal deficit, and possess a wide range of beneficial activities for neurodegenerative disorders, notably Alzheimer's disease (AD).

  10. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment

    PubMed Central

    2013-01-01

    Background In vitro antioxidant activities and neuron-like PC12 cell protective effects of solvent fractions from aged garlic extracts were investigated to evaluate their anti-amnesic functions. Ethyl acetate fractions of aged garlic had higher total phenolics than other fractions. Methods Antioxidant activities of ethyl acetate fractions from aged garlic were examined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and malondialdehyde (MDA) inhibitory effect using mouse whole brain homogenates. Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). PC12 cell viability was investigated by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydtrogenase (LDH) assay. The learning and memory impairment in institute of cancer research (ICR) mice was induced by neurotoxic amyloid beta protein (Aβ) to investigate in vivo anti-amnesic effects of aged garlic extracts by using Y-maze and passive avoidance tests. Results We discovered that ethyl acetate fractions showed the highest ABTS radical scavenging activity and MDA inhibitory effect. Intracellular ROS accumulation resulting from Aβ treatment in PC12 cells was significantly reduced when ethyl acetate fractions were presented in the medium compare to PC12 cells which was only treated with Aβ only. Ethyl acetate fractions from aged garlic extracts showed protection against Aβ-induced neurotoxicity. Pre-administration with aged garlic extracts attenuated Aβ-induced learning and memory deficits in both in vivo tests. Conclusions Our findings suggest that aged garlic extracts with antioxidant activities may improve cognitive impairment against Aβ-induced neuronal deficit, and possess a wide range of beneficial activities for neurodegenerative disorders, notably Alzheimer's disease (AD). PMID:24134394

  11. Identifying Learning Disabilities through a Cognitive Deficit Framework: Can Verbal Memory Deficits Explain Similarities between Learning Disabled and Low Achieving Students?

    ERIC Educational Resources Information Center

    Callinan, Sarah; Theiler, Stephen; Cunningham, Everarda

    2015-01-01

    Traditionally, students with learning disabilities (LD) have been identified using an aptitude--achievement discrepancy or response to intervention approach. As profiles of the cognitive deficits of discrepancy-defined students with LD have already been developed using these approaches, these deficits can in turn be used to identify LD using the…

  12. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease.

    PubMed

    Southwell, Amber L; Franciosi, Sonia; Villanueva, Erika B; Xie, Yuanyun; Winter, Laurie A; Veeraraghavan, Janaki; Jonason, Alan; Felczak, Boguslaw; Zhang, Weining; Kovalik, Vlad; Waltl, Sabine; Hall, George; Pouladi, Mahmoud A; Smith, Ernest S; Bowers, William J; Zauderer, Maurice; Hayden, Michael R

    2015-04-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disease with no disease-modifying therapy currently available. In addition to characteristic motor deficits and atrophy of the caudate nucleus, signature hallmarks of HD include behavioral abnormalities, immune activation, and cortical and white matter loss. The identification and validation of novel therapeutic targets that contribute to these degenerative cellular processes may lead to new interventions that slow or even halt the course of this insidious disease. Semaphorin 4D (SEMA4D) is a transmembrane signaling molecule that modulates a variety of processes central to neuroinflammation and neurodegeneration including glial cell activation, neuronal growth cone collapse and apoptosis of neural precursors, as well as inhibition of oligodendrocyte migration, differentiation and process formation. Therefore, inhibition of SEMA4D signaling could reduce CNS inflammation, increase neuronal outgrowth and enhance oligodendrocyte maturation, which may be of therapeutic benefit in the treatment of several neurodegenerative diseases, including HD. To that end, we evaluated the preclinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody, which prevents the interaction between SEMA4D and its receptors, in the YAC128 transgenic HD mouse model. Anti-SEMA4D treatment ameliorated neuropathological signatures, including striatal atrophy, cortical atrophy, and corpus callosum atrophy and prevented testicular degeneration in YAC128 mice. In parallel, a subset of behavioral symptoms was improved in anti-SEMA4D treated YAC128 mice, including reduced anxiety-like behavior and rescue of cognitive deficits. There was, however, no discernible effect on motor deficits. The preservation of brain gray and white matter and improvement in behavioral measures in YAC128 mice treated with anti-SEMA4D suggest that this approach could represent a viable therapeutic strategy for the treatment of HD. Importantly, this work

  13. DL0410 Ameliorates Memory and Cognitive Impairments Induced by Scopolamine via Increasing Cholinergic Neurotransmission in Mice.

    PubMed

    Lian, Wenwen; Fang, Jiansong; Xu, Lvjie; Zhou, Wei; Kang, De; Xiong, Wandi; Jia, Hao; Liu, Ai-Lin; Du, Guan-Hua

    2017-03-06

    Deficiency of the cholinergic system is thought to play a vital role in cognitive impairment of dementia. DL0410 was discovered as a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinestease (BuChE), with potent efficiency in in-vitro experiments, but its in vivo effect on the cholinergic model has not been evaluated, and its action mechanism has also not been illustrated. In the present study, the capability of DL0410 in ameliorating the amnesia induced by scopolamine was investigated, and its effect on the cholinergic system in the hippocampus and its binding mode in the active site of AChE was also explored. Mice were administrated DL0410 (3 mg/kg, 10 mg/kg, and 30 mg/kg), and mice treated with donepezil were used as a positive control. The Morris water maze, escape learning task, and passive avoidance task were used as behavioral tests. The test results indicated that DL0410 could significantly improve the learning and memory impairments induced by scopolamine, with 10 mg/kg performing best. Further, DL0410 inhibited the AChE activity and increased acetylcholine (ACh) levels in a dose-dependent manner, and interacted with the active site of AChE in a similar manner as donepezil. However, no difference in the activity of BuChE was found in this study. All of the evidence indicated that its AChE inhibition is an important mechanism in the anti-amnesia effect. In conclusion, DL0410 could be an effective therapeutic drug for the treatment of dementia, especially Alzheimer's disease.

  14. Neuroprotective effects of Caralluma tuberculata on ameliorating cognitive impairment in a d-galactose-induced mouse model.

    PubMed

    Khan, Muhammad Zahid; Atlas, Nagina; Nawaz, Waqas

    2016-12-01

    Cognitive deficiency and oxidative stress have been well documented in aging disorders including Alzheimer's disease. The aim of this study was to investigate the therapeutic efficacy of Caralluma tuberculata methanolic extract (CTME) on cognitive impairment in mice induced with d-galactose. In this study we assessed the therapeutic efficacy of CTME on cognitive impairment in mice induced with d-galactose by conduction of behavioral and cognitive performance tests. In order to explore the possible role of CTME against d-galactose-induced oxidative damages, various biochemical indicators were assessed. Chronic administration of d-galactose (150mg/kgd, s.c.) for 7 weeks significantly impaired cognitive performance (in step-through passive, active avoidance test, Hole-Board test, Novel object recognition task and Morris water maze) and oxidative defense as compared to the control group. The results revealed that CTME treatment for two weeks (100, 200 and 300mg/kg p.o) significantly ameliorated cognitive performance and oxidative defense. All groups of CTME enhanced the learning and memory ability in step-through passive, active avoidance test, Hole-Board test Novel object recognition task and Morris water maze. Furthermore, high and middle level of CTME (300 and 200mg/kg p.o) significantly increased Total antioxidative capacity (T-AOC), Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, neprilysin (NEP), and β-site AβPP cleaving enzyme 1 (BACE1) expression while Nitric Oxide (NO), Nitric Oxide Synthase (NOS) activity and Malondialdehyde (MDA) concentration, and the level of Aβ1-42 and presenilin 1 (PS1) were decreased. The present study showed that CTME have a significant relieving effect on learning, memory and spontaneous activities in d-galactose-induced mice model, and ameliorates cognitive impairment and biochemical dysfunction in mice.

  15. Amusia and cognitive deficits in schizophrenia: is there a relationship?

    PubMed

    Wen, Yi; Nie, Xueqing; Wu, Daxing; Liu, Hong; Zhang, Pin; Lu, Xuejing

    2014-08-01

    The current study explored the music perception ability of individuals diagnosed with schizophrenia and its relationship with other cognitive abilities and psychotic symptom severity. The persons with schizophrenia performed significantly worse than the control group on the Montreal Battery of Evaluation of Amusia (MBEA) (p<0.001). The music perception ability of persons with schizophrenia was related to other cognitive abilities (attention, verbal memory, spatial memory, and executive function) and the severity of psychotic symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Medical burden and cognition in older patients in primary care: selective deficits in attention.

    PubMed

    Duff, Kevin; Mold, James W; Roberts, Michelle M; McKay, Sherry L

    2007-06-01

    Cognitive deficits have been associated with several chronic medical conditions, but the additive effects of multiple conditions on cognition have less studied. Six hundred ninety-two community dwelling older adults were enrolled through their primary care physicians and evaluated for medical burden and cognition. Medical burden was assessed by self-report questionnaire. Cognition was assessed with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). After adjusting for age and gender, there was a strong inverse relationship between medical burden and cognition, with individuals with more medical comorbidities performing worse on cognitive measures. Attention was selectively poor, especially for a speeded, divided attention task, in patients with five or more comorbid medical conditions. These findings could have clinical implications, as poorer attention, especially in patients with multiple medical problems, could lead to poorer medical compliance and worse outcomes.

  17. Participation after a stroke: changes over time as a function of cognitive deficits.

    PubMed

    Viscogliosi, Chantal; Belleville, Sylvie; Desrosiers, Johanne; Caron, Chantal D; Ska, Bernadette

    2011-01-01

    Participation refers to the engagement of a person in daily activities and social roles. The goal of this study was to compare changes in older adults' participation over time following a stroke as a function of the presence of deficits in memory, visual perception, executive functions, visual attention or language. A total of 197 persons with stroke were assessed 3 weeks, 3 months and 6 months after discharge from an acute care hospital, rehabilitation unit or geriatric day hospital. The Assessment of Life Habits (ALH) was used to measure participation. Neuropsychological measures were used to assess the presence of a cognitive deficit in the domains of memory, visual perception, executive functions (inhibition), visual attention and language. Overall, results indicate that participation after a stroke improves over time after hospital discharge in spite of cognitive deficits. Changes in participation over time differed between unimpaired and impaired participants only for language and executive deficits in three domains: interpersonal relationships, community life and responsibilities. These results indicate that when returning to the community after a stroke, positive changes in participation over time are possible even with cognitive deficits.

  18. Verbal learning and memory deficits in Mild Cognitive Impairment.

    PubMed

    Ribeiro, F; Guerreiro, M; De Mendonça, A

    2007-02-01

    Criteria for amnestic MCI rely on the use of delayed recall tasks to establish the presence of memory impairment. This study applied the California Verbal Learning Test to detail memory performance in MCI patients (n=70), as compared to control subjects (n=92) and AD patients (n=21). Learning across the 5 trials was different among the 3 groups. Learning strategy was also different, the MCI group showing less semantic clustering than the control group. However, both MCI patients and controls could benefit from semantic cueing. This study showed that beyond consolidation deficits, MCI patients have marked difficulties in acquisition and recall strategies.

  19. The Turner Syndrome: Cognitive Deficits, Affective Discrimination, and Behavior Problems.

    ERIC Educational Resources Information Center

    McCauley, Elizabeth; And Others

    1987-01-01

    The study attemped to link cognitive and social problems seen in girls with Turner syndrome by assessing the girls' ability to process affective cues. Seventeen 9- to 17-year-old girls diagnosed with Turner syndrome were compared to a matched control group on a task which required interpretation of affective intention from facial expression.…

  20. The Turner Syndrome: Cognitive Deficits, Affective Discrimination, and Behavior Problems.

    ERIC Educational Resources Information Center

    McCauley, Elizabeth; And Others

    1987-01-01

    The study attemped to link cognitive and social problems seen in girls with Turner syndrome by assessing the girls' ability to process affective cues. Seventeen 9- to 17-year-old girls diagnosed with Turner syndrome were compared to a matched control group on a task which required interpretation of affective intention from facial expression.…

  1. Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio).

    PubMed

    Seibt, Kelly Juliana; Piato, Angelo Luis; da Luz Oliveira, Renata; Capiotti, Katiucia Marques; Vianna, Monica Ryff; Bonan, Carla Denise

    2011-10-10

    Schizophrenia is a severe mental illness characterized by positive and negative symptoms and cognitive deficits. Reduction of glutamatergic neurotransmission by NMDA receptor antagonists mimics symptoms of schizophrenia. Modeling social interaction and cognitive impairment in animals can be of great benefit in the effort to develop novel treatments for negative and cognitive symptoms of schizophrenia. Studies have demonstrated that these behavioral changes are, in some cases, sensitive to remediation by antipsychotic drugs. The zebrafish has been proposed as a candidate to study the in vivo effects of several drugs and to discover new pharmacological targets. In the current study we investigated the ability of antipsychotic drugs to reverse schizophrenia-like symptoms produced by the NMDA receptor antagonist MK-801. Results showed that MK-801 (5μM) given pre-training hindered memory formation while both atypical antipsychotics sulpiride (250μM) and olanzapine (50μM) improved MK-801-induced amnesia. The same change was observed in the social interaction task, where atypical antipsychotics reversed the MK-801-induced social interaction deficit whereas the typical antipsychotic haloperidol (9μM) was ineffective to reverse those behavioral deficits. Therefore, MK-801-treated zebrafish showed some behavioral features observed in schizophrenia, such as cognitive and social interaction deficits, which were reverted by current available atypical drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Understanding Cognitive Deficits in Parkinson's Disease: Lessons from Preclinical Animal Models

    ERIC Educational Resources Information Center

    Solari, Nicola; Bonito-Oliva, Alessandra; Fisone, Gilberto; Brambilla, Riccardo

    2013-01-01

    Parkinson's disease (PD) has been, until recently, mainly defined by the presence of characteristic motor symptoms, such as rigidity, tremor, bradykinesia/akinesia, and postural instability. Accordingly, pharmacological and surgical treatments have so far addressed these motor disturbances, leaving nonmotor, cognitive deficits an unmet…

  3. Social cognition in bipolar disorder versus schizophrenia: comparability in mental state decoding deficits.

    PubMed

    Donohoe, Gary; Duignan, Aoife; Hargreaves, April; Morris, Derek W; Rose, Emma; Robertson, Deirdre; Cummings, Elizabeth; Moore, Susan; Gill, Michael; Corvin, Aiden

    2012-11-01

    Neuropsychological studies comparing patients with bipolar disorder (BD) to patients with schizophrenia (SZ) suggest milder cognitive deficits in BD patients and across a smaller range of functions. The present study investigated whether this pattern is also true for social cognition - a range of socially relevant abilities, including emotion perception and recognition, theory of mind, and social attributions - by comparing performance on measures of social cognition in patients with BD, SZ, and healthy participants. One hundred and two patients with BD, 208 patients with SZ, and 132 healthy participants were assessed using a battery of tasks measuring basic neuropsychological and social cognition. We observed significant differences between patients with BD and healthy participants in a test of mental state decoding ('eyes task') that was at a level comparable to deficits seen in patients with SZ. By comparison, BD patients showed more subtle deficits in mental state reasoning ('hinting task') than those shown by patients with SZ. Mental state decoding difficulties are significant in BD. An important direction for further research will be to establish to what extent these deficits affect social and occupational functioning as a potential target for therapeutic intervention. © 2012 John Wiley and Sons A/S.

  4. Cognitive deficits and morphological cerebral changes in a random sample of social drinkers.

    PubMed

    Bergman, H

    1985-01-01

    A random sample of 200 men and 200 women taken from the general population as well as subsamples of 31 male and 17 female excessive social drinkers were investigated with neuropsychological tests and computed tomography of the brain. Relatively high alcohol intake per drinking occasion did not give evidence of cognitive deficits or morphological cerebral changes. However, in males, mild cognitive deficits and morphological cerebral changes as a result of high recent alcohol intake, particularly during the 24-hr period prior to the investigation, were observed. When excluding acute effects of recent alcohol intake, mild cognitive deficits but not morphological cerebral changes that are apparently due to long-term excessive social drinking were observed in males. In females there was no association between the drinking variables and cognitive deficits or morphological cerebral changes, probably due to their less advanced drinking habits. It is suggested that future risk evaluations and estimations of safe alcohol intake should take into consideration the potential risk for brain damage due to excessive social drinking. However, it is premature to make any definite statements about safe alcohol intake and the risk for brain damage in social drinkers from the general population.

  5. The Relationship between Sluggish Cognitive Tempo, Subtypes of Attention-Deficit/Hyperactivity Disorder, and Anxiety Disorders

    ERIC Educational Resources Information Center

    Skirbekk, Benedicte; Hansen, Berit Hjelde; Oerbeck, Beate; Kristensen, Hanne

    2011-01-01

    The objective of the present study was to examine the relationship between sluggish cognitive tempo (SCT), subtypes of attention-deficit/hyperactivity disorder (ADHD), and anxiety disorders (AnxDs). One hundred and forty-one children (90 males, 51 females) aged 7-13 years were assigned to four groups, i.e., referred children with comorbid AnxDs…

  6. Specific Cognitive Deficits in ADHD: A Diagnostic Concern in Differential Diagnosis

    ERIC Educational Resources Information Center

    Gupta, Rashmi; Kar, Bhoomika R.

    2010-01-01

    We present a critical account of existing tools used to diagnose children with Attention Deficit Hyperactivity Disorder and to make a case for the assessment of cognitive impairments as a part of diagnostic system. Surveys have shown that clinicians rely almost entirely upon subjective reports or their own clinical judgment when arriving at…

  7. Specific Cognitive Deficits in ADHD: A Diagnostic Concern in Differential Diagnosis

    ERIC Educational Resources Information Center

    Gupta, Rashmi; Kar, Bhoomika R.

    2010-01-01

    We present a critical account of existing tools used to diagnose children with Attention Deficit Hyperactivity Disorder and to make a case for the assessment of cognitive impairments as a part of diagnostic system. Surveys have shown that clinicians rely almost entirely upon subjective reports or their own clinical judgment when arriving at…

  8. Understanding Cognitive Deficits in Parkinson's Disease: Lessons from Preclinical Animal Models

    ERIC Educational Resources Information Center

    Solari, Nicola; Bonito-Oliva, Alessandra; Fisone, Gilberto; Brambilla, Riccardo

    2013-01-01

    Parkinson's disease (PD) has been, until recently, mainly defined by the presence of characteristic motor symptoms, such as rigidity, tremor, bradykinesia/akinesia, and postural instability. Accordingly, pharmacological and surgical treatments have so far addressed these motor disturbances, leaving nonmotor, cognitive deficits an unmet…

  9. Teacher Beliefs and Responses toward Student Misbehavior: Influence of Cognitive Skill Deficits

    ERIC Educational Resources Information Center

    Hart, Susan Crandall; DiPerna, James Clyde

    2017-01-01

    This study aimed to examine whether having knowledge of student cognitive skill deficits changes teacher beliefs and responses in regard to classroom misbehavior. Teachers (N = 272) were randomly assigned to an experimental or control condition. Although teachers in both conditions read the same vignette describing a student's misbehavior, the…

  10. The Relationship between Sluggish Cognitive Tempo, Subtypes of Attention-Deficit/Hyperactivity Disorder, and Anxiety Disorders

    ERIC Educational Resources Information Center

    Skirbekk, Benedicte; Hansen, Berit Hjelde; Oerbeck, Beate; Kristensen, Hanne

    2011-01-01

    The objective of the present study was to examine the relationship between sluggish cognitive tempo (SCT), subtypes of attention-deficit/hyperactivity disorder (ADHD), and anxiety disorders (AnxDs). One hundred and forty-one children (90 males, 51 females) aged 7-13 years were assigned to four groups, i.e., referred children with comorbid AnxDs…

  11. Teacher Beliefs and Responses toward Student Misbehavior: Influence of Cognitive Skill Deficits

    ERIC Educational Resources Information Center

    Hart, Susan Crandall; DiPerna, James Clyde

    2017-01-01

    This study aimed to examine whether having knowledge of student cognitive skill deficits changes teacher beliefs and responses in regard to classroom misbehavior. Teachers (N = 272) were randomly assigned to an experimental or control condition. Although teachers in both conditions read the same vignette describing a student's misbehavior, the…

  12. [General and Specific Mechanisms of Visual Cognitive Function Impairment in People with FMRP Deficit].

    PubMed

    Pereverzeva, D S; Danilina, K K; Gorbachevskaya, N L

    2015-01-01

    The purpose of this article is to provide the overview of visual cognitive development in subjects with FMRP deficit. Description of fragile X mental retardation syndrome is presented in the article, that is the most common cause of inherited intellectual disability and one of the most prevalent genetic causes of autism spectrum disorder. The syndrome is associated with deficit of fragile X mental retardation protein following FMR1-gene mutation. Researches of static and dynamic object perception, face perception and oculomotor control are discussed in the article. The results obtained by subjects with FX syndrome are compared with ASD data, syndrome with closed behavioral phenotype. Several factors that underlie visual cognitive deficit are discussed in the article.

  13. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline

    PubMed Central

    Fu, Amy K. Y.; Hung, Kwok-Wang; Yuen, Michael Y. F.; Zhou, Xiaopu; Mak, Deejay S. Y.; Chan, Ivy C. W.; Cheung, Tom H.; Zhang, Baorong; Fu, Wing-Yu; Liew, Foo Y.; Ip, Nancy Y.

    2016-01-01

    Alzheimer’s disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aβ levels and amyloid plaque deposition by promoting the recruitment and Aβ phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1β, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD. PMID:27091974

  14. New Perspectives in Mental Health: Addressing Cognitive Deficits in Remitted Depression.

    PubMed

    Chen, Jason I; Hergert, Danielle C

    2017-02-08

    The purpose of this essay is to explore the long-term impact of depression on cognitive functioning and to discuss possible treatment strategies that mental health and psychiatric nurses may employ in practice or pursue in research to improve patient outcomes. As psychiatric and mental health nurses play a valuable role in promoting recovery from depression, addressing cognitive difficulties associated with depression may be an important area for nursing practice. This essay will first introduce the rationale for evaluating cognitive deficits in remitted depression in regards to the impact on quality of life (QOL). This article is protected by copyright. All rights reserved.

  15. [Sluggish cognitive tempo: symptoms of predominantly inattentive attention deficit hyperactivity disorder or a new clinical entity?].

    PubMed

    Capdevila-Brophy, C; Artigas-Pallarés, J; Obiols-Llandrich, J E

    2006-02-13

    The attention deficit/hyperactivity disorder (ADHD) is an heterogeneous entity with three accepted subtypes. This article reviews changes in the diagnostic criteria and controversies around the ADHD subtypes. We review the sluggish cognitive tempo, construct which has been associated with the ADHD predominantly inattentive subtype. We illustrate this construct through examining clinical cases that manifest 'sluggish cognitive tempo' symptoms. This article raises questions such as the utility of the sluggish cognitive tempo in the diagnosis of ADHD predominantly inattentive, and the possibility that it is a clinical entity not described up to the present date.

  16. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits.

    PubMed

    Uutela, M; Lindholm, J; Louhivuori, V; Wei, H; Louhivuori, L M; Pertovaara, A; Akerman, K; Castrén, E; Castrén, M L

    2012-07-01

    Fragile X syndrome (FXS) is a common cause of inherited intellectual disability and a well-characterized form of autism spectrum disorder. As brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of FXS we examined the effects of reduced BDNF expression on the behavioral phenotype of an animal model of FXS, Fmr1 knockout (KO) mice, crossed with mice carrying a deletion of one copy of the Bdnf gene (Bdnf(+/-)). Fmr1 KO mice showed age-dependent alterations in hippocampal BDNF expression that declined after the age of 4 months compared to wild-type controls. Mild deficits in water maze learning in Bdnf(+/-) and Fmr1 KO mice were exaggerated and contextual fear learning significantly impaired in double transgenics. Reduced BDNF expression did not alter basal nociceptive responses or central hypersensitivity in Fmr1 KO mice. Paradoxically, the locomotor hyperactivity and deficits in sensorimotor learning and startle responses characteristic of Fmr1 KO mice were ameliorated by reducing BNDF, suggesting changes in simultaneously and in parallel working hippocampus-dependent and striatum-dependent systems. Furthermore, the obesity normally seen in Bdnf(+/-) mice was eliminated by the absence of fragile X mental retardation protein 1 (FMRP). Reduced BDNF decreased the survival of newborn cells in the ventral part of the hippocampus both in the presence and absence of FMRP. Since a short neurite phenotype characteristic of newborn cells lacking FMRP was not found in cells derived from double mutant mice, changes in neuronal maturation likely contributed to the behavioral phenotype. Our results show that the absence of FMRP modifies the diverse effects of BDNF on the FXS phenotype. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  17. Cognitive deficits associated with combined HIV gp120 expression and chronic methamphetamine exposure in mice.

    PubMed

    Kesby, James P; Markou, Athina; Semenova, Svetlana

    2015-01-01

    Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e. similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult.

  18. Cognitive deficits associated with combined HIV gp120 expression and chronic methamphetamine exposure in mice

    PubMed Central

    Kesby, James P.; Markou, Athina; Semenova, Svetlana

    2014-01-01

    Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e., similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. PMID:25476577

  19. Finger agnosia and cognitive deficits in patients with Alzheimer's disease.

    PubMed

    Davis, Andrew S; Trotter, Jeffrey S; Hertza, Jeremy; Bell, Christopher D; Dean, Raymond S

    2012-01-01

    The purpose of this study was to examine the presence of finger agnosia in patients with Alzheimer's disease (AD) and to determine if level of finger agnosia was related to cognitive impairment. Finger agnosia is a sensitive measure of cerebral impairment and is associated with neurofunctional areas implicated in AD. Using a standardized and norm-referenced approach, results indicated that patients with AD evidenced significantly decreased performance on tests of bilateral finger agnosia compared with healthy age-matched controls. Finger agnosia was predictive of cognitive dysfunction on four of seven domains, including: Crystallized Language, Fluid Processing, Associative Learning, and Processing Speed. Results suggest that measures of finger agnosia, a short and simple test, may be useful in the early detection of AD.

  20. Treatment of acquired cognitive-communicative deficits in young children.

    PubMed

    Ringle-Bartels, J; Story, T B

    1993-01-01

    This article argues that pediatric cognitive rehabilitation is different from rehabilitation for adults; that available theoretical perspectives (Piaget, information processing theory, Luria, and learning theory), are both necessary for and seriously underutilized in planning and conducting pediatric therapy; and that the recognition of such theoretical perspectives would significantly alter clinical pediatric practice. This article then suggests an approach to a theory-based clinical pediatric practice and provides examples.

  1. Tyrosine Supplementation Attenuates Cognitive and Psychomotor Deficits in Cold Environments

    DTIC Science & Technology

    2009-01-01

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...Approved for public release; distribution unlimited In rats, dietary supplementation with the amino acid tyrosine (TYR) prevented depletion of central...that cold exposure degrades cognitive performance and supplementation with TYR alleviates working memory decrements, even with a reduced core

  2. Cognitive executive impairment and dopaminergic deficits in de novo Parkinson's disease.

    PubMed

    Siepel, Françoise J; Brønnick, Kolbjørn S; Booij, Jan; Ravina, Bernard M; Lebedev, Alexander V; Pereira, Joana B; Grüner, Renate; Aarsland, Dag

    2014-12-01

    Cognitive impairment in Parkinson's disease (PD) is common and does directly impact patients' everyday functioning. However, the underlying mechanisms of early cognitive decline are not known. This study explored the association between striatal dopaminergic deficits and cognitive impairment within a large cohort of early, drug-naïve PD patients and tested the hypothesis that executive dysfunction in PD is associated with striatal dopaminergic depletion. A cross-sectional multicenter cohort of 339 PD patients and 158 healthy controls from the Parkinson's Progression Markers Initiative study was analyzed. Each individual underwent cerebral single-photon emission CT (SPECT) and a standardized neuropsychological assessment with tests of memory as well as visuospatial and executive function. SPECT imaging was performed with [(123) I]FP-CIT, and specific binding ratios in left and right putamen and caudate nucleus were calculated. The association between specific binding ratios, cognitive domain scores, and age was analyzed using Pearson's correlations, partial correlation, and conditional process analysis. A small, but significant, positive association between total striatal dopamine transporter binding and the attention/executive domain was found (r = 0.141; P = 0.009) in PD, but this was not significant after adjusting for age. However, in a moderated mediation model, we found that cognitive executive differences between controls and patients with PD were mediated by an age-moderated striatal dopaminergic deficit. Our findings support the hypothesis that nigrostriatal dopaminergic deficit is associated with executive impairment, but not to memory or visuospatial impairment, in early PD.

  3. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion

    PubMed Central

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-01-01

    BACKGROUND AND PURPOSE Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. EXPERIMENTAL APPROACH We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. KEY RESULTS BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. CONCLUSION AND IMPLICATIONS Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. PMID:24758388

  4. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Cognitive deficits induced by 56Fe radiation exposure

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  6. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  7. Tract-Specific Correlates of Neuropsychological Deficits in Patients with Subcortical Vascular Cognitive Impairment.

    PubMed

    Jung, Na-Yeon; Han, Cheol E; Kim, Hee Jin; Yoo, Sang Wook; Kim, Hee-Jong; Kim, Eun-Joo; Na, Duk L; Lockhart, Samuel N; Jagust, William J; Seong, Joon-Kyung; Seo, Sang Won

    2016-01-01

    The white matter tract-specific correlates of neuropsychological deficits are not fully established in patients with subcortical vascular cognitive impairment (SVCI), where white matter tract damage may be a critical factor in cognitive impairment. The purpose of this study is to investigate the tract-specific correlates of neuropsychological deficits in SVCI patients using tract-specific statistical analysis (TSSA). We prospectively recruited 114 SVCI patients, and 55 age-, gender-, and education-matched individuals with normal cognition (NC). All participants underwent diffusion weighted imaging and neuropsychological testing. We classified tractography results into fourteen major fiber tracts and analyzed group comparison and correlation with cognitive impairments. Relative to NC subjects, SVCI patients showed decreased fractional anisotropy values in bilateral anterior-thalamic radiation, cingulum, superior-longitudinal fasciculus, uncinate fasciculus, corticospinal tract, and left inferior-longitudinal fasciculus. Focal disruptions in specific tracts were associated with specific cognitive impairments. Our findings suggest that disconnection of specific white matter tracts, especially those neighboring and providing connections between gray matter regions important to certain cognitive functions, may contribute to specific cognitive impairments in SVCI.

  8. PHOSPHOLIPASE A2 REDUCTION AMELIORATES COGNITIVE DEFICITS IN MOUSE MODEL OF ALZHEIMER’S DISEASE

    USDA-ARS?s Scientific Manuscript database

    Neuronal expression of familial Alzheimer’s disease (AD)-mutant human amyloid precursor proteins (hAPP) and hAPP-derived amyloid-' (A') peptides causes synaptic dysfunction, inflammation, and abnormal cerebrovascular tone in transgenic mice. Fatty acids are involved in these processes, but their con...

  9. An Investigation into the Cognitive Deficits Associated with Chronic Fatigue Syndrome

    PubMed Central

    Thomas, Marie; Smith, Andrew

    2009-01-01

    This study addresses, among other things, the debate as to whether cognitive deficits do occur with a diagnosis of Chronic Fatigue Syndrome (CFS). Previous studies have indicated a potential mismatch between subjective patient ratings of impairment and clinical assessment. In an attempt to tackle some of the methodological problems faced by previous research in this field, this study recruited a large sample of CFS patients where adequate diagnosis had been made and administered an extensive battery of measures. In doing so this study was able to replicate previous published evidence of clear cognitive impairment in this group and demonstrate also that these deficits occurred independent of psychopathology. The conclusion drawn is that cognitive impairments can be identified if appropriate measures are used. Furthermore, the authors have shown that performance changes in these measures have been used to assess both efficacy of a treatment regime and rates of recovery. PMID:19452031

  10. Bone-marrow-derived mesenchymal stem cells attenuate cognitive deficits in an endothelin-1 rat model of stroke.

    PubMed

    Lowrance, S A; Fink, K D; Crane, A; Matyas, J; Dey, N D; Matchynski, J J; Thibo, T; Reinke, T; Kippe, J; Hoffman, C; Sandstrom, M; Rossignol, J; Dunbar, G L

    2015-01-01

    Stroke is the third leading cause of death and permanent disability in the United States, often producing long-term cognitive impairments, which are not easily recapitulated in animal models. The goals of this study were to assess whether: (1) the endothelin-1 (ET-1) model of chronic stroke produced discernable cognitive deficits; (2) a spatial operant reversal task (SORT) would accurately measure memory deficits in this model; and (3) bone-marrow-derived mesenchymal stem cells (BMMSCs) could reduce any observed deficits. Rats were given unilateral intracerebral injections of vehicle or ET-1, a stroke-inducing agent, near the middle cerebral artery. Seven days later, they were given intrastriatal injections of BMMSCs or vehicle, near the ischemic penumbra. The cognitive abilities of the rats were assessed on a novel SORT, which was designed to efficiently distinguish cognitive deficits from potential motoric confounds. Rats given ET-1 had significantly more cognitive errors at six weeks post-stroke on the SORT, and that these deficits were attenuated by BMMSC transplants. These findings indicate that: (1) the ET-1 model produces chronic cognitive deficits; (2) the SORT efficiently measures cognitive deficits that are not confounded by motoric impairment; and (3) BMMSCs may be a viable treatment for stroke-induced cognitive dysfunction.

  11. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms.

    PubMed

    Tweedie, David; Fukui, Koji; Li, Yazhou; Yu, Qian-Sheng; Barak, Shani; Tamargo, Ian A; Rubovitch, Vardit; Holloway, Harold W; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Perez, Evelyn; Van Praag, Henriette; Luo, Yu; Hoffer, Barry J; Becker, Robert E; Pick, Chaim G; Greig, Nigel H

    2016-01-01

    Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the 'Blalock Alzheimer's Disease Up' pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound's ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI.

  12. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms

    PubMed Central

    Li, Yazhou; Yu, Qian-sheng; Barak, Shani; Tamargo, Ian A.; Rubovitch, Vardit; Holloway, Harold W.; Lehrmann, Elin; Wood, William H.; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Van Praag, Henriette; Luo, Yu; Hoffer, Barry J.; Becker, Robert E.; Pick, Chaim G.; Greig, Nigel H.

    2016-01-01

    Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the ‘Blalock Alzheimer’s Disease Up’ pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound’s ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI. PMID:27254111

  13. Social Cognition Deficits and Associations with Drinking History in Alcoholic Men and Women

    PubMed Central

    Valmas, Mary M.; Ruiz, Susan Mosher; Gansler, David A.; Sawyer, Kayle S.; Oscar-Berman, Marlene

    2014-01-01

    . These findings extend into the social cognition domain, previous literature demonstrating the presence of cognitive deficits in alcoholism, their association with alcoholism severity, and variability by gender. Moreover, because impairments in social cognition can persist despite extended abstinence, they have important implications for relapse prevention. PMID:25581654

  14. CNF1 Increases Brain Energy Level, Counteracts Neuroinflammatory Markers and Rescues Cognitive Deficits in a Murine Model of Alzheimer's Disease

    PubMed Central

    Travaglione, Sara; Fabbri, Alessia; Guidotti, Marco; Ferri, Alberto; Campana, Gabriele; Fiorentini, Carla

    2013-01-01

    Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis. PMID:23738020

  15. CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease.

    PubMed

    Loizzo, Stefano; Rimondini, Roberto; Travaglione, Sara; Fabbri, Alessia; Guidotti, Marco; Ferri, Alberto; Campana, Gabriele; Fiorentini, Carla

    2013-01-01

    Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis.

  16. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder.

    PubMed

    Schoenberg, Poppy L A; Hepark, Sevket; Kan, Cornelis C; Barendregt, Henk P; Buitelaar, Jan K; Speckens, Anne E M

    2014-07-01

    To examine whether mindfulness-based cognitive therapy (MBCT) would enhance attenuated amplitudes of event-related potentials (ERPs) indexing performance monitoring biomarkers of attention-deficit/hyperactivity disorder (ADHD). Fifty adult ADHD patients took part in a randomised controlled study investigating ERP and clinical measures pre-to-post MBCT. Twenty-six patients were randomly allocated to MBCT, 24 to a wait-list control. Main outcome measures included error processing (ERN, Pe), conflict monitoring (NoGo-N2), and inhibitory control (NoGo-P3) ERPs concomitant to a continuous performance task (CPT-X). Inattention and hyperactivity-impulsivity ADHD symptoms, psychological distress and social functioning, and mindfulness skills were also assessed. MBCT was associated with increased Pe and NoGo-P3 amplitudes, coinciding with reduced 'hyperactivity/impulsivity' and 'inattention' symptomatology. Specific to the MBCT; enhanced Pe amplitudes correlated with a decrease in hyperactivity/impulsivity symptoms and increased 'act-with-awareness' mindfulness skill, whereas, enhanced P3 correlated with amelioration in inattention symptoms. MBCT enhanced ERP amplitudes associated with motivational saliency and error awareness, leading to improved inhibitory regulation. MBCT suggests having comparable modulation on performance monitoring ERP amplitudes as pharmacological treatments. Further study and development of MBCT as a treatment for ADHD is warranted, in addition to its potential scope for clinical applicability to broader defined externalising disorders and clinical problems associated with impairments of the prefrontal cortex. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice.

    PubMed

    Sadigh-Eteghad, S; Talebi, M; Mahmoudi, J; Babri, S; Shanehbandi, D

    2015-07-09

    Agonists of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as therapeutic approaches for managing cognitive deficits in Alzheimer's disease (AD). Present study was designed to evaluate the effect of α7 nAChR selective activation by PHA-543613 (PHA) on beta-amyloid (Aβ)25-35-mediated cognitive deficits in mice. For this purpose, PHA (1mg/kg, i.p.), a selective α7 nAChR agonist, and galantamine (Gal) (3mg/kg, s.c.), an acetylcholine-esterase inhibitor (AChEI) effects on α7 nAChR were tested in Aβ25-35-received (intracerebroventricular, 10 nmol) mice model of AD. Methyllycaconitine (MLA) (1mg/kg, i.p.), a α7 nAChR antagonist, was used for receptor blockage effects evaluation. Working and reference memory in animals was assessed by the Morris water maze (MWM) task. The mRNA and protein levels of α7 subunit were analyzed by real-time PCR and Western blotting, respectively. PHA and Gal, ameliorate Aβ-impaired working and reference memory. However, Gal had less effect than PHA in this regard. Pretreatment with MLA reverses both Gal and PHA effects in MWM. PHA and Gal treatment prevent Aβ-induced α7 subunit protein reduction, but Gal has lesser effect than PHA. This effect blocked by pretreatment with MLA. In neither the pretreatment nor treatment group, the mRNA levels of nAChR α7 subunit were significantly changed. Therefore, α7 nAChR activation, reduces Aβ-induced cognitive deficits and increases the α7 protein level and subsequent neuron survival. However, blockage of receptor, increases Aβ toxicity and cognitive impairment and reduces the α7 nAChR protein level and flowing neuroprotection. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Reading Comprehension in Children with ADHD: Cognitive Underpinnings of the Centrality Deficit

    PubMed Central

    Miller, Amanda C.; Keenan, Janice M.; Betjemann, Rebecca S.; Willcutt, Erik; Pennington, Bruce F.; Olson, Richard K.

    2012-01-01

    We examined reading comprehension in children with ADHD by assessing their ability to build a coherent mental representation that allows them to recall central and peripheral information. We compared children with ADHD (mean age 9.78) to word reading-matched controls (mean age 9.89) on their ability to retell a passage. We found that even though children with ADHD recalled more central than peripheral information, they showed their greatest deficit, relative to controls, on central information – a centrality deficit (Miller & Keenan, 2009). We explored the cognitive underpinnings of this deficit using regressions to compare how well cognitive factors (working memory, inhibition, processing speed, and IQ) predicted the ability to recall central information, after controlling for word reading ability, and whether these cognitive factors interacted with ADHD symptoms. Working memory accounted for the most unique variance. Although previous evidence for reading comprehension difficulties in children with ADHD have been mixed, this study suggests that even when word reading ability is controlled, children with ADHD have difficulty building a coherent mental representation, and this difficulty is likely related to deficits in working memory. PMID:23054132

  19. Nobiletin ameliorates isoflurane-induced cognitive impairment via antioxidant, anti-inflammatory and anti-apoptotic effects in aging rats.

    PubMed

    Bi, Junying; Zhang, Haiyan; Lu, Jing; Lei, Weifu

    2016-12-01

    A recent study reported that nobiletin is an active ingredient in Fructus Aurantii immaturus and Pericarpium Citri Reticulatae, which may be capable of preventing ischemic stroke. Therefore, the present study aimed to determine the neuroprotective effects of nobiletin, and to evaluate whether it could ameliorate isoflurane‑induced cognitive impairment via antioxidant, anti‑inflammatory and anti‑apoptotic effects in aging rats. Male Sprague‑Dawley rats (age, 18 months) were used to analyze the neuroprotective effects of nobiletin. Morris water maze test was used to determine cognitive competence. Enzyme‑linked immunosorbent assay and western blot analysis were also used to quantify nuclear factor‑κB, tumor necrosis factor (TNF)‑α, IL‑1β, IL‑6, glutathione, (GSH), GSH‑peroxidase, superoxide dismutase and malondialdehyde concentration and relevant protein expression levels Cognitive competence was increased in isoflurane-treated rats following treatment with nobiletin. In addition, as expected, nobiletin exerted antioxidant, anti-inflammatory and anti‑apoptotic effects on isoflurane‑induced cognitive impairment in aging rats. Treatment with nobiletin induced the activation of phosphorylated (p)‑Akt, p‑cAMP response element binding protein (CREB) and brain‑derived neurotrophic factor (BDNF) protein expression and reduced the levels of B‑cell lymphoma 2‑associated X protein (Bax) in isoflurane‑induced rats. In conclusion, the present study demonstrated that nobiletin may ameliorate isoflurane-induced cognitive impairment through antioxidant, anti‑inflammatory and anti‑apoptotic effects via modulation of Akt, Bax, p‑CREB and BDNF in aging rats. These findings provide support for the molecular mechanisms underlying the effects of nobiletin treatment on isoflurane-induced damage.

  20. Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury

    PubMed Central

    Debes, Frodi; Weihe, Pal; Grandjean, Philippe

    2015-01-01

    Prenatal exposure to mercury has been associated with adverse effects on child neurodevelopment. The present study aims to determine the extent to which methylmercury-associated cognitive deficits persist into adult age. In a Faroese birth cohort originally formed in 1986–1987 (N=1,022), prenatal methylmercury exposure was assessed in terms of the mercury concentration in cord blood and maternal hair. Clinical examinations of 847 cohort members at age 22 years were carried out in 2008–2009 using a panel of neuropsychological tests that reflected major functional domains. Subjects with neurological and psychiatric diagnoses were excluded from the data analysis, thus leaving 814 subjects. Multiple regression analysis included covariates previously identified for adjustment. Deficits in Boston Naming Test and other tests of verbal performance were significantly associated with the cord-blood mercury concentration. Deficits were also present in all other tests applied, although most were not statistically significant. Structural equation models were developed to ascertain the possible differences in vulnerability of specific functional domains and the overall association with general intelligence. In models for individual domains, all of them showed negative associations, with crystallized intelligence being highly significant. A hierarchical model for general intelligence based on all domains again showed a highly significant negative association with the exposure, with an approximate deficit that corresponds to about 2.2 IQ points at a 10-fold increased prenatal methylmercury exposure. Thus, although the cognitive deficits observed were smaller than at examinations at younger ages, maternal seafood diets were associated with adverse effects in this birth cohort at age 22 years. The deficits affected major domains of brain functions as well as general intelligence. Thus, prenatal exposure to this marine contaminant appears to cause permanent adverse effects on

  1. Motor deficits cannot explain impaired cognitive associative learning in cerebellar patients.

    PubMed

    Timmann, Dagmar; Drepper, J; Maschke, M; Kolb, F P; Böring, D; Thilmann, A F; Diener, H C

    2002-01-01

    There is a strong evidence that the cerebellum is involved in associative motor learning. The exact role of the cerebellum in motor learning, and whether it is involved in cognitive learning processes too, are still controversially discussed topics. A common problem of assessing cognitive capabilities of cerebellar patients is the existence of additional motor demands in all cognitive tests. Even if the patients are able to cope well with the motor requirements of the task, their performance could still involve compensating strategies which cost them more attentional resources than the normal controls. To investigate such interaction effects of cognitive and motor demands in cerebellar patients, we conducted a cognitive associative learning paradigm and varied systematically the motor demands and the cognitive requirements of the task. Nine patients with isolated cerebellar disease and nine matched healthy controls had to learn the association between pairs of color squares, presented centrally on a computer monitor together with a left or right answer button. In the simple motor condition, the answer button had to be pressed once and in the difficult condition three times. We measured the decision times and evaluated the correctly named associations after the test was completed. The cerebellar subjects showed a learning deficit, compared to the normal controls. However, this deficit was independent of the motor difficulty of the task. The cerebellum seems to contribute to motor-independent processes, which are generally involved in associative learning.

  2. No lower cognitive functioning in older adults with attention-deficit/hyperactivity disorder.

    PubMed

    Semeijn, E J; Korten, N C M; Comijs, H C; Michielsen, M; Deeg, D J H; Beekman, A T F; Kooij, J J S

    2015-09-01

    Research illustrates cognitive deficits in children and younger adults with attention-deficit/hyperactivity disorder (ADHD). Few studies have focused on the cognitive functioning in older adults. This study investigates the association between ADHD and cognitive functioning in older adults. Data were collected in a cross-sectional side study of the Longitudinal Aging Study Amsterdam (LASA). A diagnostic interview to diagnose ADHD was administered among a subsample (N = 231, age 60-94). ADHD symptoms and diagnosis were assessed with the Diagnostic Interview for ADHD in Adults (DIVA) 2.0. Cognitive functioning was assessed with tests in the domains of executive functioning, information processing speed, memory, and attention/working memory. Regression analyses indicate that ADHD diagnosis and ADHD severity were only negatively associated with cognitive functioning in the attention/working memory domain. When adjusting for depression, these associations were no longer significant. The study shows that ADHD in older adults is associated with lower cognitive functioning in the attention/working memory domain. However, this was partly explained by depressive symptoms.

  3. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy

    PubMed Central

    Pearson, Jennifer N.; Rowley, Shane; Liang, Li-Ping; White, Andrew M.; Day, Brian J.; Patel, Manisha

    2016-01-01

    Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it. PMID:26184893

  4. Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia.

    PubMed

    Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J

    2017-03-01

    Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc.

  5. Interaction of Cognitive Distortions and Cognitive Deficits in the Formulation and Treatment of Obsessive-Compulsive Behaviours in a Woman with an Intellectual Disability

    ERIC Educational Resources Information Center

    Willner, Paul; Goodey, Rebecca

    2006-01-01

    Aims: This case study describes the formulation and cognitive-behavioural treatment (CBT) of obsessive-compulsive thoughts and behaviours in a woman with an intellectual disability. The report aimed to distinguish the cognitive deficits that reflect her disability from the cognitive distortions integral to her obsessive-compulsive disorder. Case…

  6. The Outcome of a Social Cognitive Training for Mainstream Adolescents with Social Communication Deficits in a Chinese Community

    ERIC Educational Resources Information Center

    Lee, Kathy Y. S.; Crooke, Pamela J.; Lui, Aster L. Y.; Kan, Peggy P. K.; Mark, Yuen-mai; van Hasselt, Charles Andrew; Tong, Michael C. F.

    2016-01-01

    The use of cognitive-based strategies for improving social communication behaviours for individuals who have solid language and cognition is an important question. This study investigated the outcome of teaching Social Thinking®, a framework based in social-cognition, to Chinese adolescents with social communication deficits. Thirty-nine students…

  7. The Outcome of a Social Cognitive Training for Mainstream Adolescents with Social Communication Deficits in a Chinese Community

    ERIC Educational Resources Information Center

    Lee, Kathy Y. S.; Crooke, Pamela J.; Lui, Aster L. Y.; Kan, Peggy P. K.; Mark, Yuen-mai; van Hasselt, Charles Andrew; Tong, Michael C. F.

    2016-01-01

    The use of cognitive-based strategies for improving social communication behaviours for individuals who have solid language and cognition is an important question. This study investigated the outcome of teaching Social Thinking®, a framework based in social-cognition, to Chinese adolescents with social communication deficits. Thirty-nine students…

  8. Oxymatrine attenuates diabetes-associated cognitive deficits in rats

    PubMed Central

    Wang, Suo-bin; Jia, Jian-ping

    2014-01-01

    Aim: Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait (the Chinese herb Kushen) and exhibits diverse pharmacological actions. In this work we investigated the effects of OMT on diabetes-associated cognitive decline (DACD) in a rat model of diabetes and explored the mechanisms of action. Methods: Male Wistar rats were injected with streptozotocin (65 mg/kg, ip) once to induce diabetes. The rats were then treated with vehicle or OMT (60 or 120 mg/kg per day, ip) for 7 weeks. Memory function was assessed using Morris water maze test. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), NF-κB p65 unit, TNF-α, IL-1β and caspase-3 in the cerebral cortex and hippocampus were quantified. Results: The diabetic rats exhibited markedly reduced body weight and increased plasma glucose level. The memory function of the rats assessed using Morris water maze test showed significant reduction in the percentage of time spent in the target quadrant and the number of times crossing the platform, coupled with markedly prolongation of escape latency and mean path length. Moreover, the rats showed oxidative stress (significantly increased MDA, decreased SOD and reduced GSH levels), as well as significant increases of NF-κB p65 unit, TNF-α, IL-1β and caspase-3 levels in the cerebral cortex and hippocampus. Chronic treatment with OMT dose-dependently reversed these behavioral, biochemical and molecular changes in the diabetic rats. However, the swimming speed had no significant difference among the control, diabetic and OMT-treated diabetic rats. Conclusion: Chronic treatment with OMT alleviates diabetes-associated cognitive decline in rats, which is associated with oxidative stress, inflammation and apoptotic cascades. PMID:24442148

  9. GBA variants are associated with a distinct pattern of cognitive deficits in Parkinson disease

    PubMed Central

    Mata, Ignacio F.; Leverenz, James B.; Weintraub, Daniel; Trojanowski, John Q.; Chen-Plotkin, Alice; Van Deerlin, Vivianna M.; Ritz, Beate; Rausch, Rebecca; Factor, Stewart A.; Wood-Siverio, Cathy; Quinn, Joseph F.; Chung, Kathryn A.; Peterson-Hiller, Amie L.; Goldman, Jennifer G.; Stebbins, Glenn T.; Bernard, Bryan; Espay, Alberto J.; Revilla, Fredy J.; Devoto, Johnna; Rosenthal, Liana S.; Dawson, Ted M.; Albert, Marilyn S.; Tsuang, Debby; Huston, Haley; Yearout, Dora; Hu, Shu-Ching; Cholerton, Brenna A.; Montine, Thomas J.; Edwards, Karen L.; Zabetian, Cyrus P.

    2015-01-01

    Background Loss-of-function mutations in the GBA gene are associated with more severe cognitive impairment in PD, but the nature of these deficits is not well understood and whether common GBA polymorphisms influence cognitive performance in PD is not yet known. Objectives/Methods We screened the GBA coding region for mutations and the E326K polymorphism in 1,369 PD patients enrolled at 8 sites from the PD Cognitive Genetics Consortium. Participants underwent assessments of learning and memory (Hopkins Verbal Learning Test–Revised), working memory/executive function (Letter-Number Sequencing and Trail Making A and B), language processing (semantic and phonemic verbal fluency), visuospatial abilities (Benton Judgment of Line Orientation), and global cognitive function (Montreal Cognitive Assessment). We used linear regression to test for association between genotype and cognitive performance with adjustment for important covariates and accounted for multiple testing using Bonferroni corrections. Results Mutation carriers (n=60; 4.4%) and E326K carriers (n=65; 4.7%) had a higher prevalence of dementia (mutations, odds ratio =5.1; p=9.7 × 10−6; E326K, odds ratio =6.4; p=5.7 × 10−7) and lower performance on Letter-Number Sequencing (mutations, corrected p[pc]=9.0 × 10−4; E326K, pc=0.036), Trail Making B-A (mutations, pc=0.018; E326K, pc=0.018), and Benton Judgment of Line Orientation (mutations, pc=0.0045; E326K, pc=0.0013). Conclusions Both GBA mutations and E326K are associated with a distinct cognitive profile characterized by greater impairment in working memory/executive function and visuospatial abilities in PD patients. The discovery that E326K negatively impacts cognitive performance approximately doubles the proportion of PD patients we now recognize are at risk for more severe GBA-related cognitive deficits. PMID:26296077

  10. Simultaneous object perception deficits are related to reduced visual processing speed in amnestic mild cognitive impairment.

    PubMed

    Ruiz-Rizzo, Adriana L; Bublak, Peter; Redel, Petra; Grimmer, Timo; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2017-07-01

    Simultanagnosia, an impairment in simultaneous object perception, has been attributed to deficits in visual attention and, specifically, to processing speed. Increasing visual attention deficits manifest over the course of Alzheimer's disease (AD), where the first changes are present already in its symptomatic predementia phase: amnestic mild cognitive impairment (aMCI). In this study, we examined whether patients with aMCI due to AD show simultaneous object perception deficits and whether and how these deficits relate to visual attention. Sixteen AD patients with aMCI and 16 age-, gender-, and education-matched healthy controls were assessed with a simultaneous perception task, with shapes presented in an adjacent, embedded, or overlapping manner, under free viewing without temporal constraints. We used a parametric assessment of visual attention based on the Theory of Visual Attention. Results show that patients make significantly more errors than controls when identifying overlapping shapes, which correlate with reduced processing speed. Our findings suggest simultaneous object perception deficits in very early AD, and a visual processing speed reduction underlying these deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hippocampal formation alterations differently contribute to autobiographic memory deficits in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Hirjak, Dusan; Wolf, Robert C; Remmele, Barbara; Seidl, Ulrich; Thomann, Anne K; Kubera, Katharina M; Schröder, Johannes; Maier-Hein, Klaus H; Thomann, Philipp A

    2017-03-09

    Autobiographical memory (AM) is part of declarative memory and includes both semantic and episodic aspects. AM deficits are among the major complaints of patients with Alzheimer's disease (AD) even in early or preclinical stages. Previous MRI studies in AD patients have showed that deficits in semantic and episodic AM are associated with hippocampal alterations. However, the question which specific hippocampal subfields and adjacent extrahippocampal structures contribute to deficits of AM in individuals with mild cognitive impairment (MCI) and AD patients has not been investigated so far. Hundred and seven participants (38 AD patients, 38 MCI individuals and 31 healthy controls [HC]) underwent MRI at 3 Tesla. AM was assessed with a semi-structured interview (E-AGI). FreeSurfer 5.3 was used for hippocampal parcellation. Semantic and episodic AM scores were related to the volume of 5 hippocampal subfields and cortical thickness in the parahippocampal and entorhinal cortex. Both semantic and episodic AM deficits were associated with bilateral hippocampal alterations. These associations referred mainly to CA1, CA2-3, presubiculum, and subiculum atrophy. Episodic, but not semantic AM loss was associated with cortical thickness reduction of the bilateral parahippocampal and enthorinal cortex. In MCI individuals, episodic, but not semantic AM deficits were associated with alterations of the CA1, presubiculum and subiculum. Our findings support the crucial role of CA1, presubiculum, and subiculum in episodic memory. The present results implicate that in MCI individuals, semantic and episodic AM deficits are subserved by distinct neuronal systems.

  12. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy

    PubMed Central

    Hassanzadeh, Parichehr; Arbabi, Elham; Rostami, Fatemeh

    2014-01-01

    Objective(s): A growing interest has recently been attracted towards the identification of plant-based medications including those with protective effects against cognitive impairment. Sesamol has shown promising antioxidant and neuroprotective effects, therefore, we aimed to evaluate its therapeutic potential in epilepsy which is commonly associated with oxidative stress and cognitive impairment. Materials and Methods: Male Wistar rats received pentylenetetrazole (PTZ) (30 mg/kg, IP) once every other day until the development of kindling, i.e., the occurrence of stage 5 of seizures for three consecutive trials. After the completion of kindling procedure, behavioural tests including elevated plus maze and passive avoidance were performed in order to assess learning and memory. Oxidative stress was assessed by estimation of lipid peroxidation and reduced glutathione. The effects of pretreatment with sesamol (10, 20, and 30 mg/kg, IP) against PTZ-induced seizures, cognitive impairment and oxidative stress were investigated. Results: 32.45 ± 1.86 days after treatment with PTZ, kindling was developed that was associated with myoclonic jerks and generalized tonic-clonic seizures. Moreover, PTZ kindling induced a remarkable cognitive impairment and oxidative stress. Sesamol (30 mg/kg) significantly delayed the development of kindling and prevented seizure-induced cognitive impairment and oxidative stress. Conclusion: Sesamol exerts ameliorative effects in the experimental model of epilepsy. This phytochemical may be considered as a beneficial adjuvant for antiepileptic drugs. PMID:24711892

  13. Cognitive rehabilitation training in patients with brain tumor-related epilepsy and cognitive deficits: a pilot study.

    PubMed

    Maschio, Marta; Dinapoli, Loredana; Fabi, Alessandra; Giannarelli, Diana; Cantelmi, Tonino

    2015-11-01

    The aim of this pilot observational study was to evaluate effect of cognitive rehabilitation training (RehabTr) on cognitive performances in patients with brain tumor-related epilepsy (BTRE) and cognitive disturbances. Medical inclusion criteria: patients (M/F) ≥ 18 years ≤ 75 with symptomatic seizures due to primary brain tumors or brain metastases in stable treatment with antiepileptic drugs; previous surgical resection or biopsy; >70 Karnofsky Performance Status; stable oncological disease. Eligible patients recruited from 100 consecutive patients with BTRE at first visit to our Center from 2011 to 2012. All recruited patients were administered battery of neuropsychological tests exploring various cognitive domains. Patients considered to have a neuropsychological deficit were those with at least one test score for a given domain indicative of impairment. Thirty patients out of 100 showed cognitive deficits, and were offered participation in RehabTr, of which 16 accepted (5 low grade glioma, 4 high grade glioma, 2 glioblastoma, 2 meningioma and 3 metastases) and 14 declined for various reasons. The RehabTr consisted of one weekly individual session of 1 h, for a total of 10 weeks, carried out by a trained psychologist. The functions trained were: memory, attention, visuo-spatial functions, language and reasoning by means of Training NeuroPsicologico (TNP(®)) software. To evaluate the effect of the RehabTr, the same battery of tests was administered directly after cognitive rehabilitation (T1), and at six-month follow-up (T2). Statistical analysis with Student T test for paired data showed that short-term verbal memory, episodic memory, fluency and long term visuo-spatial memory improved immediately after the T1 and remained stable at T2. At final follow-up all patients showed an improvement in at least one domain that had been lower than normal at baseline. Our results demonstrated a positive effect of rehabilitative training at different times, and, for

  14. Variability in Depressive Symptoms of Cognitive Deficit and Cognitive Bias During the First 2 Years After Diagnosis in Australian Men With Prostate Cancer.

    PubMed

    Sharpley, Christopher F; Bitsika, Vicki; Christie, David R H

    2016-01-01

    The incidence and contribution to total depression of the depressive symptoms of cognitive deficit and cognitive bias in prostate cancer (PCa) patients were compared from cohorts sampled during the first 2 years after diagnosis. Survey data were collected from 394 patients with PCa, including background information, treatments, and disease status, plus total scores of depression and scores for subscales of the depressive symptoms of cognitive bias and cognitive deficit via the Zung Self-Rating Depression Scale. The sample was divided into eight 3-monthly time-since-diagnosis cohorts and according to depression severity. Mean scores for the depressive symptoms of cognitive deficit were significantly higher than those for cognitive bias for the whole sample, but the contribution of cognitive bias to total depression was stronger than that for cognitive deficit. When divided according to overall depression severity, patients with clinically significant depression showed reversed patterns of association between the two subsets of cognitive symptoms of depression and total depression compared with those patients who reported less severe depression. Differences in the incidence and contribution of these two different aspects of the cognitive symptoms of depression for patients with more severe depression argue for consideration of them when assessing and diagnosing depression in patients with PCa. Treatment requirements are also different between the two types of cognitive symptoms of depression, and several suggestions for matching treatment to illness via a personalized medicine approach are discussed.

  15. Pretreatment cognitive deficits and treatment effects on attention in childhood absence epilepsy

    PubMed Central

    Masur, David; Shinnar, Shlomo; Cnaan, Avital; Shinnar, Ruth C.; Clark, Peggy; Wang, Jichuan; Weiss, Erica F.; Hirtz, Deborah G.

    2013-01-01

    Objective: To determine the neurocognitive deficits associated with newly diagnosed untreated childhood absence epilepsy (CAE), develop a model describing the factorial structure of items measuring academic achievement and 3 neuropsychological constructs, and determine short-term differential neuropsychological effects on attention among ethosuximide, valproic acid, and lamotrigine. Methods: Subjects with newly diagnosed CAE entering a double-blind, randomized controlled clinical trial had neuropsychological testing including assessments of general intellectual functioning, attention, memory, executive function, and achievement. Attention was reassessed at the week 16–20 visit. Results: At study entry, 36% of the cohort exhibited attention deficits despite otherwise intact neurocognitive functioning. Structural equation modeling of baseline neuropsychological data revealed a direct sequential effect among attention, memory, executive function, and academic achievement. At the week 16–20 visit, attention deficits persisted even if seizure freedom was attained. More subjects receiving valproic acid (49%) had attention deficits than subjects receiving ethosuximide (32%) or lamotrigine (24%) (p = 0.0006). Parental assessment did not reliably detect attention deficits before or after treatment (p < 0.0001). Conclusions: Children with CAE have a high rate of pretreatment attentional deficits that persist despite seizure freedom. Rates are disproportionately higher for valproic acid treatment compared with ethosuximide or lamotrigine. Parents do not recognize these attentional deficits. These deficits present a threat to academic achievement. Vigilant cognitive and behavioral assessment of these children is warranted. Classification of evidence: This study provides Class I evidence that valproic acid is associated with more significant attentional dysfunction than ethosuximide or lamotrigine in children with newly diagnosed CAE. PMID:24089388

  16. Counterfactual cognitive deficit in persons with Parkinson's disease

    PubMed Central

    McNamara, P; Durso, R; Brown, A; Lynch, A

    2003-01-01

    Background: Counterfactuals are mental representations of alternatives to past events. Recent research has shown them to be important for other cognitive processes, such as planning, causal reasoning, problem solving, and decision making—all processes independently linked to the frontal lobes. Objective: To test the hypothesis that counterfactual thinking is impaired in some patients with Parkinson's disease and is linked to frontal dysfunction in these patients. Methods. Measures of counterfactual processing and frontal lobe functioning were administered to 24 persons with Parkinson's disease and 15 age matched healthy controls. Results. Patients with Parkinson's disease spontaneously generated significantly fewer counterfactuals than controls despite showing no differences from controls on a semantic fluency test; they also performed at chance levels on a counterfactual inference test, while age matched controls performed above chance levels on this test. Performance on both the counterfactual generation and inference tests correlated significantly with performance on two tests traditionally linked to frontal lobe functioning (Stroop colour–word interference and Tower of London planning tasks) and one test of pragmatic social communication skills. Conclusions: Counterfactual thinking is impaired in Parkinson's disease. This impairment may be related to frontal lobe dysfunction. PMID:12876235

  17. Effects of nicotine on cognitive deficits in schizophrenia.

    PubMed

    Harris, Josette G; Kongs, Susan; Allensworth, Diana; Martin, Laura; Tregellas, Jason; Sullivan, Bernadette; Zerbe, Gary; Freedman, Robert

    2004-07-01

    Several lines of evidence suggest a pathophysiological role for nicotinic receptors in schizophrenia. Activation by nicotine alters physiological dysfunctions, such as eye movement and sensory gating abnormalities, but effects on neuropsychological performance are just beginning to be investigated. Nicotine-induced desensitization and the well-known tachyphylaxis of nicotinic receptors may confound such efforts. In all, 20 schizophrenics, 10 smokers, and 10 nonsmokers were assessed following the administration of nicotine gum and placebo gum. The Repeatable Battery for the Assessment of Neuropsychological Status was administered. Nicotine affected only the Attention Index; there were no effects on learning and memory, language, or visuospatial/constructional abilities. Attentional function was increased in nonsmokers, but decreased in nicotine-abstinent smokers after nicotine administration. The effects of nicotine in schizophrenia do not extend to all areas of cognition. Effects on attention may be severely limited by tachyphylaxis, such that decremented performance occurs in smokers, while modest effects may be achieved in nonsmokers. Copyright 2004 Nature Publishing Group

  18. Levetiracetam might act as an efficacious drug to attenuate cognitive deficits of Alzheimer's disease.

    PubMed

    Xiao, Rong

    2016-01-01

    Levetiracetam is a homologue of piracetam with an a-ethyl side-chain substitution and it is a Food and Drug Administration (FDA) approved antiepileptic drug. Recently, several studies have found that levetiracetam was able to reduce seizure frequency in epileptic seizures patients without affecting their cognitive functions. In the present review, the effects of levetiracetam on cognitive improvement were summarized in epileptic seizures patients with or without Alzheimer's disease (AD), high-grade glioma (HGG) patients and amnestic mild cognitive impairment (aMCI) patients. In addition, levetiracetam was observed to improve the cognitive deficits in normal aged animals and the transgenic animal models with AD, suggesting that levetiracetam may be a better choice for the prevention or treatment of AD.

  19. How culture shapes social cognition deficits in mental disorders: A review.

    PubMed

    Koelkebeck, Katja; Uwatoko, Teruhisa; Tanaka, Jiro; Kret, Mariska Esther

    2017-04-01

    Social cognitive skills are indispensable for successful communication with others. Substantial research has determined deficits in these abilities in patients with mental disorders. In neurobiological development and continuing into adulthood, cross-cultural differences in social cognition have been demonstrated. Moreover, symptomatic patterns in mental disorders may vary according to the cultural background of an individual. Cross-cultural studies can thus help in understanding underlying (biological) mechanisms and factors that influence behavior in health and disease. In addition, studies that apply novel paradigms assessing the impact of culture on cognition may benefit and advance neuroscience research. In this review, the authors give an overview of cross-cultural research in the field of social cognition in health and in mental disorders and provide an outlook on future research directions, taking a neuroscience perspective.

  20. Vagal Recovery From Cognitive Challenge Moderates Age-Related Deficits in Executive Functioning

    PubMed Central

    Crowley, Olga V.; Kimhy, David; McKinley, Paula S.; Burg, Matthew M.; Schwartz, Joseph E.; Lachman, Margie E.; Tun, Patricia A.; Ryff, Carol D.; Seeman, Teresa E.; Sloan, Richard P.

    2015-01-01

    Decline in executive functioning (EF) is a hallmark of cognitive aging. We have previously reported that faster vagal recovery from cognitive challenge is associated with better EF. This study examined the association between vagal recovery from cognitive challenge and age-related differences in EF among 817 participants in the Midlife in the U.S. study (aged 35–86). Cardiac vagal control was measured as high-frequency heart rate variability. Vagal recovery moderated the association between age and EF (β = .811, p = .004). Secondary analyses revealed that older participants (aged 65–86) with faster vagal recovery had superior EF compared to their peers who had slower vagal recovery. In contrast, among younger (aged 35–54) and middle-aged (aged 55–64) participants, vagal recovery was not associated with EF. We conclude that faster vagal recovery from cognitive challenge is associated with reduced deficits in EF among older, but not younger individuals. PMID:26303063

  1. Relationships between cognitive deficits, symptoms and quality of life in schizophrenia.

    PubMed

    Savilla, Kara; Kettler, Lisa; Galletly, Cherrie

    2008-06-01

    Schizophrenia is a complex disorder characterized by impairment in a number of domains, all of which contribute to disability. The aim of the present study was to investigate the relationships between cognitive function, symptoms and quality of life (QOL) in schizophrenia. This cross-sectional study measured cognition, positive and negative symptom severity, and quality of life (measured with the Quality of Life Scale) in 57 outpatients with schizophrenia. Correlations between the different measures were sought. Multiple regression analyses were used to develop models of the contributions of cognitive deficits and symptomatology to QOL. More severe positive and negative symptoms and cognitive impairment each correlated with poorer QOL. There was a moderate association between negative symptoms and cognition and a small association between positive symptoms and cognition. Age, gender, and drug and alcohol abuse did not significantly predict QOL. In the multiple regression analysis, entering the total cognition and total symptom scores produced a model that accounted for an additional 57% of the variance in QOL. Improving quality of life for people with schizophrenia requires that positive and negative symptoms and cognition are each addressed as separate domains of impairment. But, given that these account for only 57% of the variance in QOL, other factors such as unemployment, poverty, social isolation and stigma may also be important.

  2. Social Cognition Deficits and Psychopathic Traits in Young People Seeking Mental Health Treatment

    PubMed Central

    van Zwieten, Anita; Meyer, Johanna; Hermens, Daniel F.; Hickie, Ian B.; Hawes, David J.; Glozier, Nicholas; Naismith, Sharon L.; Scott, Elizabeth M.; Lee, Rico S. C.; Guastella, Adam J.

    2013-01-01

    Antisocial behaviours and psychopathic traits place an individual at risk for criminality, mental illness, substance dependence, and psychosocial dysfunction. Social cognition deficits appear to be associated with psychopathic traits and are believed to contribute to interpersonal dysfunction. Most research investigating the relationship of these traits with social cognition has been conducted either in children or adult forensic settings. We investigated whether psychopathic traits were associated with social cognition in 91 young people presenting for mental healthcare (aged between 15 and 25 years). Participants completed symptom severity measures, neuropsychological tests, the Reading the Mind in the Eyes Test of social cognition (RMET), and the Antisocial Process Screening Device (APSD) to assess psychopathic personality traits. Correlation analyses showed poorer social cognition was associated with greater psychopathic traits (r = −.36, p = .01). Interestingly, social cognition performance predicted unique variance in concurrent psychopathic personality traits above gender, IQ sustained attention, and working memory performance. These findings suggest that social cognitive impairments are associated with psychopathic tendencies in young people presenting for community mental healthcare. Research is needed to establish the directionality of this relationship and to determine whether social cognition training is an effective treatment amongst young people with psychopathic tendencies. PMID:23861799

  3. Resting fMRI measures are associated with cognitive deficits in schizophrenia assessed by the MATRICS consensus cognitive battery

    NASA Astrophysics Data System (ADS)

    He, Hao; Bustillo, Juan; Du, Yuhui; Yu, Qingbao; Jones, Thomas R.; Jiang, Tianzi; Calhoun, Vince D.; Sui, Jing

    2015-03-01

    The cognitive deficits of schizophrenia are largely resistant to current treatment, and are thus a life-long burden to patients. The MATRICS consensus cognitive battery (MCCB) provides a reliable and valid assessment of cognition across a comprehensive set of cognitive domains for schizophrenia. In resting-state fMRI, functional connectivity associated with MCCB has not yet been examined. In this paper, the interrelationships between MCCB and the abnormalities seen in two types of functional measures from resting-state fMRI—fractional amplitude of low frequency fluctuations (fALFF) and functional network connectivity (FNC) maps were investigated in data from 47 schizophrenia patients and 50 age-matched healthy controls. First, the fALFF maps were generated and decomposed by independent component analysis (ICA), and then the component showing the highest correlation with MCCB composite scores was selected. Second, the whole brain was separated into functional networks by group ICA, and the FNC maps were calculated. The FNC strengths with most significant correlations with MCCB were displayed and spatially overlapped with the fALFF component of interest. It demonstrated increased cognitive performance associated with higher fALFF values (intensity of regional spontaneous brain activity) in prefrontal regions, inferior parietal lobe (IPL) but lower ALFF values in thalamus, striatum, and superior temporal gyrus (STG). Interestingly, the FNC showing significant correlations with MCCB were in well agreement with the activated regions with highest z-values in fALFF component. Our results support the view that functional deficits in distributed cortico-striato-thalamic circuits and inferior parietal lobe may account for several aspects of cognitive impairment in schizophrenia.

  4. The allusive cognitive deficit in paranoia: the case for mental time travel or cognitive self-projection.

    PubMed

    Corcoran, R

    2010-08-01

    Delusional beliefs are characteristic of psychosis and, of the delusions, the paranoid delusion is the single most common type associated with psychosis. The many years of research focused on neurocognition in schizophrenia, using standardized neurocognitive tests, have failed to find conclusive cognitive deficits in relation to positive symptoms. However, UK-based psychological research has identified sociocognitive anomalies in relation to paranoid thinking in the form of theory of mind (ToM), causal reasoning and threat-related processing anomalies. Drawing from recent neuroscientific research on the default mode network, this paper asserts that the common theme running through the psychological tests that are sensitive to the cognitive impairment of paranoia is the need to cognitively project the self through time, referred to as mental time travel. Such an understanding of the cognitive roots of paranoid ideation provides a synthesis between psychological and biological accounts of psychosis while also retaining the powerful argument that understanding abnormal thinking must start with models of normal cognition. This is the core theme running through the cognitive psychological literature of psychiatric disorders that enables research from this area to inform psychological therapy.

  5. Central catecholamine metabolism in vivo and the cognitive and motor deficits in Parkinson's disease.

    PubMed Central

    Mann, J J; Stanley, M; Kaplan, R D; Sweeney, J; Neophytides, A

    1983-01-01

    Cerebrospinal fluid levels of homovanillic acid (HVA) in unmedicated patients with Parkinson's disease were 45% of levels in control subjects. Levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) and platelet monoamine oxidase activity (MAO) did not differ. Within the Parkinson's disease group platelet MAO B activity correlated with HVA (an MAO B substrate) but not MHPG (an MAO A substrate). A mild global dementia was found that did not correlate with the more severe motor deficit. There was a negative correlation between the motor deficit and HVA levels but not with MHPG. Cognitive functioning correlated positively with platelet MAO, and the ratio of HVA to MHPG levels and negatively with MHPG alone. It is postulated that dopaminergic and noradrenergic activity or the functional balance between these systems may contribute to the observed cognitive dysfunction. PMID:6644314

  6. GHB–Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor

    PubMed Central

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A.K

    2011-01-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex. PMID:21886597

  7. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome.

    PubMed

    Hethorn, Whitney R; Ciarlone, Stephanie L; Filonova, Irina; Rogers, Justin T; Aguirre, Daniela; Ramirez, Raquel A; Grieco, Joseph C; Peters, Melinda M; Gulick, Danielle; Anderson, Anne E; L Banko, Jessica; Lussier, April L; Weeber, Edwin J

    2015-05-01

    The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain.

  8. GHB-Induced Cognitive Deficits During Adolescence and the Role of NMDA Receptor.

    PubMed

    Sircar, R; Wu, L-C; Reddy, K; Sircar, D; Basak, A K

    2011-03-01

    We have earlier reported that γ-hydroxybutyric acid (GHB) disrupts the acquisition of spatial learning and memory in adolescent rats. GHB is known to interact with several neurotransmitter systems that have been implicated in cognitive functioning. The N-methyl-D-aspartate receptor (NR) -type of glutamate receptor is considered to be an important target for spatial learning and memory. Molecular mechanisms governing the neuroadptations following repeated GHB treatment in adolecent rats remain unknown. We examined the role of NMDA receptor in adolescent GHB-induced cognitive deficit. Adolescent rats were administered with GHB on 6 consecutive days, and surface-expressed NMDA receptor subunits levels were measured. GHB significantly decreased NR1 levels in the frontal cortex. Adolescent GHB also significantly reduced cortical NR2A subunit levels. Our findings support the hypothesis that adolescent GHB-induced cogntive deficits are associated with neuroadaptations in glutamatergic transmission, particulaly NR functioning in the frontal cortex.

  9. Dissociation between affective and cognitive empathy in alcoholism: a specific deficit for the emotional dimension.

    PubMed

    Maurage, Pierre; Grynberg, Delphine; Noël, Xavier; Joassin, Frédéric; Philippot, Pierre; Hanak, Catherine; Verbanck, Paul; Luminet, Olivier; de Timary, Philippe; Campanella, Salvatore

    2011-09-01

    Emotional impairments constitute a crucial and widely described dimension of alcoholism, but several affective abilities are still to be thoroughly explored among alcohol-dependent patients. This is particularly true for empathy, which constitutes an essential emotional competence for interpersonal relations and has been shown to be highly impaired in various psychiatric states. The present study aimed at exploring empathic abilities in alcoholism, and notably the hypothesis of a differential deficit between emotional and cognitive empathy. Empathy abilities were evaluated among 30 recently detoxified inpatients diagnosed with alcohol dependence and 30 paired healthy controls, using highly validated questionnaires (Interpersonal Reactivity Index [J Pers Soc Psychol44:113] and Empathy Quotient [J Autism Dev Disord34:163]). Correlational analyses were performed to evaluate the links between empathy scores and psychopathological measures (i.e., depression, anxiety, interpersonal problems, and alexithymia). When psychiatric comorbities are controlled for, alcoholism is not associated with a general empathy deficit, but rather with a dissociated pattern combining impaired emotional empathy and preserved cognitive one. Moreover, this emotional empathy deficit is not associated with depression or anxiety scores, but is negatively correlated with alexithymia and the severity of interpersonal problems. At the theoretical level, this first observation of a specific deficit for emotional empathy in alcoholism, combined with the exact inverse pattern observed in other psychiatric populations, leads to a double-dissociation, which supports the notion that emotional and cognitive empathy are 2 distinct abilities. At the clinical level, this deficit calls for considering emotional empathy rehabilitation as a crucial concern in psychotherapy. 2011 by the Research Society on Alcoholism.

  10. Cancer as a risk factor for long-term cognitive deficits and dementia.

    PubMed

    Heflin, Lara H; Meyerowitz, Beth E; Hall, Per; Lichtenstein, Paul; Johansson, Boo; Pedersen, Nancy L; Gatz, Margaret

    2005-06-01

    Previous studies have shown that cancer survivors frequently experience short-term cognitive deficits, but it is unknown how long these deficits last or whether they worsen over time. Using a co-twin control design, the cognitive function of 702 cancer survivors aged 65 years and older was compared with that of their cancer-free twins. Dementia rates were also compared in 486 of the twin pairs discordant for cancer. Cancer survivors overall, as well as individuals who had survived cancer for 5 or more years before cognitive testing, were more likely than their co-twins to have cognitive dysfunction (odds ratio [OR] = 2.10, 95% confidence interval [CI] = 1.36 to 3.24; P<.001; and OR = 2.71, 95% CI = 1.47 to 5.01; P<.001, respectively). Cancer survivors were also twice as likely to be diagnosed with dementia as their co-twins, but this odds ratio did not reach statistical significance (OR = 2.0, 95% CI = 0.86 to 4.67; P = .10). These results suggest that cancer patients are at increased risk for long-term cognitive dysfunction compared with individuals who have never had cancer, even after controlling for the influence of genetic factors and rearing environment.

  11. Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence

    PubMed Central

    2012-01-01

    Background This is an update of a previous meta-analysis published in 2005. Methods It includes the data published up to march 2010 for a total of 247 papers and 18,300 cases. Cognitive deficits are examined in 5 different domains: Memory functioning (128 studies), Global cognitive functioning (131 studies), Language (70 studies), Executive function (67 studies), Attention (76 studies). Only controlled studies were included: patients vs. normal subjects. Results Results evidence that in all domains and in all different analyses performed within each domain, patients show a significant reduction of cognitive efficiency with respect to normal subjects. The between studies heterogeneity is very high in almost all domains. There are various sources of this heterogeneity (age, sex, sample size, type of patients, and type of measurement) which contribute to the high degree of not-overlapping information offered by the single studies. Conclusions Our results, based on the current scientific evidence, confirm the previous findings that there is a generalized impairment of various cognitive functions in patients with schizophrenia when compared to normal cases. The modalities with which these results are obtained have not changed over the years and the more recent studies do not modify the high heterogeneity previously found between the studies. This reduces the methodological quality of the results. In order to improve the methodological quality of the studies performed in the field of cognitive deficits of patients with schizophrenia, various factors should be taken into account and better managed in designing future studies. PMID:22715980

  12. Self-perceived cognitive deficits and their relationship with internalized stigma and quality of life in patients with schizophrenia.

    PubMed

    Shin, Yeon-Jeong; Joo, Yo-Han; Kim, Jong-Hoon

    2016-01-01

    We investigated self-perceived cognitive deficits and their relationship with internalized stigma and quality of life in patients with schizophrenia in order to shed light on the clinical correlates of subjective cognitive deficits in schizophrenia. Seventy outpatients with schizophrenia were evaluated. Patients' self-perceived cognitive deficits, internalized stigma, and subjective quality of life were assessed using the Scale to Investigate Cognition in Schizophrenia (SSTICS), the Internalized Stigma of Mental Illness Scale (ISMI), and the Schizophrenia Quality of Life Scale Revision 4 (SQLS-R4), respectively. Correlation and regression analyses controlling for the severity of symptoms of schizophrenia were performed, and a mediation analysis was conducted to examine the hypothesis that internalized stigma mediates the relationship between self-perceived cognitive deficits and subjective quality of life. Pearson's partial correlation analysis showed significant correlations among the SSTICS, ISMI, and SQLS-R4 scores (P<0.01). Multiple regression analysis showed that the SSTICS and ISMI scores significantly predicted the SQLS-R4 score (P<0.01). Mediation analysis revealed that the strength of the association between the SSTICS and SQLS-R4 scores decreased from β=0.74 (P<0.01) to β=0.56 (P<0.01), when the ISMI score was statistically controlled. The Sobel test revealed that this difference was significant (P<0.01), indicating that internalized stigma partially mediated the relationship between self-perceived cognitive deficits and quality of life. The present study indicates that self-perceived cognitive deficits are significantly associated with internalized stigma and quality of life. Furthermore, internalized stigma was identified as a partial mediator of the relationship between self-perceived cognitive deficits and quality of life. These findings suggest that clinicians should be aware that patients with schizophrenia experience significantly greater self

  13. Self-perceived cognitive deficits and their relationship with internalized stigma and quality of life in patients with schizophrenia

    PubMed Central

    Shin, Yeon-Jeong; Joo, Yo-Han; Kim, Jong-Hoon

    2016-01-01

    Background We investigated self-perceived cognitive deficits and their relationship with internalized stigma and quality of life in patients with schizophrenia in order to shed light on the clinical correlates of subjective cognitive deficits in schizophrenia. Methods Seventy outpatients with schizophrenia were evaluated. Patients’ self-perceived cognitive deficits, internalized stigma, and subjective quality of life were assessed using the Scale to Investigate Cognition in Schizophrenia (SSTICS), the Internalized Stigma of Mental Illness Scale (ISMI), and the Schizophrenia Quality of Life Scale Revision 4 (SQLS-R4), respectively. Correlation and regression analyses controlling for the severity of symptoms of schizophrenia were performed, and a mediation analysis was conducted to examine the hypothesis that internalized stigma mediates the relationship between self-perceived cognitive deficits and subjective quality of life. Results Pearson’s partial correlation analysis showed significant correlations among the SSTICS, ISMI, and SQLS-R4 scores (P<0.01). Multiple regression analysis showed that the SSTICS and ISMI scores significantly predicted the SQLS-R4 score (P<0.01). Mediation analysis revealed that the strength of the association between the SSTICS and SQLS-R4 scores decreased from β=0.74 (P<0.01) to β=0.56 (P<0.01), when the ISMI score was statistically controlled. The Sobel test revealed that this difference was significant (P<0.01), indicating that internalized stigma partially mediated the relationship between self-perceived cognitive deficits and quality of life. Conclusion The present study indicates that self-perceived cognitive deficits are significantly associated with internalized stigma and quality of life. Furthermore, internalized stigma was identified as a partial mediator of the relationship between self-perceived cognitive deficits and quality of life. These findings suggest that clinicians should be aware that patients with

  14. Screening for cognitive deficits after stroke: a comparison of three screening tools.

    PubMed

    Nøkleby, Kjersti; Boland, Erik; Bergersen, Hilde; Schanke, Anne-Kristine; Farner, Lasse; Wagle, Jørgen; Wyller, Torgeir Bruun

    2008-12-01

    To assess the concurrent validity of three screening tests for focal cognitive impairments after stroke. Comparison of results from the screening tests with those from a more comprehensive neuropsychological battery. Stroke rehabilitation wards of a general hospital and a rehabilitation hospital. Forty-nine stroke patients (25-91 years, 35% women). Screening tests were the Cognistat, the Screening Instrument for Neuropsychological Impairments in Stroke (SINS) and the Clock Drawing Test. Health professionals, blind to the results of the reference method, did the screening. Reference method was a neuropsychological assessment based on the Norwegian Basic Neuropsychological Assessment, classifying the patients as ;impaired' or ;not impaired' within the following cognitive domains: language, visuospatial function, attention and neglect, apraxia, speed in unaffected arm, and memory. The best sensitivity (95% confidence interval) was achieved for language problems by Cognistat, naming (80%, 44-98); for visuospatial dysfunction, attention deficits and reduced speed, all by SINS visuocognitive (82%, 60-95, 72%, 39-94, and 78%, 56-93, respectively); and for memory problems by Cognistat memory (69%, 52-87). The data were insufficient to assess any subtest for apraxia. Sensitivity in detecting deficits in any domain was 82% (71-94) for the Cognistat composite score, 71% (57-85) for the SINS composite score, and 63% (49-78) for the most sensitive score of the Clock Drawing Test. The Cognistat and the SINS may be used as screening instruments for cognitive deficits after stroke, but cannot replace a neuropsychological assessment. The Clock Drawing Test added little to the detection of cognitive deficits.

  15. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    PubMed

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  16. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells

    PubMed Central

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer’s disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1–42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1–42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1–42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways. PMID:27035824

  17. Molecular signatures associated with cognitive deficits in schizophrenia: a study of biopsied olfactory neural epithelium

    PubMed Central

    Horiuchi, Y; Kondo, M A; Okada, K; Takayanagi, Y; Tanaka, T; Ho, T; Varvaris, M; Tajinda, K; Hiyama, H; Ni, K; Colantuoni, C; Schretlen, D; Cascella, N G; Pevsner, J; Ishizuka, K; Sawa, A

    2016-01-01

    Cognitive impairment is a key feature of schizophrenia (SZ) and determines functional outcome. Nonetheless, molecular signatures in neuronal tissues that associate with deficits are not well understood. We conducted nasal biopsy to obtain olfactory epithelium from patients with SZ and control subjects. The neural layers from the biopsied epithelium were enriched by laser-captured microdissection. We then performed an unbiased microarray expression study and implemented a systematic neuropsychological assessment on the same participants. The differentially regulated genes in SZ were further filtered based on correlation with neuropsychological traits. This strategy identified the SMAD 5 gene, and real-time quantitative PCR analysis also supports downregulation of the SMAD pathway in SZ. The SMAD pathway has been important in multiple tissues, including the role for neurodevelopment and bone formation. Here the involvement of the pathway in adult brain function is suggested. This exploratory study establishes a strategy to better identify neuronal molecular signatures that are potentially associated with mental illness and cognitive deficits. We propose that the SMAD pathway may be a novel target in addressing cognitive deficit of SZ in future studies. PMID:27727244

  18. Blast traumatic brain injury induced cognitive deficits are attenuated by pre- or post-injury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4

    PubMed Central

    Tweedie, David; Rachmany, Lital; Rubovitch, Vardit; Li, Yazhou; Holloway, Harold W.; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Hoffer, Barry J.; Pick, Chaim G.; Greig, Nigel H.

    2015-01-01

    Background Blast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Methods Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. Results B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7–14 and attenuated genes regulated by blast at day 14 post-injury. Conclusions The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life. PMID:26327236

  19. The cognitive-energetic model: an empirical approach to attention-deficit hyperactivity disorder.

    PubMed

    Sergeant, J

    2000-01-01

    Attention Deficit/Hyperactivity Disorder (ADHD) is a childhood psychiatric disorder which when carefully defined, affects around 1% of the childhood population [Swanson JM, Sergeant JA, Taylor E, Sonuga-Barke EJS, Jensen PS, Canwell DP. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998;351:429-433]. The primary symptoms: distractibility, impulsivity and overactivity vary in degree and association in such children, which led DSM IV to propose three subgroups. Only one of these subgroups, the combined subtype: deficits in all three areas, meets the ICD-10 criteria. Since the other two subtypes are used extensively in North America (but not in Europe), widely different results between centres are to be expected and have been reported. Central to the ADHD syndrome is the idea of an attention deficit. In order to investigate attention, it is necessary to define what one means by this term and to operationalize it in such a manner that others can test and replicate findings. We have advocated the use of a cognitive-energetic model [Sanders, AF. Towards a model of stress and performance. Acta Psychologica 1983;53: 61-97]. The cognitive-energetic model of ADHD approaches the ADHD deficiency at three distinct levels. First, a lower set of cognitive processes: encoding, central processing and response organisation is postulated. Study of these processes has indicated that there are no deficits of processing at encoding or central processing but are present in motor organisation [Sergeant JA, van der Meere JJ. Convergence of approaches in localizing the hyperactivity deficit. In Lahey BB, Kazdin AE, editors. Advancements in clinical child psychology, vol. 13. New York: Plenum press, 1990. p. 207-45; Sergeant, JA, van der Meere JJ. Additive factor methodology applied to psychopathology with special reference to hyperactivity. Acta Psychologica 1990;74:277-295]. A second level of the cognitive-energetic model consists of the energetic pools

  20. Association of Social Frailty With Both Cognitive and Physical Deficits Among Older People.

    PubMed

    Tsutsumimoto, Kota; Doi, Takehiko; Makizako, Hyuma; Hotta, Ryo; Nakakubo, Sho; Makino, Keitaro; Suzuki, Takao; Shimada, Hiroyuki

    2017-07-01

    Our objective was to investigate the association between social frailty and cognitive and physical function among older adults. This was a cross-sectional study. We examined community-dwelling adults in Japan. Participants comprised 4425 older Japanese people from the National Center for Geriatrics and Gerontology-Study of Geriatric Syndromes. Social frailty was defined by using responses to 5 questions (going out less frequently, rarely visiting friends, feeling unhelpful to friends or family, living alone, and not talking with someone every day). Participants showing none of these components were considered nonfrail; those showing 1 component were considered prefrail; and those showing 2 or more components were considered frail. To screen for cognitive deficits, we assessed memory, attention, executive function, and processing speed. Having 2 or more tests with age-adjusted scores of at least 1.5 standard deviations below the reference threshold was sufficient to be characterized as cognitively deficient. To screen for physical function deficits, we assessed walking speed (<1.0 m/s cut-off) and grip strength (<26 kg for men; <18 kg for women cut-off). Scoring below the cut-off point on 1 or more tests was sufficient to be characterized as physically deficient. The prevalence of social frailty was the following: nonfrailty, 64.1% (N = 2835); social prefrailty, 24.8% (N = 1097); social frailty, 11.1% (N = 493; P for trend < .001). All cognitive function tests (word list memory, Trail Making Test parts A and B, and the symbol digit-substitution task) significantly varied between social frailty groups; physical function (gait speed and grip strength) also varied between social frailty groups (all Ps for trend <.001). Referred to social nonfrailty, social frailty was independently associated with each cognitive deficit (odds ratio = 1.61, 95% confidence interval 1.13-2.30) and deficits in physical function (odds ratio = 1.99, 95% confidence interval 1

  1. Dopamine Appetite and Cognitive Impairment in Attention Deficit/Hyperactivity Disorder

    PubMed Central

    Williams, Jonathan; Taylor, Eric

    2004-01-01

    The underlying defects in ADHD (Attention Deficit/Hyperactivity Disorder) are not yet clear. The current paper tests three existing theories: State Regulation, Cognitive Deficit, and Temporal Difference (TD) learning. We present computational simulations of the Matching Familiar Figures Task and compare these with the experimental results reported by Sonuga- Barke (2002). The TD model contains four parameters: the learning rate, discounting for future rewards, brittleness (randomness) of behavior, and action bias. The results show that the basic TD model accounts well for control performance in trials of 5 sec, 10 sec, and 15 sec duration; but not for the deficits in ADHD performance at 5 sec and 15 sec. Extending the TD model to incorporate either a state regulation deficit, or working memory deficit and delay in starting trials, can provide a good account of both control and ADHD results, at all trial-lengths. We discuss the significance of the results for theories of ADHD and make suggestions for future experimentation. PMID:15303309

  2. Cognitive Deficits, Changes in Synaptic Function, and Brain Pathology in a Mouse Model of Normal Aging

    PubMed Central

    Wu, Tiffany; Hanson, Jesse E.; Alam, Nazia M.; Ngu, Hai; Lauffer, Benjamin E.; Lin, Han H.; Dominguez, Sara L.; Reeder, Jens; Tom, Jennifer; Steiner, Pascal; Foreman, Oded; Prusky, Glen T.

    2015-01-01

    Abstract Age is the main risk factor for sporadic Alzheimer’s disease. Yet, cognitive decline in aged rodents has been less well studied, possibly due to concomitant changes in sensory or locomotor function that can complicate cognitive tests. We tested mice that were 3, 11, and 23 months old in cognitive, sensory, and motor measures, and postmortem measures of gliosis and neural activity (c-Fos). Hippocampal synaptic function was also examined. While age-related impairments were detectable in tests of spatial memory, greater age-dependent effects were observed in tests of associative learning [active avoidance (AA)]. Gross visual function was largely normal, but startle responses to acoustic stimuli decreased with increased age, possibly due to hearing impairments. Therefore, a novel AA variant in which light alone served as the conditioning stimuli was used. Age-related deficits were again observed. Mild changes in vision, as measured by optokinetic responses, were detected in 19- versus 4-month-old mice, but these were not correlated to AA performance. Thus, deficits in hearing or vision are unlikely to account for the observed deficits in cognitive measures. Increased gliosis was observed in the hippocampal formation at older ages. Age-related changes in neural function and plasticity were observed with decreased c-Fos in the dentate gyrus, and decreased synaptic strength and paired-pulse facilitation in CA1 slices. This work, which carefully outlines age-dependent impairments in cognitive and synaptic function, c-Fos activity, and gliosis during normal aging in the mouse, suggests robust translational measures that will facilitate further study of the biology of aging. PMID:26473169

  3. A Low Vision Rehabilitation Program for Patients with Mild Cognitive Deficits

    PubMed Central

    Whitson, Heather E.; Whitaker, Diane; Potter, Guy; McConnell, Eleanor; Tripp, Fay; Sanders, Linda L.; Muir, Kelly W.; Cohen, Harvey J.; Cousins, Scott W.

    2012-01-01

    Objective To design and pilot test a low vision rehabilitation program for patients with macular disease and cognitive deficits. Methods The Memory or Reasoning Enhanced Low Vision Rehabilitation (MORE-LVR) program was created by a team representing optometry, occupational therapy, ophthalmology, neuropsychology, and geriatrics. Key components of MORE-LVR are: 1) repetitive training with a therapist twice weekly over a 6-week period, 2) simplified training experience addressing no more than three individualized goals in a minimally distracting environment, 3) involvement of an informal companion (friend or family member). Eligible patients were recruited from an LVR clinic; measures were compared before and after the 6 week program. Results Twelve non-demented patients (mean age 84.5 years, 75% female) who screened positive for cognitive deficits completed the MORE-LVR intervention. Participants demonstrated improved scores on the National Eye Institute’s Visual Function Questionnaire (VFQ-25) composite score (47.2±16.3 to 54.8±13.8, p=0.01) and near activities score (21.5±14.0 to 41.0±23.1, p=0.02), timed performance measures (writing a grocery list [p=0.03], filling in a crossword puzzle answer [p=0.003]), a score indicating satisfaction with independence (p=0.05), and logical memory (p=0.02). All patients and companions reported progress toward at least one individualized goal; >70% reported progress toward all three goals. Conclusions This pilot study demonstrates feasibility of an LVR program for macular disease patients with mild cognitive deficits. Participants demonstrated improvements in vision-related function and cognitive measures and expressed high satisfaction. Future work is needed to determine if MORE-LVR is superior to usual outpatient LVR for persons with co-existing visual and cognitive impairments. PMID:23619914

  4. Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder.

    PubMed

    Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Clerkin, Suzanne M; Dima, Danai; Newcorn, Jeffrey H; Halperin, Jeffrey M

    2014-01-01

    Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD.

  5. The cognitive genetics of attention deficit hyperactivity disorder (ADHD): sustained attention as a candidate phenotype.

    PubMed

    Bellgrove, Mark A; Hawi, Ziarih; Gill, Michael; Robertson, Ian H

    2006-08-01

    Here we describe the application of cognitive genetics to the study of attention deficit hyperactivity disorder (ADHD). Cognitive genetics owes much to the pioneering work of cognitive neuropsychologists such as John Marshall, whose careful observations of cognitive dissociations between brain-lesioned patients greatly advanced the theoretical understanding of normal cognitive function. These theories have in turn helped to constrain linkages between candidate genes and cognitive processes and thus help to drive the relatively new field of cognitive genetics in a hypothesis-driven fashion. We examined the relationship between sustained attention deficits in ADHD and genetic variation in a catecholamine-related gene, dopamine beta hydroxylase (DbetaH). DBH encodes the enzyme that converts dopamine to noradrenaline and is crucial to catecholamine regulation. A polymorphism with the DBH gene has been associated with ADHD. In fifty-two children with ADHD, we examined whether variation in the Taq I DBH gene polymorphism was related to sustained attention performance. Participants performed the Sustained Attention to Response Test (SART). Performance on the SART discriminates ADHD from control children, and in imaging work, is associated with right frontoparietal activation. A significant effect of DBH genotype was found on SART performance measures. Children possessing two copies of the ADHD-associated risk allele (A2) had significantly poorer sustained attention than those ADHD children who did not possess this allele or a non-genotyped control group. The DBH gene may contribute to the susceptibility for ADHD, in part because of its varying effects on the development of brain mechanisms mediating sustained attention.

  6. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by D-galactose.

    PubMed

    Gong, Yu-Shi; Guo, Juan; Hu, Kun; Gao, Yong-Qing; Xie, Bi-Jun; Sun, Zhi-Da; Yang, Er-Ning; Hou, Fang-Li

    2016-02-01

    This study mainly investigated the ameliorative effect of lotus seedpod proanthocyanidins (LSPC) and the mechanism underlying such effect on cognitive impairment and brain aging induced by d-galactose. Aging mice induced by d-galactose (150 mg/kg, sc injection daily for 6 weeks) were chosen for the experiment. LSPCs (30, 60, and 90 mg/kg, ig) were provided after d-galactose injection. Learning and memory functions were detected by Y-maze and step-down avoidance tests. Then, some biochemical indexes related to cognitive ability and aging were measured. Histopathological feature and P53 protein expression in the hippocampus were observed. Results showed that the three different doses of LSPC could significantly ameliorate the learning and memory abilities impaired by d-galactose. LSPC significantly reduced the levels of malondialdehyde and nitric oxide (i.e. 90 mg/kg LSPC group vs. model group, P=0.008), reduced the content of β-amyloid peptide 1-42 (i.e. 90 mg/kg LSPC group vs. model group, P=0.009), decreased the activities of acetylcholinesterase, monoamine oxidase B, total nitric oxide synthase (i.e. 90 mg/kg LSPC group vs. model group, P=0.006), and neuronal nitric oxide synthase and synchronously increased the activities of superoxide dismutase and glutathione peroxidase in the brain. Furthermore, LSPC could prevent neuron damage and could lessen the expression of P53 protein in the hippocampus. These findings demonstrated that LSPC effectively attenuated cognitive damage and improved parameters related to brain aging in senescent mice induced by d-galactose, and may be used to treat Alzheimer's disease.

  7. Novel Therapeutic Approaches for the Treatment of Depression and Cognitive Deficits in a Rodent Model of Gulf War Veterans Illness

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0478 TITLE: Novel Therapeutic Approaches for the Treatment of Depression and Cognitive Deficits in a Rodent Model...the Treatment of Depression and Cognitive Deficits in a Rodent Model of Gulf War Veterans’ Illness 5b. GRANT NUMBER W81XWH-14-1-0478 5c...of GWI neurological symptoms and screen effective treatment of GWIs. 15. SUBJECT TERMS Gulf War Illness, Organophosphate, diisopropyl fluorophosphate

  8. Performances on a cognitive theory of mind task: specific decline or general cognitive deficits? Evidence from normal aging.

    PubMed

    Fliss, Rafika; Lemerre, Marion; Mollard, Audrey

    2016-06-01

    Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed.

  9. Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury.

    PubMed

    Wecht, Jill M; Bauman, William A

    2013-03-01

    Spinal cord injury (SCI) results in motor and sensory impairments that can be identified with the American Spinal Injury Association (ASIA) Impairment Scale (AIS). Although, SCI may disrupt autonomic neural transmission, less is understood regarding the clinical impact of decentralized autonomic control. Cardiovascular regulation may be altered following SCI and the degree of impairment may or may not relate to the level of AIS injury classification. In general, persons with lesions above T1 present with bradycardia, hypotension, and orthostatic hypotension; functional changes which may interfere with rehabilitation efforts. Although many individuals with SCI above T1 remain overtly asymptomatic to hypotension, we have documented deficits in memory and attention processing speed in hypotensive individuals with SCI compared to a normotensive SCI cohort. Reduced resting cerebral blood flow (CBF) and diminished CBF responses to cognitive testing relate to test performance in hypotensive non-SCI, and preliminary evidence suggests a similar association in individuals with SCI. Persons with paraplegia below T7 generally present with a normal cardiovascular profile; however, our group and others have documented persistently elevated heart rate and increased arterial stiffness. In the non-SCI literature there is evidence supporting a link between increased arterial stiffness and cognitive deficits. Preliminary evidence suggests increased incidence of cognitive impairment in individuals with paraplegia, which we believe may relate to adverse cardiovascular changes. This report reviews relevant literature and discusses findings related to the possible association between decentralized cardiovascular autonomic control and cognitive dysfunction in persons with SCI.

  10. [Neuropsychological aspects of delusional disorders. Characteristic attributional style or cognitive deficit?].

    PubMed

    Bömmer, I; Brüne, M

    2007-07-01

    "Pure" delusional disorders are clinically rare, and the neuropsychology of such disorders is poorly understood. Whereas "deficit" models suggest a cognitive impairment accounting for the incorrigible fixation of false beliefs, cognitive models propose the existence of a characteristic attributional style in patients to stabilise a fragile self. The cognitive flexibility and attributional style of 21 patients diagnosed with delusional disorder according to ICD-10 were compared with a group of healthy controls paralleled for age, sex, education, and intelligence. Patients with delusional disorders made more errors and more perseverative errors in the Wisconsin Card Sorting Test compared with controls. However, these differences were only significant in patients with a comorbid depression. In contrast to earlier studies, patients with delusional disorders did not attribute negative events to external or personal causes more often than healthy controls, but partly tended to show a depressive attributional style. Our results do not support either a cognitive deficit in patients with delusional disorders or a characteristic attributional style. In terms of treatment recommendations, a thorough diagnosis of comorbid depressive disorders in patients with delusional disorders is warranted.

  11. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    PubMed

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children.

  13. Effects of injury severity and cognitive exaggeration on olfactory deficits in head injury compensation claims.

    PubMed

    Green, P; Iverson, G L

    2001-01-01

    The purpose of this study was to examine the relationship between exaggeration and scores on a test of olfactory discrimination in patients being assessed in connection with a claim for financial benefits. Participants were 448 patients referred to a private practice in Edmonton, Alberta, Canada for psychological or neuropsychological assessment, related to evaluation of impairment and disability resulting from a work-related or non-work related accident. All patients were involved in some form of compensation claim at the time of their evaluation. All patients completed two tests designed to detect exaggerated cognitive deficits, the Computerized Assessment of Response Bias (CARB) and the Word Memory Test (WMT) as part of their evaluation. The diagnostic groups included 322 head injury cases, varying from very minor to very severe. Normative data for the smell test were derived from 126 patients with orthopedic injuries who passed both the CARB and the WMT. Patients with more severe traumatic brain injuries were 10-12 times more likely to have olfactory deficits than persons with trivial to mild head injuries. In a subgroup of patients who failed either the CARB or the WMT, there was no relationship between injury severity and total scores on the smell test. Therefore, the dose-response relationship between brain injury severity and olfactory deficits is severely attenuated when patients who are probably exaggerating their cognitive deficits are included in the analyses. Those patients with trivial to mild head injuries who demonstrated adequate effort on both the CARB and the WMT were no more likely to show olfactory deficits than the non-head-injured orthopedic control subjects. Therefore, anosmia following mild traumatic brain injury should not be concluded from self-reports or from tests of smell unless tests of effort have been passed. Effort should also be controlled in group studies of olfaction.

  14. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer’s Disease-Like Models

    PubMed Central

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-01-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  15. Overstimulation of newborn mice leads to behavioral differences and deficits in cognitive performance

    PubMed Central

    Christakis, D. A.; Ramirez, J. S. B.; Ramirez, J. M.

    2012-01-01

    Observational studies in humans have found associations between overstimulation in infancy via excessive television viewing and subsequent deficits in cognition and attention. We developed and tested a mouse model of overstimulation whereby p10 mice were subjected to audio (70 db) and visual stimulation (flashing lights) for six hours per day for a total of 42 days. 10 days later cognition and behavior were tested using the following tests: Light Dark Latency, Elevated Plus Maze, Novel Object Recognition, and Barnes Maze. In all tests, overstimulated mice performed significantly worse compared to controls suggesting increased activity and risk taking, diminished short term memory, and decreased cognitive function. These findings suggest that excessive non-normative stimulation during critical periods of brain development can have demonstrable untoward effects on subsequent neurocognitive function. PMID:22855702

  16. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats.

    PubMed

    Hashimoto, Michio; Tanabe, Yoko; Fujii, Yoshimi; Kikuta, Toshihiko; Shibata, Hitoshi; Shido, Osamu

    2005-03-01

    We investigated whether administration of docosahexaenoic acid (DHA), a major (n-3) fatty acid of the brain, ameliorates the impairment of learning ability in an animal model of Alzheimer's disease (AD), rats infused with amyloid-beta (Abeta) peptide (1-40) into the cerebral ventricle. Inbred 3rd generation male rats (20 wk old) fed a fish oil-deficient diet were randomly divided into 4 groups: a vehicle group, an Abeta peptide-infused group (Abeta group), a DHA group, and an Abeta + DHA group. A mini-osmotic pump filled with Abeta peptide or vehicle was implanted in the rats, and they were tested for learning ability-related reference and working memory in an 8-arm radial maze. The rats were then orally fed DHA dissolved in 5% gum Arabic solution at 300 mg/(kg . d) (DHA and Abeta + DHA groups) or vehicle alone (vehicle and Abeta groups) and tested again for learning ability. DHA administered for 12 wk significantly reduced the increase in the number of reference and working memory errors in the Abeta-infused rats, and increased both the cortico-hippocampal level of DHA and the molar ratio of DHA/arachidonic acid, suggesting an amelioration of the impaired spatial cognition learning ability. Furthermore, DHA suppressed the increases in the levels of lipid peroxide and reactive oxygen species in the cerebral cortex and the hippocampus of Abeta-infused rats, suggesting that DHA increases antioxidative defenses. DHA is thus a possible therapeutic agent for ameliorating learning deficiencies due to Alzheimer's disease.

  17. Gamma deficits as a neural signature of cognitive impairment in children treated for brain tumors.

    PubMed

    Dockstader, Colleen; Wang, Frank; Bouffet, Eric; Mabbott, Donald J

    2014-06-25

    Cognitive impairment is consistently reported in children treated for brain tumors, particularly in the categories of processing speed, memory, and attention. Although tumor site, hydrocephalus, chemotherapy, and cranial radiation therapy (CRT) are all associated with poorer function, CRT predicts the greatest deficits. There is a particularly high correlation between CRT and slowed information-processing speed. Cortical gamma-band oscillations have been associated with processing behaviorally relevant information; however, their role in the maintenance of cognition in individuals with processing deficits is unclear. We examined gamma oscillations using magnetoencephalography (MEG) in children undergoing CRT to test whether gamma characteristics can be a signature of cognitive impairment in this population. We collected resting-state data as well as data from baseline and active periods during two visual-motor reaction time tasks of varying cognitive loads from 18 healthy children and 20 patients. We found that only high-gamma oscillations (60-100 Hz), and not low-gamma oscillations (30-59 Hz), showed significant group differences in absolute power levels. Overall, compared with healthy children, patients showed the following: (1) lower total high-gamma (60-100 Hz) power during the resting state, as well as during task-related baseline and performance measures; (2) no change in gamma reactivity to increases in cognitive load; and (3) slower processing speeds both inside and outside MEG. Our findings show that high-gamma oscillations are disrupted in children after treatment for a brain tumor. The temporal dynamic of the high-gamma response during information processing may index cognitive impairment in humans with neurological injury.

  18. Prevention, Rehabilitation, and Mitigation Strategies of Cognitive Deficits in Aging with HIV: Implications for Practice and Research

    PubMed Central

    Vance, David E.

    2013-01-01

    Highly active antiretroviral therapy has given the chance to those living with HIV to keep on living, allowing them the opportunity to age and perhaps age successfully. Yet, there are severe challenges to successful aging with HIV, one of which is cognitive deficits. Nearly half of those with HIV experience cognitive deficits that can interfere with everyday functioning, medical decision making, and quality of life. Given that cognitive deficits develop with more frequency and intensity with increasing age, concerns mount that as people age with HIV, they may experience more severe cognitive deficits. These concerns become especially germane given that by 2015, 50% of those with HIV will be 50 and older, and this older cohort of adults is expected to grow. As such, this paper focuses on the etiologies of such cognitive deficits within the context of cognitive reserve and neuroplasticity. From this, evidence-based and hypothetical prevention (i.e., cognitive prescriptions), rehabilitation (i.e., speed of processing training), and mitigation (i.e., spaced retrieval method) strategies are reviewed. Implications for nursing practice and research are posited. PMID:23431469

  19. Cognitive deficit and mental health in homeless transition-age youth.

    PubMed

    Saperstein, Alice M; Lee, Seonjoo; Ronan, Elizabeth J; Seeman, Rachael S; Medalia, Alice

    2014-07-01

    There is increasing recognition of the cognitive consequences of socioeconomic adversity during childhood, which can impair learning and negatively affect social and emotional development. However, there is a paucity of research on cognitive functioning and mental health among transition-age homeless youth. This study aimed to address this knowledge gap by examining the prevalence and functional significance of cognitive impairment and mental health disorders in a sample of 18- to 22-year-old homeless youth. Participants (N = 73) were recruited from a vocational support program at Covenant House New York, a care agency for homeless youth. Assessments included diagnostic assessment for mental health disorders and evaluation of neurocognition and vocational outcomes. Youth demonstrated histories of academic instability, academic achievement below expectation, and high rates of untreated psychiatric disorders, the most prominent of which were anxiety, substance use, and mood disorders. Of those who had a mental health diagnosis, more than half demonstrated cognitive deficits. Performance on measures of working memory and verbal memory was <70% of that of the age-matched normative population. Cognitive impairment was associated with a significant risk for making a wage insufficient for independent living. These data confirm the need to focus on cognitive as well as emotional and physical health in transition-age youth. Comprehensive intervention at this later developmental stage has the potential to facilitate the acquisition of skills needed for academic, vocational, and independent living success in adulthood. Copyright © 2014 by the American Academy of Pediatrics.

  20. Mount Everest: a space analogue for speech monitoring of cognitive deficits and stress.

    PubMed

    Lieberman, Philip; Morey, Angie; Hochstadt, Jesse; Larson, Mara; Mather, Sandra

    2005-06-01

    In deep-space missions, the basal ganglia and hippocampus, subcortical structures of the brain that play critical roles in motor activity, cognition, and memory, will be vulnerable to damage from cosmic rays. These metabolically active structures are also sensitive to damage arising from the low oxygen content of air at extreme altitudes. We have, therefore, used Mount Everest as an analogue for deep space, where astronauts will be subject to danger and stress as well as neural damage. We can ethically obtain data because our climber-subjects already intend to climb Mt. Everest. We record speech and test cognitive and linguistic performance before, during, and after exposure to hypoxic conditions. From these data we have derived and validated computer-implemented acoustic voice measures that track slight as well as profound cognitive impairment. Vowel duration and speech motor sequencing errors increase as climbers ascend, reflecting degraded basal ganglia activity. These metrics detect deficits in language comprehension and the ability to change plans in changing circumstances. Preliminary analyses also reveal memory deficits reflecting hippocampal damage. Our speech metrics are unobtrusive and do not reveal the content of a verbal message; they could be derived automatically, allowing space crews to detect subtle motor and cognitive deficits and invoke countermeasures before performance is profoundly impaired. In future work we will be validating the voice metrics of stress in collaboration with the Dinges NSBRI laboratory study of task-induced stress. Our procedures can also be applied in general aviation and in the treatment of Parkinson's disease, Alzheimer's dementia, and other neurological disorders.

  1. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer’s Disease

    PubMed Central

    Lee, Kihwan; Kim, Hyunju; An, Kyongman; Kwon, Oh-Bin; Park, Sungjun; Cha, Jin Hee; Kim, Myoung-Hwan; Lee, Yoontae; Kim, Joung-Hun; Cho, Kwangwook; Kim, Hye-Sun

    2016-01-01

    MicroRNAs have emerged as key factors in development, neurogenesis and synaptic functions in the central nervous system. In the present study, we investigated a pathophysiological significance of microRNA-188-5p (miR-188-5p) in Alzheimer’s disease (AD). We found that oligomeric Aβ1-42 treatment diminished miR-188-5p expression in primary hippocampal neuron cultures and that miR-188-5p rescued the Aβ1-42-mediated synapse elimination and synaptic dysfunctions. Moreover, the impairments in cognitive function and synaptic transmission observed in 7-month-old five familial AD (5XFAD) transgenic mice, were ameliorated via viral-mediated expression of miR-188-5p. miR-188-5p expression was down-regulated in the brain tissues from AD patients and 5XFAD mice. The addition of miR-188-5p rescued the reduction in dendritic spine density in the primary hippocampal neurons treated with oligomeric Aβ1-42 and cultured from 5XFAD mice. The reduction in the frequency of mEPSCs was also restored by addition of miR-188-5p. The impairments in basal fEPSPs and cognition observed in 7-month-old 5XFAD mice were ameliorated via the viral-mediated expression of miR-188-5p in the hippocampus. Furthermore, we found that miR-188 expression is CREB-dependent. Taken together, our results suggest that dysregulation of miR-188-5p expression contributes to the pathogenesis of AD by inducing synaptic dysfunction and cognitive deficits associated with Aβ-mediated pathophysiology in the disease. PMID:27708404

  2. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer's Disease.

    PubMed

    Lee, Kihwan; Kim, Hyunju; An, Kyongman; Kwon, Oh-Bin; Park, Sungjun; Cha, Jin Hee; Kim, Myoung-Hwan; Lee, Yoontae; Kim, Joung-Hun; Cho, Kwangwook; Kim, Hye-Sun

    2016-10-06

    MicroRNAs have emerged as key factors in development, neurogenesis and synaptic functions in the central nervous system. In the present study, we investigated a pathophysiological significance of microRNA-188-5p (miR-188-5p) in Alzheimer's disease (AD). We found that oligomeric Aβ1-42 treatment diminished miR-188-5p expression in primary hippocampal neuron cultures and that miR-188-5p rescued the Aβ1-42-mediated synapse elimination and synaptic dysfunctions. Moreover, the impairments in cognitive function and synaptic transmission observed in 7-month-old five familial AD (5XFAD) transgenic mice, were ameliorated via viral-mediated expression of miR-188-5p. miR-188-5p expression was down-regulated in the brain tissues from AD patients and 5XFAD mice. The addition of miR-188-5p rescued the reduction in dendritic spine density in the primary hippocampal neurons treated with oligomeric Aβ1-42 and cultured from 5XFAD mice. The reduction in the frequency of mEPSCs was also restored by addition of miR-188-5p. The impairments in basal fEPSPs and cognition observed in 7-month-old 5XFAD mice were ameliorated via the viral-mediated expression of miR-188-5p in the hippocampus. Furthermore, we found that miR-188 expression is CREB-dependent. Taken together, our results suggest that dysregulation of miR-188-5p expression contributes to the pathogenesis of AD by inducing synaptic dysfunction and cognitive deficits associated with Aβ-mediated pathophysiology in the disease.

  3. Study of ameliorating effects of ethanolic extract of Centella asiatica on learning and memory deficit in animal models.

    PubMed

    Doknark, Saowalak; Mingmalairak, Salin; Vattanajun, Anusara; Tantisira, Boonyong; Tantisira, Mayuree H

    2014-02-01

    The present study investigated the effect of Centella asiatica ethanolic extract (CE) on learning and memoly imnpairment induced by either transient bilateral common carotid arteries occlusion (T2 VO) or an intraperitoneal injection of scopolamine in mice. CE (100, 300, 1000 or 1500 mg/kg, p.o.) were administered to learning and memory impaired mice once daily for 8 consecutive days. Learning and memory performance were evaluated by Morris water maze (MWM) and step-down passive avoidance (PA) test. Changes in malondialdehyde (MDA) levels in the brain were determined by lipid peroxidation assay. T2 VO mice exhibited learning and memory impairment in the MWM and PA tests. Treatment with CE ameliorated the learning and memory impairment of T2VO mice. Furthermore, CE significantly reduced MDA level in the brain of T2VO mice. On the other hand, administration of CE did not attenuate learning and memory impairment induced by scopolamine in mice. The present study demonstrated ameliorating effect of CE on learning and memory impairment in T2VO mice. Furthermore, it is likely that the positive effect of CE observed could be, at least partly, accounted by its antioxidative property. Thus, CE might be beneficial for memory impairment in which oxidative stress is an underlying cause.

  4. Multiple cognitive deficits in patients during the mild cognitive impairment stage of Alzheimer's disease: how are cognitive domains other than episodic memory impaired?

    PubMed

    Matsuda, Osamu; Saito, Masahiko

    2009-10-01

    Little is known about how cognitive domains other than episodic memory are affected during the mild cognitive impairment (MCI) stage of Alzheimer's disease (AD). We attempted to clarify this issue in this study. Fifty-seven Japanese subjects were divided into two groups: one comprising people in the MCI stage of AD (MCI group, n = 28) and the other of normal controls (NC group, n = 29). Cognitive functions were assessed using the Japanese version of the neurobehavioral cognitive status examination (J-COGNISTAT). The MCI group performed significantly worse than the NC group on subtests that assessed orientation, confrontational naming, constructive ability, episodic memory, and abstract thinking. Three-quarters of the MCI group had deficits in memory and other non-mnemonic domains, particularly constructive ability and abstract thinking. However, within-subject comparisons showed that the MCI group performed significantly worse on the memory subtest compared to any other subtest. Besides episodic memory, multiple non-mnemonic cognitive domains, such as constructive ability and abstract thinking, are also impaired during the MCI stage of AD; however, these non-mnemonic deficits are smaller than episodic memory impairment.

  5. Parthenolide, an NF-κB Inhibitor Ameliorates Diabetes-Induced Behavioural Deficit, Neurotransmitter Imbalance and Neuroinflammation in Type 2 Diabetes Rat Model.

    PubMed

    Khare, Pragyanshu; Datusalia, Ashok K; Sharma, Shyam S

    2017-03-01

    Diabetes is associated with behavioural and neurochemical alterations. In this manuscript, we are reporting the beneficial effects of parthenolide, an NF-κB inhibitor on behavioural and neurochemical deficits in type 2 diabetic rat model. Diabetes was induced by high-fat diet followed by low dose of streptozotocin (35 mg/kg). Elevated plus maze, open-field, MWM and passive avoidance test paradigm were used to assess behavioural and cognitive deficits. Three-week treatment of parthenolide (0.25 and 0.50 mg/kg; i.p.) attenuated diabetes-induced alteration in cognitive function in Morris water maze and passive avoidance test. Anxiety-like behaviour was also reduced by parthenolide treatment. Moreover, TNF-α and IL-6 levels were significantly decreased in cortex and hippocampus of parthenolide-treated rats. Three-week parthenolide treatment also toned down the alteration of GABA and glutamate homoeostasis. Results of this study corroborate the involvement of neuroinflammation in the development of behavioural and neurochemical deficits in diabetic animals and point towards the therapeutic potential of parthenolide in diabetes-induced alteration of learning, memory and anxiety behaviour.

  6. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    PubMed Central

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  7. Distinct neural signatures of cognitive subtypes of dyslexia with and without phonological deficits.

    PubMed

    van Ermingen-Marbach, Muna; Grande, Marion; Pape-Neumann, Julia; Sass, Katharina; Heim, Stefan

    2013-01-01

    Developmental dyslexia can be distinguished as different cognitive subtypes with and without phonological deficits. However, despite some general agreement on the neurobiological basis of dyslexia, the neurofunctional mechanisms underlying these cognitive subtypes remain to be identified. The present BOLD fMRI study thus aimed at investigating by which distinct and/or shared neural activation patterns dyslexia subtypes are characterized. German dyslexic fourth graders with and without deficits in phonological awareness and age-matched normal readers performed a phonological decision task: does the auditory word contain the phoneme/a/? Both dyslexic subtypes showed increased activation in the right cerebellum (Lobule IV) compared to controls. Subtype-specific increased activation was systematically found for the phonological dyslexics as compared to those without this deficit and controls in the left inferior frontal gyrus (area 44: phonological segmentation), the left SMA (area 6), the left precentral gyrus (area 6) and the right insula. Non-phonological dyslexics revealed subtype-specific increased activation in the left supramarginal gyrus (area PFcm; phonological storage) and angular gyrus (area PGp). The study thus provides the first direct evidence for the neurobiological grounding of dyslexia subtypes. Moreover, the data contribute to a better understanding of the frequently encountered heterogeneous neuroimaging results in the field of dyslexia.

  8. Contextual recognition memory deficits in major depression are suppressed by cognitive support at encoding.

    PubMed

    Corrêa, Márcio Silveira; Balardin, Joana Bisol; Caldieraro, Marco Antônio Knob; Fleck, Marcelo Pio; Argimon, Irani; Luz, Clarice; Bromberg, Elke

    2012-02-01

    To investigate the effect of cognitive support (an associative orienting instruction at encoding) on contextual memory in depressed patients. Seventeen patients (age 20-40 years, 14 women) diagnosed with major depressive disorder (MDD) and 22 healthy controls matched for age, gender and education completed a recognition memory task for item (object) and context (location), with or without an incidental binding cue at encoding. In addition, participants completed the vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS III) and the Wisconsin Card Sorting Test (WCST). Salivary samples were collected at 7 AM, 4 PM and 10 PM on the day of testing for cortisol and DHEA level measurement. Depressed patients showed a deficit in contextual memory in the absence of a binding cue but did not differ from healthy controls in item memory or when a binding cue was present. Cortisol and cortisol/DHEA ratios were lower in depressed patients compared to healthy controls and correlated with memory deficits. Contextual memory deficits in MDD patients can be reduced by providing cognitive support at encoding. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Long-term cognitive dysfunction in the rat following docetaxel treatment is ameliorated by the phosphodiesterase-4 inhibitor, rolipram.

    PubMed

    Callaghan, Charlotte K; O'Mara, Shane M

    2015-09-01

    Clinical studies report evidence of long-term cognitive and other deficits following adjunctive chemotherapy treatment, which is often termed "chemobrain" or "chemo-fog". The neurological bases of these impairments are poorly understood. Here, we hypothesize that systemic chemotherapy treatment causes long-term neurobehavioral deficits, and that these deficits are reversed by manipulation of cAMP by the PDE4 inhibitor, rolipram. Male han Wistar rats were treated with docetaxel (an adjunctive chemotherapeutic agent (1mg/kg i.v.)) or control solution (ethanol/Tween 20/0.9% Saline - 5/5/90) once per week for 4 weeks. They were allowed to recover for 4 weeks, administration of rolipram (0.5mg/kg po) or vehicle (maple syrup) then began and continued daily for 4 weeks. At the end of the treatment regime animals were tested for spatial and recognition memory deficits with the object exploration task and for depressive- and anxiety-like behavior in the forced swim test (FST) and open field exploration. We report docetaxel treatment impaired spatial memory but not object recognition memory, compared to control rats. Docetaxel-treated rats also spent significantly more time immobile than controls in the FST. Chronic rolipram treatment attenuated all of these docetaxel-associated changes, recovering spatial memory and reducing immobility. In conclusion, docetaxel-treated rats exhibit alterations in spatial memory and depressive-like behavior, which are reversed following chronic rolipram administration. These results detect long-term cognitive and mood changes following docetaxel treatment and identify PDE4 inhibition as a target treatment of neuropsychological changes associated with "chemobrain".

  10. Negative modulation of GABAA α5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats.

    PubMed

    Redrobe, John P; Elster, Lisbeth; Frederiksen, Kristen; Bundgaard, Christoffer; de Jong, Inge E M; Smith, Garrick P; Bruun, Anne Techau; Larsen, Peter H; Didriksen, Michael

    2012-06-01

    A growing body of evidence suggests that negative modulation of γ-aminobutyric acid (GABA) GABA(A) α5 receptors may be a promising strategy for the treatment of certain facets of cognitive impairment; however, selective modulators of GABA(A) α5 receptors have not yet been tested in "schizophrenia-relevant" cognitive assay/model systems in animals. The objectives of this study were to investigate the potential of RO4938581, a negative modulator of GABA(A) α5 receptors, and to attenuate cognitive impairments induced following sub-chronic (sub-PCP) and early postnatal PCP (neo-PCP) administration in the novel object recognition (NOR) and intra-extradimensional shift (ID/ED) paradigms in rats. Complementary in vitro, ex vivo and in vivo studies were performed to confirm negative modulatory activity of RO4938581 and to investigate animal model validity, concept validity and potential side effect issues, respectively. In vitro studies confirmed the reported negative modulatory activity of RO4938581, whilst immunohistochemical analyses revealed significantly reduced parvalbumin-positive cells in the prefrontal cortex of sub-PCP- and neo-PCP-treated rats. RO4938581 (1 mg/kg) ameliorated both sub-PCP- and neo-PCP-induced cognitive deficits in NOR and ID/ED performance, respectively. In contrast, QH-II-066 (1 and 3 mg/kg), a GABA(A) α5 receptor positive modulator, impaired cognitive performance in the NOR task when administered to vehicle-treated animals. Additional studies revealed that both RO4938581 (1 mg/kg) and QH-II-066 (1 and 3 mg/kg) attenuated amphetamine-induced hyperactivity in rats. Taken together, these novel findings suggest that negative modulation of GABA(A) α5 receptors may represent an attractive treatment option for the cognitive impairments, and potentially positive symptoms, associated with schizophrenia.

  11. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  12. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  13. Deficit of entropy modulation of the EEG in schizophrenia associated to cognitive performance and symptoms. A replication study.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Hornero, Roberto; Cea-Cañas, Benjamín; Valcárcel, César; Haidar, Mahmoun-Karim; Poza, Jesús

    2017-09-05

    Spectral entropy (SE) is a measurement from information theory field that provides an estimation of EEG regularity and may be useful as a summary of its spectral properties. Previous studies using small samples reported a deficit of EEG entropy modulation in schizophrenia during cognitive activity. The present study is aimed at replicating this finding in a larger sample, to explore its cognitive and clinical correlates and to discard antipsychotic treatment as the main source of that deficit. We included 64 schizophrenia patients (21 first episodes, FE) and 65 healthy controls. We computed SE during performance of an odd-ball paradigm, at the windows prior (-300 to 0ms) and following (150 to 450ms) stimulus presentation. Modulation of SE was defined as the difference between post- and pre-stimulus windows. In comparison to controls, patients showed a deficit of SE modulation over frontal and central regions, also shown by FE patients. Baseline SE did not differ between patients and controls. Modulation deficit was directly associated with cognitive deficits and negative symptoms, and inversely with positive symptoms. SE modulation was not related to antipsychotic doses. Patients also showed a smaller change of median frequency (i.e., smaller slowing of oscillatory activity) of the EEG from pre- to post-stimulus windows. These results support that a deficit of fast modulation contributes to cognitive deficits and symptoms in schizophrenia patients. Copyright © 2017. Published by Elsevier B.V.

  14. Failures of cognitive control or attention? The case of stop-signal deficits in schizophrenia.

    PubMed

    Matzke, Dora; Hughes, Matthew; Badcock, Johanna C; Michie, Patricia; Heathcote, Andrew

    2017-02-09

    We used Bayesian cognitive modelling to identify the underlying causes of apparent inhibitory deficits in the stop-signal paradigm. The analysis was applied to stop-signal data reported by Badcock et al. (Psychological Medicine 32: 87-297, 2002) and Hughes et al. (Biological Psychology 89: 220-231, 2012), where schizophrenia patients and control participants made rapid choice responses, but on some trials were signalled to stop their ongoing response. Previous research has assumed an inhibitory deficit in schizophrenia, because estimates of the mean time taken to react to the stop signal are longer in patients than controls. We showed that these longer estimates are partly due to failing to react to the stop signal ("trigger failures") and partly due to a slower initiation of inhibition, implicating a failure of attention rather than a deficit in the inhibitory process itself. Correlations between the probability of trigger failures and event-related potentials reported by Hughes et al. are interpreted as supporting the attentional account of inhibitory deficits. Our results, and those of Matzke et al. (2016), who report that controls also display a substantial although lower trigger-failure rate, indicate that attentional factors need to be taken into account when interpreting results from the stop-signal paradigm.

  15. The Cognitive Abilities and Skills of Children Who Suffer from Attention Deficit and Hyperactivity Disorder (ADHD) in Kuwait State

    ERIC Educational Resources Information Center

    Mohammed, Ali Mohammed Haidar

    2016-01-01

    The present study aims to identify the level of cognitive skills and abilities of children who suffer from the Attention Deficit and Hyperactivity Disorder (ADHD) and the differences in the level of cognitive skills and abilities according to the age group and the level of academic achievement. To achieve the objective of the study, a…

  16. Cognitive Functioning in Children with and without Attention-Deficit/Hyperactivity Disorder with and without Comorbid Learning Disabilities

    ERIC Educational Resources Information Center

    Jakobson, Angela; Kikas, Eve

    2007-01-01

    This study attempted to determine whether children with the combined subtype of attention-deficit/hyperactivity disorder (ADHD) have impairments in cognitive functioning and motor skills. The specific effect of the comorbidity of learning disabilities (LD) was also investigated. A battery of cognitive tests was administered to 26 children with a…

  17. Impaired social cognition in violent offenders: perceptual deficit or cognitive bias?

    PubMed

    Jusyte, Aiste; Schönenberg, Michael

    2017-04-01

    Aggressive behavior is assumed to be associated with certain patterns of social information processing. While some theories link aggression to a tendency to interpret ambiguous stimuli as hostile (i.e., enhanced sensitivity to anger), others assume an insufficient ability to perceive emotional expressions, particularly fear. Despite compelling evidence to support both theories, no previous study has directly investigated the predictions made by these two accounts in aggressive populations. The aim of the current study was to test processing patterns for angry and fearful facial expressions in violent offenders (VOs) and healthy controls (CTLs) and their association with self-reported aggression and psychopathy scores. In Experiment 1, we assessed perceptual sensitivity to neutral-emotional (angry, fearful, happy) blends in a task which did not require categorization, but an indication whether the stimulus is neutral or emotional. In Experiment 2, we assessed categorization performance for ambiguous fearful-happy and angry-happy blends. No group differences were revealed in Experiment 1, while Experiment 2 indicated a deficit in the categorization of ambiguous fearful blends in the VO group. Importantly, this deficit was associated with both self-reported psychopathy and aggression in the VO, but not the CTL group. The current study provides evidence for a deficient categorization of fearful expressions and its association with self-reported aggression and psychopathy in VOs, but no support for heightened sensitivity to anger. Furthermore, the current findings indicate that the deficit is tied to categorization but not detection stages of social information processing.

  18. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize ( Zea mays l.) in subtropical northeastern Himalayas

    NASA Astrophysics Data System (ADS)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  19. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays l.) in subtropical northeastern Himalayas

    NASA Astrophysics Data System (ADS)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2016-10-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant (p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly (p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  20. Pyrroloquinoline quinone prevents MK-801-induced stereotypical behavior and cognitive deficits in mice.

    PubMed

    Zhou, Xingqin; Chen, Quancheng; Hu, Xindai; Mao, Shishi; Kong, Yanyan

    2014-01-01

    Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator, and nerve growth factor, prevents cognitive deficits associated with oxidative stress-induced neurodegeneration. Previous molecular imaging studies also demonstrate that PQQ binds to N-methyl D-aspartate (NMDA) receptors. In this study, we investigated the effects of PQQ on stereotypical behaviors and cognitive deficits induced by MK-801, a non-competitive NMDA antagonist used to model schizophrenia. Mice were given repeated injections of MK-801 (0.5mg/kg/d) and PQQ (0.2, 2.0, or 20 μg/kg/d) for 60 days. Behavior was evaluated using a variety of motor, social, and cognitive tests. We found that PQQ administration significantly attenuated MK-801-induced increases in stereotypical behavior and ataxia, suggesting a protective role of PQQ against MK-801-induced neuronal dysfunction and psychiatric disorders. Future studies are necessary to elucidate the underlying mechanisms of PQQ. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Deficits in face perception in the amnestic form of mild cognitive impairment.

    PubMed

    Lim, Tae Sung; Lee, Hyun Young; Barton, Jason J S; Moon, So Young

    2011-10-15

    The fusiform gyrus is involved pathologically at an early stage of the amnestic form of mild cognitive impairment (aMCI), and is also known to be involved in the perceptual stage of face processing. We assessed face perception in patients with aMCI to determine if this cognitive skill was impaired. We compared 12 individuals (4 men) with aMCI and 12 age- and education-matched healthy controls on the ability to discriminate changes in the spatial configuration or color of the eyes or the mouth in faces. Patients with aMCI performed less quickly and accurately for all changes on trials with limited viewing duration. With unlimited duration, they could achieve normal perceptual accuracy for configural changes to the mouth, but remained impaired for changes to eye color or configuration. Patients with aMCI show deficits in face perception that are more pronounced for the highly salient ocular region, a pattern similar to that seen in acquired prosopagnosia. This form of perceptual impairment may be an early marker of additional cognitive deficits beyond memory in aMCI.

  2. Emotion recognition and cognitive empathy deficits in adolescent offenders revealed by context-sensitive tasks

    PubMed Central

    Gonzalez-Gadea, Maria Luz; Herrera, Eduar; Parra, Mario; Gomez Mendez, Pedro; Baez, Sandra; Manes, Facundo; Ibanez, Agustin

    2014-01-01

    Emotion recognition and empathy abilities require the integration of contextual information in real-life scenarios. Previous reports have explored these domains in adolescent offenders (AOs) but have not used tasks that replicate everyday situations. In this study we included ecological measures with different levels of contextual dependence to evaluate emotion recognition and empathy in AOs relative to non-offenders, controlling for the effect of demographic variables. We also explored the influence of fluid intelligence (FI) and executive functions (EFs) in the prediction of relevant deficits in these domains. Our results showed that AOs exhibit deficits in context-sensitive measures of emotion recognition and cognitive empathy. Difficulties in these tasks were neither explained by demographic variables nor predicted by FI or EFs. However, performance on measures that included simpler stimuli or could be solved by explicit knowledge was either only partially affected by demographic variables or preserved in AOs. These findings indicate that AOs show contextual social-cognition impairments which are relatively independent of basic cognitive functioning and demographic variables. PMID:25374529

  3. Cognitive Deficits Underlying Error Behavior on a Naturalistic Task after Severe Traumatic Brain Injury

    PubMed Central

    Hendry, Kathryn; Ownsworth, Tamara; Beadle, Elizabeth; Chevignard, Mathilde P.; Fleming, Jennifer; Griffin, Janelle; Shum, David H. K.

    2016-01-01

    People with severe traumatic brain injury (TBI) often make errors on everyday tasks that compromise their safety and independence. Such errors potentially arise from the breakdown or failure of multiple cognitive processes. This study aimed to investigate cognitive deficits underlying error behavior on a home-based version of the Cooking Task (HBCT) following TBI. Participants included 45 adults (9 females, 36 males) with severe TBI aged 18–64 years (M = 37.91, SD = 13.43). Participants were administered the HBCT in their home kitchens, with audiovisual recordings taken to enable scoring of total errors and error subtypes (Omissions, Additions, Estimations, Substitutions, Commentary/Questions, Dangerous Behavior, Goal Achievement). Participants also completed a battery of neuropsychological tests, including the Trail Making Test, Hopkins Verbal Learning Test-Revised, Digit Span, Zoo Map test, Modified Stroop Test, and Hayling Sentence Completion Test. After controlling for cooking experience, greater Omissions and Estimation errors, lack of goal achievement, and longer completion time were significantly associated with poorer attention, memory, and executive functioning. These findings indicate that errors on naturalistic tasks arise from deficits in multiple cognitive domains. Assessment of error behavior in a real life setting provides insight into individuals' functional abilities which can guide rehabilitation planning and lifestyle support. PMID:27790099

  4. Cognitive Deficits Associated with Nav1.1 Alterations: Involvement of Neuronal Firing Dynamics and Oscillations

    PubMed Central

    Bender, Alex C.; Luikart, Bryan W.; Lenck-Santini, Pierre-Pascal

    2016-01-01

    Brain oscillations play a critical role in information processing and may, therefore, be essential to uncovering the mechanisms of cognitive impairment in neurological disease. In Dravet syndrome (DS), a mutation in SCN1A, coding for the voltage-gated sodium channel Nav1.1, is associated with severe cognitive impairment and seizures. While seizure frequency and severity do not correlate with the extent of impairment, the slowing of brain rhythms may be involved. Here we investigate the role of Nav1.1 on brain rhythms and cognition using RNA interference. We demonstrate that knockdown of Nav1.1 impairs fast- and burst-firing properties of neurons in the medial septum in vivo. The proportion of neurons that fired phase-locked to hippocampal theta oscillations was reduced, and medial septal regulation of theta rhythm was disrupted. During a working memory task, this deficit was characterized by a decrease in theta frequency and was negatively correlated with performance. These findings suggest a fundamental role for Nav1.1 in facilitating fast-firing properties in neurons, highlight the importance of precise temporal control of theta frequency for working memory, and imply that Nav1.1 deficits may disrupt information processing in DS via a dysregulation of brain rhythms. PMID:26978272

  5. Characteristics of cognitive deficits and writing skills of Polish adults with developmental dyslexia.

    PubMed

    Bogdanowicz, Katarzyna Maria; Łockiewicz, Marta; Bogdanowicz, Marta; Pąchalska, Maria

    2014-07-01

    The present study was aimed at analysing cognitive deficits of dyslexic adults, and examining their written language skills in comparison with their peers. Our results confirm the presence of a certain profile of symptoms in adult dyslexics. We noticed deficits in: phonological (verbal) short-term memory, phonological awareness, rapid automatised naming (speed, self-corrections), visual perception and control, and visual-motor coordination. Moreover, the dyslexic participants, as compared with their nondyslexic peers, produced more word structure errors whilst writing an essay. However, there were no significant differences between the two groups in the length of the essay, the number of linguistic and punctuation errors, the number of adjectives, and stylistic devices.

  6. Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder.

    PubMed

    Cai, Chenxi; Yuan, Kai; Yin, Junsen; Feng, Dan; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Jin, Chenwang; Qin, Wei; Tian, Jie

    2016-03-01

    Internet gaming disorder (IGD), identified in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) Section III as a condition warranting more clinical research, may be associated with impaired cognitive control. Previous IGD-related studies had revealed structural abnormalities in the prefrontal cortex, an important part of prefrontal-striatal circuits, which play critical roles in cognitive control. However, little is known about the relationship between the striatal nuclei (caudate, putamen, and nucleus accumbens) volumes and cognitive control deficit in individuals with IGD. Twenty-seven adolescents with IGD and 30 age-, gender- and education-matched healthy controls participated in this study. The volume differences of the striatum were assessed by measuring subcortical volume in FreeSurfer. Meanwhile, the Stroop task was used to detect cognitive control deficits. Correlation analysis was used to investigate the relationship between striatal volumes and performance in the Stroop task as well as severity in IGD. Relative to controls, the IGD committed more incongruent condition response errors during the Stroop task and showed increased volumes of dorsal striatum (caudate) and ventral striatum (nucleus accumbens). In addition, caudate volume was correlated with Stroop task performance and nucleus accumbens (NAc) volume was associated with the internet addiction test (IAT) score in the IGD group. The increased volumes of the right caudate and NAc and their association with behavioral characteristics (i.e., cognitive control and severity) in IGD were detected in the present study. Our findings suggest that the striatum may be implicated in the underlying pathophysiology of IGD.

  7. The ethanolic extract of the Eclipta prostrata L. ameliorates the cognitive impairment in mice induced by scopolamine.

    PubMed

    Jung, Won Yong; Kim, Haneul; Park, Ho Jae; Jeon, Se Jin; Park, Hye Jin; Choi, Hyuck Jai; Kim, Nam Jae; Jang, Dae Sik; Kim, Dong Hyun; Ryu, Jong Hoon

    2016-08-22

    Eclipta prostrata L. (Asteraceae) has been prescribed for whole body nourishment and nervine tonic in Asia. However, the effects of E. prostrata in learning and memory have not been fully explored. To scientifically elucidate the effects of E. prostrata on cognitive functions, we examined whether E. prostrata could ameliorate a cholinergic blockade-induced memory impairment, and we also investigated the effects of E. prostrata on the synaptic plasticity in the hippocampus. Memory impairment was induced by scopolamine, a cholinergic muscarinic receptor antagonist. The anti-amnesic effects of the ethanolic extract of Eclipta prostrata L. (EEEP) were measured in mice by the passive avoidance, Y-maze and Morris water maze tasks. To test the effects of EEEP on synaptic plasticity, we measured long-term potentiation (LTP) in the hippocampus. We also studied several signaling molecules related to learning and memory, such as phosphorylated protein kinase B (Akt) or phosphorylated glycogen synthase kinase-3β (GSK-3β). In the passive avoidance task, EEEP (50 or 100mg/kg, p.o.) significantly ameliorated the shortened step-through latency induced by scopolamine. EEEP (100mg/kg, p.o.) also showed significant increase in alternation behavior during the Y-maze task. In the Morris water maze task, scopolamine-induced a decrease in both the swimming time within the target zone and the number of crossings where the platform had been placed were significantly reversed by EEEP (50 or 100mg/kg, p.o.). Moreover, EEEP (100μg/ml) significantly enhanced hippocampal LTP without affecting basal synaptic transmission. The administration of EEEP (100mg/kg) increased the phosphorylation levels of Akt and GSK-3β in the hippocampal region. These results suggest that EEEP has memory-ameliorating activity against scopolamine-induced cognitive impairment and facilitates LTP in the hippocampus. This could be, at least in part, mediated by the activation of the Akt-GSK-3β signaling pathway

  8. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease by compromising hippocampal inhibition.

    PubMed

    Hollands, Carolyn; Tobin, Matthew Kyle; Hsu, Michael; Musaraca, Kianna; Yu, Tzong-Shiue; Mishra, Rachana; Kernie, Steven G; Lazarov, Orly

    2017-09-08

    The molecular mechanism underlying progressive memory loss in Alzheimer's disease is poorly understood. Neurogenesis in the adult hippocampus is a dynamic process that continuously changes the dentate gyrus and is important for hippocampal plasticity, learning and memory. However, whether impairments in neurogenesis affect the hippocampal circuitry in a way that leads to memory deficits characteristic of Alzheimer's disease is unknown. Controversial results in that regard were reported in transgenic mouse models of amyloidosis. Here, we conditionally ablated adult neurogenesis in APPswe/PS1ΔE9 mice by crossing these with mice expressing nestin-driven thymidine kinase (δ-HSV-TK). These animals show impairment in performance in contextual conditioning and pattern separation tasks following depletion of neurogenesis. Importantly, these deficits were not observed in age-matched APPswe/PS1ΔE9 or δ-HSV-TK mice alone. Furthermore, we show that cognitive deficits were accompanied by the upregulation of hyperphosphorylated tau in the hippocampus and in immature neurons specifically. Interestingly, we observed upregulation of the immediate early gene Zif268 (Egr-1) in the dentate gyrus, CA1 and CA3 regions of the hippocampus following learning in the neurogenesis-depleted δ-HSV-TK mice. This may suggest overactivation of hippocampal neurons in these areas following depletion of neurogenesis. These results imply that neurogenesis plays an important role in the regulation of inhibitory circuitry of the hippocampus. This study suggests that deficits in adult neurogenesis may contribute to cognitive impairments, tau hyperphosphorylation in new neurons and compromised hippocampal circuitry in Alzheimer's disease.

  9. Familial alcoholism and premorbid cognitive deficit: a failure to replicate subtype differences.

    PubMed

    Bates, M E; Pandina, R J

    1992-07-01

    Recent evidence suggests that offspring of alcoholics are heterogeneous in many areas of functioning. This study focuses on extending our understanding of the vulnerability and resilience of young adults with a positive family history of alcoholism (FH+) within the domain of neurocognitive functioning. Specifically, we test the hypothesis that cognitive vulnerability is linked to genetic pedigree by systematically examining a broad range of cognitive abilities in several distinct family history subtypes represented by alcoholism on the part of a first-degree relative only, a second-degree relative only, or both a first- and second-degree relative. Compared to an age-matched control group with no family history of alcoholism (FH-), FH+ subjects, on the average, reported somewhat less formal education than did FH- subjects. However, no substantive differences in cognitive functioning were obtained among any family history subtypes. Nor were any predicted yet nonsignificant trends in the ordering of mean cognitive performance levels observed across groups. These results strongly suggest that cognitive deficits do not generally obtain in community samples of premorbid FH+ subjects, and, further, that specific genetic pedigrees, as defined in this study, do not contribute to variability in neuropsychological functioning. A typological approach wherein subtypes of FH+ individuals are defined multidimensionally may be necessary to capture sources of neurocognitive vulnerability in premorbid offspring.

  10. Smaller than expected cognitive deficits in schizophrenia patients from the population-representative ABC catchment cohort.

    PubMed

    Lennertz, Leonhard; An der Heiden, Wolfram; Kronacher, Regina; Schulze-Rauschenbach, Svenja; Maier, Wolfgang; Häfner, Heinz; Wagner, Michael

    2016-08-01

    Most neuropsychological studies on schizophrenia suffer from sample selection bias, with male and chronic patients being overrepresented. This probably leads to an overestimation of cognitive impairments. The present study aimed to provide a less biased estimate of cognitive functions in schizophrenia using a population-representative catchment area sample. Schizophrenia patients (N = 89) from the prospective Mannheim ABC cohort were assessed 14 years after disease onset and first diagnosis, using a comprehensive neuropsychological test battery. A healthy control group (N = 90) was carefully matched according to age, gender, and geographic region (city, rural surrounds). The present sample was representative for the initial ABC cohort. In the comprehensive neuropsychological assessment, the schizophrenia patients were only moderately impaired as compared to the healthy control group (d = 0.56 for a general cognitive index, d = 0.42 for verbal memory, d = 0.61 for executive functions, d = 0.69 for attention). Only 33 % of the schizophrenia patients scored one standard deviation unit below the healthy control group in the general cognitive index. Neuropsychological performance did not correlate with measures of the clinical course including age at onset, number of hospital admissions, and time in paid work. Thus, in this population-representative sample of schizophrenia patients, neuropsychological deficits were less pronounced than expected from meta-analyses. In agreement with other epidemiological studies, this suggests a less devastating picture of cognition in schizophrenia.

  11. Psychostimulants as Cognitive Enhancers: The Prefrontal Cortex, Catecholamines and Attention Deficit Hyperactivity Disorder

    PubMed Central

    Berridge, Craig W.; Devilbiss, David M.

    2010-01-01

    Psychostimulants exert behavioral-calming and cognition-enhancing actions in the treatment of attention deficit hyperactivity disorder (ADHD). Contrary to early views, extensive research demonstrates that these actions are not unique to ADHD. Specifically, when administered at low and clinically-relevant doses, psychostimulants improve a variety of behavioral and cognitive processes dependent on the prefrontal cortex (PFC) in subjects with and without ADHD. Despite the longstanding clinical use of these drugs, the neural mechanisms underlying their cognition-enhancing/therapeutic actions have only recently begun to be examined. At behaviorally-activating doses, psychostimulants produce large and widespread increases in extracellular levels of brain catecholamines. In contrast, cognition-enhancing doses of psychostimulants exert regionally-restricted actions, elevating extracellular catecholamine levels and enhancing neuronal signal processing preferentially within the PFC. Additional evidence suggests a prominent role of PFC α2- and D1 receptors in the behavioral and electrophysiological actions of low-dose psychostimulants. These and other observations indicate a pivotal role of PFC catecholamines in the cognition-enhancing and therapeutic actions of psychostimulants as well as other drugs used in the treatment of ADHD. This information may be particularly relevant for the development of novel pharmacological treatments for ADHD and other conditions associated with PFC dysregulation. PMID:20875636

  12. Reduced Verbal Fluency following Subthalamic Deep Brain Stimulation: A Frontal-Related Cognitive Deficit?

    PubMed Central

    Houvenaghel, Jean-François; Le Jeune, Florence; Dondaine, Thibaut; Esquevin, Aurore; Robert, Gabriel Hadrien; Péron, Julie; Haegelen, Claire; Drapier, Sophie; Jannin, Pierre; Lozachmeur, Clément; Argaud, Soizic; Duprez, Joan; Drapier, Dominique; Vérin, Marc; Sauleau, Paul

    2015-01-01

    Objective The decrease in verbal fluency in patients with Parkinson’s disease (PD) undergoing subthalamic nucleus deep brain stimulation (STN-DBS) is usually assumed to reflect a frontal lobe-related cognitive dysfunction, although evidence for this is lacking. Methods To explore its underlying mechanisms, we combined neuropsychological, psychiatric and motor assessments with an examination of brain metabolism using F-18 fluorodeoxyglucose positron emission tomography, in 26 patients with PD, 3 months before and after surgery. We divided these patients into two groups, depending on whether or not they exhibited a postoperative deterioration in either phonemic (10 patients) or semantic (8 patients) fluency. We then compared the STN-DBS groups with and without verbal deterioration on changes in clinical measures and brain metabolism. Results We did not find any neuropsychological change supporting the presence of an executive dysfunction in patients with a deficit in either phonemic or semantic fluency. Similarly, a comparison of patients with or without impaired fluency on brain metabolism failed to highlight any frontal areas involved in cognitive functions. However, greater changes in cognitive slowdown and apathy were observed in patients with a postoperative decrease in verbal fluency. Conclusions These results suggest that frontal lobe-related cognitive dysfunction could play only a minor role in the postoperative impairment of phonemic or semantic fluency, and that cognitive slowdown and apathy could have a more decisive influence. Furthermore, the phonemic and semantic impairments appeared to result from the disturbance of distinct mechanisms. PMID:26448131

  13. Manganese exposure and cognitive deficits: A growing concern for manganese neurotoxicity⋆

    PubMed Central

    Roels, H.A.; Bowler, R.M.; Kim, Y.; Henn, B. Claus; Mergler, D.; Hoet, P.; Gocheva, V.V.; Bellinger, D.C.; Wright, R.O.; Harris, M.G.; Chang, Y.; Bouchard, M.F.; Riojas-Rodriguez, H.; Menezes-Filho, J.A.; Téllez-Rojo, Martha Maria

    2013-01-01

    This symposium comprised five oral presentations dealing with recent findings on Mn-related cognitive and motor changes from epidemiological studies across the life span. The first contribution highlighted the usefulness of functional neuroimaging of the central nervous system (CNS) to evaluate cognitive as well as motor deficits in Mn-exposed welders. The second dealt with results of two prospective studies in Mn-exposed workers or welders showing that after decrease of Mn exposure the outcome of reversibility in adverse CNS effects may differ for motor and cognitive function and, in addition the issue of plasma Mn as a reliable biomarker for Mn exposure in welders has been addressed. The third presentation showed a brief overview of the results of an ongoing study assessing the relationship between environmental airborne Mn exposure and neurological or neuropsychological effects in adult Ohio residents living near a Mn point source. The fourth paper focused on the association between blood Mn and neurodevelopment in early childhood which seems to be sensitive to both low and high Mn concentrations. The fifth contribution gave an overview of six studies indicating a negative impact of excess environmental Mn exposure from air and drinking water on children’s cognitive performance, with special attention to hair Mn as a potential biomarker of exposure. These studies highlight a series of questions about Mn neurotoxicity with respect to cognitive processes, forms and routes of exposure, adequate biomarkers of exposure, gender differences, susceptibility and exposure limits with regard to age. PMID:22498092

  14. Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases.

    PubMed

    Wang, Zhen-Zhen; Zhang, Yi; Zhang, Han-Ting; Li, Yun-Feng

    2015-01-01

    Phosphodiesterases (PDEs) are the only known enzymes to degrade intracellular cyclic AMP and/or cyclic GMP. The PDE superfamily consists of 11 families (PDE1- PDE11), each of which has 1 to 4 subtypes. Some of the subtypes may have multiple splice variants (e.g. PDE4D1-PDE4D11), leading to a total of more than 100 known proteins to date. Growing attention has been paid to the potential of PDEs as therapeutic targets for mood disorders and/or diseases affecting cognitive activity by controlling the rate of hydrolysis of the two aforementioned second messengers in recent years. The loss of cognitive functions is one of the major complaints most patients with CNS diseases face; it has an even more prominent negative impact on the quality of daily life. Cognitive dysfunction is usually a prognosis in patients suffering from neuropsychiatric and neurodegenerative diseases, including depression, schizophrenia, and Alzheimer's disease. This review will focus on the contributions of PDEs to the interface between cognitive deficits and neuropsychiatric and neurodegenerative disorders. It is expected to make for the understanding and discovery that selective PDE inhibitors have the therapeutic potential for cognitive dysfunctions associated with neuropsychiatric and neurodegenerative disorders.

  15. Novel spiroimidazopyridine derivative SAK3 improves methimazole-induced cognitive deficits in mice.

    PubMed

    Noreen, Husain; Yabuki, Yasushi; Fukunaga, Kohji

    2017-03-07

    Methimazole (MMI) is a first-line therapy used to manage hyperthyroidism and Graves' disease. Despite its therapeutic benefit, chronic MMI administration can lead to hypothyroidism and perturb brain homeostasis in patients, resulting in neuropsychiatric disorders such as depression and cognitive dysfunction. We recently developed the spiroimidazopyridine derivative SAK3 as cognitive enhancer; however, mechanisms underlying its activity remained unclear. Here, we show that SAK3 potentially improves cognitive impairment seen following MMI-induced hypothyroidism. Twenty-four hours after MMI (75 mg/kg, i.p.) treatment, we administered SAK3 (0.1, 0.5 and 1 mg/kg, p.o.) to mice daily for 7 days. MMI treatment alone disrupted olfactory bulb (OB) glomerular structure, as assessed by staining with the olfactory marker protein (OMP), reduced the number of choline acetyl transferase (ChAT)-immunoreactive neurons in medial septum (MS), and significantly impaired cognition. SAK3 (0.5 and 1 mg/kg, p.o.) administration significantly restored the number of cholinergic MS neurons in MMI-treated mice, and SAK3 treatment at a higher dose significantly improved cognitive deficits seen in MMI-treated control mice. Overall, our study suggests that SAK3 treatment could antagonize such impairment in patients with hypothyroidism.

  16. Reduced white matter integrity as a neural correlate of social cognition deficits in schizophrenia.

    PubMed

    Miyata, Jun; Yamada, Makiko; Namiki, Chihiro; Hirao, Kazuyuki; Saze, Teruyasu; Fujiwara, Hironobu; Shimizu, Mitsuaki; Kawada, Ryosaku; Fukuyama, Hidenao; Sawamoto, Nobukatsu; Hayashi, Takuji; Murai, Toshiya

    2010-06-01

    The pathology of schizophrenia is thought to involve multiple gray and white matter regions. A number of studies have revealed impaired social cognition in schizophrenia. Some evidence suggests an association of this social cognition deficit with gray matter reductions in 'social brain' areas. However, no study has yet revealed the association between social cognition abilities and white matter abnormalities in schizophrenia patients. Twenty-six schizophrenia patients and 27 healthy controls underwent the Perception of Affect Task (PAT), which consisted of four subtasks measuring different aspects of emotion attribution. Voxelwise group comparison of white matter fractional anisotropy (FA) was performed using tract-based spatial statistics (TBSS). The relation between impaired social cognition ability and FA reduction was examined in patients for each subtask, using simple regression analysis within brain areas that showed a significant FA reduction in patients compared with controls. The same correlational analysis was also performed for healthy controls in the whole brain. Schizophrenia patients showed reduced emotion attribution ability compared with controls in all four subtasks. The facial emotion perception subtask showed a significant correlation with FA reductions in the left occipital white matter region and left posterior callosal region. The correlational analyses in healthy controls revealed no significant correlation of FA with any of the PAT subtasks. Our voxelwise correlational analysis of white matter provided a potential neural basis for the social cognition impairments in schizophrenia, in support of the disconnection hypothesis. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Deficits of cognitive restructuring in major depressive disorder: Measured by textual micro-counseling dialogues.

    PubMed

    Jiang, Nengzhi; Yu, Fei; Zhang, Wencai; Zhang, Jianxin

    2016-04-30

    Cognitive restructuring is an important strategy in cognitive behavioral therapy (CBT). The present study aimed to observe cognitive restructuring in major depressive disorder (MDD) patients using textual micro-counseling dialogue situations. A set of textual micro-counseling dialogues was used to trigger cognitive restructuring in 25 MDD patients and 27 healthy adults. The participants read descriptions ("problems") and explanations ("solutions") for psychologically distressing situations. High-, low-, and zero-restructuring solutions were randomly matched to the problems. The participants evaluated the adaptability and emotional valence of the problems and the insightfulness, adaptability, novelty, and emotional valence of the solutions. Insightfulness ratings for high-restructuring solutions were significantly higher relative to those of low-restructuring solutions in healthy adults, while adaptability ratings for low-restructuring solutions were significantly higher relative to those of high-restructuring solutions in MDD patients. Insightfulness ratings for the solutions were significantly predicted by novelty and adaptability in healthy adults and emotional valence in MDD patients. Lower insightfulness in high-restructuring solutions and higher adaptability in low-restructuring solutions in MDD patients may reflect deficits in cognitive control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors.

    PubMed

    Hashimoto, Kenji; Fujita, Yuko; Iyo, Masaomi

    2007-03-01

    This study was undertaken to examine the effects of the selective serotonin reuptake inhibitors fluvoxamine and paroxetine on cognitive deficits in mice after repeated administration of the N-methyl-D-aspartate receptor antagonist phencyclidine (PCP). In the novel object recognition test, repeated administration of PCP (10 mg/kg/day, 10 days) significantly decreased the exploratory preference in the retention test session, but not in the training test session. PCP-induced cognitive deficits were significantly improved by subsequent subchronic (2-week) administration of fluvoxamine (20 mg/kg/day), but not paroxetine (10 mg/kg/day). Furthermore, the effect of fluvoxamine on PCP-induced cognitive deficits was antagonized by co-administration of the selective sigma-1 receptor antagonist NE-100 (1 mg/kg/day). Moreover, PCP-induced cognitive deficits were also significantly improved by subsequent subchronic (2-week) administration of the selective sigma-1 receptor agonist SA4503 (1 mg/kg/day) or neurosteroid dehydroepiandrosterone 3-sulfate (DHEA-S; 25 mg/kg/day). The effects of SA4503 or DHEA-S were also antagonized by co-administration of NE-100 (1 mg/kg/day), suggesting the role of sigma-1 receptors in the active mechanisms of these drugs. In contrast, acute single administration of these drugs (fluvoxamine, paroxetine, SA4503) alone or combination with NE-100 did not alter PCP-induced cognitive deficits. The present study suggests that agonistic activity of fluvoxamine at sigma-1 receptors plays a role in the active mechanisms of fluvoxamine on PCP-induced cognitive deficits in mice. Therefore, sigma-1 receptor agonists such as fluvoxamine would be potential therapeutic drugs for the treatment of the cognitive deficits of schizophrenia.

  19. Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response.

    PubMed

    Wang, Xue-Rui; Shi, Guang-Xia; Yang, Jing-Wen; Yan, Chao-Qun; Lin, Li-Ting; Du, Si-Qi; Zhu, Wen; He, Tian; Zeng, Xiang-Hong; Xu, Qian; Liu, Cun-Zhi

    2015-12-01

    Emerging evidence suggests acupuncture could exert neuroprotection in the vascular dementia via anti-oxidative effects. However, the involvement of Nrf2, a master regulator of antioxidant defense, in acupuncture-induced neuroprotection in vascular dementia remains undetermined. The goal of our study was to investigate the contribution of Nrf2 in acupuncture and its effects on vascular dementia. Morris water maze and Nissl staining were used to assess the effect of acupuncture on cognitive function and hippocampal neurodegeneration in experimental vascular dementia. The distribution of Nrf2 in neurons in hippocampus, the protein expression of Nrf2 in both cytosol and nucleus, and the protein and mRNA levels of its downstream target genes NQO1 and HO-1 were detected by double immunofluorescent staining, Western blotting and realtime PCR analysis respectively. Cognitive function and microglia activation were measured in both wild-type and Nrf2 gene knockout mice after acupuncture treatment. We found that acupuncture could remarkably reverse the cognitive deficits, neuron cell loss, reactive oxygen species production, and decreased cerebral blood flow. It was notable that acupuncture enhanced nuclear translocation of Nrf2 in neurons and up-regulate the protein and mRNA levels of Nrf2 and its target genes HO-1 and NQO1. Moreover, acupuncture could significantly down-regulated the over-activation of microglia after common carotid artery occlusion surgery. However, the reversed cognitive deficits, neuron cell loss and microglia activation by acupuncture were abolished in Nrf2 gene knockout mice. In conclusion, these findings provide evidence that the neuroprotection of acupuncture in models of vascular dementia was via the Nrf2 activation and Nrf2-dependent microglia activation. Copyright © 2015. Published by Elsevier Inc.

  20. Lithium-associated cognitive and functional deficits reduced by a switch to divalproex sodium: a case series.

    PubMed

    Stoll, A L; Locke, C A; Vuckovic, A; Mayer, P V

    1996-08-01

    Lithium remains a first-line treatment for the acute and maintenance treatment of bipolar disorder. Although much has been written about the management of the more common adverse effects of lithium, such as polyuria and tremor, more subtle lithium side effects such as cognitive deficits, loss of creativity, and functional impairments remain understudied. This report summarizes our experience in switching bipolar patients from lithium to divalproex sodium to alleviate such cognitive and functional impairments. Open, case series design. We report seven cases where substitution of lithium, either fully or partially, with divalproex sodium was extremely helpful in reducing the cognitive, motivational, or creative deficits attributed to lithium in our bipolar patients. In this preliminary report, divalproex sodium was a superior alternative to lithium in bipolar patients experiencing cognitive deficits, loss of creativity, and functional impairments.

  1. ABCA1 Deficiency Affects Basal Cognitive Deficits and Dendritic Density in Mice

    PubMed Central

    Fitz, Nicholas F.; Carter, Alexis Y.; Tapias, Victor; Castranio, Emilie L.; Kodali, Ravindra; Lefterov, Iliya; Koldamova, Radosveta

    2017-01-01

    ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoproteins and regulates the generation of high density lipoproteins. Previously, we have shown that lack of Abca1 significantly increases amyloid deposition and cognitive deficits in Alzheimer’s disease model mice expressing human amyloid-β protein precursor (APP). The goal of this study was to determine if ABCA1 plays a role in memory deficits caused by amyloid-β (Aβ) oligomers and examine neurite architecture of pyramidal hippocampal neurons. Our results confirm previous findings that Abca1 deficiency significantly impairs spatial memory acquisition and retention in the Morris water maze and long-term memory in novel object recognition of APP transgenic mice at a stage of early amyloid pathology. Neither test demonstrated a significant difference between Abca1ko and wild-type (WT) mice. We also examined the effect of intra-hippocampal infused Aβ oligomers on cognitive performance of Abca1ko mice, compared to control infusion of scrambled Aβ peptide. Age-matched WT mice undergoing the same infusions were also used as controls. In this model system, we found a statistically significant difference between WT and Abca1ko mice infused with scrambled Aβ, suggesting that Abca1ko mice are vulnerable to the effect of mild stresses. Moreover, examination of neurite architecture in the hippocampi revealed a significant decrease in neurite length, number of neurite segments, and branches in A