Sample records for ameliorates multiple-low-dose streptozotocin-induced

  1. Down-regulation of multiple low dose streptozotocin-induced diabetes by mycophenolate mofetil

    PubMed Central

    MAKSIMOVIC-IVANIC, D; TRAJKOVIC, V; MILJKOVIC, DJ; STOJKOVIC, M MOSTARICA; STOSIC-GRUJICIC, S

    2002-01-01

    The new immunosuppressive agent mycophenolate mofetil (MMF) has been shown recently to exert a protective effects in certain animal models of autoimmunity, including diabetes in diabetes-prone bio-breeding (BB) rats. In the present study, the immunomodulatory potential of MMF was investigated in autoimmune diabetes induced by multiple low doses of streptozotocin (MLD-STZ) in genetically susceptible DA rats 20 mg STZ/kg body weight (b.w.) for 5 days] and CBA/H mice (40 mg STZ/kg b.w. for 5 days). In both species, short time treatment of animals with MMF (25 mg/kg) during the early development of the disease, as well as continuous MMF treatment, prevented the appearance of hyperglycaemia and inflammatory infiltrates in the pancreatic tissue. Moreover, clinical manifestations of diabetes were suppressed by application of the drug after the onset of clinical symptoms. Treatment with guanosine (1 mg/kg) in parallel with MMF completely reversed MMF activity in vivo, indicating that inhibition of inosine monophosphate dehydrogenase (IMPDH) was responsible for the observed suppressive effects. MMF-mediated protection from diabetes correlated with reduced ex vivo spontaneous spleen mononuclear cell (MNC) proliferation and defective adhesive cell interactions. MMF-treated animals also had lower local production of IFN-γ, as well as IL-12 and nitric oxide (NO) production by peripheral tissues (spleen and peritoneal cells), compared to that in control diabetic groups, while IL-10 level was elevated. Together, these data demonstrate that MMF interferes with autoimmune process in streptozotocin-induced diabetes at multiple levels, including lymphocyte proliferation and adhesion, as well as pro/anti-inflammatory cytokine balance. PMID:12165076

  2. Thalidomide attenuates multiple low-dose streptozotocin-induced diabetes in mice by inhibition of proinflammatory cytokines.

    PubMed

    Amirshahrokhi, K; Ghazi-Khansari, M

    2012-11-01

    Thalidomide is an immunomodulatory and anti-inflammatory agent and is used in autoimmune disorders. It has been shown that thalidomide inhibits proinflammatory cytokines production. The purpose of this study was to investigate the effect of thalidomide on the prevention of autoimmune diabetes in mice. Diabetes was induced by multiple low-dose of streptozotocin (MLDS) injection. Mice were treated with thalidomide (300 mg/kg/day orally) for 21 days. Plasma levels of glucose, insulin and nitrate/nitrite as well as pancreatic cytokine levels were measured. Pathological examinations of the pancreas revealed that thalidomide reduced the islet inflammation (insulitis) and destruction of beta cells. Thalidomide treatment prevented hyperglycemia and preserved pancreatic insulin secretion in the diabetic mice. Thalidomide treatment also significantly decreased plasma levels of nitric oxide and pancreatic proinflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-12, IL-17 and interferon (IFN)-γ)] while increased anti-inflammatory cytokine IL-10. In conclusion, these findings indicate that thalidomide may have a protective effect against the autoimmune destruction of the pancreatic beta-cells during the development of MLDS-induced type 1 diabetes in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice.

    PubMed

    Cetkovic-Cvrlje, Marina; Thinamany, Sinduja; Bruner, Kylie A

    2017-12-01

    Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disorder characterized by destruction of insulin-producing pancreatic β-cells. Whereas epidemiological data implicate environmental factors in the increasing incidence of T1D, their identity remains unknown. Though exposure to bisphenol A (BPA) has been associated with several disorders, no epidemiologic evidence has linked BPA exposure and T1D. The goal of this study was to elucidate diabetogenic potentials of BPA and underlying mechanisms in the context of T-cell immunity, in a multiple low-dose streptozotocin (MLDSTZ)-induced autoimmune mouse T1D model. C57BL/6 mice were orally exposed to 1 or 10 mg BPA/L starting at 4 wk of age; diabetes was induced at 9 wk of age with STZ. T-cell composition, function, and insulitis levels were studied at Days 11 and 50 during diabetes development (i.e. post-first STZ injection). Results showed both BPA doses increased diabetes incidence and affected T-cell immunity. However, mechanisms of diabetogenic action appeared divergent based on dose. Low-dose BPA fits a profile of an agent that exhibits pro-diabetogenic effects via T-cell immunomodulation in the early stages of disease development, i.e. decreases in splenic T-cell subpopulations [especially CD4 + T-cells] along with a trend in elevation of splenic T-cell formation of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6). In contrast, high-dose BPA did not affect T-cell populations and led to decreased levels of IFN-γ and TNF-α. Both treatments did not affect insulitis levels at the disease early stage, but aggravated it later on. By the study end, besides decreasing T-cell proliferative capacity, low-dose BPA did not affect other T-cell-related parameters, including cytokine secretion, comparable to the effects of high-dose BPA. In conclusion, this study confirmed BPA as a potential diabetogenic compound with immunomodulatory mechanisms of action - in the context of T-cell immunity - that seemed to be dose

  4. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice.

    PubMed

    Wang, Z; Gleichmann, H

    1998-01-01

    In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.

  5. Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats.

    PubMed

    Pari, Leelavinothan; Chandramohan, Ramasamy

    2017-07-01

    We evaluated the modulatory effects of naringin on altered hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetic rats. Oral treatment of naringin at a doses of 20, 40 and 80 mg/kg body weight to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, blood glycosylated hemoglobin and increase in the levels of plasma insulin and blood hemoglobin. The altered activities of the hepatic key enzymes of carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase, glycogen phosphorylase and glycogen content of diabetic rats were significantly reverted to near normal levels by the treatment of naringin in a dose-dependent manner. Naringin at a dose of 80 mg/kg body weight showed the highest significant effect than the other two doses (20 and 40 mg/kg). Further, immunohistochemical observation of pancreas revealed that naringin-treated diabetic rats showed the increased number of insulin immunoreactive β-cells, which confirmed the biochemical findings. These findings revealed that naringin has potential antihyperglycemic activity in high-fat diet/low-dose streptozotocin-induced diabetic rats.

  6. Proteomic analysis of mouse islets after multiple low-dose streptozotocin injection.

    PubMed

    Xie, Xiaolei; Li, Shuai; Liu, Siyu; Lu, Yan; Shen, Pingping; Ji, Jianguo

    2008-02-01

    The islets of Langerhans are scattered throughout the pancreas and play a major role in the control of metabolic fuel homeostasis. To get a better understanding of the mechanisms underlying type 1 diabetes mellitus, we have generated a mouse model by injections of multiple low-dose streptozotocin. The islets in the mouse pancreas were handpicked and proteins from the islets were then isolated and separated by two-dimensional gel electrophoresis. Seven proteins were found to be altered significantly at expression level. Among the seven proteins, four were up-regulated and three were down-regulated in diabetic mice as compared with controls. These proteins were successfully identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and the changes of selected protein expression were further validated by quantitative real time PCR and Western blotting. Voltage-dependent anion-selective channel protein 1 and peroxiredoxin-4 were found for the first time to be associated with type 1 diabetes mellitus in mouse islets in the current study. These results suggest that glucose transport, beta cell proliferation/death, and oxidative stress play important roles in maintaining the balance of glucose level. Our study also provides novel insight into the mechanism of type 1 diabetes mellitus.

  7. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    PubMed Central

    Hwang, Seung Hwan; Kang, Il-Jun

    2017-01-01

    The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement. PMID:28303158

  8. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    PubMed

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  9. Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats.

    PubMed

    Fouad, Amr A; Alwadani, Fahad

    2015-11-01

    The possible protective effect of thymoquinone against eye lens changes in diabetic rats was investigated. Following diabetes induction by a single injection of streptozotocin (45 mg/kg, i.p.), thymoquinone was administered in three different doses (20, 40, and 80 mg/kg/day, p.o.) for 12 weeks. Thymoquinone significantly and dose-dependently attenuated the hypoinsulinemia and hyperglycemia in diabetic rats. Also, thymoquinone (particularly 40 and 80 mg/kg) significantly decreased the elevations of malondialdehyde, nitric oxide, tumor necrosis factor-α, glycated proteins, aldose reductase activity, sorbitol level, and caspase-3 activity in the lens tissues of diabetic rats. In addition, thymoquinone (particularly 40 and 80 mg/kg) significantly ameliorated the diabetes-induced reductions of glutathione peroxidase, superoxide dismutase, and catalase activities, and total and soluble protein contents in the lens tissues. It was concluded that thymoquinone significantly protected the lens tissue against changes induced by diabetes in rats through its antioxidant, anti-inflammatory, and antidiabetic effects. Copyright © 2015. Published by Elsevier B.V.

  10. Omeprazole and PGC-formulated heparin binding epidermal growth factor normalizes fasting blood glucose and suppresses insulitis in multiple low dose streptozotocin diabetes model.

    PubMed

    Castillo, Gerardo M; Nishimoto-Ashfield, Akiko; Banerjee, Aryamitra A; Landolfi, Jennifer A; Lyubimov, Alexander V; Bolotin, Elijah M

    2013-11-01

    Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/- PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. HBEGF, PGC-HBEGF, Omeprazole, Omeprazole + PGC-HBEGF, Omeprazole + PGC-gastrin + PGC-HBEGF and epidermal growth factor (EGF) + gastrin were tested in multiple low dose streptozotocin diabetic mice. Omeprazole + PGC-HBEGF normalized FBG and is better than EGF + gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole + PGC-HBEGF, or EGF + gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole + PGC-gastrin + PGC-HBEGF but Omeprazole + PGC-HBEGF alone showed better FBG and glucose tolerance. Omeprazole + PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes.

  11. Omeprazole and PGC-formulated heparin binding epidermal growth factor normalizes fasting blood glucose and suppresses insulitis in multiple low dose streptozotocin diabetes model

    PubMed Central

    Castillo, Gerardo M.; Nishimoto-Ashfield, Akiko; Banerjee, Aryamitra A.; Landolfi, Jennifer A.; Lyubimov, Alexander V.; Bolotin, Elijah M.

    2013-01-01

    Purpose Our objective was to develop novel nanocarriers (protected graft copolymer, PGC) that improve the stability of heparin binding EGF (HBEGF) and gastrin and then to use PGC-formulated HBEGF (PGC-HBEGF) and Omeprazole (+/− PGC-gastrin) for normalizing fasting blood glucose (FBG) and improving islet function in diabetic mice. Method HBEGF, PGC-HBEGF, Omeprazole, Omeprazole+PGC-HBEGF, Omeprazole+PGC-gastrin+PGC-HBEGF and epidermal growth factor (EGF)+gastrin were tested in multiple low dose streptozotocin diabetic mice. Results Omeprazole+PGC-HBEGF normalized FBG and is better than EGF+gastrin at improving islet function and decreasing insulitis. Groups treated with Omeprazole, Omeprazole+PGC-HBEGF, or EGF+gastrin have significantly improved islet function versus saline control. All animals that received PGC-HBEGF had significantly reduced islet insulitis versus saline control. Non-FBG was lower for Omeprazole+PGC-gastrin+PGC-HBEGF but Omeprazole+PGC-HBEGF alone showed better FBG and glucose tolerance. Conclusions Omeprazole+PGC-HBEGF provides a sustained exposure to both EGFRA and gastrin, improves islet function, and decreases insulitis in multiple low dose streptozotocin diabetic mice. Although HBEGF or EGF elevates non-FBG, it facilitates a reduction of insulitis and, in the presence of Omeprazole, provides normalization of FBG at the end of treatment. The study demonstrates Omeprazole and PGC-HBEGF is a viable treatment for diabetes. PMID:23793991

  12. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  14. Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats.

    PubMed

    Sankaranarayanan, Chandrasekaran; Nishanthi, Ramajayam; Pugalendi, Pachaiappan

    2018-07-01

    Aberrations in the activities of key enzymes of carbohydrate metabolism is well documented in diabetes mellitus. Previous studies have shown that active ingredients in the extracts of Berberis aristata exhibits diverse pharmacological activities in animal models. The present study was undertaken to investigate whether berbamine (BBM), an alkaloid from the roots of Berberis aristata can ameliorate the altered activities of carbohydrate metabolic enzymes in high fat diet (HFD)/streptozotocin (STZ) induced diabetic rats. Supplementation of HFD for 4 weeks followed by intraperitonial administration of single low dose of STZ (40 mg/kg b.w.) to Sprague Dawley rats resulted in significant hyperglycemia with a decline in plasma insulin levels. The rats also exhibited decreased hemoglobin with an increase in glycated hemoglobin levels. The activities of hexokinase, glucose-6-phosphate dehydrogenase were decreased whereas increases in the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase were observed in the hepatic tissues of diabetic control rats. Glycogen content in the hepatic and skeletal muscle tissues were found to be decreased in diabetic rats. Oral administration of BBM for 56 days, dose dependently (50, 100, 200 mg/kg b.w.) improved insulin secretion in diabetic treated rats. Immunohistochemical studies on pancreas revealed a strong immunoreactivity to insulin in BBM treated rats. At the effective dose of 100 mg/kg b.w., BBM restored the altered activities of carbohydrate metabolic enzymes and also improved glycogen content in insulin dependent tissues. From the biochemical and histochemical data obtained in this study we conclude that BBM ameliorated the activities of metabolic enzymes and maintained glucose homeostasis in HFD/STZ induced diabetic rats and it can be used as a potential phytomedicine for the management of diabetes mellitus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Babukumar, Sukumar; Vinothkumar, Veerasamy; Sankaranarayanan, Chandrasekaran; Srinivasan, Subramani

    2017-12-01

    Geraniol, an acyclic monoterpene alcohol is found in medicinal plants, is used traditionally for several medical purposes including diabetes. The present study evaluates the antihyperglycemic potential of geraniol on key enzymes of carbohydrate metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in experimental rats, by a single intraperitoneal (i.p) injection of STZ [40 mg/kg body weight (b.w.)]. Different doses of geraniol (100, 200 and 400 mg/kg b.w.) and glyclazide (5 mg/kg b.w.) were administrated orally to diabetic rats for 45 days. Body weight, food intake, plasma glucose, insulin, blood haemoglobin (Hb), glycosylated haemoglobin (HbA 1c ), hepatic glucose metabolic enzymes and glycogen were examined. The LD 50 value of geraniol is 3600 mg/kg b.w. at oral administration in rats. Administration of geraniol in a dose-dependent manner (100, 200, 400 mg/kg b.w.) and glyclazide (5 mg/kg b.w.) for 45 days significantly improved the levels of insulin, Hb and decreased plasma glucose, HbA 1C in diabetic-treated rats. Geraniol at its effective dose (200 mg/kg b.w.) ameliorated the altered activities of carbohydrate metabolic enzymes near normal effects compared with two other doses (100 and 400 mg/kg b.w.). Geraniol treatment to diabetic rats improved hepatic glycogen content suggesting its anti-hyperglycemic potential. Geraniol supplement was found to preserve the normal histological appearance of hepatic cells and pancreatic β-cells in diabetic rats. The present findings suggest that geraniol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes even though clinical studies used to evaluate this possibility are warranted.

  16. The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats

    PubMed Central

    Al-Malki, Abdulrahman L.; El Rabey, Haddad A.

    2015-01-01

    The antidiabetic activity of two low doses of Moringa seed powder (50 and 100 mg/kg body weight, in the diet) on streptozotocin (STZ) induced diabetes male rats was investigated. Forty rats were divided into four groups. The diabetic positive control (STZ treated) group showed increased lipid peroxide, increased IL-6, and decreased antioxidant enzyme in the serum and kidney tissue homogenate compared with that of the negative control group. Immunoglobulins (IgA, IgG), fasting blood sugar, and glycosylated hemoglobin (HbA1c) were also increased as a result of diabetes in G2 rats. Moreover albumin was decreased, and liver enzymes and α-amylase were not affected. In addition, the renal functions and potassium and sodium levels in G2 were increased as a sign of diabetic nephropathy. Urine analysis showed also glucosuria and increased potassium, sodium, creatinine, uric acid, and albumin levels. Kidney and pancreas tissues showed also pathological alteration compared to the negative control group. Treating the diabetic rats with 50 or 100 mg Moringa seeds powder/kg body weight in G3 and G4, respectively, ameliorated the levels of all these parameters approaching the negative control values and restored the normal histology of both kidney and pancreas compared with that of the diabetic positive control group. PMID:25629046

  17. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, O O; Omotayo, Erejuwa O; Gurtu, Sunil; Sulaiman, Siti Amrah; Ab Wahab, Mohd Suhaimi; Sirajudeen, K N S; Salleh, Md Salzihan Md

    2010-01-01

    Oxidative stress plays a crucial role in the development of diabetic complications. The aims of this study were to investigate whether honey could reduce hyperglycemia and ameliorate oxidative stress in kidneys of streptozotocin-induced diabetic rats. Diabetes was induced by a single dose of STZ (60 mg/kg; i. p.). Diabetic rats were randomly grouped and administered distilled water (0.5 mL/day) and honey (0.2 g/kg/day, 1.2 g/kg/day and 2.4 g/kg/day) by oral gavage for four weeks. Each group consisted of six rats. Total antioxidant status (TAS), activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) were significantly reduced, while superoxide dismutase (SOD) activity was up-regulated in kidneys of diabetic rats. Lipid peroxidation (TBARS) and fasting plasma glucose (FPG) were significantly elevated while body weight was reduced in diabetic rats. Honey significantly increased body weight, TAS, activities of CAT, GPx, GR, and GST in diabetic rats. It significantly restored SOD activity, and reduced FPG and TBARS levels in diabetic rats. Histopathological examinations of the kidneys revealed that mesangial matrix expansion and thickening of glomerular basement membrane were reduced in the honey-treated diabetic rats. Honey exerts a hypoglycemic effect and ameliorates oxidative stress in kidneys of streptozotocin-induced diabetic rats.

  18. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Xianchu; Liu, Ming; Mo, Yanzhi; Peng, Huan; Gong, Jingbo; Li, Zhuang; Chen, Jiaxue; Xie, Jingtao

    2016-04-01

    Previous research demonstrated that diabetes is one of the leading causes of learning and memory deficits. Naringin, a bioflavonoid isolated from grapefruits and oranges, has potent protective effects on streptozotocin (STZ)-induced diabetic rats. Recently, the effects of naringin on learning and memory performances were monitored in many animal models of cognitive impairment. However, to date, no studies have investigated the ameliorative effects of naringin on diabetes-associated cognitive decline (DACD). In this study, we investigated the effects of naringin, using a STZ-injected rat model and explored its potential mechanism. Diabetic rats were treated with naringin (100 mg/kg/d) for 7 days. The learning and memory function were assessed by Morris water maze test. The oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)] and inflammatory cytokines (TNF-a, IL-1β, and IL-6) were measured in hippocampus using corresponding commercial kits. The mRNA and protein levels of PPARγ were evaluated by real time (RT)-PCR and Western blot analysis. The results showed that supplementation of naringin improved learning and memory performances compared with the STZ group. Moreover, naringin supplement dramatically increased SOD levels, reduced MDA levels, and alleviated TNF-α, IL-1β, and IL-6 compared with the STZ group in the hippocampus. The pretreatment with naringin also significantly increased PPARγ expression. Our results showed that naringin may be a promising therapeutic agent for improving cognitive decline in DACD.

  19. Huperzine A Ameliorates Cognitive Deficits in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Mao, Xiao-Yuan; Cao, Dan-Feng; Li, Xi; Yin, Ji-Ye; Wang, Zhi-Bin; Zhang, Ying; Mao, Chen-Xue; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    The present study was designed to probe the effects of Huperzine A (HupA) on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg) for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT), Acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis. PMID:24857910

  20. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    PubMed

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  1. Evaluation of the Effect of Different Doses of Low Energy Shock Wave Therapy on the Erectile Function of Streptozotocin (STZ)-Induced Diabetic Rats

    PubMed Central

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-01-01

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment. PMID:23698784

  2. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-05-21

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.

  3. Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet.

    PubMed

    Epp, Riley A; Susser, Shanel E; Morissette, Marc P; Kehler, D Scott; Jassal, Davinder S; Duhamel, Todd A

    2013-01-01

    This study tested the hypothesis that exercise training would prevent the development of diabetes-induced cardiac dysfunction and altered expression of sarcoplasmic reticulum Ca(2 +)-transport proteins in the low-dose streptozotocin-induced diabetic rats fed a high-fat diet (HFD+STZ). Male Sprague-Dawley rats (4 weeks old; 125-150 g) were made diabetic using a high-fat diet (40% fat, w/w) and a low-dose of streptozotocin (35 mg·(kg body mass)(-1)) by intravenous injection. Diabetic animals were divided among a sedentary group (Sed+HFD+STZ) or an exercise-trained group (Ex+HFD+STZ) that accumulated 3554 ± 338 m·day(-1) of voluntary wheel running (mean ± SE). Sedentary animals fed a low-fat diet served as the control (Sed+LFD). Oral glucose tolerance was impaired in the sedentary diabetic group (1179 ± 29; area under the curve (a.u.c.)) compared with that in the sedentary control animals (1447 ± 42 a.u.c.). Although left ventricular systolic function was unchanged by diabetes, impaired E/A ratios (i.e., diastolic function) and rates of pressure decay (-dP/dt) indicated the presence of diastolic dysfunction. Diabetes also reduced SERCA2a protein content and maximal SERCA2a activity (V(max)) by 21% and 32%, respectively. In contrast, the change in each parameter was attenuated by exercise training. Based on these data, it appears that exercise training prevented the development of diabetic cardiomyopathy and the dysregulation of sarcoplasmic reticulum protein content in an inducible animal model of type 2 diabetes.

  4. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats.

    PubMed

    Srikanta, Akshatha Hosahalli; Kumar, Anbarasu; Sukhdeo, Shinde Vijay; Peddha, Muthukumar Serva; Govindaswamy, Vijayalakshmi

    2016-10-12

    Polyphenols act by scavenging reactive oxygen species during oxidative stress and hence are useful in the treatment of metabolic disorders including diabetes. This study describes the effect of polyphenol rich mulberry and jamun wines fed to streptozotocin-induced diabetic rats. To male adult Wistar rats, divided into groups (n = 10 per group) intraperitoneal injection was administered with streptozotocin at 38 mg per kg body weight for inducing diabetes. After confirmation of diabetes, rats divided into groups were fed each day with 5.7 milliliter per kg body weight of mulberry, jamun, white and red grape wines for 6 weeks. One group of animals received resveratrol at 20 mg per kg body weight. After six weeks of treatment, blood glucose, urinary profile, lipid profile, plasma, liver, kidney, brain and eye antioxidant enzyme activities, lipid peroxidation, non-esterified fatty acids (NEFA) and hepatic glutathione (GSH) content were determined. Though wine and resveratrol feeding did not improve the glycemic status of diabetic rats, increases in antioxidant enzymes and GSH content accompanied by reduced NEFA and lipid peroxidation were observed. The kidneys and brains of resveratrol fed rats showed significant reduction in malondialdehyde equivalents, exhibited an improved antioxidant status of tissues and an increased glutathione content. The findings suggested that the wines can ameliorate the consequences of diabetes due to their antioxidants.

  5. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity

    PubMed Central

    Case, A. J.; Agraz, D.; Ahmad, I. M.; Zimmerman, M. C.

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity. PMID:26770655

  6. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity.

    PubMed

    Case, A J; Agraz, D; Ahmad, I M; Zimmerman, M C

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity.

  7. Renoprotective effect of aged garlic extract in streptozotocin-induced diabetic rats

    PubMed Central

    Shiju, T. M.; Rajesh, N. G.; Viswanathan, Pragasam

    2013-01-01

    Objective: Aged garlic extract (AGE) has been proven to exhibit antioxidant, hypolipidemic, hypoglycemic and antidiabetic properties. However, its effect on diabetic nephropathy was unexplored. Therefore, the present study was designed to investigate the renoprotective effect of AGE in streptozotocin-induced diabetic rats. Materials and Methods: Albino Wistar rats were induced with diabetes by a single intraperitoneal injection of 45 mg/kg b.w. of streptozotocin. Commercially available AGE was supplemented orally at a dose of 500 mg/kg body weight/day. Aminoguanidine, which has been proven to be an anti-glycation agent was used as positive control and was supplemented at a dose of 1 g/L in drinking water. The serum and urinary biochemical parameters were analyzed in all the groups and at the end of 12 weeks follow up, the renal histological examination were performed using H & E and PAS staining. Results: The diabetic rats showed a significant change in the urine (P < 0.001) and serum (P < 0.01) constituents such as albumin, creatinine, urea nitrogen and glycated hemoglobin. In addition, the serum lipid profile of the diabetic rats were altered significantly (P < 0.05) compared to that of the control rats. However, the diabetic rats supplemented with aged garlic extract restored all these biochemical changes. The efficacy of the extract was substantiated by the histopathological changes in the kidney. Conclusion: From our results, we conclude that aged garlic extract has the ability to ameliorate kidney damage in diabetic rats and the renoprotective effect of AGE may be attributed to its anti-glycation and hypolipidemic activities. PMID:23543654

  8. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer's disease via activation of Nrf2/ARE pathway and inhibition of β-secretase.

    PubMed

    Nakhate, Kartik T; Bharne, Ashish P; Verma, Vinay Sagar; Aru, Deepali N; Kokare, Dadasaheb M

    2018-05-01

    Although plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) protects against cerebral ischemia and spinal cord injury-induced oxidative stress and inflammation by activating the nuclear factor-erythroid 2-related factor-2 /antioxidant response element (Nrf2/ARE) pathway, its role in the amelioration of neurodegenerative diseases remains unexplored. In the present study, we investigated the effect of plumbagin on Alzheimer's disease (AD)-like condition in mice. The animals were treated intracerebroventricularly with streptozotocin (STZ; 3 mg/kg) twice, on day 1 and 3, to induce AD-like condition, and the symptoms were evaluated after 14 days. While the loss of learning and memory performance was evident in the mice subjected to Morris water maze (MWM), there was a striking increase in the population of astrocytes labelled with glial fibrillary acidic protein (GFAP) in the hippocampus. Daily intraperitoneal (i.p.) treatment with plumbagin (0.5 and 1 mg/kg), starting from 1 h prior to first dose of STZ, significantly prevented the cognitive deficits in MWM. On the other hand, administration of Nrf2/ARE pathway inhibitor, trigonelline (10 and 15 mg/kg, i.p.) enhanced the effects of STZ. Pre-treatment with subeffective dose of trigonelline (5 mg/kg) significantly attenuated the effects of plumbagin in MWM. While plumbagin prevented the STZ induced GFAP expression, this effect of plumbagin was attenuated by trigonelline. Moreover, the in silico docking study revealed potent inhibitory effect of plumbagin on β-secretase enzyme. The results of the present study suggest that plumbagin improves cognitive function in STZ induced mouse model of AD possibly via Nrf2/ARE mediated suppression of astrogliosis and inhibition of β-secretase enzyme. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans.

    PubMed

    Nath, Sayantan; Ghosh, Sankar Kumar; Choudhury, Yashmin

    A murine model of type 2 diabetes mellitus was used to compare the antidiabetic effects of the dipeptidyl peptidase-4 (DPP4) inhibitor vildagliptin and biguanide, metformin. Swiss albino mice (n=20 males; n=25 females) were given high fat diet (HFD) ad libitum for 3weeks followed by low dose (40mgkg -1 body weight, bw daily) of streptozotocin (STZ) intraperitoneally five times from the 22nd day of treatment onwards, with HFD continued up to 26th day. Controls (n=15 males; n=15 females) were fed normal balanced diet without administration of STZ. Successful induction of diabetes mellitus was confirmed by testing for fasting blood glucose, intraperitoneal glucose tolerance and intraperitoneal insulin sensitivity. Diabetic mice were administered vildagliptin (10mgkg -1 bw daily) and metformin (50mgkg -1 bw daily) orally for 4weeks. Control, diabetic, vildagliptin and metformin-treated diabetic mice were evaluated for alterations in lipid profile using blood serum and histopathology and oxidative stress using tissues including liver, kidney and heart. Diabetic mice showed significant alterations in lipid profile, tissue histopathology, impaired glucose tolerance, lower insulin sensitivity and elevated lipid peroxidation and protein carbonylation, with depressed catalase activity, when compared to age and gender-matched controls. Metformin and vildagliptin ameliorated the abovementioned diabetic conditions, with vildagliptin found to be more effective. A murine model developed by the combination of HFD and multiple low dose of STZ mimics the metabolic characteristics of type 2 diabetes mellitus in humans, and may be useful for antidiabetic drug screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    PubMed

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  11. The acute effects of different spironolactone doses on cardiac function in streptozotocin-induced diabetic rats.

    PubMed

    Vranic, Aleksandra; Simovic, Stefan; Ristic, Petar; Nikolic, Tamara; Stojic, Isidora; Srejovic, Ivan; Zivkovic, Vladimir; Jakovljevic, Vladimir; Djuric, Dusan

    2017-11-01

    Currently, cardiovascular diseases are the leading cause of global mortality, while diabetes mellitus remains an important cause of cardiovascular morbidity. A recent study showed that patients with diabetes mellitus treated with mineralocorticoid receptor antagonists have improved coronary microvascular function, leading to improved diastolic dysfunction. In this study, we evaluated the influence of acute administration of spironolactone on myocardial function in rats with streptozotocin-induced diabetes mellitus, with special emphasis on cardiodynamic parameters in diabetic rat hearts. The present study was carried out on 40 adult male Wistar albino rats (8 weeks old). Rats were randomly divided into 4 groups (10 animals per group): healthy rats treated with 0.1 μmol/L of spironolactone, diabetic rats treated with 0.1 μmol/L of spironolactone, healthy rats treated with 3 μmol/L of spironolactone, and diabetic rats treated with 3 μmol/L of spironolactone. Different, dose-dependent, acute responses of spironolactone treatment on isolated, working diabetic and healthy rat heart were observed in our study. In healthy rats, better systolic function was achieved with higher spironolactone dose, while in diabetic rats, similar effects of low and high spironolactone dose were observed.

  12. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    PubMed

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  13. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats

    PubMed Central

    Bădescu, SV; Tătaru, CP; Kobylinska, L; Georgescu, EL; Zahiu, DM; Zăgrean, AM; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations: STZ = streptozotocin, OFT = Open Field Test PMID:27974933

  14. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    PubMed

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  15. Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences.

    PubMed

    Khan, M Badruzzaman; Ahmad, Muzamil; Ahmad, Saif; Ishrat, Tauheed; Vaibhav, Kumar; Khuwaja, Gulrana; Islam, Fakhrul

    2015-02-01

    The standardized extract of Bacopa monniera (BM) is a complex mixture of ingredients with a uniquely wide spectrum of neuropharmacological influences upon the central nervous system including enhanced learning and memory with known antioxidant potential and protection of the brain from oxidative damage. The present study demonstrates the therapeutic efficacy of BM on cognitive impairment and oxidative damage, induced by intracerebroventricular injection of streptozotocin (ICV-STZ) in rat models. Male Wistar rats were pre-treated with BM at a selected dose (30 mg/Kg) given orally for 2 weeks and then were injected bilaterally with ICV-STZ (3 mg/Kg), while sham operated rats were received the same volume of vehicle. Behavioral parameters were subsequently monitored 2 weeks after the surgery using the Morris water maze (MWM) navigation task then were sacrificed for biochemical, immunohistochemical (Cu/Zn-SOD) and histopathological assays. ICV-STZ-infused rats showed significant loss in learning and memory ability, which were significantly improved by BM supplementation. A significant increase in thiobarbituric acid reactive species and a significant decrease in reduced glutathione, antioxidant enzymes in the hippocampus were observed in ICV-STZ rats. Moreover, decrease in Cu/Zn-SOD expression positive cells were observed in the hippocampus of ICV-STZ rats. BM supplementation significantly ameliorated all alterations induced by ICV-STZ in rats. The data suggest that ICV-STZ might cause its neurotoxic effects via the production of free radicals. Our study demonstrates that BM is a powerful antioxidant which prevents cognitive impairment, oxidative damage, and morphological changes in the ICV-STZ-infused rats. Thus, BM may have therapeutic value for the treatment of cognitive impairment.

  16. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats.

    PubMed

    Abdelaziz, Dalia H A; Ali, Sahar A; Mostafa, Mahmoud M A

    2015-06-01

    In Arabic folk medicine, the seeds of Phoenix dactylifera L. (Arecaceae) have been used to manage diabetes for many years. Few studies have reported the antidiabetic effect of P. dactylifera seeds; however, their effect on diabetic complications is still unexplored. The present study investigates the protective effect of P. dactylifera seeds against diabetic complications in rats. The aqueous suspension of P. dactylifera seeds (aqPDS) (1 g/kg/d) was orally administered to streptozotocin-induced diabetic rats for 4 weeks. The serum biochemical parameters were assessed spectrophotometrically. Furthermore, oxidative stress was examined in both liver and kidney tissues by assessment of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), reduced glutathione, superoxide dismutase (SOD), glutathione S-transferase, and catalase. Oral administration of aqPDS significantly ameliorated the elevated levels of glucose (248 ± 42 versus 508 ± 60 mg/dl), urea (32 ± 3.3 versus 48.3 ± 5.6 mg/dl), creatinine (2.2 ± 0.35 versus 3.8 ± 0.37 mg/dl), ALT (29.6 ± 3.9 versus 46.4 ± 5.9 IU/l), and AST (73.3 ± 13 versus 127.8 ± 18.7 IU/l) compared with the untreated diabetic rats. In addition to significant augmentation in the activities of antioxidant enzymes, there was reduction in TBARS and NO levels and improvement of histopathological architecture of the liver and kidney of diabetic rats. The aqPDS showed potential protective effects against early diabetic complications of both liver and kidney. This effect may be explained by the antioxidant and free radical scavenging capabilities of P. dactylifera seeds.

  17. Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Perez Gutierrez, Rosa Martha; Madrigales Ahuatzi, Diana; Horcacitas, Maria del Carmen; Garcia Baez, Efren; Cruz Victoria, Teresa; Mota-Flores, Jose Maria

    2014-01-01

    Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis. PMID:24523819

  18. Low molecular weight fucoidan ameliorates streptozotocin-induced hyper-responsiveness of aortic smooth muscles in type 1 diabetes rats.

    PubMed

    Liang, Zhengyang; Zheng, Yuanyuan; Wang, Jing; Zhang, Quanbin; Ren, Shuang; Liu, Tiantian; Wang, Zhiqiang; Luo, Dali

    2016-09-15

    Low molecular weight fucoidan (LMWF) was prepared from Laminaria japonica Areschoug, a popular seafood and medicinal plant consumed in Asia. Chinese have long been using it as a traditional medicine for curing hypertension and edema. This study was intent to investigate the possible beneficial effect of LMWF on hyper-responsiveness of aortic smooth muscles instreptozotocin (STZ)-induced type 1 diabetic rats. Sprague-Dawley rats were made diabetic by injection of STZ, followed by the administration of LMWF (50 or 100mg/kg/day) or probucol (100mg/kg/day) for 12 weeks. Body weight, blood glucose level, basal blood pressure, serum lipid profiles, oxidative stress, prostanoids production, and vasoconstriction response of endothelium-denuded aorta rings to phenylephrine were measured by Real time-PCR, Western blots, ELISA assay, and force myograph, respectively. LMWF (100mg/kg/day)-treated group showed robust improvements on STZ-induced body weight-loss, hypertension, and hyperlipidaemia as indicated by decreased serum level of total cholesterol, triglyceride, and low density lipoprotein cholesterol; while probucol, a lipid-modifying drug with antioxidant properties, displayed mild effects. In addition, LMWF appreciably ameliorated STZ-elicited hyper-responsiveness and oxidative stress in aortic smooth muscles as indicated by decreased superoxide level, increased glutathione content and higher superoxide dismutase activity. Furthermore, administration with LMWF dramatically prevented cyclooxygenase-2 stimulation and restored the up-regulation of thromboxane synthase and down-regulation of 6-keto-PGF1α (a stable metabolic product of prostaglandin I2) in the STZ-administered rats. This study demonstrates for the first time that LMWF can protect against hyperlipidaemia, hypertension, and hyper-responsiveness of aortic smooth muscles in type 1 diabetic rat via, at least in part, amelioration of oxidative stress and restoration of prostanoids levels in aortic smooth muscles

  19. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor.

    PubMed

    Deshmukh, Rahul; Sharma, Vivek; Mehan, Sidharth; Sharma, Nidhi; Bedi, K L

    2009-10-12

    Enhancing cyclic nucleotides signaling by inhibition of phosphodiesterases (PDEs) is known to be beneficial in disorders associated with cognitive decline. The present study was designed to investigate the effect of vinpocetine (PDE1 inhibitor) on intracerebroventricular (i.c.v.) streptozotocin induced experimental sporadic dementia of Alzheimer's type. Infusion of streptozotocin impaired learning and memory, increased oxidative-nitritive stress and induced cholinergic hypofunction in rats. Chronic treatment with vinpocetine (5, 10 and 20 mg/kg i.p.) for 21 days following first i.c.v. streptozotocin infusion significantly improved learning and memory in Morris water maze and passive avoidance paradigms. Further, vinpocetine significantly reduced the oxidative-nitritive stress, as evidenced by decrease in malondialdehyde (MDA) and nitrite levels, and restored the reduced glutathione (GSH) levels. Significant increase in acetylcholinesterase activity and lactate dehydrogenase levels was observed in the present model indicating cholinergic hypofunction and increase in neuronal cell damage. Chronic treatment with vinpocetine also reduced significantly the increase in acetylcholinesterase activity and lactate dehydrogenase levels indicating restorative capacity of vinpocetine with respect to cholinergic functions and preventing the neuronal damage. The observed beneficial effects of vinpocetine on spatial memory may be due to its ability to favorably modulate cholinergic functions, prevent neuronal cell damage and possibly through its antioxidant mechanism also.

  20. Chronic treatment of (R)-α-lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats.

    PubMed

    Ghelani, Hardik; Razmovski-Naumovski, Valentina; Nammi, Srinivas

    2017-06-01

    (R)- α -lipoic acid ( ALA ), an essential cofactor in mitochondrial respiration and a potential antioxidant, possesses a wide array of metabolic benefits including anti-obesity, glucose lowering, insulin-sensitizing, and lipid-lowering effects. In this study, the curative effects of ALA (100 mg/kg) on a spectrum of conditions related to metabolic syndrome and type 2 diabetes ( T2D ) were investigated in a high-fat diet (HFD)-fed and low-dose streptozotocin (STZ)-induced rat model of metabolic syndrome and T2D . The marked rise in the levels of glucose, triglycerides, total-cholesterol, LDL-cholesterol, and VLDL-cholesterol in the blood of HFD-fed and low-dose STZ-injected rats were significantly reduced by ALA treatment. Furthermore, ALA treatment significantly increased the serum HDL-cholesterol levels and tended to inhibit diabetes-induced weight reduction. Mathematical computational analysis revealed that ALA also significantly improved insulin sensitivity and reduced the risk of atherosclerotic lesions and coronary atherogenesis. This study provides scientific evidence to substantiate the use of ALA to mitigate the glucose and lipid abnormality in metabolic syndrome and T2D .

  1. The Hypoglycemic and Antioxidant Activity of Cress Seed and Cinnamon on Streptozotocin Induced Diabetes in Male Rats.

    PubMed

    Qusti, Safaa; El Rabey, Haddad A; Balashram, Sarah A

    2016-01-01

    The present study aimed to estimate the stimulation of pancreas of rats with streptozotocin induced diabetes using 20% (w/w) garden cress seed (Lepidium sativum) and cinnamon methanol extracts. The positive control diabetic group showed a significant increase in fasting blood sugar, lipid peroxide, interleukin-6, carboxymethyl lysine, serum uric acid, urea, creatinine, immunoglobulins, and urine albumin and a significant decrease in antioxidant enzymes, sodium ions, potassium ions, and urine creatinine. Severe histopathological changes in the kidney and pancreas tissues in hyperglycemic rats were also shown in the positive control diabetic group. Meanwhile, the groups that were treated with 20% garden cress seed and cinnamon methanol extracts showed a significant decrease in fasting blood sugar and all elevated abovementioned biochemical parameters and an increase in the lowered ones restoring them nearly to the normal levels of G1. Kidney and pancreas tissues were also ameliorated and restored nearly to the normal status. Both garden cress seed and cinnamon methanol extracts succeeded in controlling hyperglycemia in rats with streptozotocin induced diabetes and ameliorated the biochemical and histopathological changes because of their antioxidant activity acquired by their possession of phenolic phytochemicals.

  2. Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotocin-induced diabetic rats.

    PubMed

    Liang, Zhongshu; Leo, Sunnar; Wen, Helin; Ouyang, Mao; Jiang, Weihong; Yang, Kan

    2015-05-13

    Triptolide treatment leads to an improvement in Diabetic Cardiomyopathy (DCM) in streptozotocin-induced diabetic rat model. DCM is characterized by abnormal cardiac energy metabolism. We hypothesized that triptolide ameliorated cardiac metabolic abnormalities in DCM. We proposed (31)P nuclear magnetic resonance ((31)P NMR) spectrometry method for assessing cardiac energy metabolism in vivo and evaluating the effect of triptolide treatment in DCM rats. Six weeks triptolide treatment was conducted on streptozotocin-induced diabetic rats with dose of 100, 200 or 400 μg/kg/day respectively. Sex- and age-matched non-diabetic rats were used as control group. Cardiac chamber dimension and function were determined with echocardiography. Whole heart preparations were perfused with Krebs-Henseleit buffer and (31)P NMR spectroscopy was performed. Cardiac p38 Mitogen Activating Protein Kinase (MAPK) was measured using real time PCR and western blot analysis. In diabetic rats, cardiac mass index was significantly higher, where as cardiac EF was lower than control group. (31)P NMR spectroscopy showed that ATP and pCr concentrations in diabetic groups were also remarkably lower than control group. Compared to non-treated diabetic rats, triptolide-treated diabetic groups showed remarkable lower cardiac mass index and higher EF, ATP, pCr concentrations, and P38 MAPK expressions. Best improvement was seen in group treated with Triptolide with dose 200 μg/kg/day. (31)P NMR spectroscopy enables assessment of cardiac energy metabolism in whole heart preparations. It detects energy metabolic abnormalities in DCM hearts. Triptolide therapy improves cardiac function and increases cardiac energy metabolism at least partly through upregulation of MAPK signaling transduction.

  3. Diabetogenic action of streptozotocin: relationship of dose to metabolic response

    PubMed Central

    Junod, Alain; Lambert, André E.; Stauffacher, Werner; Renold, Albert E.

    1969-01-01

    The relationship between the dose of intravenously administered streptozotocin (a N-nitroso derivative of glucosamine) and the diabetogenic response has been explored by use of the following indices of diabetogenic action: serum glucose, urine volume, and glycosuria, ketonuria, serum immunoreactive insulin (IRI), and pancreatic IRI content. Diabetogenic activity could be demonstrated between the doses of 25 and 100 mg/kg, all indices used showing some degree of correlation with the dose administered. Ketonuria was only seen with the largest dose, 100 mg/kg. The most striking and precise correlation was that between the dose and the pancreatic IRI content 24 hr after administration of the drug, and it is suggested that this represents a convenient test system either for both related and unrelated beta cytotoxic compounds or for screening for modifying agents or antidiabetic substances of a novel type. Ability to produce graded depletion of pancreatic IRI storage capacity led to an analysis of the relationship between pancreatic IRI content and deranged carbohydrate metabolism. Abnormal glucose tolerance and insulin response were seen when pancreatic IRI was depleted by about one-third, while fasting hyperglycemia and gross glycosuria occurred when the depletion had reached two-thirds and three-quarters, respectively. The mild yet persistent anomaly produced by the lowest effective streptozotocin dose, 25 mg/kg, exhibits characteristics resembling the state of chemical diabetes in humans and might thus warrant further study as a possible model. Finally, the loss of the diabetogenic action of streptozotocin by pretreatment with nicotinamide was confirmed and was shown to be a function of the relative doses of nicotinamide and streptozotocin and of the interval between injections. PMID:4241908

  4. Beneficial Effects of Scutellaria baicalensis on Penile Erection in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Li, Xiang; Lee, Yun Jung; Kim, Hye Yoom; Tan, Rui; Park, Min Cheol; Kang, Dae Gill; Lee, Ho Sub

    2016-01-01

    We have reported that ethanol extracts of the root from Scutellaria baicalensis Georgi (ESB) relax cavernous smooth muscles via the NO/cGMP system and Ca[Formula: see text]-sensitive K[Formula: see text] channels in the rabbit corpus cavernosum. In the present study, erectile function was assessed by intracavernous pressure (ICP) and mean arterial pressure (MAP) during electrical stimulation of the cavernous nerve. The ICP/MAP ratio was dose-dependently increased by the treatment of ESB in normal SD rats ([Formula: see text]). To investigate the beneficial effect of ESB on erectile dysfunction in a diabetic animal model, male SD rats were injected with streptozotocin (60[Formula: see text]mg/kg) and then 300[Formula: see text]mg/kg/day ESB was administered daily for eight weeks. In our in vivo study, administration of ESB in STZ rats significantly increased the ICP, ICP/MAP ratio, area under the curve (AUC), as well as the cavernous cGMP levels. Morphometric analyses showed that ESB administration increased both smooth muscle volume and the regular arrangement of collagen fibers compared to the STZ group. The protein expression levels of endothelial nitric oxide synthase (eNOS) and SM [Formula: see text]-actin from penile tissues were also significantly increased in the ESB-treated rats. Taken together, these results suggest that ESB ameliorates penile erectile dysfunction via the activation of the NO/cGMP pathways of the penile corpus cavernosum in a streptozotocin-induced diabetic rat model.

  5. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats.

    PubMed

    Bacanlı, Merve; Anlar, Hatice Gül; Aydın, Sevtap; Çal, Tuğbagül; Arı, Nuray; Ündeğer Bucurgat, Ülkü; Başaran, A Ahmet; Başaran, Nurşen

    2017-12-01

    It is known that diabetes causes some complications including alterations in lipid profile, hepatic enzyme levels but also it causes oxidative stress. Limonene, a major component of Citrus oils, has important health beneficial effects in lowering the level of oxidative stress due to its antioxidant activity. The aim of this study was to investigate the effects of D-limonene on streptozotocin (STZ)-induced diabetes in Wistar albino rats. For this purpose, DNA damage was evaluated by alkaline comet assay. Changes in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSHPx) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH), malondialdehyde (MDA), insulin, total bilirubin and BCA protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol and triglyceride were also evaluated. D-limonene treatment was found to significantly decrease DNA damage, GR enzyme activities and MDA levels and significantly increase GSH levels and CAT, SOD and GSH-Px enzyme activities and altered lipid and liver enzyme parameters in diabetic rats. According to our results, it seems that D-limonene might have a role in the prevention of the complication of diabetes in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Low-dose spironolactone ameliorates insulin resistance and suppresses elevated plasminogen activator inhibitor-1 during gestational testosterone exposure.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Akinade, Aminat I; Adeyanju, Oluwaseun A; Kim, InKyeom; Soladoye, Ayodele O

    2017-12-01

    Elevated gestational circulating testosterone has been associated with pathological pregnancies that increase the risk of development of cardiometabolic disorder in later life. We hypothesised that gestational testosterone exposure, in late pregnancy, causes glucose deregulation and atherogenic dyslipidaemia that would be accompanied by high plasminogen activator inhibitor-1 (PAI-1). The study also hypothesise that low-dose spironolactone treatment would ameliorate these effects. Pregnant Wistar rats received vehicle, testosterone (0.5 mg/kg; sc), spironolactone (0.5 mg/kg, po) or testosterone and spironolactone daily between gestational days 15 and 19. Gestational testosterone exposure led to increased HOMA-IR, circulating insulin, testosterone, 1-h post-load glucose, atherogenic dyslipidaemia, PLR, PAI-1 and MDA. However, all these effects, except that of circulating testosterone, were ameliorated by spironolactone. These results demonstrate that low-dose spironolactone ameliorates glucose deregulation and atherogenic dyslipidaemia during elevated gestational testosterone exposure, at least in part, by suppressing elevated PAI-1.

  7. Inhibiting LDL glycation ameliorates increased cholesteryl ester synthesis in macrophages and hypercholesterolemia and aortic lipid peroxidation in streptozotocin diabetic rats

    PubMed Central

    Cohen, Margo P.; Shea, Elizabeth A.; Wu, Van-Yu

    2009-01-01

    Increased nonenzymatic glycation of apoB-containing lipoproteins impairs uptake and metabolism by the high affinity low density lipoprotein (LDL) receptor, and is one of the post-secretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate (CAP22) to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in LDL incubated with 200 mM glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apoB-containing lipoproteins preincubated with high glucose concentration. The elevated circulating concentrations of glycated lipoprotein and cholesterol and higher vascular levels of lipid peroxidation products observed in streptozotocin diabetic rats compared to nondiabetic controls were significantly reduced in diabetic animals treated for six months with test compound. These results are the first to demonstrate that inhibiting nonenzymatic glycation of apoB-containing lipoproteins ameliorates abnormalities contributory to hypercholesterolemia and atherogenic risk in diabetes. PMID:19922964

  8. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    PubMed

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Branched-chain amino acids supplementation protects streptozotocin-induced insulin secretion and the correlated mechanism.

    PubMed

    Lu, Ming; Zhang, Xiujuan; Zheng, Dongmei; Jiang, Xiuyun; Chen, Qing

    2015-01-01

    Significant evidence demonstrates that oxidative stress can impair insulin secretion and contribute to the development of type 2 diabetes. Branched-chain amino acids (BCAAs) are reported to be positively related to insulin secretion. This study aimed to determine how oxidative stress affects the function of islets and whether BCAAs can ameliorate the oxidative stress, and accompanying c-jun N-terminal kinase (JNK), protein kinase D1 (PKD1), and pancreatic/duodenal homeobox-1 (PDX-1) changes induced by streptozotocin (STZ). Plasma glucose, plasma insulin, and JNK, PKD1 and PDX-1 mRNA and protein expression were measured in rats treated with STZ and BCAAs. The glucose level in STZ-induced diabetic rats was much higher than that in control animals, and the elevated plasma glucose level in diabetic rats could be significantly inhibited by BCAAs treatment. Consistent with the change in glucose levels, the levels of insulin were also affected by BCAAs treatment. The mRNA and protein expression of JNK, PDX-1, and PKD1 were significantly altered in diabetic rats compared with the control group (P<0.01) and treatment with a low dose of BCAA reversed these changes in those above markers significantly (P<0.01). The present study demonstrated that STZ-induced oxidative stress could reduce serum insulin levels and alter the JNK, PDX-1, and PKD1 expression. BCAAs restored the levels of serum insulin reversed changes in JNK, PDX-1, and PKD1 expression. © 2014 International Union of Biochemistry and Molecular Biology.

  10. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats.

    PubMed

    Paz, Ana H; Salton, Gabrielle Dias; Ayala-Lugo, Ana; Gomes, Cristiano; Terraciano, Paula; Scalco, Rosana; Laurino, Claudia Cilene Fernandes Correia; Passos, Eduardo Pandolfi; Schneider, Marlon R; Meurer, Luise; Cirne-Lima, Elizabeth

    2011-02-01

    Betacellulin (BTC), a ligand of the epidermal growth factor receptor, has been shown to promote growth and differentiation of pancreatic β-cells and to improve glucose metabolism in experimental diabetic rodent models. Mesenchymal stem cells (MSCs) have been already proved to be multipotent. Recent work has attributed to rat and human MSCs the potential to differentiate into insulin-secreting cells. Our goal was to transfect rat MSCs with a plasmid containing BTC cDNA to guide MSC differentiation into insulin-producing cells. Prior to induction of cell MSC transfection, MSCs were characterized by flow cytometry and the ability to in vitro differentiate into mesoderm cell types was evaluated. After rat MSC characterization, these cells were electroporated with a plasmid containing BTC cDNA. Transfected cells were cultivated in Dulbecco's modified Eagle medium high glucose (H-DMEM) with 10 mM nicotinamide. Then, the capability of MSC-BTC to produce insulin in vitro and in vivo was evaluated. It was possible to demonstrate by radioimmunoassay analysis that 10(4) MSC-BTC cells produced up to 0.4 ng/mL of insulin, whereas MSCs transfected with the empty vector (negative control) produced no detectable insulin levels. Moreover, MSC-BTC were positive for insulin in immunohistochemistry assay. In parallel, the expression of pancreatic marker genes was demonstrated by molecular analysis of MSC-BTC. Further, when MSC-BTC were transplanted to streptozotocin diabetic rats, BTC-transfected cells ameliorated hyperglycemia from over 500 to about 200 mg/dL at 35 days post-cell transplantation. In this way, our results clearly demonstrate that BTC overabundance enhances glucose-induced insulin secretion in MSCs in vitro as well as in vivo.

  12. Ameliorative Potentials of Cocoyam (Colocasia esculenta L.) and Unripe Plantain (Musa paradisiaca L.) on the Relative Tissue Weights of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Eleazu, C. O.; Iroaganachi, M.; Eleazu, K. C.

    2013-01-01

    Aim. To investigate the ameliorating potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) incorporated feeds on the renal and liver growths of diabetic rats, induced with 55 and 65 mg/kg body weight of Streptozotocin. Method. The blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity (SPGR) in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The chemical composition and antioxidant screening of the test feeds were carried out using standard techniques. Results. Administration of the test feeds for 21 days to the diabetic rats of groups 4 and 5, resulted in 58.75% and 38.13% decreases in hyperglycemia and amelioration of their elevated urinary protein, glucose, SPGR, and relative kidney weights. The diabetic rats administered cocoyam incorporated feeds, had 2.71% and 19.52% increases in weight and growth rates, the diabetic rats administered unripe plantain incorporated feeds had 5.12% and 29.52% decreases in weight and growth rates while the diabetic control rats had 28.69%, 29.46%, 248.9% and 250.14% decreases in weights and growth rates. The cocoyam incorporated feeds contained higher antioxidants, minerals and phytochemicals except alkaloids than unripe plantain feed. Conclusion. Cocoyam and unripe plantain could be useful in the management of diabetic nephropathy. PMID:23971053

  13. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats.

    PubMed

    Eleazu, C O; Iroaganachi, M; Eleazu, K C

    2013-01-01

    To investigate the ameliorating potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) incorporated feeds on the renal and liver growths of diabetic rats, induced with 55 and 65 mg/kg body weight of Streptozotocin. The blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity (SPGR) in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The chemical composition and antioxidant screening of the test feeds were carried out using standard techniques. Administration of the test feeds for 21 days to the diabetic rats of groups 4 and 5, resulted in 58.75% and 38.13% decreases in hyperglycemia and amelioration of their elevated urinary protein, glucose, SPGR, and relative kidney weights. The diabetic rats administered cocoyam incorporated feeds, had 2.71% and 19.52% increases in weight and growth rates, the diabetic rats administered unripe plantain incorporated feeds had 5.12% and 29.52% decreases in weight and growth rates while the diabetic control rats had 28.69%, 29.46%, 248.9% and 250.14% decreases in weights and growth rates. The cocoyam incorporated feeds contained higher antioxidants, minerals and phytochemicals except alkaloids than unripe plantain feed. Cocoyam and unripe plantain could be useful in the management of diabetic nephropathy.

  14. Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats.

    PubMed

    Valcheva-Kuzmanova, S; Kuzmanov, K; Tancheva, S; Belcheva, A

    2007-03-01

    Aronia melanocarpa fruit juice (AMFJ) is rich in phenolic antioxidants, especially flavonoids from the anthocyanin subclass. The aim of the present study was to investigate the influence of AMFJ on plasma glucose and lipids in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg). AMFJ was applied by gavage at doses of 10 and 20 ml/kg for 6 weeks to normal and diabetic rats. Streptozotocin caused a significant elevation of plasma glucose by 141% and of plasma triglycerides (TG) by 64% in comparison with normal control rats and induced statistically insignificant elevations of total cholesterol and LDL-cholesterol and a reduction of HDL-cholesterol. Applied to normal rats, AMFJ did not influence plasma glucose and lipid levels. Applied to diabetic rats, AMFJ (10 and 20 ml/kg) significantly reduced plasma glucose by 44% and 42% and TG by 35% and 39%, respectively, to levels that did not significantly differ from those of the normal control rats and counteracted the influence of streptozotocin on total cholesterol, LDL-cholesterol and HDL-cholesterol. In conclusion, AMFJ significantly decreased the streptozotocin-induced abnormalities in blood glucose and TG in diabetic rats and might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. Copyright 2007 Prous Science.

  15. Low-Dose Paclitaxel Ameliorates Pulmonary Fibrosis by Suppressing TGF-β1/Smad3 Pathway via miR-140 Upregulation

    PubMed Central

    Wang, Congjie; Song, Xiaodong; Li, Youjie; Han, Fang; Gao, Shuyan; Wang, Xiaozhi; Xie, Shuyang; Lv, Changjun

    2013-01-01

    Abnormal TGF-β1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF-β1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF-β1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF-β1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway via upregulating miR-140. PMID:23967091

  16. Effect of Bauhinia holophylla treatment in Streptozotocin-induced diabetic rats.

    PubMed

    Pinheiro, Marcelo S; Rodrigues, Luhara S; S, Leila; Moraes-Souza, Rafaianne Q; Soares, Thaigra S; Américo, Madileine F; Campos, Kleber E; Damasceno, Débora C; Volpato, Gustavo T

    2017-01-01

    Bauhinia holophylla, commonly known as "cow's hoof", is widely used in Brazilian folk medicine for the diabetes treatment. Therefore, the aim of this study was at evaluating the aqueous extract effect of Bauhinia holophylla leaves treatment on the streptozotocin-induced diabetic rats. Diabetes was induced by Streptozotocin (40 mg/Kg) in female Wistar rats. Oral administration of aqueous extract of Bauhinia holophylla leaves was given to non-diabetic and diabetic rats at a dose of 400 mg/kg during 21 days. On day 17 of treatment, the Oral Glucose Tolerance Test was performed to determine the area under the curve. At the end of the treatment, the animals were anesthetized and blood was collected for serum biochemical parameters analysis. After treatment with Bauhinia holophylla extract, non-diabetic and diabetic rats presented no glycemic changes. On the other hand, the plant treatment decreased body weight and increased ALT and AST activities. In conclusion, the treatment with aqueous extract of B. holophylla leaves given to diabetic rats presented no hypoglycemic effect in nondiabetic animals and no antidiabetic effect in diabetic animals with the doses studied. In addition, the diabetic animals treated with the B. holophylla extract showed inconvenient effects and its indiscriminate consumption requires particular carefulness.

  17. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage.

    PubMed

    Adeyemi, David O; Ukwenya, Victor O; Obuotor, Efere M; Adewole, Stephen O

    2014-07-30

    Flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx was evaluated for its anti-hepatotoxic activities in streptozotocin-induced diabetic Wistar rats. Diabetes Mellitus was induced in Wistar rats by a single i.p injection of 80 mg/kg b.w. streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 6.3). The ameliorative effects of the extract on STZ-diabetes induced liver damage was evident from the histopathological analysis and the biochemical parameters evaluated in the serum and liver homogenates. Reduced levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (3.76 ± 0.38 μM, 0.42 ± 0.04 U/L, 41.08 ± 3.04 U/ml, 0.82 ± 0.04 U/L respectively) in the liver of diabetic rats were restored to a near normal level in the Hibiscus sabdariffa-treated rats (6.87 ± 0.51 μM, 0.72 ± 0.06 U/L, 87.92 ± 5.26 U/ml, 1.37 ± 0.06 U/L respectively). Elevated levels of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) in the serum of diabetic rats were also restored in Hibiscus sabdariffa -treated rats. Examination of stained liver sections revealed hepatic fibrosis and excessive glycogen deposition in the diabetic rats. These pathological changes were ameliorated in the extract-treated rats. The anti-hepatotoxic activity of Hibiscus sabdariffa extract in STZ diabetic rats could be partly related to its antioxidant activity and the presence of flavonnoids.

  18. Hypolipidemic and hypoglycemic activities of a oleanolic acid derivative from Malva parviflora on streptozotocin-induced diabetic mice.

    PubMed

    Gutiérrez, Rosa Martha Pérez

    2017-05-01

    One new oleanolic acid derivative, 2α,3β,23α,29α tetrahydroxyolean-12(13)-en-28-oic acid (1) was isolated from the aerial parts of Malva parviflora. Their structure was characterized by spectroscopic methods. The hypolipidemic and hypoglycemic activities of 1 was analyzed in in streptozotocin (STZ)-nicotinamide-induced type 2 diabetes in mice (MD) and type 1 diabetes in streptozotocin-induced diabetic mice (SD). Triterpene was administered orally at doses of 20 mg/kg for 4 weeks. Organ weight, body weight, glucose, fasting insulin, cholesterol-related lipid profile parameters, glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase (SALP), glucokinase, hexokinase, glucose-6-phosphatase activities and glycogen in liver were measured after 4 weeks of treatment. The results indicated that 1 regulate glucose metabolism, lipid profile, lipid peroxidation, increased body weight, glucokinase and hexokinase activities inhibited triglycerides, total cholesterol, low density lipoproteins level, SGOT, SGPT, SALP, glycogen in liver and glucose-6-phosphatase. In addition, improvement of insulin resistance and protective effect for pancreatic β-cells, also 1 may changes the expression of pro-inflammatory cytokine (IL-6 and TNF-α levels) and enzymes (PAL2, COX-2, and LOX). The results suggest that 1 has hypolipidemic and hypoglycemic, anti-inflammatory, activities, improve insulin resistance and hepatic enzymes in streptozotocin-induced diabetic mice.

  19. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk.

    PubMed

    Adil, Mohammad; Mansoori, Mohd Nizam; Singh, Divya; Kandhare, Amit Dattatraya; Sharma, Manju

    2017-10-01

    Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Swim Training Improves HOMA-IR in Type 2 Diabetes Induced by High Fat Diet and Low Dose of Streptozotocin in Male Rats.

    PubMed

    Ghiasi, Rafigheh; Ghadiri Soufi, Farhad; Somi, Mohammad Hossein; Mohaddes, Gisou; Mirzaie Bavil, Fariba; Naderi, Roya; Alipour, Mohammad Reza

    2015-09-01

    Insulin resistance plays a key role in the onset and development of type 2 diabetes mellitus (T2DM) and its complications. In this study, we evaluated the effect of swim training on insulin resistance in diabetic rats. Forty male Wistar rats were randomly divided into four groups (n=10): sedentary control (Con), sedentary diabetic (Dia), swim trained control (Exe) and swim trained diabetic (Dia+Exe) rats. Diabetes was induced by high fat diet (HFD) and a low dose of streptozotocin (35 mg/kg, i.p). In trained groups, one week after the induction of diabetes, animals were subjected to swimming (60 min/5 days a week) for 10 weeks. At the end of training, fasting blood sugar (FBS), oral glucose tolerance test (OGTT), fasting/basal insulin, glycosylated hemoglobin (HbA1c) levels, insulin resistance index, homeostasis model assessment method (HOMA-IR), triglycerides (TG,) total cholesterol (TCh), and high density lipoprotein (HDL) levels in blood were measured. Swimming significantly improved OGTT (P<0.01) and HOMA-IR (P<0.01). Swim training also significantly decreased FBS (p<0.01), fasting/basal insulin (P<0.01), HbA1C (p<0.01), TG (P<0.05), and TCh (P<0.05) levels. It also significantly increased HDL (p<0.05) level. Our findings indicate that swim training improved glycemic control and insulin sensitivity in type 2 diabetes caused by high fat diet in male rats.

  1. Antihyperglycemic effect of syringaldehyde in streptozotocin-induced diabetic rats.

    PubMed

    Huang, Chia-Hsin; Chen, Mei-Fen; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-08-24

    The antihyperglycemic effect of syringaldehyde (1), purified from the stems of Hibiscus taiwanensis, was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats) showing type-1 like diabetes mellitus. Bolus intravenous injection of 1 showed antihyperglycemic activity in a dose-dependent manner in STZ-diabetic rats. An effective dose of 7.2 mg/kg of 1 attenuated significantly the increase of plasma glucose induced by an intravenous glucose challenge test in normal rats. A glucose uptake test showed that 1 exhibits an increase of glucose uptake activity in a concentration-related manner. Moreover, an effect by 1 was shown for insulin sensitivity in STZ-diabetic rats. The compound was found to increase insulin sensitivity in STZ-diabetic rats. These results suggest that syringaldehyde (1) can increase glucose utilization and insulin sensitivity to lower plasma glucose in diabetic rats.

  2. Organ-specific effects of low-dose zinc pre-exposure on high-dose zinc induced mitochondrial dysfunction in large yellow croaker Pseudosciaena crocea.

    PubMed

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Shen, Bin; Wu, Chang-Wen

    2017-04-01

    The study was carried out to evaluate the effects of low-dose zinc (Zn) pre-exposure on survival rate, new Zn accumulation, and mitochondrial bioenergetics in the liver and spleen of large yellow croaker exposed to high-dose Zn. To the end, fish were pre-exposed to 0 and 2 mg L -1 Zn for 48 h and post-exposed to 0 and 12 mg L -1 Zn for 48 h. Twelve milligrams Zn per liter exposure alone reduced survival rate, but the effect did not appear in the 2 mg L -1 Zn pre-exposure groups. Two milligrams per liter Zn pre-exposure also ameliorated 12 mg Zn L -1 induced new Zn accumulation, reactive oxygen species (ROS) levels, and mitochondrial swelling in the liver. However, these effects did not appear in the spleen. In the liver, 2 mg L -1 Zn pre-exposure apparently relieved 12 mg L -1 Zn induced down-regulation of activities of ATP synthase (F-ATPase), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). The mRNA levels of these genes remained relatively stable in fish exposed to 12 mg L -1 Zn alone, but increased in fish exposed to 12 mg L -1 Zn with 2 mg L -1 Zn pre-treatment. In the spleen, 2 mg Zn L -1 pre-exposure did not mitigate the down-regulation of mRNA levels of genes and activities of relative enzymes induced by 12 mg L -1 Zn. In conclusion, our study demonstrated low-dose zinc pre-exposure ameliorated high-dose zinc induced mitochondrial dysfunction in the liver but not in the spleen of large yellow croaker, indicating an organ-specific effect.

  3. Ameliorative effect of curcumin on aflatoxin-induced toxicity in DNA, RNA and protein in liver and kidney of mice.

    PubMed

    Mathuria, Neeta; Verma, Ramtej Jayram

    2007-01-01

    The present investigation is an attempt to evaluate the ameliorative effect of curcumin on aflatoxin-induced toxicity in liver and kidney of mice. Aflatoxin was obtained by growing Aspergillus parasiticus in SMKY liquid medium. 70 male mice were divided into 7 groups (37-40 g body weight) including untreated control, vehicle control (0.2 mL olive oil/animal/day), curcumin control (50 mg/kg body weight/animal), aflatoxin low dose and high dose (750 and 1500 mg/kg body weight). Other two groups were administered curcumin along with low dose aflatoxin and high dose aflatoxin. The treatment was given for 45 days. On 46th day the animals were sacrificed by cervical dislocation. Liver and kidney were removed and weighed. Homogenates were prepared and analyzed for DNA, RNA and protein content. The results revealed dose-dependent significant reduction in DNA, RNA and protein contents in the liver and kidney of mice. Oral administration of aflatoxin along with curcumin significantly ameliorates, as compared to aflatoxin alone treated groups, in all parameters. It is concluded that curcumin ameliorates aflatoxin-induced toxicity in liver and kidney of mice.

  4. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  5. The Neuroprotection of Low-Dose Morphine in Cellular and Animal Models of Parkinson’s Disease Through Ameliorating Endoplasmic Reticulum (ER) Stress and Activating Autophagy

    PubMed Central

    Wang, Bing; Su, Cun-Jin; Liu, Teng-Teng; Zhou, Yan; Feng, Yu; Huang, Ya; Liu, Xu; Wang, Zhi-Hong; Chen, Li-Hua; Luo, Wei-Feng; Liu, Tong

    2018-01-01

    Parkinson’s disease (PD) is a common neurodegenerative disease characterized the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Brain endogenous morphine biosynthesis was reported to be impaired in PD patients and exogenous morphine attenuated 6-hydroxydopamine (6-OHDA)-induced cell death in vitro. However, the mechanisms underlying neuroprotection of morphine in PD are still unclear. In the present study, we investigated the neuroprotective effects of low-dose morphine in cellular and animal models of PD and the possible underlying mechanisms. Herein, we found 6-OHDA and rotenone decreased the mRNA expression of key enzymes involved in endogenous morphine biosynthesis in SH-SY5Y cells. Incubation of morphine prevented 6-OHDA-induced apoptosis, restored mitochondrial membrane potential, and inhibited the accumulation of intracellular reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, morphine attenuated the 6-OHDA-induced endoplasmic reticulum (ER) stress possible by activating autophagy in SH-SY5Y cells. Finally, oral application of low-dose morphine significantly improved midbrain tyrosine hydroxylase (TH) expression, decreased apomorphine-evoked rotation and attenuated pain hypersensitivity in a 6-OHDA-induced PD rat model, without the risks associated with morphine addiction. Feeding of low-dose morphine prolonged the lifespan and improved the motor function in several transgenic Drosophila PD models in gender, genotype, and dose-dependent manners. Overall, our results suggest that neuroprotection of low-dose morphine may be mediated by attenuating ER stress and oxidative stress, activating autophagy, and ameliorating mitochondrial function. PMID:29731707

  6. Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice.

    PubMed

    Pachauri, Shakti D; Verma, Priya Ranjan P; Dwivedi, Anil K; Tota, Santoshkumar; Khandelwal, Kiran; Saxena, Jitendra K; Nath, Chandishwar

    2013-08-01

    This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.

  7. Tea polysaccharide inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells and ameliorates ovariectomy-induced osteoporosis in rats.

    PubMed

    Xu, Huanhuan; Yin, Dan; Liu, Titi; Chen, Fei; Chen, Yingli; Wang, Xuanjun; Sheng, Jun

    2018-06-01

    Tea drinking has positive effects on bone health and may prevent and treat osteoporosis, especially in older and postmenopausal women. Tea polysaccharide (TPS) is a major bioactive constituent in tea. Despite its profound effects on human health, whether TPS has anti-osteoporotic effects remains largely unknown. As such, we investigated the anti-osteoporotic effects of TPS. In vitro, TPS effects on osteoclastogenesis were examined using osteoclast precursor RAW264.7 cells. TPS effects on osteoclastogenesis-related expression of marker genes and proteins were determined by gene expression and immunoblotting analyses, respectively. For in vivo studies, 12-week-old female Wistar rats were divided randomly into a sham-operated group (sham) and four ovariectomized (OVX) subgroups: OVX with vehicle (model) and OVX with low-, medium-, and high-dose TPS (0.32, 0.64 and 1.28 g/kg body weight/day, respectively). TPS was administered intragastrically to rats for 13 weeks. Body weight, blood biochemical parameters, organ weight, organ coefficients, femoral length, bone mineral density (BMD), biomechanical properties, and bone microarchitecture were documented. TPS inhibited osteoclast differentiation significantly and dose-dependently, and its inhibitory effect was not due to toxicity to RAW264.7 cells. TPS suppressed expression of osteoclastogenesis-related marker genes and proteins significantly. In in vivo studies, medium-dose TPS treatment ameliorated OVX-induced calcium loss significantly. Low-dose TPS treatment decreased the activity of acid phosphatase (ACP) in OVX rats significantly. In addition, TPS treatment improved other blood biochemical parameters and femoral biomechanical properties to a certain extent. More importantly, TPS treatment ameliorated bone microarchitecture in OVX rats strikingly because of increased cortical bone thickness and trabecular bone area in the femur. TPS can inhibit receptor activator nuclear factor-kappa B ligand (RANKL)-induced

  8. Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice.

    PubMed

    Zhang, Zhihao; Zhang, Duoduo; Dou, Mengmeng; Li, Zhubo; Zhang, Jie; Zhao, Xiaoyan

    2016-12-01

    Dendrobium officinale Kimura et Migo (Dendrobium catenatum Lindley), a prized traditional Chinese Medicine, has been used in China and Southeast Asian countries for centuries. The present study was aimed to investigate the effects and the possible mechanisms of the Dendrobium officinale extracts (DOE) on diabetic cardiomyopathy in mice. The diabetic model was induced by intraperitoneal injection of streptozotocin at the dose of 50mg/kg body weight for 5 consecutive days. After 8 weeks treatment of DOE, mice were sacrificed, blood sample and heart tissues were collected. Our results showed that Streptozotocin-induced diabetic model was effectively achieved and serum CK and LDH levels were significantly increased in mice with diabetic cardiomyopathy. Pretreatment with DOE decreased the heart-to-body weight ratio (HW/BW) and showed an evident hypoglycemic effect. DOE pretreatment significantly decreased CK, LDH, TC and TG levels, limited the production of MDA and increased the activities of T-SOD. The histological analysis of Oil red O staining and Sirius red staining showed an obvious amelioration of cardiac injury, inhibition of cardiac lipid accumulation and deposition of collagen when pretreatment with DOE. In addition, Western blot detection and analysis showed that DOE down-regulated the expression of TGF-β, collegan-1, fibronectin, NF-κB, TNF-α and IL-1β. In conclusion, our study suggested that DOE possesses the cardioprotective potential against diabetic cardiomyopathy, which may be due to the inhibition of oxidative stress, cardiac lipid accumulation, pro-inflammatory cytokines and cardiac fibrosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Ultra-low dose naltrexone enhances cannabinoid-induced antinociception.

    PubMed

    Paquette, Jay; Olmstead, Mary C; Olmstead, Mary

    2005-12-01

    Both opioids and cannabinoids have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to Gi/o-proteins. Surprisingly, the analgesic effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist, naltrexone. As opioid and cannabinoid systems interact, this study investigated whether ultra-low dose naltrexone also influences cannabinoid-induced antinociception. Separate groups of Long-Evans rats were tested for antinociception following an injection of vehicle, a sub-maximal dose of the cannabinoid agonist WIN 55 212-2, naltrexone (an ultra-low or a high dose) or a combination of WIN 55 212-2 and naltrexone doses. Tail-flick latencies were recorded for 3 h, at 10-min intervals for the first hour, and at 15-min intervals thereafter. Ultra-low dose naltrexone elevated WIN 55 212-2-induced tail flick thresholds without extending its duration of action. This enhancement was replicated in animals receiving intraperitoneal or intravenous injections. A high dose of naltrexone had no effect on WIN 55 212-2-induced tail flick latencies, but a high dose of the cannabinoid 1 receptor antagonist SR 141716 blocked the elevated tail-flick thresholds produced by WIN 55 212-2+ultra-low dose naltrexone. These data suggest a mechanism of cannabinoid-opioid interaction whereby activated opioid receptors that couple to Gs-proteins may attenuate cannabinoid-induced antinociception and/or motor functioning.

  10. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats.

    PubMed

    Nasiry, Davood; Khalatbary, Ali Reza; Ahmadvand, Hassan; Talebpour Amiri, Fereshteh; Akbari, Esmaeil

    2017-10-02

    Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Protection against

  11. In vivo Investigation of Anti-diabetic Properties of Ripe Onion Juice in Normal and Streptozotocin-induced Diabetic Rats

    PubMed Central

    Lee, Chul-Won; Lee, Hyung-Seok; Cha, Yong-Jun; Joo, Woo-Hong; Kang, Dae-Ook; Moon, Ja-Young

    2013-01-01

    The acute and subacute hypoglycemic and antihyperglycemic effects of drinkable ripe onion juice (Commercial product name is “Black Onion Extract”) were investigated in normal and streptozotocin-induced diabetic rats. For tests of acute and subacute hypoglycemic effects, ripe onion juice (5 and 15 mL/kg b.w.) was administered by oral gavage to normal Sprague Dawley rats and measurements of fasting glucose levels and oral glucose tolerance tests were performed. Tolbutamide was used as a reference drug at a single oral dose of 250 mg/kg b.w. To test anti-hyper-glycemic activity, the ripe onion juice was administered to streptozotocin-induced diabetic rats by oral gavage at single dose of 15 mL/kg b.w. per day for 7 consecutive days. Oral administration of the ripe onion juice at either dosed level of 5 or 15 mL/kg b.w. showed no remarkable acute hypoglycemic effect in normal rats. The two dosed levels caused a relatively small reduction, only 18% and 12% (5 and 15 mL/kg b.w., respectively) decrease in glucose levels at 2 h after glucose loading in normal rats. However, at 3 h after glucose loading, blood glucose levels in the ripe onion juice-dosed rats were decreased to the corresponding blood glucose level in tolbutamide-dosed rats. Although showing weak hypoglycemic potential compared to that of tolbutamide, oral administration of ripe onion juice (15 mL/kg b.w.) for a short period (8 days) resulted in a slight reduction in the blood glucose levels that had elevated in Streptozotocin-induced diabetic rats. In conclusion, these results suggest that the commercial product “Black Onion Extract” may possess anti-hyperglycemic potential in diabetes. PMID:24471128

  12. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer's type.

    PubMed

    Ejaz Ahmed, Md; Khan, Mohd Moshahid; Javed, Hayate; Vaibhav, Kumar; Khan, Andleeb; Tabassum, Rizwana; Ashafaq, Mohammad; Islam, Farah; Safhi, Mohammed M; Islam, Fakhrul

    2013-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20mg/kgb wt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3mg/kgb wt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimer's type (SDAT). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  14. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Dongqing; Xu, Yidan; Hang, Hui; Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  15. Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2018-04-24

    Twenty years after the onset of diabetes, up to 40% of patients develop diabetic nephropathy. Protease-activated receptor-1 (PAR-1) has recently been shown to aggravate the development of experimental diabetic nephropathy. PAR-1 deficient mice develop less albuminuria and glomerular lesions and PAR-1 stimulation induces proliferation and fibronectin production in mesangial cells in vitro . Vorapaxar is a clinically available PAR-1 inhibitor which is currently used for secondary prevention of ischemic events. The aim of this study was to investigate in a preclinical setting whether vorapaxar treatment may be a novel strategy to reduce diabetes-induced kidney damage. While control treated diabetic mice developed significant albuminuria, mesangial expansion and glomerular fibronectin deposition, diabetic mice on vorapaxar treatment did not show any signs of kidney damage despite having similar levels of hyperglycemia. These data show that PAR-1 inhibition by vorapaxar prevents the development of diabetic nephropathy in this preclinical animal model for type I diabetes and pinpoint PAR-1 as a novel therapeutic target to pursue in the setting of diabetic nephropathy. 22 C57Bl/6 mice were made diabetic using multiple low-dose streptozotocin injections (50 mg/kg) and 22 littermates served as non-diabetic controls. Four weeks after the induction of diabetes, 11 mice of each group were assigned to control or vorapaxar treatment. Mice were sacrificed after 20 weeks of treatment and kidney damage was evaluated.

  16. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice.

    PubMed

    Sun, Chong-De; Zhang, Bo; Zhang, Jiu-Kai; Xu, Chang-Jie; Wu, Yu-Lian; Li, Xian; Chen, Kun-Song

    2012-03-01

    Chinese bayberry fruit is a rich source of anthocyanins, especially cyanidin-3-glucoside (C3G). The present study investigated the protective effects of C3G-rich bayberry fruit extract (CRBFE) against pancreatic β cells against oxidative stress-induced injury as well as its hypoglycemic effect in diabetic mice. Bayberry extract from "Biqi" was used for both in vitro and in vivo testing because of its high C3G content and high antioxidant capacity. Pretreatment of β cells with CRBFE (containing 0.5 μmol/L C3G) prevented cell death, increased cellular viability, and decreased mitochondrial reactive oxygen species production and cell necrosis induced by 800 or 1,200 μmol/L H₂O₂. CRBFE dose-dependently up-regulated pancreatic duodenal homeobox 1 gene expression, contributing to increased insulin-like growth factor II gene transcript levels and insulin protein in INS-1 cells. In addition, administration of CRBFE (150 μg of C3G/10 g of body weight twice per day) significantly reduced blood glucose in streptozotocin-induced diabetic ICR mice and increased the glucose tolerance in an oral glucose tolerance test (P<.05). Such results indicated that CRBFE might be useful in prevention and control of diabetes mellitus and diabetes-associated complications.

  17. Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin-nicotinamide induced male diabetic rats.

    PubMed

    Giribabu, Nelli; Roslan, Josef; Rekha, Somesula Swapna; Salleh, Naguib

    2016-11-01

    We hypothesized that consumption of Vitis vinifera seed by diabetics could help to ameliorate myocardial damage. Therefore, in this study, we investigated effects of V. vinifera seed methanolic extract (VVSME) on parameters related to myocardial damage in diabetes with or without myocardial infarction (MI). Streptozotocin-nicotinamide induced diabetic rats received oral VVSME for 28days. MI was induced by intraperitoneal injection of isoproterenol on last two days. Prior to sacrifice, blood was collected and fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid profile and insulin levels were measured. Levels of serum cardiac injury marker (troponin-I and CK-MB) were determined and histopathological changes in the heart were observed following harvesting. Levels of oxidative stress (LPO, SOD, CAT, GPx and RAGE), inflammation (NF-κB, TNF-α, IL-1β and IL-6) and cardiac ATPases (Na(+)/K(+)-ATPase and Ca(2+)-ATPase) were determined in heart homogenates. LC-MS was used to identify constituents in the extracts. Consumption of VVSME by diabetic rats with or without MI improved the metabolic profiles while decreased the cardiac injury marker levels with lesser myocardial damage observed. Additionally, VVSME consumption reduced the levels of LPO, RAGE, TNF-α, Iκκβ, NF-κβ, IL-1β and IL-6 while increased the levels of SOD, CAT, GPx, Na(+)/K(+)-ATPase and Ca(2+)-ATPase in the infarcted and non-infarcted heart of diabetic rats (p<0.05). LC-MS analysis revealed 17 major compounds in VVSME which might be responsible for the observed effects. Consumption of VVSME by diabetics helps to ameliorate damage to the infarcted and non-infarcted myocardium by decreasing oxidative stress, inflammation and cardiac ATPases dysfunctions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  19. Effect of lipoprotein-associated phospholipase A2 inhibitor on insulin resistance in streptozotocin-induced diabetic pregnant rats.

    PubMed

    Wang, Guo-Hua; Jin, Jun; Sun, Li-Zhou

    2018-06-21

    This paper aims to investigate the influence of lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, darapladib, on insulin resistance (IR) in streptozotocin (STZ)-induced diabetic pregnant rats. The rat models were divided into Control (normal pregnancy), STZ + saline (STZ-induced diabetic pregnant rats), STZ + Low-dose and STZ + High-dose darapladib (STZ-induced diabetic pregnant rats treated with low-/high-dose darapladib) groups. Pathological changes were observed by Hematoxylin-eosin (HE) and Immunohistochemistry staining. Lp-PLA2 levels were determined by enzyme-linked immunosorbent assay (ELISA). An automatic biochemical analyzer was used to measure the serum levels of biochemical indicators, and homeostatic model assessment for insulin resistance (HOMA-IR) and insulin sensitivity index (ISI) were calculated. Western blot was applied to determine levels of inflammatory cytokines. Compared with Control group, rats in the STZ + saline group were significantly decreased in body weight, the number of embryo implantation, the number of insulin positive cells and pancreatic islet size as well as the islet endocrine cells, and high-density lipoprotein (HDL-C) level, but substantially increased in Lp-PLA2, low-density lipoprotein (LDL-C), fatty acids (FFA), serum total cholesterol (TC), triglyceride (TG) levels. Moreover, the increased fasting plasma glucose (FPG) and HOMA-IR and inflammatory cytokines but decreased fasting insulin (FINS) and ISI were also found in diabetic pregnant rats. On the contrary, rats in the darapladib-treated groups were just opposite to the STZ + saline group, and STZ + High-dose group improved better than STZ + Low-dose group. Thus, darapladib can improve lipid metabolism, and enhance insulin sensitivity of diabetic pregnant rats by regulating inflammatory cytokines.

  20. Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in Wistar rats in relation to their metabolite fingerprint.

    PubMed

    Abouzed, Tarek Kamal; Contreras, María Del Mar; Sadek, Kadry Mohamed; Shukry, Moustafa; H Abdelhady, Doaa; Gouda, Wael Mohamed; Abdo, Walied; Nasr, Nasr Elsayed; Mekky, Reham Hassan; Segura-Carretero, Antonio; Kahilo, Khaled Abdel-Aleim; Abdel-Sattar, Essam

    2018-06-01

    The present study was designed to investigate the effect of red onion scales extract (ROS) against diabetic nephropathy, in relation to its metabolic profiling. Four groups of male Wistar rats were assigned as follows; 1st untreated group, 2nd group (animals with diabetes) treated with streptozotocin (STZ, 50 mg/kg) IP, 3rd group co-treated with ROS (150 mg/kg + STZ, 50 mg/kg) and 4th group co-treated with ROS by a dose (300 mg/kg + STZ, 50 mg/kg) daily. After four weeks, random and fasting blood glucose (FBG) levels, serum insulin, advanced glycation end products (AGEs), urea, uric acid and inflammatory and fibrotic gene expression were evaluated. Moreover, histopathological examination of the renal tissues was performed. In addition, the metabolic profiling of ROS was performed via RP-HPLC-DAD-QTOF-MS and -MS/MS. The metabolic profiling of ROS revealed that protocatechuic acid and cyanidin-3-O-glucoside were the predominant compounds among 32 metabolites identified in the extract. ROS treated groups showed improvement of FBG and AGEs levels, whereas serum insulin level showed significant elevation. In addition, down-regulation of inflammatory mRNA expression associated with the hyperglycemic condition and amelioration in histopathological alterations in kidney tissues were observed. This study displayed the presence of 32 phenolic compounds in the ethanolic extract of ROS, a common by-product of the industrial production of onion in Egypt. This study proved the therapeutic potential of ROS as antidiabetic agent and its preventive effect against diabetic nephropathy. Therefore, this study represents a perspective of the utilization of food waste products. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation.

    PubMed

    Nishiyama, Y; Kataoka, T; Teraoka, J; Sakoda, A; Tanaka, H; Ishimori, Y; Mitsunobu, F; Taguchi, T; Yamaoka, K

    2013-01-01

    We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.

  2. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice

    PubMed Central

    Hemmati, Ali Asghar; Ahangarpour, Akram

    2018-01-01

    The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30–35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice. PMID:29719448

  3. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice.

    PubMed

    Hemmati, Ali Asghar; Alboghobeish, Soheila; Ahangarpour, Akram

    2018-05-01

    The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30-35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.

  4. Experimental diabetes induced by streptozotocin in the desert gerbil, Gerbillus gerbillus, and the effects of short-term 20-hydroxyecdysone administration.

    PubMed

    Mallek, Aicha; Movassat, Jamileh; Ameddah, Souad; Liu, Junjun; Semiane, Nesrine; Khalkhal, Ali; Dahmani, Yasmina

    2018-06-01

    The present work was aimed at studying the effects of streptozotocin (STZ; 130 mg/kg) in the desert gerbil, Gerbillus gerbillus, and at evaluating the impact of the short-term administration of 20-hydroxyecdysone (20E; 5 mg/kg). We observed that administration of streptozotocin caused a significant increase in plasmatic glucose and a decrease in insulin levels. The plasma lipid profile and liver glycogen content were also altered. The activities of antioxidant enzymes and malondialdehyde (MDA) levels were increased in the pancreatic tissue of STZ-treated gerbils. Moreover, histopathological and immunohistochemical analysis showed degenerative damage in the pancreas with a decline in the percentage area of β-cells. Treatment of STZ-treated gerbils with 20E counteracted metabolic disorders and reduced lipid peroxidation. Histological and immunohistochemical studies showed moderate amelioration in the pancreatic structure. These findings indicate that streptozotocin administration induced experimental diabetes in gerbils and that short-term administration of 20E has beneficial effects in glucose homeostasis in STZ-treated gerbils suggesting that 20E may stimulate surviving β-cells to release more insulin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    PubMed

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  6. Cyanidin-3-Glucoside-Rich Extract from Chinese Bayberry Fruit Protects Pancreatic β Cells and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Sun, Chong-De; Zhang, Bo; Zhang, Jiu-Kai; Xu, Chang-Jie; Wu, Yu-Lian; Chen, Kun-Song

    2012-01-01

    Abstract Chinese bayberry fruit is a rich source of anthocyanins, especially cyanidin-3-glucoside (C3G). The present study investigated the protective effects of C3G-rich bayberry fruit extract (CRBFE) against pancreatic β cells against oxidative stress–induced injury as well as its hypoglycemic effect in diabetic mice. Bayberry extract from “Biqi” was used for both in vitro and in vivo testing because of its high C3G content and high antioxidant capacity. Pretreatment of β cells with CRBFE (containing 0.5 μmol/L C3G) prevented cell death, increased cellular viability, and decreased mitochondrial reactive oxygen species production and cell necrosis induced by 800 or 1,200 μmol/L H2O2. CRBFE dose-dependently up-regulated pancreatic duodenal homeobox 1 gene expression, contributing to increased insulin-like growth factor II gene transcript levels and insulin protein in INS-1 cells. In addition, administration of CRBFE (150 μg of C3G/10 g of body weight twice per day) significantly reduced blood glucose in streptozotocin-induced diabetic ICR mice and increased the glucose tolerance in an oral glucose tolerance test (P<.05). Such results indicated that CRBFE might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. PMID:22181073

  7. Antihyperglycemic Activity of Houttuynia cordata Thunb. in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kumar, Manish; Prasad, Satyendra K.; Krishnamurthy, Sairam; Hemalatha, Siva

    2014-01-01

    Present study is an attempt to investigate plausible mechanism involved behind antidiabetic activity of standardized Houttuynia cordata Thunb. extract in streptozotocin-induced diabetic rats. The plant is used as a medicinal salad for lowering blood sugar level in North-Eastern parts of India. Oral administration of extract at 200 and 400 mg/kg dose level daily for 21 days showed a significant (P < 0.05) decrease in fasting plasma glucose and also elevated insulin level in streptozotocin-induced diabetic rats. It also significantly reversed all the alterations in biochemical parameters, that is, total lipid profile, blood urea, creatinine, protein, and antioxidant enzymes in liver, pancreas, and adipose tissue of diabetic rats. Furthermore, we have demonstrated that the extract significantly reversed the expression patterns of various glucose homeostatic enzyme genes like GLUT-2, GLUT-4, and caspase-3 levels but did not show any significant effect on PPAR-γ protein expressions. Additionally, the extract positively regulated mitochondrial membrane potential and succinate dehydrogenase (SDH) activity in diabetic rats. The findings justified the antidiabetic effect of H. cordata which is attributed to an upregulation of GLUT-4 and potential antioxidant activity, which may play beneficial role in resolving complication associated with diabetes. PMID:24707284

  8. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats.

    PubMed

    Reeta, K H; Singh, Devendra; Gupta, Yogendra K

    2017-04-01

    Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1β) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.

    PubMed

    Malik, Salma; Suchal, Kapil; Khan, Sana Irfan; Bhatia, Jagriti; Kishore, Kamal; Dinda, Amit Kumar; Arya, Dharamvir Singh

    2017-08-01

    Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway. Copyright © 2017 the American Physiological Society.

  10. Subhuman Primate Pregnancy Complicated by Streptozotocin-Induced Diabetes Mellitus

    PubMed Central

    Mintz, Daniel H.; Chez, Ronald A.; Hutchinson, Donald L.

    1972-01-01

    Polydipsia, polyuria, polyphagia, and glucosuria followed the administration of streptozotocin to 6 nonpregnant and 15 pregnant monkeys (Macaca mulatta) in the first trimester of pregnancy. The diabetogenic action of the drug was also reflected in an induced but variable deterioration in maternal intravenous glucose tolerance and a marked attenuation of maternal plasma insulin responsiveness to intravenous glycemic stimuli. The products of conception were examined in 29 pregnancies. The neonates and the placentas of the streptozotocin-treated pregnant animals were significantly heavier than average for the period of gestation, polyhydramnios was consistently present, and there was an increase in the incidence of third trimester stillbirths. The fetal and maternal plasma glucose, insulin, and growth hormone concentrations were examined after the intravascular administration of glucose or a solution of mixed amino acids to the fetus in the third trimester. The neonatal plasma responses to similar insulinogenic stimuli were also examined. Fetal and neonatal base line plasma insulin concentrations were significantly elevated compared to those of the controls. The administration of intravascular glucose to the fetus, mother, or neonate was associated with a prompt 2-to 5-fold increase in fetal or neonatal plasma insulin concentrations. These findings contrast to the unresponsiveness of the pancreatic islet tissue we reported in normal subhuman primate pregnancy. The intravascular infusion of a relatively low concentration of mixed amino acids (2 mg/min) to the conceptii from the streptozotocin-treated pregnancies was associated with an elevation in fetal and neonatal plasma insulin levels, whereas normal monkey fetuses and neonates required a 10-fold greater concentration of amino acids in the infusate for similar responses. The induced hyperaminoacidemia or hyperglycemia did not consistently alter plasma growth hormone concentrations in the conceptii from normal or

  11. Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats.

    PubMed

    Aziz, Muhammad Shakir Abdul; Giribabu, Nelli; Rao, Pasupuleti Visweswara; Salleh, Naguib

    2017-05-01

    Stingless bee honey (SLBH) has been claimed to possess multiple health benefits. Its anti-diabetic properties are however unknown. In this study, ability of SLBH from Geniotrigona thoracica stingless bee species in ameliorating pancreatic damage and in maintaining metabolic profiles were investigated in diabetic condition. SLBH at 1 and 2g/kg/b.w. was given orally to streptozotocin (STZ)-nicotinamide-induced male diabetic rats for 28days. Metabolic parameters (fasting blood glucose-FBG and lipid profiles-LP and serum insulin) were measured by biochemical assays. Distribution and expression level of insulin, oxidative stress marker i.e. catalase, inflammatory markers i.e. IKK-β, TNF-α, IL-1β and apoptosis marker i.e. caspase-9 in the pancreatic islets were identified and quantified respectively by immunohistochemistry. Levels of NF-κβ in pancreas were determined by enzyme-linked immunoassay (ELISA). SLBH administration to diabetic male rats prevented increase in FBG, total cholesterols (TC), triglyceride (TG) and low density lipoprotein (LDL) levels. However, high density lipoprotein (HDL) and serum insulin levels in diabetic rats receiving SLBH increased. Additionally, histopathological changes and expression level of oxidative stress, inflammation and apoptosis markers in pancreatic islets of diabetic rats decreased with increased expression level of insulin in the islets. LC-MS analysis revealed the presence of several compounds in SLBH that might be responsible for these effects. SLBH has great potential to be used as agent to protect the pancreas against damage and dysfunction where these could account for its anti-diabetic properties. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Protective potential of Averrhoa bilimbi fruits in ameliorating the hepatic key enzymes in streptozotocin-induced diabetic rats.

    PubMed

    Kurup, Surya B; S, Mini

    2017-01-01

    Diabetes is a mutifactorial disease which leads to several complications. Currently available drug regimens for management of diabetes have certain drawbacks. Need for safer and effective medicines from natural sources having potent antidiabetic activity. Averrhoa bilimbi Linn. (Oxalidaceae) is a medicinal plant and is reported to possess hypoglycemic activity. To investigate the antidiabetic potential of Averrhoa bilimbi fruit extract in streptozotocin-induced diabetic rats. Diabetes was induced in male Sprague Dawley rats by single intraperitoneal injection of streptozotocin (STZ) (40mg/kg body weight). The diabetic rats were treated orally with ethyl acetate fraction of A. bilimbi fruits (ABE) (25mg/kg body weight) and metformin (100mg/kg body weight) by intragastric intubation for 60days. After 60days, the rats were sacrificed; blood, liver and pancreas were collected. Several indices such as blood glucose, plasma insulin, toxicity markers and the activities of carbohydrate-metabolizing enzymes were assayed. The phytochemicals present in the ABE was identified by gas chromatography-mass spectrometry analysis. ABE significantly (p<0.05) reduced the level of blood glucose and hepatic toxicity markers and increased plasma insulin in diabetic rats. ABE modulated the activities of carbohydrate-metabolizing enzymes, significantly increased the activities of hexokinase (59%) and pyruvate kinase (68%) and reduced the activities of glucose-6-phosphatase (32%) and fructose-1, 6-bisphosphatase (20%). The histological studies of the pancreas also supported our findings. The results were compared with metformin, a standard oral hypoglycemic drug. GC-MS analysis of ABE revealed the presence of 11 chemical constituents in the extract. ABE exerts its antidiabetic effect by promoting glucose metabolism via glycolysis and inhibiting hepatic endogenous glucose production via gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Amelioration of hyperglycaemia and its associated complications by finger millet ( Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats.

    PubMed

    Shobana, Shanmugam; Harsha, Mysore R; Platel, Kalpana; Srinivasan, Krishnapura; Malleshi, Nagappa G

    2010-12-01

    Finger millet (Eleusine coracana) is extensively cultivated and consumed in India and Africa. The millet seed coat is a rich source of dietary fibre and phenolic compounds. The effect of feeding a diet containing 20% finger millet seed coat matter (SCM) was examined in streptozotocin-induced diabetic rats. Diabetic rats maintained on the millet SCM diet (diabetic experimental (DE) group) for 6 weeks exhibited a lesser degree of fasting hyperglycaemia and partial reversal of abnormalities in serum albumin, urea and creatinine compared with the diabetic control (DC) group. The DE group of rats excreted comparatively lesser amounts of glucose, protein, urea and creatinine and was accompanied by improved body weights compared with their corresponding controls. Hypercholesterolaemia and hypertriacylglycerolaemia associated with diabetes were also notably reversed in the DE group. Slit lamp examination of the eye lens revealed an immature subcapsular cataract with mild lenticular opacity in the DE group of rats compared to the mature cataract with significant lenticular opacity and corneal vascularisation in the DC group. Lower activity of lens aldose reductase, serum advanced glycation end products and blood glycosylated Hb levels were observed in the DE group. The millet SCM feeding showed pronounced ameliorating effects on kidney pathology as reflected by near normal glomerular and tubular structures and lower glomerular filtration rate compared with the shrunken glomerulus, tubular vacuolations in the DC group. Thus, the present animal study evidenced the hypoglycaemic, hypocholesterolaemic, nephroprotective and anti-cataractogenic properties of finger millet SCM, suggesting its utility as a functional ingredient in diets for diabetics.

  14. Antidiabetic and hypolipidemic effects of Dorema aucheri hydroalcoholic leave extract in streptozotocin-nicotinamide induced type 2 diabetes in male rats

    PubMed Central

    Ahangarpour, Akram; Zamaneh, Hossein Teymuri; Jabari, Ayob; Nia, Hamid Malekshahi; Heidari, Hamid

    2014-01-01

    Objective(s): The present study investigated the antidiabetic and hypolipidemic properties of Dorema aucheri leave hydroalcoholic extract in nicotinamide-streptozotocin induced type 2 diabetic rats. Materials and Methods: nicotinamide/streptozotocin-induced diabetic rats were supplemented orally with three different doses of D. aucheri (100, 200 and 400 mg/kg BW) or glibenclamide (0.25 mg/kg) for 4 weeks. Ultimately, blood of animals has taken and glucose, insulin, lipid profiles, SGPT, alkaline phosphatase, SGOT, leptin levels were assayed. Results: D. aucheri has highly significant blood glucose lowering effect. Administration of the extract to diabetic rats resulted in a remarkable change in serum lipid profiles, insulin and leptin levels relative to diabetic group. Also the extract reversed back the serum levels of SGPT, alkaline phosphatase and SGOT to near normal in treated diabetic rats. Conclusion: D. aucheri could be useful in treatment of diabetes. Moderate dose of D. aucheri (200 mg/kg) was more effective than the others. PMID:25729552

  15. Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice.

    PubMed

    Kang, Ki Sung; Lee, Woojung; Jung, Yujung; Lee, Ji Hwan; Lee, Seungyong; Eom, Dae-Woon; Jeon, Youngsic; Yoo, Hye Hyun; Jin, Ming Ji; Song, Kyung Il; Kim, Won Jun; Ham, Jungyeob; Kim, Hyoung Ja; Kim, Su-Nam

    2014-03-05

    The present study investigated the presence and mechanism of esculin-mediated renoprotection to assess its therapeutic potential. Esculin was orally administered at 20 mg/kg/day for 2 weeks to streptozotocin-induced diabetic mice, and its effects were compared with those of the vehicle in normal and diabetic mice. After oral administration of esculin to mice, the concentrations of esculin and esculetin in blood were 159.5 ± 29.8 and 9.7 ± 4.9 ng/mL at 30 min, respectively. Food and water intake were significantly increased in the diabetic mice compared to normal mice but attenuated in mice receiving esculin. The elevated blood glucose level and hepatic glucose-6-phosphatase expression were significantly reduced in esculin-treated diabetic mice, supporting the antidiabetic effect of esculin. Esculin also increased the uptake of glucose and induced the insulin-evoked phosphorylation of insulin receptor, Akt, and glycogen synthase kinase 3β in C2C12 myotubes, indicating a potential for improvement of insulin sensitivity. In addition, esculin lessened the elevated blood creatinine levels in diabetic mice and ameliorated diabetes-induced renal dysfunction by reducing caspase-3 activation in the kidney. Data support the beneficial effect of esculin against diabetes and oxidative stress-related inflammatory processes in the kidney.

  16. Evidences for amelioration of reserpine-induced fibromyalgia in rat by low dose of gamma irradiation and duloxetine.

    PubMed

    Shibrya, Eman E; Radwan, Rasha R; Abd El Fattah, Mai A; Shabaan, Esmat A; Kenawy, Sanaa A

    2017-05-01

    Fibromyalgia is a prevalent disorder characterized by chronic widespread pain and complex symptoms. This study was conducted to investigate the potential therapeutic effect of low-dose irradiation (LDI) alone or in combination with duloxetine on the reserpine-induced fibromyalgia in rats. Fibromyalgia was induced by administration of reserpine (1 mg/kg/s.c) for 3 consecutive days. Duloxetine (30 mg/kg, p.o) was administered 60 min before a forced swimming test (FST), and rats were exposed to a single dose of γ-radiation (0.5 Gy) 1 day before the FST. Reserpine significantly increased immobility time in the FST, decreased the amount of 5-hydroxytryptamine, dopamine, and norepinephrine in cerebral cortex. It also increased malondialdehyde and nitric oxide and reduced glutathione contents in brain tissue. LDI alone or combined with duloxetine completely antagonized reserpine-induced fibromyalgia as assessed by the measured parameters. One of the most significant findings in this study was that the therapeutic effect of duloxetine was more pronounced by its combination with LDI. A possible mechanism of action of LDI and duloxetine responsible for their therapeutic effect was discussed. On the basis of the presented evidences, it could be concluded that LDI alone or combined with duloxetine could be of value in the management of fibromyalgia.

  17. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Tai L., E-mail: tlguo1@uga.edu; Wang, Yunbiao; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiationmore » of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by

  18. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats.

    PubMed

    Shodehinde, Sidiqat A; Ademiluyi, Adedayo O; Oboh, Ganiyu; Akindahunsi, Afolabi A

    2015-07-15

    Unripe plantain based-diets are part of folklore remedy for the management of diabetes in tropical Africa; however, with the dearth of information on the rationale behind this practice; this study therefore, sought to investigate the antihyperglycemic effect of traditional unripe plantain products (Amala and Booli) in high fat fed/low dose streptozotocin-induced diabetic rats and to provide a possible rationale for their antidiabetic properties. Diabetes was induced experimentally by high fat fed/low dose streptozotocin-diabetic rats (25mg/kg body wt.) and the diabetic rats were fed diets supplemented with 20-40% Amala and Booli for 14 days. The effect of the diets on the blood glucose level, pancreatic α-amylase, intestinal α-glucosidase and Angiotensin-I converting enzyme (ACE) activities and plasma antioxidant status as well as amylose/amylopectin content of the unripe plantain products were determined. A marked increase in the blood glucose, α-amylase, α-glucosidase and ACE activities with a corresponding decrease in plasma antioxidant status was recorded in diabetic rats. However, these indices were significantly (P < 0.05) reversed after unripe plantain product supplemented diet treatments for 14 days. Also, the amylose/amylopectin ratio of the products is 1:3. This study revealed that unripe plantain products exert antihyperglycemic effects which could be attributed to the inhibition of α-amylase and α-glucosidase activities by their constituent phytochemicals as well as their amylose/amylopectin contents in the diabetic rats, hence, providing the possible rationale behind their antidiabetic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Samini, Fariborz; Farkhondeh, Tahereh

    2016-04-01

    Chrysin (CH) is a natural flavonoid with pharmacological influences. The purpose of the current study was the assessment of possible protective effects of CH against oxidative damage in the serum, liver, brain, and pancreas of streptozotocin (STZ)- induced diabetic rats. In the present study, the rats were divided into the following groups of 8 animals each: control, untreated diabetic, 3 CH (20, 40, 80 mg/kg/day)-treated diabetic groups. To find out the modulations of cellular antioxidant defense systems, malondialdehyde (MDA) level and antioxidant enzymes including glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities were determined in the serum, liver, brain, and pancreas. STZ caused an elevation of glucose, MDA, TG, TC, LDL-C and with reduction of HDL-C, total protein, SOD, CAT, and GST in the serum, liver, brain, and pancreas (p < 0.01). The findings showed that the significant elevation in the glucose, MDA, TG, TC, LDL-C and reduction of HDL-C, total protein, SOD, CAT, and GST were ameliorated in the CH-treated diabetic groups versus to the untreated groups, in a dose dependent manner (p < 0.05). The current study offers that CH may be recovered diabetes and its complications by modification of oxidative stress.

  20. Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, O O; Sulaiman, S A; Wahab, M S; Sirajudeen, K N S; Salleh, M S Md; Gurtu, S

    2010-09-01

    Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  1. Comparison of the anti-diabetic effects of resveratrol, gliclazide and losartan in streptozotocin-induced experimental diabetes.

    PubMed

    Yazgan, Ümit Can; Taşdemir, Ezel; Bilgin, Hakkı Murat; Deniz Obay, Basra; Şermet, Abdurrahman; Elbey, Bilal

    2015-01-01

    The aim of this study was to compare the effect of the resveratrol with gliclazide and losartan in streptozotocin induced diabetic rats. Adult male Wistar albino rats were divided into five groups of seven rats each. Diabetes was induced with a single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Rats with blood glucose levels above 250 mg/dl after 48 h of streptozotocin injection were included in the diabetic group. Gliclazide and resveratrol were administered for 3 weeks at 5 mg/kg per day and losartan was administered for 3 weeks at 30 mg/kg per day in an oral aqueous suspension. At the end of the third week all rats were euthanized and fasting blood glucose, HbA1c and the metabolic activity of the hepatic enzymes hexokinase and glucose-6 phosphate dehydrogenase were measured in tail blood and liver specimens. All parameters were quantified using an ELISA plate reader. Resveratrol and gliclazide significantly reduced both blood glucose levels and HbA1c levels in diabetic rats (p < 0.001). However, losartan did not exhibit the same effects (p < 0.05). The enzymatic activity of the liver enzymes hexokinase, glucose-6 phosphate dehydrogenase, fructose 1,6-biphosphatase, pyruvate kinase and glucose-6 phosphatase were enhanced by resveratrol and gliclazide, while losartan treatment was not associated with significant changes in liver carbohydrate metabolism. Resveratrol was not effective in improving liver carbohydrate metabolism relative to gliclazide, a drug widely used to treat diabetes. Dose-response profile of resveratrol remains indeterminate and additional studies may be necessary to determine effective dosing in diabetes.

  2. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice.

    PubMed

    Park, Jung-Hyun; Jung, Ji-Hye; Yang, Jin-Young; Kim, Hyun-Sook

    2013-11-01

    Type 1 diabetes is an endocrinologic disorder characterized by uncontrolled glucose regulation and oxidative stress. Olive leaves have been studied extensively for their antioxidant activity and capacity to improve immune function. We hypothesized that olive leaf powder supplementation will be effective in inhibiting the oxidative stress and immune dysregulation in streptozotocin (STZ)-induced diabetic mice. Mice were assigned to 1 of 5 groups: control (C), STZ-induced diabetes (D), and STZ-induced diabetes supplemented with very low dose (VLOL), low dose (LOL), or high dose of olive leaf powder (HOL). Blood glucose in the VLOL and LOL groups was lower than that in the D group (P < .05). Insulin levels were increased in all experimental groups in comparison with that in the D group, (P < .05). Superoxide dismutase, glutathione peroxidase, and catalase activities were shown to decrease in the D group, whereas these were increased in the VLOL and LOL groups. Nitric oxide levels decreased in the VLOL and LOL groups, as compared with the D group. The messenger RNA expression levels of inducible nitric oxide synthase were significantly decreased in the VLOL and HOL groups, and interferon-γ levels were significantly decreased in the liver of the VLOL, LOL, and HOL groups compared with the levels in the D group. Interleukin-17 levels were significantly decreased in the VLOL and HOL groups. Th1 and Th17 cytokine levels were increased in the D group but decreased in all the experimental groups. Th2 cytokine levels were increased in all olive leaf-supplemented groups compared with those in the D group. These results indicate a reduction in the levels of proinflammatory cytokines, suggesting that olive leaves have the potential to provide therapeutic inhibition of diabetic complications. © 2013.

  3. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats.

    PubMed

    Jayachandran, Muthukumaran; Zhang, Tongze; Ganesan, Kumar; Xu, Baojun; Chung, Stephen Sum Man

    2018-06-15

    Among the foremost common flavonoids within the human diet, quercetin glycosides possess neuroprotective, cardioprotective, anti-oxidative, chemopreventive, and anti-allergic properties. Isoquercetin is one such promising candidate with anti-diabetic potential. However, complete studies of its molecular action on insulin signaling pathway and carbohydrate metabolizing enzymes remain unclear. Hence, we have designed this study to accumulate the experimental evidence in support of anti-diabetic effects of isoquercetin. Male albino Wistar rats were divided into seven groups. Rats (Groups 3-7) were administered a single intraperitoneal injection of streptozotocin (STZ; 40 mg/kg b.w) to induce diabetes mellitus. As an extension, STZ rats received isoquercetin at three different doses (20, 40 and 80 mg/kg b.w), and Group 7 rats received glibenclamide (standard drug) (600 μg/kg b.w). The results showed that STZ exaggerated blood sugar, decreased insulin, altered metabolizing enzymes, and impaired the mRNA expression of insulin signaling genes and carbohydrate metabolizing enzyme genes. Supplementation with isoquercetin significantly normalized blood sugar levels, insulin and regulated the mRNA expression of insulin signaling genes and carbohydrate metabolizing enzyme genes. The results achieved with isoquercetin are similar to that of standard drug glibenclamide. The findings suggest isoquercetin could be a possible therapeutic agent for treating diabetes mellitus in the near future. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Antihyperglycaemic effect of 'Ilogen-Excel', an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus.

    PubMed

    Umamaheswari, Selvaraj; Mainzen Prince, Ponnaian Stanely

    2007-01-01

    'Ilogen-Excel', an Ayurvedic herbal formulation is composed of eight medicinal plants (Curcuma longa, Strychnos potatorum, Salacia oblonga, Tinospora cordifolia, Vetivelia zizanioides, Coscinium fenestratum, Andrographis paniculata and Mimosa pudica). The present study evaluates the antihyperglycemic effect of 'Ilogen-Excel' in streptozotocin induced diabetic rats. Rats were rendered diabetic by streptozotocin (STZ) (45 mg/kg body weight). Oral administration of 'Ilogen-Excel' (50 mg/kg and 100 mg/kg) for 60 days resulted in significantly lowered levels of blood glucose and significantly increased levels of plasma insulin, hepatic glycogen and total hemoglobin. 'Ilogen-Excel' administration also decreased the levels of glycosylated hemoglobin, plasma thiobarbituric acid reactive substances, hydroperoxides, ceruloplasmin and vitamin E in diabetic rats. Plasma reduced glutathione and vitamin C were significantly elevated by oral administration of 'Ilogen-Excel'. Administration of insulin normalized all the biochemical parameters studied in diabetic rats. The effect at a dose of 100 mg/kg was more pronounced than 50 mg/kg and brought back all the parameters to near normal levels. Thus, our study shows the antihyperglycemic effects of 'Ilogen-Excel' in STZ-induced diabetic rats. Our study also shows that combined therapy is better than individual therapy.

  5. Anti-atherogenic effect of chromium picolinate in streptozotocin-induced experimental diabetes.

    PubMed

    Sundaram, Bhuvaneshwari; Singhal, Kirti; Sandhir, Rajat

    2013-03-01

    Several studies have implicated changes in the levels of trace elements in diabetes. Chromium is one such element that seems to potentiate insulin action, thereby regulating carbohydrate and lipid metabolism. The aim of the present study was to evaluate the effect of chromium supplementation as chromium picolinate on the lipid profile of streptozotocin (STZ)-induced diabetic rats. Rats were rendered diabetic by a single injection of STZ (50 mg/kg, i.p.). Chromium picolinate (1 mg/kg per day, p.o.) was administered to rats for a period of 4 weeks. At the end of the treatment period, plasma total lipids, triglycerides, total cholesterol and lipoprotein levels were determined, as was hepatic glucose-6-phosphate dehydrogenase activity. Total plasma lipids increased significantly in diabetic rats and this increase was ameliorated by chromium treatment for 4 weeks. Elevated total lipids in diabetic rats were due to increased plasma triglyceride and cholesterol levels. Chromium supplementation lowered plasma triglyceride and cholesterol levels to near normal. Chromium treatment also normalized low-density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein-cholesterol levels and improved the total cholesterol:high-density lipoprotein-cholesterol (HDL-C) and HDL-C:LDL-C ratios, suggesting an anti-atherogenic effect. In addition to improving the plasma lipid profile, chromium supplementation normalized liver glucose-6-phosphate dehydrogenase activity in diabetic rats. These results provide evidence that chromium picolinate effectively attenuates the dyslipidemia associated with diabetes and thus can be used as an adjuvant therapy in the treatment of diabetes and its associated complications. © 2012 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  6. NOX2 Deficiency Protects Against Streptozotocin-Induced β-Cell Destruction and Development of Diabetes in Mice

    PubMed Central

    Xiang, Fu-Li; Lu, Xiangru; Strutt, Brenda; Hill, David J.; Feng, Qingping

    2010-01-01

    OBJECTIVE The role of NOX2-containing NADPH oxidase in the development of diabetes is not fully understood. We hypothesized that NOX2 deficiency decreases reactive oxygen species (ROS) production and immune response and protects against streptozotocin (STZ)-induced β-cell destruction and development of diabetes in mice. RESEARCH DESIGN AND METHODS Five groups of mice—wild-type (WT), NOX2−/−, WT treated with apocynin, and WT adoptively transferred with NOX2−/− or WT splenocytes—were treated with multiple-low-dose STZ. Blood glucose and insulin levels were monitored, and an intraperitoneal glucose tolerance test was performed. Isolated WT and NOX2−/− pancreatic islets were treated with cytokines for 48 h. RESULTS Significantly lower blood glucose levels, higher insulin levels, and better glucose tolerance was observed in NOX2−/− mice and in WT mice adoptively transferred with NOX2−/− splenocytes compared with the respective control groups after STZ treatment. Compared with WT, β-cell apoptosis, as determined by TUNEL staining, and insulitis were significantly decreased, whereas β-cell mass was significantly increased in NOX2−/− mice. In response to cytokine stimulation, ROS production was significantly decreased, and insulin secretion was preserved in NOX2−/− compared with WT islets. Furthermore, proinflammatory cytokine release induced by concanavalin A was significantly decreased in NOX2−/− compared with WT splenocytes. CONCLUSIONS NOX2 deficiency decreases β-cell destruction and preserves islet function in STZ-induced diabetes by reducing ROS production, immune response, and β-cell apoptosis. PMID:20627937

  7. Hypoxis hemerocallidea Significantly Reduced Hyperglycaemia and Hyperglycaemic-Induced Oxidative Stress in the Liver and Kidney Tissues of Streptozotocin-Induced Diabetic Male Wistar Rats

    PubMed Central

    Oguntibeju, Oluwafemi O.; Meyer, Samantha; Aboua, Yapo G.; Goboza, Mediline

    2016-01-01

    Background. Hypoxis hemerocallidea is a native plant that grows in the Southern African regions and is well known for its beneficial medicinal effects in the treatment of diabetes, cancer, and high blood pressure. Aim. This study evaluated the effects of Hypoxis hemerocallidea on oxidative stress biomarkers, hepatic injury, and other selected biomarkers in the liver and kidneys of healthy nondiabetic and streptozotocin- (STZ-) induced diabetic male Wistar rats. Materials and Methods. Rats were injected intraperitoneally with 50 mg/kg of STZ to induce diabetes. The plant extract-Hypoxis hemerocallidea (200 mg/kg or 800 mg/kg) aqueous solution was administered (daily) orally for 6 weeks. Antioxidant activities were analysed using a Multiskan Spectrum plate reader while other serum biomarkers were measured using the RANDOX chemistry analyser. Results. Both dosages (200 mg/kg and 800 mg/kg) of Hypoxis hemerocallidea significantly reduced the blood glucose levels in STZ-induced diabetic groups. Activities of liver enzymes were increased in the diabetic control and in the diabetic group treated with 800 mg/kg, whereas the 200 mg/kg dosage ameliorated hepatic injury. In the hepatic tissue, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), catalase, and total glutathione were reduced in the diabetic control group. However treatment with both doses improved the antioxidant status. The FRAP and the catalase activities in the kidney were elevated in the STZ-induced diabetic group treated with 800 mg/kg of the extract possibly due to compensatory responses. Conclusion. Hypoxis hemerocallidea demonstrated antihyperglycemic and antioxidant effects especially in the liver tissue. PMID:27403200

  8. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Scoparia dulcis, a traditional antidiabetic plant, protects against streptozotocin induced oxidative stress and apoptosis in vitro and in vivo.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Sitasawad, Sandhya; Bhonde, Ramesh

    2004-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications. The experiments were performed on normal and experimental male Wistar rats treated with Scoparia dulcis plant extract (SPEt). The effect of SPEt was tested on streptozotocin (STZ) treated Rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. Administration of an aqueous extract of Scoparia dulcis by intragastric intubation (po) at a dose of 200 mg/kg body weight significantly decreased the blood glucose and lipid peroxidative marker thiobarbituric acid reactive substances (TBARS) with significant increase in the activities of plasma insulin, pancreatic superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in streptozotocin diabetic rats at the end of 15 days treatment. Streptozotocin at a dose of 10 mug/mL evoked 6-fold stimulation of insulin secretion from isolated islets indicating its insulin secretagogue activity. The extract markedly reduced the STZ-induced lipidperoxidation in RINm5F cells. Further, SPEt protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. Treatment of RINm5F cells with 5 mM STZ and 10 mug of SPEt completely abrogated apoptosis induced by STZ, suggesting the involvement of oxidative stress. Flow cytometric assessment on the level of intracellular peroxides using fluorescent probe 2'7'-dichlorofluorescein diacetate (DCF-DA) confirmed that STZ (46%) induced an intracellular oxidative stress in RINm5F cells, which was suppressed by SPEt (21%). In addition, SPEt also reduced (33%) the STZ-induced apoptosis (72%) in RINm5F cells indicating the mode of protection of SPEt on RIN m5Fcells, islets, and pancreatic beta-cell mass (histopathological observations). Present study thus confirms antihyperglycemic effect of SPEt and also demonstrated the consistently strong antioxidant properties of Scoparia dulcis used in the traditional medicine. (c) 2004 Wiley Periodicals, Inc.

  10. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  11. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats.

    PubMed

    Aslan, Mustafa; Deliorman Orhan, Didem; Orhan, Nilüfer; Sezik, Ekrem; Yesilada, Erdem

    2007-01-03

    Helichrysum species (Asteraceae) are widely found in Anatolia. Decoction prepared from the capitulums of Helichrysum plicatum ssp. plicatum is used to alleviate the symptoms of diabetes mellitus in folk medicine. In the present study, the hypoglycaemic and antioxidant potential of Helichrysum plicatum ssp. plicatum was evaluated by using in vivo methods in normal and streptozotocin-induced-diabetic rats. After the oral administration of water and ethanolic extracts at doses of 500mg/kg body weight prepared from the capitulums of plant, blood glucose levels were monitored at specific intervals. Tolbutamide was used as a reference drug at a dose of 100mg/kg. The experimental data indicated that water and ethanol extracts of capitulums demonstrate significant antihyperglycaemic and antioxidant activity in streptozotocin-induced rats which confirmed the folkloric utilization. In order to assess the role of polyphenolic components in the relevant activity, phenolic and flavonoid contents of each extract were also determined in terms of total phenols: 113.5+/-8.6mg (gallic acid equivalent/1g extract) and total flavanoids 50.5+/-1.9mg (quercetin equivalent/1g extract) for ethanol extract, total phenols: 75.9+/-3.7, flavonoids: 31.5+/-2.3 for water extract using Folin-Ciocalteu reagent.

  12. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats.

    PubMed

    Li, Chuan; Ding, Qiao; Nie, Shao-Ping; Zhang, Yan-Song; Xiong, Tao; Xie, Ming-Yong

    2014-12-10

    The effect of carrot juice fermented with Lactobacillus plantarum NCU116 on high-fat and low-dose streptozotocin (STZ)-induced type 2 diabetes in rats was studied. Rats were randomly divided into five groups: non-diabetes mellitus (NDM), untreated diabetes mellitus (DM), DM plus L. plantarum NCU116 (NCU), DM plus fermented carrot juice with L. plantarum NCU116 (FCJ), and DM plus non-fermented carrot juice (NFCJ). Treatments of NCU and FCJ for 5 weeks were found to favorably regulate blood glucose, hormones, and lipid metabolism in the diabetic rats, accompanied by an increase in short-chain fatty acid (SCFA) in the colon. In addition, NCU and FCJ had restored the antioxidant capacity and morphology of the pancreas and kidney and upregulated mRNA of low-density lipoprotein (LDL) receptor, cholesterol 7α-hydroxylase (CYP7A1), glucose transporter-4 (GLUT-4), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ). These results have for the first time demonstrated that L. plantarum NCU116 and the fermented carrot juice had the potential ability to ameliorate type 2 diabetes in rats.

  13. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  14. Low-intensity Pulsed Ultrasound Improves Erectile Function in Streptozotocin-induced Type I Diabetic Rats.

    PubMed

    Lei, Hongen; Xin, Hua; Guan, Ruili; Xu, Yongde; Li, Huixi; Tian, Wenjie; Wang, Lin; Gao, Zhezhu; Guo, Yinglu; Lue, Tom F; Lin, Guiting; Xin, Zhongcheng

    2015-12-01

    To investigate the effect of low-intensity pulsed ultrasound (LIPUS) as a treatment for erectile dysfunction (ED) in a rat model of type I diabetes mellitus (DM) induced by streptozotocin (STZ). Seventy male Sprague-Dawley rats were randomly assigned to 2 cohorts: a normal control (NC) group and an STZ-induced DM group, which was further subdivided into DM, DM+LIPUS 100, DM+LIPUS 200, and DM+LIPUS 300 groups and a DM+LESWT (low-energy shock wave therapy) 300 positive control group. Animals in the LIPUS subgroups were treated at different energy levels (100, 200, and 300 mW/cm(2)) for 3 minutes, and animals in the LESWT group received 300 shocks at 0.09 mJ/mm(2). All procedures were repeated 3 times per week for 2 weeks. After a 2-week wash-out period, intracavernous pressure (ICP) was measured; the midpenile region was examined histologically; and VEGF, αSMA, eNOS, and nNOS expression, and activity of the TGF-β1/Smad/CTGF signaling pathway were examined in penile tissue by Western blot analysis. LIPUS therapy significantly improved erectile function in diabetic rats, as evidenced by enhanced ICP levels, increased endothelial and smooth muscle content, a higher collagen I/collagen III ratio, increased quantity of elastic fibers, and elevated eNOS and nNOS expression. Interestingly, LIPUS was also associated with downregulation of the TGF-β1/Smad/CTGF signaling pathway in penile tissue, whose activation is correlated with ED pathology. LIPUS therapy improved erectile function and reversed pathologic changes in penile tissue of STZ-induced diabetic rats. LIPUS therapy has potential as a noninvasive therapy for diabetic ED in the clinic. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  16. Emodin ameliorates high glucose induced-podocyte epithelial-mesenchymal transition in-vitro and in-vivo.

    PubMed

    Chen, Tingfang; Zheng, Li Yang; Xiao, Wenzhen; Gui, Dingkun; Wang, Xiaoxia; Wang, Niansong

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a potential pathway leading to podocyte depletion and proteinuria in diabetic kidney disease (DKD). Here, we investigated the protective effects of Emodin (EMO) on high glucose (HG) induced-podocyte EMT in-vitro and in-vivo. Conditionally immortalized mouse podocytes were exposed to HG with 30 μg /ml of EMO and 1 μmol/ml of integrin-linked kinase (ILK) inhibitor QLT0267 for 24 h. Streptozotocin (STZ)-induced diabetic rats were treated with EMO at 20 mg· kg(-1)· d(-1) and QLT0267 at 10 mg· kg(-1)· w(-1) p.o., for 12 weeks. Albuminuria and blood glucose level were measured. Immunohistochemistry, immunofluorescence, western blotting and real-time PCR were used to detect expression of ILK, the epithelial marker of nephrin and the mesenchymal marker of desmin in-vitro and in-vivo. HG increased podocyte ILK and desmin expression while decreased nephrin expression. However, EMO significantly inhibited ILK and desmin expression and partially restored nephrin expression in HG-stimulated podocytes. These in-vitro observations were further confirmed in-vivo. Treatment with EMO for 12 weeks attenuated albuminuria, renal histopathology and podocyte foot process effacement in diabetic rats. EMO also repressed renal ILK and desmin expression, preserved nephrin expression, as well as ameliorated albuminuria in STZ-induced diabetic rats. EMO ameliorated glucose-induced EMT and subsequent podocyte dysfunction partly through ILK and desmin inhibition as well as nephrin upregulatiotion, which might provide a potential novel therapeutic option for DKD. © 2015 S. Karger AG, Basel.

  17. Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats.

    PubMed

    Wang, Yue-Hua; Liu, Yan-Hong; He, Guo-Rong; Lv, Yang; Du, Guan-Hua

    2015-11-09

    Increasing studies have shown that dyslipidemia and inflammatory responses play important roles in the progression of microvascular diabetic complications. Esculin (ES), a coumarin derivative, was extracted from Fraxinus rhynchophylla. The present study was to evaluate the potential effects of ES on lipid metabolism, inflammation responses and renal damage in streptozotocin (STZ)-induced experimental diabetic rats and explore the possible mechanism. Diabetic rat model was established by administration high-glucose-fat diet and intraperitoneal injection of STZ 45 mg/kg. ES was administrated to diabetic rats intragastrically at 10, 30 and 90 mg/kg for 10 weeks respectively. The levels of triglycerides (TG), total cholesterol (T-CHO), low density lipoproteins (LDL), and high-density-cholesterol (HDL-C) in serum were measured. IL-1, IL-6, ICAM-1, NO, NAGL, and AGEs level in serum were detected by ELISA assay. The accumulation of AGEs in kidney tissue was examined by immunohistochemistry assay. The results showed that ES could decrease TG, T-CHO, LDL levels in serum of diabetic rats in a dose dependent manner. ES also decreased IL-1, IL-6, ICAM-1, NO and NGAL levels in serum of diabetic rats in a dose dependent manner. Furthermore, ES at 30 and 90 mg/kg significantly decreased AGEs level in serum and alleviated AGEs accumulation in renal in diabetic rats. Our findings indicate that ES could improve dyslipidemia, inflammation responses, renal damage in STZ-induced diabetic rats and the possible mechanism might be associated with the inhibition of AGEs formation.

  18. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    PubMed

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Influence of low power density on wound healing in streptozotocin-induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Lau, Pik Suan; Bidin, Noriah; Islam, Shumaila; Musa, Nurfatin; Zakaria, Nurlaily; Krishnan, Ganesan

    2017-05-01

    Photobiomodulation therapy (PBMT) is used for wound healing at two different power densities, i.e. 0.2 W cm-2 and 0.4 W cm-2, while maintaining the same fluence of 5 J cm-2. Forty-five streptozotocin (STZ)-induced diabetic rats were allocated into three groups: the untreated laser group (G0), 0.2 W cm-2 laser treated group (GL1), and 0.4 W cm-2 laser treated group (GL2). Six mm full thickness cutaneous wounds are created on the dorsal side of rats. A 808 nm diode laser irradiates the wound in GL1 and GL2 daily for 9 consecutive days. Groups GL1 and GL2 have the same total fluence but different power densities, 0.2 W cm-2 and 0.4 W cm-2, which results in stimulatory and inhibitory effects in wound healing, respectively. In group GL1, enhanced wound contraction and inflammation has been triggered at an earlier stage compared to the untreated laser group G0. Meanwhile, the laser treated group GL2 exhibits an escalated volume of inflammatory cells, and collagen synthesis is inhibited. Therefore, it can be concluded that PBMT has potential in promoting wound healing under the low power density (0.2 W cm-2) condition.

  20. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation

    PubMed Central

    Kataoka, Takahiro

    2013-01-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation. PMID:23420683

  1. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro

    2013-07-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.

  2. Streptozotocin-induced hippocampal astrogliosis and insulin signaling malfunction as experimental scales for subclinical sporadic Alzheimer model.

    PubMed

    Rostami, Farzaneh; Javan, Mohammad; Moghimi, Ali; Haddad-Mashadrizeh, Aliakbar; Fereidoni, Masoud

    2017-11-01

    Insulin signaling malfunction has recently been suggested as a preliminary event involved in the etiology of Sporadic Alzheimer's disease (SAD). In order to develop insulin resistance-related SAD model, rats were treated with streptozotocin, intracerebroventricularly (icv-STZ). Nevertheless, given the lack of knowledge regarding sub-clinical stages of SAD, the current challenging issue is establishing a practical pre-clinical SAD model. Despite some proposed mechanisms, such as insulin malfunction, neuroinflammation, and gliosis, icv-STZ mechanism of action is not fully understood yet and Streptozotocin-induced rat model of Alzheimer has still major shortcomings. Using three STZ doses (0.5, 1, and 3mg/kg) and three testing time (short-term, medium-term and long-term), we sought the best dose of STZ in order to mimic the characteristic feature of sAD in rats. So, we conducted a series of fifteen-week follow-up cognitive and non-cognitive studies. Besides, IR, tau and ChAT mRNA levels were measured, along with histological analysis of astrocyte, dark neuron numbers, and pyramidal layer thickness, in order to compare the effects of different doses of icv-STZ. STZ 3mg/kg caused cognitive and insulin signaling disturbance from the very first testing-time. STZ1-injected animals, however, showed an augmented hippocampal astrocyte numbers in a short time; they, also, were diagnosed with disturbed insulin signaling in medium-term post icv-STZ-injection. Moreover, behavioral, molecular and histological impairments induced by 0.5mg/kg icv-STZ were slowly progressing in comparison to high doses of STZ. STZ1 and 0.5mg/kg-treated animals are, respectively, suggested as a suitable experimental model of MCI, and sub-clinical stage. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats.

    PubMed

    Tan, Benny Kwong Huat; Tan, Chee Hong; Pushparaj, Peter Natesan

    2005-04-29

    The present study was designed to investigate the hypoglycemic and hypolipidemic activities of the semi-purified fractions of an ethanolic leaf extract of Averrhoa bilimbi (ABe) in high fat diet (HFD)-streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats aged 10 weeks (200-250 g) were fed with a high fat diet obtained from Glen Forrest stock feeders (Western Australia) for 2 weeks prior to intraperitoneal injection with streptozotocin (STZ, 50 mg/kg). The leaves of A.bilimbi were exhaustively extracted with 80% ethanol, concentrated at 40 degrees C using a rotavapor and partitioned successively with butanol, ethylacetate and hexane to get aqueous (AF), butanol (BuF), ethylacetate (EF), and hexane fractions (HF). The fractions were freeze-dried to obtain powders of each. To investigate the effect of long term administration of the hypoglycemic fractions, diabetic animals were treated with vehicle (distilled water), AF (125 mg/kg), or BuF (125 mg/kg), twice a day for 14 days. The long term administration of AF and BuF at a dose of 125 mg/kg significantly (P < 0.05) lowered blood glucose and triglyceride concentrations when compared to the vehicle. The hepatic glycogen content was significantly higher (P < 0.05) in AF-treated rats when compared to diabetic control, however no change was found in the BuF-treated rats. Moreover, AF as well as BuF did not cause any significant change in the total cholesterol and HDL-cholesterol. There was also no difference in liver thiobarbituric acid reactive substances (TBARS) and cytochrome P450 values between AF, BuF and vehicle-treated control rats. In conclusion, the results indicate that AF is more potent than BuF in the amelioration of hyperglycemia and hyperlipidemia in HFD fed-STZ diabetic rats. Hence, AF is a potential source for the isolation of active principle(s) for oral anti-diabetic therapy.

  4. Activation of spinal cannabinoid CB2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice.

    PubMed

    Ikeda, H; Ikegami, M; Kai, M; Ohsawa, M; Kamei, J

    2013-10-10

    The role of spinal cannabinoid systems in neuropathic pain of streptozotocin (STZ)-induced diabetic mice was studied. In normal mice, injection of the cannabinoid receptor agonist WIN-55,212-2 (1 and 3μg, i.t.) dose-dependently prolonged the tail-flick latency, whereas there were no changes with the injection of either cannabinoid CB1 (AM 251, 1 μg, i.t.) or CB2 (AM 630, 4 μg, i.t.) receptor antagonists. AM 251 (1 μg, i.t.), but not AM 630 (4 μg, i.t.), significantly inhibited the prolongation of the tail-flick latency induced by WIN-55,212-2 (3 μg, i.t.). In STZ-induced diabetic mice, the tail-flick latency was significantly shorter than that in normal mice. A low dose of WIN-55,212-2 (1 μg, i.t.) significantly recovered the tail-flick latency in STZ-induced diabetic mice. The effect of WIN-55,212-2 (1 μg, i.t.) in STZ-induced diabetic mice was significantly inhibited by AM 630 (4 μg, i.t.), but not AM 251 (1 μg). The selective cannabinoid CB2 receptor agonist L-759,656 (19 and 38 μg, i.t.) also dose-dependently recovered the tail-flick latency in STZ-induced diabetic mice, and this recovery was inhibited by AM 630 (4 μg, i.t.). The protein levels of cannabinoid CB1 receptors, CB2 receptors and diacylglycerol lipase α (DGL-α), the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the spinal cord were examined using Western blotting. The protein levels of both cannabinoid CB1 and CB2 receptors were increased in STZ-induced diabetic mice, whereas the protein level of DGL-α was significantly decreased. These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Effect of cocoyam (Colocasia esculenta), unripe plantain (Musa paradisiaca) or their combination on glycated hemoglobin, lipogenic enzymes, and lipid metabolism of streptozotocin-induced diabetic rats.

    PubMed

    Eleazu, Chinedum Ogbonnaya; Eleazu, Kate Chinedum; Iroaganachi, Mercy Amarachi

    2016-01-01

    The possibility of combining unripe plantain [Musa paradisiacae Linn (Plantaginaceae)] and cocoyam [Colocassia esculenta Linn (Araceae)] in the management of diabetes has not been investigated. The objective of this study is to evaluate the antihyperglycemic and antihyperlipidemic actions of unripe plantain and cocoyam. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (65 mg/kg body weight). Twelve days after STZ induction, respective groups of diabetic rats were fed cocoyam (810 g/kg), unripe plantain (810 g/kg), and unripe plantain + cocoyam (405:405 g/kg) for 28 d. Body weights, feed intake, biochemical parameters, namely serum glucose, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), atherogenic index, coronary risk index, triacylglycerol, glycated hemoglobin (HbA1C), hepatic isocitrate dehydrogenase, malic enzyme, and glucose-6-phosphate dehydrogenase of the rats and phytochemical composition of the test and standard rat feeds were measured. Cocoyam or unripe plantain alone significantly (p < 0.05) ameliorated the body weights (18.89 and 19.95% decreases, respectively) and biochemical parameters as compared with those of STZ controls (31.21% decrease). While combination of cocoyam and unripe plantain significantly (p < 0.05) ameliorated the biochemical parameters of the rats (except HbA1C), it did not ameliorate their body weights (28.53% decrease). The feed intake of the experimental rats did not differ from each other (p > 0.05) at the end of experimentation and the feed samples contained considerable amounts of saponins, alkaloids, flavonoids, and tannins. Cocoyam or unripe plantain alone showed better antihyperglycemic and anihyperlipidemic action than their combination.

  6. Effect of combination therapy consisting of enalapril, α-lipoic acid, and menhaden oil on diabetic neuropathy in a high fat/low dose streptozotocin treated rat.

    PubMed

    Davidson, Eric P; Holmes, Amey; Coppey, Lawrence J; Yorek, Mark A

    2015-10-15

    We have previously demonstrated that treating diabetic rats with enalapril, an angiotensin converting enzyme (ACE) inhibitor, α-lipoic acid, an antioxidant, or menhaden oil, a natural source of omega-3 fatty acids can partially improve diabetic peripheral neuropathy. In this study we sought to determine the efficacy of combining these three treatments on vascular and neural complications in a high fat fed low dose streptozotocin treated rat, a model of type 2 diabetes. Rats were fed a high fat diet for 8 weeks followed by a 30 mg/kg dose of streptozotocin. Eight weeks after the onset of hyperglycemia diabetic rats were treated with a combination of enalapril, α-lipoic acid and menhaden oil. Diabetic rats not receiving treatment were continued on the high fat diet. Glucose clearance was impaired in diabetic rats and significantly improved with treatment. Diabetes caused steatosis, elevated serum lipid levels, slowing of motor and sensory nerve conduction, thermal hypoalgesia, reduction in intraepidermal nerve fiber profiles, decrease in cornea sub-basal nerve fiber length and corneal sensitivity and impairment in vascular relaxation to acetylcholine and calcitonin gene-related peptide in epineurial arterioles of the sciatic nerve. Treating diabetic rats with the combination of enalapril, α-lipoic acid and menhaden oil reversed all these deficits to near control levels except for motor nerve conduction velocity which was also significantly improved compared to diabetic rats but remained significantly decreased compared to control rats. These studies suggest that a combination therapeutic approach may be most effective for treating vascular and neural complications of type 2 diabetes. Published by Elsevier B.V.

  7. Extract of Bauhinia vahlii Shows Antihyperglycemic Activity, Reverses Oxidative Stress, and Protects against Liver Damage in Streptozotocin-induced Diabetic Rats

    PubMed Central

    Elbanna, Ahmed H.; Nooh, Mohammed M.; Mahrous, Engy A.; Khaleel, Amal E.; Elalfy, Taha S.

    2017-01-01

    Background: Several studies have affirmed the effectiveness of some Bauhinia plants as antihyperglycemic agents. Objective: We investigated the possible effect of Bauhinia vahlii leaves extract in reducing hyperglycemia and reversing signs of organ damage associated with diabetes in streptozotocin (STZ) rat model. Materials and Methods: Both polar fraction of the B. vahlii leaves (defatted ethanolic extract [DEE]) and nonpolar fraction (n-hexane extract) were evaluated in vitro for α-glucosidase inhibition and 2,2-diphenyl-1-picrylhydrazyl radical scavenging potential. DEE was selected for further in vivo studies and was administered at two doses, i.e., 150 or 300 mg/kg to STZ-diabetic rats for 4 weeks. Results: Only DEE exhibited in vitro antioxidant and antihyperglycemic activities and its oral administration at both dose levels resulted in significant reduction in fasting blood glucose and glycated hemoglobin. Furthermore, signs of oxidative stress as indicated by hepatic reduced glutathione, nitric oxide, and malondialdehyde levels were completely reversed. In addition, histopathological examination and measurement of serum aspartate transaminase and alanine transaminase levels showed that DEE protected the liver from signs of liver pathogenesis when compared to diabetic untreated animals and those treated with metformin. Phytochemical analysis of DEE showed high flavonoids content with quercitrin as the major constituent along with other quercetin glycosides. Conclusion: This study strongly highlights the possible beneficial effect of B. vahlii leaves extract in relieving hyperglycemia and liver damage in STZ-diabetic rats and recommends further investigation of the value of quercetin derivatives in controlling diabetes and ameliorating liver damage associated with it. SUMMARY The polar fraction of the Bauhinia vahlii leaves (defatted ethanolic extract [DEE]) exhibited both in vitro antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenging assay and

  8. Protective Effects of Hydrogen against Low-Dose Long-Term Radiation-Induced Damage to the Behavioral Performances, Hematopoietic System, Genital System, and Splenic Lymphocytes in Mice

    PubMed Central

    Lei, Xiao; Zhao, Hainan; Liu, Pengfei; Xu, Yang; Chen, Yuanyuan; Chuai, Yunhai

    2016-01-01

    Molecular hydrogen (H2) has been previously reported playing an important role in ameliorating damage caused by acute radiation. In this study, we investigated the effects of H2 on the alterations induced by low-dose long-term radiation (LDLTR). All the mice in hydrogen-treated or radiation-only groups received 0.1 Gy, 0.5 Gy, 1.0 Gy, and 2.0 Gy whole-body gamma radiation, respectively. After the last time of radiation exposure, all the mice were employed for the determination of the body mass (BM) observation, forced swim test (FST), the open field test (OFT), the chromosome aberration (CA), the peripheral blood cells parameters analysis, the sperm abnormality (SA), the lymphocyte transformation test (LTT), and the histopathological studies. And significant differences between the treatment group and the radiation-only groups were observed, showing that H2 could diminish the detriment induced by LDLTR and suggesting the protective efficacy of H2 in multiple systems in mice against LDLTR. PMID:27774116

  9. Induction of anti-glioma NK cell response following multiple low-dose intracerebral CpG therapy

    PubMed Central

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E.; Farrukh, Omar; Jensen, Michael C.; Badie, Behnam

    2010-01-01

    Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN which can induce toxicity in a clinical setting. The goal of this study was to evaluate the anti-tumor efficacy of multiple low-dose intratumoral CpG- ODN in a glioma model. Experimental Design Mice bearing four-day old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 μg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Results Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor free remission (> 3 months), and were protected from intracranial rechallenge with GL21 gliomas, demonstrating the capacity for long-term anti-tumor immunity. Although most inflammatory cells appeared to increase, activated NK cells (i.e. NK+CD107a+) were more frequent than CD8+CD107a+ in the brains of rechallenged CpG-ODN-treated animals and demonstrated a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN anti-tumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. Conclusions These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK mediated effector function. PMID:20570924

  10. Protective effects of low-dose rosuvastatin on isoproterenol-induced chronic heart failure in rats by regulation of DDAH-ADMA-NO pathway.

    PubMed

    Zhou, Ru; Ma, Ping; Xiong, Aiqin; Xu, Yehua; Wang, Yang; Xu, Qingbin

    2017-04-01

    Cardiovascular disease is the leading cause of death with high morbidity and mortality, and chronic heart failure is the terminal phase of it. This study aimed to investigate the protective effects of the low-dose rosuvastatin on isoproterenol-induced chronic heart failure and to explore the possible related mechanisms. Male Sprague Dawley rats were given isoproterenol 5 mg/kg once a day for 7 days to establish heart failure model by subcutaneous injection. Simultaneously, low-dose rosuvastatin (5 mg/kg) was orally administrated from day 1 to day 14. Protective effects were evaluated by hemodynamic parameter, histopathological variables, serum asymmetric dimethylarginine (ADMA), cardiac troponin I (cTnI), brain natriuretic peptide (BNP) and myocardial nitric oxide (NO), and the levels of dimethylarginine dimethylaminohydrolase 2 (DDAH2), arginine methyltransferases 1 (PRMT1) and endothelial nitric oxide synthase (eNOS) expression were analyzed. Therapeutic rosuvastatin (5 mg/kg) significantly attenuated isoproterenol-induced hypertrophy, remodeling and dysfunction of ventricle, reduced the increased serum content of ADMA, cTnI, and BNP, and elevated myocardial NO in rats (P<.05). Besides, rosuvastatin also significantly inhibited fibrosis of myocardium, normalized the increased PRMT1 and decreased DDAH2 expression. Low-dose rosuvastatin exerted cardioprotective effects on isoproterenol-induced heart failure in rats by modulating DDAH-ADMA-NO pathway, and it may present the new therapeutic value in ameliorating chronic heart failure. © 2016 John Wiley & Sons Ltd.

  11. Effects of Vernonia cinerea on reproductive performance in streptozotocin-induced diabetic rats.

    PubMed

    Pomjunya, Atchariya; Ratthanophart, Jasada; Fungfuang, Wirasak

    2017-03-23

    The present study investigated the effects of Vernonia cinerea (VC) on the reproductive function in streptozotocin (STZ)-induced diabetic male rats. Six-week-old male Sprague-Dawley rats were randomly divided into four groups: group 1, normal control rats; group 2, diabetic untreated rats; group 3, diabetic rats treated with VC (10 mg/kg); and group 4, diabetic rats treated with VC (40 mg/kg). Diabetes mellitus (DM) was induced by intraperitoneal injection of STZ (60 mg/kg). All animals were treated for 30 consecutive days. Body weight, blood glucose, food intake, epididymal sperm parameters, testicular microstructure and serum testosterone levels were evaluated. VC treatment significantly restored the sperm motility and testosterone concentration, and decreased the testicular histopathological changes in DM rats. Moreover, high-dose VC exhibited an antidibetic activity and significantly improved the sperm count. In conclusion, we found, for the first time, that administration of VC significantly restored the testicular function and testosterone concentration in diabetic male rats.

  12. Effects of Vernonia cinerea on reproductive performance in streptozotocin-induced diabetic rats

    PubMed Central

    POMJUNYA, Atchariya; RATTHANOPHART, Jasada; FUNGFUANG, Wirasak

    2017-01-01

    The present study investigated the effects of Vernonia cinerea (VC) on the reproductive function in streptozotocin (STZ)-induced diabetic male rats. Six-week-old male Sprague-Dawley rats were randomly divided into four groups: group 1, normal control rats; group 2, diabetic untreated rats; group 3, diabetic rats treated with VC (10 mg/kg); and group 4, diabetic rats treated with VC (40 mg/kg). Diabetes mellitus (DM) was induced by intraperitoneal injection of STZ (60 mg/kg). All animals were treated for 30 consecutive days. Body weight, blood glucose, food intake, epididymal sperm parameters, testicular microstructure and serum testosterone levels were evaluated. VC treatment significantly restored the sperm motility and testosterone concentration, and decreased the testicular histopathological changes in DM rats. Moreover, high-dose VC exhibited an antidibetic activity and significantly improved the sperm count. In conclusion, we found, for the first time, that administration of VC significantly restored the testicular function and testosterone concentration in diabetic male rats. PMID:28190818

  13. Oral metformin-ascorbic acid co-administration ameliorates alcohol-induced hepatotoxicity in rats.

    PubMed

    Adeneye, A A; Benebo, A S

    2007-01-01

    Alcoholic liver disease remains a major cause of liver failure worldwide with no available curative or prophylactic therapy as at present. High dose metformin is reported to ameliorate liver injuries in both human and animal models of acute and chronic alcoholic liver injuries. The aim of the present in vivo animal study was to determine whether metformin-ascorbic acid co-administration also prevents alcoholic hepatotoxicity in chronic alcohol exposure. In the present study, ameliorating effect of 200 mg/ kg/day of ascorbic acid (Asc), 500 mg/kg/day of metformin (Met) and their co-administration (Met-Asc) were investigated in 5 groups of 50% ethanol-treated male Wistar rats for 2 weeks of the experiment. The body weight of each rat was taken on days 1, 7, and 14 of the experiment, respectively. On day 15, fasted blood samples for plasma lipids and liver enzyme markers were collected via cardiac puncture from the rats under diethyl ether anaesthesia. Results showed that administration of graded oral doses of 50% ethanol for 14 days significantly (p<0.001) elevated the plasma liver enzymes--aspartate aminotransferase (AST), alanine aminotansferase (ALT) and alkaline phosphatase (ALP). Two weeks of ethanol treatment also induced alterations in the plasma triglycerides (PTG), total cholesterol (PTC), high density lipoprotein (HDL-c), and low density lipoprotein (LDL-c). However, these elevations were significantly (p<0.05) attenuated by Asc, Met, and Met-Asc after 14 days of oral treatment, with Met-Asc having higher significant (p<0.001) ameliorating effect than Asc alone but with comparative effect to that of Met alone. High dose metformin-ascorbic acid co-administration protected the liver against the deleterious effects of chronic high dose alcohol and the hepatoprotective effect of Met-Asc appeared to be due mainly to the metformin molecule of the drug combination. However, further studies would be required to evaluate the mechanisms underlying the observed

  14. Hyperglycemia in BALB/c mice after pretreatment with one subdiabetogenic dose of streptozotocin and subsequent infection with a Coxsackie B4 strain.

    PubMed

    Wegner, U; Kewitsch, A; Madauss, M; Döhner, L; Zühlke, H

    1985-01-01

    Male BALB/c mice were injected with one subdiabetogenic dose of streptozotocin followed by Coxsackie B4 virus infection 7 days later. The animals developed a transient hyperglycemia after streptozotocin-pretreatment and infection with a human Coxsackie B4 isolate. Frozen sections of pancreata stained with FITC-labeled antibodies showed an intensive infection of the exocrine tissue. Immunofluorescence studies with isolated islets obtained from streptozotocin-treated or untreated animals demonstrated virus antigen in about 20% of the islets 5 days after in vivo virus infection. It is supposed that the hyperglycemia measured in our experiments was caused by a cumulative effect of streptozotocin and virus infection.

  15. Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Anbar, Hanan S; Shehatou, George S G; Suddek, Ghada M; Gameil, Nariman M

    2016-06-05

    This work was designed to investigate the effects of levocetirizine, a histamine H1 receptor antagonist, on diabetes-induced nephropathy and vascular disorder, in comparison to an angiotensin II receptor antagonist, losartan. Diabetes was induced in male Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (50mg/kg). Diabetic rats were divided into three groups; diabetic, diabetic-levocetirizine (0.5mg/kg/day) and diabetic-losartan (25mg/kg/day). Treatments were started two weeks following diabetes induction and continued for additional eight weeks. At the end of the experiment, urine was collected and serum was separated for biochemical measurements. Tissue homogenates of kidney and aorta were prepared for measuring oxidative stress, nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Moreover, histological analyses were conducted and aortic vascular reactivity was investigated. Levocetirizine improved renal function in diabetic rats (evidenced by mitigation of diabetes-induced changes in kidney to body weight ratio, serum albumin, urinary proteins and creatinine clearance). Moreover, levocetirizine attenuated the elevated renal levels of TNF-α and TGF-β1, ameliorated renal oxidative stress and restored NO bioavailability in diabetic kidney. These effects were comparable to or surpassed those produced by losartan. Moreover, levocetirizine, similar to losartan, reduced the enhanced responsiveness of diabetic aorta to phenylephrine. Histological evaluation of renal and aortic tissues further confirmed the beneficial effects of levocetirizine on diabetic nephropathy and revealed a greater attenuation of diabetes-induced vascular hypertrophy by levocetirizine than by losartan. In conclusion, levocetirizine may offer comparable renoprotective effect to, and possibly superior vasculoprotective effects than, losartan in streptozotocin-diabetic rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Low-dose radiation induces Drosophila innate immunity through Toll pathway activation.

    PubMed

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Park, Joong-Jean; Min, Kyung-Jin; Jin, Young-Woo

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and JNK. These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila.

  17. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats.

    PubMed

    Zhao, Yuxing; Shen, Zhaoxing; Zhang, Dongling; Luo, Huiqiong; Chen, Jinliang; Sun, Yue; Xiao, Qian

    2017-06-01

    Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.

  18. Low-dose or low-dose-rate ionizing radiation–induced bioeffects in animal models

    PubMed Central

    Loke, Weng Keong; Khoo, Boo Cheong

    2017-01-01

    Abstract Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies. PMID:28077626

  19. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model.

    PubMed

    Lee, Hong-Joo; Jeong, Kyung Hwan; Kim, Yang Gyun; Moon, Joo Young; Lee, Sang Ho; Ihm, Chun Gyoo; Sung, Ji Youn; Lee, Tae Won

    2014-01-01

    Oxidative stress and inflammation are known to play central roles in the development of diabetic nephropathy (DN). Febuxostat is a novel non-purine xanthine oxidase (XO)-specific inhibitor developed to treat hyperuricemia. In this study, we investigated whether febuxostat could ameliorate DN via renoprotective mechanisms such as alleviation of oxidative stress and anti-inflammatory actions. Male Sprague-Dawley rats were divided into three groups: a normal group, a diabetes group (DM group), and a febuxostat-treated diabetes group (DM+Fx group). We administered 5 mg/kg of febuxostat to experimental rats for 7 weeks and evaluated clinical and biochemical parameters and XO and xanthine dehydrogenase (XDH) activity in hepatic tissue. The degree of oxidative stress and extent of inflammation were evaluated from urine samples and renal tissue collected from each group. Diabetic rats (DM and DM+Fx groups) had higher blood glucose and kidney weight relative to body weight than normal rats. Albuminuria was significantly reduced in febuxostat-treated diabetic rats compared with untreated diabetic rats. Quantitative analysis showed that hepatic XO and XDH activities were higher in the DM groups, but decreased after treatment with febuxostat. Urinary 8-OHdG concentrations and renal cortical nitrotyrosine also indicated reduced oxidative stress in the DM+Fx group relative to the DM group. The number of ED-1-stained cells in the glomerulus and tubule of diabetic renal tissue decreased in febuxostat-treated diabetic rats relative to that of non-treated diabetic rats. Diabetic rats also expressed higher transcript levels of inflammatory genes (E-selectin and VCAM-1), an inflammation-induced enzyme (COX-2), and inflammatory mediators (ED-1 and NF-κB) than control rats; expression of these genes was significantly reduced by treatment with febuxostat. Febuxostat prevents diabetic renal injury such as albuminuria. This renoprotective effect appears to be due to attenuation of the

  20. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats.

    PubMed

    Fatani, Amal Jamil; Al-Rejaie, Salim Salih; Abuohashish, Hatem Mustafa; Al-Assaf, Abdullah; Parmar, Mihir Yogeshkumar; Ola, Mohammad Shamsul; Ahmed, Mohammed Mahboobuddin

    2015-05-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  1. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats

    PubMed Central

    FATANI, AMAL JAMIL; AL-REJAIE, SALIM SALIH; ABUOHASHISH, HATEM MUSTAFA; AL-ASSAF, ABDULLAH; PARMAR, MIHIR YOGESHKUMAR; OLA, MOHAMMAD SHAMSUL; AHMED, MOHAMMED MAHBOOBUDDIN

    2015-01-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  2. Inhibitory effect of troglitazone on diabetic neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Qiang, X; Satoh, J; Sagara, M; Fukuzawa, M; Masuda, T; Sakata, Y; Muto, G; Muto, Y; Takahashi, K; Toyota, T

    1998-11-01

    Free-radical scavengers and inhibitors of tumour necrosis factor-alpha (TNF-alpha) such as N-acetylcysteine and pentoxifylline have been shown to inhibit the development of peripheral neuropathy in streptozotocin(STZ)-induced diabetic rats. In this study we examined the effect of troglitazone, an anti-diabetic thiazolidinedione, on diabetic neuropathy, since it also is a free-radical scavenger and a TNF-alpha inhibitor. Rats were fed powder chow mixed with troglitazone at 0.5% and 0.125% ad libitum. Although blood glucose concentrations were remarkably higher and body weight lower in diabetic than in nondiabetic rats, troglitazone had no effect on these throughout the 24-week experiment. Serum lipoperoxide concentrations, tibial nerve lipoperoxide content and serum TNF-alpha activity induced by lipopolysaccharide was increased in diabetic rats, but inhibited in troglitazone-treated rats. Motor nerve conduction velocity (MNCV) of the tibial nerve slowed in diabetic rats, compared with that in nondiabetic rats. On the other hand, the slowed MNCV was (p < 0.05-0.01) inhibited after weeks 12 and 16 of the experiment in diabetic rats treated with high and low doses of troglitazone, respectively. Morphometric analysis showed that troglitazone suppressed the decrease of the myelinated fibre area (p < 0.05), axon/myelin ratio (p < 0.01) and fascicular area (p < 0.05) and suppressed the increase of myelinated fibre density (p < 0.001) in diabetic rats. These results indicate that troglitazone has a beneficial effect on peripheral neuropathy in STZ-induced diabetic rats irrespective of blood glucose concentrations.

  3. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy

    PubMed Central

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-01-01

    Aim: A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. Methods: The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Results: Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Conclusion: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity. PMID:26775661

  4. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy.

    PubMed

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-02-01

    A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity.

  5. Tracing Fasting Glucose Fluxes with Unstressed Catheter Approach in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Wu, Hui; Xu, Xiao; Meng, Ying; Xia, Fangzhen; Zhai, Hualing; Lu, Yingli

    2014-01-01

    Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1) was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo. PMID:24772449

  6. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy.

    PubMed

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E; Farrukh, Omar; Jensen, Michael C; Badie, Behnam

    2010-07-01

    Stimulation of toll-like receptor-9 by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN, which can induce toxicity in a clinical setting. The goal of this study was to evaluate the antitumor efficacy of multiple low-dose intratumoral CpG-ODN in a glioma model. Mice bearing 4-day-old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 microg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months) and were protected from intracranial rechallenge with GL261 gliomas, showing the capacity for long-term antitumor immunity. Although most inflammatory cells seemed to increase, activated natural killer (NK) cells (i.e., NK(+)CD107a(+)) were more frequent than CD8(+)CD107a(+) in the brains of rechallenged CpG-ODN-treated animals and showed a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN antitumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK-mediated effector function.

  7. Aqueous calyxes extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced diabetic rats.

    PubMed

    Nazratun Nafizah, Akhtar Husin; Budin, Siti Balkis; Zaryantey, Abd Hamid; Mariati, Abd Rahman; Santhana, Raj Louis; Osman, Mohamad; Muhd Hanis, Md Idris; Jamaludin, Mohamed

    2017-03-01

    The complex series of deleterious events among diabetes patients leads to multiple organ failure. Therefore, a holistic approach of treatment is urgently required to prevent worsening of complications. The present investigation was carried out to study the possible protective effects of Roselle or Hibiscus sabdariffa Linn (HSL) calyxes aqueous extract, as an antidiabetic and antioxidant agent against oxidative liver injury in streptozotocin-induced diabetic rats. A single dose of streptozotocin (45mg/kg body weight, iv) was used to induced diabetes in male Sprague Dawley rats which were then divided into two groups: Diabetic control (DC) and HSL-treated diabetic (DR) group. Normal rats were divided into normal control (NC), HSL-treated control (NR). Aqueous calyxes extract of HSL (100mg/kg/day, orally) was given for 28 consecutive days in the treated group. Weight, biochemical and histopathological (light and electron microscopic) parameters were compared in all groups. Supplementation of HSL significantly lowered the level of fasting blood glucose and increased plasma insulin level in DR group compared to DC group (p<0.05). Alanine aminotransaminases and aspartate aminotransferase enzymes level were found to be significantly reduced in DR compared to DC. Microscopic examination demonstrated destruction of the liver architecture, cytoplasmic vacuolation of the hepatocytes and signs of necrosis in diabetic rats. Moreover, dilatation and congestion of blood vessels with leucocytes adherence were detected. Ultrastructural study using electron microscope showed homogeneous substance accumulation in nuclear chromatin, a decrease of organelles and mitochondrial degeneration in the diabetic rats. Administration of HSL in diabetic rats causes significant decrease in hepatocyte destruction and prevented the changes associated with the diabetic condition. Thus, our findings provide a scientific rationale for the use of HSL as promising agent in preventing liver injury in

  8. Effect of scoparia dulcis (Sweet Broomweed) plant extract on plasma antioxidants in streptozotocin-induced experimental diabetes in male albino Wistar rats.

    PubMed

    Pari, L; Latha, M

    2004-07-01

    Clinical research has confirmed the efficacy of several plants in the modulation of oxidative stress associated with diabetes mellitus. Scoparia dulcis plant extract is tried for prevention and treatment of diabetes mellitus induced experimentally by streptozotocin injection. A single dose of streptozotocin (45 mg/kg body weight) produced decrease in insulin, hyperglycemia, increased lipid peroxidation (Thiobarbituric reactive substances and lipid hydroperoxides) and decreased antioxidant levels (vitamin C, vitamin E, reduced glutathione, ceruloplasmin). Oral administration of an aqueous extract of Scoparia dulcis plant (200 mg/kg body weight) for 6 weeks to diabetic rats significantly increased the plasma insulin and plasma antioxidants and significantly decreased lipid peroxidation. The effect of Scoparia dulcis plant extract at 200 mg/kg body weight was better than that of glibenclamide, a reference drug.

  9. Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress.

    PubMed

    Shokrzadeh, Mohammad; Sadat-Hosseini, Sara; Fallah, Marjan; Shaki, Fatemeh

    2017-05-01

    Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN). In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO) on the prevention of DN in streptozotocin induced-diabetic mice. Forty-two mice were divided into six groups as follows: non-diabetic control group, DMSO group (as solvent), diabetic group and four treatment groups which received U. dioica , pioglitazone, U. dioica plus pioglitazone and vitE. Diabetes was induced by a single dose of streptozotocin (STZ) (200 mg/kg body wt, IP) diluted in citrate buffer (pH= 4.6). After 4 weeks treatment, all animals were anaesthetized and blood was collected for serum urea and creatinine levels assessment in plasma and kidney tissue were excised for evaluation of oxidative stress markers. Treatment with U. dioica significantly inhibited increase in serum urea and creatinine in plasma that were observed in diabetic mice. Furthermore, the elevated level of oxidative stress markers (glutathione oxidation, lipid peroxidation (LPO), protein carbonyl) in renal supernatant of diabetic mice was inhibited by U. dioica treatment. Interestingly, U. dioica promoted beneficial effects of PIO in reducing STZ-induced hyperglycemia, renal damage and oxidative stress markers. Our findings showed that PIO plus U. dioica have synergism protective effects against STZ-induced nephropathy that can be a candidate as a therapeutic approach in order to treatment of DN.

  10. Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress

    PubMed Central

    Shokrzadeh, Mohammad; Sadat-hosseini, Sara; Fallah, Marjan; Shaki, Fatemeh

    2017-01-01

    Objective(s): Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN). In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO) on the prevention of DN in streptozotocin induced-diabetic mice. Materials and Methods: Forty-two mice were divided into six groups as follows: non-diabetic control group, DMSO group (as solvent), diabetic group and four treatment groups which received U. dioica, pioglitazone, U. dioica plus pioglitazone and vitE. Diabetes was induced by a single dose of streptozotocin (STZ) (200 mg/kg body wt, IP) diluted in citrate buffer (pH= 4.6). After 4 weeks treatment, all animals were anaesthetized and blood was collected for serum urea and creatinine levels assessment in plasma and kidney tissue were excised for evaluation of oxidative stress markers. Results: Treatment with U. dioica significantly inhibited increase in serum urea and creatinine in plasma that were observed in diabetic mice. Furthermore, the elevated level of oxidative stress markers (glutathione oxidation, lipid peroxidation (LPO), protein carbonyl) in renal supernatant of diabetic mice was inhibited by U. dioica treatment. Interestingly, U. dioica promoted beneficial effects of PIO in reducing STZ-induced hyperglycemia, renal damage and oxidative stress markers. Conclusion: Our findings showed that PIO plus U. dioica have synergism protective effects against STZ-induced nephropathy that can be a candidate as a therapeutic approach in order to treatment of DN. PMID:28656084

  11. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    PubMed

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease.

  12. Effect of chronic low-dose tadalafil on penile cavernous tissues in diabetic rats.

    PubMed

    Mostafa, Mohamed E; Senbel, Amira M; Mostafa, Taymour

    2013-06-01

    To assess the effect of chronic low-dose administration of tadalafil (Td) on penile cavernous tissue in induced diabetic rats. The study investigaged 48 adult male albino rats, comprising a control group, sham controls, streptozotocin-induced diabetic rats, and induced diabetic rats that received Td low-dose daily (0.09 mg/200 g weight) for 2 months. The rats were euthanized 1 day after the last dose. Cavernous tissues were subjected to histologic, immunohistochemical, morphometric studies, and measurement of intracavernosal pressure and mean arterial pressure in anesthetized rats. Diabetic rats demonstrated dilated cavernous spaces, smooth muscles with heterochromatic nuclei, degenerated mitochondria, vacuolated cytoplasm, and negative smooth muscle immunoreactivity. Nerve fibers demonstrated a thick myelin sheath and intra-axonal edema, where blood capillaries exhibited thick basement membrane. Diabetic rats on Td showed improved cavernous organization with significant morphometric increases in the area percentage of smooth muscles and elastic tissue and a significant decrease of fibrous tissue. The Td-treated group showed enhanced erectile function (intracavernosal pressure/mean arterial pressure) at 0.3, 0.5, 1, 3, and 5 Hz compared with diabetic group values at the respective frequencies (P <.05) that approached control values. Chronic low-dose administration of Td in diabetic rats is associated with substantial improvement of the structure of penile cavernous tissue, with increased smooth muscles and elastic tissue, decreased fibrous tissue, and functional enhancement of the erectile function. This raises the idea that the change in penile architecture with Td treatment improves erectile function beyond its half-life and its direct pharmacologic action on phosphodiesterase type 5. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Low-Dose Radiation Activates Akt and Nrf2 in the Kidney of Diabetic Mice: A Potential Mechanism to Prevent Diabetic Nephropathy

    PubMed Central

    Xing, Xiao; Zhang, Chi; Shao, Minglong; Tong, Qingyue; Zhang, Guirong; Li, Cai; Cheng, Jie; Jin, Shunzi; Ma, Jisheng; Wang, Guanjun; Li, Xiaokun; Cai, Lu

    2012-01-01

    Repetitive exposure of diabetic mice to low-dose radiation (LDR) at 25 mGy could significantly attenuate diabetes-induced renal inflammation, oxidative damage, remodeling, and dysfunction, for which, however, the underlying mechanism remained unknown. The present study explored the effects of LDR on the expression and function of Akt and Nrf2 in the kidney of diabetic mice. C57BL/6J mice were used to induce type 1 diabetes with multiple low-dose streptozotocin. Diabetic and age-matched control mice were irradiated with whole body X-rays at either single 25 mGy and 75 mGy or accumulated 75 mGy (25 mGy daily for 3 days) and then sacrificed at 1–12 h for examining renal Akt phosphorylation and Nrf2 expression and function. We found that 75 mGy of X-rays can stimulate Akt signaling pathway and upregulate Nrf2 expression and function in diabetic kidneys; single exposure of 25 mGy did not, but three exposures to 25 mGy of X-rays could offer a similar effect as single exposure to 75 mGy on the stimulation of Akt phosphorylation and the upregulation of Nrf2 expression and transcription function. These results suggest that single 75 mGy or multiple 25 mGy of X-rays can stimulate Akt phosphorylation and upregulate Nrf2 expression and function, which may explain the prevention of LDR against the diabetic nephropathy mentioned above. PMID:23227273

  14. Prevention of Arterial Stiffening by Using Low-Dose Atorvastatin in Diabetes Is Associated with Decreased Malondialdehyde

    PubMed Central

    Wang, Chih-Hsien; Chang, Ru-Wen; Ko, Ya-Hui; Tsai, Pi-Ru; Wang, Shoei-Shen; Chen, Yih-Sharng; Ko, Wen-Je; Chang, Chun-Yi; Young, Tai-Horng; Chang, Kuo-Chu

    2014-01-01

    Introduction Without affecting the lipid profile, a low-dose treatment with atorvastatin contributes to the reduction of oxidative stress, inflammation, and adverse cardiovascular events in diabetes. In this study, we investigated whether low-dose atorvastatin exerts any beneficial effect on vascular dynamics in streptozotocin (STZ)-induced diabetes in male Wistar rats. Methods Diabetes was induced using a single tail-vein injection of STZ at 55 mg kg−1. The diabetic rats were treated daily with atorvastatin (10 mg kg−1 by oral gavage) for 6 weeks. They were also compared with untreated age-matched diabetic controls. Arterial wave reflection was derived using the impulse response function of the filtered aortic input impedance spectra. A thiobarbituric acid reactive substances measurement was used to estimate the malondialdehyde content. Results The high plasma level of total cholesterol in the diabetic rats did not change in response to this low-dose treatment with atorvastatin. Atorvastatin resulted in a significant increase of 15.4% in wave transit time and a decrease of 33.5% in wave reflection factor, suggesting that atorvastatin may attenuate the diabetes-induced deterioration in systolic loads imposed on the heart. This was in parallel with its lowering of malondialdehyde content in plasma and aortic walls in diabetes. Atorvastatin therapy also prevented the diabetes-related cardiac hypertrophy, as evidenced by the diminished ratio of left ventricular weight to body weight. Conclusion These findings indicate that low-dose atorvastatin might protect diabetic vasculature against diabetes-associated deterioration in aorta stiffness and cardiac hypertrophy, possibly through its decrease of lipid oxidation-derived malondialdehyde. PMID:24595201

  15. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    PubMed Central

    Barnewall, Roy E.; Comer, Jason E.; Miller, Brian D.; Gutting, Bradford W.; Wolfe, Daniel N.; Director-Myska, Alison E.; Nichols, Tonya L.; Taft, Sarah C.

    2012-01-01

    Repeated low-level exposures to biological agents could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as B. anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU) of B. anthracis spores) and included a pilot feasibility characterization study, acute exposure study, and a multiple 15 day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 × 102, 1 × 103, 1 × 104, and 1 × 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 × 102, 1 × 103, and 1 × 104 CFU. In all studies, targeted inhaled doses remained consistent from rabbit-to-rabbit and day-to-day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and over multiple exposure days. PMID:22919662

  16. A Comparison of Food-grade Folium mori (桑葉 Sāng Yè) Extract and 1-Deoxynojirimycin for Glycemic Control and Renal Function in Streptozotocin-induced Diabetic Rats

    PubMed Central

    Huang, Shiang-Suo; Yan, Yi-Hui; Ko, Chien-Hui; Chen, Ke-Ming; Lee, Shih-Chieh; Liu, Cheng-Tzu

    2014-01-01

    Folium mori (桑葉 Sāng Yè, leaf of Morus alba L.; FM) is known to possess hypoglycemic effects, and 1-deoxynojirimycin (1-DNJ) has been proposed as an important functional compound in FM. However, the hypoglycemic activity of purified 1-DNJ has been rarely studied. It is also not known how FM and 1-DNJ affect the development of DM nephropathy. This study compared the antidiabetic effect of a commercial FM product with that of purified 1-DNJ in streptozotocin-induced diabetic rats. Seven days after induction, the diabetic rats were gavaged with FM (1, 3, 10, and 30 mg/kg/day), 1-DNJ (30 mg/kg/day), or vehicle (distilled deionized water; 2 ml/kg/day) for 7 days. All doses of FM ameliorated fasting and post-prandial blood glucose concomitantly with an increase in peripheral and pancreatic levels of insulin and improved homeostasis model assessment (HOMA-IR) in diabetic rats in a dose-dependent manner. Increased thiobarbituric acid reactive substances (TBARS) and nitrate/nitrite levels in the kidney, liver, and muscle of diabetic rats were reversed by all doses of FM. The renal function of the diabetic rats was normalized by all doses of FM, while blood pressure changes were reversed by FM at doses of 3 mg/kg and above. Moreover, most of the above-mentioned parameters were improved by FM at doses of 3 mg/kg and above to a similar extent as that of 1-DNJ. The results showed superior antidiabetic potential of the commercial FM product for glycemic control and protection against the development of diabetic nephropathy. PMID:25161921

  17. Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin.

    PubMed

    Manaer, Tabusi; Yu, Lan; Zhang, Yi; Xiao, Xue-Jun; Nabi, Xin-Hua

    2015-07-01

    Shubat, probiotic fermented camel milk, has been used both as a drink with ethnic flavor and a medicine among Kazakh population for diabetic patients. Kazakh people have lower diabetic prevalence and impaired fasting glucose (IFG) than do other ethnic groups living in Xinjiang China, which might be related to the beneficial properties of shubat. We therefore prepared shubat in laboratory and tested anti-diabetic activity and evaluated its possible hypolipidemic and renoprotective effects in type 2 diabetic rats. Type 2 diabetic rats were induced by an administration of high-glucose-fat diet for 6 weeks and an intraperitoneal injection of streptozotocin (STZ, 30mg/kg). Diabetic rats were divided randomly into four groups and treated for 28 days with sitagliptin (30mg/kg) or shubat (6.97×10(6) lactic acid bacteria+2.20×10(4) yeasts) CFU/mL, (6.97×10(7) lactic acid bacteria+2.20×10(5) yeasts) CFU/mL and (6.97×10(8) lactic acid bacteria+2.20×10(6) yeasts) CFU/mL. In addition, a normal control group and a diabetic control group were used for comparison. All drugs were given orally once daily 10mL/kg for 4 weeks. Fasting blood glucose (FBG) and body weight (BW) were measured before treatment and every week thereafter. Total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), serum creatinine (SCr), blood urea nitrogen (BUN), C-peptide, glycated hemoglobin (HbAlc), glucagon-like peptide-1 (GLP-1) levels and pancreas tissue sections were tested after 4 weeks. Shubat demonstrated positive hypoglycemic activity on FBG, HbAlc, C-peptide and GLP-1 levels, high dose shubat decreased FBG (P<0.01) and HbAlc (P<0.05), increased C-peptide (P<0.05) and GLP-1 (P<0.01), decreased serum TC, TG, LDL-c (P<0.05), increased HDL-c (P<0.01), and improved the reduction of body weight as well as decreased SCr and BUN levels (P<0.01) compared to diabetic controls. Histological analysis showed shubat protected the

  18. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    PubMed

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  19. The effect of low-intensity laser therapy on wound healing in Streptozotocin-induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Rabelo, Sylvia B.; Villaverde, Antonio G. J. B.; Salgado, Miguel A. C.; Melo, Milene d. S.; Nicolau, Renata A.; Pacheco, Marcos T. T.

    2004-10-01

    Diabetes Mellitus is a condition that results in a delay of the wound healing process, that is associated with an insufficient production of collagen, a decrease of the amount of collagen fibrils and deficient blood flow in the wound area. It is sugested that Low Intensity Laser Therapy acts by improving wound healing in normal organisms, accelerating tissue regeneration. The aim of this work was to investigate the biostimulatory effect of the HeNe laser irradiation, at 632.8 nm, on wound healing in 15 male rats suffering from diabetes induced by Streptozotocin, compared to 15 control diabetic animals. Irradiation parameters were: laser power of 15mW, exposition time of 17 s., irradiated area of 0.025 cm2 and laser energy density of 10 J/cm2. Full-thickness skin squared samples, with 5 mm of non-injured tissue around the wound, were obtained at 4, 7 and 15 days after wounding procedure (5 treated and 5 control animals each time). The histopathologic analysis performed by haematoxylin-cosin staining. Results suggested that the irradiation of diabetic rats was efficient for wound healing. Treated group presented better quality of the wound tissues by the macroscopic observation than control group and the microscopic analysis demonstrated that treated animals had better histopathologic evaluation than non treated.

  20. Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion.

    PubMed

    Park, Joon-Keun; Mervaala, Eero Ma; Muller, Dominik N; Menne, Jan; Fiebeler, Anette; Luft, Friedrich C; Haller, Hermann

    2009-03-01

    We showed earlier that statin treatment ameliorates target-organ injury in a transgenic model of angiotensin (Ang) II-induced hypertension. We now test the hypothesis that rosuvastatin (1, 10, and 50 mg/kg/day) influences leukocyte adhesion and infiltration, prevents induction of inducible nitric oxide synthase (iNOS), and ameliorates target-organ damage in a dose-dependent fashion. We treated rats harboring the human renin and human angiotensinogen genes (dTGR) from week 4 to 8 (n = 20 per group). Untreated dTGR developed severe hypertension, cardiac hypertrophy, and renal damage, with a 100-fold increased albuminuria and focal cortical necrosis. Mortality of untreated dTGR at age 8 weeks was 59%. Rosuvastatin treatment decreased mortality dose-dependently. Blood pressure was not affected. Albuminuria was reduced dose-dependently. Interstitial adhesion molecule (ICAM)-1 expression was markedly reduced by rosuvastatin, as were neutrophil and monocyte infiltration. Immunohistochemistry showed an increased endothelial and medial iNOS expression in small vessels, infiltrating cells, afferent arterioles, and glomeruli of dTGR. Immunoreactivity was stronger in cortex than medulla. Rosuvastatin markedly reduced the iNOS expression in both cortex and medulla. Finally, matrix protein (type IV collagen, fibronectin) expression was also dose- dependently reduced by rosuvastatin. Our findings indicate that rosuvastatin dose- dependently ameliorates angiotensin II-induced-organ damage and almost completely prevents inflammation at the highest dose. The data implicate 3-hydroxy-3-methylglutaryl coenzyme A function in signaling events leading to target-organ damage.

  1. Cyclosporine A-induced nephrotoxicity is ameliorated by dose reduction and conversion to sirolimus in the rat.

    PubMed

    Sereno, J; Vala, H; Nunes, S; Rocha-Pereira, P; Carvalho, E; Alves, R; Teixeira, F; Reis, F

    2015-04-01

    Side-effect minimization strategies to avoid serious side-effects of cyclosporine A (CsA), such as nephrotoxicity, have been mainly based on dose reduction and conversion to other putatively less nephrotoxic drugs, such as sirolimus (SRL), an inhibitor of the mammalian target of rapamycin. This study intended to evaluate the impact of protocols based on CsA dose reduction and further conversion to SRL on kidney function and lesions, based on serum, urine and renal tissue markers. The following 3 groups (n=6) were tested during a 9-week protocol: control (vehicle); CsA (5 mg/kg/day) and Red + Conv (CsA 30 mg/kg/day during 3 weeks + 3 weeks with CsA 5 mg/kg/day + SRL 1 mg/kg/day during the last 3 weeks). The following parameters were analysed: blood pressure, heart rate and biochemical data; serum and urine contents and clearances of creatinine, urea and neutrophil gelatinase-associated lipocalin (NGAL), as well as, glomerular filtration rate; kidney lipid peroxidation and clearance; kidney lesions were evaluated and protein expression was performed by immunohistochemistry. After the first 3 weeks of CsA (30 mg/kg/day) treatment animals showed body weight loss, hypertension, tachycardia, as well as, increased serum levels of non-HDL cholesterol, glucose, triglycerides, creatinine and urea, accompanied by decreased GFR and insulin levels. In addition, a significant increase in the expression of connective tissue growth factor, kidney injury molecule-1 (KIM-1), mammalian target of rapamycin, nuclear factor-κβ1 and transforming growth factor-β was found in the kidney, accompanied by extensive renal damage. The following 3 weeks with CsA dose reduction revealed amelioration of vascular and glomerular lesions, but without significant tubular improvement. The last 3 weeks with the conversion to sirolimus revealed high serum and urine NGAL contents but the CsA-evoked renal damage was substantially ameliorated, by reduced of connective tissue growth factor, mammalian

  2. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model.

    PubMed

    Elmas, Onur; Erbas, Oytun; Yigitturk, Gurkan

    2016-10-01

    Cytokines, such as transforming growth factor (TGF)-ß1, and increased oxidative stress are considered to be responsible for the development of diabetic nephropathy. We hypothesized that Aesculus hippocastanum (AH) seeds may have preventive effects on oxidative stress and TGF-β-related diabetic nephropathy in streptozotocin (STZ)-induced diabetic nephropathy in rats. Twenty-one male Sprague-Dawley albino rats were divided into three groups (n=7). Except for the control group, they all had diabetic nephropathy induced by an intraperitoneal injection of STZ. While the diabetes group did not receive any medication, the diabetes+AH group was given the medication for 4 weeks. After the experiment, analyses were performed to evaluate the glomerular area, severity of sclerosis, and fibronectin immunoexpression, as well as levels of malondialdehyde (MDA), TGF-β, blood urea nitrogen (BUN), blood glucose, creatinine, and proteinuria. It was found that glomerular area, severity of sclerosis, fibronectin immunoexpression, and levels of MDA, TGF-β, BUN, creatinine, and proteinuria were decreased in the diabetes+AH group. It is known that diabetic nephropathy is induced, to a large extent, by hyperglycemia. In the present study, AH extract ameliorated diabetic nephropathy without decrease in blood glucose levels. In the study, AH seeds showed beneficial effects on the functional properties of the kidney and microscopic improvements in diabetic nephropathy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense.

    PubMed

    Wang, Ning; Yi, Wen Jing; Tan, Lu; Zhang, Jia Hui; Xu, Jiamin; Chen, Yi; Qin, Mengting; Yu, Shuang; Guan, Jing; Zhang, Rui

    2017-06-01

    Pancreatic beta cells are very sensitive to oxidative stress, which is one of the major causes of cell damages in diabetes. Growing interest has focused on the development of effective therapeutics to protect pancreatic cells from oxidative stress and searching for potentially protective antioxidants for treating diabetes. Apigenin, a plant-derived flavonoid, was investigated to determine whether it could protect rat insulinoma cell lines (RINm5F pancreatic beta cells) against streptozotocin (STZ)-induced oxidative damages and the mechanisms implicated. Our results showed that STZ treatment could induce oxidative stress and consequent cytotoxic effects in RINm5F cells. Pretreatment with apigenin effectively decreased the intracellular reactive oxygen species (ROS) production, attenuated cellular DNA damage, diminished lipid peroxidation, relieved protein carbonylation, and restored the cell apoptosis of pancreatic beta cells stressed by STZ. Our further experiments demonstrated that the beneficial effects of apigenin were related to ameliorate the loss of antioxidant enzymes of the STZ-treated cells in the level of gene transcription, protein expression, and enzyme activity. That suggested apigenin was not only a free radical scavenger but also a regulator to antioxidant defenses of pancreatic cells. Taken all together, our findings suggested that apigenin could attenuate the STZ-induced oxidative damages in pancreatic beta cells and might serve as a novel agent for the treatment of diabetes.

  4. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians. PMID:24367390

  5. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  6. Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onodera, Akira, E-mail: onodera@pharm.kobegakuin.ac.jp; Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586; Kawai, Yuichi

    2013-06-14

    Highlights: •Low-dose MNNG pretreatment suppresses high-dose MNNG induced in vitro transformation. •Gastric ulcers induced by high-dose MNNG decreased after low-dose MNNG pretreatment. •Efficacy of low-dose MNNG related to resistance of mutation and oxidative stress. -- Abstract: Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects ofmore » low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical

  7. Protective effect of betulinic acid against intracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats: Possible neurotransmitters and neuroinflammatory mechanism.

    PubMed

    Kaundal, Madhu; Deshmukh, Rahul; Akhtar, Mohd

    2018-06-01

    The purpose of the study was to explore the therapeutic potential of Betulinic acid (BA) in streptozotocin (STZ) induced memory damage in experimental rats. STZ (3mg/kg bilaterally) as intracerebroventrical (icv) route was administered on day 1 and 3 in rats. Donepezil (5mg/kg/day po), used as standard, and BA (5, 10 and 15mg/kg/day po) were administered after 1h of 1st STZ infusion up to 21days. Object recognition task (ORT) for non-spatial, Morris water maze (MWM) for spatial and locomotor activity were performed to evaluate behavioral changes in rats. On 22nd day, animals were decapitated and hippocampus was separated to perform biochemical (AChE, LPO, GSH, nitrite), neuroinflammatory (TNF-α, IL-1β, and IL-6), neurotransmitters (NTs) (dopamine, norepinephrine and serotonin) analysis. STZ infusion significantly impaired memory as observed in MWM and ORT, increased oxidative stress, pro-inflammatory cytokine's level and altered NTs level. Moreover, BA demonstrated a neuroprotective effect in a dose-dependent manner. BA dose dependently (5, 10 and 15mg/kg) significantly restore STZ induced memory changes and pathological abnormalities in rat brain. The findings of the current study suggests that BA protect rat brain from STZ induced neuronal damage via acting through multiple mechanisms and would be used to curb cognitive decline associated with neurodegenerative disorders especially AD. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  9. ANTIOXIDANTS AMELIORATION OF ARSENICAL-INDUCED EFFECTS IN VIVO

    EPA Science Inventory

    Antioxidant amelioration of arsenical-induced effects in vivo. ES Hunter and EH Rogers. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC.

    Antioxidants have been reported to ameliorate the effects of many developmental toxicants. We tested the hypothesis that oxi...

  10. Emblic Leafflower (Phyllanthus emblica L.) Fruits Ameliorate Vascular Smooth Muscle Cell Dysfunction in Hyperglycemia: An Underlying Mechanism Involved in Ellagitannin Metabolite Urolithin A

    PubMed Central

    Zhou, Junxuan; Zhang, Cong

    2018-01-01

    Ellagitannins in Phyllanthus emblica L. (emblic leafflower fruits) have been thought of as the beneficial constituents for ameliorating endocrinal and metabolic diseases including diabetes. However, the effect of emblic leafflower fruits on diabetic vascular complications involved in ellagitannin-derived urolithin metabolites is still rare. In this study, acetylcholine-induced endothelium-independent relaxation in aortas was facilitated upon emblic leafflower fruit consumption in the single dose streptozotocin-induced hyperglycemic rats. Emblic leafflower fruit consumption also suppressed the phosphorylation of Akt (Thr308) in the hyperglycemic aortas. More importantly, urolithin A (UroA) and its derived phase II metabolites were identified as the metabolites upon emblic leafflower fruit consumption by HPLC-ESI-Q-TOF-MS. Moreover, UroA reduced the protein expressions of phosphor-Akt (Thr308) and β-catenin in a high glucose-induced A7r5 vascular smooth muscle cell proliferation model. Furthermore, accumulation of β-catenin protein and activation of Wnt signaling in LiCl-triggered A7r5 cells were also ameliorated by UroA treatment. In conclusion, our data demonstrate that emblic leafflower fruit consumption facilitates the vascular function in hyperglycemic rats by regulating Akt/β-catenin signaling, and the effects are potentially mediated by the ellagitannin metabolite urolithin A. PMID:29692859

  11. Antidiabetic, antioxidant and antihyperlipidemic status of Heliotropium zeylanicum extract on streptozotocin-induced diabetes in rats.

    PubMed

    Murugesh, Kandasamy; Yeligar, Veerendra; Dash, Deepak Kumar; Sengupta, Pinaki; Maiti, Bhim Chandra; Maity, Tapan Kumar

    2006-11-01

    The potential role of the methanolic extract of Heliotropium zeylanicum (BURM.F) LAMK (MEHZ) in the treatment of diabetes along with its antioxidant and antihyperlipidemic effects was studied in streptozotocin-induced diabetic rats. Oral administration of (MEHZ) 150 and 300 mg/kg/d for 14 d significantly decreased the blood glucose level and considerably increased the body weight, food intake, and liquid intake of diabetic-induced rats. MEHZ significantly decreased thiobarbituric acid reactive substances and significantly increased reduced glutathione, superoxide dismutase and catalase in streptozotocin-induced diabetic rats at the end of 14 d of treatment. The study also investigated the antihyperlipidemic potential of MEHZ. The results show that the active fraction of MEHZ is promising for development of a standardized phytomedicine for the treatment of diabetes mellitus.

  12. Improving Low-Dose Blood-Brain Barrier Permeability Quantification Using Sparse High-Dose Induced Prior for Patlak Model

    PubMed Central

    Fang, Ruogu; Karlsson, Kolbeinn; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Blood-brain-barrier permeability (BBBP) measurements extracted from the perfusion computed tomography (PCT) using the Patlak model can be a valuable indicator to predict hemorrhagic transformation in patients with acute stroke. Unfortunately, the standard Patlak model based PCT requires excessive radiation exposure, which raised attention on radiation safety. Minimizing radiation dose is of high value in clinical practice but can degrade the image quality due to the introduced severe noise. The purpose of this work is to construct high quality BBBP maps from low-dose PCT data by using the brain structural similarity between different individuals and the relations between the high- and low-dose maps. The proposed sparse high-dose induced (shd-Patlak) model performs by building a high-dose induced prior for the Patlak model with a set of location adaptive dictionaries, followed by an optimized estimation of BBBP map with the prior regularized Patlak model. Evaluation with the simulated low-dose clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can achieve more significant gains than the standard Patlak model with improved visual quality, higher fidelity to the gold standard and more accurate details for clinical analysis. PMID:24200529

  13. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  14. The Protective Effects of Insulin and Natural Honey against Hippocampal Cell Death in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, “H & E” staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples. PMID:24745031

  15. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats.

    PubMed

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, "H & E" staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples.

  16. Antihyperglycemic and antihyperlipidemic effects of n-hexane fraction from the hydro-methanolic extract of sepals of Salmalia malabarica in streptozotocin-induced diabetic rats.

    PubMed

    De, Debasis; Ali, Kazi Monjur; Chatterjee, Kausik; Bera, Tushar Kanti; Ghosh, Debidas

    2012-06-21

    Bio-efficacy of n-hexane fraction of sepal of Salmalia malabarica was evaluated covering the biochemical sensors for the management of hyperglycemic and hyperlipidemic effects. Evaluation of n-hexane fraction of Salmalia malabarica (SMH) from hydro-methanolic (2:3) extract at the dose of 0.1 gm/kg body weight twice a day were investigated in normal and streptozotocin (STZ) induced diabetic rats. Normal and STZ-induced diabetic rats were divided into five groups. The effect of the fraction on fasting blood glucose (FBG), serum insulin, hemoglobin, glycated hemoglobin, total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), very low density lipoprotein cholesterol (VLDLc), phospholipids, free fatty acids, urea, uric acid, creatinine, albumin and transaminases were investigated in STZ-induced diabetic rat. A significant reduction of FBG level was observed after SMH treatment in STZ-induced diabetic rat. Treatment of diabetic rats with n-hexane fraction of this plant restored the levels of the above biochemical sensors significantly (p<0.001) in respect to the control. Histological studies of pancreas showed a qualitative diminution in the area of the islet's of Langerhans in diabetic group which was recovered by said fraction. Phytochemical screening of the fraction revealed the presence of flavonoids, terpenoids and steroids.

  17. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  18. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gridley, Daila S.

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset ofmore » lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes

  19. Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy.

    PubMed

    Zhang, Hongyu; Saha, Jharna; Byun, Jaeman; Schin, MaryLee; Lorenz, Matthew; Kennedy, Robert T; Kretzler, Matthias; Feldman, Eva L; Pennathur, Subramaniam; Brosius, Frank C

    2008-10-01

    Recent studies suggest that thiazolidinediones ameliorate diabetic nephropathy (DN) independently of their effect on hyperglycemia. In the current study, we confirm and extend these findings by showing that rosiglitazone treatment prevented the development of DN and reversed multiple markers of oxidative injury in DBA/2J mice made diabetic by low-dose streptozotocin. These diabetic mice developed a 14.2-fold increase in albuminuria and a 53% expansion of renal glomerular extracellular matrix after 12 wk of diabetes. These changes were largely abrogated by administration of rosiglitazone beginning 2 wk after the completion of streptozotocin injections. Rosiglitazone had no effect on glycemic control. Rosiglitazone had similar effects on insulin-treated diabetic mice after 24 wk of diabetes. Podocyte loss and glomerular fibronectin accumulation, other markers of early DN, were prevented by rosiglitazone in both 12- and 24-wk diabetic models. Surprisingly, glomerular GLUT1 levels did not increase and nephrin levels did not decrease in the diabetic animals; neither changed with rosiglitazone. Plasma and kidney markers of protein oxidation and lipid peroxidation were significantly elevated in the 24-wk diabetic animals despite insulin treatment and were reduced to near-normal levels by rosiglitazone. Finally, urinary metabolites were markedly altered by diabetes. Of 1,988 metabolite features identified by electrospray ionization time of flight mass spectrometry, levels of 56 were altered more than twofold in the urine of diabetic mice. Of these, 21 were returned to normal by rosiglitazone. Thus rosiglitazone has direct effects on the renal glomerulus to reduce reactive oxygen species accumulation to prevent type 1 diabetic mice from development of DN.

  20. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy and induces anti-oxidative stress and anti-inflammatory effects via the MAPK pathway.

    PubMed

    Song, Yu; Wang, Xiaochun; Qin, Shengkai; Zhou, Siheng; Li, Jiaolun; Gao, Yue

    2018-05-01

    Esculin is a derivative of coumarin, which is also an active ingredient of ash bark, and has antibacterial, anti-inflammatory, anti‑allergy and skin protective effects. The underlying mechanism and protective effects of esculin on cognitive impairment in experimental diabetic nephropathy (DN) was investigated in the present study. Male C57BL/6J 6‑week‑old mice were injected intravenously with a single dose of streptozotocin (STZ; 30 mg/kg). At 2 weeks after the STZ injection, mice received intravenous injection with 5, 10 or 20 mg/kg esculin for 2 weeks. In the present study, the results of the Morris water maze test demonstrated that esculin significantly improved behavior and recognition memory in STZ‑induced diabetic rats. Furthermore, treatment of STZ‑induced diabetic rats with esculin significantly inhibited tumor necrosis factor‑α, interleukin‑6, malondialdehyde, monocyte chemoattractant protein‑1 and intracellular adhesion molecule‑1 activity levels, and increased the activity of superoxide dismutase, in the kidney, which was determined by ELISA. In addition, esculin treatment significantly suppressed the renal protein expression of activator protein 1, phosphorylated (p)‑p38 mitogen activated protein kinase (MAPK) and p‑c‑Jun N‑terminal kinase, and increased p‑extracellular signal regulated kinase 1/2 protein expression, in STZ‑induced diabetic rats, as determined by western blotting. These results indicate that esculin may ameliorate cognitive impairment in experimental DN, and exert anti‑oxidative stress and anti‑inflammatory effects, via the MAPK signaling pathway. Thus, it may serve as a potential target for cognitive impairment of DN in the future.

  1. Effect of low doses of cannabidiolic acid and ondansetron on LiCl-induced conditioned gaping (a model of nausea-induced behaviour) in rats

    PubMed Central

    Rock, EM; Parker, LA

    2013-01-01

    Background and Purpose To determine the minimally effective dose of cannabidiolic acid (CBDA) that effectively reduces lithium chloride (LiCl)-induced conditioned gaping reactions (nausea-induced behaviour) in rats and to determine if these low systemic doses of CBDA (5–0.1 μg·kg−1) relative to those of CBD could potentiate the anti-nausea effects of the classic 5-hydroxytryptamine 3 (5-HT3) receptor antagonist, ondansetron (OND). Experimental Approach We investigated the efficacy of low doses of CBDA to suppress acute nausea, assessed by the establishment of conditioned gaping to a LiCl-paired flavour in rats. The potential of threshold and subthreshold doses of CBDA to enhance the reduction of nausea-induced conditioned gaping by OND were then determined. Key Results CBDA (at doses as low as 0.5 μg·kg−1) suppressed nausea-induced conditioned gaping to a flavour. A low dose of OND (1.0 μg·kg−1) alone reduced nausea-induced conditioned gaping, but when it was combined with a subthreshold dose of CBDA (0.1 μg·kg−1) there was an enhancement in the suppression of LiCl-induced conditioned gaping. Conclusions and Implications CBDA potently reduced conditioned gaping in rats, even at low doses and enhanced the anti-nausea effect of a low dose of OND. These findings suggest that combining low doses of CBDA and OND will more effectively treat acute nausea in chemotherapy patients. PMID:23488964

  2. Effect of low doses of cannabidiolic acid and ondansetron on LiCl-induced conditioned gaping (a model of nausea-induced behaviour) in rats.

    PubMed

    Rock, E M; Parker, L A

    2013-06-01

    To determine the minimally effective dose of cannabidiolic acid (CBDA) that effectively reduces lithium chloride (LiCl)-induced conditioned gaping reactions (nausea-induced behaviour) in rats and to determine if these low systemic doses of CBDA (5-0.1 μg·kg⁻¹) relative to those of CBD could potentiate the anti-nausea effects of the classic 5-hydroxytryptamine 3 (5-HT₃) receptor antagonist, ondansetron (OND). We investigated the efficacy of low doses of CBDA to suppress acute nausea, assessed by the establishment of conditioned gaping to a LiCl-paired flavour in rats. The potential of threshold and subthreshold doses of CBDA to enhance the reduction of nausea-induced conditioned gaping by OND were then determined. CBDA (at doses as low as 0.5 μg·kg⁻¹) suppressed nausea-induced conditioned gaping to a flavour. A low dose of OND (1.0 μg·kg⁻¹) alone reduced nausea-induced conditioned gaping, but when it was combined with a subthreshold dose of CBDA (0.1 μg·kg⁻¹) there was an enhancement in the suppression of LiCl-induced conditioned gaping. CBDA potently reduced conditioned gaping in rats, even at low doses and enhanced the anti-nausea effect of a low dose of OND. These findings suggest that combining low doses of CBDA and OND will more effectively treat acute nausea in chemotherapy patients. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  3. Efficacy of multiple exposure with low level He-Ne laser dose on acute wound healing: a pre-clinical study

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.

  4. Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine.

    PubMed

    Sagara, M; Satoh, J; Wada, R; Yagihashi, S; Takahashi, K; Fukuzawa, M; Muto, G; Muto, Y; Toyota, T

    1996-03-01

    N-acetylcysteine (NAC) is a precursor of glutathione (GSH) synthesis, a free radical scavenger and an inhibitor of tumour necrosis factor alpha (TNF). Because these functions might be beneficial in diabetic complications, in this study we examined whether NAC inhibits peripheral neuropathy. Motor nerve conduction velocity (MNCV) was significantly decreased in streptozotocin-induced-diabetic Wistar rats compared to control rats. Oral administration of NAC reduced the decline of MNCV in diabetic rats. Structural analysis of the sural nerve disclosed significant reduction of fibres undergoing myelin wrinkling and inhibition of myelinated fibre atrophy in NAC-treated diabetic rats. NAC treatment had no effect on blood glucose levels or on the nerve glucose, sorbitol and cAMP contents, whereas it corrected the decreased GSH levels in erythrocytes, the increased lipid peroxide levels in plasma and the increased lipopolysaccharide-induced TNF activity in sera of diabetic rats. Thus, NAC inhibited the development of functional and structural abnormalities of the peripheral nerve in streptozotocin-induced diabetic rats.

  5. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats.

    PubMed

    Hamza, Reham Z; Al-Harbi, Mohammad S

    2014-01-01

    Monosodium glutamate (MSG) has been recognized as flavor enhancer that adversely affects male reproductive systems. The present study was carried out to evaluate the potential protective role of vitamin E (vit E) or selenium against MSG induced oxidative stress and histopathological changes in testis tissues of rats. Mature male Wistar rats weighing 150-200 g BW were allocated to evenly twelve groups each group of ten animals, the first group was maintained as control group, the 2nd, 3rd and 4th groups were administered MSG in three different dose levels (low, medium and high) (6, 17.5 and 60 mg/kg BW), the 5th and 6th groups were given vit E in two doses (low and high) (150 and 200 mg/kg), the 7th and 8th groups were administered selenium in two doses (low and high) (0.25 and 1 mg/kg) daily via gavage for a period of 30 days. Meanwhile the 9th and 10th groups were given combinations of MSG (high dose) and vit E while, the 11th and 12th groups were given MSG (high dose) plus selenium in two recommended doses for each one. Monosodium glutamate caused an elevation in lipid peroxidation level parallel with significant decline in SOD, CAT as well as GPx activities in testis tissues. Administration of vit E or selenium to MSG-treated groups declined lipid peroxidation, increased SOD, CAT, GPx activities. Selenium or vit E significantly reduced MSG induced histopathological changes by the entire restoration of the histological structures and the testicular antioxidant status to great extent in treated rats. In conclusion, supplementation of selenium or vit E could ameliorate the MSG induced testicular toxicity to great extent and reduce the oxidative stress on testis tissues.

  6. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus.

    PubMed

    Sreekutty, M S; Mini, S

    2016-01-01

    Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus.

  7. Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats

    PubMed Central

    Niwa, Atsuko; Tajiri, Takashi; Higashino, Hideaki

    2011-01-01

    Ipomoea batatas, Agaricus blazei and Smallanthus sonchifolius are known to favorably influence diabetes mellitus. To clarify their antidiabetic efficacy and hypoglycemic mechanisms, we treated streptozotocin-induced diabetic rats with daily oral feeding of powdered Ipomoea batatas (5 g kg−1 d−1), Agaricus blazei (1 g kg−1 d−1) or Smallanthus sonchifolius (4 g kg−1 d−1) for 2 months. Treatments with Ipomoea batatas or Agaricus blazei, but not Smallanthus sonchifolius, significantly suppressed the increases of fasting plasma glucose and hemoglobin A1c levels, and restored body weight loss during diabetes. Serum insulin levels after oral glucose administration tests increased along the treatments of Ipomoea batatas or Agaricus blazei. Moreover, Ipomoea batatas and Agaricus blazei reduced superoxide production from leukocytes and vascular homogenates, serum 8-oxo-2'-deoxyguanosine, and vascular nitrotyrosine formation of diabetic rats to comparable levels of normal control animals. Stress- and inflammation-related p38 mitogen-activated protein kinase activity and tumor necrosis factor-α production of diabetic rats were significantly depressed by Ipomoea batatas administration. Histological examination also exhibited improvement of pancreatic β-cells mass after treatments with Ipomoea batatas or Agaricus blazei. These results suggest that hypoglycemic effects of Ipomoea batatas or Agaricus blazei result from their suppression of oxidative stress and proinflammatory cytokine production followed by improvement of pancreatic β-cells mass. PMID:21562638

  8. Urinary excretion of water-soluble vitamins increases in streptozotocin-induced diabetic rats without decreases in liver or blood vitamin content.

    PubMed

    Imai, Eri; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2012-01-01

    It is thought that the contents of water-soluble vitamins in the body are generally low in diabetic patients because large amounts of vitamins are excreted into urine. However, this hypothesis has not been confirmed. To investigate this hypothesis, diabetes was induced in male Wistar rats (6 wk old) by streptozotocin treatment, and they were then given diets containing low, medium or sufficient vitamins for 70 d. The contents of 6 kinds of B-group vitamins, namely vitamin B₁, vitamin B₂, vitamin B₆, vitamin B₁₂, folate and biotin, were determined in the urine, blood and liver. No basic differences among the dietary vitamin contents were observed. The urinary excretion of vitamins was higher in diabetic rats than in control rats. The blood concentrations of vitamin B₁₂ and folate were lowered by diabetes, while, those of vitamin B₁, vitamin B₂, vitamin B₆, and biotin were not. All liver concentrations of vitamins were increased in diabetic rats above those in control rats. These results showed that streptozotocin-induced diabetes increased urinary excretion of water-soluble vitamins, though their blood and liver concentrations were essentially maintained in the rats.

  9. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Ramkumar, Kunga Mohan; Rajaguru, Palanisamy; Suresh, Thangaraj; Dhanabal, Thangavel; Sitasawad, Sandhya; Bhonde, Ramesh

    2009-01-01

    We evaluated the antihyperglycaemic effect of scoparic acid D (SAD), a diterpenoid isolated from the ethanol extract of Scoparia dulcis in streptozotocin (STZ)-induced diabetic male Wistar rats. SAD was administered orally at a dose of 10, 20 and 40 mg kg(-1) bodyweight for 15 days. At the end of the experimental period, the SAD-treated STZ diabetic rats showed decreased levels of glucose as compared with diabetic control rats. The improvement in blood glucose levels of SAD-treated rats was associated with a significant increase in plasma insulin levels. SAD at a dose of 20 mg kg(-1) bodyweight exhibited a significant effect when compared with other doses. Further, the effect of SAD was tested on STZ-treated rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. SAD at a dose of 20 microg mL(-1) evoked two-fold stimulation of insulin secretion from isolated islets, indicating its insulin secretagogue activity. Further, SAD protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. The present study thus confirms the antihyperglycaemic effect of SAD and also demonstrated the consistently strong cytoprotective properties of SAD.

  10. RES hyperphagocytosis by rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Cornell, R P

    1981-03-01

    In contrast to previous studies of neutrophils from diabetic animals and humans in vitro and of macrophages from diabetic humans in vivo, which reported phagocytic depression, reticuloendothelial system (RES) hyperphagocytosis of colloidal carbon was observed in rats at 14 and 28 days after diabetes induction with streptozotocin (STZ). Carbon clearance half times were significantly enhanced to 6.3 +/- 0.79 and 8.1 +/- 1.04 min at 14 and 28 days post-STZ, respectively, compared with the nondiabetic value (12.7 +/- 0.98 min). The severity of uncontrolled STZ-induced diabetes in rats was confirmed by significant hypoinsulinemia, hyperglucagonemia, hyperglycemia, and hyperlipidemia. Although body weights of STZ-diabetic animals declined progressively, liver weights as a percent of body weight increased above the control value at 14 and 28 days post-STZ. In fact, expression of carbon phagocytosis as the corrected phagocytic index, which accounts for changes in liver and spleen weights relative to body weight, eliminated the significant difference between STZ-diabetic and nondiabetic animals. Antibiotic treatment of diabetic rats failed to alter the hyperphagocytosis, implying that a chronic bacterial infection was not the cause of phagocytic stimulation. Daily insulin replacements, but not a single large insulin dose to 14-day post-STZ rats, reversed the enhanced phagocytosis of colloidal carbon.

  11. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals

    PubMed Central

    Sangi, Sibghatullah Muhammad Ali; Sulaiman, Mansour Ibrahim; El-wahab, Mohammed Fawzy Abd; Ahmedani, Elsamoual Ibrahim; Ali, Soad Shaker

    2015-01-01

    Background: Diabetes mellitus is one of the most important diseases related with endocrines. Its main manifestation includes abnormal metabolism of carbohydrates and lipids and inappropriate hyperglycemia that is caused by absolute or relative insulin deficiency. It affects humankind worldwide. Objectives: Our research was aimed to observe antihyperglycemic activity of thymoquinone and oleuropein. Materials and Methods: In this study, rats were divided into six groups, 6 rats in each. Diabetes was inducted by streptozotocin (STZ). The level of fasting blood glucose was determined for each rats during the experiment, doses of thymoquinone and oleuropein (3 mg/kg and 5 mg/kg) for both, were injected intraperitoneal. Pancreatic tissues were investigated to compare β-cells in diabetic and treated rats. Result and Conclusion: It was found that thymoquinone and oleuropein significantly decrease serum Glucose levels in STZ induced diabetic rats. PMID:26664013

  12. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Krishnamurthy, Bhaskar; Rani, Neha; Bharti, Saurabh; Golechha, Mahaveer; Bhatia, Jagriti; Nag, Tapas Chandra; Ray, Ruma; Arava, Sudheer; Arya, Dharamvir Singh

    2015-07-25

    The clinical use of doxorubicin is associated with dose limiting cardiotoxicity. This is a manifestation of free radical production triggered by doxorubicin. Therefore, we evaluated the efficacy of febuxostat, a xanthine oxidase inhibitor and antioxidant, in blocking cardiotoxicity associated with doxorubicin in rats. Male albino Wistar rats were divided into four groups: control (normal saline 2.5mL/kg/dayi.p. on alternate days, a total of 6 doses); Doxorubicin (2.5mg/kg/dayi.p. on alternate days, a total of 6 doses), Doxorubicin+Febuxostat (10mg/kg/day oral) and Doxorubicin+Carvedilol (30mg/kg/day oral) for 14days. Febuxostat significantly ameliorated the doxorubicin-induced deranged cardiac functions as there was significant improvement in arterial pressures, left ventricular end diastolic pressure and inotropic and lusitropic states of the myocardium. These changes were well substantiated with biochemical findings, wherein febuxostat prevented the depletion of non-protein sulfhydryls level, with increased manganese superoxide dismutase level and reduced cardiac injury markers (creatine kinase-MB and B-type natriuretic peptide levels) and thiobarbituric acid reactive substances level. Febuxostat also exhibited significant anti-inflammatory (decreased expression of NF-κBp65, IKK-β and TNF-α) and anti-apoptotic effect (increased Bcl-2 expression and decreased Bax and caspase-3 expression and TUNEL positivity). Hematoxylin and Eosin, Masson Trichome, Picro Sirius Red and ultrastructural studies further corroborated with hemodynamic and biochemical findings showing that febuxostat mitigated doxorubicin-induced increases in inflammatory cells, edema, collagen deposition, interstitial fibrosis, perivascular fibrosis and mitochondrial damage and better preservation of myocardial architecture. In addition, all these changes were comparable to those produced by carvedilol. Thus, our results suggest that the antioxidant and anti-apoptotic effect of febuxostat

  13. Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rat.

    PubMed

    Toba, Hiroe; Sawai, Naoki; Morishita, Masayuki; Murata, Shoko; Yoshida, Mamiko; Nakashima, Kohei; Morita, Yosuke; Kobara, Miyuki; Nakata, Tetsuo

    2009-06-10

    Recombinant human erythropoietin (rHuEPO), which has been used clinically for the management of renal anemia, is reported to exert pleiotropic beneficial properties against acute ischemic/reperfusion injury in various tissues. To investigate the hypothesis that chronic treatment with rHuEPO might ameliorate diabetic nephropathy beyond hematopoiesis, rHuEPO (150 U/kg, subcutaneously) was administered three times per week to the streptozotocin-induced diabetic rats for 4 weeks. Streptozotocin (65 mg/kg, intravenously) significantly increased urinary protein excretion and collagen deposition in glomerular and tubulointerstitial areas in the kidney, which were attenuated by rHuEPO. rHuEPO normalized the levels of creatinine clearance, serum creatinine, and blood urea nitrogen of diabetic rats. RT-PCR analysis revealed that the expressions of mRNA for transforming growth factor-beta, osteopontin and adhesion molecules were enhanced in the diabetic rat kidney and that the overexpression of these molecules was suppressed by rHuEPO. rHuEPO exerted antioxidant properties by inhibiting renal activation and overexpression of NADPH oxidase. We found the activation of the Akt signaling pathway by the increased expression of phosphorylated Akt and GSK-3beta and a reduction of TUNEL-positive apoptotic cell death in renal tissue from rHuEPO-treated diabetic group. We also demonstrated that rHuEPO restored the endothelial nitric oxide synthase (eNOS) content in the diabetic rat kidney. On the other hand, treatment with rHuEPO did not affect blood glucose level, blood pressure, or hematocrit in diabetic rats. These results suggest that chronic treatment with rHuEPO attenuated renal injury beyond hematopoiesis and regulated apoptosis and eNOS expression, which might be due to the activation of Akt pathway.

  14. Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats.

    PubMed

    Kamtchouing, P; Kahpui, S M; Dzeufiet, P-D Djomeni; Tédong, L; Asongalem, E A; Dimo, T

    2006-04-06

    Stem bark extracts of Terminalia superba Engl. and Diels and Canarium schweinfurthii Engl. are used in Africa for the treatment of various ailments, including diabetes mellitus. The anti-diabetic effects of the methanol/methylene chloride extracts of the stem barks on streptozotocin (STZ)-induced diabetes were evaluated on male rats. Through the subcutaneous route, diabetes was induced using 60 mg/mL of streptozotocin. After 2 days, the rats received, by gavage, 150 mg/kg and 300 mg/kg of extract daily for 14 days. At 300 mg/kg, the two extracts (Terminalia superba and Canarium schweinfurthii), significantly showed at least 67.1% and 69.9% reduction in blood glucose level, respectively, while insulin (three units) given subcutaneously and once daily, had 76.8% reduction compared to diabetic untreated control rats. Similarly, the weight gains were 6.6% and 4.9%, respectively, and were comparable to the normal rats, whereas, diabetic untreated rats lost 14.1% body weight. Still with the same dose, there was 68.5% and 58.5% (p < 0.001) significant decrease in food consumption and 79.7% and 64.0% (p < 0.001) in fluid intake by diabetic rats treated with the respective plant extracts. The insulin-treated rats showed 56.4% and 75.8% decrease in food and fluid intake compared to an augmentation for diabetic control rats, 43.0% and 383.8%, respectively, at the end of the second week of experimentation. These results showed that the plant extracts can reverse hyperglycemia, polyphagia and polydipsia provoked by streptozotocin, and thus, they have anti-diabetic properties.

  15. Effect of Agaricus blazei Murill on the pulmonary tissue of animals with streptozotocin-induced diabetes.

    PubMed

    Di Naso, Fábio Cangeri; de Mello, Rodrigo Noronha; Bona, Sílvia; Dias, Alexandre Simões; Porawski, Marilene; Ferraz, Alexandre de Barros Falcão; Richter, Marc François; Marroni, Norma Possa

    2010-01-01

    The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Agaricus blazei Muril (A. Blazei) in rats with streptozotocin-induced diabetes. We used 25 Wistar rats, and DM was induced by injecting streptozotocin (70 mg/Kg i.p.). Agaricus blazei Muril was administered daily starting 40 days after disease onset. A. Blazei was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipoperoxidation (LPO), and superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were measured in the pulmonary tissue, as well as the presence of inducible nitric oxide synthase (iNOS), through immunohistochemistry. An anatomopathologic study was also performed. Phytochemical screening of A. Blazei detected the presence of alkaloids and saponins. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hipoxanthine/xanthine oxidase assays. Pulmonary LPO increased in diabetic animals (0.43 +/- 0.09; P < .001) as compared to the control group (0.18 +/- 0.02), followed by a reduction in the A. Blazei-treated group (0.33 +/- 0.04; P < .05). iNOS was found increased in the lung in diabetic rats and reduced in the A. Blazei-treated group. The pulmonary tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. The A. Blazei treatment effectively reduced the oxidative stress and contributed to tissue recovery.

  16. Ca2+ mobilization in the aortic endothelium in streptozotocin-induced diabetic and cholesterol-fed mice.

    PubMed

    Kamata, K; Nakajima, M

    1998-04-01

    1. Experiments were performed to compare Ca2+ mobilization in the aortic endothelium in streptozotocin (STZ)-induced diabetic and cholesterol-fed mice with that in age-matched controls. 2. The intracellular free Ca2+ ([Ca2+]i) in the fura PE-3 loaded endothelium of aortic rings was dose-dependently increased by cumulative administration of acetylcholine (ACh). ACh caused a transient rise in [Ca2+]i in Ca2+-free medium. The ACh-induced increase in [Ca2+]i in normal or Ca2+-free medium was significantly weaker in both STZ-induced diabetic and cholesterol-fed mice. 3. The weaker [Ca2+]i response in Ca2+-containing medium in STZ-induced diabetic and cholesterol-fed mice was normalized by chronic administration of cholestyramine. 4. The increased low density lipoprotein (LDL) levels seen in both STZ-induced diabetic and cholesterol-fed mice were normalized by the same chronic administration of cholestyramine (300 mg kg(-1), p.o. daily for 10 weeks). Chronic administration of cholestyramine had no effect on the plasma glucose level. 5. Lysophosphatidylcholine (LPC) decreased the [Ca2+]i responses to ACh in the aortic endothelium from normal mice. 6. These results suggest that ACh increases both Ca2+ influx and Ca2+ release from storage in the aortic endothelium. The weaker [Ca2+]i influx seen in the endothelium of aortae from both STZ-induced diabetic and cholesterol-fed mice was improved by the chronic administration of cholestyramine, and we suggest that this improvement is due, at least in part, to a lowering of the plasma LDL level. It is further suggested that LPC may have an important influence over Ca2+ mobilization in the endothelium.

  17. SEXUAL BEHAVIOUR, SPERM QUANTITY AND QUALITY AFTER SHORT-TERM STREPTOZOTOCIN-INDUCED HYPERGLYCAEMIA IN RATS.

    EPA Science Inventory

    Studies of diabetes mellitus in the streptozotocin rat model suggest that sexual dysfunctions may result from diabetes-induced alterations of the neuroendocrine-reproductive tract axis. Our investigation was performed to better define the effects of short-term hyperglycemia on ra...

  18. Thalidomide attenuates learning and memory deficits induced by intracerebroventricular administration of streptozotocin in rats.

    PubMed

    Elçioğlu, Hk; Kabasakal, L; Alan, S; Salva, E; Tufan, F; Karan, Ma

    2013-05-01

    Neuroinflammatory responses caused by amyloid β (Aβ) peptide deposits are involved in the pathogenesis of Alzheimer's disease (AD). Thalidomide has a significant anti-inflammatory effect by inhibiting TNF-α, which plays role in Aβ neurotoxicity. We investigated the effect of thalidomide on AD-like cognitive deficits caused by intracerebroventricular injection of streptozotocin (STZ). Intraperitoneal thalidomide was administered 1 h before the first dose of STZ and continued for 21 days. Learning and memory behavior was evaluated on days 17, 18 and 19, and the rats were sacrificed on day 21 to examine histopathological changes. STZ injection caused a significant decrease in the mean escape latency in passive avoidance and decreased improvement of performance in Morris water maze tests. Histopathological changes were examined using hematoxylin-eosin and Bielschowsky staining. Brain sections of STZ treated rats showed increased neurodegeneration and disturbed linear arrangement of cells in the cortical area compared to controls. Thalidomide treatment attenuated significantly STZ induced cognitive impairment and histopathological changes. Thalidomide appears to provide neuroprotection from the memory deficits and neuronal damage induced by STZ.

  19. Investigation of the anti-inflammatory effects of safranal on high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model.

    PubMed

    Hazman, Ömer; Ovalı, Serhat

    2015-01-01

    In the present study, it was aimed to investigate the effects of safranal, one of the components of saffron plant, on the inflammation in the rats in which experimental type 2 diabetes and obesity were formed. Type 2 diabetes is a disease characterized by insulin resistance and β-cell dysfunction. Therefore, in the present study, high-fat diet (HFD) and streptozotocin were used for being able to create experimental type 2 diabetes. In the first 6 weeks of the study, experimental groups were formed in five groups, after the stage of creating insulin resistance. The study groups were designed as control, HFD, HFD-Saf, DYB, and DYB-Saf groups. Safranal treatment was applied to the treatment groups for a period of 4 weeks. Throughout the study period (10 weeks), the weight gains and plasma glucose levels of the rats were determined each week and bi-weekly, respectively. At the end of the study, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α), TAS and TOS levels in the pancreas and plasma were measured. In addition, the insulin and leptin levels in the plasma were determined. It was ascertained that, compared to the diabetic group, safranal decreased the inflammation both in the plasma and pancreas tissue, by reducing the TNF-α and IL-1β levels in particular. In addition, safranal was also found to decrease the oxidative stress increased due to type 2 diabetes in the plasma and pancreas tissue. It was concluded that safranal might be helpful in terms of reduction of diabetic complications, by means of its effects on both oxidative stress and inflammation, and that further studies should be carried out for this purpose.

  20. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  1. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats

    PubMed Central

    2012-01-01

    Background The present investigation was aimed at evaluating the hypoglycemic and hypolipidemic properties of the aqueous and methanolic extracts from Bersama engleriana leaves in streptozotocin/nicotinamide (STZ-NA)-induced type 2 diabetic rats. Methods Animals were orally treated for 4 consecutive weeks with Bersama engleriana extracts at doses of 300 or 600 mg/kg. The anti-diabetic effect was examined by measuring blood glucose (BG) at 0, 1, 14 and 28 days after STZ-NA treatment and, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels at sacrifice (day 29). Glibenclamide (0.25 mg/kg) was used for comparison. Results STZ-NA-induced diabetic rats showed moderate to significant increases in the levels of BG, TG, TC, LDL-C while body weight, HDL-C levels and relative weights of liver and pancreas were decreased compared to controls (non diabetic rats). Administration of the plant extracts to STZ-NA diabetic rats resulted in a significant decrease in BG, TG, TC and LDL-C and the dose 600 mg/kg of the methanolic extract was the most effective; HDL-C level was markedly increased after four weeks compared to untreated diabetic rats. A dose-dependent increase in the relative weights of the diabetogenic organs was observed in the Bersama engleriana groups. It can be also noticed that the methanolic extract, especially the dose 600 mg/kg (p<0.001), produced more effects than glibenclamide and aqueous extract. Rats treated with glibenclamide (0.25 mg/kg) generally gave lower results compared to groups treated with plant extracts. Conclusion Results of the present study showed that Bersama engleriana extracts and especially its methanolic extract possess antidiabetogenic properties and beneficial effects on diabetic hyperlipidemia. All these effects could be due to the bioactive components revealed in the Bersama engleriana extracts such as triterpenes and phenols and which could

  2. The effects of dexpanthenol in streptozotocin-induced diabetic rats: histological, histochemical and immunological evidences.

    PubMed

    Gulle, K; Ceri, N G; Akpolat, M; Arasli, M; Demirci, B

    2014-10-01

    This study was designed to investigate the effects of Dexpanthenol (Dxp) on liver and pancreas histology and cytokine levels in streptozotocine (STZ)-induced diabetic rats. Twenty-four Wistar albino male rats were divided into four groups: control, Dxp, STZ-induced diabetic (STZ) and diabetic treatment with Dexpanthenol (STZ-Dxp) groups. Experimental diabetes was induced by single dose STZ (50 mg/kg) intraperitoneally (i.p.). After administration of STZ, the STZ-Dxp group began to receive a 300 mg/kg/day i.p. dose of Dxp for 6 weeks. Liver and pancreas tissues of the control group were in normal morphology. Liver tissue of STZ group showed vacuolisation of hepatocytes in the liver parenchyma with enlargement of sinusoidal spaces and increasing amounts of connective tissue in the portal area. Pancreatic section of STZ group displayed β-cells with of cytoplasmic mass, reduction of islet size, and atrophy. The STZ-Dxp group that received Dxp treatment exhibit partially normal hepatic parenchyma. Histochemical examinations revealed that the diabetes-induced glycogen depletion markedly improved with the Dxp treatment (p⟨0.001). The severity of degenerative alteration was lessened by Dxp supplementation in the STZ-Dxp group. Induction of STZ presented a significant increase both in interleukin-1α (IL-1α) (p=0.033) and monocyte chemotactic protein-1 (MCP-1) (p=0.011) levels, when compared with the control rats. DXP-treated diabetic rats' IL-1α and MCP-1 levels were similar to control value. This evidence suggests that Dxp is effective in reducing STZ-induced, diabetic-related complications and may be beneficial for the treatment of diabetic patients.

  3. Dose- dependent ameliorative effects of quercetin and l-Carnitine against atrazine- induced reproductive toxicity in adult male Albino rats.

    PubMed

    Abdel Aziz, Rabie L; Abdel-Wahab, Ahmed; Abo El-Ela, Fatma I; Hassan, Nour El-Houda Y; El-Nahass, El-Shaymaa; Ibrahim, Marwa A; Khalil, Abdel-Tawab A Y

    2018-06-01

    This study aimed to determine the protective effects of co-administration of Quercetin (QT) or l-Carnitine (LC) against the oxidative stress induced by Atrazine (ATZ) in the reproductive system of intact male Albino rats. 36 rats were divided equally into 6 groups. Rats in the control negative "CNT" group received 1.5 ml distilled water for 21 days. All rats in the other groups received ATZ (120 mg/kg bw) through gavage. Groups 3 and 4 were co-administered with either low or high dose of QT (10 "ATZLQT" and 50 "ATZHQT" mg/kg bw, respectively). Groups 5 and 6 were co-administered with either low or high dose of LC (200 "ATZLLC" and 400 "ATZHLC" mg/kg bw, respectively). At the end of the experiment, animals were sacrificed and all samples were collected. ATZ significantly increased serum level of malondialdehyde (MDA) and decreased total antioxidant capacity (TAC). Also, ATZ increased significantly the sperm cell abnormalities and reduced both testicular IgA and serum testosterone levels. Testicular DNA laddering % and CYP17A1 mRNA expression were significantly reduced in ATZ group. Interestingly, co-administration with low dose QT or different doses of LC succeeded to counteract the negative toxic effects of ATZ on serum oxidative stress indicators, serum testosterone levels, testicular IgA level and improved testicular CYP17A1 mRNA expression. In conclusion, QT in low dose and LC in both low and high doses exerted a significant protective action against the reproductive toxicity of ATZ, while higher dose of QT failed induce immune-stimulant effect against ATZ in adult male Albino rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice.

    PubMed

    Oliveira, Wilma Helena; Nunes, Ana Karolina; França, Maria Eduarda Rocha; Santos, Laise Aline; Lós, Deniele Bezerra; Rocha, Sura Wanessa; Barbosa, Karla Patrícia; Rodrigues, Gabriel Barros; Peixoto, Christina Alves

    2016-08-01

    The aim of the present study was to analyze the action of metformin on short-term memory, glial cell activation and neuroinflammation caused by experimental diabetic encephalopathy in C57BL/6 mice. Diabetes was induced by the intraperitoneal injection of a dose of 90mg/kg of streptozotocin on two successive days. Mice with blood glucose levels ≥200dl/ml were considered diabetic and were given metformin hydrochloride at doses of 100mg/kg and 200mg/kg (by gavage, twice daily) for 21 days. On the final day of treatment, the mice underwent a T-maze test. On the 22nd day of treatment all the animals were anesthetized and euthanized. Diabetic animals treated with metformin had a higher spatial memory score. The hippocampus of the diabetic animals presented reactive gliosis, neuronal loss, NF-kB signaling activation, and high levels of IL-1 and VEGF. In addition, the T-maze test scores of these animals were low. Treatment with metformin reduced the expression of GFAP, Iba-1 (astrocyte and microglial markers) and the inflammation markers (p-IKB, IL-1 and VEGF), while enhancing p-AMPK and eNOS levels and increasing neuronal survival (Fox-1 and NeuN). Treatment with metformin also improved the spatial memory scores of diabetic animals. In conclusion, the present study showed that metformin can significantly reduce neuroinflammation and can decrease the loss of neurons in the hippocampus of diabetic animals, which can subsequently promote improvements in spatial memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In Utero Exposure to Low-Dose Alcohol Induces Reprogramming of Mammary Development and Tumor Risk in MMTV-erbB-2 Transgenic Mice

    PubMed Central

    Ma, Zhikun; Blackwelder, Amanda J.; Lee, Harry; Zhao, Ming; Yang, Xiaohe

    2015-01-01

    There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation. PMID:25853264

  6. Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone.

    PubMed

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2017-09-01

    Low-dose naltrexone is a widely used off-label therapeutic prescribed for a variety of immune-related disorders. The mechanism underlying low-dose naltrexone's efficacy for fatigue, Crohn's disease, fibromyalgia, and multiple sclerosis is, in part, intermittent blockade of opioid receptors followed by upregulation of endogenous opioids. Short, intermittent blockade by naltrexone specifically blocks the opioid growth factor receptor resulting in biofeedback events that increase production of the endogenous opioid growth factor (OGF) (chemically termed [Met 5 ]-enkephalin) facilitating interactions between opioid growth factor and opioid growth factor receptor that ultimately, result in inhibited cell proliferation. Preclinical studies have reported that enkephalin levels are deficient in animal models of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our hypothesis is that serum enkephalin levels are diminished in humans with multiple sclerosis and experimental autoimmune encephalomyelitis mice, and that change in serum opioid growth factor levels may serve as a reasonable candidate biomarker for the onset of experimental autoimmune encephalomyelitis and response to therapy. To address this, we designed a two-part study to measure endogenous opioids in multiple sclerosis patients, and to investigate the temporal pattern of decline in serum enkephalin concentrations in mice with chronic progressive experimental autoimmune encephalomyelitis and treated with low-dose naltrexone. For comparison, we investigated whether low-dose naltrexone exposure in normal mice also resulted in altered enkephalin levels. In both animal models, we monitored tactile and heat sensitivity, as well as differential white blood cell counts as indicators of inflammation. Serum [Met 5 ]-enkephalin levels were lower in humans with multiple sclerosis relative to non-multiple sclerosis patients, and low-dose naltrexone restored their levels. In experimental

  7. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer.more » Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based

  8. Pharmacological Evaluation of “Sugar Remedy,” A Polyherbal Formulation, on Streptozotocin-Induced Diabetic Mellitus in Rats

    PubMed Central

    Singhal, Sandeep; Rathore, Arvind Singh; Lohar, Vikram; Dave, Rakesh; Dave, Jeetesh

    2014-01-01

    In the present study, Sugar Remedy, a polyherbal formulation (manufactured by Umalaxmi Organics Pvt Ltd, Jodhpur, Rajasthan, India) was evaluated for its antihyperglycemic, antihyperlipidemic, and antioxidant effects against normal and streptozotocin (STZ)-induced diabetic rats. Type II diabetes was induced in male Wistar rats by administration of a single intraperitoneal (IP) injection of STZ at a dose of 60 mg/kg. Effects of three different doses of Sugar Remedy suspension (185, 370, and 740 mg/kg/day, orally) and Metformin (500 mg/kg/day, orally) administered for 21 days were studied on parameters such as blood glucose, lipid profile, and antioxidant levels. Results were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett's test. No significant changes were noticed in blood glucose, serum lipid levels, and kidney parameters in normal rats treated with Sugar Remedy suspension alone. The efficacy of Sugar Remedy as an antihyperglycemic, antihyperlipidemic, and antioxidant agent in STZ-induced diabetes was comparable to that of the standard, 500 mg/kg of Metformin. Present findings provide experimental evidence that Sugar Remedy has significant antihyperglycemic, antihyperlipidemic, and antioxidative effects in diabetic experimental rats. Hence, Sugar Remedy may be regarded as a promising natural and safe remedy for the prevention or delay of diabetic complications. PMID:25161924

  9. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Yao-Wu; Zhu, Xia; Zhang, Liang; Lu, Qian; Wang, Jian-Yun; Zhang, Fan; Guo, Hao; Yin, Jia-Le; Yin, Xiao-Xing

    2013-12-05

    Advanced glycation endproducts (AGEs) and its precursor methylglyoxal are associated with diabetic nephropathy (DN). Mangiferin has many beneficial biological activities, including anti-inflammatory, anti-oxidative and anti-diabetic effects. We investigated the effect of mangiferin on DN and its potential mechanism associated with glyoxalase 1 (Glo-1), a detoxifying enzyme of methylglyoxal, in streptozotocin-induced rat model of DN. Diabetic rats were treated orally with mangiferin (15, 30, and 60 mg/kg) or distilled water for 9 weeks. Kidney tissues were collected for morphologic observation and the determination of associated biochemical parameters. The cultured mesangial cells were used to measure the activity of Glo-1 in vitro. Chronic treatment with mangiferin significantly ameliorated renal dysfunction in diabetic rats, as evidenced by decreases in albuminuria, blood urea nitrogen, kidney weight index, periodic acid-schiff stain positive mesangial matrix area, glomerular extracellular matrix expansion and accumulation, and glomerular basement membrane thickness. Meanwhile, mangiferin treatment caused substantial increases in the enzymatic activity of Glo-1 in vivo and in vitro, and protein and mRNA expression of Glo-1, reduced levels of AGEs and the protein and mRNA expression of their receptor (RAGE) in the renal cortex of diabetic rats. Moreover, mangiferin significantly attenuated oxidative stress damage as reflected by the lowered malondialdehyde and the increased glutathione levels in the kidney of diabetic rats. However, mangiferin did not affect the blood glucose and body weight of diabetic rats. Therefore, mangiferin can remarkably ameliorate DN in rats through inhibiting the AGEs/RAGE aix and oxidative stress damage, and Glo-1 may be a target for mangiferin action. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    PubMed Central

    Kim, Joo Wan; Ku, Sae-Kwang; Kim, Ki Young; Kim, Sung Goo; Han, Min Ho; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min

    2015-01-01

    The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation. PMID:26064425

  11. Naringin ameliorates diabetic nephropathy by inhibiting NADPH oxidase 4.

    PubMed

    Zhang, Junwei; Yang, Suxia; Li, Huicong; Chen, Fang; Shi, Jun

    2017-06-05

    Naringin, a naturally flavanone glycoside, has been previously demonstrated to alleviate diabetic kidney disease by inhibiting oxidative stress and inflammatory reaction. However, the underlying mechanism of naringin in diabetic nephropathy (DN) has not been fully elucidated. Here, the beneficial effect of naringin on DN in streptozotocin (STZ)-induced DN rats and high glucose (HG)-induced podocytes and its underlying mechanism were elaborated. The result revealed that naringin alleviated STZ-induced renal dysfunction and injury in DN rats, relieved STZ-induced oxidative stress in vivo and inhibited HG-induced apoptosis and reactive oxygen species level i20n vitro. More importantly, naringin inhibited NOX4 expression at mRNA and protein levels in STZ-induced DN rats and HG-induced podocytes. Loss of function indicated that NADPH oxidases 4 (NOX4) down-regulation suppressed apoptosis and reactive oxygen species level in HG-treated podocytes. Take together, this study demonstrated that naringin ameliorates diabetic nephropathy by inhibiting NOX4, contributing to a better understanding of the progression of DN. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice.

    PubMed

    Su, Shuhao; Cao, Meng; Wu, Guangyuan; Long, Zi; Cheng, Xiaodong; Fan, Junshu; Xu, Zhongrui; Su, Hongfei; Hao, Yiming; Li, Ge; Peng, Jie; Li, Shuang; Wang, Xin

    2018-05-15

    The worldwide prevalence of diabetes and associated metabolic diseases has dramatically increased. Pharmacological treatment of diabetes is still limited. Hordenine (HOR), a phenethylamine alkaloid, is a natural constituent in many plants. The present study was designed to explore the possible anti-diabetic effect of HOR in streptozotocin (STZ)-induced diabetic mice. Combined treatment of HOR and insulin significantly reduced fasting and postprandial blood glucose level in diabetic mice. HOR and insulin did not show evident protective effect against structural and functional injuries of pancreas. Renal histological and functional injuries were significantly improved by HOR or insulin treatment. Moreover, combined treatment of HOR and insulin resulted in a more significant amelioration of renal histological and functional injuries in diabetic mice. HOR induced a decrease of renal IL-1α/β and IL-6 expression, and a reduction of Col1α1 and MMP9 expression and PAS-stained mesangial expansion in glomeruli of diabetic mice. In diabetic mice, HOR significantly decreased Nrf2 expression and increased hnRNPF and hnRNPK expression in kidney. Moreover, HOR showed a synergistic effect with insulin on the expression of these regulators. Renal ROS level and TBARS content in diabetic mice were decreased by HOR. The reduction of renal expression of antioxidant enzymes in diabetic mice was inhibited by HOR and insulin. Furthermore, HOR and insulin function synergistically to play an antioxidant role against oxidative injury in diabetic nephropathy. In conclusion, to the best of our knowledge, we, for the first time, found the anti-diabetic, anti-inflammatory, and anti-fibrotic role of HOR in combination with insulin. HOR functions synergistically with insulin and prevents diabetic nephropathy. However, the molecular mechanism of the synergistic effect of HOR and insulin needs to be elucidated. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride.

    PubMed

    Yang, Chen; Zhang, Mengmeng; Li, Yagang; Wang, Yan; Mao, Weixian; Gao, Yuan; Xu, Hui

    2015-12-01

    The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.

  14. Streptozotocin Diabetes CORRELATION WITH EXTENT OF DEPRESSION OF PANCREATIC ISLET NICOTINAMIDE ADENINE DINUCLEOTIDE

    PubMed Central

    Anderson, Tom; Schein, Philip S.; McMenamin, Mary G.; Cooney, David A.

    1974-01-01

    The diabetogenic activity of streptozotocin has been correlated with a reduction in pyridine nucleotide synthesis in the mouse pancreatic islet. To determine the specificity of this reduction for diabetogenicity, a comparative study of streptozotocin, its cytotoxic moiety, 1-methyl-1-nitrosourea, and alloxan was performed. Streptozotocin administered intraperitoneally (i.p.) producd a dose-related reduction in islet NAD which was proportional to the degree of diabetogenicity. A diabetogenic dose, 200 mg/kg, attained a peak plasma N-nitroso intact streptozotocin concentration of 0.224 μmol/ml and reduced the mean islet NAD from a control of 0.78 to 0.15 pmol. At borderline, 150 mg/kg, and nondiabetogenic, 100 mg/kg, doses, plasma concentrations reached 0.161 and 0.136 μmol/ml, and NAD was 0.36 and 0.86 pmol/islet, respectively. 1-Methyl-1-nitrosourea, 100 mg/kg, attained a maximum N-nitroso intact 1-methyl-1-nitrosourea concentration of 0.162 μmol/ml and reduced the mean NAD to 0.58 pmol/islet, and was nondiabetogenic; 200 mg/kg attained a peak plasma concentration of 0.344 μmol/ml and depressed NAD to 0.38 pmol/islet, and was inconsistently diabetogenic. Islet NAD of 0.4 pmol/islet or greater is required for integrity of the beta cell. A diabetogenic dose of alloxan, 500 mg/kg, did not depress NAD, 0.85 pmol/islet, therefore confirming that its mechanism of diabetogenicity differs from that of streptozotocin. In vivo uptake of [methyl-14C]streptozotocin by islets was 3.8 times that of [methyl-14C]-1-methyl-1-nitrosourea, whereas uptake by the exocrine pancreas favored 1-methyl-1-nitrosourea over streptozotocin 2.4:1. The decreased islet uptake of 1-methyl-1-nitrosourea correlates with the 3.5 times increased molar dosage required to produce islet NAD depression comparable to that of streptozotocin, 150 mg/kg. These studies indicate that the glucose carrier of streptozotocin facilitates uptake of its cytotoxic group, 1-methyl-1-nitrosourea, into islets. PMID

  15. Effect of Agaricus blazei Murill on the Pulmonary Tissue of Animals with Streptozotocin-Induced Diabetes

    PubMed Central

    Di Naso, Fábio Cangeri; de Mello, Rodrigo Noronha; Bona, Sílvia; Dias, Alexandre Simões; Porawski, Marilene; Ferraz, Alexandre de Barros Falcão; Richter, Marc François; Marroni, Norma Possa

    2010-01-01

    The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Agaricus blazei Muril (A. Blazei) in rats with streptozotocin-induced diabetes. We used 25 Wistar rats, and DM was induced by injecting streptozotocin (70 mg/Kg i.p.). Agaricus blazei Muril was administered daily starting 40 days after disease onset. A. Blazei was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipoperoxidation (LPO), and superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were measured in the pulmonary tissue, as well as the presence of inducible nitric oxide synthase (iNOS), through immunohistochemistry. An anatomopathologic study was also performed. Phytochemical screening of A. Blazei detected the presence of alkaloids and saponins. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hipoxanthine/xanthine oxidase assays. Pulmonary LPO increased in diabetic animals (0.43 ± 0.09; P < .001) as compared to the control group (0.18 ± 0.02), followed by a reduction in the A. Blazei-treated group (0.33 ± 0.04; P < .05). iNOS was found increased in the lung in diabetic rats and reduced in the A. Blazei-treated group. The pulmonary tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. The A. Blazei treatment effectively reduced the oxidative stress and contributed to tissue recovery. PMID:20585363

  16. Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes

    PubMed Central

    Zhou, Y; Zeng, W; Qi, M; Duan, Y; Su, J; Zhao, S; Zhong, W; Gao, M; Li, F; He, Y; Hu, X; Xu, X; Chen, X; Peng, C; Zhang, J

    2017-01-01

    Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes. PMID:28785074

  17. Rutin-Enriched Extract from Coriandrum sativum L. Ameliorates Ionizing Radiation-Induced Hematopoietic Injury

    PubMed Central

    Han, Xiaodan; Xue, Xiaolei; Zhao, Yu; Li, Yuan; Liu, Weili; Zhang, Junling; Fan, Saijun

    2017-01-01

    Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with multiple pharmacological effects and has been widely used in traditional medicine. In this study, flavonoids were identified as the main component of coriander extract with rutin being the leading compound (rutin-enriched coriander extract; RE-CE). We evaluated the radioprotective effect of RE-CE against IR-induced HSPCs injury. Results showed that RE-CE treatment markedly improved survival, ameliorated organ injuries and myelosuppression, elevated HSPCs frequency, and promoted differentiation and proliferation of HSPCs in irradiated mice. The protective role of RE-CE in hematopoietic injury is probably attributed to its anti-apoptotic and anti-DNA damage effect in irradiated HSPCs. Moreover, these changes were associated with reduced reactive oxygen species (ROS) and enhanced antioxidant enzymatic activities in irradiated HSPCs. Collectively, these findings demonstrate that RE-CE is able to ameliorate IR-induced hematopoietic injury partly by reducing IR-induced oxidative stress. PMID:28468251

  18. Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin-induced diabetic rats.

    PubMed

    Arul, B; Kothai, R; Christina, A J M

    2004-12-01

    The effect of ethanolic extract of dried nuts of Semecarpus anacardium on blood glucose was investigated in both normal (hypoglycemic) and streptozotocin-induced diabetic (antihyperglycemic) rats. The blood glucose levels were measured at 0, 1, 2 and 3 h after the treatment. The ethanolic extract of S. anacardium (100 mg/kg) reduced the blood glucose of normal rats from 85.83 +/- 1.55 to 65.83 +/- 2.20 mg/dl, 3 h after oral administration of the extract (p < 0.05). It also significantly lowered blood glucose levels in streptozotocin-induced diabetic rats from 335.33 +/- 4.90 to 132.17 +/- 4.49 mg/dl, 3 h after oral administration of the extract (p < 0.05). The antihyperglycemic activity of S. anacardium was compared with tolbutamide, a sulfonyl urea derivative used in diabetes mellitus. 2004 Prous Science

  19. Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus.

    PubMed

    Shirwaikar, Annie; Rajendran, K; Barik, Rakesh

    2006-09-19

    A study was undertaken to evaluate the antihyperglycemic activity of aqueous extract of bark of Garuga pinnata Roxb. (Burseraceae). The various parameters studied included fasting blood sugar levels, serum lipid levels, liver glycogen content, serum insulin level and glycated hemoglobin in diabetic and normal rats. Streptozotocin-nicotinamide was used to induce type-II diabetes mellitus. Treatment with the extract at two dose levels showed a significant increase in the liver glycogen and serum insulin level and a significant decrease in fasting blood glucose and glycated hemoglobin levels. The total cholesterol and serum triglycerides levels were also significantly reduced and the HDL cholesterol levels were significantly increased upon treatment with the extract thus proving the potent antidiabetic property of the plant.

  20. In vivo assessment of antihyperglycemic and antioxidant activity from oil of seeds of brassica nigra in streptozotocin induced diabetic rats.

    PubMed

    Kumar, Manoj; Sharma, Sunil; Vasudeva, Neeru

    2013-01-01

    This study was made to investigate the antihyperglycemic and antioxidant potential of oil of seeds of Brassica nigra (BNO) in streptozotocin -nicotinamide (STZ) induced type 2 diabetic rats. BNO was orally administered to diabetic rats to study its effect in both acute and chronic antihyperglycemic study. The body weight, oral glucose tolerance test and biochemical parameters viz. glucose level, insulin level, liver glycogen content, glycosylated hemoglobin and antioxidant parameters were estimated for all treated groups and compared against diabetic control group. Administration of BNO at a dose 500 mg/kg and 1000 mg/kg body weight p.o. to STZ diabetic rats showed reduction in blood glucose level from 335 mg/dl to 280 mg/dl at 4th h and from 330 mg/dl to 265 mg/dl respectively which was found significant (p<0.01) as compared with diabetic control. BNO (500 mg/kg and 1000 mg/kg) and glibenclamide (0.6 mg/kg) in respective groups of diabetic animals administered for 28 days reduced the blood glucose level in streptozotocin-nicotinamide induced diabetic rats. There was significant increase in body weight, liver glycogen content, plasma insulin level and decrease in glycosylated hemoglobin in test groups as compared to control group. In vivo antioxidant studies on STZ-nicotinamide induced diabetic rat's revealed decreased malondialdehyde (MDA) and increased reduced glutathione (GSH). Thus the results showed that the oil of seeds of Brassica nigra has significant antihyperglycemic and antioxidant activity.

  1. Decrease in Adult Neurogenesis and Neuroinflammation Are Involved in Spatial Memory Impairment in the Streptozotocin-Induced Model of Sporadic Alzheimer's Disease in Rats.

    PubMed

    Bassani, Taysa Bervian; Bonato, Jéssica M; Machado, Meira M F; Cóppola-Segovia, Valentín; Moura, Eric L R; Zanata, Silvio M; Oliveira, Rúbia M M W; Vital, Maria A B F

    2018-05-01

    Early impairments in cerebral glucose metabolism and insulin signaling pathways may participate in the pathogenesis of the sporadic form of Alzheimer's disease (sAD). Intracerebroventricular (ICV) injections of low doses of streptozotocin (STZ) are used to mimic sAD and study these alterations in rodents. Streptozotocin causes impairments in insulin signaling and has been reported to trigger several alterations in the brain, such as oxidative stress, neuroinflammation, and dysfunctions in adult neurogenesis, which may be involved in cognitive decline and are features of human AD. The aim of the present study was to assess the influence of neuroinflammation on the process of adult neurogenesis and consequent cognitive deficits in the STZ-ICV model of sAD in Wistar rats. Streptozotocin caused an acute and persistent neuroinflammatory response, reflected by reactive microgliosis and astrogliosis in periventricular areas and the dorsal hippocampus, accompanied by a marked reduction of the proliferation of neural stem cells in the dentate gyrus of the hippocampus and subventricular zone. Streptozotocin also reduced the survival, differentiation, and maturation of newborn neurons, resulting in impairments in short-term and long-term spatial memory. These results support the hypothesis that neuroinflammation has a detrimental effect on neurogenesis, and both neuroinflammation and impairments in neurogenesis contribute to cognitive deficits in the STZ-ICV model of sAD.

  2. Vitamin D ameliorates impaired wound healing in streptozotocin-induced diabetic mice by suppressing NF-κB-mediated inflammatory genes.

    PubMed

    Yuan, YiFeng; Das, Sushant K; Li, MaoQuan

    2018-04-27

    Diabetic wounds are characterized by delayed wound healing due to persistent inflammation and excessive production of reactive oxygen species. Vitamin D, which is well acknowledged to enhance intestinal calcium absorption and increase in plasma calcium level, has recently been shown to display beneficial effects in various vascular diseases by promoting angiogenesis and inhibiting inflammatory responses. However, the role of Vitamin D in diabetic wound healing is still unclear. In the present study, we investigated the role of Vitamin D in cutaneous wound healing in streptozotocin (STZ)-induced diabetic mice. Four weeks after injection of STZ, a full thickness excisional wound was created with a 6-mm diameter sterile biopsy punch on the dorsum of the mice. Vitamin D was given consecutively for 14 days by intraperitoneal injection. Vitamin D supplementation significantly accelerated wound healing in diabetic mice and improved the healing quality as assessed by measuring the wound closure rate and histomorphometric analyses. By monitoring the level of pro-inflammatory cytokines tumor necrosis factor-α ( TNF-α ), interleukin (IL) 6 ( IL-6 ), IL-1β ) in the wounds, reduced inflammatory response was found in VD treatment group. Furthermore, nuclear factor κB (NF-κB) pathway was found to be involved in the process of diabetic wound healing by assessing the relative proteins in diabetic wounds. Vitamin D supplementation obviously suppressed NF-κB pathway activation. These results demonstrated that Vitamin D improves impaired wound healing in STZ-induced diabetic mice through suppressing NF-κB-mediated inflammatory gene expression. © 2018 The Author(s).

  3. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. © 2013.

  4. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats.

    PubMed

    Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin

    2015-09-07

    Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.

  5. Cinnamon extract ameliorates ionizing radiation-induced cellular injury in rats.

    PubMed

    Azab, Khaled Sh; Mostafa, Abdel-Halem A; Ali, Ehab M M; Abdel-Aziz, Mohamed A S

    2011-11-01

    The present study aimed to investigate the protective role of cinnamon extract against inflammatory and oxidative injuries in gamma irradiated rats. Rats were subjected to fractionated doses of gamma radiation. Cinnamon extract were daily administrated before starting irradiation and continued after radiation exposure. The results obtained revealed that the administration of cinnamon extract to irradiated rats significantly ameliorated the changes induced in liver antioxidant system; catalase, superoxide dismutase and glutathione peroxidase activities as well as reduced glutathione concentration. The liver's lipid peroxidation and protein oxidation indices were significantly decreased when compared with their equivalent values in irradiated rats. Furthermore, the changes induces in xanthine oxidoreductase system were significantly diminished. In addition, the changes in liver nitric oxide contents, serum tumor necrosis factor alpha and C-reactive protein levels were markedly improved. In conclusion, the administration of cinnamon extract might provide substantial protection against radiation-induced oxidative and inflammatory damages. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.

    PubMed

    Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

    2013-07-01

    Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.

  7. No adaptive response is induced by chronic low-dose radiation from Ra-226 in the CHSE/F fish embryonic cell line and the HaCaT human epithelial cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersi

    Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction ofmore » cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.« less

  8. Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice.

    PubMed

    McKillop, Aine M; Moran, Brian M; Abdel-Wahab, Yasser H A; Gormley, Noella M; Flatt, Peter R

    2016-12-01

    Abnormal cannabidiol (Abn-CBD) and AS-1269574 are potent selective agonists for GPR55 and GPR119, respectively. The present study evaluated the actions and ability of these small-molecule agonists to counteract experimental diabetes in mice. Diabetes was induced in NIH Swiss mice by five consecutive daily intraperitoneal injections of 40 mg/(kg body weight) streptozotocin. Diabetic mice received daily oral administration of Abn-CBD or AS-1269574 (0.1 μmol/kg) or saline vehicle (0.9% wt/vol. NaCl) over 28 days. Body weight, food intake, fluid intake, plasma glucose, insulin, glucose tolerance, insulin release, lipid profile and pancreatic morphology were examined. Mechanism of action of agonists was assessed in acute studies using incretin-receptor-knockout mice. Abn-CBD and AS-1269574 decreased plasma glucose (20-26%, p < 0.05) and increased circulating insulin (47-48%, p < 0.05) by 10-28 days, compared with saline-treated diabetic controls. Food intake and polydipsia were reduced by both agonists (21-23%, p < 0.05 and 33-35%, p < 0.01, respectively). After 28 days of treatment, plasma glucagon concentrations were reduced (p < 0.01) and glucose tolerance was enhanced by 19-44% by Abn-CBD (p < 0.05 or p < 0.001) and AS-1269574 (p < 0.05 to p < 0.001). Plasma insulin responses were improved (p < 0.01) and insulin resistance was decreased (p < 0.05 or p < 0.01) in both Abn-CBD- and AS-1269574-treated groups. Triacylglycerols were decreased by 19% with Abn-CBD (p < 0.05) and 32% with AS-1269574 (p < 0.01) while total cholesterol was reduced by 17% (p < 0.01) and 15% (p < 0.05), respectively. Both agonists enhanced beta cell proliferation (p < 0.001) although islet area was unchanged. Acute studies in Gipr- and Glp1r-knockout mice revealed an important role for the glucagon-like peptide 1 (GLP-1) receptor in the actions of both agonists, with the glucose-lowering effects of Abn-CBD also partly

  9. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  10. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation.

  11. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  12. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  13. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  14. Antidiabetic and antihyperlipidemic effects of the stem of Musa sapientum Linn. in streptozotocin-induced diabetic rats.

    PubMed

    Dikshit, Piyush; Shukla, Kirtikar; Tyagi, Mool Kumar; Garg, Piyush; Gambhir, Jasvindar K; Shukla, Rimi

    2012-12-01

    Musa sapientum Linn. is a herbaceous plant of the Musaceae family. It has been used in India for the treatment of gastric ulcer, hypertension, diarrhea, dysentery, and diabetes. The antidiabetic effect of the fruit, root, and flower has been demonstrated. The aim of the present study was to assess the antidiabetic and antihyperlipidemic effects of the stem of M. sapientum Linn. Diabetes was induced in rats by streptozotocin injection (45 mg/kg, i.p.). Diabetic rats were treated for 2 weeks with different doses of lyophilized stem juice of M. sapientum Linn. (25, 50, and 100 mg/kg) to select the most effective dose. The effects of 4 weeks treatment with this dose (50 mg/kg) on fasting and postprandial plasma glucose (FPG, PPG) levels, body weight, lipid profile, HbA1c, insulin, liver enzymes (i.e. glucokinase, glucose-6-phosphatase and 3-hydroxy-3-methylglutaryl coenzyme A [HMG-CoA] reductase) and muscle and liver glycogen were evaluated. The most effective dose of lyophilized stem juice of M. sapientum Linn. was 50 mg/kg. Four weeks treatment with this dose resulted in significant decreases in FPG and PPG (P < 0.05). Serum insulin increased (P < 0.05) whereas HbA1c decreased (P < 0.05). Diabetes-induced changes to the lipid profile, muscle and liver glycogen, and enzyme activity (i.e. glucokinase, glucose-6-phosphatase, and HMG-CoA reductase) were restored near to normal levels (P < 0.05). Diabetic rats responded favorably to treatment with lyophilized stem juice of M. sapientum Linn., which exhibits antidiabetic and antihyperlipidemic effects. © 2012 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  15. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  16. Low dose radiation prevents doxorubicin-induced cardiotoxicity

    PubMed Central

    Jiang, Xin; Hong, Yaqiong; Zhao, Di; Meng, Xinxin; Zhao, Lijing; Du, Yanwei; Wang, Zan; Zheng, Yan; Cai, Lu; Jiang, Hongyu

    2018-01-01

    This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling. PMID:29416617

  17. Low dose radiation prevents doxorubicin-induced cardiotoxicity.

    PubMed

    Jiang, Xin; Hong, Yaqiong; Zhao, Di; Meng, Xinxin; Zhao, Lijing; Du, Yanwei; Wang, Zan; Zheng, Yan; Cai, Lu; Jiang, Hongyu

    2018-01-02

    This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.

  18. Effect of N-benzoyl-D-phenylalanine on streptozotocin-induced changes in the lipid and lipoprotein profile in rats.

    PubMed

    Ashokkumar, N; Pari, L; Manimekalai, A; Selvaraju, K

    2005-03-01

    The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin combination treatment on circulatory lipids, lipoproteins and lipid peroxidation markers were studied in neonatal streptozotocin (nSTZ) non-insulin dependent diabetic rats. Non-insulin dependent diabetes mellitus (NIDDM) was induced by a single dose injection of streptozotocin (100 mg kg(-1), i. p.) to two-day-old rats. After 10-12 weeks, rats weighing above 150 g were selected for screening for the NIDDM model. The rats were checked for fasting blood glucose levels to confirm the status of NIDDM. NBDP (50,100 or 200 mg kg(-1) ) was administered orally for six weeks to the confirmed diabetic rats (to evaluate the effective dose). The levels of serum lipids and lipid peroxidation markers were significantly increased, whilst the activity of glucose-6-phosphate dehydrogenase was significantly decreased in nSTZ diabetic rats. NBDP and metformin were able to restore the altered serum lipids, lipoproteins, lipid peroxidation marker levels and glucose-6-phosphate dehydrogenase activity to almost control levels. The results showed the antihyperlipidaemic properties of NBDP and metformin in addition to its antidiabetic action. Combination treatment was more effective then either drug alone. The results indicated that the coadministration of NBDP with metformin to nSTZ diabetic rats normalized blood glucose and caused marked improvement in altered serum lipids, lipoproteins and lipid peroxidation markers during diabetes. The data indicated that NBDP represented an effective antihyperglycaemic and antihyperlipidaemic adjunct for the treatment of diabetes, and may be a potential source of new orally active agents for future therapy.

  19. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses

    PubMed Central

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Abstract Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  20. Extract of Adenanthera pavonina L. seed reduces development of diabetic nephropathy in streptozotocin-induced diabetic rats

    PubMed Central

    Pandhare, Ramdas; Sangameswaran, Balakrishnan

    2012-01-01

    Objective: The aim of the present study was to investigate the renal protective effect of Adenanthera pavonina (A. pavonina) seed aqueous extract (APSAE), in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The renal protective effect of A. pavonina seed aqueous extract (APSAE) was studied in STZ-induced diabetic rats. APSAE (50, 100 and 200 mg/kg per day) was given daily to diabetic rats for 13 weeks. Blood glucose, serum parameters such as albumin, creatinine, total protein, urea, lipid profile, glycated haemoglobin (HbA1c), and urine parameters such as urine protein and albumin were examined. Kidney histopathology was also done. Results: After 13 weeks of treatment, in STZ-induced diabetic rats, severe hyperglycemia was developed, with marked increase in proteinuria and albuminuria. However, APSAE treatment significantly reduced proteinuria, albuminuria, lipid levels, and HbA1c deposition in diabetic rats. Conclusion: These results suggested that APSAE has reduced development of diabetic nephropathy in streptozotocin-induced diabetic rats and could have beneficial effect in reducing the progression of diabetic nephropathy. PMID:25050253

  1. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats.

    PubMed

    Salman, Zenat K; Refaat, Rowaida; Selima, Eman; El Sarha, Ashgan; Ismail, Menna A

    2013-08-15

    Increasing evidence has established causative links between obesity, chronic inflammation and insulin resistance; the core pathophysiological feature in type 2 diabetes mellitus. This study was designed to examine whether the combination of L-cysteine and metformin would provide additional benefits in reducing oxidative stress, inflammation and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Male Wistar rats were fed a high-fat diet (HFD) for 8 weeks to induce insulin resistance after which they were rendered diabetic with low-dose streptozotocin. Diabetic rats were treated with metformin (300 mg/kg/day), L-cysteine (300 mg/kg/day) and their combination along with HFD for another 2 weeks. Control rats were fed normal rat chow throughout the experiment. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index (HOMA-IR) and serum free fatty acids (FFAs) were measured. Serum levels of the inflammatory markers; monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and nitrite/nitrate were also determined. The liver was isolated and used for determination of malondialdehyde (MDA), reduced glutathione (GSH), caspase-3 and cytochrome c levels. The hypoglycemic effect of the combination therapy exceeded that of metformin and L-cysteine monotherapies with more improvement in insulin resistance. All treated groups exhibited significant reductions in serum FFAs, oxidative stress and inflammatory parameters, caspase-3 and cytochrome c levels compared to untreated diabetic rats with the highest improvement observed in the combination group. In conclusion, the present results clearly suggest that L-cysteine can be strongly considered as an adjunct to metformin in management of type 2 diabetes. © 2013 Elsevier B.V. All rights reserved.

  2. Antihyperglycemic and anti-inflammatory effects of fermented food paste in high-fat diet and streptozotocin-challenged mice

    PubMed Central

    Zulkawi, Noraisyah; Ng, Kam Heng; Zamberi, Nur Rizi; Yeap, Swee Keong; Satharasinghe, Dilan A; Tan, Sheau Wei; Ho, Wan Yong; Abd Rashid, Nur Yuhasliza; Md Lazim, Mohd Izwan; Jamaluddin, Anisah; Alitheen, Noorjahan Banu; Long, Kamariah

    2018-01-01

    Background Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed. Methods In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment. Results Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level. Conclusion FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice. PMID:29872261

  3. Polysaccharides from Cordyceps sinensis mycelium ameliorate exhaustive swimming exercise-induced oxidative stress.

    PubMed

    Yan, Feng; Wang, Beibei; Zhang, Yan

    2014-02-01

    Cordyceps sinensis (Berk.) Sacc. (Clavicipitaceae) is a famous medicinal fungus (mushroom) in Chinese herbal medicine. Polysaccharides from Cordyceps sinensis (CSP) have been identified as active ingredients responsible for its biological activities. Although many pharmacological actions of CSP have received a great deal of attention, research in this area continues. The current study was designed to investigate the effects of CSP on exhaustive exercise-induced oxidative stress. The mice were divided into four groups: control (C), low-dose CSP treated (LC), intermediate-dose CSP treated (IC) and high-dose CSP treated (HC). The treated groups received CSP (100, 200 and 400 mg/kg, ig), while the control group received drinking water for 28 days, followed by being forced to undergo exhaustive swimming exercise, and some biochemical parameters including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured using detection kits according to the manufacturers' instructions. Compared with the C group, exhaustive swimming time was significantly prolonged in the LC, IC and HC groups (p < 0.05); SOD activities in serum, liver and muscle were significantly higher in the IC and HC groups (p < 0.05); GPx activities in serum, liver and muscle were significantly higher in the LC, IC and HC groups (p < 0.05); CAT activities in serum, liver and muscle were significantly higher in the HC groups (p < 0.05); MDA and 8-OHdG levels in serum, liver and muscle were significantly lower in the LC, IC and HC groups (p < 0.05). The results obtained herein indicate that CSP could ameliorate exhaustive exercise-induced oxidative stress.

  4. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats

    PubMed Central

    2012-01-01

    Background Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Methods Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. Results The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. Conclusions This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas. PMID:23190471

  5. Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats.

    PubMed

    Juárez-Rojop, Isela Esther; Díaz-Zagoya, Juan C; Ble-Castillo, Jorge L; Miranda-Osorio, Pedro H; Castell-Rodríguez, Andrés E; Tovilla-Zárate, Carlos A; Rodríguez-Hernández, Arturo; Aguilar-Mariscal, Hidemi; Ramón-Frías, Teresa; Bermúdez-Ocaña, Deysi Y

    2012-11-28

    Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas.

  6. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats

    PubMed Central

    2013-01-01

    Background The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied. Methods Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks. Results Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats. Conclusion Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters. PMID:24364912

  7. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-05

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of low-dose hydrocortisone therapy on immune function in neonatal horses

    PubMed Central

    Hart, Kelsey A.; Barton, Michelle H.; Vandenplas, Michel L.; Hurley, David J.

    2011-01-01

    Low-dose hydrocortisone therapy modulates inflammatory responses in adults and improves outcomes in some septic adults and neonates, but its immunologic effects have not been evaluated in neonates. The objective of this study was to evaluate effects of low-dose hydrocortisone (LDHC) therapy on ex vivo immune function in neonatal horses (foals). We hypothesized that LDHC treatment would dampen pro-inflammatory responses without impairing neutrophil function. Hydrocortisone (1.3 mg/kg/day i.v.) was administered to foals in a tapering 3.5 day course. Peripheral blood leukocytes were collected from foals before, during and after hydrocortisone treatment. A separate group of age-matched untreated foals served as controls. Endotoxin-induced peripheral blood mononuclear cell gene expression of inflammatory cytokines was measured by real time quantitative RT-PCR. Neutrophils were incubated with labeled, killed S. aureus or E. coli for assessment of phagocytosis, and with phorbol myristate acetate, zymosan, or endotoxin for measurement of reactive oxygen species (ROS) production. Neutrophil phagocytosis and ROS production were similar in both groups. Foals receiving hydrocortisone had significantly decreased endotoxin-induced expression of TNF-α, IL-6, IL-8, and IL-1β. These data suggest that this LDHC treatment regimen ameliorates endotoxin-induced pro-inflammatory cytokine expression in neonatal foals without impairing innate immune responses needed to combat bacterial infection. PMID:21430601

  9. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice.

    PubMed

    Kawai, Junya; Andoh, Tsugunobu; Ouchi, Kenji; Inatomi, Satoshi

    2014-01-01

    Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10  μ g/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3-1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  10. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    PubMed Central

    Andoh, Tsugunobu; Ouchi, Kenji; Inatomi, Satoshi

    2014-01-01

    Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10 μg/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection. PMID:24799939

  11. Early vs. late intervention of high fat/low dose streptozotocin treated C57Bl/6J mice with enalapril, α-lipoic acid, menhaden oil or their combination: effect on diabetic neuropathy related endpoints

    PubMed Central

    Yorek, Matthew S.; Obrosov, Alexander; Shevalye, Hanna; Coppey, Lawrence J.; Kardon, Randy H.; Yorek, Mark A.

    2017-01-01

    We have previously demonstrated that enalapril, α-lipoic acid and menhaden (fish) oil has potential as a treatment for diabetic peripheral neuropathy. In this study we sought to determine the efficacy of these treatments individually or in combination on multiple neuropathic endpoints in a high fat fed low dose streptozotocin treated mouse, a model of type 2 diabetes, following early or late intervention. Four or twelve weeks after the onset of hyperglycemia, diabetic mice were treated with enalapril, α-lipoic acid, menhaden oil or their combination for 12 weeks. Afterwards, endpoints including glucose tolerance, motor and sensory nerve conduction velocity, thermal nociception, and intraepidermal and cornea nerve fiber density was determined. Glucose clearance was impaired in diabetic mice and significantly improved only with combination treatment and early intervention. Diabetes caused steatosis, slowing of motor and sensory nerve conduction velocity, thermal hypoalgesia and reduction in intraepidermal and cornea nerve fiber density. Treating diabetic mice with enalapril, α-lipoic acid or menhaden oil partially protected diabetic mice from these deficits, whereas the combination of these three treatments was more efficacious following early or late intervention. These studies suggest that a combination therapy may be more effective for treating neural complications of type 2 diabetes. PMID:28025096

  12. Early vs. late intervention of high fat/low dose streptozotocin treated C57Bl/6J mice with enalapril, α-lipoic acid, menhaden oil or their combination: Effect on diabetic neuropathy related endpoints.

    PubMed

    Yorek, Matthew S; Obrosov, Alexander; Shevalye, Hanna; Coppey, Lawrence J; Kardon, Randy H; Yorek, Mark A

    2017-04-01

    We have previously demonstrated that enalapril, α-lipoic acid and menhaden (fish) oil has potential as a treatment for diabetic peripheral neuropathy. In this study we sought to determine the efficacy of these treatments individually or in combination on multiple neuropathic endpoints in a high fat fed low dose streptozotocin treated mouse, a model of type 2 diabetes, following early or late intervention. Four or twelve weeks after the onset of hyperglycemia, diabetic mice were treated with enalapril, α-lipoic acid, menhaden oil or their combination for 12 weeks. Afterwards, endpoints including glucose tolerance, motor and sensory nerve conduction velocity, thermal nociception, and intraepidermal and cornea nerve fiber density was determined. Glucose clearance was impaired in diabetic mice and significantly improved only with combination treatment and early intervention. Diabetes caused steatosis, slowing of motor and sensory nerve conduction velocity, thermal hypoalgesia and reduction in intraepidermal and cornea nerve fiber density. Treating diabetic mice with enalapril, α-lipoic acid or menhaden oil partially protected diabetic mice from these deficits, whereas the combination of these three treatments was more efficacious following early or late intervention. These studies suggest that a combination therapy may be more effective for treating neural complications of type 2 diabetes. Published by Elsevier Ltd.

  13. Green Tea Potentially Ameliorates Bisphenol A-Induced Oxidative Stress: An In Vitro and In Silico Study

    PubMed Central

    Suthar, Hiral; Verma, R. J.; Patel, Saumya; Jasrai, Y. T.

    2014-01-01

    The present investigation was an attempt to elucidate oxidative stress induced by bisphenol A on erythrocytes and its amelioration by green tea extract. For this, venous blood samples from healthy human adults were collected in EDTA vials and used for preparation of erythrocytes suspension. When erythrocyte suspensions were treated with different concentrations of BPA/H2O2, a dose-dependent increase in hemolysis occurred. Similarly, when erythrocytes suspensions were treated with either different concentrations of H2O2 (0.05–0.25 mM) along with BPA (50 μg/mL) or 0.05 mM H2O2 along with different concentrations of BPA (50–250 μg/mL), dose-dependent significant increase in hemolysis occurred. The effect of BPA and H2O2 was found to be additive. For the confirmation, binding capacity of bisphenol A with erythrocyte proteins (hemoglobin, catalase, and glutathione peroxidase) was inspected using molecular docking tool, which showed presence of various hydrogen bonds of BPA with the proteins. The present data clearly indicates that BPA causes oxidative stress in a similar way as H2O2 . Concurrent addition of different concentrations (10–50 μg/mL) of green tea extract to reaction mixture containing high dose of bisphenol A (250 μg/mL) caused concentration-dependent amelioration in bisphenol A-induced hemolysis. The effect was significant (P < 0.05). It is concluded that BPA-induced oxidative stress could be significantly mitigated by green tea extract. PMID:25180096

  14. Therapeutic effects of adipose-derived stem cells-based microtissues on erectile dysfunction in streptozotocin-induced diabetic rats

    PubMed Central

    Zhou, Feng; Hui, Yu; Xin, Hua; Xu, Yong-De; Lei, Hong-En; Yang, Bi-Cheng; Guan, Rui-Li; Li, Meng; Hou, Jian-Quan; Xin, Zhong-Cheng

    2017-01-01

    This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors. PMID:27345005

  15. Single dose filgastrim in cytotoxic-induced neutropaenia in children.

    PubMed

    Abdallah, F K

    2008-01-01

    To document the impact of fixed dose weight adjusted filgastrim (G-CSF) in cytotoxic-induced neutropaenia. A descriptive cross-sectional study. Paediatric Oncology Unit at Kenyatta National Hospital, Nairobi, Kenya. All paediatric oncology patients who had developed cytotoxic-induced neutropaenia. The following were documented for every tissue proven case of malignancy; age, sex, type of malignancy, treatment regimen and schedule, initial blood count at the time of neutropaenia; subsequent blood counts daily for five days from day one of single dose filgastrim, and the calculated neutrophil incremental count. Initially eight patients with solid tumours previously treated with filgastrim revealed that cytotoxic induced neutropaenia could be ameliorated by a single dose of filgastrim. Subsequently, the study listed thirty patients. This cohort consisted of; 37% rhabdomyosarcoma, 30% Burkitts, 27% acute lymphoblastic leukaemia and 6% Hodgkin's lymphoma. Increased neutrophil count after 48 hours was documented in 26 (87%) patients, with absolute neutrophil counts range of 0.5 to 31.5 x 10(9)/L. This response was significantly influenced by gender (p>0.0001), malignancy type and chemotherapy regimen (p>0.001). The study shows that chemotherapy induced neutropaenia can be alleviated by a single dose of filgastrim without adverse effects on lymphoblastic leukaemia. This study suggests that a single dose of filgastrim should be first tried in cytotoxic induced neutropaenia in the paediatric age group.

  16. Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

    PubMed Central

    Jeon, Se Jin; Kim, Boseong; Ryu, Byeol; Kim, Eunji; Lee, Sunhee; Jang, Dae Sik; Ryu, Jong Hoon

    2017-01-01

    To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems. PMID:27829270

  17. Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats.

    PubMed

    Faddah, Laila M; Abdel Baky, Nayira A; Al-Rasheed, Nouf M; Al-Rasheed, Nawal M; Fatani, Amal J; Atteya, Muhammad

    2012-05-02

    Nanoparticles are small-scale substances (<100 nm) with unique properties. Therefore, nanoparticles pose complex health risk implications. The objective of this study was to detect whether treatment with quercetin (Qur) and/or arginine (Arg) ameliorated nephrotoxicity induced by two different doses of nano zinc oxide (n-ZnO) particles. ZnO nanoparticles were administered orally in two doses (either 600 mg or 1 g/Kg body weight/day for 5 conscutive days) to Wister albino rats. In order to detect the protective effects of the studied antioxidants against n-ZnO induced nepherotoxicity, different biochemical parameters were investigated. Moreover, histopathological examination of kidney tissue was performed. Nano zinc oxide-induced nephrotoxicity was confirmed by the elevation in serum inflammatory markers including: tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); and C-reactive protein (CRP). Moreover, immunoglobulin (IGg), vascular endothelium growth factor (VEGF), and nitric oxide (NO) were significantly increased in rat serum. Serum urea and creatinine levels were also significantly increased in rats intoxicated with n-ZnO particles compared with the control group. Additionally, a significant decrease in the non-enzymatic antioxidant reduced glutathione (GSH) was shown in kidney tissues and serum glucose levels were increased. These biochemical findings were supported by a histopathological examination of kidney tissues, which showed that in the animals that received a high dose of n-ZnO, numerous kidney glomeruli underwent atrophy and fragmentation. Moreover, the renal tubules showed epithelial desquamation, degeneration and necrosis. Some renal tubules showed casts in their lumina. Severe congestion was also observed in renal interstitium. These effects were dose dependent. Cotreatment of rats with Qur and/or Arg along with n-ZnO significantly improved most of the deviated tested parameters. The data show that Qur has a beneficial effect against

  18. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats

    PubMed Central

    Mansour, Sameeh A.; Abbassy, Mostafa A.; Shaldam, Hassan A.

    2017-01-01

    Exposure to mixtures of toxicants (e.g., pesticides) is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET), abamectin (ABM), and their combination (MET+ABM), and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control), and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), Cytochrome P450 (CYP450), testosterone, and thyroxine). Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides. PMID:29207507

  19. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  20. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, Omotayo Owomofoyon; Sulaiman, Siti Amrah; Wahab, Mohd Suhaimi Abdul; Salam, Sirajudeen Kuttulebbai Nainamohammed; Salleh, Md Salzihan Md; Gurtu, Sunil

    2010-05-05

    Hyperglycemia exerts toxic effects on the pancreatic beta-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.

  1. Effect of N-benzoyl-D-phenylalanine, a new potential oral antidiabetic agent, in neonatal streptozotocin-induced diabetes in rats.

    PubMed

    Pari, Leelavinothan; Ashokkumar, Natarajan

    2005-01-01

    The present investigation was undertaken to study the effect of treatment with D-phenylalanine derivative and metformin in neonatal streptozotocin (nSTZ)-induced non-insulin-dependent diabetes mellitus (NIDDM) in rats. To induce NIDDM, a single dose injection of streptozotozin (STZ) (100 mg kg(-1); ip) was given to 2-day-old rats. After 10-12 weeks, rats weighing above 150 g were selected for screening in NIDDM model. They were checked for fasting blood glucose levels to conform the status of NIDDM. D-phenylalanine derivative (50, 100 and 200 mg kg(-1)) was administered per os (po) for 6 weeks to the rats with confirmed diabetes. A group of diabetic rats was also maintained and this group received metformin as comparative drug. Significant decrease in blood glucose with significant increase in plasma insulin was observed in group receiving 100 mg of D-phenylalanine derivative plus 500 mg of metformin.

  2. Ovariectomy ameliorates dextromethorphan - induced memory impairment in young female rats

    PubMed Central

    Jahng, Jeong Won; Cho, Hee Jeong; Kim, Jae Goo; Kim, Nam Youl; Lee, Seoul; Lee, Yil Seob

    2006-01-01

    We have previously found that dextromethorphan (DM), over-the-counter cough suppressant, impairs memory retention in water maze task, when it is repeatedly administrated to adolescent female rats at high doses. In this study we examined first if ovariectomy ameliorates the DM-induced memory impairment in female rats, and then whether or not the DM effect is revived by estrogen replacement in ovariectomized female rats. Female rat pups received bilateral ovariectomy or sham operation on postnatal day (PND) 21, and then intraperitoneal DM (40 mg/kg) daily during PND 28–37. Rats were subjected to the Morris water maze task from PND 38, approximately 24 h after the last DM injection. In probe trial, goal quadrant dwell time was significantly reduced by DM in the sham operated group, however, the reduction by DM did not occur in the ovariectomy group. When 17β-estradiol was supplied to ovariectomized females during DM treatment, the goal quadrant dwell time was significantly decreased, compared to the vehicle control group. Furthermore, a major effect of estrogen replacement was found in the escape latency during the last 3 days of initial learning trials. These results suggest that ovariectomy may ameliorate the adverse effect of DM treatment on memory retention in young female rats, and that estrogen replacement may revive it, i.e. estrogen may take a major role in DM-induced memory impairment in female rats. PMID:16563229

  3. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice.

    PubMed

    Bahremand, Arash; Shafaroodi, Hamed; Ghasemi, Mehdi; Nasrabady, Sara Ebrahimi; Gholizadeh, Shervin; Dehpour, Ahmad Reza

    2008-09-01

    Cannabinoid compounds are anticonvulsant since they have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to G(i/o) proteins. Surprisingly, both the analgesic and anticonvulsant effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist naltrexone and as opioid and cannabinoid systems interact, it has been shown that ultra-low dose naltrexone also enhances cannabinoid-induced antinociception. Thus, concerning the seizure modulating properties of both classes of receptors this study investigated whether the ultra-low dose opioid antagonist naltrexone influences cannabinoid anticonvulsant effects. The clonic seizure threshold was tested in separate groups of male NMRI mice following injection of vehicle, the cannabinoid selective agonist arachidonyl-2-chloroethylamide (ACEA) and ultra-low doses of the opioid receptor antagonist naltrexone and a combination of ACEA and naltrexone doses in a model of clonic seizure induced by pentylenetetrazole (PTZ). Systemic injection of ultra-low doses of naltrexone (1pg/kg to 1ng/kg, i.p.) significantly potentiated the anticonvulsant effect of ACEA (1mg/kg, i.p.). Moreover, the very low dose of naltrexone (500pg/kg) unmasked a strong anticonvulsant effect for very low doses of ACEA (10 and 100microg/kg). A similar potentiation by naltrexone (500pg/kg) of anticonvulsant effects of non-effective dose of ACEA (1mg/kg) was also observed in the generalized tonic-clonic model of seizure. The present data indicate that the interaction between opioid and cannabinoid systems extends to ultra-low dose levels and ultra-low doses of opioid receptor antagonist in conjunction with very low doses of cannabinoids may provide a potent strategy to modulate seizure susceptibility.

  4. Pathological prolongation of action potential duration as a cause of the reduced alpha-adrenoceptor-mediated negative inotropy in streptozotocin-induced diabetic mice myocardium.

    PubMed

    Kanae, Haruna; Hamaguchi, Shogo; Wakasugi, Yumi; Kusakabe, Taichi; Kato, Keisuke; Namekata, Iyuki; Tanaka, Hikaru

    2017-11-01

    Effect of pathological prolongation of action potential duration on the α-adrenoceptor-mediated negative inotropy was studied in streptozotocin-induced diabetic mice myocardium. In streptozotocin-treated mouse ventricular myocardium, which had longer duration of action potential than that in control mice, the negative inotropic response induced by phenylephrine was smaller than that in control mice. 4-Aminopyridine prolonged the action potential duration and decreased the negative inotropy in control mice. Cromakalim shortened the action potential duration and increased the negative inotropy in streptozotocin-treated mice. These results suggest that the reduced α-adrenoceptor-mediated inotropy in the diabetic mouse myocardium is partly due to its prolonged action potential. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Time and dose-response effects of honokiol on UVB-induced skin cancer development.

    PubMed

    Guillermo, Ruth F; Chilampalli, Chandeshwari; Zhang, Xiaoying; Zeman, David; Fahmy, Hesham; Dwivedi, Chandradhar

    2012-06-01

    Honokiol has shown chemopreventive effects in chemically-induced and UVB-induced skin cancer in mice. In this investigation, we assessed the time-effects of a topical low dose of honokiol (30 μg), and then the effects of different honokiol doses (30, 45, and 60 μg) on a UVB-induced skin cancer model to find an optimal dose and time for desirable chemopreventive effects. UVB radiation (30 mJ/cm(2), 5 days/week for 25 or 27 weeks) was used to induce skin carcinogenesis in SKH-1 mice. For the time-response experiment 30 μg honokiol in acetone was applied topically to the animals before the UVB exposure (30 min, 1 h, and 2 h) and after the UVB exposure (immediately, 30 min, and 1 h). Control groups were treated with acetone. For the dose-response study, animals were treated topically with acetone or honokiol (30, 45, and 60 μg) one hour before the UVB exposure. In the time-response experiment, honokiol inhibited skin tumor multiplicity by 49-58% while reducing tumor volumes by 70-89%. In the dose-response study, honokiol (30, 45, and 60 μg) significantly decreased skin tumor multiplicity by 36-78% in a dose-dependent manner, while tumor area was reduced by 76-94%. Honokiol (60 μg) significantly reduced tumor incidence by 40% as compared to control group. Honokiol applied in very low doses (30 μg) either before or after UVB radiation shows chemopreventive effects. Honokiol (30, 45, and 60 μg) prevents UVB-induced skin cancer in a dose-dependent manner. Honokiol can be an effective chemopreventive agent against skin cancer.

  6. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in

  7. Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice.

    PubMed

    Xu, Xiaohui; Liang, Tao; Wen, Qingwei; Lin, Xing; Tang, Jingzhi; Zuo, Qiaoyun; Tao, Liqun; Xuan, Feifei; Huang, Renbin

    2014-01-01

    In Chinese culture, the roots of Averrhoa carambola L. have long been used for medical purposes due to their potent pharmaceutical activities, such as improving digestive function and treating diabetes. Recently, we prepared extracts of Averrhoa carambola L. root (EACR), which were isolated from Averrhoa carambola L. roots using ethanol or water. This study was designed to investigate the potential effects of EACR on streptozotocin (STZ) diabetic mice and to explore the underlying mechanism of these effects. Male mice were injected with STZ through the tail vein (120 mg/kg body weight) and were identified as a diabetic mouse model when the level of blood glucose was ≥11.1 mmol/L. Subsequently, the mice were administered EACR (150, 300, 600, 1200 mg/kg body weight/d) and metformin (320 mg/kg body weight/d) via intragastric gavage for three weeks. The results indicated that EACR significantly decreased the serum levels of blood glucose, total cholesterol (TC), triglycerides (TGs) and free fatty acids (FFAs), whereas the content of serum insulin was elevated. In addition, the expressions of apoptosis-related regulators (including caspase-3, caspase-8 and caspase-9) and the apoptosis-induced protein Bax were markedly down-regulated by EACR, whereas the expression of the anti-apoptotic Bcl-2 protein was notably increased. Furthermore, EACR could protect the diabetic mice against the STZ-induced apoptosis of pancreatic β cells. Taken together, these findings indicate that EACR plays an effective hyperglycemic role that is associated with ameliorating metabolic functions and with inhibiting apoptosis in pancreas tissue. © 2014 S. Karger AG, Basel.

  8. [Structural alterations in pancreatic islets in streptozotocin-induced diabetic rats treated with of bioactive additive on the basis of Gymnema sylvestre].

    PubMed

    Snigur, G L; Samokhina, M P; Pisarev, V B; Spasov, A A; Bulanov, A E

    2008-01-01

    The structural alterations in pancreatic islets in streptozotocin-induced diabetic rats were studied after the administration of Gymnema sylvestre extract or its composition. Diabetes mellitus was modeled by daily injection of streptozotocin (20 mg/kg for 5 days) and single injection of 0.2 ml of complete Freund's adjuvant, Only the animals with the blood glucose level exceeding 15 mmol/l were included in the experiment. B- and A-endocrinocytes were demonstrated using immunocytochemistry. The proportions of the area of the pancreatic islets, occupied by B- and A-endocrinocytes, as well as the volume fraction of the pancreatic islets within the pancreas, were determined. In the model of streptozotocin-induced diabetes, the part of the total islet area occupied by B-endocrinocytes, was diminished in the pancreatic islets located in all the zones of the gland. Prophylactic administration of Gymnema sylvestre extract or its composition tended to restore the area occupied by B-endocrinocytes in the pancreatic islets. These results indicate the equal potency of the composition and extract of Gymnema sylvestre to induce the regeneration of B-endocrinocytes.

  9. Ameliorative effects of curcumin against lead induced toxicity in human peripheral blood lymphocytes culture.

    PubMed

    Nariya, Ankit; Pathan, Ambar; Shah, Naumita; Chettiar, Shiva; Patel, Alpesh; Dattani, Jignasha; Chandel, Divya; Rao, Mandava; Jhala, Devendrasinh

    2018-01-01

    Lead, a heavy metal and multifaceted toxicant, is well studied for its distribution and toxicity in ecosystem, yet there is no consensus on its amelioration by any synthetic or phytochemical compounds. Curcumin, a known antioxidant and dietary element, is a well-known herb, for its therapeutic uses and having a wide spectrum of its beneficial properties against several adverse effects. Hence, the current study was taken into consideration to evaluate the ameliorative effects of curcumin (3.87 μM, i.e. 1.43 μg/ml) against lead acetate (doses: 10 -6 M, i.e. 0.379 μg/ml and 10 -4 M, i.e. 37.9 μg/ml, durations: 24 h and 69 h) induced genotoxicity and oxidative stress in human peripheral blood lymphocyte cultures (PBLC). On one hand, antigenotoxic and antioxidative potentials of curcumin against lead were simultaneously evaluated by the array of genotoxicity and oxidative stress indices. The result postulated that lead acetate showed dose- and duration-dependent increase in both genotoxicity and oxidative stress whereas curcumin, when added along with lead acetate, showed the significant amelioration in all genotoxic and oxidative stress-related indices. The study indicated that, due to alteration in antioxidant defense system, there is an adverse genotoxic effect of lead. On the other hand, curcumin, a potent antidote, can protect chromatin material against lead -mediated genotoxicity by balancing the activity of antioxidant defense system.

  10. Does low-dose rifaximin ameliorate endotoxemia in patients with liver cirrhosis: a prospective study.

    PubMed

    Zeng, Xin; Tang, Xia Jiao; Sheng, Xia; Ni, Wu; Xin, Hai Guang; Chen, Wei Zhong; Jiang, Cai Feng; Lin, Yong; Shi, Jian; Shi, Bin; Chen, Yue Xiang; Yuan, Zong Li; Xie, Wei Fen

    2015-11-01

    To evaluate the efficacy, safety and tolerability of different doses of rifaximin in Chinese patients with liver cirrhosis. This random prospective study included a screening visit, a 2-week treatment period and a subsequent 4-week observation phase. Patients with liver cirrhosis were randomly assigned to a low-dose rifaximin group, a high-dose rifaximin group and the control group in a ratio of 1:1:1. The low-dose and high-dose groups received 400 mg or 600 mg rifaximin per 12 h for 2 weeks, respectively. All other therapeutic strategies remained unchanged in the three groups as long as possible. In total, 60 patients with liver cirrhosis were screened and 43 of them met the eligibility criteria. After 2-week treatment serum endotoxin levels in the low-dose (1.1 ± 0.8 EU/mL) and high-dose rifaximin groups (1.0 ± 0.8 EU/mL) were significantly lower than that in the control group (2.5 ± 1.8 EU/mL), while no significant difference was found between the two rifaximin-treated groups. The effect of high-dose rifaximin on endotoxemia lasted for at least 4 weeks after drug withdrawal. A significant reduction in the abundance of the Veillonellaceae taxa and an increase in the abundance of Bacteroidaceae were shown after 2 weeks of rifaximin therapy. The incidence of adverse events and severe adverse events was similar among the three groups. Low-dose (800 mg/day) rifaximin could be analogous to high-dose (1200 mg/day) rifaximin to reduce the serum endotoxin level after 2 weeks of treatment. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  11. Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats.

    PubMed

    Naderi, R; Mohaddes, G; Mohammadi, M; Alihemmati, A; Badalzadeh, R; Ghaznavi, R; Ghyasi, R; Mohammadi, Sh

    2015-12-01

    Since some complications of diabetes mellitus may be caused or exacerbated by an oxidative stress, the protective effects of garlic (Allium sativum) were investigated in the blood and heart of streptozotocin-induced diabetic rats. Twenty-eight male Wistar rats were randomly divided into four groups: control, garlic, diabetic, and diabetic+garlic. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (50 mg/kg) in male rats. Rats were fed with raw fresh garlic homogenate (250 mg/kg) six days a week by gavage for a period of 6 weeks. At the end of the 6th week blood samples and heart tissues were collected and used for determination of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and histological evaluation. Induction of diabetes increased MDA levels in blood and homogenates of heart. In diabetic rats treated with garlic, MDA levels decreased in blood and heart homogenates. Treatment of diabetic rats with garlic increased SOD, GPX and CAT in blood and heart homogenates. Histopathological finding of the myocardial tissue confirmed a protective role for garlic in diabetic rats. Thus, the present study reveals that garlic may effectively modulate antioxidants status in the blood and heart of streptozotocin induced-diabetic rats.

  12. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    PubMed

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P<0.05), while those of EEG (diabetic mice treated with VBTL ethanolic extract) were reduced slightly (P>0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Renoprotective effect of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats.

    PubMed

    Kaur, Rupinder; Sodhi, Rupinder Kaur; Aggarwal, Neha; Kaur, Jaspreet; Jain, Upendra K

    2016-01-01

    Proton pump inhibitors (PPIs) have exhibited glucose lowering action in animal models of diabetes; however, their potential in diabetes-related complications has not yet been evaluated. Hence, the present study has been undertaken to investigate the renoprotective potential of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats. Diabetic nephropathy was induced with a single injection of streptozotocin (STZ, 45 mg/kg, i.p.). Lansoprazole (40 mg/kg; 80 mg/kg, p.o.; 4 weeks) was administered to diabetic rats after 4 weeks of STZ treatment. A battery of biochemical tests such as serum glucose, glycated hemoglobin, blood urea nitrogen (BUN), serum creatinine, albumin, and kidney weight/body weight (%) ratio were performed to evaluate the renal functions. Oxidative stress was determined by estimating renal thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels. Lipid profile was assessed by determining serum cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL). The STZ-treated rats demonstrated deleterious alterations in kidney functions, enhanced oxidative stress, and disturbed lipid profile. Administration of lansoprazole to diabetic rats significantly reduced serum glucose, glycated hemoglobin, BUN, creatinine, albumin levels, and oxidative stress. Serum lipids like TC and TG were decreased, and HDL was enhanced in lansoprazole-treated STZ rats. The findings of our study indicate that renoprotective effects of lansoprazole may be attributed to its glucose-lowering, lipid-lowering, and antioxidative potential.

  14. Anti-diabetic activity of methanolic extract of Alpinia galanga Linn. aerial parts in streptozotocin induced diabetic rats

    PubMed Central

    Verma, Ramesh Kumar; Mishra, Garima; Singh, Pradeep; Jha, Keshri K.; Khosa, Ratan L.

    2015-01-01

    Introduction: Alpinia galanga Linn. belongs to the family Zingiberaceae has been used as a traditional medicine in China for relieving stomach ache, treating cold, invigorating the circulatory systems, diabetes, and reducing swelling. Aim: To evaluate the antidiabetic activity of methanolic extract of A. galanga aerial parts on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced by single intraperitoneal injection of STZ at a dose of 60 mg/kg bodyweight. Test drug methanolic extract of A. galanga (200 and 400 mg/kg b.w.) and glibenclamide (10 mg/kg b.w.) as standard drug was administered orally for 21 consecutive days in STZ-induced diabetic rats. Fasting blood glucose level, serum lipid profiles, as well as initial and final changes in body weight were assessed along with histopathology. All the parameters were statistically analyzed by using one-way ANOVA followed by Bonferroni t-test. Results: Experimental findings showed significant dose dependent antidiabetic potential of methanolic extract in terms of reduction of fasting blood glucose level and various biochemical parameters in diabetic rats when compared with that of the diabetic control group, which might be due to the stimulatory effect of methanolic extracts on the regenerating β-cells and also on the surviving β-cells. Conclusion: Methanolic extract of aerial parts of A. galanga was effective in controlling blood glucose level and improve lipid profile in euglycemic as well as diabetic rats. PMID:26730146

  15. Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats.

    PubMed

    Valcheva-Kuzmanova, Stefka; Kuzmanov, Atanas; Kuzmanova, Vasilena; Tzaneva, Maria

    2018-03-01

    Trinitrobenzensulfonic acid (TNBS) is commonly used to induce an experimental inflammatory bowel disease (IBD) model. Oxidative stress and inflammation have been proposed as mechanisms underlying the pathophysiology of IBD. Aronia melanocarpa fruit juice (AMFJ) is extremely rich in polyphenolic substances, mainly proanthocyanidins, flavonoids and phenolic acids. The aim of this study was to evaluate the effect of AMFJ in a rat TNBSinduced colitis model and to compare the effect of the juice with that of sulfasalazine. Colitis was induced by TNBS in male Wistar rats. After the induction of colitis, AMFJ at three doses (2.5, 5 and 10 mL/kg) and sulfasalazine (400 mg/kg) were administered orally till the 14th experimental day. Severity of colitis was assessed by macroscopic and histopathological criteria. Oxidative stress was evaluated by the concentration of thiobarbituric acid reactive substances (TBARS). TNBS caused severe colonic damage. AMFJ dose-dependently ameliorated TNBS-induced colitis. It improved the macroscopic and microscopic signs of colitis, and prevented the increase of colonic TBARS concentrations. Regarding different indices, the effect of AMFJ was comparable or even higher than that of sulfasalazine. In conclusion, the ameliorative effects of AMFJ in the experimental TNBSinduced colitis might be the result of its potent antioxidant and antiinflammatory properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Improvement of hyperphagia by activation of cerebral I(1)-imidazoline receptors in streptozotocin-induced diabetic mice.

    PubMed

    Chung, H H; Yang, T T; Chen, M F; Chou, M T; Cheng, J T

    2012-09-01

    Imidazoline I1-receptors (I1R) are known to regulate blood pressure and rilmenidine, an agonist, is widely used as antihypertensive agent in clinic. However, the role of I1R in feeding behavior is still unclear. In the present study, we used the agonist of I1R to investigate the effect on hyperphagia in streptozotocin (STZ)-induced diabetic mice. Rilmenidine decreased the food intake of STZ-diabetic mice in a dose-dependent manner. The reduction of food intake was abolished by pretreatment with efaroxan at the dose sufficient to block I1R. Intracerebroventricular (icv) administration of rilmenidine into STZ-diabetic mice also significantly reduced hyperphagia, which was reversed by icv administration of efaroxan. In addition, similar results were observed in STZ-diabetic mice, which received chronic treatment with rilmenidine 3 times daily (t.i.d.) for 7 days. Moreover, the hypothalamic neuropeptide Y (NPY) level was reduced by rilmenidine that was also reversed by pretreatment with efaroxan. In conclusion, the obtained results suggest that rilmenidine can decrease food intake in STZ-diabetic mice through an activation of I1R to lower hypothalamic NPY level. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma

    PubMed Central

    Weisel, Katja C.; Dimopoulos, Meletios A.; Moreau, Philippe; Lacy, Martha Q.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Miguel, Jesus San

    2016-01-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 − < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 − < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  18. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission

    PubMed Central

    Tan, Tao; Wang, Wei; Xu, Haitao; Huang, Zhilin; Wang, Yu Tian; Dong, Zhifang

    2018-01-01

    Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1–9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD. PMID:29541022

  19. The use of a low dose hydrocortisone to prevent pulmonary embolism in patients with multiple trauma.

    PubMed

    Chaari, Anis; Ghadhoune, Hatem; Chakroune, Olfa; Abid, Hanen; Turki, Olfa; Bahloul, Mabrouk; Bouaziz, Mounir

    2013-08-01

    Venous thromboembolism events are common in trauma patients. Immediate acute inflammation following injury triggers coagulation cascade and may increase the risk of pulmonary embolism (PE) in this population. We aimed to evaluate whether early low-dose steroids prevent symptomatic PE onset in multiple trauma patients. The medical surgical intensive care unit of Habib Bourguiba University Hospital (Sfax--Tunisia). Comparative study of two cohorts: a retrospective cohort of patients who didn't receive early low-dose steroids (steroid (-) group) and a prospective cohort of patients who received hydrocortisone with a dose of 100 mg/8 h for a scheduled period of 7 days (steroid (+) group). All adult patients admitted in our intensive care unit (ICU) for multiple trauma with predicted duration of mechanical ventilation over 48 h were included. Evaluation of the impact of low-dose steroids on the incidence of symptomatic PE. We included 175 patients: 92 in the steroids (-) group and 83 in the steroids (+) group. PE was diagnosed in 15 patients (8.5 %). The incidence of PE was significantly lower in steroid (+) group (3.6 vs 13 %; p = 0.013). In multivariate analysis, independent factors predicting PE onset were meningeal hemorrhage [OR = 14.7; 95 % CI (2.2-96.3); p = 0.013] and pelvic ring trauma [OR = 8; 95 % CI (1.8-36.4); p = 0.007] whereas low-dose steroids were significantly associated with a protective effect [OR = 0.2; 95 % CI (0.05-0.77); p = 0.019]. There was no significant difference between steroids (+) and steroids (-) groups neither in terms of mean ICU length of stay (LOS) (respectively 11 ± 9.7 and 12.3 ± 10.7 days; p = 0.372) nor in terms of ICU mortality (respectively 29.3 and 24.1 %; p = 0.434). Steroids are effective in reducing the incidence of PE in multiple trauma patients. However, no significant benefice was found on ICU mortality.

  20. The prophylactic effect of Viscum album in streptozotocin-induced diabetic rats

    PubMed Central

    Turkkan, Asuman; Savas, Hasan Basri; Yavuz, Berire; Yigit, Ayse; Uz, Efkan; Bayram, Nezire Asli; Kale, Banu

    2016-01-01

    OBJECTIVE: Viscum album (VA) is a species of mistletoe in the family Santalaceae that is thought to have therapeutic properties for several diseases, including diabetes. In the present study, conventional experimental rat model was used with diabetes induced with streptozotocin (STZ) to evaluate effect of VA on lipid peroxidation and antioxidant system. METHODS: Total of 32 adult, male Sprague-Dawley rats were divided into 4 groups of 8 rats: Control group, STZ group, VA group, and group administered VA+STZ. VA extract was 100 mg/kg preparation delivered once a day by oral gavage for 10 days. Single dose of 55 mg/kg STZ citrate buffer (0.1 M, pH 4.5) was administered intraperitoneally to induce diabetes. Fasting blood glucose level was measured and recorded. Animals were sacrificed, and catalase (CAT), malondialdehyde (MDA), and protein present in liver and kidney tissue samples were measured. Activity of CAT, an antioxidant enzyme, was studied according to the Aebi method. MDA, a product of lipid peroxidation, was analyzed using Draper and Hadley spectrophotometric procedure. Protein level was determined using supernatant and extract of tissue homogenates according to Lowry method. Data were assessed using one-way analysis of variance and pairwise comparisons between groups. Post-hoc analysis included Dunnet test, Duncan test, and least significant difference test. P<0.05 was considered significant probability value. RESULTS: Oxidative stress is associated with diabetic complications. VA administered to diabetic rats reduced oxidative stress and improved their general condition. CONCLUSION: Further studies are needed to enhance understanding of potential antidiabetic and antioxidant effects of VA. PMID:28058393

  1. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  2. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    PubMed Central

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  3. Peripheral nerve metabolism and zinc levels in streptozotocin induced diabetic rats. Effect of diets high in fish and corn oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J.P.; Fenton, M.R.

    1991-03-15

    This study was designed to assess the effects of diets high in fish and corn oil on peripheral nerve metabolism in streptozotocin (STZ) induced diabetic rats. A type I diabetic state was induced in female Sprague-Dawley rats by injection of STZ. Animals were divided into three dietary groups; normal rat chow, high corn oil diet and high fish oil diet. After 4 weeks animals were analyzed for nerve conduction velocity, bled and then sacrificed. Sciatic nerves were removed, processed and several biochemical parameters determined. Plasma zinc levels were elevated in the STZ normal chow group compared to non-diabetic controls. Bothmore » corn oil and fish oil diets tended to eliminate the rise in plasma zinc. Differences in subcellular distribution of zinc in sciatic nerves were also observed. Normal chow STZ animals displayed a 20% decrease in nerve conduction velocity compared to control. Dietary supplementation with either fish or corn oil seemed to ameliorate these effects. Biochemical analysis of Na{sup +}-K{sup +}-ATPase and protein kinase C revealed a decrease in activity in normal chow animals compared to control groups. Again, dietary intervention with either fish or corn oil seemed to return these activities back to normal. The results suggest a link between zinc metabolism and peripheral nerve metabolism which can be modified by dietary intervention.« less

  4. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    PubMed

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  5. Protein expression profile changes in human fibroblasts induced by low dose energetic protons

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Clement, Jade Q.; Gridley, Daila S.; Rodhe, Larry H.; Wu, Honglu

    2009-12-01

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups.

  6. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    PubMed

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  7. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats

    PubMed Central

    Barik, Rakesh; Jain, Sanjay; Qwatra, Deep; Joshi, Amit; Tripathi, Girraj Sharan; Goyal, Ravi

    2008-01-01

    Objective: To evaluate the antidiabetic activity of aqueous extract of roots of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Materials and Methods: Streptozotocin-nicotinamide induced type-II diabetic rats (n = 6) were administered aqueous root extract (250 and 500 mg/kg, p.o.) of Ichnocarpus frutescens or vehicle (gum acacia solution) or standard drug glibenclamide (0.25 mg/kg) for 15 days. Blood samples were collected by retro-orbital puncture and were analyzed for serum glucose on days 0, 5, 10, and 15 by using glucose oxidase-peroxidase reactive strips and a glucometer. For oral glucose tolerance test, glucose (2 g/kg, p.o.) was administered to nondiabetic control rats and the rats treated with glibenclamide (10 mg/kg, p.o.) and aqueous root extract of Ichnocarpus frutescens. The serum glucose levels were analyzed at 0, 30, 60, and 120 min after drug administration. The effect of the extract on the body weight of the diabetic rats was also observed. Results: The aqueous root extract of Ichnocarpus frutescens (250 and 500 mg/kg, p.o.) induced significant reduction (P < 0.05) of fasting blood glucose levels in streptozotocin-nicotinamide induced type-II diabetic rats on the 10th and 15th days. In the oral glucose tolerance test, the extract increased the glucose tolerance. It also brought about an increase in the body weight of diabetic rats. Conclusion: It is concluded that Ichnocarpus frutescens has significant antidiabetic activity as it lowers the fasting blood sugar level in diabetic rats and increases the glucose tolerance. PMID:21264156

  8. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats.

    PubMed

    Barik, Rakesh; Jain, Sanjay; Qwatra, Deep; Joshi, Amit; Tripathi, Girraj Sharan; Goyal, Ravi

    2008-01-01

    To evaluate the antidiabetic activity of aqueous extract of roots of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Streptozotocin-nicotinamide induced type-II diabetic rats (n = 6) were administered aqueous root extract (250 and 500 mg/kg, p.o.) of Ichnocarpus frutescens or vehicle (gum acacia solution) or standard drug glibenclamide (0.25 mg/kg) for 15 days. Blood samples were collected by retro-orbital puncture and were analyzed for serum glucose on days 0, 5, 10, and 15 by using glucose oxidase-peroxidase reactive strips and a glucometer. For oral glucose tolerance test, glucose (2 g/kg, p.o.) was administered to nondiabetic control rats and the rats treated with glibenclamide (10 mg/kg, p.o.) and aqueous root extract of Ichnocarpus frutescens. The serum glucose levels were analyzed at 0, 30, 60, and 120 min after drug administration. The effect of the extract on the body weight of the diabetic rats was also observed. The aqueous root extract of Ichnocarpus frutescens (250 and 500 mg/kg, p.o.) induced significant reduction (P < 0.05) of fasting blood glucose levels in streptozotocin-nicotinamide induced type-II diabetic rats on the 10(th) and 15(th) days. In the oral glucose tolerance test, the extract increased the glucose tolerance. It also brought about an increase in the body weight of diabetic rats. It is concluded that Ichnocarpus frutescens has significant antidiabetic activity as it lowers the fasting blood sugar level in diabetic rats and increases the glucose tolerance.

  9. Chronic Swimming Exercise Ameliorates Low-Soybean-Oil Diet-Induced Spatial Memory Impairment by Enhancing BDNF-Mediated Synaptic Potentiation in Developing Spontaneously Hypertensive Rats.

    PubMed

    Cheng, Mei; Cong, Jiyan; Wu, Yulong; Xie, Jiacun; Wang, Siyuan; Zhao, Yue; Zang, Xiaoying

    2018-05-01

    Exercise and low-fat diets are common lifestyle modifications used for the treatment of hypertension besides drug therapy. However, unrestrained low-fat diets may result in deficiencies of low-unsaturated fatty acids and carry contingent risks of delaying neurodevelopment. While aerobic exercise shows positive neuroprotective effects, it is still unclear whether exercise could alleviate the impairment of neurodevelopment that may be induced by certain low-fat diets. In this research, developing spontaneously hypertensive rats (SHR) were treated with chronic swimming exercise and/or a low-soybean-oil diet for 6 weeks. We found that performance in the Morris water maze was reduced and long-term potentiation in the hippocampus was suppressed by the diet, while a combination treatment of exercise and diet alleviated the impairment induced by the specific low-fat diet. Moreover, the combination treatment effectively increased the expression of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartic acid receptor (NMDAR), which were both down-regulated by the low-soybean-oil diet in the hippocampus of developing SHR. These findings suggest that chronic swimming exercise can ameliorate the low-soybean-oil diet-induced learning and memory impairment in developing SHR through the up-regulation of BDNF and NMDAR expression.

  10. Long-term treatment with low dose naltrexone maintains stable health in patients with multiple sclerosis.

    PubMed

    Ludwig, Michael D; Turel, Anthony P; Zagon, Ian S; McLaughlin, Patricia J

    2016-01-01

    A retrospective study was conducted on patients at Penn State Hershey Medical Center diagnosed with relapsing-remitting multiple sclerosis between 2006 and 2015. Laboratory and clinical data collected over this 10-year period were reviewed. Two cohorts of patients were established based on their relapsing-remitting multiple sclerosis therapy at the time of their first visit to Penn State. One group of patients ( n  = 23) was initially prescribed low dose naltrexone at the time first seen at Hershey. This group was offered low dose naltrexone because of symptoms of fatigue or refusal to take an available disease-modifying therapy. The second group of patients ( n  = 31) was treated with the glatiramer acetate (Copaxone) and offered low dose naltrexone as an adjunct therapy to their disease-modifying therapy. Patient data from visits after 1-50 months post-diagnosis were evaluated in a retrospective manner. Data obtained from patient charts included clinical laboratory values from standard blood tests, timed 25-foot walking trials, and changes in magnetic resonance imaging reports. Statistical analyses between the groups and for each patient over time indicated no significant differences in clinical laboratory values, timed walking, or changes in magnetic resonance imaging. These data suggest that the apparently non-toxic, inexpensive, biotherapeutic is safe and if taken alone did not result in an exacerbation of disease symptoms.

  11. Jiangtang Xiaozhi Recipe () prevents diabetic retinopathy in streptozotocin-induced diabetic rats.

    PubMed

    Li, Lin; Li, Yan-Lin; Zhou, Yun-Feng; Ge, Zheng-Yan; Wang, Li-Li; Li, Zhi-Qiang; Guo, Yu-Jie; Jin, Long; Ren, Ye; Liu, Jian-Xun; Xu, Yang

    2017-06-01

    To evaluate the prevention effect of diabetic retinopathy of Jiangtang Xiaozhi Recipe (, JXR) in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were randomly divided into normal control group and diabetic group. Rats in the diabetic group were induced by intraperitoneal administration of STZ (50 mg/kg), and subdivided into 5 groups. Rats in the diabetic control group were given saline; four treatment groups were given metformin (300 mg/kg), JXR (2, 4 and 8 g/kg) respectively for 8 weeks, while rats in the normal control group were injected with citrate buffer and given the same volume of vehicle. Body weight and food intake were measured every week. The hypoglycaemic effects were determined by testing fasting blood glucose (FBG) every other week, and hemoglobin A1c (HbA1c), insulin, and glucagon at the end of the treatment. The preventive effects of JXR on STZ-induced diabetic rats were determined by histopathological examination with hematoxylin and eosin staining, and periodic acid-schiff staining. The effects were further evaluated by serum superoxide dismutase (SOD) activity and malondialdehyde (MDA). High-dose JXR significantly reduced FBG and HbA1c level at the 8th week of administration (P<0.01, P<0.05). JXR significantly increased insulin level (P<0.05), and decreased glucagon level (P<0.05). JXR showed the antioxidant defense with increased SOD activity and decreased MDA contents in diabetic rats. Histopathological studies revealed that there were no basement membrane thickening and mild destruction in the treated groups. Morphometric measurements of retina microvascular showed that acellular capillary and capillary density decreased in treated rats while pericyte and endothelial cell increasing after the treatment. JXR have protective effect of diabetic retinopathy and its mechanism may be associated with the obvious hypoglycemic and antioxidant effect.

  12. The evaluation of long-term effects of cinnamon bark and olive leaf on toxicity induced by streptozotocin administration to rats.

    PubMed

    Onderoglu, S; Sozer, S; Erbil, K M; Ortac, R; Lermioglu, F

    1999-11-01

    The effects of cinnamon bark and olive leaf have been investigated on streptozotocin-induced tissue injury, and some biochemical and haematological changes in rats. The effects on glycaemia were also evaluated. Long-term administration of olive leaf caused significant improvement in tissue injury induced by streptozotocin treatment; the effect of cinnamon bark was less extent. No effects on blood glucose levels were detected. However, significant decreases in some increased biochemical and haematological parameters of streptozotocin-treated rats were observed. Aspartate aminotransferase, urea and cholesterol levels were significantly decreased by treatment with both plant materials, and alanine aminotransferase by treatment with olive leaf. Cinnamon bark also caused a significant decrease in platelet counts. In addition, any visible toxicity, except decrease in body weight gain, attributable to the long-term use of plant materials was not established in normal rats. The data indicate that long-term use of olive leaf and cinnamon bark may provide benefit against diabetic conditions. Determination of underlying mechanism(s) of beneficial effects, toxicity to other systems and clinical assessments of related plant materials are major topics requiring further studies.

  13. Effect of Daisaikoto on Expressions of SIRT1 and NF-kappaB of Diabetic Fatty Liver Rats Induced by High-Fat Diet and Streptozotocin

    PubMed Central

    Qian, Weibin; Cai, Xinrui; Zhang, Xinying; Wang, Yingying; Qian, Qiuhai; Hasegawa, Junichi

    2016-01-01

    Background Daisaikoto (DSKT), a classical traditional Chinese herbal formula, has been used for treating digestive diseases for 1800 years in China. Therefore, in this study, we are going to investigate the effect of DSKT on diabetic fatty liver rats induced by a high-fat diet and streptozotocin (STZ), and the effects of DSKT on silent mating type information regulation 2 homolog 1 (SIRT1) and nuclear factor kappa B (NF-kappaB). Methods Diabetic fatty liver rat model was selected to establish a high-fat diet and STZ. Sixty Wistar rats were divided into six groups (n = 10): control group, high-fat diet + STZ group, simvastatin treatment group, DSKT low dose, medial dose and high dose treatment groups. After 8 weeks of drug intervention, body and liver weights, blood chemistry, blood glucose and insulin were examined. The expressions of sirtuin 1 and NF-kappaB in the liver were observed by RT-PCR and immunohistochemistry, respectively. Results A high-fat diet increased body, liver weights, and serum cholesterol concentrations. Intraperitoneal injection of STZ increased blood glucose and decreased body weights. DSKT improved them. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) indices were increased in the high-fat diet groups. DSKT improved them too. In histological examinations of the liver, we observed a significant improvement after treatment. Immunostaining expression of NF-kappaB in the liver was improved by DSKT and simvastatin. The mRNA expressions of SIRT1 in the liver were increased by DSKT and simvastatin. Conclusion We have demonstrated that DSKT is capable of reversing dyslipidemia and insulin resistance induced by a high-fat diet and STZ. High dose DSKT reveals a stronger effect than simvastatin on the expressions of SIRT1 and NF-kappaB. Furthermore, DSKT has shown a strong dose-depended protective effect on diabetic fatty liver. PMID:27493486

  14. Attenuation of Multiple Organ Damage by Continuous Low-Dose Solvent-Free Infusions of Resveratrol after Severe Hemorrhagic Shock in Rats

    PubMed Central

    Kirsch, Michael; Petrat, Frank

    2017-01-01

    Therapeutic effects of continuous intravenous infusions of solvent-free low doses of resveratrol on organ injury and systemic consequences resulting from severe hemorrhagic shock in rats were studied. Hemorrhagic shock was induced by withdrawing arterial blood until a mean arterial blood pressure (MAP) of 25–30 mmHg was reached. Following a shock phase of 60 min, rats were resuscitated with the withdrawn blood plus lactated Ringer’s. Resveratrol (20 or 60 μg/kg × h) was continuously infused intravenously starting with the resuscitation phase (30 min) and continued until the end of the experiment (total treatment time 180 min). Animals of the shock control group received 0.9% NaCl solution. After the observation phase (150 min), rats were sacrificed. Resveratrol significantly stabilized the MAP and peripheral oxygen saturation after hemorrhagic shock, decreased the macroscopic injury of the small intestine, significantly attenuated the shock-induced increase in tissue myeloperoxidase activity in the small intestine, liver, kidney and lung, and diminished tissue hemorrhages (particularly in the small intestine and liver) as well as the rate of hemolysis. Already very low doses of resveratrol, continuously infused during resuscitation after severe hemorrhagic shock, can significantly improve impaired systemic parameters and attenuate multiple organ damage in rats. PMID:28817064

  15. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114).

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-11-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH.

  16. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114)

    PubMed Central

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH. PMID:29203958

  17. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats.

    PubMed

    Petchi, Ramesh R; Parasuraman, S; Vijaya, C

    2013-09-01

    To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats.

  18. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats

    PubMed Central

    Petchi, Ramesh R.; Parasuraman, S.; Vijaya, C.

    2013-01-01

    Objective: To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. Materials and Methods: The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. Results: The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. Conclusion: The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats. PMID:24808679

  19. Effect of natural honey from Ilam and metformin for improving glycemic control in streptozotocin-induced diabetic rats

    PubMed Central

    Nasrolahi, Ozra; Heidari, Reza; Rahmani, Fatima; Farokhi, Farah

    2012-01-01

    Objective(s): Diabetes mellitus is a public health problem and one of the five leading causes of death globally. In the present study, the effect of Metformin with natural honey was investigated on glycemia in the Streptozotocin-induced diabetic rats. Materials and Methods: Thirty Wistar male rats were randomly divided into six groups including C: non diabetic rats received distilled water, CH: non diabetic rats received honey, CD: diabetic rats administered with distilled water, DM: Metformin treated diabetic rats, DH: honey treated diabetic rats, and DMH: diabetic rats treated with a combination of Metformin and natural honey. Diabetes was induced by a single dose of Streptozotocin (65 mg/kg; i.p.). The animals were treated by oral gavage once daily for four weeks. At the end of the treatment period, the animals were sacrificed and their blood samples collected. Amount of glucose, triglyceride (TG), total cholesterol (TC), HDL cholesterol, LDL cholesterol, VLDL cholesterol, total bilirubin, and albumin were determined in serum. Results: Group CD: showed hyperglycemia (252.2±4.1 mg/dl), while level of blood glucose was significantly (p<0.01) reduced in groups DH (124.2±2.7 mg/dl), DM (108.0±3.4 mg/dl), and DMH (115.4±2.1 mg/dl). Honey in combination with Metformin significantly (p<0.01) reduced level of bilirubin but Metformin alone did not reduce bilirubin. Honey alone and in combination with Metformin also significantly reduced triglycerides, total cholesterol, LDL, VLDL and increased HDL, but Metformin did not reduced triglycerides and increased HDL. Conclusion: The results of the present study demonstrated that consuming natural honey with Metformin improves glycemic control and is more useful than consuming Metformin alone. The higher therapeutic effect of Ilam honey on lipid abnormalities than Tualang honey was also evident. PMID:25050251

  20. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  1. Molecular and cellular mechanisms responsible for cellular stress and low-grade inflammation induced by a super-low dose of endotoxin.

    PubMed

    Baker, Bianca; Maitra, Urmila; Geng, Shuo; Li, Liwu

    2014-06-06

    Super-low-dose endotoxemia in experimental animals and humans is linked to low-grade chronic inflammatory diseases. However, the underlying molecular and cellular mechanisms are not well understood. In this study, we examined the effects of a super-low dose of LPS on low-grade inflammation in macrophages as well as underlying mechanisms. We observed that a super-low dose of LPS induces mitochondrial fission and cell necroptosis in primary murine macrophages, dependent upon interleukin 1 receptor-associated kinase (IRAK-1). Mechanistically, our study reveals that a super-low dose of LPS causes protein ubiquitination and degradation of mitofusin 1 (Mfn1), a molecule required for maintaining proper mitochondrial fusion. A super-low dose of LPS also leads to dephosphorylation and activation of Drp1, a molecule responsible for mitochondrial fission and cell necroptosis. Furthermore, we demonstrated that a super-low dose of LPS activates receptor interacting protein 3 kinase (RIP3), a key molecule critical for the assembly of the necrosome complex, the initiation of Drp1 dephosphorylation, and necroptosis. The effects of a super-low dose of LPS are abolished in macrophages harvested from IRAK-1-deficient mice. Taken together, our study identified a novel molecular pathway that leads to cellular stress and necroptosis in macrophages challenged with a super-low dose of endotoxin. This may reconcile low-grade inflammation often associated with low-grade endotoxemia. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK.

    PubMed

    Lee, Wei-Hwa; Wu, Hsueh-Hsia; Huang, Wei-Jan; Li, Yi-Ning; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2015-03-11

    Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor

  3. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats.

    PubMed

    Daisy, P; Balasubramanian, K; Rajalakshmi, M; Eliza, J; Selvaraj, J

    2010-01-01

    Diabetes mellitus is the most common and serious metabolic disorder among people all over the world. Many plants have successfully been used to overcome this problem. Cassia fistula, an ethnomedicnal plant, is widely used in Indian medicine to treat diabetes. Methanol extract of stem of plant, reduced the blood glucose levels in Streptozotocin-induced diabetic rats. Bioassay guided fractionation was followed to isolate Catechin from methanol extract. Catechin was administered to Streptozotocin (60mg/kg b.w.)-induced diabetic male Wistar rats at different doses (5, 10, 20mg/kg b.w.) for 6 weeks to assess its effect on fasting plasma glucose. The plasma glucose was significantly (p<0.05) reduced when compared to the control. Oral administration of Catechin (20mg/kg b.w.) markedly increased tissue glycogen, and (14)C-glucose oxidation without any change in plasma insulin and C-peptide. Catechin restored the altered Glucokinase, glucose-6 Phosphatase, Glycogen Synthase and Glycogen Phosphorylase levels to near normal. GLUT4 mRNA and protein expression were enhanced after Catechin treatment. The results of this experimental study indicated that Catechin possesses hypo-glycemic, Glucose oxidizing and insulin mimetic activities and hence it could be used as a drug for treating diabetes.

  4. Antidiabetic effects of Artemisia sphaerocephala Krasch. gum, a novel food additive in China, on streptozotocin-induced type 2 diabetic rats.

    PubMed

    Xing, Xiao-Hui; Zhang, Zheng-Mao; Hu, Xin-Zhong; Wu, Rui-Qin; Xu, Chao

    2009-09-25

    Since ancient times, practicians of traditional Chinese medicine have discovered that Artemisia sphaerocephala Krasch. (Asteraceae) seed powder was useful for the treatment of diabetes. Artemisia sphaerocephala Krasch. gum (ASK gum), which is extracted from seed powder of the plant, is a novel food additive favored by the food industry in China. The objective of this study was to determine the antidiabetic function of ASK gum on type 2 diabetes. Type 2 diabetic rat model was induced with high fat diet and low dose of streptozotocin (STZ). The effects of ASK gum on hyperglycemia, hyperlipemia, insulin resistance, and liver fat accumulation in type 2 diabetic rats were evaluated. The results were compared to those of normal rats and diabetic rats treated with metformin. The addition of ASK gum to the rats' food supply significantly lowered fasting blood glucose, glycated serum protein, serum cholesterol, and serum triglyceride in type 2 diabetic rats, and significantly elevated liver glucokinase, liver glycogen, and serum high density protein cholesterol in the diabetic rats. ASK gum significantly reduced insulin resistance and liver fat accumulation of type 2 diabetes. Artemisia sphaerocephala Krasch. gum can alleviate hyperglycemia, hyperlipemia and insulin resistance of type 2 diabetes.

  5. Hepatoprotective Effect of Low Doses of Caffeine on CCl4-Induced Liver Damage in Rats.

    PubMed

    Cachón, Andrés Uc; Quintal-Novelo, Carlos; Medina-Escobedo, Gilberto; Castro-Aguilar, Gaspar; Moo-Puc, Rosa E

    2017-03-04

    Several studies have shown the hepatoprotective effect of the consumption of coffee and tea, which is mainly attributed to caffeine. Many experimental studies have demonstrated this effect; however, these studies used high caffeine doses that are not related to human consumption. The aim of this study was to evaluate the hepatoprotective effect of low doses of caffeine on carbon tetrachloride (CCl 4 )-treated rats. Low doses of caffeine (CAFF) 5 and 10 mg/kg (CAFF5 and CAFF10) were evaluated in chronic liver damage induced by CCl 4 (0.75 mL/kg) in rats. CAFF treatment was administered once a day and CCl 4 administration was twice weekly for 10 weeks. Liver function tests (biochemical markers) and functional (sleeping time) and histological (hematoxylin-eosin and Masson trichrome stains) parameters were carried out at the end of damage treatment. Daily treatments of CAFF5 and CAFF10 exhibited a hepatoprotective effect supported by a decrease of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (AP) serum activities and bilirubin serum levels compared with control and also restored serum albumin levels and liver glutathione (GSH). Moreover, CAFF prevented CCl 4 -induced prolongation in pentobarbital sleeping time and a decrease of liver fibrosis and cell death. Our results demonstrated that low doses of CAFF exert a hepatoprotective effect against CCl 4 -induced liver damage in rats.

  6. An evaluation of aversive memory and hippocampal oxidative status in streptozotocin-induced diabetic rats treated with resveratrol.

    PubMed

    Bagatini, Pamela Brambilla; Xavier, Léder Leal; Bertoldi, Karine; Moysés, Felipe; Lovatel, Gisele; Neves, Laura Tartari; Barbosa, Sílvia; Saur, Lisiani; de Senna, Priscylla Nunes; Souto, André Arigony; Siqueira, Ionara Rodrigues; Achaval, Matilde

    2017-01-01

    The present study evaluated the effects of streptozotocin (STZ)-induced diabetes on aversive memory, free radical content and enzymatic antioxidant activity in the hippocampus of adult Wistar rats submitted to oral treatment with resveratrol. Animals were divided into eight groups: non-diabetic rats treated with saline (ND SAL), non-diabetic rats treated with resveratrol at a dose 5mg/kg (ND RSV 5), non-diabetic rats treated with resveratrol at a dose 10mg/kg (ND RSV 10), non-diabetic rats treated with resveratrol at a dose 20mg/kg (ND RSV 20), diabetic rats treated with saline (D SAL), diabetic rats treated with resveratrol at a dose 5mg/kg (D RSV 5), diabetic rats treated with resveratrol at a dose 10mg/kg (D RSV 10) and diabetic rats treated with resveratrol at a dose 20mg/kg (D RSV 20). The animals received oral gavage for 35days. The contextual fear conditioning task was performed to evaluate aversive-based learning and memory. The oxidative status was evaluated in the hippocampus, by measuring the free radical content - using a 2',7'-dichlorofluorescein diacetate probe - and enzymatic antioxidant activities, such as superoxide dismutase and glutathione peroxidase. Our main behavioral results demonstrated that rats from the D RSV 10 and D RSV 20 groups showed an increase in freezing behavior when compared, respectively, to the ND RSV 10 (p<0.01) and ND RSV 20 (p<0.05). Oxidative stress parameters remained unchanged in the hippocampus of all the experimental groups. In contrast to previous experimental findings, our study was unable to detect either cognitive impairments or oxidative stress in the hippocampus of the diabetic rats. We suggest additional long-term investigations be conducted into the temporal pattern of STZ-induced diabetic disruption in memory and hippocampal oxidative status, as well as the effects of resveratrol on these parameters, in a time and dose-dependent manner. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Choline and betaine ameliorate liver lipid accumulation induced by vitamin B6 deficiency in rats.

    PubMed

    Kitagawa, Erina; Yamamoto, Tatsuya; Fujishita, Mayuko; Ota, Yuki; Yamamoto, Kohei; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2017-02-01

    We investigated the efficacy of supplementing the diet with choline or betaine in ameliorating lipid accumulation induced by vitamin B 6 (B 6 ) deficiency in rat liver. Male Wistar rats were fed a control, B 6 -deficient, choline-supplemented (2, 4, or 6 g choline bitartrate/kg diet) B 6 -deficient diet or betaine-supplemented (1, 2, or 4 g betaine anhydrous/kg diet) B 6 -deficient diet for 35 d; all diets contained 9 g L-methionine (Met)/kg diet. Choline or betaine supplementation attenuated liver lipid deposition and restored plasma lipid profiles to control levels. These treatments restored the disruptions in Met metabolism and the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio induced by B 6 deficiency in liver microsomes. These results suggest that choline and betaine ameliorated liver lipid accumulation induced by B 6 deficiency via recovery of Met metabolism and very low-density lipoprotein secretion by restoring the supply of PC derived from PE.

  8. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats.

    PubMed

    Kondeti, Vinay Kumar; Badri, Kameswara Rao; Maddirala, Dilip Rajasekhar; Thur, Sampath Kumar Mekala; Fatima, Shaik Sameena; Kasetti, Ramesh Babu; Rao, Chippada Appa

    2010-05-01

    The present study was designed to investigate the effect of bark of Pterocarpus santalinus, an ethnomedicinal plant, on blood glucose, plasma insulin, serum lipids and the activities of hepatic glucose metabolizing enzymes in streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were treated (acute/short-term and long-term) with ethyl acetate:methanol fractions of ethanolic extract of the bark of P. santalinus. Fasting blood glucose, HbA(1C), plasma insulin and protein were estimated before and after the treatment, along with hepatic glycogen, and activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase. Further anti-hyperlipidemic activity was studied by measuring the levels of serum lipids and lipoproteins. Phytochemical analysis of active fraction showed the presence of flavonoids, glycosides and phenols. Biological testing of the active fraction demonstrated a significant antidiabetic activity by reducing the elevated blood glucose levels and glycosylated hemoglobin, improving hyperlipidemia and restoring the insulin levels in treated experimental induced diabetic rats. Further elucidation of mechanism of action showed improvement in the hepatic carbohydrate metabolizing enzymes after the treatment. Our present investigation suggests that active fraction of ethanolic extract of bark of P. santalinus decreases streptozotocin induced hyperglycemia by increasing glycolysis and decreasing gluconeogenesis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Low-dose testosterone alleviates vascular damage caused by castration in male rats in puberty via modulation of the PI3K/AKT signaling pathway.

    PubMed

    Zhao, Jing; Liu, Ge-Li; Wei, Ying; Jiang, Li-Hong; Bao, Peng-Li; Yang, Qing-Yan

    2016-09-01

    The aim of the present study was to investigate the effect of testosterone on glucolipid metabolism and vascular injury in male rats, and examine the underlying molecular mechanisms. A total of 40 male Sprague-Dawley rats were divided into a control group (n=10), high-fat-diet + castration group (n=10), high‑fat‑diet + castration + low dose testosterone group (n=10), and high-fat-diet + castration + high dose testosterone group (n=10). Hematoxylin and eosin staining was performed to evaluate the morphology of the thoracic aortic tissues. Immunohistochemical staining was used to detect biomarkers of the phosphoinositide 3‑kinase (PI3K) signaling pathway. The mRNA and protein expression levels of PI3K, AKT, insulin receptor substrate‑1 (IRS‑1), glucose transporter type 4 (GLUT‑4), nuclear factor (NF)‑κB and tumor necrosis factor (TNF)‑α in the aortas were determined using quantitative polymerase chain reaction and Western blot analyses, respectively. Apoptosis in the aortic tissues was detected using a TUNEL assay. Castration induced apoptosis in the animals fed a high‑fat‑diet, whereas low dose testosterone replacement ameliorated the apoptosis in the aorta. However, the levels of apoptosis was more severe following high‑dose testosterone treatment. Low‑dose testosterone induced upregulation in the levels of IRS‑1, AKT, GLUT‑4 protein, NF‑κB, TNF‑α and PI3K, compared with those in the animals fed a high‑fat diet following castration. A high dose of testosterone resulted in a significant decrease in the levels of IRS‑1, AKT, GLUT‑4, NF‑κB, TNF‑α and PI3K. Compared with the rats in the high‑fat diet + castration group, a low dose of testosterone induced upregulation in the mRNA levels of IRS‑1, AKT and GLUT‑4, and downregulation of the mRNA levels of NF‑κB, TNF‑α and PI3K. A high dose of testosterone resulted in a significant decrease in the levels of IRS‑1, AKT and GLUT‑4, and marked

  10. Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice.

    PubMed

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Han, Jin-Young; Kim, Bumseok; Lee, Kyuhong

    2018-01-01

    Cadmium (Cd) is a toxic metal present in tobacco smoke, air, food, and water. Inhalation is an important route of Cd exposure, and lungs are one of the main target organs for metal-induced toxicity. Cd inhalation is associated with an increased risk of pulmonary diseases. The present study aimed to assess the effects of repeated exposure to low-dose Cd in a mouse model of polyhexamethylene guanidine (PHMG)-induced lung fibrosis. Mice were grouped into the following groups: vehicle control (VC), PHMG, cadmium chloride (CdCl 2 ), and PHMG + CdCl 2 . Animals in the PHMG group exhibited increased numbers of total cells and inflammatory cells in the bronchoalveolar lavage fluid (BALF) accompanied by inflammation and fibrosis in lung tissues. These parameters were exacerbated in mice in the PHMG + CdCl 2 group. In contrast, mice in the CdCl 2 group alone displayed only minimal inflammation in pulmonary tissue. Expression of inflammatory cytokines and fibrogenic mediators was significantly elevated in lungs of mice in the PHMG group compared with that VC. Further, expression of these cytokines and mediators was enhanced in pulmonary tissue in mice administered PHMG + CdCl 2 . Data demonstrate that repeated exposure to low-dose Cd may enhance the development of PHMG-induced pulmonary fibrosis.

  11. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Bhuvaneshwari; Aggarwal, Aanchal; Sandhir, Rajat

    2013-04-01

    Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50mg/kg body weight) and chromium was administered orally as chromium picolinate (1mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis.

    PubMed

    Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi; Ohshima, Yasuhiro; Tago, Fumitoshi; Masada, Ayako; Kojima, Shuji

    2008-07-01

    We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4(+)CD25(+)Foxp3(+) regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells.

  13. Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP) on HFD/STZ-Induced Nephropathy in Mice.

    PubMed

    Chou, Yen-Jung; Kan, Wei-Chih; Chang, Chieh-Min; Peng, Yi-Jen; Wang, Hsien-Yi; Yu, Wen-Chun; Cheng, Yu-Hsuan; Jhang, Yu-Rou; Liu, Hsia-Wei; Chuu, Jiunn-Jye

    2016-09-13

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs) have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ)-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP), from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD) plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10-100 kDa, LIOP (300 mg/kg) had progressively increased their sensitivity to glucose (less insulin tolerance), reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR) compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL) incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1), while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF

  14. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Hyperglycemia and hepatic tumors in ICR mice neonatally injected with streptozotocin.

    PubMed

    Ariza, Lorena; Zaguirre, Mireia; García, Marta; Blasco, Ester; Rabanal, Rosa Maria; Bosch, Assumpició; Otaegui, Pedro José

    2014-07-01

    Repeated, low-dose administration of streptozotocin (STZ) is widely used to induce insulin-dependent diabetes mellitus in mice. The authors adapted this method using neonatal mice and determined the long-term effects of STZ injection in the mice. After receiving intraperitoneal injections of STZ at postnatal day 3 (P3), P4 and P8, male and female mice were hyperglycemic by week 4. A clear sex difference was found, with blood glucose levels in STZ-treated males remaining higher than those in STZ-treated females until week 23. Whereas STZ-treated males remained hyperglycemic until week 23, STZ-treated females did not have significantly higher glucose levels than control mice after week 18. Additionally, STZ-treated mice had neoplastic lesions in their livers by week 4, with a progression in the severity of these lesions until week 24. The results confirm that, in addition to pancreatic beta cell toxicity, STZ has an oncogenic effect on the liver when administered to neonates.

  16. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    PubMed

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-11-15

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan

    2006-01-01

    We have investigated Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India, for its possible antihyperlipidemic effect in rats with streptozotocin-induced experimental diabetes. Oral administration of an aqueous extract of S. dulcis plant (200 mg/kg of body weight) to streptozotocin diabetic rats for 6 weeks resulted in a significant reduction in blood glucose, serum and tissue cholesterol, triglycerides, free fatty acids, phospholipids, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and very low-density lipoprotein and low-density lipoprotein cholesterol levels. The decreased serum high-density lipoprotein cholesterol, anti-atherogenic index, and HMG-CoA reductase activity in diabetic rats were also reversed towards normalization after the treatment. Similarly, the administration of S. dulcis plant extract (SPEt) to normal animals resulted in a hypolipidemic effect. The effect was compared with glibenclamide (600 microg/kg of body weight). The results showed that SPEt had antihyperlipidemic action in normal and experimental diabetic rats in addition to its antidiabetic effect.

  18. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng

    2014-01-01

    Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes. PMID:25517034

  19. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity.

    PubMed

    Napier, Ruth J; Norris, Brian A; Swimm, Alyson; Giver, Cynthia R; Harris, Wayne A C; Laval, Julie; Napier, Brooke A; Patel, Gopi; Crump, Ryan; Peng, Zhenghong; Bornmann, William; Pulendran, Bali; Buller, R Mark; Weiss, David S; Tirouvanziam, Rabindra; Waller, Edmund K; Kalman, Daniel

    2015-03-01

    Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics "emergency hematopoiesis," a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens.

  20. Citrus Epicarp-Derived Biochar Reduced Cd Uptake and Ameliorates Oxidative Stress in Young Abelmoschus esculentus (L.) Moench (okra) Under Low Cd Stress.

    PubMed

    Ogunkunle, Clement O; Varun, Mayank; Ogundele, Iyanuoluwa G; Olorunmaiye, Kehinde S; Paul, Manoj S

    2018-06-01

    Due to the important role of biochar (BC) in reducing metal-toxicity in plants, this study was aimed at assessing the potential of citrus epicarp-derived BC in ameliorating Cd toxicity in young Abelmoschus esculentus (okra) under low Cd toxicity. Okra was grown in soil amended with BC at four treatment levels for 49 days as follows: control (A), sole 1.4 mg Cd/kg-spiked soil (B), 1.4 mg Cd/kg-spiked soil + 1% BC (C) and 1.4 mg Cd/kg-spiked soil + 3% BC (D). The results showed a dose-dependent reduction in shoot accumulation of Cd due to the BC application. In addition, compared to control and sole Cd-amended soil, BC treatments (both at 1% and 3% w/w) decreased the oxidative stress, and enhanced activities of enzymatic and non-enzymatic antioxidants in the young okra. Generally, the application of BC to the soil was effective in ameliorating the Cd-induced oxidative stress in okra with limited shoot bioaccumulation of Cd.

  1. Ameliorative effects of Panax quinquefolium on experimentally induced reflux oesophagitis in rats

    PubMed Central

    Singh, Pratibha; Singh, Neetu; Sengupta, Shibani; Palit, Gautam

    2012-01-01

    Background & objectives: Reflux oesophagitis (RE), is one of the most prevalent chronic gastrointestinal disorders commonly referred to as gastroesophageal reflux disease (GERD) and requires long term therapy. The present study was designed to investigate the protective effects of Panax quinquefolium (PQ), administered with variable doses, on experimentally induced reflux oesophagitis (RE) in rats. Methods: Forty two female Sprague-Dawley (180-220 g) rats were randomly divided to receive standardized root powder of PQ (50-200mg/kg, po), standard anti-reflux (omeprazole, 5 mg/kg, ip) and anti-oxidant (α-tocopherol, 16 mg/kg, po). After 45 min drug pretreatment, RE was produced in rats by simultaneous ligation of the pyloric end and forestomach. Several parameters, including macroscopic lesion index, glutathione system, lipid peroxidation (LPO) and tissue myeloperoxidase (MPO) activity were measured. Alterations in ICAM-1, CINC-2 and MCP-1 gene expression were examined through reverse transcriptase polymerase chain reaction (RT-PCR). Results: PQ significantly attenuated the severity of the macroscopic signs of RE-induced tissue damage, replenished the depleted GSH level and reduced the RE-associated LPO levels dose dependently. In contrast, omeprazole though effectively improved the mucosal damage, it failed to bring significant attenuation of RE-associated changes in LPO, GSH level and MPO activity. α-Tocopherol significantly ameliorated RE-induced tissue injury and improved LPO level and GSH/GSSG ratio but failed to counteract RE-induced MPO activity. PQ at dose of 100 mg/kg significantly downregulated ICAM-1 and CINC-2 expression whereas it showed no effect over MCP-1 expression. Interpretation & conclusions: The present data indicate that PQ protects against RE-induced oesophageal damage via a mechanism that inhibits the influx of inflammatory cell to oesophagus and a consequence excessive oxidative load, opening the avenue to its promising protective role in

  2. Beneficial Effects of Sarpogrelate and Rosuvastatin in High Fat Diet/Streptozotocin-Induced Nephropathy in Mice

    PubMed Central

    Ku, Sae-Kwang; Park, Jeong-hyeon; Oh, Euichaul; Kwak, Mi-Kyoung

    2016-01-01

    Chronic kidney disease (CKD) is a major complication of metabolic disorders such as diabetes mellitus, obesity, and hypertension. Comorbidity of these diseases is the factor exacerbating CKD progression. Statins are commonly used in patients with metabolic disorders to decrease the risk of cardiovascular complications. Sarpogrelate, a selective antagonist of 5-hydroxytryptamine (5-HT) 2A receptor, inhibits platelet aggregation and is used to improve peripheral circulation in diabetic patients. Here, we investigated the effects of sarpogrelate and rosuvastatin on CKD in mice that were subjected to a high fat diet (HFD) for 22 weeks and a single low dose of streptozotocin (STZ, 40 mg/kg). When mice were administrated sarpogrelate (50 mg/kg, p.o.) for 13 weeks, albuminuria and urinary cystatin C excretion were normalized and histopathological changes such as glomerular mesangial expansion, tubular damage, and accumulations in lipid droplets and collagen were significantly improved. Sarpogrelate treatment repressed the HFD/STZ-induced CD31 and vascular endothelial growth factor receptor-2 expressions, indicating the attenuation of glomerular endothelial proliferation. Additionally, sarpogrelate inhibited interstitial fibrosis by suppressing the increases in transforming growth factor-β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1). All of these functional and histological improvements were also seen in rosuvastatin (20 mg/kg) group and, notably, the combinatorial treatment with sarpogrelate and rosuvastatin showed additive beneficial effects on histopathological changes by HFD/STZ. Moreover, sarpogrelate reduced circulating levels of PAI-1 that were elevated in the HFD/STZ group. As supportive in vitro evidence, sarpogrelate incubation blocked TGF-β1/5-HT-inducible PAI-1 expression in murine glomerular mesangial cells. Taken together, sarpogrelate and rosuvastatin may be advantageous to control the progression of CKD in patients with comorbid metabolic

  3. Zingiber officinale Roscoe ameliorates anticancer antibiotic doxorubicin-induced acute cardiotoxicity in rat.

    PubMed

    Ajith, Thekkuttuparambil Ananthanarayanan; Hema, Unnikrishnan; Aswathi, Sreedharan

    2016-07-01

    Oxidative stress (OS) has been suggested in the cardiotoxicity induced by anticancer antibiotic doxorubicin (DXN). The cardioprotective effects of aqueous ethanol extract of Zingiber officinale was evaluated against DXN-induced acute cardiac damage in rat. The results of the study demonstrated that Z. officinale significantly and dose dependently protected the cardiotoxicity induced by DXN. The activities of serum glutamate oxaloacetate transaminase and serum lactate dehydrogenase activity in the DXN alone treated group of animals were significantly (p<0.01) elevated when compared to normal animals. The activities were reduced in the Z. officinale (200 and 400 mg/kg, p.o) plus DXN treated groups. The cardiac malondialdehyde was elevated in the DXN alone treated group and declined significantly in the Z. officinale (400 mg/kg) plus DXN treated group. The results concluded that aqueous ethanol extract of Z. officinale ameliorated DXN-induced cardiotoxicity. The protection can be ascribed to the free radical scavenging activity of Z. officinale. This protective effect may suggest the adjuvant role of Z. officinale against OS induced by cancer chemotherapeutants, which warrant further research. © 2016 Old City Publishing, Inc.

  4. Low Antigen Dose in Adjuvant-Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and Protective Efficacy

    PubMed Central

    Wang, Yichuan; Solaymani-Mohammadi, Shahram; Frey, Blake; Kulkarni, Shweta; Andersen, Peter; Agger, Else Marie; Sui, Yongjun

    2017-01-01

    T cells with high functional avidity can sense and respond to low levels of cognate Ag, a characteristic that is associated with more potent responses against tumors and many infections, including HIV. Although an important determinant of T cell efficacy, it has proven difficult to selectively induce T cells of high functional avidity through vaccination. Attempts to induce high-avidity T cells by low-dose in vivo vaccination failed because this strategy simply gave no response. Instead, selective induction of high-avidity T cells has required in vitro culturing of specific T cells with low Ag concentrations. In this study, we combined low vaccine Ag doses with a novel potent cationic liposomal adjuvant, cationic adjuvant formulation 09, consisting of dimethyldioctadecylammonium liposomes incorporating two immunomodulators (monomycolyl glycerol analog and polyinosinic-polycytidylic acid) that efficiently induces CD4 Th cells, as well as cross-primes CD8 CTL responses. We show that vaccination with low Ag dose selectively primes CD4 T cells of higher functional avidity, whereas CD8 T cell functional avidity was unrelated to vaccine dose in mice. Importantly, CD4 T cells of higher functional avidity induced by low-dose vaccinations showed higher cytokine release per cell and lower inhibitory receptor expression (PD-1, CTLA-4, and the apoptosis-inducing Fas death receptor) compared with their lower-avidity CD4 counterparts. Notably, increased functional CD4 T cell avidity improved antiviral efficacy of CD8 T cells. These data suggest that potent adjuvants, such as cationic adjuvant formulation 09, render low-dose vaccination a feasible and promising approach for generating high-avidity T cells through vaccination. PMID:28348274

  5. Proteomic analysis of gastrocnemius muscle in rats with streptozotocin-induced diabetes and chronically exposed to fluoride.

    PubMed

    Lima Leite, Aline; Gualiume Vaz Madureira Lobo, Janete; Barbosa da Silva Pereira, Heloísa Aparecida; Silva Fernandes, Mileni; Martini, Tatiani; Zucki, Fernanda; Sumida, Dóris Hissako; Rigalli, Alfredo; Buzalaf, Marília Afonso Rabelo

    2014-01-01

    Administration of high doses of fluoride (F) can alter glucose homeostasis and lead to insulin resistance (IR). This study determined the profile of protein expression in the gastrocnemius muscle of rats with streptozotocin-induced diabetes that were chronically exposed to F. Male Wistar rats (60 days old) were randomly distributed into two groups of 18 animals. In one group, diabetes was induced through the administration of streptozotocin. Each group (D-diabetic and ND-non-diabetic) was further divided into 3 subgroups each of which was exposed to a different F concentration via drinking water (0 ppm, 10 ppm or 50 ppm F, as NaF). After 22 days of treatment, the gastrocnemius muscle was collected and submitted to proteomic analysis (2D-PAGE followed by LC-MS/MS). Protein functions were classified by the GO biological process (ClueGO v2.0.7+Clupedia v1.0.8) and protein-protein interaction networks were constructed (PSICQUIC, Cytoscape). Quantitative intensity analysis of the proteomic data revealed differential expression of 75 spots for ND0 vs. D0, 76 for ND10 vs.D10, 58 spots for ND50 vs. D50, 52 spots for D0 vs. D10 and 38 spots for D0 vs. D50. The GO annotations with the most significant terms in the comparisons of ND0 vs. D0, ND10 vs. D10, ND50 vs. D50, D0 vs. D10 and D0 vs. D50, were muscle contraction, carbohydrate catabolic processes, generation of precursor metabolites and energy, NAD metabolic processes and gluconeogenesis, respectively. Analysis of subnetworks revealed that, in all comparisons, proteins with fold changes interacted with GLUT4. GLUT4 interacting proteins, such as MDH and the stress proteins HSPB8 and GRP78, exhibited decreased expression when D animals were exposed to F. The presence of the two stress proteins indicates an increase in IR, which might worsen diabetes. Future studies should evaluate whether diabetic animals treated with F have increased IR, as well as which molecular mechanisms are involved.

  6. Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats.

    PubMed

    Thiagarajan, Venkata R K; Shanmugam, Palanichamy; Krishnan, Uma M; Muthuraman, Arunachalam

    2014-08-29

    The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.

  7. Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats.

    PubMed

    Thiagarajan, Venkata R K; Shanmugam, Palanichamy; Krishnan, Uma M; Muthuraman, Arunachalam

    2014-09-01

    The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.

  8. Effect of Bauhinia forficata aqueous extract on the maternal-fetal outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats.

    PubMed

    Volpato, G T; Damasceno, D C; Rudge, M V C; Padovani, C R; Calderon, I M P

    2008-02-28

    Bauhinia forficata Link, commonly known as "paw-of-cow", is widely used in Brazilian folk medicine for the treatment of diabetes. To evaluate the effect of Bauhinia forficata treatment on maternal-fetal outcome and antioxidant systems of streptozotocin-induced diabetic rats. Virgin female Wistar rats were injected with 40 mg/kg streptozotocin before mating. Oral administration of an aqueous extract of Bauhinia forficata leaves was given to non-diabetic and diabetic pregnant rats at increasing doses: 500 mg/kg from 0 to 4th day of pregnancy, 600 mg/kg from 5th to 14th day and 1000 mg/kg from 15th to 20th day. At day 21 of pregnancy the rats were anaesthetized with ether and a maternal blood sample was collected for the determination superoxide dismutase (SOD) and reduced glutathione (GSH). The gravid uterus was weighed with its contents and fetuses were analyzed. The data showed that the diabetic dams presented an increased glycemic level, resorption, placental weight, placental index, and fetal anomalies, and reduced GSH and SOD determinations, live fetuses, maternal weight gain, gravid uterine weight, and fetal weight. It was also verified that Bauhinia forficata treatment had no hypoglycemic effect, did not improve maternal outcomes in diabetic rats, but it contributed to maintain GSH concentration similarly to non-diabetic groups, suggesting relation with the decreased incidence of visceral anomalies.

  9. Effect of the hydroalcoholic extract and juice of Prunus divaricata fruit on blood glucose and serum lipids of normal and streptozotocin-induced diabetic rats

    PubMed Central

    Minaiyan, M.; Ghannadi, A.; Movahedian, A.; Ramezanlou, P.; Osooli, F.S.

    2014-01-01

    Prunus divaricata (Alloocheh) is a small tree cultivating in Iran, Middle East and central Asia. Prunus genus has many species with anti-oxidant, anti-hyperlipidemia and anti-hyperglycemia effects. In the present study the anti-diabetic and anti-hyperlipidemic effects of P. divaricata fruits were examined in normal and streptozotocin (STZ)-induced diabetic rats. Both groups, control and reference rats received normal saline and glibenclamide respectively. Test groups were treated with Prunus freeze dried juice (PFDJ, 200, 400, 800 mg/kg) and Prunus freeze dried extract (PFDE, 100, 200, 400 mg/kg) started at the 3rd day of the experiment and continued for 27 days thereafter. Weight changes of animals were checked periodically. Fasting blood glucose (FBG) level as well as serum triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol were determined. Different treatments had no significant effect on body weight increments of normal rats, while in diabetic rats, PFDJ (800 mg/kg) and PFDE (400 mg/kg) opposed with weight loss. In acute phase of experiment (0-8 h of 3rd day), none of tested fractions were effective in reducing FBG and serum lipids of normal rats. During the sub-acute phase (13th and 30th days) however, the greatest test doses of PFDJ (800 mg/kg) and PFDE (400 mg/kg) induced hypoglycema. In diabetic groups, PFDJ and PFDE, at all test doses, could diminish FBG during sub-acute phase of the experiment. In addition, PFDJ and PFDE at most examined doses could diminish TG significantly and they were also effective on cholesterol derivatives in different magnitude. PMID:26339257

  10. PEG-rHuMGDF ameliorates thrombocytopenia in carboplatin-treated rats without inducing myelofibrosis.

    PubMed

    Ide, Y; Harada, K; Imai, A; Yanagida, M

    1999-08-01

    We examined the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on carboplatin-induced thrombocytopenia in rats. The focus was on whether myelofibrosis is associated with the PEG-rHuMGDF treatment in this chemotherapy model. After a single injection of carboplatin, rats received subcutaneous PEG-rHuMGDF at pharmacologic doses (1,3, or 30 micrograms/kg) or a vehicle daily for 7 days. PEG-rHuMGDF at more than 3 micrograms/kg ameliorated the thrombocytopenia at day 10. Histologically, no myelofibrosis was detected in the rats treated with PEG-rHuMGDF or vehicle. Subsequently, PEG-rHuMGDF at a suprapharmacologic dose (100 micrograms/kg) was subcutaneously administered to normal and to carboplatin-treated rats daily for 7 days. Histological analysis revealed that the treatment with PEG-rHuMGDF induced myelofibrosis in the normal rats but not in the carboplatin-treated rats. Additionally, the transforming growth factor-beta 1 (TGF-beta 1) levels in the extracellular fluid and the whole extract of the bone marrow were increased to a much lesser degree in the carboplatin-treated rats compared to the normal rats. These findings suggest that PEG-rHuMGDF is effective for carboplatin-induced thrombocytopenia. Proper control of platelet counts and TGF-beta 1 levels is essential so that myelofibrosis is not induced in clinical use.

  11. Determination of the adequate dosage of rebamipide, a gastric mucoprotective drug, to prevent low-dose aspirin-induced gastrointestinal mucosal injury.

    PubMed

    Ota, Kazuhiro; Takeuchi, Toshihisa; Nouda, Sadaharu; Ozaki, Haruhiko; Kawaguchi, Shinpei; Takahashi, Yoshiaki; Harada, Satoshi; Edogawa, Shoko; Kojima, Yuichi; Kuramoto, Takanori; Higuchi, Kazuhide

    2016-11-01

    Small intestinal mucosal injury caused by low-dose aspirin is a common cause of obscure gastrointestinal bleeding. We aimed to investigate the protective effects and optimal dose of rebamipide for low-dose aspirin-induced gastrointestinal mucosal injury. In this prospective randomized trial, 45 healthy volunteers (aged 20-65 years) were included and divided into three groups. The groups received enteric-coated aspirin 100 mg (low-dose aspirin) plus omeprazole 10 mg (Group A: proton pump inhibitor group), low-dose aspirin plus rebamipide 300 mg (Group B: standard-dose group), or low-dose aspirin plus rebamipide 900 mg (Group C: high-dose group). Esophagogastroduodenoscopy and video capsule endoscopy were performed, and the fecal occult blood reaction and fecal calprotectin levels were measured before and two weeks after drug administration. Although the fecal calprotectin levels increased significantly in Group A, they did not increase in Groups B and C. The esophagogastroduodenoscopic and video capsule endoscopic findings and the fecal occult blood test findings did not differ significantly among the three groups. In conclusion, standard-dose rebamipide is sufficient for preventing mucosal injury of the small intestine induced by low-dose aspirin, indicating that high-dose rebamipide is not necessary.

  12. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    PubMed

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  13. Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis.

    PubMed

    Marin-Bañasco, C; Benabdellah, K; Melero-Jerez, C; Oliver, B; Pinto-Medel, M J; Hurtado-Guerrero, I; de Castro, F; Clemente, D; Fernández, O; Martin, F; Leyva, L; Suardíaz, M

    2017-02-01

    Recombinant IFN-ß is one of the first-line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose-derived MSCs (AdMSCs), transduced with the IFN-β gene, into mice with experimental autoimmune encephalomyelitis (EAE). Relapsing-remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN-ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro-inflammation. Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN-β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN-ß treatment, by providing long-term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose-limiting side effects. © 2016 The British Pharmacological Society.

  14. Naringin Ameliorates HIV-1 Nucleoside Reverse Transcriptase Inhibitors- Induced Mitochondrial Toxicity.

    PubMed

    Oluwafeyisetan, Adebiyi; Olubunmi, Adebiyi; Peter, Owira

    2016-01-01

    Mitochondrial reactive oxygen species (ROS) generation and defective oxidative phosphorylation (OXPHOS) have been proposed as possible mechanisms underlying the development of nucleoside reverse transcriptase inhibitors (NRTIs)-induced mitochondrial toxicities. Available options in managing these complications have, so far, produced controversial results, thus necessitating further research into newer agents with promise. Antioxidant and free-radical scavenging effects of naringin, a plant-derived flavonoid, have previously been demonstrated. This study was designed to investigate the effects of naringin on NRTIs-induced mitochondrial toxicity. Wistar rats were randomly divided into Zidovudine (AZT)-only (100 mg/kg body weight BW); AZT+Naringin (100+50 mg/kg BW); AZT+Vitamin E (100+100 mg/kg BW); Stavudine (d4T)- only (50 mg/kg BW); d4T+Naringin (50+50 mg/kg BW); d4T+Vitamin E (50+100 mg/kg BW) and Vehicle (3.0 mL/kg BW)-treated groups, respectively. After 56 days of oral daily dosing, rats were euthanized by halothane overdose, blood collected by cardiac puncture and livers promptly excised for further biochemical and ultrastructural analyses. </p> Results: AZT- or d4T-only caused significant mitochondrial dysfunction and mitochondrial ultrastructural damage compared to controls, while either naringin or vitamin E reversed indices of mitochondrial dysfunction evidenced by significantly reduced mitochondrial malondialdehyde (MDA) and blood lactate concentrations, increased liver manganese superoxide dismutase (MnSOD) activity and upregulate expression of mitochondrial-encoded subunit of electron transport chain (ETC) complex IV protein compared to AZT- or d4T-only treated rats. Furthermore, naringin or vitamin E, respectively, ameliorated mitochondrial damage observed in AZT- or d4T-only treated rats. Naringin ameliorated oxidative stress and NRTI-induced mitochondrial damage and might, therefore, be beneficial in managing toxicities and complications arising

  15. Role of Ferulic Acid in the Amelioration of Ionizing Radiation Induced Inflammation: A Murine Model

    PubMed Central

    Das, Ujjal; Manna, Krishnendu; Sinha, Mahuya; Datta, Sanjukta; Das, Dipesh Kr; Chakraborty, Anindita; Ghosh, Mahua; Saha, Krishna Das; Dey, Sanjit

    2014-01-01

    Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation. PMID:24854039

  16. A study on toxicity of gasoline and GM-10 on liver of mice and it's amelioration by black tea extract.

    PubMed

    Verma, Ramtej Jayram; Dave, Manjeet; Mathuria, Neeta

    2008-01-01

    The aim of present study is to investigate the ameliorative effect of black tea extract on gasoline and GM-10 induced toxicity in liver of mice. Eighty healthy male mice weighing 38-40 g approximately were divided into eight groups which included untreated control and various treated groups. Mice were treated with Gasoline 462 mg/kg/day and GM-10 low dose (206 mg/kg/day) and high dose (412 mg/kg/day) subcutaneously for 30 days. Black tea extract was given as 2 g/100 mL drinking water (2% w/v) instead of pure drinking water. All the animals were sacrificed on 31st day by cervical dislocation and livers were isolated and weighed. Parameters such as lipid peroxidation, catalase, superoxide dismutase, glutathione peroxidase, glutathione and total ascorbic acid were studied. The results revealed dose-dependent toxicity of gasoline and GM-10 on liver. Administration of black tea extract ameliorates this toxicity of gasoline and GM-10 in liver of mice. This proves the effective ameliorative effect of black tea extract.

  17. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPARα pathway.

    PubMed

    Wu, Lujin; Wang, Ke; Wang, Wei; Wen, Zheng; Wang, Peihua; Liu, Lei; Wang, Dao Wen

    2018-04-16

    Lipotoxicity cardiomyopathy is the result of excessive accumulation and oxidation of toxic lipids in the heart. It is a major threat to patients with diabetes. Glucagon-like peptide-1 (GLP-1) has aroused considerable interest as a novel therapeutic target for diabetes mellitus because it stimulates insulin secretion. Here, we investigated the effects and mechanisms of the GLP-1 analog exendin-4 and the dipeptidyl peptidase-4 inhibitor saxagliptin on cardiac lipid metabolism in diabetic mice (DM). The increased myocardial lipid accumulation, oxidative stress, apoptosis, and cardiac remodeling and dysfunction induced in DM by low streptozotocin doses and high-fat diets were significantly reversed by exendin-4 and saxagliptin treatments for 8 weeks. We found that exendin-4 inhibited abnormal activation of the (PPARα)-CD36 pathway by stimulating protein kinase A (PKA) but suppressing the Rho-associated protein kinase (ROCK) pathway in DM hearts, palmitic acid (PA)-treated rat h9c2 cardiomyocytes (CMs), and isolated adult mouse CMs. Cardioprotection in DM mediated by exendin-4 was abolished by combination therapy with the PPARα agonist wy-14643 but mimicked by PPARα gene deficiency. Therefore, the PPARα pathway accounted for the effects of exendin-4. This conclusion was confirmed in cardiac-restricted overexpression of PPARα mediated by adeno-associated virus serotype-9 containing a cardiac troponin T promoter. Our results provide the first direct evidence that GLP-1 protects cardiac function by inhibiting the ROCK/PPARα pathway, thereby ameliorating lipotoxicity in diabetic cardiomyopathy. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Ameliorating effects of tempol on methotrexate-induced liver injury in rats.

    PubMed

    Pınar, Neslihan; Kaplan, Mahir; Özgür, Tümay; Özcan, Oğuzhan

    2018-06-01

    Methotrexate (MTX) is used in the treatment of certain types of cancers and chronic inflammatory illnesses, although the clinical use of MTX is limited due to its adverse effects, the most common of which are hepatotoxicity and nephrotoxicity. In the present study, we demonstrate the protecting influence of tempol related to oxidative stress in MTX-induced liver toxicity in rats using histopathological and biochemical parameters. The rats were divided into four groups: control group (group 1), tempol group (group 2), MTX group (group 3) and MTX + tempol group (group 4). The control group (group 1) received physiological saline for 10 days; the tempol group (group 2) received 30 mg/kg i.p. for 10 days, the MTX group (group 3) received a single dose of 20 mg/kg intraperitoneal (i.p.) on the fourth day of the study, and the MTX + tempol group (group 4) received a single dose of 20 mg/kg i.p. on the fourth day, followed by tempol 30 mg/kg i.p. for 10 days. Malondialdehyde (MDA), myeloperoxidase (MPO), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were found to be significantly lower in the MTX + tempol group then in the MTX group; while superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were found to be higher in the MTX + tempol group than in the MTX group. Tempol ameliorates vacuolic degeneration, inflammation and necrosis in MTX-treated rats. Our study demonstrates that tempol treatment after MTX administration ameliorates oxidative damage in liver tissue in rats. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells.

    PubMed

    Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao

    2016-04-12

    Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents

  20. Ultrastructural Analysis of In Vivo Hypoglycemiant Effect of Two Polyoxometalates in Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Bâlici, Ştefana; Wankeu-Nya, Modeste; Rusu, Dan; Nicula, Gheorghe Z; Rusu, Mariana; Florea, Adrian; Matei, Horea

    2015-10-01

    Two polyoxometalates (POMs), synthesized through a self-assembling method, were used in the treatment of streptozotocin (STZ)-induced diabetic rats. One of these nanocompounds [tris(vanadyl)-substituted tungsto-antimonate(III)-anions—POM1] was previously described in the literature, whereas the second [tris-butyltin-21-tungsto-9-antimonate(III)-anions—POM2], was prepared by us based on our original formula. In rats with STZ-induced diabetes treated with POMs (up to a cumulative dose of 4 mg/kg bodyweight at the end of the treatments), statistically significant reduced levels of blood glucose were measured after 3 weeks, as compared with the diabetic control groups (DCGs). Ultrastructural analysis of pancreatic β-cells (including the mean diameter of secretory vesicles and of their insulin granules) in the treated diabetic rats proved the POMs contribute to limitation of cellular degeneration triggered by STZ, as well as to the presence of increased amounts of insulin-containing vesicles as compared with the DCG. The two POMs also showed hepatoprotective properties when ultrastructural aspects of hepatocytes in the experimental groups of rats were studied. Based on our in vivo studies, we concluded that the two POMs tested achieved hypoglycemiant effects by preventing STZ-triggered apoptosis of pancreatic β-cells and stimulation of insulin synthesis.

  1. Garlic Supplementation Ameliorates UV-Induced Photoaging in Hairless Mice by Regulating Antioxidative Activity and MMPs Expression.

    PubMed

    Kim, Hye Kyung

    2016-01-08

    UV exposure is associated with oxidative stress and is the primary factor in skin photoaging. UV-induced reactive oxygen species (ROS) cause the up-regulation of metalloproteinase (MMPs) and the degradation of dermal collagen and elastic fibers. Garlic and its components have been reported to exert antioxidative effects. The present study investigated the protective effect of garlic on UV-induced photoaging and MMPs regulation in hairless mice. Garlic was supplemented in the diet, and Skh-1 hairless mice were exposed to UV irradiation five days/week for eight weeks. Mice were divided into four groups; Non-UV, UV-irradiated control, UV+1% garlic powder diet group, and UV+2% garlic powder diet group. Chronic UV irradiation induced rough wrinkling of the skin with hyperkeratosis, and administration of garlic diminished the coarse wrinkle formation. UV-induced dorsal skin and epidermal thickness were also ameliorated by garlic supplementation. ROS generation, skin and serum malondialdehyde levels were significantly increased by UV exposure and were ameliorated by garlic administration although the effects were not dose-dependent. Antioxidant enzymes such as superoxide dismutase and catalase activities in skin tissues were markedly reduced by UV irradiation and garlic treatment increased these enzyme activities. UV-induced MMP-1 and MMP-2 protein levels were suppressed by garlic administration. Furthermore, garlic supplementation prevented the UV-induced increase of MMP-1 mRNA expression and the UV-induced decrease of procollagen mRNA expression. These results suggest that garlic may be effective for preventing skin photoaging accelerated by UV irradiation through the antioxidative system and MMP regulation.

  2. 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation.

    PubMed

    El-Bakly, Wesam M; Louka, Manal L; El-Halawany, Ali M; Schaalan, Mona F

    2012-12-01

    Doxorubicin is a widely used antitumour drug. Cardiotoxicity is considered a major limitation for its clinical use. The present study was designed to assess the possible antioxidant and antiapoptotic effects of 6-gingerol in attenuating doxorubicin-induced cardiac damage. Male albino rats were treated with either intraperitoneal doxorubicin (18 mg/kg divided into six equal doses for 2 weeks) and/or oral 6-gingerol (10 mg/kg starting 5 days before and continued till the end of the experiment). 6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation endproduct allowing unopposed serum advanced glycation endproduct availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was indicated by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury. These findings were confirmed by cardiac tissue histopathology. 6-gingerol, a known single compound from ginger with anticancer activity, was shown to have a promising role in cardioprotection against doxorubicin-induced cardiotoxicity. This study suggested a novel mechanism for 6-gingerol cardioprotection, which might be mediated through its antioxidative effect and modulation of NF-κB as well as apoptosis.

  3. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease.

    PubMed

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.

  4. CT-angiography protocol with low dose radiation and low volume contrast medium for non-cardiac chest pain

    PubMed Central

    Ozkurt, Huseyin; Tokgoz, Safiye; Karabay, Esra; Ucan, Berna; Akdogan, Melek Pala; Basak, Muzaffer

    2014-01-01

    Aim To evaluate the diagnostic quality of a new multiple detector-row computed tomography angiography (MDCT-A) protocol using low dose radiation and low volume contrast medium techniques for evaluation of non-cardiac chest pain. Methods Forty-five consecutive patients with clinically suspected noncardiac chest pain and requiring contrast-enhanced chest computed tomography (CT) were examined. The patients were assigned to the protocol, with 80 kilovolt (peak) (kV[p]) and 150 effective milliampere-second (eff mA-s). In our study group, 40 mL of low osmolar contrast material was administered at 3.0 mL/s. Results In the study group, four patients with pulmonary embolism, four with pleural effusion, two with ascending aortic aneurysm and eight patients with pneumonic consolidation were detected. The mean attenuation of the pulmonary truncus and ascendant aortic locations was considered 264±44 and 249±51 HU, respectively. The mean effective radiation dose was 0.83 mSv for MDCT-A. Conclusions Pulmonary artery and the aorta scanning simultaneously was significantly reduced radiation exposure with the mentioned dose saving technique. Additionally, injection of low volume (40 cc) contrast material may reduce the risk of contrast induced nephropathy, therefore, facilitate the diagnostic approach. This technique can be applied to all cases and particularly patients at high risk of contrast induced nephropathy due to its similar diagnostic quality with a low dose and high levels of arteriovenous enhancement simultaneously. PMID:25392818

  5. Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-microbial Immunity

    PubMed Central

    Swimm, Alyson; Giver, Cynthia R.; Harris, Wayne A. C.; Laval, Julie; Napier, Brooke A.; Patel, Gopi; Crump, Ryan; Peng, Zhenghong; Bornmann, William; Pulendran, Bali; Buller, R. Mark; Weiss, David S.; Tirouvanziam, Rabindra; Waller, Edmund K.; Kalman, Daniel

    2015-01-01

    Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics “emergency hematopoiesis,” a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens. PMID:25822986

  6. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Amelioration of streptozotocin‑induced pancreatic β cell damage by morin: Involvement of the AMPK‑FOXO3‑catalase signaling pathway.

    PubMed

    Wang, Ning; Zhang, Jiahui; Qin, Mengting; Yi, Wenjing; Yu, Shuang; Chen, Yi; Guan, Jing; Zhang, Rui

    2018-03-01

    Pancreatic β cells are sensitive to oxidative stress, which is one of the predominant causes of cell damage and the emergence of diabetes. The identification of effective therapeutic strategies to protect pancreatic cells from oxidative stress has increased interest in the screening of antioxidants from natural products. The present study aimed to investigate the protective effects of morin against streptozotocin (STZ)‑induced cell damage in a rat insulinoma cell line (RINm5F pancreatic β cells) and to identify the underlying mechanisms. The results indicated that morin inhibited the increase in intracellular reactive oxygen species, attenuated the activity of poly (ADP‑ribose) polymerase, restored intracellular nicotinamide adenine dinucleotide levels and reduced the apoptotic cell death of STZ‑treated pancreatic β cells. Treatment with morin significantly upregulated catalase in pancreatic β cells, and ameliorated the STZ‑induced loss of catalase at the genetic, protein and enzymatic level. In further experiments, morin induced the phosphorylation of 5' adenosine monophosphate‑activated protein kinase (AMPK), which subsequently promoted the translocation of forkhead box O3 (FOXO3) to the nucleus. Specific small interfering RNAs (siRNAs) against AMPK and FOXO3 suppressed morin‑induced catalase expression. Furthermore, catalase‑specific siRNA abolished the protective effects of morin against STZ‑stimulated cell death. Taken together, these results indicated that morin protected RINm5F cells from STZ‑induced cell damage by triggering the phosphorylation of AMPK, thus resulting in subsequent activation of FOXO3 and induction of catalase.

  8. Impact of concomitant dexamethasone dosing schedule on bortezomib-induced peripheral neuropathy in multiple myeloma.

    PubMed

    Kumar, Shaji K; Laubach, Jacob P; Giove, Thomas J; Quick, Maureen; Neuwirth, Rachel; Yung, Godwin; Rajkumar, S Vincent; Richardson, Paul G

    2017-09-01

    Peripheral neuropathy (PN) is the most troublesome adverse event associated with the proteasome inhibitor bortezomib. Studies suggest an inflammatory aetiology for bortezomib-induced PN (BiPN) and it has been hypothesized that reducing inflammation with concomitant dexamethasone may reduce BiPN incidence and/or severity. We retrospectively analysed PN rates from 32 studies (2697 patients with previously untreated multiple myeloma) incorporating bortezomib and differing dexamethasone schedules: partnered dosing (days of and after bortezomib), weekly dosing, and other dosing schedules (e.g. days 1-4, 8-11). Pooled overall PN rates were 45·5%, 63·9%, and 47·5%, respectively, with 5·3%, 11·0%, and 9·6% grade ≥3. Adjusting for potential confounders (age, gender, presence of thalidomide, bortezomib treatment duration), PN rates in patients on partnered dosing schedules appeared lower than in patients on weekly or other dosing schedules. Analyses conducted using patient-level data suggest that cumulative dexamethasone dose, a potential confounding factor, is unlikely to have influenced the analyses. Findings were similar in a separate pooled analysis excluding data from regimens incorporating thalidomide, when pooled overall PN rates were 50·1%, 63·9%, and 48·3%, respectively, with 4·2%, 11·0%, and 8·6% grade ≥3. These findings suggest that partnered dexamethasone dosing may result in less severe BiPN compared with alternative dexamethasone dosing schedules. © 2017 John Wiley & Sons Ltd.

  9. Beneficial effects of banana (Musa sp. var. elakki bale) flower and pseudostem on hyperglycemia and advanced glycation end-products (AGEs) in streptozotocin-induced diabetic rats.

    PubMed

    Bhaskar, Jamuna J; Shobha, Mysore S; Sambaiah, Kari; Salimath, Paramahans V

    2011-09-01

    Diabetes is a chronic health problem and major cause of death in most of the countries. Diet management plays an important role in controlling diabetes and its complications along with insulin and drugs. We have examined the effect of banana (Musa sp. var. elakki bale) flower and pseudostem on hyperglycemia and advanced glycation end-products (AGEs) in streptozotocin-induced diabetic rats. Our results indicated that banana flower and pseudostem have low glycemic index and have a high content of dietary fiber and antioxidants. Diabetic symptoms like hyperglycemia, polyuria, polyphagia, polydipsia, urine sugar, and body weight were ameliorated in banana flower- and pseudostem-treated rats. Increased glomerular filtration rate in the diabetic group (5.1 ± 0.22 ml/min) was decreased in banana flower-fed (2.5 ± 0.37 ml/min) and pseudostem-fed (3.0 ± 0.45 ml/min) groups and were significant at P < 0.001 and P < 0.01, respectively. Fructosamine and AGEs formed during diabetes were inhibited in treated groups when compared with the diabetic group. The diabetic group showed 11.5 ± 0.64 μg of AGEs/mg protein in kidney, whereas, in banana flower- and pseudostem-fed groups, it was reduced to 9.21 ± 0.32 and 9.29 ± 0.24 μg/mg protein, respectively, and were significant at P < 0.01. These findings suggest that banana flower and pseudostem have anti-diabetic and anti-AGEs properties and are beneficial as food supplements for diabetics.

  10. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.

    PubMed

    Liu, Yung-Yang; Chiang, Chi-Huei; Hung, Shih-Chieh; Chian, Chih-Feng; Tsai, Chen-Liang; Chen, Wei-Chih; Zhang, Haibo

    2017-01-01

    Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels. I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells) and high (1×106 cells) dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined. I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS), pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism. Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.

  11. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury

    PubMed Central

    Chiang, Chi-Huei; Hung, Shih-Chieh; Chian, Chih-Feng; Tsai, Chen-Liang; Chen, Wei-Chih; Zhang, Haibo

    2017-01-01

    Background Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels. Methods I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells) and high (1×106 cells) dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined. Results I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS), pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism. Conclusions Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent

  12. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    PubMed

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  13. Low-dose acute vanillin is beneficial against harmaline-induced tremors in rats.

    PubMed

    Abdulrahman, Al Asmari; Faisal, Kunnathodi; Meshref, Ali Al Amri; Arshaduddin, Mohammed

    2017-03-01

    To study the effect of pretreatment with low doses of vanillin, a flavoring agent used as a food additive, on harmaline-induced tremor in rats. Sprague Dawley rats (110 ± 5 g) were divided into groups of six animals each. Vanillin (6.25 mg, 12.5 mg, and 25 mg/kg) was administered by gavage to different groups of rats, 30 minutes before the induction of tremor. Harmaline (10 mg/kg, i.p.) was used for the induction of tremor. The latency of onset, duration, tremor intensity, tremor index, and spontaneous locomotor activity were recorded. A separate batch of animals was used for the determination of serotonin (5HT) and 5 hydroxyindole acetic acid (5HIAA) levels in the brain. Harmaline treatment resulted in characteristic tremor that lasted for more than 2 hours and decreased the locomotor activity of rats. Pre-treatment with vanillin significantly reduced the duration, intensity, and tremor index of harmaline-treated animals. Vanillin treatment also significantly attenuated harmaline-induced decrease in the locomotor activity. An increase in 5HT levels and the changes in 5HIAA/5HT ratio observed in harmaline treated rats were significantly corrected in vanillin pretreated animals. Vanillin in low doses reduces harmaline-induced tremor in rats, probably through its modulating effect on serotonin levels in the brain. These findings suggest a beneficial effect of vanillin in essential tremor.

  14. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats

    PubMed Central

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-01-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p<0.05) weight reduction, abnormal haematological parameters, high serum lipids (except high density lipoprotein) concentrations, increased creatinine, bilirubin and urea levels with decreased in albumin level when compared with non-diabetic control rats. All these alterations were reverted to normal after administered with different doses of ethanol extract of Artocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients. PMID:29670849

  15. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats.

    PubMed

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-03-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p<0.05) weight reduction, abnormal haematological parameters, high serum lipids (except high density lipoprotein) concentrations, increased creatinine, bilirubin and urea levels with decreased in albumin level when compared with non-diabetic control rats. All these alterations were reverted to normal after administered with different doses of ethanol extract of Artocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  16. Antihyperglycemic effects of separate and composite extract of root of Musa paradisiaca and leaf of Coccinia indica in streptozotocin-induced diabetic male albino rat.

    PubMed

    Mallick, Chhanda; Chatterjee, Kausik; Guhabiswas, Mehuli; Ghosh, Debidas

    2007-02-16

    We evaluated the antihyperglycaemic properties of aqueous-methanolic (40:60) extract of root of Musa paradisiaca and leaf of Coccinia indica in separate as well as in composite manner by conducting experiment on streptozotocin-induced diabetic rats. We measured food and water intake ability, the fasting blood glucose level, glucose tolerance, activities of important carbohydrate metabolic enzymes like glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, hexokinase in liver along with quantification of glycogen in liver and in skeletal muscle and serum insulin level. We noted that after treatment of aqueous methanolic extract of above plant parts in separate as well as in composite manner at a concentration of 80 mg/100 g body weight/day to streptozotocin-induced diabetic rat resulted in a significant remedial effect on blood glucose level as well as carbohydrate metabolic enzymes and the quantity of liver and skeletal muscle glycogen. Serum insulin level that was diminished in streptozotocin-induced diabetic rat recovered significantly after the co-administration of extract of above plant parts. All the above parameters showed a more potent remedial effect after composite extract treatment with respect to separate treatment and none of the extract has any general metabolic toxicity induction.

  17. Induction, management, and complications of streptozotocin-induced diabetes mellitus in rhesus monkeys.

    PubMed

    Kim, Jong-Min; Shin, Jun-Seop; Min, Byoung-Hoon; Kim, Hyun-Je; Kim, Jung-Sik; Yoon, Il-Hee; Jeong, Won-Young; Lee, Ga-Eul; Kim, Min-Sun; Kim, Ju-Eun; Jin, Sang-Man; Park, Chung-Gyu

    2016-11-01

    Diabetes mellitus (DM) model using streptozotocin (STZ) which induces chemical ablation of β cell in the pancreas has been widely used for various research purposes in non-human primates. However, STZ has been known to have a variety of adverse effects such as nephrotoxicity, hepatotoxicity, and even mortality. The purpose of this study is to report DM induction by STZ, toxicity associated with STZ and procedure and complication of exogenous insulin treatment for DM management in rhesus monkeys (Macaca mulatta) that are expected to be transplanted with porcine islets within 2 months. Streptozotocin (immediately dissolved in normal saline, 110 mg/kg) was slowly infused via central catheter for 10 minutes in 22 rhesus monkeys. Clinical signs, complete blood count and blood chemistry were monitored to evaluate toxicity for 1 week after STZ injection. Monkey basal C-peptides were measured and intravenous glucose tolerance test was performed to confirm complete induction of DM. Exogenous insulin was subcutaneously injected to maintain blood glucose in diabetic rhesus monkeys and the complications were recorded while in insulin treatment. Severe salivation and vomiting were observed within 1 hour after STZ injection in 22 rhesus monkeys. One monkey died at 6 hours after STZ injection and the reason for the death was unknown. Pancreatitis was noticed in one monkey after STZ injection, but the monkey recovered after 5 days by medical treatment. Serum total protein and albumin decreased whereas the parameters for the liver function such as aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly increased (P<.05) after STZ injection, but they were resolved within 1 week. Azotemia was not observed. Monkey fasting C-peptide levels after STZ injection were <0.1 ng/mL in 18 rhesus monkeys, but 0.34, 0.22, 0.16 ng/mL in three monkeys, respectively. The value of daily insulin requirement was 0.92±0.26IU/kg/d (range=0.45-1.29) in

  18. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome

    PubMed Central

    Siegmund, Stephanie E; Yang, Hua; Sharma, Rohit; Javors, Martin; Skinner, Owen; Mootha, Vamsi; Hirano, Michio; Schon, Eric A

    2017-01-01

    Abstract Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential ‘rapamycin metabolic signature.’ These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases. PMID:28973153

  19. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats.

    PubMed

    Arora, R; Kuhad, A; Kaur, I P; Chopra, K

    2015-08-01

    Rheumatoid arthritis (RA), a chronic and systemic inflammation, results in destruction of joints and cartilages. Effectiveness of curcumin has been established in a wide variety of inflammatory disorders, but its utility as a therapeutic agent is limited by its poor absorption, rapid metabolism and fast systemic elimination. To apprehend these limitations, we propose to use highly bioavailable curcumin loaded solid lipid nanoparticles (C-SLNs) for the treatment of RA. In the present study, the protective effect of curcumin and its SLNs was evaluated in complete Freund's adjuvant (CFA)-induced arthritis in rats. Arthritic rats exhibited marked decrease in paw withdrawal threshold in Randall-Selitto and von Frey hair test along with decreased reaction time in hot plate. Arthritic rats also showed significant joint hyperalgesia, joint stiffness and increased paw volume along with marked decrease in mobility score. Arthritic rats showed a significant increase in blood leukocyte count, oxidative-nitrosative stress, tumour necrosis factor-α, C-reactive protein, cyclic citrullinated peptide antibody levels and radiological alterations in tibiotarsal joint. C-SLN administration (10 and 30 mg/kg), when compared with free curcumin (10 and 30 mg/kg), significantly and dose dependently ameliorated various symptoms of arthritis in rats, improved biochemical markers and preserved radiological alterations in joints of arthritic rats. The current findings suggest the protective potential of curcumin-SLNs in ameliorating CFA-induced arthritis in rats through attenuation of oxido-inflammatory and immunomodulatory cascade. Further, the results emphasize that SLNs are a novel approach to deliver curcumin into the inflamed joints and improve its biopharmaceutical performance. © 2014 European Pain Federation - EFIC®

  20. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    PubMed

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Antihyperglycemic activity of Albizzia lebbeck bark extract in streptozotocin-nicotinamide induced type II diabetes mellitus rats.

    PubMed

    Patel, Priyank A; Parikh, Mihir P; Johari, Sarika; Gandhi, Tejal R

    2015-01-01

    Albizzia lebbeck (L.) Benth. (Family - Leguminosae) extract is a proven mast cell stabilizing agent. Mast cells are involved in the inflammatory processes leading to the diabetes mellitus. To evaluate the effect of A. lebbeck against experimentally induced type 2 diabetes mellitus in rats. Female Sprague-Dawley rats were randomly allocated to six groups (n = 6). Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg) given after 15 min of nicotinamide administration (110 mg/kg). Treatment with methanolic extract of A. lebbeck bark (MEAL) and metformin drug as standard was given for 21 days. Serum glucose (GLU) levels were measured on the 0 day and on 1(st), 7(th), 14(th) and 21(st) day after diabetes induction. After completion of study period, various biochemical parameters in serum such as - GLU, lipid profile, urea and creatinine were estimated. One-way analysis of variance followed with post-hoc Dunnett's test was used to analyse the data. Statistical significance for the values was set at P< 0.05. MEAL significantly decreased the level of serum GLU, creatinine, urea, cholesterol, triglycerides, low-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol and increased high-density lipoprotein levels. A. lebbeck bark extract showed antihyperglycaemic activity along with antihyperlipidemic effect.

  2. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    PubMed

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  3. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  4. Anti-diabetic activity of traditional Indian gold containing preparation: Shadguna Balijarita Makaradhwaja on streptozotocin induced diabetic rats.

    PubMed

    Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar

    2016-01-01

    Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21(st) day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect.

  5. Anti-diabetic activity of traditional Indian gold containing preparation: Shadguna Balijarita Makaradhwaja on streptozotocin induced diabetic rats

    PubMed Central

    Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar

    2016-01-01

    Background: Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. Objectives: The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21st day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Results: Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. Conclusion: The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect. PMID:27104037

  6. Effect of an aqueous extract of Scoparia dulcis on plasma and tissue glycoproteins in streptozotocin induced diabetic rats.

    PubMed

    Latha, M; Pari, L

    2005-02-01

    The influence of Scoparia dulcis, a traditionally used plant for the treatment of diabetes mellitus, was examined in streptozotocin diabetic rats on dearrangement in glycoprotein levels. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin. An aqueous extract of Scoparia dulcis plant was administered orally for 6 weeks. The effect of the Scoparia dulcis extract on blood glucose, plasma insulin, plasma and tissue glycoproteins studied was in comparison to glibenclamide. The levels of blood glucose and plasma glycoproteins were increased significantly whereas the level of plasma insulin was significantly decreased in diabetic rats. There was a significant decrease in the level of sialic acid and elevated levels of hexose, hexosamine and fucose in the liver and kidney of streptozotocin diabetic rats. Oral administration of Scoparia dulcis plant extract (SPEt) to diabetic rats led to decreased levels of blood glucose and plasma glycoproteins. The levels of plasma insulin and tissue sialic acid were increased whereas the levels of tissue hexose, hexosamine and fucose were near normal. The present study indicates that Scoparia dulcis possesses a significant beneficial effect on glycoproteins in addition to its antidiabetic effect.

  7. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease

    PubMed Central

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094

  8. Studies on the therapeutic effect of propolis in streptozotocin-induced diabetic mice

    NASA Astrophysics Data System (ADS)

    Rifa'I, Muhaimin

    2017-05-01

    Propolis oral administration in diabetic mice can increase the expression of TLR-3 and ameliorate homeostatic imbalance. The TLR-3 expression increased in both B cells and T cells. In this study, we also found that propolis may improve insulin expression in pancreatic beta cells. Administering propolis at a dose of 100-200 mg/mL may significantly increase insulin synthesis. Propolis might protect healthy cells from apoptosis in cisplatin exposure. Cisplatin can induce spleen cells to remain in the G0/G1 phase or to reach the apoptosis stage in the absence of propolis. In contrast, cisplatin, when administered together with propolis to a culture of spleen cells, cannot force the cells to undergo apoptosis. In a culture of spleen cells in the presence of propolis, the cells did not show any responses. This suggests that propolis does not disrupt normal cell physiology and supports cell health when cells are exposed to cisplatin. Furthermore, propolis can suppress the production of the pro-inflammatory cytokine interferon-gamma (IFN-γ).

  9. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice.

    PubMed

    Jung, Un Ju; Cho, Yun-Young; Choi, Myung-Sook

    2016-05-19

    Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver.

  10. Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats.

    PubMed

    Lee, In-Chul; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Shin, In-Sik; Kim, Yun-Bae; Kim, Jong-Choon

    2017-11-01

    This study investigated the dose-response effects of pine bark extract (PBE, pycnogenol ® ) on oxidative stress-mediated apoptotic changes induced by cisplatin (Csp) in rats. The ameliorating potential of PBE was evaluated after orally administering PBE at doses of 10 or 20 mg/kg for 10 days. Acute kidney injury was induced by a single intraperitoneal injection of Csp at 7 mg/kg on test day 5. Csp treatment caused acute kidney injury manifested by elevated levels of serum blood urea nitrogen (BUN) and creatinine (CRE) with corresponding histopathological changes, including degeneration of tubular epithelial cells, hyaline casts in the tubular lumen, and inflammatory cell infiltration (interstitial nephritis). Csp also induced significant apoptotic changes in renal tubular cells. In addition, Csp treatment induced high levels of oxidative stress, as evidenced by an increased level of malondialdehyde, depletion of the reduced glutathione (GSH) content, and decreased activities of glutathione S-transferase, superoxide dismutase, and catalase in kidney tissues. On the contrary, PBE treatment lowered BUN and CRE levels and effectively attenuated histopathological alterations and apoptotic changes induced by Csp. Additionally, treatment with PBE suppressed lipid peroxidation, prevented depletion of GSH, and enhanced activities of the antioxidant enzymes in kidney tissue. These results indicate that PBE has a cytoprotective effect against oxidative stress-mediated apoptotic changes caused by Csp in the rat kidney, which may be attributed to both increase of antioxidant enzyme activities and inhibition of lipid peroxidation.

  11. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats.

    PubMed

    Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes

    2015-06-01

    This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4) M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 μM). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    PubMed

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  13. Whole-body ultra-low dose CT using spectral shaping for detection of osteolytic lesion in multiple myeloma.

    PubMed

    Suntharalingam, Saravanabavaan; Mikat, Christian; Wetter, Axel; Guberina, Nika; Salem, Ahmed; Heil, Philipp; Forsting, Michael; Nassenstein, Kai

    2018-06-01

    The aim of this study was to investigate the radiation dose and image quality of a whole-body low-dose CT (WBLDCT) using spectral shaping at 100 kV (Sn 100 kV) for the assessment of osteolytic lesions in patients with multiple myeloma. Thirty consecutive patients were retrospectively selected, who underwent a WBLDCT on a third-generation dual-source CT (DSCT) (Sn 100 kV, ref. mAs: 130). They were matched with patients, who were examined on a second-generation DSCT with a standard low-dose protocol (100 kV, ref. mAs: 111). Objective and subjective image quality, radiation exposure as well as the frequency of osteolytic lesions were evaluated. All scans were of diagnostic image quality. Subjective overall image quality was significantly higher in the study group (p = 0.0003). Objective image analysis revealed that signal intensities, signal-to-noise ratio and contrast-to-noise ratio of the bony structures were equal or significantly higher in the control group. There was no significant difference in the frequency of osteolytic lesions (p = 0.259). The median effective dose of the study protocol was significantly lower (1.45 mSv vs. 5.65 mSv; p < 0.0001). WBLDCT with Sn 100 kV can obtain sufficient image quality for the depiction of osteolytic lesions while reducing the radiation dose by approximately 74%. • Spectral shaping using tin filtration is beneficial for whole-body low-dose CT • Sn 100 kV yields sufficient image quality for depiction of osteolytic lesions • Whole-body low-dose CT can be performed with a median dose of 1.5 mSv.

  14. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    PubMed

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  15. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature).

    PubMed

    Abbaszadeh, A; Haddadi, G H; Haddadi, Z

    2017-06-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses.

  16. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)

    PubMed Central

    Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z.

    2017-01-01

    Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses. PMID:28580334

  17. Proteomic Analysis of Gastrocnemius Muscle in Rats with Streptozotocin-Induced Diabetes and Chronically Exposed to Fluoride

    PubMed Central

    Lima Leite, Aline; Gualiume Vaz Madureira Lobo, Janete; Barbosa da Silva Pereira, Heloísa Aparecida; Silva Fernandes, Mileni; Martini, Tatiani; Zucki, Fernanda; Sumida, Dóris Hissako; Rigalli, Alfredo; Buzalaf, Marília Afonso Rabelo

    2014-01-01

    Administration of high doses of fluoride (F) can alter glucose homeostasis and lead to insulin resistance (IR). This study determined the profile of protein expression in the gastrocnemius muscle of rats with streptozotocin-induced diabetes that were chronically exposed to F. Male Wistar rats (60 days old) were randomly distributed into two groups of 18 animals. In one group, diabetes was induced through the administration of streptozotocin. Each group (D-diabetic and ND-non-diabetic) was further divided into 3 subgroups each of which was exposed to a different F concentration via drinking water (0 ppm, 10 ppm or 50 ppm F, as NaF). After 22 days of treatment, the gastrocnemius muscle was collected and submitted to proteomic analysis (2D-PAGE followed by LC-MS/MS). Protein functions were classified by the GO biological process (ClueGO v2.0.7+Clupedia v1.0.8) and protein-protein interaction networks were constructed (PSICQUIC, Cytoscape). Quantitative intensity analysis of the proteomic data revealed differential expression of 75 spots for ND0 vs. D0, 76 for ND10 vs.D10, 58 spots for ND50 vs. D50, 52 spots for D0 vs. D10 and 38 spots for D0 vs. D50. The GO annotations with the most significant terms in the comparisons of ND0 vs. D0, ND10 vs. D10, ND50 vs. D50, D0 vs. D10 and D0 vs. D50, were muscle contraction, carbohydrate catabolic processes, generation of precursor metabolites and energy, NAD metabolic processes and gluconeogenesis, respectively. Analysis of subnetworks revealed that, in all comparisons, proteins with fold changes interacted with GLUT4. GLUT4 interacting proteins, such as MDH and the stress proteins HSPB8 and GRP78, exhibited decreased expression when D animals were exposed to F. The presence of the two stress proteins indicates an increase in IR, which might worsen diabetes. Future studies should evaluate whether diabetic animals treated with F have increased IR, as well as which molecular mechanisms are involved. PMID:25180703

  18. Pretreatment of low dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells.

    PubMed

    Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y

    1997-06-01

    Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.

  19. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats.

    PubMed

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Jaiswal, Dolly; Watal, Geeta

    2007-11-01

    This study was undertaken to investigate the hypoglycemic and antidiabetic effect of single and repeated oral administration of the aqueous extract of Cynodon dactylon (Family: Poaceae) in normal and streptozotocin induced diabetic rats, respectively. The effect of repeated oral administration of aqueous extract on serum lipid profile in diabetic rats was also examined. A range of doses, viz. 250, 500 and 1000mg/kg bw of aqueous extract of Cynodon dactylon were evaluated and the dose of 500mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4h of administration in normal rats. The same dose of 500mg/kg produced a fall of 23% in blood glucose level within 1h during glucose tolerance test (GTT) of mild diabetic rats. This dose has almost similar effect as that of standard drug tolbutamide (250mg/kg bw). Severely diabetic rats were also treated daily with 500mg/kg bw for 14 days and a significant reduction of 59% was observed in fasting blood glucose level. A reduction in the urine sugar level and increase in body weight of severe diabetic rats were additional corroborating factors for its antidiabetic potential. Total cholesterol (TC), low density lipoprotein (LDL) and triglyceride (TG) levels were decreased by 35, 77 and 29%, respectively, in severely diabetic rats whereas, cardioprotective, high density lipoprotein (HDL) was increased by 18%. These results clearly indicate that aqueous extract of Cynodon dactylon has high antidiabetic potential along with significant hypoglycemic and hypolipidemic effects.

  20. Use of unripe plantain (Musa paradisiaca) in the management of diabetes and hepatic dysfunction in streptozotocin induced diabetes in rats

    PubMed Central

    Okafor, Polycarp

    2015-01-01

    Aim This study aims to investigate the effect of unripe plantain (Musa paradisiaca) on markers of hepatic dysfunction in streptozotocin induced diabetic rats. Methods Blood glucose; relative liver weight (RLW); relative kidney weight (RKW); relative heart weight (RHW); relative pancreatic weight (RPW); serum and hepatic serum aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP); serum amylase, lipase, total, and conjugated bilirubin; and chemical analysis of the test feed were determined using standard techniques. Results The diabetic rats had significant alteration (P < 0.05) of blood glucose; RLW; RKW; RPW; serum and hepatic AST, ALT, and ALP; serum total and conjugated bilirubin; and serum lipase activities compared with nondiabetic while these parameters were significantly improved (P < 0.05) in the rats fed unripe plantain. There were no significant differences (P > 0.05) in the RHW of the rats in the three groups, as well as significant decreases (P < 0.05) in the amylase levels of the diabetic rats compared with the nondiabetic, but there was nonsignificant increase (P > 0.05) in the amylase levels of the rats fed unripe plantain compared with the nondiabetic rats. The test and standard rat feeds contained considerable amount of proteins, carbohydrates, fats, phenols, and crude fiber. Conclusion Amelioration of acute pancreatitis by unripe plantain could play a key role in its management of diabetes and related complications. PMID:25838921

  1. Use of unripe plantain (Musa paradisiaca) in the management of diabetes and hepatic dysfunction in streptozotocin induced diabetes in rats.

    PubMed

    Eleazu, Chinedum O; Okafor, Polycarp

    2015-03-01

    This study aims to investigate the effect of unripe plantain (Musa paradisiaca) on markers of hepatic dysfunction in streptozotocin induced diabetic rats. Blood glucose; relative liver weight (RLW); relative kidney weight (RKW); relative heart weight (RHW); relative pancreatic weight (RPW); serum and hepatic serum aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP); serum amylase, lipase, total, and conjugated bilirubin; and chemical analysis of the test feed were determined using standard techniques. The diabetic rats had significant alteration (P < 0.05) of blood glucose; RLW; RKW; RPW; serum and hepatic AST, ALT, and ALP; serum total and conjugated bilirubin; and serum lipase activities compared with nondiabetic while these parameters were significantly improved (P < 0.05) in the rats fed unripe plantain. There were no significant differences (P > 0.05) in the RHW of the rats in the three groups, as well as significant decreases (P < 0.05) in the amylase levels of the diabetic rats compared with the nondiabetic, but there was nonsignificant increase (P > 0.05) in the amylase levels of the rats fed unripe plantain compared with the nondiabetic rats. The test and standard rat feeds contained considerable amount of proteins, carbohydrates, fats, phenols, and crude fiber. Amelioration of acute pancreatitis by unripe plantain could play a key role in its management of diabetes and related complications.

  2. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats.

    PubMed

    Barman, Susmita; Pradeep, Seetur R; Srinivasan, Krishnapura

    2018-04-01

    Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.

    PubMed

    Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun

    2016-05-01

    The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.

  4. Analysis of the antinociceptive interactions in two-drug combinations of gabapentin, oxcarbazepine and amitriptyline in streptozotocin-induced diabetic mice.

    PubMed

    Tomić, Maja A; Vucković, Sonja M; Stepanović-Petrović, Radica M; Micov, Ana M; Ugresić, Nenad D; Prostran, Milica S; Bosković, Bogdan

    2010-02-25

    Antiepileptic and antidepressant drugs are the primary treatments for pain relief in diabetic neuropathy. Combination therapy is a valid approach in pain treatment, where a reduction of doses could reduce side effects and still achieve optimal analgesia. We examined the effects of two-drug combinations of gabapentin, oxcarbazepine, and amitriptyline on nociception in diabetic mice and aimed to determine the type of interaction between components. The nociceptive responses in normal and diabetic mice were assessed by the tail-flick test. The testing was performed before and three weeks after the diabetes induction with streptozotocin (150mg/kg; i.p.), when the antinociceptive effects of gabapentin, oxcarbazepine, amitriptyline and their two-drug combinations were examined. Gabapentin (10-40mg/kg; p.o.) and oxcarbazepine (20-80mg/kg; p.o.) produced a significant, dose-dependent antinociception in diabetic mice while amitriptyline (5-60mg/kg; p.o.) produced weak antinociceptive effect. In normal mice, neither of the drugs produced antinociception. Gabapentin and oxcarbazepine, co-administered in fixed-dose fractions of the ED(50) to diabetic mice, induced significant, dose-dependent antinociception. Isobolographic analysis revealed synergistic interaction. Oxcarbazepine (10-60mg/kg; p.o.)+amitriptyline (5mg/kg; p.o.) and gabapentin (10-30mg/kg; p.o.)+amitriptyline (5mg/kg; p.o.) combinations significantly and dose-dependently reduced nociception in diabetic mice. Analysis of the log dose-response curves for oxcarbazepine or gabapentin in a presence of amitriptyline and oxcarbazepine or gabapentin applied alone, revealed a synergism in oxcarbazepine-amitriptyline and additivity in gabapentin-amitriptyline combination. These findings provide new information about the combination therapy of painful diabetic neuropathy and should be explored further in patients with diabetic neuropathy.

  5. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome.

    PubMed

    Siegmund, Stephanie E; Yang, Hua; Sharma, Rohit; Javors, Martin; Skinner, Owen; Mootha, Vamsi; Hirano, Michio; Schon, Eric A

    2017-12-01

    Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential 'rapamycin metabolic signature.' These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases. © The Author 2017. Published by Oxford University Press.

  6. Effect of the Polyphenol Rich Ethyl Acetate Fraction from the Leaves of Lycium chinenseMill. on Oxidative Stress, Dyslipidemia, and Diabetes Mellitus in Streptozotocin-Nicotinamide Induced Diabetic Rats.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2017-10-01

    Lycium chinenseMill., popularly known as boxthorn, is a plant that is traditionally used for treating night sweat, cough, inflammation and diabetes mellitus. However, the leaves have received little or no attention despite their potentials as a potent therapeutic agent. This study was aimed at investigating the hypoglycemic and hypolipidemic effects of the polyphenols-rich ethyl acetate fraction from the leaves of Lycium chinenseMill. on streptozotocin-nicotinamide induced diabetic rats. The ethyl acetate fraction (LFE) was selected and orally gavaged at 100, 200, and 400 mg/kg dose to streptozotocin (STZ)-nicotinamide induced diabetic rats. The rats' body weight, fasting blood glucose (FBG), lipid profile and oxidative stress markers were evaluated after the treatment period. Treatment with LFE resulted in a significant decrease in the FBG level, altered lipid profiles, and reduced the activities of the enzymes alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT) in the treated diabetic rats. Furthermore, LFE significantly elevated the antioxidant status (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities) and reducing malondialdehyde (MDA) levels in the treated rats. The present study has revealed that L. chinenseMill. possess anti-hyperglycemic and anti-hyperlipidemic properties which is mediated through modulation of oxidative stress and polyphenolics might be responsible for the action. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. Mutagenicity of streptozotocin and several other nitrosourea compounds in Salmonella typhimurium.

    PubMed

    Zimmer, D M; Bhuyan, B K

    1976-11-01

    The following nitrosourea compounds were compared for their ability to induce mutation (to histidine independence) in the histidine-requiring auxotroph Salmonella typhimurium his G46: MNU, streptozotocin (SZ, streptozocin) and its analogs SZA1 and SZA2, and the antitumor drugs BCNU, CCNU and DCNU. At equitoxic doses SZ, SZA1, SZA2 and MNU were almost equally mutagenic causing 150, 42, 140 and 170 mutants/106 survivors at 20% lethal dose (ID20) ALTHOUGH, ON A WIEGHT BASIS, SZ was the most mutagenic of all the compounds tested. At ID20 BCNU, CCNU and DCNU gave about 0.5 mutants/106 survivors. Our results show that these nitrosoureas, in common with many other drugs (such as cyclophosphamide, daunomycin, etc.) used in cancer chemotherapy, are highly mutagenic. The implication of our results in the screening of drugs for their mutagenicity to man is discussed.

  8. Influence of dosing times on cisplatin-induced peripheral neuropathy in rats.

    PubMed

    Seto, Yoshihiro; Okazaki, Fumiyasu; Horikawa, Keiji; Zhang, Jing; Sasaki, Hitoshi; To, Hideto

    2016-09-27

    Although cis-diamminedichloro-platinum (CDDP) exhibits strong therapeutic effects in cancer chemotherapy, its adverse effects such as peripheral neuropathy, nephropathy, and vomiting are dose-limiting factors. Previous studies reported that chronotherapy decreased CDDP-induced nephropathy and vomiting. In the present study, we investigated the influence of dosing times on CDDP-induced peripheral neuropathy in rats. CDDP (4 mg/kg) was administered intravenously at 5:00 or 17:00 every 7 days for 4 weeks to male Sprague-Dawley rats, and saline was given to the control group. To assess the dosing time dependency of peripheral neuropathy, von-Frey test and hot-plate test were performed. In order to estimate hypoalgesia, the hot-plate test was performed in rats administered CDDP weekly for 4 weeks. On day 28, the withdrawal latency to thermal stimulation was significantly prolonged in the 17:00-treated group than in the control and 5:00-treated groups. When the von-Frey test was performed to assess mechanical allodynia, the withdrawal threshold was significantly lower in the 5:00 and 17:00-treated groups than in the control group on day 6 after the first CDDP dose. The 5:00-treated group maintained allodynia throughout the experiment with the repeated administration of CDDP, whereas the 17:00-treated group deteriorated from allodynia to hypoalgesia. It was revealed that the severe of CDDP-induced peripheral neuropathy was inhibited in the 5:00-treated group, whereas CDDP-treated groups exhibited mechanical allodynia. These results suggested that the selection of an optimal dosing time ameliorated CDDP-induced peripheral neuropathy.

  9. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root's hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice.

    PubMed

    Ahangarpour, Akram; Heidari, Hamid; Oroojan, Ali Akbar; Mirzavandi, Farhang; Nasr Esfehani, Khalil; Dehghan Mohammadi, Zeinab

    2017-01-01

    Arctium lappa (burdock), (A. lappa) root has hypoglycemic and antioxidative effects, and has been used for treatment of diabetes in tradition medicine. This study was conducted to evaluate the antidiabetic and hypolipidemic properties of A. lappa root extract on nicotinamide-streptozotocin (NA-STZ)-induced type2 diabetes in mice. In this investigation, 70 adult male NMRI mice (30-35g) randomly divided into 7 groups (n=10) as follow: 1-control, 2-type 2 diabetic mice, 3-diabetic mice that received glibenclamide (0.25 mg/kg) as an anti-diabetic drug, 4, 5, 6 and 7- diabetic and normal animals that were pre-treated with 200 and 300 mg/kg A. lappa root extract, respectively, for 28 days. Diabetes has been induced by intraperitoneal injection of NA and STZ. Finally, the blood sample was taken and insulin, glucose, SGOT, SGPT, alkaline phosphatase, leptin and lipid levels was evaluated. Induction of diabetes decreased the level of insulin, leptin and high density lipoprotein (HDL) and increased the level of other lipids, glucose, and hepatic enzymes significantly (p<0.05). Administration of both doses of the extract significantly decreased the level of triglyceride, very low density lipoprotein, glucose and alkaline phosphatase in diabetic mice (p<0.05). Insulin levels increased in animals treated with 200 mg/kg (p<0.05) and HDL and leptin levels increased in animals treated with 300 mg/kg of the extract (p<0.01). The results showed that A. lappa root extract, at specific doses, has an anti-diabetic effect through its hypolipidemic and insulinotropic properties. Hence, this plant extract may be beneficial in the treatment of diabetes.

  10. Nigerian Honey Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Rats

    PubMed Central

    Erejuwa, Omotayo O.; Nwobodo, Ndubuisi N.; Akpan, Joseph L.; Okorie, Ugochi A.; Ezeonu, Chinonyelum T.; Ezeokpo, Basil C.; Nwadike, Kenneth I.; Erhiano, Erhirhie; Abdul Wahab, Mohd S.; Sulaiman, Siti A.

    2016-01-01

    Diabetic dyslipidemia contributes to an increased risk of cardiovascular disease. Hence, its treatment is necessary to reduce cardiovascular events. Honey reduces hyperglycemia and dyslipidemia. The reproducibility of these beneficial effects and their generalization to honey samples of other geographical parts of the world remain controversial. Currently, data are limited and findings are inconclusive especially with evidence showing honey increased glycosylated hemoglobin in diabetic patients. It was hypothesized that this deteriorating effect might be due to administered high doses. This study investigated if Nigerian honey could ameliorate hyperglycemia and hyperlipidemia. It also evaluated if high doses of honey could worsen glucose and lipid abnormalities. Honey (1.0, 2.0 or 3.0 g/kg) was administered to diabetic rats for three weeks. Honey (1.0 or 2.0 g/kg) significantly (p < 0.05) increased high density lipoprotein (HDL) cholesterol while it significantly (p < 0.05) reduced hyperglycemia, triglycerides (TGs), very low density lipoprotein (VLDL) cholesterol, non-HDL cholesterol, coronary risk index (CRI) and cardiovascular risk index (CVRI). In contrast, honey (3.0 g/kg) significantly (p < 0.05) reduced TGs and VLDL cholesterol. This study confirms the reproducibility of glucose lowering and hypolipidemic effects of honey using Nigerian honey. However, none of the doses deteriorated hyperglycemia and dyslipidemia. PMID:26927161

  11. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats

    PubMed Central

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W.; Fujiwara, Yukio

    2010-01-01

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes. PMID:20117096

  12. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress.

    PubMed

    Njomen, Guy Bertrand Sabas Nya; Kamgang, René; Oyono, Jean Louis Essame; Njikam, Njifutie

    2008-11-01

    The antioxidant effect of the methanol-methylene chloride extract of Terminalia glaucescens (Combretaceae) leaves was investigated in streptozotocin (STZ)-induced oxidative stress. Oxidative stress was induced in mice by a daily dose of STZ (45 mg/kg body weight i.p.) for five days. From day one, before STZ injection, normal and diabetic-test mice received an oral dose of the extract (100 or 300 mg/kg b.w.) daily. Plasma metabolites, lipid peroxidation, and antioxidant enzymes in the liver were assessed and gain in body weight recorded. In normal mice the plant extract reduced food and water intake, blood glucose and LDL-C level and body weight gain, did not affect the lipid peroxidation in the liver, while the antioxidant enzyme activities seemed increased. Blood glucose was decreased (P < 0.05) in normal mice treated with 300 mg/kg extract. Diabetic mice pretreated with 100 mg/kg extract as diabetic control mice (DC) showed significant (P < 0.001) body weight loss, polyphagia and polydipsia, high plasma glucose level, decrease in the liver catalase, peroxidase, and superoxide dismutase activities, and increase in lipid peroxidation. The HDL-C level was lowered (P < 0.05) whereas LDL-C increased. In 300 mg/kg extract-pretreated diabetic mice the extract prevented body weight loss, increase of blood glucose level, lipid peroxidation in liver, food and water intake, and lowering of plasma HDL-C level and liver antioxidants; this extract prevented LDL-C level increase. These results indicate that T. glaucescens protects against STZ-induced oxidative stress and could thus explain its traditional use for diabetes and obesity treatment or management.

  13. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  14. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats.

    PubMed

    Ahmed, Danish; Kumar, Vikas; Verma, Amita; Gupta, Pushpraj S; Kumar, Hemant; Dhingra, Vishal; Mishra, Vatsala; Sharma, Manju

    2014-07-16

    Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. Albizzia Lebbeck Benth. stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of Albizzia Lebbeck Benth. in streptozotocin induced diabetic rats. The powdered stem bark of Albizzia Lebbeck Benth.. was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of Albizzia Lebbeck Benth. (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated heamoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats. Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a momentous decrease in fasting blood glucose, glycated heamoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p < 0.05) decreased the level of TC, TG, and LDL-c, VLDL-c. While it increases the level of HDL-c to a significant (p < 0.05) level. The treatment also resulted in a marked increase in reduced glutathione, glutathione Peroxidase, catalase and superoxide

  15. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats

    PubMed Central

    2014-01-01

    Background Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. Albizzia Lebbeck Benth. stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of Albizzia Lebbeck Benth. in streptozotocin induced diabetic rats. Methods The powdered stem bark of Albizzia Lebbeck Benth.. was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of Albizzia Lebbeck Benth. (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated heamoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats. Results Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a momentous decrease in fasting blood glucose, glycated heamoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p < 0.05) decreased the level of TC, TG, and LDL-c, VLDL-c. While it increases the level of HDL-c to a significant (p < 0.05) level. The treatment also resulted in a marked increase in reduced glutathione

  16. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats.

    PubMed

    Fernandes, Sheila Marques; Cordeiro, Priscilla Mendes; Watanabe, Mirian; Fonseca, Cassiane Dezoti da; Vattimo, Maria de Fatima Fernandes

    2016-10-01

    The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.

  17. Antihyperglycemic activity of Albizzia lebbeck bark extract in streptozotocin-nicotinamide induced type II diabetes mellitus rats

    PubMed Central

    Patel, Priyank A.; Parikh, Mihir P.; Johari, Sarika; Gandhi, Tejal R.

    2015-01-01

    Introduction: Albizzia lebbeck (L.) Benth. (Family - Leguminosae) extract is a proven mast cell stabilizing agent. Mast cells are involved in the inflammatory processes leading to the diabetes mellitus. Aim: To evaluate the effect of A. lebbeck against experimentally induced type 2 diabetes mellitus in rats. Materials and Method: Female Sprague-Dawley rats were randomly allocated to six groups (n = 6). Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg) given after 15 min of nicotinamide administration (110 mg/kg). Treatment with methanolic extract of A. lebbeck bark (MEAL) and metformin drug as standard was given for 21 days. Serum glucose (GLU) levels were measured on the 0 day and on 1st, 7th, 14th and 21st day after diabetes induction. After completion of study period, various biochemical parameters in serum such as - GLU, lipid profile, urea and creatinine were estimated. One-way analysis of variance followed with post-hoc Dunnett's test was used to analyse the data. Statistical significance for the values was set at P< 0.05. Results: MEAL significantly decreased the level of serum GLU, creatinine, urea, cholesterol, triglycerides, low-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol and increased high-density lipoprotein levels. Conclusion: A. lebbeck bark extract showed antihyperglycaemic activity along with antihyperlipidemic effect. PMID:27313423

  18. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition.

    PubMed

    Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O

    2017-02-28

    Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.

  19. Curculigo orchioides Gaertn Effectively Ameliorates the Uro- and Nephrotoxicities Induced by Cyclophosphamide Administration in Experimental Animals

    PubMed Central

    Murali, Vishnu Priya; Kuttan, Girija

    2015-01-01

    Background. Curculigo orchioides Gaertn is an ancient medicinal plant (Family: Amaryllidaceae), well known for its immunomodulatory and rejuvenating effects. Cyclophosphamide (CPA) is an alkylating agent widely used for treating a variety of human malignancies, but associated with different toxicities too. Our previous reports regarding the hemoprotective and hepatoprotective effects of the plant against CPA toxicities provide the background for the present study, which is designed to analyze the ameliorative effect of the methanolic extract of C orchioides on the urotoxicity and nephrotoxicity induced by CPA. Methods. CPA was administered to male Swiss albino mice at a single dose of 1.5 mmol/kg body weight to induce urotoxicity after 5 days of prophylactic treatment with C orchioides extract (20 mg/kg body weight). Mesna (2-mercaptoethanesulfonate) was used as a control drug. Serum, tissue, and urine levels of kidney function markers and antioxidant levels were checked along with the serum cytokine levels. Results. The plant extract was found to be effective in ameliorating the urotoxic and nephrotoxic side effects of CPA. Upregulation of serum interferon-γ and interleukin-2 levels were observed with C orchioides treatment, which was decreased by CPA administration. Besides these, serum tumor necrosis factor-α level was also downregulated by C orchioides treatment. Conclusion. Curculigo orchioides was found to be effective against the CPA-induced bladder and renal toxicities by its antioxidant capability and also by regulating the pro-inflammatory cytokine levels. PMID:26424815

  20. Potent effects of the total saponins from Dioscorea nipponica Makino against streptozotocin-induced type 2 diabetes mellitus in rats.

    PubMed

    Yu, Hao; Zheng, Lingli; Xu, Lina; Yin, Lianhong; Lin, Yuan; Li, Hua; Liu, Kexin; Peng, Jinyong

    2015-02-01

    The aim of the present paper was to investigate the effects and possible mechanisms of the total saponins from Dioscorea nipponica Makino (TSDN) against type 2 diabetes mellitus. Streptozotocin (STZ) with high-fat diet induced type 2 diabetes mellitus (T2DM) rats were treated with TSDN. Some biochemical parameters, target proteins and genes were investigated. The results showed that TSDN decreased the levels of food/water intake, fasting blood glucose and serum lipid parameters, ameliorated oral glucose and insulin tolerance test levels, markedly increased body weight and serum insulin, reduced excess free radicals and affected ossification and renal protection. Histopathological examination indicated that TSDN increased liver glycogen, decreased the production of lipid vacuoles and lightened liver damage. Further investigation showed that TSDN down-regulated the protein expressions of NF-κB, GRP78, ATF6, eIF2 and the levels of MAPK phosphorylation and up-regulated the protein expressions of IRS-1, GLUT-4, p-Akt and p-AMPK. In addition, TSDN obviously decreased the gene expressions of TNF-a, IL-6, PEPCK, G6Pase, GSK-3β and GSK-3β activity, and increased the gene expressions of PFK, PK and GK activity. These findings show the anti-diabetic activity of total saponins from D. nipponica Makino, which should be developed as a new potent drug for treatment of diabetes mellitus in future. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte.

    PubMed

    Wu, Zhi-hong; Chen, Ya-qin; Zhao, Shui-ping

    2013-03-08

    Adipocytes behave as a rich source of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Endoplasmic reticulum (ER) stress in adipocytes can alter adipokines secretion and induce inflammation. The aim of this study is to evaluate the effect of simvastatin on the ox-LDL-induced ER stress and expression and secretion of TNF-α and MCP-1 in 3T3-L1 adipocytes. Differentiated adipocytes were treated with various concentrations of ox-LDL (0-100 μg/ml) for 24h with or without simvastatin pre-treatment. The protein expressions of ER stress markers, glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP), were determined by Western blot analysis. The mRNA expressions of TNF-α and MCP-1 were measured by real-time PCR. The protein release of TNF-α and MCP-1 in culture medium were evaluated by ELISA. Ox-LDL treatment led to significant up-regulation of GRP78 and CHOP in dose-dependent manner. The expressions of TNF-α and MCP-1 were dose-dependently increased at mRNA and protein levels after ox-LDL intervention. The effects of ox-LDL on adipocytes were abolished by pre-treatment with 4-phenylbutyrate (4-PBA), a chemical chaperone known to ameliorate ER stress. Simvastatin could inhibit ox-LDL-induced ER stress and reduce the expression of TNF-α and MCP-1 at mRNA and protien level in dose dependent manner. In conclusion, ox-LDL can stimulate the expression and secretion of TNF-α and MCP-1 through its activation of ER stress in adipocytes. Simvastatin might exert direct anti-inflammatory effects in adipocytes through amelioration of ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Low-dose hydrocortisone therapy attenuates septic shock in adult patients but does not reduce 28-day mortality: a meta-analysis of randomized controlled trials.

    PubMed

    Wang, Changsong; Sun, Jiaxiao; Zheng, Juanjuan; Guo, Lei; Ma, Hongyan; Zhang, Yang; Zhang, Fengmin; Li, Enyou

    2014-02-01

    The role of low-dose hydrocortisone in attenuating septic shock and reducing short-term mortality in adult patients with septic shock is unclear. We conducted a meta-analysis of previous studies to determine whether hydrocortisone could ameliorate the effects of septic shock at 7 and 28 days and reduce 28-day morality. Randomized controlled trials (RCTs) of corticosteroids versus placebo (or supportive treatment alone) were retrieved from electronic searches (Medline, Embase, and Cochrane Library databases; LILACS; and Web of Knowledge) and manual searches (up to May 2012). From a pool of 1949 potentially relevant articles, duplicate independent review identified 10 relevant, RCTs of low-dose hydrocortisone therapy in septic shock. Four pairs of reviewers agreed on the criteria for trial eligibility. One reviewer entered the data into the computer, and 3 reviewers checked the data. Missing data were obtained from the authors of the relevant trials. The primary outcome analyzed was an estimate of 28-day mortality. Eight publications were included in the meta-analysis. Low-dose hydrocortisone therapy did not reduce 28-day mortality (N = 1063; odds ratio (OR) = 0.891, 95% confidence interval (CI), 0.69-1.15). Low-dose hydrocortisone therapy ameliorated shock at 7 days (6 RCTs, N = 964, OR = 2.078, 95% CI, 1.58-2.73, P < 0.0001, and I = 26.9%) and 28 days (6 RCTs, N = 947, OR = 1.495, 95% CI, 1.12-1.99, P = 0.006, and I = 0.0%). Although low-dose hydrocortisone therapy ameliorates septic shock at 7 and 28 days, it does not reduce 28-day mortality.

  3. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Dongyun; Li Jingxia; Gao Jimin

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cellmore » transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.« less

  4. Anti-Diabetic Effects of Phenolic Extract from Rambutan Peels (Nephelium lappaceum) in High-Fat Diet and Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Ma, Qingyu; Guo, Yan; Sun, Liping; Zhuang, Yongliang

    2017-01-01

    Recent studies have shown that rambutan peel phenolic (RPP) extract demonstrate high antioxidant and antiglycation activities in vitro and in vivo. This study further evaluated the anti-diabetic activity of RPP in a mouse model of Type II diabetes induced by streptozotocin combined with high-fat diet. Results showed that RPP increased the body weight and reduced the fasting blood glucose level of the diabetic mice. RPP significantly reduced the serum levels of total cholesterol, triglyceride, creatinine, and glycated serum protein in diabetic mice in a dose-dependent manner. Glycogen content in mice liver was recovered by RPP, which further increased the activity of superoxide dismutase and glutathione peroxidase and reduced lipid peroxidation in diabetic mice. Histological analysis showed that RPP effectively protected the tissue structure of the liver, kidney, and pancreas. In addition, RPP decreased the mesangial index and inhibited the expression of TGF-β in the kidney of diabetic mice. PMID:28933738

  5. Anti-Diabetic Effects of Phenolic Extract from Rambutan Peels (Nephelium lappaceum) in High-Fat Diet and Streptozotocin-Induced Diabetic Mice.

    PubMed

    Ma, Qingyu; Guo, Yan; Sun, Liping; Zhuang, Yongliang

    2017-07-26

    Recent studies have shown that rambutan peel phenolic (RPP) extract demonstrate high antioxidant and antiglycation activities in vitro and in vivo. This study further evaluated the anti-diabetic activity of RPP in a mouse model of Type II diabetes induced by streptozotocin combined with high-fat diet. Results showed that RPP increased the body weight and reduced the fasting blood glucose level of the diabetic mice. RPP significantly reduced the serum levels of total cholesterol, triglyceride, creatinine, and glycated serum protein in diabetic mice in a dose-dependent manner. Glycogen content in mice liver was recovered by RPP, which further increased the activity of superoxide dismutase and glutathione peroxidase and reduced lipid peroxidation in diabetic mice. Histological analysis showed that RPP effectively protected the tissue structure of the liver, kidney, and pancreas. In addition, RPP decreased the mesangial index and inhibited the expression of TGF-β in the kidney of diabetic mice.

  6. Low doses of dextromethorphan attenuate morphine-induced rewarding via the sigma-1 receptor at ventral tegmental area in rats.

    PubMed

    Chen, Shiou-Lan; Hsu, Kuei-Ying; Huang, Eagle Yi-Kung; Lu, Ru-Band; Tao, Pao-Luh

    2011-09-01

    Chronic use of morphine causes rewarding and behavioral sensitization, which may lead to the development of psychological craving. In our previous study, we found that a widely used antitussive dextromethorphan (known as a low affinity NMDA receptor antagonist), at doses of 10-20 mg/kg (i.p.), effectively decreased morphine rewarding in rats. In this study, we further investigated the effects and mechanisms of low doses of DM (μg/kg range) on morphine rewarding and behavioral sensitization. A conditioned place preference test was used to determine the rewarding and a locomotor activity test was used to determine the behavioral sensitization induced by the drug(s) in rats. When a low dose of DM (3 or 10 μg/kg, i.p.) was co-administered with morphine (5 mg/kg, s.c.), the rewarding effect, but not behavioral sensitization, induced by morphine was inhibited. The inhibiting effect of DM could be blocked by systemically administering a sigma-1 receptor antagonist, BD1047 (3 mg/kg, i.p.). When BD1047 (5 nmole/site) was locally given at the VTA, it also blocked the effects of a low dose of DM in inhibiting morphine rewarding. Our findings suggest that the activation of the sigma-1 receptor at the VTA may be involved in the mechanism of low doses of DM in inhibiting the morphine rewarding effect and the possibility of using extremely low doses of DM in treatment of opioid addiction in clinics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    PubMed

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats.

    PubMed

    Ma, Shuai; Lin, Yuli; Deng, Bo; Zheng, Yin; Hao, Chuanming; He, Rui; Ding, Feng

    2016-12-01

    The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level

  9. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model.

    PubMed

    Banyard, Ashley C; Healy, Derek M; Brookes, Sharon M; Voller, Katja; Hicks, Daniel J; Núñez, Alejandro; Fooks, Anthony R

    2014-03-06

    The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and

  10. Coffee Ingestion Suppresses Hyperglycemia in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Kobayashi, Misato; Kurata, Takao; Hamana, Yoshiki; Hiramitsu, Masanori; Inoue, Takashi; Murai, Atsushi; Horio, Fumihiko

    2017-01-01

    Coffee consumption reduces the risk of type 2 diabetes in humans, but the mechanism remains unclear. In this study, we investigated the effect of coffee on pancreatic β-cells in the induction of diabetes by streptozotocin (STZ) treatment in mice. We examined the effect of coffee, caffeine, or decaffeinated coffee ingestion on STZ-induced hyperglycemia. After STZ injection in Exp. 1 and 2, serum glucose concentration and water intake in coffee ingestion (Coffee group) tended to be lowered or was significantly lowered compared to those in water ingestion (Water group) instead of coffee. In Exp. 1, the values for water intake and serum glucose concentration in caffeine ingestion (Caffeine group) were similar to those in the Water group. In Exp. 2, serum glucose concentrations in the decaffeinated coffee ingestion (Decaf group) tended to be lower than those in the Water group. Pancreatic insulin contents tended to be higher in the Coffee and Decaf groups than in the Water group (Exp. 1 and 2). In Exp. 3, subsequently, we showed that coffee ingestion also suppressed the deterioration of hyperglycemia in diabetic mice which had been already injected with STZ. This study showed that coffee ingestion prevented the development of STZ-induced diabetes and suppressed hyperglycemia in STZ-diabetic mice. Caffeine or decaffeinated coffee ingestion did not significantly suppress STZ-induced hyperglycemia. These results suggest that the combination of caffeine and other components of decaffeinated coffee are needed for the preventive effect on pancreatic β-cell destruction. Coffee ingestion may contribute to the maintenance of pancreatic insulin contents.

  11. Defining unnecessary disinfection procedures for single-dose and multiple-dose vials.

    PubMed

    Buckley, T; Dudley, S M; Donowitz, L G

    1994-11-01

    Recommendations in the literature conflict on the necessity of disinfecting single-use vials prior to aspiration of fluid. Interventions to disinfect the stopper surface on multiple-dose vials vary considerably. To determine the necessity of alcohol disinfection of the stopper on single-dose vials and to compare povidone-iodine and alcohol versus alcohol-only disinfection of the stopper prior to each needle penetration on multiple-dose vials. The rubber stopper surfaces of 100 single-dose vials were cultured for the presence of bacteria. To determine the efficacy of two procedures for disinfection of multiple-dose vials, 87 stopper surfaces routinely disinfected with both povidone-iodine and alcohol were cultured for bacteria. After a change in practice, 100 multiple-dose vials routinely disinfected with alcohol only were cultured for the presence of bacteria. Of the cultures done on single-dose vial stoppers, 99% were sterile. A comparison of the two disinfection techniques for multiple-dose vials revealed that 83 (95%) of the 87 vials prepped with both povidone-iodine and alcohol were sterile, compared with all stoppers disinfected with alcohol only. This study shows the lack of necessity of any disinfection procedure on the rubber stopper of single-dose vials and the efficacy of alcohol only for disinfecting the stopper of multiple-dose vials.

  12. Treadmill exercise decreases incidence of Alzheimer's disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong

    2015-04-01

    Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer's disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence.

  13. Aliskiren ameliorates chlorhexidine digluconate-induced peritoneal fibrosis in rats.

    PubMed

    Ke, Chun-Yen; Lee, Chia-Chi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2010-04-01

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of aliskiren on chlorhexidine digluconate-induced PF in rats. The PF was induced in Sprague-Dawley rats by daily administration of 0.5 mL 0.1% chlorhexidine digluconate in normal saline via PD tube for 1 week. Rats received daily intravenous injections of low-dose aliskiren (1 mg kg(-1)) or high-dose aliskiren (10 mg kg(-1)) for 1 week. After 7 days, conventional 4.25% Dianeal (30 mL) was administered via a PD catheter with a dwell time of 4 h and assessed of peritoneal function. At the end of dialysis, rats were sacrificed and the liver peritoneum was harvested for microscopically and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D(4)/P(4) urea level was reduced, the D(4)/D(0) glucose level, serum and dialysate transforming growth factor-beta1 (TGF-beta1) level was increased, the liver peritoneum was markedly thicker, and the expression of TGF-beta1, alpha-smooth muscle actin (alpha-SMA), fibronectin, collagen, and vascular endothelial growth factor (VEGF) were elevated in the PS group compared with the vehicle group. Aliskiren decreased the serum and dialysate TGF-beta1 level, decreased the thickness of the liver peritoneum, and decreased the expression of TGF-beta1, alpha-SMA, fibronectin, collagen, and VEGF-positive cells in liver peritoneum. Moreover, high-dose aliskiren had better protective effects against PF than low dose in rats. Aliskiren protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF-beta1 production.

  14. Effects of low-dose light-emitting-diode therapy in combination with water bath for atopic dermatitis in NC/Nga mice.

    PubMed

    Kim, Chang-Hyun; Cheong, Kyung Ah; Lim, Won Suk; Park, Hyung-Moo; Lee, Ai-Young

    2016-01-01

    Light-emitting diode (LED) phototherapy and water bath therapy have beneficial effect on atopic dermatitis (AD)-like skin disease. However, not all current treatments work well and alternative therapies are need. The contribution of combination therapy with low-dose 850 nm LED and water bath was investigated on dermatophagoides farina (Df)-induced dermatitis in NC/Nga mice. Low-dose LED (10, 15, and 20 J/cm(2) ) irradiation, water bath (36 ± 1°C) were administered separately and together to the Df-induced NC/Nga mice in acrylic jar once a day for 2 weeks. Combined therapy with low-dose LED therapy and water bath therapy significantly ameliorated the development of AD-like skin lesions. These effects were correlated with the suppression of total IgE, NO, histamine, and Th2-mediated immune responses. Furthermore, combination therapy significantly reduced the infiltration of inflammatory cells and the induction of thymic stromal lymphopoietin (TSLP) in the skin lesions. The beneficial therapeutic effects of this combination therapy might regulate by the inhibition of various immunological responses including Th2-mediated immune responses, inflammatory mediators such as IgE, histamine, and NO, as well as inflammatory cells. The combination therapy of LED and water bath might be used as an efficacious, safe, and steroid-free alternative therapeutic strategy for the treatment of AD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice

    PubMed Central

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-01-01

    Background and Design: Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. Methods and Results: The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Conclusion: Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity. PMID:23446660

  16. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  17. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice

    PubMed Central

    Ahangarpour, Akram; Heidari, Hamid; Oroojan, Ali Akbar; Mirzavandi, Farhang; Nasr Esfehani, Khalil; Dehghan Mohammadi, Zeinab

    2017-01-01

    Objective: Arctium lappa (burdock), (A. lappa) root has hypoglycemic and antioxidative effects, and has been used for treatment of diabetes in tradition medicine. This study was conducted to evaluate the antidiabetic and hypolipidemic properties of A. lappa root extract on nicotinamide-streptozotocin (NA-STZ)-induced type2 diabetes in mice. Materials and Methods: In this investigation, 70 adult male NMRI mice (30-35g) randomly divided into 7 groups (n=10) as follow: 1-control, 2-type 2 diabetic mice, 3-diabetic mice that received glibenclamide (0.25 mg/kg) as an anti-diabetic drug, 4, 5, 6 and 7- diabetic and normal animals that were pre-treated with 200 and 300 mg/kg A. lappa root extract, respectively, for 28 days. Diabetes has been induced by intraperitoneal injection of NA and STZ. Finally, the blood sample was taken and insulin, glucose, SGOT, SGPT, alkaline phosphatase, leptin and lipid levels was evaluated. Results: Induction of diabetes decreased the level of insulin, leptin and high density lipoprotein (HDL) and increased the level of other lipids, glucose, and hepatic enzymes significantly (p<0.05). Administration of both doses of the extract significantly decreased the level of triglyceride, very low density lipoprotein, glucose and alkaline phosphatase in diabetic mice (p<0.05). Insulin levels increased in animals treated with 200 mg/kg (p<0.05) and HDL and leptin levels increased in animals treated with 300 mg/kg of the extract (p<0.01). Conclusion: The results showed that A. lappa root extract, at specific doses, has an anti-diabetic effect through its hypolipidemic and insulinotropic properties. Hence, this plant extract may be beneficial in the treatment of diabetes. PMID:28348972

  18. Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research.

    PubMed

    Kreuzer, M; Auvinen, A; Cardis, E; Durante, M; Harms-Ringdahl, M; Jourdain, J R; Madas, B G; Ottolenghi, A; Pazzaglia, S; Prise, K M; Quintens, R; Sabatier, L; Bouffler, S

    2018-03-01

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).

  19. Evaluation of toxicity after one-months treatment with Bauhinia forficata decoction in streptozotocin-induced diabetic rats

    PubMed Central

    Pepato, Maria Teresa; Baviera, Amanda Martins; Vendramini, Regina Célia; Brunetti, Iguatemy Lourenço

    2004-01-01

    Background Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. PMID:15186500

  20. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats.

    PubMed

    Karolczak, Kamil; Rozalska, Sylwia; Wieczorek, Marek; Labieniec-Watala, Magdalena; Watala, Cezary

    2012-10-15

    We hypothesized that BBB is impaired in rat model of streptozotocin-induced diabetes and can be sealed by poly(amido)amine dendrimers G4.0 (PAMAM G4), which reveal anti-glycation activity. The BBB permeabilization was monitored in rats with the 60-day streptozotocin-diabetes and non-diabetic animals, using three fluorescent dyes (given intraperitoneally) differing in molecular weight: fluorescein, fluorescein isothiocyanate (FITC)-dextran and Evans blue. All animals were administered for 2 months with either PAMAM G4 dendrimer or placebo. The fluorescence intensities of the injected fluorescent markers were recorded in the homogenates of selected brain regions. The highest accumulations of the used fluorescent dyes were observed for fluorescein, predominantly in thalamus, hippocampus, frontal cortex, striatum and cerebellum. FITC-dextran leaked to much smaller extent, however, higher permeabilization for FITC-dextran was revealed in pons-medulla oblongata, frontal and parietal cortex of diabetic compared to control animals. Evans blue leaked very slowly into striatum and pons-medulla oblongata in diabetic rats. The treatment of diabetic animals with PAMAM G4 significantly reduced blood glucose concentration and hallmarks of late diabetic complications, compared to non-treated diabetic animals. PAMAM G4 significantly reduced diabetes-induced permeabilization of BBB, which remained in line with the reduced blood glucose and the amelioration of the biochemical hallmarks of severe hyperglycaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats.

    PubMed

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai

    2015-07-18

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (P<0.05), improved serum lipid profiles, liver enzymes and kidney functions in diabetic rats after 14 days. The extracts also improved damage of islet of Langerhan's in diabetic rats. The plant material reduced the post-prandial glucose level (P<0.001) at the dose of 750 mg/kg. These findings revealed that both the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.

  2. The influence of non-DNA-targeted effects on carbon ion–induced low-dose hyper-radiosensitivity in MRC-5 cells

    PubMed Central

    Ye, Fei; Ning, Jing; Liu, Xinguo; Jin, Xiaodong; Wang, Tieshan; Li, Qiang

    2016-01-01

    Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation–induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion–induced LDHRS. PMID:26559335

  3. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes.

    PubMed

    Sellamuthu, Periyar Selvam; Arulselvan, Palanisamy; Fakurazi, Sharida; Kandasamy, Murugesan

    2014-01-01

    Salacia chinensis L. is a traditional Southeast Asian herbal medicine and used in the treatment of diabetes. To investigate the antidiabetic properties of mangiferin from Salacia chinensis and its beneficial effect on toxicological and hematological parameters in streptozotocin induced diabetic rats. Mangiferin was orally treated with the dose of 40 mg/kg body weight/day for 30 days to diabetic rats. Biochemical (blood glucose, uric acid, urea and creatinine), toxicological (AST, ALT and ALP) and hematological parameters (red and white blood cells) and their functional indices were evaluated in diabetic treated groups with mangiferin and glibenclamide. Mangiferin treated diabetic rats significantly (p<0.05) lowered the level of blood glucose, in addition, altered the levels of biochemical parameters including urea, uric acid, and creatinine. Toxicological parameters including AST, ALT and ALP were also significantly reduced after treatment with mangiferin in diabetic rats. Similarly, the levels of red blood, white blood cells and their functional indices were significantly improved through the administration of mangiferin. Thus, our results indicate that mangiferin present in S. chinensis possesses antidiabetic properties and nontoxic nature against chemically induced diabetic rats. Further experimental investigations are warrant to make use of its relevant therapeutic effect to substantiate its ethno-medicinal usage.

  4. The effects of pre-emptive low-dose X-ray irradiation on MIA induced inflammatory pain in rats

    NASA Astrophysics Data System (ADS)

    Hahm, Suk-Chan; Lee, Go-Eun; Kim, Eun-Hye; Kim, Junesun; Lee, Taewoong; Lee, Wonho

    2013-07-01

    This study was performed to determine the effect of pre-emptive low-dose irradiation on the development of inflammatory pain and to characterize the potential mechanisms underlying this effect in osteoarthritis (OA) animal model. Whole-body X-irradiations with 0.1, 0.5, 1 Gy or sham irradiations were performed for 3 days before the induction of ostearthritis with monosodium iodoacetate (MIA) (40 µl, in saline) into the right knee joint in male Sprague Dawley rats. Behavioral tests for arthritic pain including evoked and non-evoked pain were conducted before and after MIA injection and inducible nitric-oxide synthase (iNOS) expression level was measured by western blot. Low-dose radiation significantly prevented the development of mechanical allodynia and thermal hyperalgesia and reduction in weight bearing that is regarded as a behavioral signs of non-evoked pain following MIA injection. Low-dose radiation significantly inhibited the increase in iNOS expression after MIA injection in spinal L3-5 segments in rat. These data suggest that low-dose X-irradiation is able to prevent the development of arthritic pain through modulation of iNOS expression in the spinal cord dorsal horn. Thus, low-dose radiotherapy could be substituted in part for treatment with drugs for patients with chronic inflammatory disease in clinical setting.

  5. Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats

    PubMed Central

    KIM, YOUNG-GIUN; LIM, HYUNG-HO; LEE, SUH-HA; SHIN, MAL-SOON; KIM, CHANG-JU; YANG, HYEON JEONG

    2015-01-01

    Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes. PMID:25891515

  6. P21 cip-Overexpression in the Mouse β Cells Leads to the Improved Recovery from Streptozotocin-Induced Diabetes

    PubMed Central

    Jiang, Wei; Sun, Xiaoning; Han, Yuhua; Ding, Mingxiao; Shi, Yan; Deng, Hongkui

    2009-01-01

    Under normal conditions, the regeneration of mouse β cells is mainly dependent on their own duplication. Although there is evidence that pancreatic progenitor cells exist around duct, whether non-β cells in the islet could also potentially contribute to β cell regeneration in vivo is still controversial. Here, we developed a novel transgenic mouse model to study the pancreatic β cell regeneration, which could specifically inhibit β cell proliferation by overexpressing p21 cip in β cells via regulation of the Tet-on system. We discovered that p21 overexpression could inhibit β-cell duplication in the transgenic mice and these mice would gradually suffer from hyperglycemia. Importantly, the recovery efficiency of the p21-overexpressing mice from streptozotocin-induced diabetes was significantly higher than control mice, which is embodied by better physiological quality and earlier emergence of insulin expressing cells. Furthermore, in the islets of these streptozotocin-treated transgenic mice, we found a large population of proliferating cells which expressed pancreatic duodenal homeobox 1 (PDX1) but not markers of terminally differentiated cells. Transcription factors characteristic of early pancreatic development, such as Nkx2.2 and NeuroD1, and pancreatic progenitor markers, such as Ngn3 and c-Met, could also be detected in these islets. Thus, our work showed for the first time that when β cell self-duplication is repressed by p21 overexpression, the markers for embryonic pancreatic progenitor cells could be detected in islets, which might contribute to the recovery of these transgenic mice from streptozotocin-induced diabetes. These discoveries could be important for exploring new diabetes therapies that directly promote the regeneration of pancreatic progenitors to differentiate into islet β cells in vivo. PMID:20020058

  7. Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut.

    PubMed

    Yue, Mengfan; Xia, Yufeng; Shi, Can; Guan, Chunge; Li, Yunfan; Liu, Rui; Wei, Zhifeng; Dai, Yue

    2017-09-01

    Berberine, an isoquinoline alkaloid, has been reported to ameliorate various autoimmune diseases including rheumatoid arthritis by oral administration. However, its mechanism remains mysterious due to an extremely low bioavailability. The fact that berberine readily accumulates in the gut, the largest endocrine organ in the body, attracted us to explore its anti-arthritic mechanism in view of the induction of intestinal immunosuppressive neuropeptides. In this study, berberine (200 mg·kg -1 , i.g.) was shown to ameliorate collagen-induced arthritis in rats, which was manifested by the reduction of clinical signs and joint destruction, as well as marked down-regulation of Th17 cell frequency and interleukin-17 level in blood. In contrast, an intravenous injection of berberine failed to affect arthritis in rats, implying that its anti-arthritic effect was gut-dependent. Further studies revealed that oral berberine selectively elevated the levels of cortistatin, of five gut-derived neuropeptides tested, in the intestines and sera of arthrititic rats. Antagonists of ghrelin/growth hormone secretagogue receptor 1 (a subtype of cortistatin receptor) almost completely abolished the ameliorative effect of berberine on arthritis and Th17 cell responses in rats. In vitro, berberine showed a moderate ability to promote the expression of cortistatin in nerve cells, which was strengthened when the nerve cells were cocultured with enteroendocrine cells to induce an autocrine/paracrine environment. In summary, oral berberine exerted anti-arthritic effect through inhibiting the Th17 cell response, which was closely associated with the induction of cortistatin generation from gut through augmenting autocrine/paracrine action between enteric nerve cells and endocrine cells. © 2017 Federation of European Biochemical Societies.

  8. Small molecule LX2343 ameliorates cognitive deficits in AD model mice by targeting both amyloid β production and clearance.

    PubMed

    Guo, Xiao-Dan; Sun, Guang-Long; Zhou, Ting-Ting; Xu, Xin; Zhu, Zhi-Yuan; Rukachaisirikul, Vatcharin; Hu, Li-Hong; Shen, Xu

    2016-09-01

    Streptozotocin (STZ) is widely used to induce oxidative damage and to impair glucose metabolism, apoptosis, and tau/Aβ pathology, eventually leading to cognitive deficits in both in vitro and in vivo models of Alzheimer's disease (AD). In this study, we constructed a cell-based platform using STZ to induce stress conditions mimicking the complicated pathologies of AD in vitro, and evaluated the anti-amyloid effects of a small molecule, N-(1,3-benzodioxol-5-yl)-2-[5-chloro-2-methoxy(phenylsulfonyl)anilino]acetamide (LX2343) in the amelioration of cognitive deficits in AD model mice. Cell-based assays for screening anti-amyloid compounds were established by assessing Aβ accumulation in HEK293-APP sw and CHO-APP cells, and Aβ clearance in primary astrocytes and SH-SY5Y cells after the cells were treated with STZ in the presence of the test compounds. Autophagic flux was observed using confocal laser scanning microscopy. APP/PS1 transgenic mice were administered LX2343 (10 mg·kg -1 ·d -1 , ip) for 100 d. After LX2343 administration, cognitive ability of the mice was evaluated using Morris water maze test, and senile plaques in the brains were detected using Thioflavine S staining. ELISA assay was used to evaluate Aβ and sAPPβ levels, while Western blot analysis was used to measure the signaling proteins in both cell and animal brains. LX2343 (5-20 μmol/L) dose-dependently decreased Aβ accumulation in HEK293-APP sw and CHO-APP cells, and promoted Aβ clearance in SH-SY5Y cells and primary astrocytes. The anti-amyloid effects of LX2343 were attributed to suppressing JNK-mediated APP Thr668 phosphorylation, thus inhibiting APP cleavage on one hand, and inhibiting BACE1 enzymatic activity with an IC 50 value of 11.43±0.36 μmol/L, on the other hand. Furthermore, LX2343 acted as a non-ATP competitive PI3K inhibitor to negatively regulate AKT/mTOR signaling, thus promoting autophagy, and increasing Aβ clearance. Administration of LX2343 in APP/PS1 transgenic mice

  9. Tetramethylpyrazine reverses intracerebroventricular streptozotocin-induced memory deficits by inhibiting GSK-3β.

    PubMed

    Lu, Fen; Li, Xu; Li, Wei; Wei, Ke; Yao, Yong; Zhang, Qianlin; Liang, Xinliang; Zhang, Jiewen

    2017-08-01

    Brain dysfunction, especially cognitive impairment, is one of the main complications in Alzheimer's disease (AD), which threatens the health of 46.8 million people worldwide. At present, the pathogenesis of cognitive dysfunction is only partially understood, and effective therapies for memory loss in AD remain elusive. Tetramethylpyrazine (TMP) is one of the major bioactive compounds purified from Chuanxiong, a Chinese herb used for the treatment of neurovascular and cardiovascular diseases. The neuroprotective properties of TMP are evident in some neurodegenerative diseases, including Parkinson's disease. However, whether TMP plays a neuroprotective role in AD is still unknown. Here, we report that 2-week treatment with TMP rescued both short-term and long-term fear memory impairment induced by intracerebroventricular injection of streptozotocin in a well-known AD rat model. Administration of TMP also restored spatial learning and memory retention abilities in streptozotocin-injected rats. Furthermore, TMP inhibited the activity of GSK-3β, an important kinase that mediates hippocampal synaptic and memory disorders in diabetes mellitus. Finally, we found that TMP treatment restored the function of cholinergic neurons. Our data suggest that dietary uptake of TMP can provide protection against memory loss in AD, and the inhibition of GSK-3β may play an important role in this protective effect. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularlymore » when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.« less

  11. (-)-Epicatechin-3-O-β-D-allopyranoside from Davallia formosana prevents diabetes and dyslipidemia in streptozotocin-induced diabetic mice.

    PubMed

    Lin, Cheng-Hsiu; Wu, Jin-Bin; Jian, Jia-Ying; Shih, Chun-Ching

    2017-01-01

    The objective of this study was to evaluate the effects and molecular mechanism of (-)-epicatechin-3-O-β-D-allopyranoside from Davallia formosana (BB) (also known as Gu-Sui-Bu) on type 1 diabetes mellitus and dyslipidemia in streptozotocin (STZ)-induced diabetic mice. This plant was demonstrated to display antioxidant activities and possess polyphenol contents. Diabetic mice were randomly divided into six groups and were given daily oral gavage doses of either BB (at three dosage levels), metformin (Metf) (at 0.3 g/kg body weight), fenofibrate (Feno) (at 0.25 g/kg body weight) or vehicle (distilled water) and a group of control (CON) mice were gavaged with vehicle over a period of 4 weeks. Treatment with BB led to reduced levels of blood glucose, HbA1C, triglycerides and leptin and to increased levels of insulin and adiponectin compared with the vehicle-treated STZ group. The diabetic islets showed retraction from their classic round-shaped as compared with the control islets. The BB-treated groups (at middle and high dosages) showed improvement in islets size and number of Langerhans islet cells. The membrane levels of skeletal muscular glucose transporter 4 (GLUT4) were significantly higher in BB-treated mice. This resulted in a net glucose lowering effect among BB-treated mice. Moreover, BB enhanced the expression of skeletal muscle phospho-AMPK in treated mice. BB-treated mice increased expression of fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα) and mRNA levels of carnitine palmitoyl transferase Ia (CPT1a). These mice also expressed lower levels of lipogenic genes such as fatty acid synthase (FAS), as well as lower mRNA levels of sterol regulatory element binding protein 1c (SREBP1c) and liver adipocyte fatty acid binding protein 2 (aP2). This resulted in a reduction in plasma triglyceride levels. BB-treated mice also expressed lower levels of PPARγ and FAS protein. This led to reduced adipogenesis, fatty acid

  12. Quantification of Quercetin Obtained from Allium cepa Lam. Leaves and its Effects on Streptozotocin-induced Diabetic Neuropathy.

    PubMed

    Dureshahwar, Khan; Mubashir, Mohammed; Une, Hemant Devidas

    2017-01-01

    Antioxidant potential has protective effects in diabetic neuropathy (DN); hence, the present study was designed with an objective to quantify quercetin from shade-dried leaves of Allium cepa Lam. and to study its effects on streptozotocin (STZ)-induced chronic DN. The shade-dried leaves of A. cepa Lam. were extracted with methanol and then fractionated using ethyl acetate (ACEA). The quantification of quercetin in ACEA was evaluated by high-performance thin layer chromatography (HPTLC). The STZ (40 mg/kg) was administered to Sprague-Dawley rats (180-250 g) maintained at normal housing conditions. The STZ was administered once a day for 3 consecutive days. The elevation in blood glucose was monitored for 3 weeks periodically using flavin adenine dinucleotide-glucose dehydrogenase method by Contour TS glucometer. Rats showing blood glucose above 250 mg/dl were selected for the study. Animals were divided into eight groups. ACEA (25, 50, and 100 mg/kg), quercetin (40 mg/kg), metformin (120 mg/kg), and gabapentin (100 mg/kg) were given orally once a day for 2 weeks. The blood glucose level was again measured at the end of treatment to assess DN. Thermal hyperalgesia, cold allodynia, motor incoordination, and neurotoxicity were studied initially and at the end of 2-week treatment. Biochemical parameters were also evaluated after 2-week drug treatment. The quercetin present in ACEA was 4.82% by HPTLC. All the ACEA treatment reduces blood glucose level at the end of the 2-week study and shows a significant neuroprotective effect in STZ-induced DN in the above experimental models. The quercetin present in ACEA proved protective effect in STZ-induced DN. High-performance thin layer chromatography reveals the presence of 4.82% quercetin in Allium cepa ethyl acetate. (ACEA). Its investigation against various diabetic neuropathy biomarkers has proved that ACEA has significant blood glucose reducing action shown neuroprotective action in thermal hyperalgesia, motor

  13. Baccaurea angulata fruit juice ameliorates altered hematological and biochemical biomarkers in diet-induced hypercholesterolemic rabbits.

    PubMed

    Ahmed, Idris Adewale; Mikail, Maryam Abimbola; Ibrahim, Muhammad

    2017-06-01

    Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (P<.05) ameliorated by the administration of BA juice. Improvements of the biomarkers in rabbits were dose-dependent, markedly enhanced at the highest dose of juice (1.5mL/kg/day). The results suggest potential health benefits of the antioxidant-rich BA fruit juice against hypercholesterolemia-associated hematological and biochemical alterations in the rabbit. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Consumption of Dietary Resistant Starch Partially Corrected the Growth Pattern Despite Hyperglycemia and Compromised Kidney Function in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Koh, Gar Yee; Rowling, Matthew J; Schalinske, Kevin L; Grapentine, Kelly; Loo, Yi Ting

    2016-10-12

    We previously demonstrated that feeding of dietary resistant starch (RS) prior to the induction of diabetes delayed the progression of diabetic nephropathy and maintained vitamin D balance in streptozotocin (STZ)-induced type 1 diabetic (T1D) rats. Here, we examined the impact of RS on kidney function and vitamin D homeostasis following STZ injection. Male Sprague-Dawley rats were administered STZ and fed a standard diet containing cornstarch or 20, 10, or 5% RS for 4 weeks. T1D rats fed 10 and 20% RS, but not 5% RS, gained more weight than cornstarch-fed rats. Yet, renal health and glucose metabolism were not improved by RS. Our data suggest that RS normalized growth patterns in T1D rats after diabetes induction in a dose-dependent manner despite having no effect on blood glucose and vitamin D balances. Future interventions should focus on the preventative strategies with RS in T1D.

  15. Impact of prior treatment and depth of response on survival in MM-003, a randomized phase 3 study comparing pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone in relapsed/refractory multiple myeloma

    PubMed Central

    San Miguel, Jesus F.; Weisel, Katja C.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Moreau, Philippe; Banos, Anne; Oriol, Albert; Garderet, Laurent; Cavo, Michele; Ivanova, Valentina; Alegre, Adrian; Martinez-Lopez, Joaquin; Chen, Christine; Renner, Christoph; Bahlis, Nizar Jacques; Yu, Xin; Teasdale, Terri; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Dimopoulos, Meletios A.

    2015-01-01

    Pomalidomide is a distinct oral IMiD® immunomodulatory agent with direct antimyeloma, stromal-support inhibitory, and immunomodulatory effects. The pivotal, multicenter, open-label, randomized phase 3 trial MM-003 compared pomalidomide + low-dose dexamethasone vs high-dose dexamethasone in 455 patients with refractory or relapsed and refractory multiple myeloma after failure of bortezomib and lenalidomide treatment. Initial results demonstrated significantly longer progression-free survival and overall survival with an acceptable tolerability profile for pomalidomide + low-dose dexamethasone vs high-dose dexamethasone. This secondary analysis describes patient outcomes by treatment history and depth of response. Pomalidomide + low-dose dexamethasone significantly prolonged progression-free survival and favored overall survival vs high-dose dexamethasone for all subgroups analyzed, regardless of prior treatments or refractory status. Both univariate and multivariate analyses showed that no variable relating to either the number (≤ or > 3) or type of prior treatment was a significant predictor of progression-free survival or overall survival. No cross-resistance with prior lenalidomide or thalidomide treatment was observed. Patients achieving a minimal response or better to pomalidomide + low-dose dexamethasone treatment experienced a survival benefit, which was even higher in those achieving at least a partial response (17.2 and 19.9 months, respectively, as compared with 7.5 months for patients with less than minimal response). These data suggest that pomalidomide + low-dose dexamethasone should be considered a standard of care in patients with refractory or relapsed and refractory multiple myeloma regardless of prior treatment. ClinicalTrials.gov: NCT01311687; EudraCT: 2010-019820-30. PMID:26160879

  16. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    PubMed

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Combined Therapy with Rheum tanguticum Polysaccharide and Low-dose 5-ASA Ameliorates TNBS-Induced Colitis in Rats by Suppression of NF-κB.

    PubMed

    Liu, Linna; Liu, Zhenxiong; Zhang, Tian; Shi, Lei; Zhang, Wenjuan; Zhang, Yan

    2015-06-01

    severity of histological signs were attenuated significantly in the 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 group. Treatment with R. tanguticum polysaccharide 1 plus 5-amino salicylic acid markedly decreased nuclear factor-kappa Bp65 and tumor necrosis factor-α protein expressions. R. tanguticum polysaccharide 1 and 5-amino salicylic acid had no effect on cyclooxygenase 1 protein expression, but inhibited the overexpression of the cyclooxygenase 2 protein. After treatment with 5-amino salicylic acid and R. tanguticum polysaccharide 1, the prostoglandin E2 level increased significantly and the inducible nitric oxide synthase level decreased considerably in the 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 group compared with the 2,4,6-trinitrobenzene sulfonic acid alone group. These results demonstrate that combined therapy with R. tanguticum polysaccharide 1 and low-dose 5-amino salicylic acid had more favorable effects on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats, and its effects may be associated with inhibiting nuclear factor-kappa Bp65 protein expression and tumor necrosis factor-α production, resulting in a decrease of cyclooxygenase 2 and inducible nitric oxide synthase protein expressions. Georg Thieme Verlag KG Stuttgart · New York.

  18. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  19. Amelioration of hyperglycemia and associated metabolic abnormalities by a combination of fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in experimental diabetes.

    PubMed

    Pradeep, Seetur R; Srinivasan, Krishnapura

    2017-09-26

    Fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) are independently known to have antidiabetic effects through different mechanisms. The beeneficial influence of a combination of dietary fenugreek seeds and onion on hyperglycemia and its associated metabolic abnormalities were evaluated in streptozotocin-induced diabetic rats. Diabetes was experimentally induced with streptozotocin and diabetic rats were fed with 10% fenugreek or 3% onion or their combination for 6 weeks. These dietary interventions significantly countered hyperglycemia, partially improved peripheral insulin resistance and impaired insulin secretion, reduced β-cell mass and markedly reversed the abnormalities in plasma albumin, urea, creatinine, glycated hemoglobin and advanced glycation end products in diabetic rats. These beneficial effects were highest in the fenugreek+onion group. Diabetic rats with these dietary interventions excreted lesser glucose, albumin, urea and creatinine, which were accompanied by improved body weights compared with the diabetic controls. These dietary interventions produced ameliorative effects on pancreatic pathology as reflected by near-normal islet cells, restored glycogen and collagen fiber deposition in diabetic rats. This study documented the hypoglycemic and insulinotropic effects of dietary fenugreek and onion, which were associated with countering of metabolic abnormalities and pancreatic pathology. It may be strategic to derive maximum nutraceutical antidiabetic benefits from these functional food ingredients by consuming them together.

  20. Therapeutic potential of octyl gallate isolated from fruits of Terminalia bellerica in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2013-06-01

    Medicinal plants are a potential source of antidiabetic drugs. Terminalia bellerica Roxb. (Combretaceae) is used in Indian traditional systems of medicine to treat diabetes mellitus. The aim of this study was to isolate and identify antihyperglycemic principle(s) from the fruits of T. bellerica and assess the bioactivity in streptozotocin (STZ)-induced diabetic rats. Bioassay-guided fractionation was followed to isolate the active compound(s), structure was elucidated using (1)H and (13)C NMR, IR and mass spectrometry and administered intragastrically to diabetic Wistar rats at different doses (5, 10 and 20 mg/kg, body weight) for 28 d. Plasma glucose, insulin, C-peptide and other biochemical parameters were studied. Octyl gallate (OG) isolated first time from the fruit rind of T. bellerica significantly (p < 0.05) reduced plasma glucose to near normal values (108.47 ± 6.9 mg/dl) after 14 d at the dose of 20 mg/kg. In addition, OG significantly increased plasma insulin, C-peptide, total protein, albumin, tissue glycogen, body weight and markedly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid and creatinine in diabetic rats. Also OG restored the altered regulatory enzymes of carbohydrate metabolism. OG might have augmented the secretion of insulin by the modulation of cAMP and intracellular calcium levels in the β cells of the pancreas. Our findings indicate that OG isolated first time from the fruit rind of T. bellerica has potential antidiabetic effect as it augments insulin secretion and normalizes the altered biochemical parameters in experimental diabetic rat models.

  1. The protective effects of silibinin in the treatment of streptozotocin-induced diabetic osteoporosis in rats.

    PubMed

    Wang, Te; Cai, Leyi; Wang, Yangyang; Wang, Qingqing; Lu, Di; Chen, Hua; Ying, Xiaozhou

    2017-05-01

    Diabetic osteoporosis (DO) is a complication of diabetes mellitus. Our previous study showed that silibinin can attenuate high glucose mediated human bone marrow stem cells dysfunction through antioxidant effect. However, no study has yet investigated the effect of silibinin in diabetic rats. Therefore, we assessed the effects of silibinin on bone characteristics in streptozotocin-induced diabetic rats. The aim of our study was to determine whether providing silibinin in the different supplementation could prevent bone loss in diabetic rats or not. Rats were randomly divided into four groups: (1) control group (CG) (n=10); (2) diabetic group (DG) (n=10); (3) diabetic group with 50mgkg -1 day -1 of silibinin orally (DG-50) (n=10); and (4) diabetic group with 100mgkg -1 day -1 of silibinin orally (DG-100) (n=10). 12 weeks after streptozotocin (STZ) injection, the femora from all rats were assessed and oxidative stress was evaluated. Bone mineral density was significantly decreased in diabetic rats; these effects were prevented by treatment with silibinin (100mgkg -1 day -1 orally). Similarly, in the DG and DG-50 groups, changes in microarchitecture of femoral metaphysis assessed by microcomputed tomography demonstrated simultaneous existence of diabetic osteoporosis; these impairments were prevented by silibinin (100mgkg -1 day -1 orally). In conclusion, silibinin supplementation may have potential use as a possible therapy for maintaining skeletal health and these results can enhance the understanding of diabetic osteoporosis induced by diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  3. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  4. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findingsmore » remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide

  5. Alpha-Mangostin Improves Insulin Secretion and Protects INS-1 Cells from Streptozotocin-Induced Damage.

    PubMed

    Lee, Dahae; Kim, Young-Mi; Jung, Kiwon; Chin, Young-Won; Kang, Ki Sung

    2018-05-16

    Alpha (α)-mangostin, a yellow crystalline powder with a xanthone core structure, is isolated from mangosteen ( Garcinia mangostana ), which is a tropical fruit of great nutritional value. The aim of the present study was to investigate the anti-diabetic effects of α-mangostin and to elucidate the molecular mechanisms underlying its effect on pancreatic beta (β)-cell dysfunction. To assess the effects of α-mangostin on insulin production, rat pancreatic INS-1 cells were treated with non-toxic doses of α-mangostin (1⁻10 μM) and its impact on insulin signaling was examined by Western blotting. In addition, the protective effect of α-mangostin against pancreatic β-cell apoptosis was verified by using the β-cell toxin streptozotocin (STZ). Our results showed that α-mangostin stimulated insulin secretion in INS-1 cells by activating insulin receptor (IR) and pancreatic and duodenal homeobox 1 (Pdx1) followed by phosphorylation of phospho-phosphatidylinositol-3 kinase (PI3K), Akt, and extracellular signal regulated kinase (ERK) signaling cascades, whereas it inhibited the phosphorylation of insulin receptor substrate (IRS-1) (Ser1101). Moreover, α-mangostin was found to restore the STZ-induced decrease in INS-1 cell viability in a dose-dependent manner. In addition, treatment of INS-1 cells with 50 μM STZ resulted in an increase in intracellular reactive oxygen species (ROS) levels, which was represented by the fluorescence intensity of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). This oxidative stress was decreased by co-treatment with 5 μM α-mangostin. Similarly, marked increases in the phosphorylation of P38, c-Jun N-terminal kinase (JNK), and cleavage of caspase-3 by STZ were decreased significantly by co-treatment with 5 μM α-mangostin. These results suggest that α-mangostin is capable of improving insulin secretion in pancreatic β-cells and protecting cells from apoptotic damage.

  6. Hypoglycemic action of vitamin K1 protects against early-onset diabetic nephropathy in streptozotocin-induced rats.

    PubMed

    Sai Varsha, M K N; Raman, Thiagarajan; Manikandan, R; Dhanasekaran, G

    2015-10-01

    Vitamin K is a potent regulator of vascular dynamics and prevents vascular calcification. Vitamin K is increasingly being recognized for its antioxidant and antiinflammatory properties. Recently we demonstrated that vitamin K1 (5 mg/kg) protects against streptozotocin-induced type 1 diabetes and diabetic cataract. The aim of this study was to determine whether the hypoglycemic action of vitamin K1 could inhibit early-onset diabetic nephropathy in a streptozotocin-induced rat kidney. Male Wistar rats were administered with 35 mg/kg STZ and after 3 days were treated with vitamin K1 (5 mg/kg, twice a week) for 3 months. Blood glucose was monitored once a month. At the end of the study, animals were sacrificed and kidney was dissected out and analysed for free radicals, antioxidants, aldose reductase, membrane ATPases, histopathology evaluation and expression of pro- and anti-inflammatory cytokines. Urea, uric acid, creatinine, albumin and insulin levels were also estimated. Treatment of diabetic rats with vitamin K1 resulted in a decrease in blood glucose and prevented microalbuminuria. Vitamin K1 also reduced oxidative stress and protected renal physiology by modulating Ca(2+) and Na(+)/K(+)-ATPases. Vitamin K1 inhibited renal inflammation by reducing nuclear factor-κB and inducible nitric oxide synthase. Interleukin-10 levels were increased in renal tissues, suggesting the ability of vitamin K1 to trigger antiinflammatory state. The hypoglycemic action of vitamin K1 could have an indirect effect by inhibiting early-onset diabetic nephropathy triggered by high blood glucose. Vitamin K1 could be an important nutrient based interventional strategy for early onset diabetic nephropathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Low submetamorphic doses of dexamethasone and thyroxine induce complete metamorphosis in the axolotl (Ambystoma mexicanum) when injected together.

    PubMed

    Kühn, Eduard R; De Groef, Bert; Grommen, Sylvia V H; Van der Geyten, Serge; Darras, Veerle M

    2004-06-01

    Entanglement of functions between the adrenal (or interrenal) and thyroid axis has been well described for all vertebrates and can be tracked down up to the level of gene expression. Both thyroid hormones and corticosteroids may induce morphological changes leading to metamorphosis climax in the neotenic Mexican axolotl (Ambystoma mexicanum). In a first series of experiments, metamorphosis was induced with an injection of 25 microg T(4) on three alternate days as judged by a decrease in body weight and tail height together with complete gill resorption. This injection also resulted in elevated plasma concentrations of T(3) and corticosterone. Previous results have indicated that the same dose of dexamethasone (DEX) is ineffective in this regard (Gen. Comp. Endocrinol. 127 (2002) 157). In a second series of experiments low doses of T(4) (0.5 microg) or DEX (5 microg) were ineffective to induce morphological changes. However, when these submetamorphic doses were injected together, morphological changes were observed within one week leading to complete metamorphosis. It is concluded that thyroid hormones combined with corticosteroids are essential for metamorphosis in the axolotl and that only high doses of either thyroid hormone or corticosteroid can induce morphological changes when injected separately.

  8. Low-dose Norfloxacin-treated leptospires induce less IL-1β release in J774A.1 cells following discrepant leptospiral gene expression.

    PubMed

    Cao, Yongguo; Xie, Xufeng; Zhang, Wenlong; Wu, Dianjun; Tu, Changchun

    2018-06-01

    Currently, accumulating evidence is challenging subtherapeutic therapy. Low-dose Norfloxacin (Nor) has been reported to suppress the immune response and worsen leptospirosis. In this study, we investigated the influence of low-dose Nor (0.03 μg/ml, 0.06 μg/ml, 0.125 μg/ml) on leptospiral gene expression and analyzed the immunomodulatory effects of low-dose Nor-treated leptospires in J774A.1 cells. To study the expression profiles of low-dose Nor-treated leptospires, we chose LipL71/LipL21 as reference genes determined by the geNorm applet in this experiment. The results showed that low-dose Nor up-regulated the expression of FlaB and inhibited the expression of 16S rRNA, LipL32, LipL41, Loa22, KdpA, and KdpB compared with the untreated leptospires. These results indicated that low-dose Nor could regulate leptospiral gene expression. Using RT-PCR, the gene expression of IL-1β and TNF-α in J774A.1 cells was detected. Nor-treated leptospires induced higher expression levels of both IL-1β and TNF-α. However, when analyzed by ELISA, the release of mature IL-1β was reduced compared with that observed in cells induced with no Nor-treated leptospires, although the TNF-α protein level showed no significant change. Our study indicated that the gene expression of leptospires could be modulated by low-dose Nor, which induced less IL-1β release in J774A.1 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart.

    PubMed

    Sasi, Sharath P; Yan, Xinhua; Zuriaga-Herrero, Marian; Gee, Hannah; Lee, Juyong; Mehrzad, Raman; Song, Jin; Onufrak, Jillian; Morgan, James; Enderling, Heiko; Walsh, Kenneth; Kishore, Raj; Goukassian, David A

    2017-08-01

    Deep-space travel presents risks of exposure to ionizing radiation composed of a spectrum of low-fluence protons ( 1 H) and high-charge and energy (HZE) iron nuclei (e.g., 56 Fe). When exposed to galactic cosmic rays, each cell in the body may be traversed by 1 H every 3-4 days and HZE nuclei every 3-4 months. The effects of low-dose sequential fractionated 1 H or HZE on the heart are unknown. In this animal model of simulated ionizing radiation, middle-aged (8-9 months old) male C57BL/6NT mice were exposed to radiation as follows: group 1, nonirradiated controls; group 2, three fractionated doses of 17 cGy 1 H every other day ( 1 H × 3); group 3, three fractionated doses of 17 cGy 1 H every other day followed by a single low dose of 15 cGy 56 Fe two days after the final 1 H dose ( 1 H × 3 + 56 Fe); and group 4, a single low dose of 15 cGy 56 Fe followed (after 2 days) by three fractionated doses of 17 cGy 1 H every other day ( 56 Fe + 1 H × 3). A subgroup of mice from each group underwent myocardial infarction (MI) surgery at 28 days postirradiation. Cardiac structure and function were assessed in all animals at days 7, 14 and 28 after MI surgery was performed. Compared to the control animals, the treatments that groups 2 and 3 received did not induce negative effects on cardiac function or structure. However, compared to all other groups, the animals in group 4, showed depressed left ventricular (LV) functions at 1 month with concomitant enhancement in cardiac fibrosis and induction of cardiac hypertrophy signaling at 3 months. In the irradiated and MI surgery groups compared to the control group, the treatments received by groups 2 and 4 did not induce negative effects at 1 month postirradiation and MI surgery. However, in group 3 after MI surgery, there was a 24% increase in mortality, significant decreases in LV function and a 35% increase in post-infarction size. These changes were associated with significant decreases in the angiogenic and cell survival

  10. In vitro capacity and in vivo antioxidant potency of sedimental extract of Tinospora cordifolia in streptozotocin induced type 2 diabetes

    PubMed Central

    Kannadhasan, Ramachandran; Venkataraman, Subramaniam

    2013-01-01

    Objective: The role of herbs against the free radicals have been put forth recently in combating many diseases. The aim of this study was to elucidate the in vitro capacity and in vivo antioxidant properties of sedimental extract of Tinospora cordifolia (SETc). Materials and Methods: SETc was subjected to in vitro chemical analysis such as 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide, hydrogen peroxide, and superoxide anion radicals scavenging respectively and finally drugs reductive ability in order to elucidate the antioxidant capacity of the test drug before introducing it into the biological membrane. The resulting capacity was evaluated in vivo by analyzing enzymic (SOD, CAT) and non-enzymic (vitamin C & E) antioxidant levels in the homogenized samples of major organs isolated from streptozotocin induced type 2 diabetic rats after 30th day of SETc (1000 mg/kg/p.o.) treatment. Finally, the histopathological evaluation was done using cut portion of the respective organs prone to free radical mediated cell destruction with STZ in order to study their micro anatomical changes. Results: Chemical analysis with SETc in vitro for its IC50 proves a key evident for its total antioxidant capacity of around 2046 times, in 1000 mg/kg of fixed dose per oral for in vivo analysis. In contrast to the above, the lipid peroxide levels and in vivo enzymic and non-enzymic antioxidant levels were found to possess most significant difference (p<0.001) and moderate difference (p<0.01) with diabetic non-treated animals which was an supporting contribution for those in vitro parameters studied and have proved that SETc (1000 mg/kg/p.o.) was a potent drug to elevate the antioxidants levels and further healing of damaged organs as compared with that of diabetic and standard drug treated groups. Conclusions: Finally, it was concluded that, the presence of antioxidant potentials in SETc was about 2046 time as an effective scavenger of free radicals in vitro and as a potent healer in

  11. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in Sprague Dawely rats.

    PubMed

    Faheem, Nermeen Mohammed; El Askary, Ahmad

    2017-06-01

    Diabetes mellitus causes impaired memory and cognitive functions. The hippocampus plays a key role in memory and learning. Curcumin attenuates diabetic nephropathy in vivo . Curcumin has shown a neurogenic effect and cognition-enhancing potential in aged rats. The aim of this study is to evaluate the possible protective role of curcumin on the histological and serological changes of the hippocampus in diabetic rats. Forty albino rats were divided into four groups, ten rats each. Group 1 control rats, group 2 rats received curcumin orally (200 mg/kg/day for six weeks), group 3 rats were injected intraperitoneally with streptozotocin (STZ) (100 mg/kg, single dose), group 4 received a single injection of STZ and received curcumin orally for six weeks. Paraffin sections of hippocampus were prepared and stained with hematoxylin and eosin stain, and immnunohistochemical staining for GFAP and caspase-3. Morphometrical and statistical analyses were performed. Glycemic status and parameters of oxidative stress was measured. Examination of hippocampus of diabetic rats showed disorganization of small pyramidal cells in CA1, many cellular losses in the pyramidal cells of CA3, many degenerated granule cells in the dentate gyrus. GFAP positive astrocyte and caspase-3 positive neuron counts were significantly increased. There were significant serum glucose elevation and significant lowered levels of oxidative stress parameters as compared to control rats. Curcumin administration improved the structural and serological alterations of the hippocampus with significant reduction in serum glucose level. Curcumin ameliorates the deterious effect of diabetes on the hippocampus through its antioxidant, antiapoptotic and anti-inflammatory efficacies.

  12. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  13. Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate.

    PubMed

    Francis, Arul Prakash; Devasena, Thiyagarajan; Ganapathy, Selvam; Palla, Venkata Rajsekhar; Murthy, Prakhya Balakrishna; Ramaprabhu, Sundara

    2018-05-16

    Human beings and ecosystems are being possibly exposed to CNTs, as there is a rise in global production rate of carbon nanotubes (CNTs). This may affect the health of humans and increases the environmental risk. We have already reported the pulmonary toxicity due to the inhalation of MWCNTs. We claim that a compound with anti-inflammatory and antioxidant activity may ameliorate the CNT-induced toxic effect. With this view, we have investigated the ameliorative effect of intravenously-administered nano bis-demethoxy curcumin analog (NBDMCA) against MWCNTs-induced inhalation toxicity by examining the lung histopathology for inflammatory cell dynamics, pulmonary remodeling and estimating the inflammatory biomarkers in the broncho-alveolar lavage fluid. We observed that NBDMCA could ameliorate the injury as evidenced by the decline in the levels of markers of inflammation, cell damage, and the histopathological changes induced by MWCNTs. We conclude that NBDMCA may be used to reduce the risk of MWCNTs-induced inhalation toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2).

    PubMed

    Bidasee, Keshore R; Nallani, Karuna; Besch, Henry R; Dincer, U Deniz

    2003-06-01

    In a previous study, we showed that after 6 weeks of streptozotocin-induced diabetes (6D), expression of type 2 ryanodine receptor calcium-release channels (RyR2) did not change significantly in rat hearts. However, the ability of this protein to bind [3H]ryanodine was compromised. Loss in activity therefore resulted from diabetes-induced increases in post-translational modifications on RyR2. In the present study, the effects of diabetes on one type of modification, namely, changes in oxidative state of reactive sulfhydryls was investigated. RyR2 protein from 6D bound 42.3 +/- 7.6 less [3H]ryanodine than RyR2 from controls (6C). The loss in binding was minimized with 2 weeks of insulin treatment initiated after 4 weeks of diabetes (77.8 +/- 5.5% of 6C). Pretreating RyR2 from 6D with 2 mM dithiothreitol in vitro increases [3H]ryanodine binding by 60.8 +/- 5.3%. Dithiothreitol pretreatment of RyR2 from 6C increased [3H]ryanodine binding by 16.8 +/- 4.3%. The reagent pyrocoll interacts with distinct classes of free sulfhydryl groups on 6C RyR2 to induce two major effects. At concentrations < or = 10 microM, it deactivates RyR2 (decreases [3H]ryanodine binding), whereas at higher concentrations it activates them (increases [3H]ryanodine binding). This reagent was unable to activate RyR2 from 6D. Although RyR2 from insulin-treated animals was deactivated by low concentrations of pyrocoll, it was only partially activated at higher concentrations. These data suggest that the dysfunction of RyR2 induced by diabetes may be due in part to formation of disulfide bonds between adjacent sulfhydryl groups and that these changes were attenuated with insulin treatment.

  15. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, H.C.; Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan; Yeh, Y.C.

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced bymore » doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  16. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    PubMed

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  17. A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias.

    PubMed

    Lieu, Christopher A; Kunselman, Allen R; Manyam, Bala V; Venkiteswaran, Kala; Subramanian, Thyagarajan

    2010-08-01

    Dopaminergic anti-parkinsonian medications, such as levodopa (LD) cause drug-induced dyskinesias (DID) in majority of patients with Parkinson's disease (PD). Mucuna pruriens, a legume extensively used in Ayurveda to treat PD, is reputed to provide anti-parkinsonian benefits without inducing DID. We compared the behavioral effects of chronic parenteral administration of a water extract of M. pruriens seed powder (MPE) alone without any additives, MPE combined with the peripheral dopa-decarboxylase inhibitor (DDCI) benserazide (MPE+BZ), LD+BZ and LD alone without BZ in the hemiparkinsonian rat model of PD. A battery of behavioral tests assessed by blinded investigators served as outcome measures in these randomized trials. In experiment 1, animals that received LD+BZ or MPE+BZ at high (6mg/kg) and medium (4mg/kg) equivalent doses demonstrated significant alleviation of parkinsonism, but, developed severe dose-dependent DID. LD+BZ at low doses (2mg/kg) did not provide significant alleviation of parkinsonism. In contrast, MPE+BZ at an equivalent low dose significantly ameliorated parkinsonism. In experiment 2, MPE without any additives (12mg/kg and 20mg/kg LD equivalent dose) alleviated parkinsonism with significantly less DID compared to LD+BZ or MPE+BZ. In experiment 3, MPE without additives administered chronically provided long-term anti-parkinsonian benefits without causing DID. In experiment 4, MPE alone provided significantly more behavioral benefit when compared to the equivalent dose of synthetic LD alone without BZ. In experiment 5, MPE alone reduced the severity of DID in animals initially primed with LD+BZ. These findings suggest that M. pruriens contains water-soluble ingredients that either have an intrinsic DDCI-like activity or mitigate the need for an add-on DDCI to ameliorate parkinsonism. These unique long-term anti-parkinsonian effects of a parenterally administered water extract of M. pruriens seed powder may provide a platform for future drug

  18. A Water Extract of Mucuna pruriens Provides Long-Term Amelioration of Parkinsonism with Reduced Risk for Dyskinesias

    PubMed Central

    Lieu, Christopher A.; Kunselman, Allen R.; Manyam, Bala V.; Venkiteswaran, Kala; Subramanian, Thyagarajan

    2010-01-01

    Dopaminergic anti-parkinsonian medications, such as levodopa (LD) cause drug-induced dyskinesias (DID) in majority of patients with Parkinson's disease (PD). Mucuna pruriens, a legume extensively used in Ayurveda to treat PD, is reputed to provide anti-parkinsonian benefits without inducing DID. We compared the behavioral effects of chronic parenteral administration of a water extract of Mucuna pruriens seed powder (MPE) alone without any additives, MPE combined with the peripheral dopa-decarboxylase inhibitor (DDCI) benserazide (MPE+BZ), LD+BZ and LD alone without BZ in the hemiparkinsonian rat model of PD. A battery of behavioral tests assessed by blinded investigators served as outcome measures in these randomized trials. In experiment 1, animals that received LD+BZ or MPE+BZ at high (6mg/Kg) and medium (4mg/Kg) equivalent doses demonstrated significant alleviation of parkinsonism, but, developed severe dose-dependent DID. LD+BZ at low doses (2mg/Kg) did not provide significant alleviation of parkinsonism. In contrast, MPE+BZ at an equivalent low dose significantly ameliorated parkinsonism. In experiment 2, MPE without any additives (12mg/Kg and 20mg/Kg LD equivalent dose) alleviated parkinsonism with significantly less DID compared to LD+BZ or MPE+BZ. In experiment 3, MPE without additives administered chronically provided long-term anti-parkinsonian benefits without causing DID. In experiment 4, MPE alone provided significantly more behavioral benefit when compared to the equivalent dose of synthetic LD alone without BZ. In experiment 5, MPE alone reduced the severity of DID in animals initially primed with LD+BZ. These findings suggest that Mucuna pruriens contains water soluble ingredients that either have an intrinsic DDCI-like activity or mitigate the need for an add-on DDCI to ameliorate parkinsonism. These unique long-term antiparkinsonian effects of a parenterally administered water extract of Mucuna pruriens seed powder may provide a platform for

  19. Early changes in retinal structure and BMP2 expression in the retina and crystalline lens of streptozotocin-induced diabetic pigs.

    PubMed

    Jeong, Jae Seung; Lee, Woon-Kyu; Moon, Yeon Sung; Kim, Na Rae

    2017-09-01

    This study aims to evaluate early changes in retinal structure and BMP2 expression in the retina and crystalline lens by comparing streptozotocin-induced diabetic pigs and normal control group pigs. Five eye samples from five diabetic Micro-pigs (Medikinetics, Pyeongtaek, Korea) and five eye samples from five control pigs bred in a specific pathogen-free area were used. Diabetes was developed through intravenous injection of nicotinamide and streptozotocin, and the average fasting glucose level was maintained at 250 mg/dL or higher for 16 weeks. To evaluate BMP2 expression in the retina and crystalline lens, Western blotting was performed. In Hematoxylin and Eosin staining, most diabetic pigs showed structural abnormalities in the inner plexiform layer. The number of nuclei in the ganglion cell layer within the range of 10 4 µm 2 was 3.78±0.60 for diabetic pigs and 5.57±1.07 for control group pigs, showing a statistically significant difference. In immunohistochemical staining, diabetic retinas showed an overall increase in BMP2 expression. In Western blotting, the average BMP2/actin level of diabetic retinas was 1.19±0.05, showing a significant increase compared to the 1.06±0.03 of the control group retinas ( P =0.016). The BMP2/actin level of diabetic crystalline lenses was similar to the control group crystalline lenses ( P =0.730). Compared to control group pigs, the number of nuclei in the inner nuclear layer of retinas from streptozotocin-induced diabetic pigs decreased, while an increase in BMP2 expression was observed in the retina of diabetic pigs.

  20. Averrhoa bilimbi fruits attenuate hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Kurup, Surya B; Mini, S

    2017-04-01

    Hyperglycemia-mediated oxidative stress plays a major role in the development of diabetic complications. Averrhoa bilimbi Linn. (Oxalidaceae) is a medicinal plant with fruits reported to possess antidiabetic activity. This study evaluated the beneficial effects of the ethyl acetate fraction of A. bilimbi fruit (ABAEE) on the antioxidant/oxidant status in diabetes mellitus. Diabetic rats were treated orally with the ethyl acetate fraction of A. bilimbi fruits at a dose of 25 mg/kg body weight for 60 days. Serum glucose, glycated hemoglobin, plasma insulin, hepatic toxicity markers, antioxidant enzymes, lipid peroxidation products, and liver histopathology were assayed checked after 60 days of extract treatment. Diabetic rats administered ABAEE showed a significant decline in serum glucose, glycated hemoglobin, and also significantly increases the level of plasma insulin, as well as a notable attenuation in thiobarbituric acid-reactive substances, conjugated dienes, and hydroperoxides. ABAEE also modulated hepatic antioxidant potential by significantly increasing the activities of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and reducing glutathione content. The results associated with ABAEE were more significant than those observed following treatment with the standard drug metformin. Histopathological observations showed that ABAEE effectively rescued hepatocytes from oxidative damage without affecting cellular function and structural integrity. High-performance liquid chromatography analysis of ABAEE indicated the presence of phenolic compound, quercetin, indicating that the antidiabetic effect of the extract might be related to quercetin. These results demonstrated the potential beneficial effect of ABAEE on streptozotocin-induced diabetes in rats. Copyright © 2016. Published by Elsevier B.V.

  1. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    PubMed

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats.

    PubMed

    Sharma, Monisha; Gupta, Y K

    2003-08-01

    In the present study, the effect of alpha lipoic acid, a potent free radical scavenger, was investigated against the intracerebroventricular streptozotocin model of cognitive impairment in rats, which is characterized by a progressive deterioration of memory, cerebral glucose and energy metabolism, and oxidative stress. Wistar rats were injected with intracerebroventricular streptozotocin bilaterally. The rats were treated chronically with alpha lipoic acid (50, 100 and 200 mg/kg) orally for 21 days starting from day 1 of streptozotocin injection in separate groups. The learning and memory behavior was evaluated and the rats were sacrificed for estimation of oxidative stress. The intracerebroventricular streptozotocin rats treated with alpha lipoic acid (200 mg/kg, p.o.) showed significantly less cognitive impairment as compared to the vehicle treated rats. There was also an insignificant increase in oxidative stress in the alpha lipoic acid treated groups. The study demonstrated the effectiveness of alpha lipoic acid in preventing cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin and its potential in dementia associated with age and age related neurodegenerative disorders where oxidative stress is involved such as Alzheimer's disease.

  3. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism.

    PubMed

    Jensen-Waern, M; Andersson, M; Kruse, R; Nilsson, B; Larsson, R; Korsgren, O; Essén-Gustavsson, B

    2009-07-01

    Streptozotocin (STZ) given intravenously destroys pancreatic beta cells and is widely used in animal models to mimic type 1 diabetes. The effects of STZ on the clinical state of health and metabolism were studied in six high health certified domestic pigs weighing 19+/-1.3 kg at the start of the experiment. A single STZ dose of 150 mg/kg of body weight successfully induced hyperglycaemia and alterations in amino acid metabolism. Within 9 h after STZ administration, the blood glucose values fell from 5.4-7.5 mmol/L to 0.8-2.2 mmol/L. Hypoglycaemia was treated with 0.5 g glucose/kg body weight. In all pigs, hyperglycaemia was produced 24 h after STZ treatment, and 3 days after STZ injection, the glucose concentration was >25 mmol/L. Mean C-peptide concentration was 0.25+/-0.16 microg/L since 2 days after STZ injection until the end of the study. The serum concentration of the branched-chain amino acids (BCAA) increased four-fold, and alanine and taurine decreased by approximately 70% and 50%, respectively, after STZ treatment. All but one pig remained brisk and the physical examination was normal except for a retarded growth rate and a reduction of the skeletal muscle. At the end of the study, the pigs were moderately emaciated. Postmortem examination confirmed muscle wasting and a reduction of abdominal and subcutaneous fat. In conclusion, STZ-induced diabetes in pigs fulfils the requirements for a good animal model for type 1 diabetes with respect to clinical signs of the disease and alterations in the carbohydrate and amino acid metabolism.

  4. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    PubMed

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications.

    PubMed

    Hamada, Yasuhiro; Fujii, Hideki; Kitazawa, Riko; Yodoi, Junji; Kitazawa, Sohei; Fukagawa, Masafumi

    2009-05-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture. However, the mechanisms accounting for diabetic bone disorder are unclear. We have previously reported that streptozotocin-induced diabetic mice develop low turnover osteopenia associated with increased oxidative stress in the diabetic condition. To determine the role of oxidative stress in the development of diabetic osteopenia, we presently investigated the effect of overexpression of thioredoxin-1 (TRX), a major intracellular antioxidant, on the development of diabetic osteopenia, using TRX transgenic mice (TRX-Tg). TRX-Tg are C57BL/6 mice that carry the human TRX transgene under the control of beta-actin promoter. Eight-week-old male TRX-Tg mice and wild type (WT) littermates were intraperitoneally injected with either streptozotocin or vehicle. Mice were grouped as 1) non-diabetic WT, 2) non-diabetic TRX-Tg, 3) diabetic WT, and 4) diabetic TRX-Tg. After 12 weeks of streptozotocin treatment, oxidative stress on the whole body and bone was evaluated, and the physical properties of the femora, and histomorphometry parameters of the tibiae were assessed. TRX overexpression did not affect either body weight or hemoglobin A1c levels. There were no significant differences in renal function and in serum levels of calcium, phosphate, and intact parathyroid hormone among the four groups. On the other hand, urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, was significantly elevated in diabetic WT and attenuated in diabetic TRX-Tg. Immunohistochemical staining for 8-OHdG revealed marked intensity in the bone tissue of diabetic WT compared with non-diabetic WT, while staining was attenuated in diabetic TRX-Tg. TRX overexpression partially restored reduced bone mineral density and prevented the suppression of bone formation observed in diabetic WT. Increased oxidative stress in diabetic condition contributes to the development of diabetic osteopenia

  6. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    PubMed

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates

    PubMed Central

    Rühm, Werner; Azizova, Tamara; Bouffler, Simon; Cullings, Harry M; Grosche, Bernd; Little, Mark P; Shore, Roy S; Walsh, Linda; Woloschak, Gayle E

    2018-01-01

    Abstract In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on ‘Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes’ of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan. PMID:29432579

  8. Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice.

    PubMed

    Perez-Gutierrez, Rosa Martha; Garcia-Campoy, Abraham Heriberto; Muñiz-Ramirez, Alethia

    Six new flavonoids 2',4'-dihydroxychalcone-6'-O- β -d-glucopyranoside ( 1 ), α ,3,2',4'-tetrahydroxy-4-methoxy-dihydrochalcone-3'-C- β -glucopyranosy-6'-O- β -d-glucopyranoside ( 2 ), 7-hydroxy-5,8'-dimethoxy-6' α -l-rhamnopyranosyl-8-(3-phenyl-trans-acryloyl)-1-benzopyran-2-one ( 3 ), 6'7-dihydroxy-5,8-dimethoxy-8(3-phenyl-trans-acryloyl)-1-benzopyran-2-one ( 4 ), 9-hydroxy-3,8-dimethoxy-4-prenylpterocarpan ( 5 ), and α ,4,4'-trihydroxydihydrochalcone-2'-O- β -d-glucopyranoside ( 6 ) were isolated from bark of Eysenhardtia polystachya. Antidiabetic activity of compounds 1 - 5 in terms of their cellular antioxidant and free radical scavenging and also in streptozotocin- (STZ-) induced diabetic mice was evaluated on liver transaminases, lipid peroxidation, total bilirubin, total protein, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (CSH-Px), and glutathione reductase (GSH). Results indicated that 1 - 5 scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl ( ∙ OH), nitric oxide radicals (NO ∙ ), superoxide anion radical (O 2 ∙- ), radical cation (ABTS ∙+ ), and hydrogen peroxide (H 2 O 2 ) radical, and protection against H 2 O 2 induced BSA damage was also observed. Furthermore, 1 - 5 showed ability to decrease the oxidative stress in H9c2 cell. Diabetic mice present high levels of lipid peroxide, total protein, SGPT, SGOT, ALP, and TB. However, treatment of STZ-induced diabetes in mice with 1 - 5 reduced levels of these enzymes leading to protector effect of liver. In addition, with treatment with 1 - 5 , increases in radical scavenging enzymes of CSH-Px, SOD, GSH, and CAT have also been observed in diabetic mice. The antioxidant properties of compounds 1 - 5 are a promising strategy for ameliorating therapeutic effects by avoiding disorders in the normal redox reactions in healthy cells which consequently could alleviate complications of diabetes.

  9. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells.

    PubMed

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan; Ahn, Kyu Joong

    2016-08-01

    We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.

  10. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  11. Hypothalamic AMPK-induced autophagy ameliorates hypercatabolism in septic rats by regulating POMC expression.

    PubMed

    Cao, Chun; Gao, Tao; Cheng, Yan; Cheng, Minhua; Su, Ting; Xi, Fengchan; Wu, Cuili; Yu, Wenkui

    2018-03-18

    Hypercatabolism plays a critical role in the pathogenesis of post-critical care debility in critical patients. Central nervous system may exerte a critical role in the regulation of hypercatabolism. However, little is known about the exact mechanisms of the central role. Here, we reported that actived hypothalamic AMP-activated protein kinase (AMPK)-induced autophagy modulated the expression of POMC to ameliorate hypercatabolism in septic rats. Firstly, rats were i.c.v. injected with the lentiviral vector containing shRNA against POMC. Two weeks after injections, rats were intraperitoneally injected with LPS or saline. Twenty-four hours later, blood, skeletal muscle and hypothalamus tissues were obtained. Hypercatabolism markers and neuropeptides expression were detected. Then, rats were injected with AICAR or saline into third ventricle and promptly intraperitoneally injected with LPS or saline. Twenty-four hours after infection, blood, skeletal muscle and hypothalamus tissues were obtained. Hypercatabolism, hypothalamic AMPK-induced autophagy markers and neuropeptides expression were also detected. Results showed that sepsis would decrease the level of hypothalamic autophagy accompany with the alterations of POMC expression and hypercatabolism. Knocking out hypothalamus POMC expression could significantly ameliorate hypercatabolism. Moreover, Central activation of AMPK-induced autophagy pathway via third ventricle injection of AICAR, an AMPK activator, could efficiently ameliorate hypercatabolism as well as attenuate the elevated POMC expression rather than other neuropeptides. Taken together, these results suggested that hypothalamic AMPK-autophagy pathway as a regulatory pathway for POMC expression was essential for hypercatabolism during sepsis. And hypothalamic AMPK-autophagy activation could attenuate the POMC expression to ameliorate hypercatabolism. Pharmaceuticals with the ability of activating hypothalamic AMPK-autophagy pathway may be a therapeutic

  12. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model.

    PubMed

    Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk

    2017-12-01

    Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.

  13. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    PubMed

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  14. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition.

    PubMed

    Wang, Yi-Chun; Dong, Jing; Nie, Jing; Zhu, Ji-Xiang; Wang, Hui; Chen, Qiong; Chen, Jun-Yi; Xia, Jia-Mei; Shuai, Wei

    2017-09-01

    To investigate the inhibitory effects of chlorogenic acid on pulmonary fibrosis and the internal mechanisms in vivo and in vitro. 30 male BALB/C mice were randomized into 5 groups: control group, pulmonary fibrosis model group, low, middle and high dose of chlorogenic acid groups. Mice in pulmonary fibrosis model group were administered 5.0 mg/kg bleomycin with intracheal instillation and mice in 3 chlorogenic acid groups were treated with chlorogenic acid every day for 28 days after bleomycin administration. Lung tissue histology was observed using HE staining. Primary pulmonary fibroblasts were isolated and cultured. The expressions of fibrosis related factors (α-SMA and collagen I), as well as ER stress markers (CHOP and GRP78) were determined by both real-time PCR assay and Western blotting, while the expressions of other ER stress signaling pathway factors PERK, IRE-1, ATF-6 and protein levels of caspase-12, caspase-9, caspase-3, PARP were determined by Western blotting. RLE-6TN cell line induced by TGF-β1 was also used to verify the amelioration effects in vitro study. In both in vivo and in vitro studies, TUNEL staining was used to evaluate cell apoptosis. Expressions of collagen I, α-SMA, GRP78, and CHOP were significantly inhibited by chlorogenic acid in dose-dependent manner. Similarly, decreasing levels of cleaved caspase-12, caspase-9, caspase-3 and increasing level of uncleaved PARP were observed in chlorogenic acid groups compared with those in the fibrosis group both in vivo and in vitro. Chlorogenic acid could also significantly down-regulate the level of phosphorylation of PERK and cleaved ATF-6 in vivo study. Moreover, MTT assay demonstrated chlorogenic acid could enhance proliferation of RLE-6TN cells induced by TGFβ1 in vitro. And the apoptosis assays indicated that chlorogenic acid could significantly inhibit cell apoptosis both in vivo and in vitro studies. Chlorogenic acid could inhibit the pulmonary fibrosis through endoplasmic

  15. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; hide

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  16. Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats.

    PubMed

    Zhou, Shanshan; Yu, Guichun; Chi, Lijun; Zhu, Jiwei; Zhang, Wei; Zhang, Yan; Zhang, Liming

    2013-09-01

    Oxidative stress is implicated as an important factor in the development of Alzheimer's disease (AD). In the present study, we have investigated the effects of edaravone (9mg/kg, 3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, in a streptozotocin (STZ-3mg/kg) induced rat model of sporadic AD (sAD). Treatment with edaravone significantly improved STZ-induced cognitive damage as evaluated in Morris water maze and step-down tests and markedly restored changes in malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) adducts, hydroxyl radical (OH), hydrogen peroxide (H2O2), total superoxide dismutase (T-SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and protein carbonyl (PC) levels. In addition, histomorphological observations confirmed the protective effect of edaravone on neuronal degeneration. Moreover, hyperphosphorylation of tau resulting from intracerebroventricular streptozotocin (ICV-STZ) injection was decreased by the administration of edaravone. These results provide experimental evidence demonstrating preventive effects of edaravone on cognitive dysfunction, oxidative stress and hyperphosphorylation of tau in ICV-STZ rats. Since edaravone has been used for treatment of patients with stroke, it represents a safe and established therapeutic intervention that has the potential for a novel application in the treatment of age-related neurodegenerative disorders associated with cognitive decline, such as AD. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Effect of N-benzoyl-D-phenylalanine and metformin on carbohydrate metabolic enzymes in neonatal streptozotocin diabetic rats.

    PubMed

    Ashokkumar, Natarajan; Pari, Leelavinothan

    2005-01-01

    The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin was studied on the activities of carbohydrate metabolic enzymes in neonatal streptozotocin (nSTZ) non-insulin-dependent diabetic rats. To induce non-insulin-dependent diabetes mellitus (NIDDM), single dose injection of streptozotocin (STZ; 100 mg/kg body weight; i.p.) was given to 2-day old rats. After 10-12 weeks, rats weighing >150 g were selected for screening in NIDDM model, they were checked for fasting blood glucose concentrations to conform the status of NIDDM. NBDP (50,100 and 200 mg/kg body weight) was administered orally for 6 weeks into the confirmed diabetic rats. The activities of gluconeogenic enzymes were significantly increased, whereas the activities of hexokinase and glucose-6-phosphate dehydrogenase were significantly decreased in nSTZ diabetic rats. Both NBDP and metformin were able to restore the altered enzyme activities to almost control concentrations. Combination treatment was more effective than either drug alone. The administration of NBDP along with metformin to nSTZ diabetic rats normalizes blood glucose and causes marked improvement of altered carbohydrate metabolic enzymes during diabetes.

  18. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats.

    PubMed

    Islam, Md Shahidul

    2011-12-15

    White tea (WT) is very similar to green tea (GT) but it is exceptionally prepared only from the buds and young tea leaves of Camelia sinensis plant while GT is prepared from the matured tea leaves. The present study was investigated to examine the effects of a 0.5% aqueous extract of WT in a streptozotocin-induced diabetes model of rats. Six-week-old male Sprague-Dawley rats were divided into 3 groups of 6 animals in each group namely: normal control (NC), diabetic control (DBC) and diabetic white tea (DWT). Diabetes was induced by an intraperitoneal injection of streptozotocin (65 mg/kg BW) in DBC and DWT groups except the NC group. After 4 weeks feeding of 0.5% aqueous extracts of WT, the drink intake was significantly (P<0.05) increased in the DWT group compared to the DBC and NC groups. Blood glucose concentrations were significantly decreased and glucose tolerance ability was significantly improved in the DWT group compared to the DBC group. Liver weight and liver glycogen were significantly increased and serum total cholesterol and LDL-cholesterol were significantly decreased in the DWT group compared to the DBC group. The food intake, body weight gain, serum insulin and fructosamine concentrations were not influenced by the consumption of WT. Data of this study suggest that the 0.5% aqueous extract of WT is effective to reduce most of the diabetes associated abnormalities in a steptozotocin-induced diabetes model of rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    PubMed Central

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  20. Grape seed proanthocyanidin extract protects human umbilical vein endothelial cells from indoxyl sulfate-induced injury via ameliorating mitochondrial dysfunction.

    PubMed

    Lu, Zhaoyu; Lu, Fuhua; Zheng, Yanqun; Zeng, Yuqun; Zou, Chuan; Liu, Xusheng

    2016-01-01

    To investigate the effects of grape seed proanthocyanidin extract (GSPE) on indoxyl sulfate-induced Human Umbilical Vein Endothelial Cells (HUVECs) injury in vitro and study its mechanism. HUVECs were incubated with indoxyl sulfate at concentrations in the range found in uremic patients. Then we determined the effect of indoxyl sulfate on endothelial phenotype, endothelial function, ROS (reactive oxygen species), cell apoptosis and mitochondrial function. In addition, we detected whether GSPE can suppress the injury of HUVECs induced by indoxyl sulfate and probe the mechanism underlying the protective effects of GSPE by analyzing mitochondrial dysfunction. GSPE treatment significantly attenuated indoxyl sulfate-induced HVUECs injury in a dose- and time-dependent manner. GSPE-enhanced eNOS and VE-cadherin expression, inhibited intracellular ROS level and cell apoptosis, adjust mitochondrial membrane potential and reduced 8-hydroxy-desoxyguanosine (8-OHdG) level induced by indoxyl sulfate. These results suggest that GSPE prevents HUVECs from indoxyl sulfate-induced injury by ameliorating mitochondrial dysfunction and may be a promising agent for treating uremia toxin-induced injury.

  1. Pb low doses induced genotoxicity in Lactuca sativa plants.

    PubMed

    Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C

    2017-03-01

    Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L -1 . In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO 3 ) 2 up to 20 mg L -1 . The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L -1 significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L -1 and presence of micronuclei (MN) were detected for 20 mg L -1 . Also, cell cycle impairment was observed for doses as low as 0.05 mg L -1 and 0.5 mg L -1 (mostly G 2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain.

    PubMed

    Van Bockstaele, Elisabeth J; Qian, Yaping; Sterling, Robert C; Page, Michelle E

    2008-05-15

    , animals were transcardially perfused and the brains were removed for verification of probe placement. Low dose naltrexone pre-treatment significantly attenuated withdrawal-induced increases of extracellular norepinephrine in the BNST, with a smaller effect in the FC. These findings suggest that alterations in norepinephrine release associated with withdrawal may be attenuated in forebrain targets of noradrenergic brainstem neurons that may underlie reduced behavioral signs of withdrawal following low dose naltrexone administration.

  3. The effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague-Dawley rats.

    PubMed

    Taheri Rouhi, Seyedeh Zeinab; Sarker, Md Moklesur Rahman; Rahmat, Asmah; Alkahtani, Saad Ahmed; Othman, Fauziah

    2017-03-14

    Type 2 diabetes mellitus (T2DM) is associated with hyperglycemia, inflammatory disorders and abnormal lipid profiles. Several functional foods have therapeutic potential to treat chronic diseases including diabetes. The therapeutic potential of pomegranate has been stated by multitudinous scientists. The present study aimed to evaluate the effects of pomegranate juice and seed powder on the levels of plasma glucose and insulin, inflammatory biomarkers, lipid profiles, and health of the pancreatic islets of Langerhans in streptozotocin (STZ)-nicotinamide (NAD) induced T2DM Sprague Dawley (SD) rats. Forty healthy male SD rats were induced to diabetes with a single dose intra-peritoneal administration of STZ (60 mg/kg b.w.) - NAD (120 mg/kg b.w.). Diabetic rats were orally administered with 1 mL of pomegranate fresh juice (PJ) or 100 mg pomegranate seed powder in 1 mL distilled water (PS), or 5 mg/kg b.w. of glibenclamide every day for 21 days. Rats in all groups were sacrificed on day 22. The obtained data was analyzed by SPSS software (v: 22) using One-way analysis of variance (ANOVA). The results showed that PJ and PS treatment had slight but non-significant reduction of plasma glucose concentration, and no impact on plasma insulin compared to diabetic control (DC) group. PJ lowered the plasma total cholesterol (TC) and triglyceride (TG) significantly, and low-density lipoproteins (LDL) non-significantly compared to DC group. In contrast, PS treatment significantly raised plasma TC, LDL, and high-density lipoproteins (HDL) levels compared to the DC rats. Moreover, the administration of PJ and PS significantly reduced the levels of plasma inflammatory biomarkers, which were actively raised in diabetic rats. Only PJ treated group showed significant repairment and restoration signs in islets of Langerhans. Besides, PJ possessed preventative impact against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals almost 2.5 folds more than PS. Our findings suggest that

  4. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice.

    PubMed

    Lu, Junyan; Xiang, Guangda; Liu, Min; Mei, Wen; Xiang, Lin; Dong, Jing

    2015-12-01

    The circulating irisin increases energy expenditure and improves insulin resistance in mice and humans. The improvement of insulin resistance ameliorates atherosclerosis. Therefore, we hypothesized that irisin alleviates atherosclerosis in diabetes. Endothelial function was measured by acetylcholine-induced endothelium-dependent vasodilation using aortic rings in apolipoprotein E-Null (apoE(-/-)) streptozotocin-induced diabetic mice. Atherosclerotic lesion was evaluated by plaque area and inflammatory response in aortas. In addition, the endothelium-protective effects of irisin were also further investigated in primary human umbilical vein endothelial cells (HUVECs) in vitro. The in vivo experiments showed that irisin treatment significantly improved endothelial dysfunction, decreased endothelial apoptosis, and predominantly decreased atherosclerotic plaque area of both en face and cross sections when compared with normal saline-treated diabetic mice. Moreover, the infiltrating macrophages and T lymphocytes within plaque and the mRNA expression levels of inflammatory cytokines in aortas were also significantly reduced by irisin treatment in mice. The in vitro experiments revealed that irisin inhibited high glucose-induced apoptosis, oxidative stress and increased antioxidant enzymes expression in HUVECs, and pretreatment with LY294002, l-NAME, AMPK-siRNA or eNOS-siRNA, attenuated the protection of irisin on HUVECs apoptosis induced by high glucose. In addition, the in vivo and in vitro experiments showed that irisin increased the phosphorylation of AMPK, Akt and eNOS in aortas and cultured HUVECs. The present study indicates that systemic administration of irisin may be protected against endothelial injury and ameliorated atherosclerosis in apoE(-/-) diabetic mice. The endothelium-protective action of irisin was through activation of AMPK-PI3K-Akt-eNOS signaling pathway. Irisin could be therapeutic for atherosclerotic vascular diseases in diabetes. Copyright

  5. Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats.

    PubMed

    Lu, Kuan-Hung; Weng, Ching-Yi; Chen, Wei-Cheng; Sheen, Lee-Yan

    2017-07-01

    Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng ( Panax ginseng ), American ginseng ( Panax quinquefolius ), lotus seed ( Nelumbo nucifera ), and lily bulb ( Lilium longiflorum ). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride (CCl 4 )-induced liver injury in rats. We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1 st wk of treatment, rats were administered 20% CCl 4 (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in CCl 4 -treated rats. Moreover, CCl 4 -induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S -transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited CCl 4 -induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that CCl 4 -triggered activation of hepatic stellate cells was reduced. These findings demonstrate that GE improves CCl 4 -induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

  6. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells.

    PubMed

    Vávrová, Jirina; Mareková-Rezácová, Martina; Vokurková, Doris; Szkanderová, Sylva; Psutka, Jan

    2003-10-01

    Most cell lines that lack functional p53 protein are arrested in the G(2) phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G(2) phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G(2) phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D(0) value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G(2) phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D(0)=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5-7 post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.

  7. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis.

    PubMed

    Yu, Hong-Jing; Liu, Wei; Chang, Zhen; Shen, Hui; He, Li-Juan; Wang, Sha-Sha; Liu, Lu; Jiang, Yuan-Ying; Xu, Guo-Tong; An, Mao-Mao; Zhang, Jun-Dong

    2015-06-07

    To determine the protective effect of triple viable probiotics on gastritis induced by Helicobacter pylori (H. pylori) and elucidate the possible mechanisms of protection. Colonization of BIFICO strains in the mouse stomach was determined by counting colony-forming units per gram of stomach tissue. After treatment with or without BIFICO, inflammation and H. pylori colonization in the mouse stomach were analyzed by hematoxylin and eosin and Giemsa staining, respectively. Cytokine levels were determined by enzyme-linked immunosorbent assay and Milliplex. The activation of nuclear factor (NF)-κB and MAPK signaling in human gastric epithelial cells was evaluated by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was used to quantify TLR2, TLR4 and MyD88 mRNA expression in the mouse stomach. We demonstrated that BIFICO, which contains a mixture of Enterococcus faecalis, Bifidobacterium longum and Lactobacillus acidophilus, was tolerant to the mouse stomach environment and was able to survive both the 8-h and 3-d courses of administration. Although BIFICO treatment had no effect on the colonization of H. pylori in the mouse stomach, it ameliorated H. pylori-induced gastritis by significantly inhibiting the expression of cytokines and chemokines such as TNF-α, IL-1β, IL-10, IL-6, G-CSF and MIP-2 (P < 0.05). These results led us to hypothesize that BIFICO treatment would diminish the H. pylori-induced inflammatory response in gastric mucosal epithelial cells in vitro via the NF-κB and MAPK signaling pathways. Indeed, we observed a decrease in the expression of the NF-κB subunit p65 and in the phosphorylation of IκB-α, ERK and p38. Moreover, there was a significant decrease in the production of IL-8, TNF-α, G-CSF and GM-CSF (P < 0.05), and the increased expression of TLR2, TLR4 and MyD88 induced by H. pylori in the stomach was also significantly reduced following BIFICO treatment (P < 0.05). Our results suggest that the probiotic

  8. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis

    PubMed Central

    Yu, Hong-Jing; Liu, Wei; Chang, Zhen; Shen, Hui; He, Li-Juan; Wang, Sha-Sha; Liu, Lu; Jiang, Yuan-Ying; Xu, Guo-Tong; An, Mao-Mao; Zhang, Jun-Dong

    2015-01-01

    AIM: To determine the protective effect of triple viable probiotics on gastritis induced by Helicobacter pylori (H. pylori) and elucidate the possible mechanisms of protection. METHODS: Colonization of BIFICO strains in the mouse stomach was determined by counting colony-forming units per gram of stomach tissue. After treatment with or without BIFICO, inflammation and H. pylori colonization in the mouse stomach were analyzed by hematoxylin and eosin and Giemsa staining, respectively. Cytokine levels were determined by enzyme-linked immunosorbent assay and Milliplex. The activation of nuclear factor (NF)-κB and MAPK signaling in human gastric epithelial cells was evaluated by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was used to quantify TLR2, TLR4 and MyD88 mRNA expression in the mouse stomach. RESULTS: We demonstrated that BIFICO, which contains a mixture of Enterococcus faecalis, Bifidobacterium longum and Lactobacillus acidophilus, was tolerant to the mouse stomach environment and was able to survive both the 8-h and 3-d courses of administration. Although BIFICO treatment had no effect on the colonization of H. pylori in the mouse stomach, it ameliorated H. pylori-induced gastritis by significantly inhibiting the expression of cytokines and chemokines such as TNF-α, IL-1β, IL-10, IL-6, G-CSF and MIP-2 (P < 0.05). These results led us to hypothesize that BIFICO treatment would diminish the H. pylori-induced inflammatory response in gastric mucosal epithelial cells in vitro via the NF-κB and MAPK signaling pathways. Indeed, we observed a decrease in the expression of the NF-κB subunit p65 and in the phosphorylation of IκB-α, ERK and p38. Moreover, there was a significant decrease in the production of IL-8, TNF-α, G-CSF and GM-CSF (P < 0.05), and the increased expression of TLR2, TLR4 and MyD88 induced by H. pylori in the stomach was also significantly reduced following BIFICO treatment (P < 0.05). CONCLUSION: Our

  9. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.

    PubMed

    El-Akabawy, Gehan; El-Kholy, Wael

    2014-05-01

    Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30more » days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic

  11. Prenatal low-dose bisphenol A enhances behavioral responses induced by a predator odor.

    PubMed

    Fujimoto, Tetsuya; Kubo, Kazuhiko; Nishikawa, Yasuo; Aou, Shuji

    2015-01-01

    Bisphenol A (BPA) is an environmental endocrine disrupter (EED). Previous studies by our group showed that pre- and postnatal administration of low-level BPA induced depression-like behavior in rats. In this study, we evaluated the effects of prenatal BPA on behavioral responses to a predator odor by using a novel cross-form apparatus consisting of 4 plastic chambers. On the first day, nothing was placed into the chambers (Session 1). On the second day, a predator odor (fox odor) was located in separate chambers at 2 opposite corners of the apparatus (Session 2). Pregnant Wistar rats were exposed to low-dose BPA (less than the reference dose) during the 7 days just before birth, and the offspring of the treated rats were evaluated as adults. The locomotor activity and avoidance response of each rat on both test days were compared. The control and BPA groups showed reduced locomotor activity in the presence of the predator odor, but the odor-avoidance response was significant only in the BPA rats. The BPA-exposed rats were obviously sensitive to the predator odor. These results suggest that prenatal BPA exposure has an amplifying effect on avoidance responses to predator odor stress.

  12. Antidiabetic Effects of Aqueous and Dichloromethane/Methanol Stem Bark Extracts of Pterocarpus soyauxii Taub (Papilionaceae) on Streptozotocin-induced Diabetic Rats

    PubMed Central

    Tchamadeu, Marie Claire; Dzeufiet, Paul Désiré Djomeni; Blaes, Nelly; Girolami, Jean-Pierre; Kamtchouing, Pierre; Dimo, Théophile

    2017-01-01

    Aim of the Study: The aim is to evaluate the hypoglycemic and antidiabetic effects of aqueous and CH2Cl2/CH3OH stem bark extracts of Pterocarpus soyauxii Taub in normal and diabetic rats. Materials and Methods: Streptozotocin (STZ)-induced diabetic and normal adult Wistar rats were orally administered with aqueous and CH2Cl2/CH3OH plant extracts of P. soyauxii at various doses (38–300 mg/kg) in a single administration. In addition, STZ-induced diabetic rats received prolonged daily administration for 14 days. Glibenclamide (GB) (10 mg/kg) was used as reference treatment. In acute test, fasting blood glucose was followed for 5 h. In subacute test, body weight, food and water intakes, and blood glucose were followed weekly and serum biochemical parameters evaluated after 14 days treatment. Results: Acute administration of aqueous and CH2Cl2/CH3OH stem bark extracts moderately decreased fasting blood glucose compared to GB, significantly in normal rats (P < 0.05 to P < 0.01) but, as GB, not significantly in diabetic rats. Prolonged treatments in diabetic rats with aqueous and CH2Cl2/CH3OH extracts reduced blood glucose to an extent, respectively, superior or similar to GB. Moreover, P. soyauxii also significantly (P < 0.01) reduced weight loss, and diabetes increased serum triglycerides, total cholesterol, and transaminases (alanine aminotransferase/aspartate aminotransferase) elevations. Conclusion: P. soyauxii Taub stem bark extracts have possible value for antidiabetic oral medication. SUMMARY Aqueous and Dichloromethane/Methanol stem bark extracts of Pterocarpus soyauxii Taub have potent (compared to Glibenclamide) antidiabetic effects in STZ-diabetic rats, with specific kinetics and dose-responses.Moderate hypoglycemia effects upon acute P. soyauxii administration.Potent anti-hyperglycemic effects of sub-acute P. soyauxii administration in STZ-diabetic rats.Potent anti-hyperlipidemic effects of sub-acute P. soyauxii administration in STZ-diabetic rats

  13. Low-dose aripiprazole for refractory burning mouth syndrome.

    PubMed

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS.

  14. Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy.

    PubMed

    Wang, Jin-yang; Gao, Yan-bin; Zhang, Na; Zou, Da-wei; Xu, Li-ping; Zhu, Zhi-yao; Li, Jiao-yang; Zhou, Sheng-nan; Cui, Fang-qiang; Zeng, Xiang-jun; Geng, Jian-guo; Yang, Jin-kui

    2014-03-01

    Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-β1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.

  15. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    PubMed

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  16. Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats.

    PubMed

    Vinayagam, Ramachandran; Jayachandran, Muthukumaran; Chung, Stephen Sum Man; Xu, Baojun

    2018-07-01

    Psidium guajava (PG) is a short shrub or tree cultivated in tropical and subtropical regions around the world. The leaf extract of PG (guava leaf) has been used historically to cure many ailments. However, mechanisms of action of guava leaf in treating diabetes are not fully understood. Effects and underlying mechanisms of guava leaf on gluconeogenesis and glycogenesis in hepatocytes, insulin signaling proteins, liver function markers, and lipid profile in streptozotocin (STZ) injected diabetic Wistar rats were investigated within the current study. PG was given orally at the dose of 100, 200, and 400 mg/kg b.w to diabetic rats for the period of 45 days. The results reveal that oral administration of PG (200 mg/kg b.w) has considerably raised the levels of insulin, glycogen, hexokinase, glucose-6-phosphatase dehydrogenase and significant (p < 0.05) belittled hepatic markers, gluconeogenic enzymes, and OGTT fasting blood glucose levels. OGTT has shown least statistical significance between the group 5 (200 mg/kg b.w) and group 6 and vital difference between group 5 and group 4 (400 mg/kg). PG has attenuated the triglycerides, total cholesterol, phospholipids, free fatty acid, and LDL levels and raised HDL levels. PG considerably (p < 0.05) activated IRS-1, IRS-2, Akt, p-Akt, PI3K, GLUT2, AMPK, p-AMPK, and p-ACC, which are the key effector molecules of the PI3K/Akt pathway in STZ rats. The results of our study specify that treatment with PG ameliorated glucose-metabolism and lipid profile in STZ evoked diabetic rats; the rationale ought to be the activation of PI3K/Akt, phosphorylation of AMPK pathway in liver and therefore has beneficial anti-diabetic activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    PubMed

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  18. Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells.

    PubMed

    Tsukimoto, Mitsutoshi; Tamaishi, Nana; Homma, Takujiro; Kojima, Shuji

    2010-01-01

    The transcription factor nuclear erythroid-derived 2-related factor 2 (Nrf2) regulates expression of genes encoding antioxidant proteins involved in cellular redox homeostasis, while gamma-ray irradiation is known to induce reactive oxygen species in vivo. Although activation of Nrf2 by various stresses has been studied, it has not yet been determined whether ionizing irradiation induces activation of Nrf2. Therefore, we investigated activation of Nrf2 in response to gamma-irradiation in mouse macrophage RAW264.7 cells. Irradiation of cells with gamma-rays induced an increase of Nrf2 expression. Even 0.1 Gy of gamma-irradiation induced a translocation of Nrf2 from cytoplasm to the nucleus, indicating the activation of Nrf2 by low-dose irradiation. Expression of heme oxygenase-1, which is regulated by Nrf2, was also increased at 24 h after irradiation with more than 0.1 Gy of gamma-rays. Furthermore, the activation of Nrf2 was suppressed by U0126, which is an inhibitor of the extracellular signal regulated protein kinase 1/2 (ERK1/2) pathway, suggesting involvement of ERK1/2-dependent pathway in the irradiation-induced activation of Nrf2. Our results indicate that low-dose gamma-irradiation induces activation of Nrf2 through ERK1/2-dependent pathways.

  19. Multiple oral dosing of ketoconazole increases dog exposure to ivermectin.

    PubMed

    Hugnet, Christophe; Lespine, Anne; Alvinerie, Michel

    2007-01-01

    The parasiticide ivermectin and the antimicrobial drug ketoconazole are macrolides that interact with P-glycoprotein. We investigated the effects of ketoconazole at a clinical dose on the pharmacokinetics of ivermectin, a CYP3A substrate with low hepatic clearance. Beagle dogs received a single subcutaneous injection of ivermectin at 0.05 mg/kg alone (n=6) or in combination with a daily oral dose of ketoconazole 10 mg/kg over 5 days before and after ivermectin administration (n=6). The plasma kinetics of ivermectin and its metabolite were followed over 15 days by HPLC analysis. Co-administered ketoconazole induced a higher plasma concentration and longer residence time of ivermectin in dogs, leading to a substantial increase in the overall exposure of the animal to the drug. Ketoconazole does not interfere with the production of the ivermectin metabolite but it may rather inhibit the elimination of the parental drug by interfering with P-gp transport. Multiple oral dosing of ketoconazole dramatically altered the pharmacokinetics of ivermectin in dogs leading to an increase in systemic exposure to the drug. Neurotoxicity of ivermectin means that inhibition of the P-gp function at the blood-brain barrier during polytherapy using P-gp inhibitors must be taken into consideration.

  20. The effect of Ipomoea reptans poir ethanolic extract on the histopathological parameters of pancreas in streptozotocin-induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Hayati, Farida; Widyarini, Sitarina; Lanova, Lulung; Wijayanti, Marsih

    2017-03-01

    The aim of this study was to investigate the effect of ethanolic extract of Ipomoea reptans Poir in male Wistar rats on the histopathological parameters of the pancreas. The rats (N=30) were divided into six groups, each consisting of five rats. The treatment groups were divided into: group I as the normal group fed ad libitum during the research, group II as the positive control administered glibenclamide 0.09 mg/200g BW, group III as the negative control given aquadest, and group IV to VI given ethanolic extract of Ipomoea reptans Poir as much as 200 mg/KgBW, 400 mg/KgBW and 600 mg/KgBW respectively. The study of antidiabetic effect was undertaken by oral administration for 21 days. On the 21st day, all the rats were dissected to prepare histopathological preparates through Gomori's chrome alum hematoxylin-phloxine staining method. The histopathological study showed that the ethanol extract of Ipomoea reptans Poir at a dose of 200 mg/KgBW and 400mg/KgBW had an antidiabetic activity through protection of pancreatic β-cell from damage in male Wistar rats induced by streptozotocin.