Science.gov

Sample records for ameliorates renal vascular

  1. Barnidipine ameliorates the vascular and renal injury in L-NAME-induced hypertensive rats.

    PubMed

    Alp Yildirim, F Ilkay; Eker Kizilay, Deniz; Ergin, Bülent; Balci Ekmekçi, Özlem; Topal, Gökçe; Kucur, Mine; Demirci Tansel, Cihan; Uydeş Doğan, B Sönmez

    2015-10-05

    The present study was aimed to investigate the influence of Barnidipine treatment on early stage hypertension by determining the function and morphology of the mesenteric and renal arteries as well as the kidney in N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME)-induced hypertensive rats. Barnidipine (3 mg/kg/day p.o) was applied to rats after 2 weeks of L-NAME (60 mg/kg/day) administration, and continued for the next 3 weeks concomitantly with L-NAME. The systolic blood pressure (SBP) of rats was determined to decrease significantly in Barnidipine treated hypertensive group when compared to that of rats received L-NAME alone. Myograph studies demonstrated that the contractile reactivity to noradrenaline were significantly reduced in both of the resistance arteries while endothelium-dependent relaxations to acethylcholine were significantly diminished particularly in the mesenteric arteries of L-NAME-induced hypertensive rats. The impaired contractile and endothelial responses were completely restored by concomitant treatment of Barnidipine with L-NAME. Histopathological examinations verified structural alterations in the arteries as well as the kidney. Moreover, a decrease in endothelial nitric oxide synthase (eNOS) expression was presented both in the arteries and kidney of hypertensive rats which were increased following Barnidipine treatment. Elevated plasma levels of malondialdehyde (MDA) and myeloperoxidase (MPO) were also reduced in Barnidipine treated hypertensive rats. In conclusion, besides to its efficacy in reducing the elevated SBP, amelioration of vascular function, modulation of arterial and renal eNOS expressions as well as reduction of the plasma levels of oxidative and inflammatory biomarkers are possible supportive mechanisms mediating the favorable implications of Barnidipine in L-NAME-induced hypertension model.

  2. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction.

    PubMed

    Thieme, Manuel; Sivritas, Sema H; Mergia, Evanthia; Potthoff, Sebastian A; Yang, Guang; Hering, Lydia; Grave, Katharina; Hoch, Henning; Rump, Lars C; Stegbauer, Johannes

    2017-03-01

    Changes in renal hemodynamics have a major impact on blood pressure (BP). Angiotensin (Ang) II has been shown to induce vascular dysfunction by interacting with phosphodiesterase (PDE)1 and PDE5. The predominant PDE isoform responsible for renal vascular dysfunction in hypertension is unknown. Here, we measured the effects of PDE5 (sildenafil) or PDE1 (vinpocetine) inhibition on renal blood flow (RBF), BP, and renal vascular function in normotensive and hypertensive mice. During acute short-term Ang II infusion, sildenafil decreased BP and increased RBF in C57BL/6 (WT) mice. In contrast, vinpocetine showed no effect on RBF and BP. Additionally, renal cGMP levels were significantly increased after acute sildenafil but not after vinpocetine infusion, indicating a predominant role of PDE5 in renal vasculature. Furthermore, chronic Ang II infusion (500 ng·kg(-1)·min(-1)) increased BP and led to impaired NO-dependent vasodilation in kidneys of WT mice. Additional treatment with sildenafil (100 mg·kg(-1)·day(-1)) attenuated Ang II-dependent hypertension and improved NO-mediated vasodilation. During chronic Ang II infusion, urinary nitrite excretion, a marker for renal NO generation, was increased in WT mice, whereas renal cGMP generation was decreased and restored after sildenafil treatment, suggesting a preserved cGMP signaling after PDE5 inhibition. To investigate the dependency of PDE5 effects on NO/cGMP signaling, we next analyzed eNOS-KO mice, a mouse model characterized by low vascular NO/cGMP levels. In eNOS-KO mice, chronic Ang II infusion increased BP but did not impair NO-mediated vasodilation. Moreover, sildenafil did not influence BP or vascular function in eNOS-KO mice. These results highlight PDE5 as a key regulator of renal hemodynamics in hypertension. Copyright © 2017 the American Physiological Society.

  3. Renal osteodystrophy and vascular calcification.

    PubMed

    Arcidiacono, T; Paloschi, V; Rainone, F; Terranegra, A; Dogliotti, E; Aloia, A; Soldati, L; Vezzoli, G

    2009-01-01

    Chronic kidney disease (CKD) is characterized by phosphate retention and reduced synthesis of 1.25(OH)2-vitamin D stimulating parathyroid hyperplasia. These changes cause a complex osteopathy, defined as renal osteodystrophy, and vascular calcification. Renal osteodystrophy increases the risk of fracture and causes deformities and disability. Vascular calcification occurs in a large proportion of hemodialysis patients and is a marker of arteriopathy. Calcifying arteriopathy induces arterial stiffness and contributes to the high cardiovascular mortality and morbidity among CKD patients. Vascular calcification results from a process of local bone formation induced by osteoblast-like cells developing in the vascular wall from resident cells. Osteoblast differentiation of resident vascular cells may be mediated by metabolic factors and may be induced by high concentrations of phosphate. Therefore, phosphate retention appears as the most detrimental factor affecting arteries in CKD patients. There is no specific therapy to revert soft tissue calcification, but calcification must be prevented in the early stages of CKD.

  4. [Diagnostic imaging of peripheral renal vascular disorders].

    PubMed

    Hélénon, O; Correas, J M; Eiss, D; Khairoune, A; Merran, S

    2004-02-01

    Peripheral vascular disorders of the kidney involve the intrarenal branches of the renal vascular tree. It include occlusive (infarction and cortical necrosis) and non-occlusive vascular lesions (acquired arteriovenous fistulas, arteriovenous malformation, false aneurysms and microaneurysms). Initial diagnosis relies on color Doppler US and CT angiography. Angiography plays a therapeutic role. MR imaging provides useful diagnostic information on perfusion disorders especially in patients with renal insufficiency.

  5. Fetal kidney stem cells ameliorate cisplatin induced acute renal failure and promote renal angiogenesis

    PubMed Central

    Gupta, Ashwani Kumar; Jadhav, Sachin H; Tripathy, Naresh Kumar; Nityanand, Soniya

    2015-01-01

    AIM: To investigate whether fetal kidney stem cells (fKSC) ameliorate cisplatin induced acute renal failure (ARF) in rats and promote renal angiogenesis. METHODS: The fKSC were isolated from rat fetuses of gestation day 16 and expanded in vitro up to 3rd passage. They were characterized for the expression of mesenchymal and renal progenitor markers by flow cytometry and immunocytochemistry, respectively. The in vitro differentiation of fKSC towards epithelial lineage was evaluated by the treatment with specific induction medium and their angiogenic potential by matrigel induced tube formation assay. To study the effect of fKSC in ARF, fKSC labeled with PKH26 were infused in rats with cisplatin induced ARF and, the blood and renal tissues of the rats were collected at different time points. Blood biochemical parameters were studied to evaluate renal function. Renal tissues were evaluated for renal architecture, renal cell proliferation and angiogenesis by immunohistochemistry, renal cell apoptosis by terminal deoxynucleotidyl transferase nick-end labeling assay and early expression of angiogenic molecules viz. vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1α and endothelial nitric oxide synthase (eNOS) by western blot. RESULTS: The fKSC expressed mesenchymal markers viz. CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz. Wt1, Pax2 and Six2. They exhibited a potential to form CD31 and Von Willebrand factor expressing capillary-like structures and could be differentiated into cytokeratin (CK)18 and CK19 positive epithelial cells. Administration of fKSC in rats with ARF as compared to administration of saline alone, resulted in a significant improvement in renal function and histology on day 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P < 0.05) and on day 7 (0.83 ± 0.16 vs 2.00 ± 0.25, P < 0.05). The infused PKH26 labeled fKSC were observed to engraft in damaged renal tubules and showed increased proliferation and reduced

  6. Acute bile duct ligation ameliorates ischemic renal failure.

    PubMed

    Jeyarajah, D Rohan; Kielar, Mariusz L; Zhou, Xin J; Zhang, Ying; Lu, Christopher Y

    2003-01-01

    Biliary obstruction affects the renal response to ischemia and also elicits a hepatic cytokine response. Using a murine model, we now test the hypothesis that these hepatic cytokines help determine the outcome of ischemic acute renal failure. C3H/HEN mice were subjected to bile duct ligation 24 h (ABDL) or 7 days (CBDL) prior to induction of acute ischemic renal failure (ARF). Serum creatinine (Scr), cytokine mRNA abundance, and renal histology were studied 24 h after renal ischemia. ABDL prior to ARF resulted in amelioration of renal injury (Scr 0.7 +/- 0.1 mg/dl compared to 2.5 +/- 0.1 mg/dl in sham/ARF group, (mean +/- SE, n = 11/group). CBDL exacerbated renal injury. Increased hepatic mRNA for interleukin-10 (IL10) and interleukin-1 receptor antagonist (IL1RA) was detected in the ABDL/ARF group but not in the CBDL/ARF group. These data suggest that hepatic production of IL10 and IL1RA in response to ABDL ameliorates ischemic ARF, an effect that is lost after several days of BDL. Our data support the concept that hepatic cytokines modulate renal injury. This adds a new dimension in our understanding of renal injury in the setting of hepatic disease. Copyright 2003 S. Karger AG, Basel

  7. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus

    PubMed Central

    Sreekutty, MS; Mini, S

    2016-01-01

    Objective(s): Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Materials and Methods: Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. Results: ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. Conclusion: These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus. PMID:27096072

  8. Resveratrol Ameliorated Vascular Calcification by Regulating Sirt-1 and Nrf2.

    PubMed

    Zhang, P; Li, Y; Du, Y; Li, G; Wang, L; Zhou, F

    2016-12-01

    Pathologic vascular calcification is a significant reason for mortality and morbidity in patients who suffer from end-stage renal disease (ESRD). Resveratrol, a scavenger for many free radicals, is a crucial compound for biomedicine. However, the role and mechanism of resveratrol in vascular calcification is still unknown. In this study, to mimic vascular calcification in ESRD, we used β-glyceophosphate to stimulate the rat vascular smooth muscle cells (RASMCs). We investigate the therapeutic role of resveratrol pretreatment in vascular calcification. In the current in vitro study, we observe the effects of resveratrol on improving intracellular calcium deposition and protecting against mitochondria dysfunction in calcific RASMCs. Resveratrol decreased the mRNA level of fibroblast growth factor-23, then increased the mRNA level of klotho and the nuclear transcription factor NF-E2-related factor 2 (nuclear factor-erythroid 2-related factor 2 [Nrf2]) in RASMCs after calcification. Further, resveratrol activated the expression of sirtuin-1 and Nrf2, and inhibited the expression of osteopontin, runt-related transcription factor 2, and heme oxygenase-1. Our study shows that resveratrol could ameliorate oxidative injury of RASMCs by preventing vascular calcification-induced calcium deposition and mitochondria dysfunction through involving sirtuin-1 and Nrf2. These results might indicate a novel role for resveratrol in resistance to oxidative stress for ESRD patients suffering from vascular calcification.

  9. Renal Vascular Structure and Rarefaction

    PubMed Central

    Chade, Alejandro R.

    2014-01-01

    An intact microcirculation is vital for diffusion of oxygen and nutrients and for removal of toxins of every organ and system in the human body. The functional and/or anatomical loss of microvessels is known as rarefaction, which can compromise the normal organ function and have been suggested as a possible starting point of several diseases. The purpose of this overview is to discuss the potential underlying mechanisms leading to renal microvascular rarefaction, and the potential consequences on renal function and on the progression of renal damage. Although the kidney is a special organ that receives much more blood than its metabolic needs, experimental and clinical evidence indicates that renal microvascular rarefaction is associated to prevalent cardiovascular diseases such as diabetes, hypertension, and atherosclerosis, either as cause or consequence. On the other hand, emerging experimental evidence using progenitor cells or angiogenic cytokines supports the feasibility of therapeutic interventions capable of modifying the progressive nature of microvascular rarefaction in the kidney. This overview will also attempt to discuss the potential renoprotective mechanisms of the therapeutic targeting of the renal microcirculation. PMID:23720331

  10. SnoN upregulation ameliorates renal fibrosis in diabetic nephropathy

    PubMed Central

    Liu, Lirong; Shi, Mingjun; Wang, Yuanyuan; Zhang, Changzhi; Su, Bo; Xiao, Ying; Guo, Bing

    2017-01-01

    Progressive reduction of SnoN is associated with gradual elevation of TGF-β1 during diabetic nephropathy progression, suggesting SnoN to be a possible mediator of TGF-β1 signaling, with potential therapeutic benefits against TGF- β1 –induced renal fibrosis. To characterize SnoN for its role in renal fibrosis, we assessed SnoN expression patterns in response to high glucose stress, and evaluated the effects of upregulating SnoN on renal fibrosis. High glucose stress induced significantly elevated SnoN, TGF-β1, and Arkadia transcription; however, significantly reduced SnoN protein levels were observed under these conditions. Upregulating the SnoN protein was achieved by Arkadia knockdown, which resulted in inhibited high glucose-induced epithelial-mesenchymal transition (EMT) in renal tubular cells, the onset phase of renal fibrosis. Alternatively, EMT was suppressed by dominantly expressed exogenous SnoN without interfering with TGF-β1. Overall, renal SnoN upregulation ameliorates renal fibrosis by relieving high glucose-induced EMT; these findings support a translational approach targeting SnoN for the treatment of diabetic nephropathy. PMID:28350874

  11. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction

    PubMed Central

    Furumoto, Yasuko; Smith, Carolyne K.; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R.; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L.; Trier, Anna M.; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T.; O'Shea, John J.

    2016-01-01

    Objectives Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. To date, no drug targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a Janus kinase (JAK) inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and on its associated vascular pathology remains to be characterized. Methods MRL/lpr lupus-prone mice received tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum autoantibody levels and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular trap (NET) release, endothelium-dependent vasorelaxation and endothelial differentiation were compared in treated and untreated mice. Results Treatment with tofacitinib led to significant improvement in measures of disease activity including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of pro-inflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated NET formation and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective as both preventive and therapeutic strategies. Conclusions Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. PMID:27429362

  12. Renal vascular lesions in lupus nephritis.

    PubMed

    Descombes, E; Droz, D; Drouet, L; Grünfeld, J P; Lesavre, P

    1997-09-01

    We retrospectively studied the prevalence, histologic features, clinical correlations, and long-term outcome of the intrarenal vascular lesions of lupus nephritis (LN) in a series of 169 renal biopsies performed between 1980 and 1994 in 132 patients with systemic lupus erythematosus. The most common vascular lesions were nonspecific sclerotic changes, found in 37% of the biopsies (24% if only the cases with moderate to severe changes are considered). The other common vascular lesions were "immunoglobulin microvascular casts," found in 24% of the biopsies. Vasculitis and thrombotic microangiopathy were rare lesions and were seen in only 4 (2.4%) and 1 (0.6%) cases, respectively. Isolated sclerotic vascular changes were present in biopsies from older patients with a longer duration of LN, compared with the group with no vascular lesions, and were associated with a significantly higher prevalence of hypertension. Overall, however, the long-term renal and patient survival of this group did not differ significantly from that of the patients without vascular changes. Immunoglobulin microvascular casts (IMCs) ("lupus vasculopathy") were characterized by the presence of immunoglobulin deposition within the glomerular capillaries and small arterioles. In the present study we extensively investigated the morphologic and immunologic features of this lesion. The lesions were notable for the absence of endothelial or parietal vascular lesions and of fibrin, platelets, and leukocytes, which indicates that thrombosis is not involved in the vascular obstruction. According to our data immunoglobulin precipitation in the microvasculature seems to play a central role in the pathogenesis of this lesion, which is why we propose the term "immunoglobulin microvascular casts." In general, IMCs were associated with the most severe and active forms of diffuse proliferative lupus nephritis (World Health Organization [WHO] class IV). However our data show that, in contrast to previous studies

  13. [Vascular bench surgery in renal transplant].

    PubMed

    Casolino, V; Paraluppi, G; Manolitsi, O; Fontana, I; Antonucci, A; Tommasi, G V; Arcuri, V; Valente, U

    1997-03-01

    The development in the number of patients for renal transplants has not been matched to the kidneys supplied. On this subject the authors think that this chronic deficit could be improved by making use of all the organs by using a series of technical means during bench surgery; which enable optimisation of use of kidneys with vascular abnormalities or those injured upon removal. The authors report their experience of 450 renal transplants operated between January 1981 and December 1985 and of the evolution vascular bench surgical techniques which enable use of a considerable number of kidneys which would otherwise have been discarded. Moreover, it helped the implant, shortened surgery time without prolonging hot ischemia, and did not increase the number of complications.

  14. Rap1 Ameliorates Renal Tubular Injury in Diabetic Nephropathy

    PubMed Central

    Xiao, Li; Zhu, Xuejing; Yang, Shikun; Liu, Fuyou; Zhou, Zhiguang; Zhan, Ming; Xie, Ping; Zhang, Dongshan; Li, Jun; Song, Panai; Kanwar, Yashpal S.; Sun, Lin

    2014-01-01

    Rap1b ameliorates high glucose (HG)-induced mitochondrial dysfunction in tubular cells. However, its role and precise mechanism in diabetic nephropathy (DN) in vivo remain unclear. We hypothesize that Rap1 plays a protective role in tubular damage of DN by modulating primarily the mitochondria-derived oxidative stress. The role and precise mechanisms of Rap1b on mitochondrial dysfunction and of tubular cells in DN were examined in rats with streptozotocin (STZ)-induced diabetes that have Rap1b gene transfer using an ultrasound microbubble-mediated technique as well as in renal proximal epithelial tubular cell line (HK-2) exposed to HG ambiance. The results showed that Rap1b expression decreased significantly in tubules of renal biopsies from patients with DN. Overexpression of a constitutively active Rap1b G12V notably ameliorated renal tubular mitochondrial dysfunction, oxidative stress, and apoptosis in the kidneys of STZ-induced rats, which was accompanied with increased expression of transcription factor C/EBP-β and PGC-1α. Furthermore, Rap1b G12V also decreased phosphorylation of Drp-1, a key mitochondrial fission protein, while boosting the expression of genes related to mitochondrial biogenesis and antioxidants in HK-2 cells induced by HG. These effects were imitated by transfection with C/EBP-β or PGC-1α short interfering RNA. In addition, Rap1b could modulate C/EBP-β binding to the endogenous PGC-1α promoter and the interaction between PGC-1α and catalase or mitochondrial superoxide dismutase, indicating that Rap1b ameliorates tubular injury and slows the progression of DN by modulation of mitochondrial dysfunction via C/EBP-β–PGC-1α signaling. PMID:24353183

  15. Pharmacological characterization of renal vascular dopamine receptors.

    PubMed

    Schmidt, M; Imbs, J L

    1980-01-01

    We present an in vitro method for studying the renal effects of dopamine in the isolated rat kidney. The organ is perfused in an open circuit and can be maintained satisfactorily for up to 180 min. The responses to dopamine were studied in the presence of phenoxybenzamine (10(-5) M) and sotalol (10(-5) M) while stable renal vasoconstriction was maintained by perfusion with prostaglandine F2 alpha. Dopamine induced dose-dependent renal vasodilation with an ED50 of 2.53 X 10(-6) moles/liter, which was not modified by reserpine pretreatment. (+) Butaclamol but not (-) butaclamol shifted the dopamine dose-response curve to the right in a parallel fashion, indicating competitive antagonism. Haloperidol and sulpiride at concentrations without intrinsic effect on vascular resistance also acted as competitive inhibitors for dopamine. Calculation of empirical pA2 values yielded the following relative potencies for these antagonists: (+) butaclamol greater than haloperidol greater than sulpiride. The renal vascular dopamine receptors are tentatively classified as being of the D1 type.

  16. Renal vascular lesions in systemic lupus erythematosus.

    PubMed

    Katz, S M; Korn, S; Umlas, S L; DeHoratius, R J

    1990-01-01

    In the past, necrotizing vasculitis has been considered to be one of the dominant intrarenal vascular abnormalities in systemic lupus erythematosus (SLE). To test the validity of this statement, 70 consecutive renal biopsies from patients with SLE were reviewed. Light microscopy (LM) and immunofluorescence (IF) studies documented abnormalities, including thrombosis and nephrosclerosis, in 30 patients (43 percent), but no cellular infiltration of the vessel walls or other evidence of acute necrotizing vasculitis was seen. It is concluded that while intrarenal vasculopathy with thrombosis and nephrosclerosis is a common finding in SLE, our data and recently published studies suggest that acute necrotizing vasculitis occurs rarely, if at all, in SLE nephritis.

  17. Astragaloside IV ameliorates renal injury in db/db mice

    PubMed Central

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  18. Prognostic significance of renal vascular pathology in lupus nephritis.

    PubMed

    Mejía-Vilet, J M; Córdova-Sánchez, B M; Uribe-Uribe, N O; Correa-Rotter, R; Morales-Buenrostro, L E

    2017-01-01

    We performed a retrospective cohort analysis to define the prognostic significance of vascular lesions documented in renal biopsies of lupus nephritis patients. A total of 429 patients were segregated into five groups: (1) no vascular lesions (NVL), (2) arterial sclerosis (AS), (3) non-inflammatory necrotizing vasculitis (NNV), (4) thrombotic microangiopathy (TMA), and (5) true renal vasculitis (TRV). Renal outcomes were analyzed by Cox regression models, and correlations between vascular lesions and activity/chronicity scores were determined by Spearman's coefficients. A total of 200 (46.6%) had NVL, 189 (44.0%) AS, six NNV (1.4%), 23 (5.4%) TMA, and 11 (2.6%) TRV. Patients with NVL were younger, with higher renal function; patients with TMA and TRV had lower renal function and higher arterial pressure at baseline. Antiphospholipid syndrome and positive lupus anticoagulant were more frequently observed in the TMA group. Five-year renal survival was 83% for NVL, 63% for AS, 67% for NNV, 31% for TMA, and 33% for TRV. NNV and TRV were significantly correlated with activity scores, while AS and chronic TMA were correlated with chronicity scores. Renal vascular lesions are associated with renal outcomes but do not behave as independent factors. The addition of vascular lesions to currently used scores should be further explored.

  19. PROGRESSIVE RENAL VASCULAR PROLIFERATION AND INJURY IN OBESE ZUCKER RATS

    PubMed Central

    Iliescu, Radu; Chade, Alejandro R.

    2010-01-01

    Objective Obesity, an independent risk factor for chronic kidney disease, may induce renal injury by promoting inflammation. Inflammatory cytokines can induce neovascularization in different organs, including the kidneys. However, whether obesity triggers renal neovascularization and, if so, its effect on renal function has never been investigated. Methods Blood pressure, proteinuria and glomerular-filtration-rate (GFR) were measured in-vivo. Renal microvascular (MV) architecture was studied by 3D micro-CT in lean and obese Zucker rats (LZR and OZR, n=7/group) at 12, 22, and 32 weeks of age. Renal inflammation was assessed by quantifying interleukin (IL)-6, tumor-necrosis-factor (TNF)-alpha, and ED-1 expression, as renal fibrosis in trichrome-stained cross-sections. Results Mild inflammation and lower GFR was only observed in younger OZR, without renal fibrosis or changes in MV density. Interestingly, renal MV density increased in OZR at 32 weeks of age, accompanied by pronounced increase in renal IL-6 and TNF-alpha, ED-1+ cells, proteinuria, decreased GFR, and fibrosis. Conclusion This study shows increased renal cortical vascularization in experimental obesity, suggesting neovascularization as an evolving process as obesity progresses. Increased renal vascularization, possibly triggered by inflammation, may reflect an initially compensatory mechanism in obesity. However, increased inflammation and inflammatory-induced neovascularization may further promote renal injury as obesity advances. PMID:20536738

  20. Melamine Impairs Renal and Vascular Function in Rats

    PubMed Central

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  1. Melamine Impairs Renal and Vascular Function in Rats.

    PubMed

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-06-21

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products.

  2. Dioclea violacea lectin ameliorates oxidative stress and renal dysfunction in an experimental model of acute kidney injury

    PubMed Central

    Freitas, Flavia PS; Porto, Marcella L; Tranhago, Camilla P; Piontkowski, Rogerio; Miguel, Emilio C; Miguel, Thaiz BAR; Martins, Jorge L; Nascimento, Kyria S; Balarini, Camille M; Cavada, Benildo S; Meyrelles, Silvana S; Vasquez, Elisardo C; Gava, Agata L

    2015-01-01

    Acute kidney injury (AKI) is characterized by rapid and potentially reversible decline in renal function; however, the current management for AKI is nonspecific and associated with limited supportive care. Considering the need for more novel therapeutic approaches, we believe that lectins from Dioclea violacea (Dvl), based on their anti-inflammatory properties, could be beneficial for the treatment of AKI induced by renal ischemia/reperfusion (IR). Dvl (1 mg/kg, i.v.) or vehicle (100 µL) was administered to Wistar rats prior to the induction of bilateral renal ischemia (45 min). Following 24 hours of reperfusion, inulin and para-aminohippurate (PAH) clearances were performed to determine glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF) and renal vascular resistance (RVR). Renal inflammation was assessed using myeloperoxidase (MPO) activity. Kidney sections were stained with hematoxylin-eosin to evaluate morphological changes. Intracellular superoxide anions, hydrogen peroxide, peroxynitrite, nitric oxide and apoptosis were analyzed using flow cytometry. IR resulted in diminished GFR, RPF, RBF, and increased RVR; however, these changes were ameliorated in rats receiving Dvl. AKI-induced histomorphological changes, such as tubular dilation, tubular necrosis and proteinaceous casts, were attenuated by Dvl administration. Treatment with Dvl resulted in diminished renal MPO activity, oxidative stress and apoptosis in rats submitted to IR. Our data reveal that Dvl has a protective effect in the kidney, improving renal function after IR injury, probably by reducing neutrophil recruitment and oxidative stress. These results indicate that Dvl can be considered a new therapeutic approach for AKI-induced kidney injury. PMID:26885258

  3. Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue.

    PubMed

    Santeramo, Ilaria; Herrera Perez, Zeneida; Illera, Ana; Taylor, Arthur; Kenny, Simon; Murray, Patricia; Wilm, Bettina; Gretz, Norbert

    2017-04-04

    Previous studies have suggested that CD133(+) cells isolated from human kidney biopsies have the potential to ameliorate injury following intravenous (IV) administration in rodent models of kidney disease by integrating into damaged renal tissue and generating specialized renal cells. However, whether renal engraftment of CD133(+) cells is a prerequisite for ameliorating injury has not yet been unequivocally resolved. Here, we have established a cisplatin-induced nephropathy model in immunodeficient rats to assess the efficacy of CD133(+) human kidney cells in restoring renal health, and to determine the fate of these cells after systemic administration. Specifically, following IV administration, we evaluated the impact of the CD133(+) cells on renal function by undertaking longitudinal measurements of the glomerular filtration rate using a novel transcutaneous device. Using histological assays, we assessed whether the human kidney cells could promote renal regeneration, and if this was related to their ability to integrate into the damaged kidneys. Our results show that both CD133(+) and CD133(-) cells improve renal function and promote renal regeneration to a similar degree. However, this was not associated with engraftment of the cells into the kidneys. Instead, after IV administration, both cell types were exclusively located in the lungs, and had disappeared by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133(+) cells homing to the kidneys and generating specialized renal cells. Instead, renal repair is likely to be mediated by paracrine or endocrine factors. © Stem Cells Translational Medicine 2017.

  4. Role of renal vascular potassium channels in physiology and pathophysiology.

    PubMed

    Salomonsson, Max; Brasen, Jens Christian; Sorensen, Charlotte M

    2017-03-30

    The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K(+) conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage operated Ca(2+) channels (VOCC) in VSMC. When K(+) conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K(+) channels leads to depolarization and vasoconstriction. K(+) channels in EC indirectly participate in the control of vascular tone by endothelium derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K(+) channels have a potential role in the control of fluid homeostasis and blood pressure as well as in the protection of the renal parenchyma. The main classes of K(+) channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare the ambiguous in vitro and in vivo results. We discuss the role of single types of K(+) channels and the integrated function of several classes. We also deal with the possible role of renal vascular K(+) channels in the pathophysiology of hypertension, diabetes mellitus and sepsis. This article is protected by copyright. All rights reserved.

  5. THE CAPACITY OF THE RENAL VASCULAR BED IN HYPERTENSION

    PubMed Central

    Cox, Alvin J.; Dock, William

    1941-01-01

    By using kerosene and avoiding postmortem rigor one can obtain perfusion rates in kidneys nearly five times faster than those reported by observers who perfused kidneys immediately post mortem with saline solution, only half as viscous as kerosene. The results obtained by kerosene perfusion indicate possible renal blood flow 50 to 100 per cent greater than that measured by Smith and his coworkers (7) in living men by diodrast clearance under normal conditions, and about as high as those observed in febrile subjects. Like the diodrast method, kerosene perfusion shows a striking decrease in renal vascular bed between early matuity (age 18 to 35) and senescence (45 to 60). This decrease is about 25 per cent. Most kidneys from patients with hypertension without uremia have vascular beds in the normal range, but a few show great decreases in capacity for blood flow. This evidence is interpreted as another indication that renal arteriosclerosis is often a result, rarely a cause of hypertension. Significant occlusion of large renal arteries is rare. Uremia due to amyloid may occur with no significant decrease in renal vascular bed, but the uremia of renal sclerosis, glomerulo- or pyelonephritis is associated with reduction of vascular bed to very low levels. PMID:19871124

  6. Renal vascular disease in neurofibromatosis type 2: association or coincidence?

    PubMed

    Cordeiro, Nuno J V; Gardner, Kate R; Huson, Susan M; Stewart, Helen; Elston, John S; Howard, Emma L; Tullus, Kjell O; Pike, Michael G

    2006-01-01

    Neurofibromatosis type 2 (NF2) remains a challenging diagnosis in childhood where there may be no neurological involvement. A 12-month-old male in whom NF2 was suspected because of characteristic ophthalmological and cutaneous lesions is reported. Cranial MRI showed no tumours. A pathogenic mutation was identified on NF2 gene analysis. The child developed hypertension due to renal vascular disease. Although renal vascular disease is a recognized complication of neurofibromatosis type 1 (NF1), it has not been reported in NF2.

  7. Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction.

    PubMed

    Quiroz, Yasmir; Ferrebuz, Atilio; Romero, Freddy; Vaziri, Nosratola D; Rodriguez-Iturbe, Bernardo

    2008-02-01

    The progressive deterioration of renal function and structure resulting from renal mass reduction are mediated by a variety of mechanisms, including oxidative stress and inflammation. Melatonin, the major product of the pineal gland, has potent_antioxidant and anti-inflammatory properties, and its production is impaired in chronic renal failure. We therefore investigated if melatonin treatment would modify the course of chronic renal failure in the remnant kidney model. We studied rats followed 12 wk after renal ablation untreated (Nx group, n = 7) and treated with melatonin administered in the drinking water (10 mg/100 ml) (Nx + MEL group, n = 8). Sham-operated rats (n = 10) were used as controls. Melatonin administration increased 13-15 times the endogenous hormone levels. Rats in the Nx + MEL group had reduced oxidative stress (malondialdehyde levels in plasma and in the remnant kidney as well as nitrotyrosine renal abundance) and renal inflammation (p65 nuclear factor-kappaB-positive renal interstitial cells and infiltration of lymphocytes and macrophages). Collagen, alpha-smooth muscle actin, and transforming growth factor-beta renal abundance were all increased in the remnant kidney of the untreated rats and were reduced significantly by melatonin treatment. Deterioration of renal function (plasma creatinine and proteinuria) and structure (glomerulosclerosis and tubulointerstitial damage) resulting from renal ablation were ameliorated significantly with melatonin treatment. In conclusion, melatonin administration improves the course of chronic renal failure in rats with renal mass reduction. Further studies are necessary to define the potential usefulness of this treatment in other animal models and in patients with chronic renal disease.

  8. Evaluation of renal vascular anatomy in live renal donors: Role of multi detector computed tomography.

    PubMed

    Pandya, Vaidehi Kumudchandra; Patel, Alpeshkumar Shakerlal; Sutariya, Harsh Chandrakant; Gandhi, Shruti Pradipkumar

    2016-01-01

    Evaluation of renal vascular variations is important in renal donors to avoid vascular complications during surgery. Venous variations, mainly resulting from the errors of the embryological development, are frequently observed. This retrospective cross-sectional study aimed to investigate the renal vascular variants with multidetector computed tomography (MDCT) angiography to provide valuable information for surgery and its correlations with surgical findings. A total of 200 patients underwent MDCT angiography as a routine work up for live renal donors. The number, course, and drainage patterns of the renal veins were retrospectively observed from the scans. Anomalies of renal veins and inferior vena cava (IVC) were recorded and classified. Multiplanar reformations (MPRs), maximum intensity projections, and volume rendering were used for analysis. The results obtained were correlated surgically. In the present study, out of 200 healthy donors, the standard pattern of drainage of renal veins was observed in only 67% of donors on the right side and 92% of donors on the left side. Supernumerary renal veins in the form of dual and triple renal veins were seen on the right side in about 32.5% of donors (dual right renal veins in 30.5% cases and triple right renal veins in 2.5% cases). Variations on the left side were classified into four groups: supernumerary, retro-aortic, circumaortic, and plexiform left renal veins in 1%, 2.5%, 4%, 0.5%, cases respectively. Developmental variations in renal veins can be easily detected on computed tomography scan, which can go unnoticed and can pose a fatal threat during major surgeries such as donor nephrectomies in otherwise healthy donors if undiagnosed.

  9. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions.

    PubMed

    Wu, Li-Hua; Yu, Feng; Tan, Ying; Qu, Zhen; Chen, Meng-Hua; Wang, Su-Xia; Liu, Gang; Zhao, Ming-Hui

    2013-04-01

    The 2003 International Society of Nephrology/Renal Pathology Society (ISN/RPS) pathological classification system of lupus nephritis specified the importance of vascular damage and indicated this should be included in the diagnostic summary. Few pathological studies of lupus nephritis, however, focus on the patterns of renal vascular involvement. Here we assessed renal vascular lesions in lupus nephritis based on the 2003 ISN/RPS classification system and evaluated their association with clinical and pathological data in a large cohort from a single center in China. Among 341 patients with lupus nephritis, 279 were diagnosed with single or multiple renal vascular lesions that included 253 with vascular immune complex deposits, 82 with atherosclerosis, 60 with thrombotic microangiopathy, 13 with noninflammatory necrotizing vasculopathy, and 2 with true renal vasculitis. Patients with thrombotic microangiopathy had the poorest renal outcome. In multivariate Cox hazard analysis after inclusion of renal vascular lesions, the new chronicity index score became a significantly better independent risk factor for renal outcome (hazard ratio 2.32). Thus, renal vascular lesions are common in lupus nephritis and closely correlate with clinical disease activity and renal outcome. Inclusion of a detailed description of renal vascular lesions in the ISN/RPS classification of lupus nephritis may strengthen its predictive value for renal outcome.

  10. Renal osteodystrophy, phosphate homeostasis, and vascular calcification.

    PubMed

    Hruska, Keith A; Saab, Georges; Mathew, Suresh; Lund, Richard

    2007-01-01

    New advances in the pathogenesis of renal osteodystrophy (ROD) change the perspective from which many of its features and treatment are viewed. Calcium, phosphate, parathyroid hormone (PTH), and vitamin D have been shown to be important determinants of survival associated with kidney diseases. Now ROD dependent and independent of these factors is linked to survival more than just skeletal frailty. This review focuses on recent discoveries that renal injury impairs skeletal anabolism decreasing the osteoblast compartment of the skeleton and consequent bone formation. This discovery and the discovery that PTH regulates the hematopoietic stem cell niche alters our view of secondary hyperparathyroidism in chronic kidney disease (CKD) from that of a disease to that of a necessary adaptation to renal injury that goes awry. Furthermore, ROD is shown to be an underappreciated factor in the level of the serum phosphorus in CKD. The discovery and the elucidation of the mechanism of hyperphosphatemia as a cardiovascular risk in CKD change the view of ROD. It is now recognized as more than a skeletal disorder, it is an important component of the mortality of CKD that can be treated.

  11. Diosgenin attenuates vascular calcification in chronic renal failure rats.

    PubMed

    Manivannan, Jeganathan; Barathkumar, T R; Sivasubramanian, Jeganathan; Arunagiri, Pandian; Raja, Boobalan; Balamurugan, Elumalai

    2013-06-01

    Vascular calcification due to elevated phosphate levels is the major contributor of cardiovascular dysfunction. The oxidative stress and gene expression events modulate the transdifferentiation of vascular smooth muscle cells into osteogenic phenotype. This present study intends to evaluate the dose-dependent effect of diosgenin, an antioxidant on high phosphate induced vascular calcification in adenine-induced chronic renal failure rats. High phosphate environment causes elevated calcium accumulation with related histological changes and alkaline phosphatase activity in aorta. Further it downregulates the activity of enzymatic antioxidants and elevates the level of lipid peroxidative markers. Moreover, the renal failure leads to reduced nitric oxide production. But, treatment with diosgenin at a dose of 10, 20, and 40 mg/kg given via oral gavages causes reversion of all the above events in a dose-dependent manner. The highest dose has shown more potential activity than other two doses, which has the ability to protect the alteration of liver markers and red blood cell antioxidant system without any adverse effects and it does not alter the kidney associated changes too. Finally, the Fourier transform infrared spectroscopy study strongly supports its ability to protect the macromolecules from oxidative stress. All the above evidences show that diosgenin has overall benefits against renal failure-induced vascular calcification-associated oxidative stress.

  12. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria.

    PubMed

    Chen, Jun-Feng; Wu, Qi-Shun; Xie, Yu-Xian; Si, Bo-Lin; Yang, Ping-Ping; Wang, Wen-Yan; Hua, Qin; He, Qing

    2017-10-01

    Mitochondrial dysfunction causes renal tubular epithelial cell injury and promotes cell apoptosis and renal tubulointerstitial fibrosis (TIF) progression. TNF receptor-associated protein 1 (TRAP1) is a molecular chaperone protein that is localized in mitochondria. It plays an important role in cell apoptosis; however, its functional mechanism in TIF remains unclear. In this study, we observed the effects of TRAP1 in renal tubular epithelial cell mitochondria in mice with unilateral ureteral obstruction and its function in cell apoptosis and TIF. Results show that TRAP1 could protect the mitochondrial structure in renal tubular epithelial cells; maintain the levels of mitochondrial membrane potential, ATP, and mitochondrial DNA copy number; inhibit reactive oxygen species production; stabilize the expression of the mitochondrial inner membrane protein mitofilin; reduce renal tubular epithelial cell apoptosis; and inhibit TIF. These results provide new theoretical foundations for additional understanding of the antifibrotic mechanism of TRAP1 in the kidney.-Chen, J.-F., Wu, Q.-S., Xie, Y.-X., Si, B.-L., Yang, P.-P., Wang, W.-Y., Hua, Q., He, Q. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. © FASEB.

  13. Vascular reactivity of rabbit isolated renal and femoral resistance arteries in renal wrap hypertension.

    PubMed

    Khammy, Makhala M; Angus, James A; Wright, Christine E

    2016-02-15

    In rabbits with cellophane renal wrap hypertension, hindquarter and total vascular resistance changes to pressor and depressor agents are amplified compared to those of normotensive rabbits. The aim of the present study was to evaluate the in vitro pharmacodynamics of hypertensive and normotensive rabbit small artery segments isolated from the renal and hindquarter vascular beds. Using wire myography, the full range (Emax) and sensitivity (EC50) to a range of agonists of segments of renal interlobar (≈ 600 µm i.d.), renal arcuate (≈ 250 µm i.d.) and deep femoral branch (≈ 250 µm i.d.) arteries were assessed under normalised conditions of passive tension. Interlobar arteries from hypertensive rabbits were more sensitive (EC50) than those from normotensive rabbits to noradrenaline (6-fold), methoxamine (3-fold) and angiotensin II (3-fold). Arcuate artery reactivity was largely unaffected by hypertension. Deep femoral arteries from hypertensive rabbits had enhanced sensitivity only to noradrenaline (2-fold) and methoxamine (4-fold). Sensitivity to relaxation by acetylcholine was unaffected by hypertension in all arteries. Deep femoral arteries from hypertensive rabbits were more sensitive to sodium nitroprusside than normotensive counterparts. Adenosine caused little relaxation in renal arteries, but full relaxation in deep femoral arteries, unaltered by hypertension. This study found substantial heterogeneity in the pharmacodynamic profile of vessels isolated from different vascular beds and between arterial segments within the kidney. These profiles were differentially affected by hypertension suggesting that hypertension per se is not a resultant of general vascular dysfunction.

  14. Effect of diesel exhaust particles on renal vascular responses in rats with chronic kidney disease.

    PubMed

    Al Suleimani, Y M; Al Mahruqi, A S; Al Za'abi, M; Shalaby, A; Ashique, M; Nemmar, A; Ali, B H

    2017-02-01

    Several recent studies have indicated the possible association between exposure to particulate air pollution and the increased rate of morbidity and mortality in patients with kidney diseases. The link of this observation to vascular damage has not been adequately addressed. Therefore, this study aims to investigate possible vascular damage that might be associated with exposure to diesel exhaust particles (DP) in adenine (AD)-induced chronic kidney disease (CKD) in rats, and the possible ameliorative effect of gum acacia (GA). CKD was induced by feeding AD (0.75%, w/w), and DP (0.5 mg/kg) was instilled intratracheally every second day and GA was given concomitantly in the drinking water at a dose of 15% w/v. All treatments were given concomitantly for 28 days. Changes in renal blood flow (RBF) and systolic and diastolic blood pressure were monitored in these animals after anesthesia, together with several other endpoints. Exposure to DP significantly reduced RBF and this was significantly potentiated in AD-treated rats. Phenylephrine-induced decreases in RBF and increases in systolic and diastolic blood pressure were severely potentiated in rats exposed to DP, and these actions were significantly augmented in AD-treated rats. GA did not significantly affect the vascular impairment induced by AD and DP given together. This study provides experimental evidence that exposure to particulate air pollution can exacerbate the vascular damage seen in patients with CKD. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 541-549, 2017.

  15. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  16. Precise renal artery segmentation for estimation of renal vascular dominant regions

    NASA Astrophysics Data System (ADS)

    Wang, Chenglong; Kagajo, Mitsuru; Nakamura, Yoshihiko; Oda, Masahiro; Yoshino, Yasushi; Yamamoto, Tokunori; Mori, Kensaku

    2016-03-01

    This paper presents a novel renal artery segmentation method combining graph-cut and template-based tracking methods and its application to estimation of renal vascular dominant region. For the purpose of giving a computer assisted diagnose for kidney surgery planning, it is important to obtain the correct topological structures of renal artery for estimation of renal vascular dominant regions. Renal artery has a low contrast, and its precise extraction is a difficult task. Previous method utilizing vesselness measure based on Hessian analysis, still cannot extract the tiny blood vessels in low-contrast area. Although model-based methods including superellipsoid model or cylindrical intensity model are low-contrast sensitive to the tiny blood vessels, problems including over-segmentation and poor bifurcations detection still remain. In this paper, we propose a novel blood vessel segmentation method combining a new Hessian-based graph-cut and template modeling tracking method. Firstly, graph-cut algorithm is utilized to obtain the rough segmentation result. Then template model tracking method is utilized to improve the accuracy of tiny blood vessel segmentation result. Rough segmentation utilizing graph-cut solves the bifurcations detection problem effectively. Precise segmentation utilizing template model tracking focuses on the segmentation of tiny blood vessels. By combining these two approaches, our proposed method segmented 70% of the renal artery of 1mm in diameter or larger. In addition, we demonstrate such precise segmentation can contribute to divide renal regions into a set of blood vessel dominant regions utilizing Voronoi diagram method.

  17. Renal cell carcinoma with vascular invasion: Mortality and prognostic factors.

    PubMed

    Rodríguez-Cabello, M A; Laso-García, I; Donis-Canet, F; Gómez-Dos-Santos, V; Varona-Crespo, C; Burgos-Revilla, F J

    2017-03-01

    Analysis of the results of patients who had been operated of renal cell carcinoma with vascular invasion in our institution, evaluation of prognostic factors and complications. Retrospective observational study of 37 patients diagnosed of renal cell carcinoma with vascular invasion operated between May 1999 and July 2013. We used the method of Kaplan-Meier survival analysis and the Mantel-Haenszel's test (log rank) and the Cox's proportional hazards analysis test to analyse the risk factors of mortality. The median age was 60 years. Mean follow-up period was 42.1 months. The median overall survival and disease-free survival were 53.8and 36.3 months, respectively. There was statistical association between overall survival and ASA (p=0.047), tumor stage (p=0.003), lymph node involvement (p=0.024), presence of metastases (p=0.013), level of tumor thrombus (p=0, 05) and histological type (p=0.001). 14 patients had grade IIIb complications or higher according to the Clavien Dindo classification, the most frequent was bleeding. Renal cell carcinoma with vascular invasion is a disease with high rate of mortality. Surgery is a therapeutic option that can be curative. The number of complications is important. Survival is conditioned by the ASA, tumor stage, the level of tumor thrombus, lymph node involvement, metastasis and histological type. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Vascular Calcification and Renal Bone Disorders

    PubMed Central

    Lu, Kuo-Cheng; Wu, Chia-Chao; Yen, Jen-Fen; Liu, Wen-Chih

    2014-01-01

    At the early stage of chronic kidney disease (CKD), the systemic mineral metabolism and bone composition start to change. This alteration is known as chronic kidney disease-mineral bone disorder (CKD-MBD). It is well known that the bone turnover disorder is the most common complication of CKD-MBD. Besides, CKD patients usually suffer from vascular calcification (VC), which is highly associated with mortality. Many factors regulate the VC mechanism, which include imbalances in serum calcium and phosphate, systemic inflammation, RANK/RANKL/OPG triad, aldosterone, microRNAs, osteogenic transdifferentiation, and effects of vitamins. These factors have roles in both promoting and inhibiting VC. Patients with CKD usually have bone turnover problems. Patients with high bone turnover have increase of calcium and phosphate release from the bone. By contrast, when bone turnover is low, serum calcium and phosphate levels are frequently maintained at high levels because the reservoir functions of bone decrease. Both of these conditions will increase the possibility of VC. In addition, the calcified vessel may secrete FGF23 and Wnt inhibitors such as sclerostin, DKK-1, and secreted frizzled-related protein to prevent further VC. However, all of them may fight back the inhibition of bone formation resulting in fragile bone. There are several ways to treat VC depending on the bone turnover status of the individual. The main goals of therapy are to maintain normal bone turnover and protect against VC. PMID:25136676

  19. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Pyrrolidine dithiocarbamate down-regulates vascular matrix metalloproteinases and ameliorates vascular dysfunction and remodelling in renovascular hypertension

    PubMed Central

    Cau, SBA; Guimaraes, DA; Rizzi, E; Ceron, CS; Souza, LL; Tirapelli, CR; Gerlach, RF; Tanus-Santos, JE

    2011-01-01

    BACKGROUND AND PURPOSE Mounting evidence implicates matrix metalloproteinase (MMP) in the vascular dysfunction and remodelling associated with hypertension. We tested the hypothesis that treatment with pyrrolidine dithiocarbamate (PDTC), which interferes with NF-κB-induced MMPs gene transcription, could exert antihypertensive effects, prevent MMP-2 and MMP-9 up-regulation, and protect against the functional alterations and vascular remodelling of two-kidney, one clip (2K1C) hypertension. EXPERIMENTAL APPROACH Sham-operated or hypertensive rats were treated with vehicle or PDTC (100 mg·Kg−1·day−1) by gavage for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Aortic rings were isolated to assess endothelium-dependent relaxations. Quantitative morphometry of structural alterations of the aortic wall was carried out in haematoxylin/eosin sections. Formation of vascular reactive oxygen species (ROS), and inducible (i) NOS and phosphorylated-p65 NF-κB subunit expression were measured in the aortas. MMP-2 and MMP-9 aortic levels and gelatinolytic activity were determined by gelatin and in situ zymography and by immunofluorescence. KEY RESULTS Treatment with PDTC attenuated the increases in SBP and prevented the endothelial dysfunction associated with 2K1C hypertension. Moreover, PDTC reversed the vascular aortic remodelling, the increases in aortic ROS levels and in iNOS and phosphorylated-p65 NF-κB expression found in 2K1C rats. These effects were associated with attenuation of 2K1C up-regulation of aortic MMP-2 and MMP-9 levels and gelatinolytic activity. CONCLUSION AND IMPLICATIONS These findings suggest that PDTC down-regulates vascular MMPs and ameliorates vascular dysfunction and remodelling in renovascular hypertension, thus providing evidence supporting the suggestion that PDTC is probably a good candidate to be used to treat hypertension. PMID:21434884

  1. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease.

    PubMed

    Matsunaga, Naoya; Ikeda, Eriko; Kakimoto, Keisuke; Watanabe, Miyako; Shindo, Naoya; Tsuruta, Akito; Ikeyama, Hisako; Hamamura, Kengo; Higashi, Kazuhiro; Yamashita, Tomohiro; Kondo, Hideaki; Yoshida, Yuya; Matsuda, Masaki; Ogino, Takashi; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Nakao, Takaharu; Yasuda, Kaori; Doi, Atsushi; Amamoto, Toshiaki; Aramaki, Hironori; Tsuda, Makoto; Inoue, Kazuhide; Ojida, Akio; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-11-01

    Chronic kidney disease (CKD) is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2) ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif) ligand 2 (Ccl2) was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx) mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK), did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  2. Bilateral Vascular Variations at the Renal Hilum: A Case Report

    PubMed Central

    Kumar, Naveen; Aithal, Ashwini P.; Guru, Anitha; Nayak, Satheesha B.

    2012-01-01

    Imaging technology with its advancement in the field of urology is the boon for the patients who require minimally invasive approaches for various kidney disorders. These approaches require a precise knowledge of the normal and variant anatomy of vascular structures at the hilum of the kidney in terms of their pattern of arrangement and division. The present paper describes a bilateral anomalous arrangement of the structures at the renal hilum as well as their peculiar branching pattern which is of clinical and surgical relevance. Multiple branching of the renal vessels was observed in both kidneys due to which the hila were congested. The right renal artery immediately after its origin divided into 2 branches. The upper branch represented an aberrant artery whereas the lower branch gave 5 divisions. The left renal artery also divided into 2 branches much before the hilum as anterior and posterior divisions. The anterior branch took an arched course and gave 6 branches. The posterior branch gave 3 terminal branches before entering the renal substance. In addition to anomalous hilar structures, normal architecture of both kidneys was altered and the hilum of the left kidney was found on its anterior surface. PMID:23346454

  3. Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidative properties.

    PubMed

    Nakao, Tomoko; Morita, Hiroyuki; Maemura, Koji; Amiya, Eisuke; Inajima, Tsukasa; Saito, Yuichiro; Watanabe, Masafumi; Manabe, Ichiro; Kurabayashi, Masahiko; Nagai, Ryozo; Komuro, Issei

    2013-10-01

    Melatonin is well known to have a beneficial effect on the cardiovascular system, but it remains to be elucidated whether melatonin has a therapeutic effect on the vascular damage induced by the potential vasoactive substance angiotensin II (Ang II). In this study, the effects of melatonin on Ang II-induced vascular endothelial damage were investigated. In cultured vascular endothelial cells, Ang II stimulation increased ROS generation and inhibited eNOS phosphorylation (Ser1177), both of which were clearly restored by pretreatment with melatonin. The translocation of p47(phox) subunit of NADPH oxidase from the cytosol to plasma membrane was promoted in Ang II-treated vascular endothelial cells, which was canceled by melatonin pretreatment. In Ang II-infused rats, increased ROS generation in the aortic wall and impaired endothelial function of the aortic ring were observed, which were rescued by coadministration of melatonin. In vasculature, melatonin receptor agonist ramelteon had the antioxidative effect in the same manner as melatonin by itself. These findings suggest that melatonin directly ameliorates Ang II-induced vascular endothelial damage partly via its antioxidative properties, providing with us the potential rationale for clinical application of melatonin to the prevention from cardiovascular diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    PubMed Central

    Lee, An Sook; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications. PMID:22474522

  5. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease.

    PubMed

    Liu, Shing-Hwa; Wu, Cheng-Tien; Huang, Kuo-How; Wang, Ching-Chia; Guan, Siao-Syun; Chen, Li-Ping; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is an important pathogenic feature in chronic kidney disease and end-stage renal disease, regardless of the initiating insults. A recent study has shown that CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) is involved in acute ischemia/reperfusion-related acute kidney injury through oxidative stress induction. However, the influence of CHOP on chronic kidney disease-correlated renal fibrosis remains unclear. Here, we investigated the role of CHOP in unilateral ureteral obstruction (UUO)-induced experimental chronic tubulointerstital fibrosis. The CHOP knockout and wild type mice with or without UUO were used. The results showed that the increased expressions of renal fibrosis markers collagen I, fibronectin, α-smooth muscle actin, and plasminogen activator inhibitor-1 in the kidneys of UUO-treated wild type mice were dramatically attenuated in the kidneys of UUO-treated CHOP knockout mice. CHOP deficiency could also ameliorate lipid peroxidation and endogenous antioxidant enzymes depletion, tubular apoptosis, and inflammatory cells infiltration in the UUO kidneys. These results suggest that CHOP deficiency not only attenuates apoptotic death and oxidative stress in experimental renal fibrosis, but also reduces local inflammation, leading to diminish UUO-induced renal fibrosis. Our findings support that CHOP may be an important signaling molecule in the progression of chronic kidney disease.

  6. Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis‑induced acute renal injury.

    PubMed

    Wang, Peng; Wang, Weixing; Shi, Qiao; Zhao, Liang; Mei, Fangchao; Li, Chen; Zuo, Teng; He, Xiaobo

    2016-08-01

    Acute renal injury caused by acute necrotizing pancreatitis (ANP) is a common complication that is associated with a high rate of mortality. Paeoniflorin is the active ingredient of paeonia radix and exhibits a number of pharmacological effects, such as anti‑inflammatory, anticancer, analgesic and immunomodulatory effects. The present study detected the potential treatment effects of paeoniflorin on acute renal injury induced by ANP in a rat model. The optimal dose of paeoniflorin for preventing acute renal injury induced by ANP was determined. Then, the possible protective mechanism of paeoniflorin was investigated. The serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were measured with enzyme‑linked immunosorbent assay kits. Renal inflammation and apoptosis were measured by immunohistochemistry and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling assay. The expression of nitric oxide in kidney tissues was also evaluated. The p38 mitogen‑activated protein kinases (MAPKs) were measured by western blotting. The results shown that paeoniflorin may ameliorate acute renal injury following ANP in rats by inhibiting inflammatory responses and renal cell apoptosis. These effects may be associated with the p38MAPK and nuclear factor‑κB signal pathway.

  7. Amelioration of Gamma-hexachlorocyclohexane (Lindane) induced renal toxicity by Camellia sinensis in Wistar rats

    PubMed Central

    Prasad, W. L. N. V. Vara; Srilatha, Ch.; Sailaja, N.; Raju, N. K. B.; Jayasree, N.

    2016-01-01

    Aim: A study to assess the toxic effects of gamma-hexachlorocyclohexane (γ-HCH) (lindane) and ameliorative effects of Camellia sinensis on renal system has been carried out in male Wistar rats. Materials and Methods: Four groups of rats with 18 each were maintained under standard laboratory hygienic conditions and provided feed and water ad libitum. γ-HCH was gavaged at 20 mg/kg b.wt. using olive oil as vehicle to Groups II. C. sinensis at 100 mg/kg b.wt. was administered orally in distilled water to Group IV in addition to γ-HCH 20 mg/kg b.wt. up to 45 days to study ameliorative effects. Groups I and III were treated with distilled water and C. sinensis (100 mg/kg b.wt.), respectively. Six rats from each group were sacrificed at fortnight intervals. Serum was collected for creatinine estimation. The kidney tissues were collected in chilled phosphate buffer saline for antioxidant profile and in also 10% buffered formalin for histopathological studies. Results: γ-HCH treatment significantly increased serum creatinine and significantly reduced the renal antioxidative enzymes catalase, superoxide dismutase, and glutathione peroxidase. Grossly, severe congestion was noticed in the kidneys. Microscopically, kidney revealed glomerular congestion, atrophy, intertubular hemorrhages, degenerative changes in tubular epithelium with vacuolated cytoplasm, desquamation of epithelium and urinary cast formation. A significant reduction in serum creatinine levels, significant improvement in renal antioxidant enzyme activities and near to normal histological appearance of kidneys in Group IV indicated that the green tea ameliorated the effects of γ-HCH, on renal toxicity. Conclusion: This study suggested that C. sinensis extract combined with γ-HCH could enhance antioxidant/detoxification system which consequently reduced the oxidative stress thus potentially reducing γ-HCH toxicity and tissue damage. PMID:27956790

  8. Total peripheral vascular resistance in pediatric renal transplant patients.

    PubMed

    Matteucci, Maria Chiara; Giordano, Ugo; Calzolari, Armando; Rizzoni, Gianfranco

    2002-11-01

    Abnormal cardiovascular reactivity at rest and during physical exercise may be a risk factor for left ventricular hypertrophy (LVH) in pediatric renal transplanted (Tx) patients. Data on total peripheral vascular resistance (TPR) are not available. Eleven renal Tx patients treated with cyclosporine (7 females and 4 males; mean age 14.6 +/- 3.3 years; mean time since transplantation 43 +/- 35 months) were evaluated for 24-hour blood pressure (BP), TPR and echocardiographic left ventricular mass (LVM). TPR values of patients were compared with data of a group of 11 healthy controls matched for sex and age. Twenty-four-hour ambulatory blood pressure monitoring showed that all but one patient had normal daytime BP values and six patients showed a reduced or inverse nocturnal dip. LVH was found in 72% of the patients. In comparison with healthy controls, patients showed significantly elevated TPR at rest and during exercise suggesting an increased vascular tone. The degree of LVH in these patients is severe and appears disproportionate to the BP values. The high incidence of LVH can reflect an augmented cardiovascular reactivity associated with a disturbed circadian pattern. The increase in TPR and the reduction of the nocturnal fall of BP also might contribute to the development of LVH in young renal Tx patients.

  9. Citrate attenuates vascular calcification in chronic renal failure rats.

    PubMed

    Ou, Yan; Liu, Zengying; Li, Shuiqin; Zhu, Xiaojing; Lin, Yan; Han, Jin; Duan, Zhaoyang; Jia, Lining; Gui, Baosong

    2017-05-01

    Vascular calcification (VC) is a major contributor of cardiovascular dysfunction in chronic renal failure (CRF). Citrate binds calcium and inhibits the growth of calcium crystals. This present study intends to evaluate the effect of citrate on VC in adenine-induced CRF rats. The rats were randomly divided into five groups: the control group, the citrate control group, model group, model rats with low-dose treatment of citrate (216 mg/kg) and model rats with high-dose treatment of citrate (746 mg/kg). The rats were euthanized at 5 weeks with their blood and aorta in detection. The results showed that serum level of blood urea nitrogen, serum creatinine, phosphorus, calcium, and related renal failure function marker were elevated in the model group. Furthermore, the aortic calcium accumulation and alkaline phosphatase activity were significantly increased in the model group compared with control groups. Additionally, hematoxylin-eosin staining results demonstrated that the vascular calcification in aorta is significantly increased in the model group. Finally, the expression of VC-related proteins including bone morphogenetic protein and osteocalcin were increased in the model group, whereas alpha-smooth muscle actin was decreased in the model group compared with the control group. However, treatment with citrate caused a reversal effect of all the above events in a dose-dependent manner. In conclusion, citrate may attenuate vascular calcification in adenine-induced CRF rats. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  10. Ameliorating Effect of Gemigliptin on Renal Injury in Murine Adriamycin-Induced Nephropathy

    PubMed Central

    Lee, Shin Yeong; Kim, Jin Sug; Kim, Yang Gyun; Moon, Ju-Young; Lee, Tae Won; Ihm, Chun Gyoo

    2017-01-01

    Background. Previous studies have shown the antiapoptotic and anti-inflammatory potential of DPP-IV inhibitor in experimental models of renal injury. We tested whether DPP-IV inhibitor (gemigliptin) ameliorates renal injury by suppressing apoptosis, inflammation, and oxidative stress in mice with adriamycin nephropathy. Methods. Mice were treated with normal saline (control), gemigliptin (GM), adriamycin (ADR), or adriamycin combined with gemigliptin (ADR+GM). Apoptosis, inflammation, and oxidative stress were analyzed via western blotting, real-time PCR, light microscopy, and immunofluorescence. Results. In the ADR+GM group, urine albumin creatinine ratio decreased significantly compared with that in the ADR group on day 15. Glomerulosclerosis index and tubulointerstitial injury index in mice with adriamycin-induced nephropathy decreased after gemigliptin treatment. ADR group showed higher levels of apoptosis, inflammation, and oxidative stress-related molecules compared with the control group. The upregulation of these molecules was significantly reduced by gemigliptin. In the ADR group, the staining intensities of WT-1 and nephrin reduced, but these changes were ameliorated in the ADR+GM group. Conclusion. We demonstrated that gemigliptin ameliorates nephropathy by suppressing apoptosis, inflammation, and oxidative stress in mice administered adriamycin. Our data demonstrate that gemigliptin has renoprotective effects on adriamycin-induced nephropathy. PMID:28326327

  11. Vascular adhesion protein-1 enhances neutrophil infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury.

    PubMed

    Tanaka, Shinji; Tanaka, Tetsuhiro; Kawakami, Takahisa; Takano, Hideki; Sugahara, Mai; Saito, Hisako; Higashijima, Yoshiki; Yamaguchi, Junna; Inagi, Reiko; Nangaku, Masaomi

    2017-07-01

    Vascular adhesion protein-1 (VAP-1) is a unique molecule since it acts as an adhesion molecule as well as an ectoenzyme catalyzing oxidative deamination of primary amines and generates hydrogen peroxide in the extracellular space. While VAP-1 is implicated in various inflammatory diseases, its role in acute kidney injury is less characterized. Here we studied VAP-1 expression in the kidney and the effect of its inhibition in a rat model of renal ischemia/reperfusion injury. VAP-1 was predominantly expressed in pericytes, which released enzymatically active enzyme. In vivo, a specific VAP-1 inhibitor, RTU-1096, significantly ameliorated rat renal ischemia/reperfusion injury and decreased neutrophil infiltration measured 12 hours after injury without altering macrophage or T lymphocyte populations. The protective effect of VAP-1 inhibition was lost in neutrophil-depleted rats, suggesting its inhibition ameliorated renal ischemia/reperfusion injury by suppressing neutrophil infiltration. To investigate whether hydrogen peroxide generated by VAP-1 enzyme reaction enhances neutrophil infiltration, we conducted an under-agarose migration assay with purified human neutrophils. Recombinant human VAP-1 significantly induced neutrophil migration, which was almost completely inhibited by RTU-1096 or catalase. Thus, VAP-1 plays a critical role in the pathophysiology of renal ischemia/reperfusion injury by enhancement of neutrophil infiltration generating a local hydrogen peroxide gradient. Hence, VAP-1 inhibition may be a novel therapy in ischemic acute kidney injury. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Renal vascular responses to static handgrip: role of muscle mechanoreflex

    NASA Technical Reports Server (NTRS)

    Momen, Afsana; Leuenberger, Urs A.; Ray, Chester A.; Cha, Susan; Handly, Brian; Sinoway, Lawrence I.

    2003-01-01

    During exercise, the sympathetic nervous system is activated, which causes vasoconstriction. The autonomic mechanisms responsible for this vasoconstriction vary based on the particular tissue being studied. Attempts to examine reflex control of the human renal circulation have been difficult because of technical limitations. In this report, the Doppler technique was used to examine renal flow velocity during four muscle contraction paradigms in conscious humans. Flow velocity was divided by mean arterial blood pressure to yield an index of renal vascular resistance (RVR). Fatiguing static handgrip (40% of maximal voluntary contraction) increased RVR by 76%. During posthandgrip circulatory arrest, RVR remained above baseline (2.1 +/- 0.2 vs. 2.8 +/- 0.2 arbitrary units; P < 0.017) but was only 40% of the end-grip RVR value. Voluntary biceps contraction increased RVR within 10 s of initiation of contraction. This effect was not associated with an increase in blood pressure. Finally, involuntary biceps contraction also raised RVR. We conclude that muscle contraction evokes renal vasoconstriction in conscious humans. The characteristic of this response is consistent with a primary role for mechanically sensitive afferents. This statement is based on the small posthandgrip circulatory arrest response and the vasoconstriction that was observed with involuntary biceps contraction.

  13. Renal vascular responses to static handgrip: role of muscle mechanoreflex

    NASA Technical Reports Server (NTRS)

    Momen, Afsana; Leuenberger, Urs A.; Ray, Chester A.; Cha, Susan; Handly, Brian; Sinoway, Lawrence I.

    2003-01-01

    During exercise, the sympathetic nervous system is activated, which causes vasoconstriction. The autonomic mechanisms responsible for this vasoconstriction vary based on the particular tissue being studied. Attempts to examine reflex control of the human renal circulation have been difficult because of technical limitations. In this report, the Doppler technique was used to examine renal flow velocity during four muscle contraction paradigms in conscious humans. Flow velocity was divided by mean arterial blood pressure to yield an index of renal vascular resistance (RVR). Fatiguing static handgrip (40% of maximal voluntary contraction) increased RVR by 76%. During posthandgrip circulatory arrest, RVR remained above baseline (2.1 +/- 0.2 vs. 2.8 +/- 0.2 arbitrary units; P < 0.017) but was only 40% of the end-grip RVR value. Voluntary biceps contraction increased RVR within 10 s of initiation of contraction. This effect was not associated with an increase in blood pressure. Finally, involuntary biceps contraction also raised RVR. We conclude that muscle contraction evokes renal vasoconstriction in conscious humans. The characteristic of this response is consistent with a primary role for mechanically sensitive afferents. This statement is based on the small posthandgrip circulatory arrest response and the vasoconstriction that was observed with involuntary biceps contraction.

  14. Protein kinase C inhibition ameliorates posttransplantation preservation injury in rat renal transplants.

    PubMed

    Fuller, Tom Florian; Kusch, Angelika; Chaykovska, Lyubov; Catar, Rusan; Pützer, Jennifer; Haller, Martina; Troppmair, Jakob; Hoff, Uwe; Dragun, Duska

    2012-10-15

    Prolonged cold preservation frequently causes delayed renal graft function resulting from tubular epithelial injury. Inhibition of signal transduction downstream from protein kinase C (PKC) may reduce renal ischemia-reperfusion injury and confer renal graft protection. We therefore evaluated the effect of sotrastaurin, a small-molecule inhibitor of Ca²⁺-dependent and Ca²⁺-independent PKC isoforms, in comparison with mycophenolic acid (MPA) on rat renal transplants with prolonged cold preservation. Donor kidneys from male Lewis rats were cold stored in University of Wisconsin solution for 24 hr before syngeneic grafting. Recipients received sotrastaurin (30 mg/kg twice daily), MPA (20 mg/kg/day), or vehicle through gavage starting 1 hr after surgery. Renal function was evaluated by serum creatinine and histology on day 2 (acute injury) and day 7 (repair phase) after transplantation. Postreperfusion inflammation was determined by real-time polymerase chain reaction of proinflammatory genes and histology. Signaling mechanisms were studied by Western blotting and immunohistochemistry. Sotrastaurin enhanced immediate transplant function, attenuated epithelial injury, and accelerated renal function recovery compared with MPA. Despite the stronger anti-inflammatory capacity of MPA, only sotrastaurin treatment achieved significant cellular protection with persisting reduced apoptosis of tubular epithelial cells. Decreased phosphorylation of extracellular signal-regulated protein kinase and p66Shc adaptor protein, both involved in cellular stress and apoptosis, were likely the responsible mechanism of action. The PKC inhibitor sotrastaurin effectively ameliorated ischemia-reperfusion organ damage and promoted cytoprotection in a clinically relevant model of extended renal cold preservation followed by transplantation. Pharmacologic targeting of PKC may be beneficial for recipients receiving renal transplants at risk for delayed graft function.

  15. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  16. A Magnesium Based Phosphate Binder Reduces Vascular Calcification without Affecting Bone in Chronic Renal Failure Rats

    PubMed Central

    Neven, Ellen; De Schutter, Tineke M.; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C.; Behets, Geert J.

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover. PMID:25229549

  17. Demands for vascular access in a renal dialysis unit: implications for a regional vascular unit.

    PubMed

    Eguare, E; Tierney, S; Maher, R; Creamer, M; Grace, P; Cronin, C J; Burke, P

    2006-01-01

    The development of regional dialysis units and the expanding indications for dialysis has led to increased demand for vascular access surgery. Consequently, the provision and maintenance of access, and the management of related complications has created a considerable burden on vascular surgical units in hospitals providing renal replacement therapy (RRT). The objectives of our study were to review our experience with a variety of vascular access modalities for haemodialysis and to quantify the associated surgical workload. We reviewed our experience in a consecutive group of dialysis patients who had access surgery for RRT in a regional hospital setting. Between January 1995 and January 2000, 69 patients entered the long-term dialysis programme in the Mid-Western region (population = 320,000). Of the 158 procedures performed, 138 (87%) were for access creation, and 20 (13%) related to access revision procedures. Twenty patients (29%) developed a total of 30 access related complications. Vascular access procedures accounted for 10% of the vascular surgical workload (1598 procedures) in the five-year period. Vascular access is an important part of the haemodialysis services and surgical expertise should be available at local level to cope with likely demand.

  18. Regulation of Vascular and Renal Function by Metabolite Receptors*

    PubMed Central

    Peti-Peterdi, János; Kishore, Bellamkonda K.; Pluznick, Jennifer L.

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis—from salt and water balance to metabolism—by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families—(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and (c) short-chain fatty acid receptors—we emphasize the unique and important roles that these receptors play in renal and vascular physiology and pathophysiology. PMID:26667077

  19. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    PubMed

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis

    PubMed Central

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y.; Fong, Guo-Hua; Sakmar, Thomas P.; Rafii, Shahin; Ding, Bi-Sen

    2016-01-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin–dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladaptbed hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis. PMID:26779814

  1. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis.

    PubMed

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen

    2016-02-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.

  2. Metformin Ameliorates Podocyte Damage by Restoring Renal Tissue Podocalyxin Expression in Type 2 Diabetic Rats

    PubMed Central

    Zhai, Limin; Gu, Junfei; Yang, Di; Wang, Wei; Ye, Shandong

    2015-01-01

    Podocalyxin (PCX) is a signature molecule of the glomerular podocyte and of maintaining integrity of filtration function of glomerulus. The aim of this study was to observe the effect of different doses of metformin on renal tissue PCX expression in type 2 diabetic rats and clarify its protection on glomerular podocytes. Type 2 diabetic Sprague-Dawley (SD) rats in which diabetes was induced by high-fat diet/streptozotocin (HFD-STZ) were treated with different doses of metformin (150, 300, and 500 mg/kg per day, resp.) for 8 weeks. Various biochemical parameters, kidney histopathology, and renal tissue PCX expression levels were examined. In type 2 diabetic rats, severe hyperglycemia and hyperlipidemia were developed. Urinary albumin and PCX were markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, protein and mRNA expression of renal tissue PCX were highly decreased. However, treatment of rats with different doses of metformin restored all these changes to a varying degree. These results suggested that metformin can ameliorate glomerular podocyte damage in type 2 diabetic rats, which may be partly associated with its role in restoring PCX expression and inhibiting urinary excretion of PCX with dose dependence. PMID:26075281

  3. Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

    PubMed Central

    Jung, Sung-Hyun; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Subin; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2014-01-01

    Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation. PMID:24642709

  4. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway.

    PubMed

    Shen, Jinyang; Yang, Xiaolin; Meng, Zhaoqing; Guo, Changrun

    2016-11-15

    High dietary fructose can cause metabolic syndrome and renal injury. The effects of protodioscin on metabolic syndrome and renal injury were investigated in mice receiving high-dose fructose. Mice received 30% (w/v) fructose in water and standard chow for 6 weeks to induce metabolic syndrome and were divided into four groups to receive carboxymethylcellulose sodium, allopurinol (5 mg/kg) and protodioscin (5 and 10 mg/kg) continuously for 6 weeks, respectively. The glucose intolerance, serum uric acid (UA), blood urea nitrogen (BUN), creatinine (Cr), total cholesterol (TC), triglyceride (TG), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined. Protodioscin significantly improved glucose intolerance and reduced the levels of serum UA, BUN, Cr, TC and TG. Histological examinations showed that protodioscin ameliorated glomerular and tubular pathological changes. Protodioscin significantly reduced renal concentrations of IL-1β, IL-6 and TNF-α by inhibiting the activation of nuclear factor-κB, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. In addition, the effect of protodioscin on the mitogen activated protein kinases (MAPK) pathway was examined. Taken together, protodioscin is a potential drug candidate for high dietary fructose-induced metabolic syndrome and renal injury. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Dahuang Fuzi Decoction Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in Chronic Aristolochic Acid Nephropathy.

    PubMed

    Shui, Guang-Xing; Sang, Dong; Yin, Xun; Cai, Yun; Sun, Wei

    2017-01-01

    Objectives. The effects of the traditional formula Dahuang Fuzi Decoction (DFD) on chronic aristolochic acid nephropathy (AAN) in mice and its underlying mechanisms were studied. Methods. Mice were randomly divided into the following six groups: the control group, the model group (AAN), the saline-treated group (AAN + vehicle), the normal dose DFD-treated group (AAN + NDFD), the high dose DFD-treated group (AAN + HDFD), and the rosiglitazone treated group (AAN + Rosi). After treating for 8 weeks, 24 h urine and blood samples were collected and the mice sacrificed to study the biochemical parameters associated with renal function. The samples were analyzed for renal fibrosis and mitochondrial dysfunction (MtD) markers. To achieve that, collagen III, collagen I, mitochondrial DNA copy numbers (mtDNA), mitochondrial membrane potential (MMP), ATP content, and ROS production were evaluated. Results. Our results showed that proteinuria, kidney function, and the renal pathological characteristics were improved by DFD and rosiglitazone. The expression of collagen III and collagen I decreased after treating with either DFD or rosiglitazone. Mitochondrial dysfunction based on the increase in ROS production, decrease in mitochondrial DNA copy numbers, and reduction of MMP and ATP content was improved by DFD and rosiglitazone. Conclusions. DFD could protect against renal impairments and ameliorate mitochondrial dysfunction in chronic AAN mice.

  6. Dahuang Fuzi Decoction Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in Chronic Aristolochic Acid Nephropathy

    PubMed Central

    Shui, Guang-xing; Sang, Dong; Yin, Xun; Cai, Yun

    2017-01-01

    Objectives. The effects of the traditional formula Dahuang Fuzi Decoction (DFD) on chronic aristolochic acid nephropathy (AAN) in mice and its underlying mechanisms were studied. Methods. Mice were randomly divided into the following six groups: the control group, the model group (AAN), the saline-treated group (AAN + vehicle), the normal dose DFD-treated group (AAN + NDFD), the high dose DFD-treated group (AAN + HDFD), and the rosiglitazone treated group (AAN + Rosi). After treating for 8 weeks, 24 h urine and blood samples were collected and the mice sacrificed to study the biochemical parameters associated with renal function. The samples were analyzed for renal fibrosis and mitochondrial dysfunction (MtD) markers. To achieve that, collagen III, collagen I, mitochondrial DNA copy numbers (mtDNA), mitochondrial membrane potential (MMP), ATP content, and ROS production were evaluated. Results. Our results showed that proteinuria, kidney function, and the renal pathological characteristics were improved by DFD and rosiglitazone. The expression of collagen III and collagen I decreased after treating with either DFD or rosiglitazone. Mitochondrial dysfunction based on the increase in ROS production, decrease in mitochondrial DNA copy numbers, and reduction of MMP and ATP content was improved by DFD and rosiglitazone. Conclusions. DFD could protect against renal impairments and ameliorate mitochondrial dysfunction in chronic AAN mice. PMID:28421124

  7. Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition.

    PubMed

    Zhou, Xiangjun; Zhang, Jie; Xu, Changgeng; Wang, Wei

    2014-01-01

    Renal fibrosis is mainly characterized by activation and proliferation of interstitial fibroblasts and by excessive synthesis and accumulation of extracellular matrix (ECM) components, including fibronectin (FN) and collagen. This study investigated the effects of curcumin on proliferation of renal interstitial fibroblasts and their underlying mechanisms in vivo and in vitro. ECM components were visualized by Sirius red and immunohistochemistry staining and quantified by western blot analysis in mice with unilateral ureteral obstruction (UUO). Duplex staining for proliferating cell nuclear antigen and α-smooth muscle actin (α-SMA), as well as MTT and flow cytometry assays, were performed to measure fibroblast proliferation. Protein expression of phosphorylated Smad2/3 (p-Smad2/3) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were assessed by western blotting. Curcumin treatment decreased the accumulation of type I collagen and FN in the kidney of animals with UUO. Activation of rat renal interstitial fibroblasts (NRK-49F) was induced by TGF-β1. Curcumin treatment inhibited fibroblast proliferation and the cell cycle was arrested in the G1 phase. Curcumin treatment upregulated the expression of PPAR-γ and downregulated the expression of p-Smad2/3. These results suggest that curcumin treatment ameliorates renal fibrosis by reducing fibroblast proliferation and ECM accumulation mediated by PPAR-γ and Smad-dependent TGF-β1 signaling.

  8. Cisplatin-induced acute renal failure is ameliorated by erdosteine in a dose-dependent manner.

    PubMed

    Ozyurt, Hüseyin; Yildirim, Zeki; Kotuk, Mahir; Yilmaz, H Ramazan; Yağmurca, Murat; Iraz, Mustafa; Söğüt, Sad; Gergerlioglu, Serdar

    2004-01-01

    The aim of this study was to investigate the optimum dosage of erdosteine to ameliorate cisplatin-induced nephrotoxicity. Three different doses of erdosteine at 25, 50 and 75 mg kg(-1) were studied in rats. Intraperitoneal administration of 7 mg kg(-1) cisplatin led to acute renal failure, as indicated by kidney histology and increases in plasma creatinine and blood urea nitrogen (BUN) levels. At 5 days after cisplatin injection the BUN level was increased significantly from 15.1 +/- 4.3 to 126.7 +/- 152.6 mg dl(-1) and plasma creatinine levels increased from 0.37 +/- 0.005 to 1.68 +/- 1.9 mg dl(-1). When the rats were administered 50 and 75 mg kg(-1) erdosteine 24 h before cisplatin injection that was continued until sacrifice (total of 6 days), the BUN and creatinine levels remained similar to control levels and the grade of histology was similar. Erdosteine at doses of 50 and 75 mg kg(-1) ameliorates cisplatin-induced renal failure. The optimum dose of erdosteine may be 50 mg kg(-1) in this study.

  9. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    SciTech Connect

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  10. Alcohol-induced vascular damage of brain can be ameliorated by administration of magnesium

    SciTech Connect

    Altura, B.M.; Altura, B.T.; Gebrewold, A.

    1986-03-01

    Long-term as well as short-term administration of alcohol can cause neuronal and vascular damage in the brain. The authors have reported that acute administration of ethyl alcohol (ALC), either directly into the rat brain, IV or locally, can produce concentration-dependent spasms of cerebral arterioles, venules, arteries and veins followed by irreversible rupture of capillaries and veins followed by irreversible rupture of capillaries and venules. Several experiments have suggested that administration of magnesium ions (Mg/sup 2 +/) can modify vascular tone. Whether Mg/sup 2 +/ can exert direct actions on the intact cerebral microcirculation is not known. Using the above intact rat brain model, and TV-image intensification, the authors determine whether administration of Mg/sup 2 +/ : 1) exerts actions on cerebral (coritical) arterioles (A) and venules (V) (12-40..mu..m); 2) directly into the brain alters arterial blood pressure (BP); and 3) could ameliorate or prevent some of the detrimental cerebral-vascular actions ALC exerts in the brain. The data show that infusion of Mg/sup 7 +/ : 1) into the rat brain result in a rapid dose-dependent lowering of systolic and diastolic and BP; 2) IV or intra-arterially (IA) produces dose-dependent vaso-dilation of A and V; 3) IV or IA prevents spasms and rupture of A and V induced by 10% ALC. The cerebral vascular actions of Mg/sup 2 +/ may prove to be useful in treatment and prevention of ALC-induced brain damage.

  11. Hyaline vascular castleman disease involving renal parenchyma and a lymph node: a case report.

    PubMed

    Kwon, Ji Hyun; Min, Soo Kee; Shin, Mi Kyung; Lee, Yong Seong; Lee, Young-Goo; Ko, Young Hyeh

    2012-02-01

    Castleman disease is a rare lymphoproliferative lesion that is predominantly found in the mediastinum. Retroperitoneal and pararenal localizations are very rare. We describe a 36-year-old man with a hyaline vascular type of Castleman disease involving renal parenchyma and a paraaortic lymph node. Most reported renal Castleman disease was plasma cell type with systemic symptoms. Herein, we report the first Korean case of the hyaline vascular type of Castleman disease involving the renal parenchyma and the paraaortic lymph node simultaneously.

  12. Resveratrol ameliorates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation

    PubMed Central

    Xue, Hai-Yan; Yuan, Li; Cao, Ying-Jie; Fan, Ya-Ping; Chen, Xiao-Lan; Huang, Xin-Zhong

    2016-01-01

    Micro-inflammation plays an important role in the pathogenesis of spontaneously hypertensive rat (SHR). In the present study, we investigated the therapeutic potential of resveratrol (RSV), a polyphenol with anti-fibrosis activity in hypertensive renal damage model. In SHR renal damage model, RSV treatment blunted the increase in urine albumin excretion, urinary β2-microglobulin (β2-MG), attenuated the decrease in creatinine clearance rate (CCR). The glomerular sclerosis index (1.54±0.33 compared with 0.36±0.07) and tubulointerstitial fibrosis (1.57±0.31 compared with 0.19±0.04) were significantly higher in SHRs compared with Wistar Kyoto rats (WKYs), which were significantly lower by RSV treatment. The increases in mesangium accumulation and the expression of renal collagen type I (Col I), fibronectin (Fn), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) in SHR were also reduced by RSV treatment. Nuclear factor κB (NF-κB) expression was increased in the cytoplasm and nuclei of the SHR kidneys, which was significantly decreased by RSV treatment. Furthermore, the protein level of IκB-α significantly decreased in the kidneys of the SHR when compared with the WKYs. RSV treatment partially restored the decreased IκB-α level. In SHR kidney, increased expression of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1) were observed. These changes were attenuated by RSV treatment. No changes in blood pressure were detected between SHR group and SHR + RSV group. Taken together, the present study demonstrated that RSV treatment may significantly attenuate renal damage in the SHR model of chronic kidney disease (CKD). The renal protective effect is associated with inhibition of IL-6, ICAM-1 and MCP-1 expression via the regulation of the nuclear translocation of NF-κB, which suggesting that micro-inflammation may be a potential therapeutic target of hypertensive

  13. Resveratrol ameliorates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation.

    PubMed

    Xue, Hai-Yan; Yuan, Li; Cao, Ying-Jie; Fan, Ya-Ping; Chen, Xiao-Lan; Huang, Xin-Zhong

    2016-07-01

    Micro-inflammation plays an important role in the pathogenesis of spontaneously hypertensive rat (SHR). In the present study, we investigated the therapeutic potential of resveratrol (RSV), a polyphenol with anti-fibrosis activity in hypertensive renal damage model. In SHR renal damage model, RSV treatment blunted the increase in urine albumin excretion, urinary β2-microglobulin (β2-MG), attenuated the decrease in creatinine clearance rate (CCR). The glomerular sclerosis index (1.54±0.33 compared with 0.36±0.07) and tubulointerstitial fibrosis (1.57±0.31 compared with 0.19±0.04) were significantly higher in SHRs compared with Wistar Kyoto rats (WKYs), which were significantly lower by RSV treatment. The increases in mesangium accumulation and the expression of renal collagen type I (Col I), fibronectin (Fn), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) in SHR were also reduced by RSV treatment. Nuclear factor κB (NF-κB) expression was increased in the cytoplasm and nuclei of the SHR kidneys, which was significantly decreased by RSV treatment. Furthermore, the protein level of IκB-α significantly decreased in the kidneys of the SHR when compared with the WKYs. RSV treatment partially restored the decreased IκB-α level. In SHR kidney, increased expression of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1) were observed. These changes were attenuated by RSV treatment. No changes in blood pressure were detected between SHR group and SHR + RSV group. Taken together, the present study demonstrated that RSV treatment may significantly attenuate renal damage in the SHR model of chronic kidney disease (CKD). The renal protective effect is associated with inhibition of IL-6, ICAM-1 and MCP-1 expression via the regulation of the nuclear translocation of NF-κB, which suggesting that micro-inflammation may be a potential therapeutic target of hypertensive

  14. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  15. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    PubMed

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  16. Exogenous Lipocalin 2 Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation

    PubMed Central

    Ashraf, M. I.; Schwelberger, H. G.; Brendel, K. A.; Feurle, J.; Andrassy, J.; Kotsch, K.; Regele, H.; Pratschke, J.; Maier, H. T.

    2016-01-01

    Abstract Lipocalin 2 (Lcn2) is rapidly produced by damaged nephron epithelia and is one of the most promising new markers of renal injury, delayed graft function and acute allograft rejection (AR); however, the functional importance of Lcn2 in renal transplantation is largely unknown. To understand the role of Lcn2 in renal AR, kidneys from Balb/c mice were transplanted into C57Bl/6 mice and vice versa and analyzed for morphological and physiological outcomes of AR at posttransplantation days 3, 5, and 7. The allografts showed a steady increase in intensity of interstitial infiltration, tubulitis and periarterial aggregation of lymphocytes associated with a substantial elevation in serum levels of creatinine, urea and Lcn2. Perioperative administration of recombinant Lcn2:siderophore:Fe complex (rLcn2) to recipients resulted in functional and morphological amelioration of the allograft at day 7 almost as efficiently as daily immunosuppression with cyclosporine A (CsA). No significant differences were observed in various donor–recipient combinations (C57Bl/6 wild‐type and Lcn2−/−, Balb/c donors and recipients). Histochemical analyses of the allografts showed reduced cell death in recipients treated with rLcn2 or CsA. These results demonstrate that Lcn2 plays an important role in reducing the extent of kidney AR and indicate the therapeutic potential of Lcn2 in transplantation. PMID:26595644

  17. Amelioration of progressive renal injury by genetic manipulation of Klotho gene.

    PubMed

    Haruna, Yoshisuke; Kashihara, Naoki; Satoh, Minoru; Tomita, Naruya; Namikoshi, Tamehachi; Sasaki, Tamaki; Fujimori, Toshihiko; Xie, Ping; Kanwar, Yashpal S

    2007-02-13

    Klotho, an antiaging gene with restricted organ distribution, is mainly expressed in the kidney tubules; the mutant mice have shortened life span, arteriosclerosis, anemia, and osteoporesis, features common to patients with chronic renal failure. Conceivably, the reduction of the Klotho gene expression may contribute to the development of kidney failure; alternatively, its overexpression may lead to the amelioration of renal injury in an ICR-derived glomerulonephritis (ICGN) mouse model with subtle immune complex-mediated disease. To address this issue, four different strains of mice were generated by cross-breeding: ICGN mice without the Klotho transgene (ICGN), ICGN mice with the Klotho transgene (ICGN/klTG), wild-type mice with the Klotho transgene (klTG), and wild-type mice without the Klotho transgene (control). At 40 weeks old, the survival rate was approximately 30% in ICGN mice, and approximately 70% in the ICGN/klTG group. This improvement was associated with dramatic improvement in renal functions, morphological lesions, and cytochrome c oxidase activity but a reduction in beta-galactosidase activity (a senescence-associated protein), mitochondrial DNA fragmentation, superoxide anion generation, lipid peroxidation, and Bax protein expression and apoptosis. Interestingly, improvement was seen in both the tubular and glomerular compartments of the kidney, although Klotho is exclusively confined to the tubules, suggesting that its gene product has a remarkable renoprotective effect by potentially serving as a circulating hormone while mitigating the mitochondrial oxidative stress.

  18. Renal vascular responses in an experimental model of preeclampsia.

    PubMed

    Bobadilla Lugo, Rosa Amalia; Pérez-Alvarez, Víctor M; Robledo, Liliana Anguiano; López Sanchez, Pedro

    2005-01-01

    In pregnancy there is an attenuated response to vasoconstrictors and pressor agents, including Angiotensin II (Ang II). This effect is reverted in preeclampsia. We evaluated the renal pressor response induced by Ang II in an experimental model of preeclampsia based on the development of feto-placental ischemia produced by a subrenal aortic coarctation (SRAC). Dose-response curves for Ang II were obtained in an isolated perfused kidney preparation comparing groups of SRAC pregnant and non-pregnant rats in the presence and absence of losartan (AT1 antagonist) or PD123319 (AT2 antagonist). Kidneys from the experimental model of pre-eclampsia showed an enhanced response to AngII. In addition, losartan (10 nM) inhibited the vasopressor effect to Ang II in this model but not in the control group. PD 123319 (1 nM), increased the response in both groups, but the effect was more evident in the pre-eclamptic group. This suggests modifications in the relative participation of renal vascular receptors AT1/AT2 induced by an experimental model of pre-eclampsia, with an increased participation of AT1 and a decreased participation of AT2.

  19. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess

    PubMed Central

    Wyrwoll, Caitlin S.; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R.; Rog-Zielinska, Eva A.; Moran, Carmel M.; Seckl, Jonathan R.; Chapman, Karen E.; Holmes, Megan C.

    2016-01-01

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2−/− mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2+/+, Hsd11b2+/−, and Hsd11b2−/− littermates from heterozygous (Hsd11b+/−) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2−/− fetuses did not undergo the normal gestational increase seen in Hsd11b2+/+ littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2−/− fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2−/− fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2−/− fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction. PMID:27185937

  20. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    PubMed

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.

  1. Organic Anion Transporter 5 Renal Expression and Urinary Excretion in Rats with Vascular Calcification

    PubMed Central

    Hazelhoff, María Herminia; Bulacio, Romina Paula; Torres, Adriana Mónica

    2013-01-01

    It has been described renal damage in rats with vascular calcification. The organic anion transporter 5 (Oat5) is only expressed in kidney, and its urinary excretion was proposed as potential early biomarker of renal injury. The aim of this study was to evaluate the Oat5 renal expression and its urinary excretion in an experimental model of vascular calcification in comparison with traditional markers of renal injury. Vascular calcification was obtained by the administration of an overdose of vitamin D3 (300,000 IU/kg, b.w., i.m.) to male Wistar rats. Oat5 urinary abundance was evaluated by Western blotting. Traditional markers of renal injury, such as creatinine and urea plasma levels, urinary protein levels, and urinary alkaline phosphatase (AP) activity, were determined using commercial kits. Histology was assessed by hematoxylin/eosin staining. Oat5 renal expression was evaluated by Western blotting and by immunohistochemistry. An increased expression of Oat5 in renal homogenates, in apical membranes, and in its urinary excretion was observed in rats with vascular calcification. The traditional parameters used to evaluate renal function were not modified, with the exception of histology. It is possible to postulate the urinary excretion of Oat5 as a potential noninvasive biomarker of renal injury associated with vascular calcification. PMID:24199190

  2. Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress.

    PubMed

    Erejuwa, Omotayo O; Sulaiman, Siti A; Ab Wahab, Mohd S; Sirajudeen, Kuttulebbai N S; Salleh, Salzihan; Gurtu, Sunil

    2012-01-01

    Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY) rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA) levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione S-transferase (GST) were significantly downregulated while total antioxidant status (TAS) and activities of GST and catalase (CAT) were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.

  3. Acute pyelonephritis resulting in intense vascular blush during dynamic renal scintigraphy

    PubMed Central

    Joshi, Prathamesh; Deshpande, Sushil; Kulkarni, Mukta; Shetkar, Shubhangi

    2016-01-01

    A thirty-year-old male underwent Tc-99m diethylenetriaminepentaacetic acid renal scintigraphy for evaluation of gross hydronephrosis of left kidney. The perfusion phase revealed an intense vascular blush in left renal fossa. The uptake phase of scintigraphy revealed the absence of tracer uptake in left kidney. Contrast-enhanced computed tomography (CECT) was performed for evaluating the cause of vascular blush. CECT demonstrated features suggestive of acute pyelonephritis (APN) involving lower pole of the hydronephrotic left kidney, corresponding to the site of vascular blush seen on renal scintigraphy. The postnephrectomy specimen confirmed the diagnosis of APN suggested on CECT. PMID:26917903

  4. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice.

    PubMed

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya; Osafune, Kenji

    2015-09-01

    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases.

  5. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice

    PubMed Central

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya

    2015-01-01

    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. Significance This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases

  6. Renal vascular effects of calcium channel blockers in hypertension.

    PubMed

    Benstein, J A; Dworkin, L D

    1990-12-01

    Recent evidence suggests that calcium channel blockers have specific effects on renal hemodynamics in patients with hypertension and may also slow the progression of chronic renal failure. When these agents are studied in vitro, their predominant effect is to reverse afferent arteriolar vasoconstriction induced by catecholamines or angiotensin II. Because efferent resistance may remain high, glomerular filtration rate rises while renal blood flow remains low. The effects in vivo are less consistent. In human hypertension, calcium channel blockers lower renal resistance and may raise both renal blood flow and glomerular filtration rate. In experimental models of chronic renal disease, calcium channel blockers slow the progression of renal damage; however, variable effects on renal hemodynamics have been found. Other factors implicated in the progression of renal damage, including compensatory renal hypertrophy, platelet aggregation, and calcium deposition, may also be favorably influenced by these agents. Recent studies suggest that calcium channel blockers may have similar protective effects in patients with hypertension and chronic renal disease.

  7. Kinin B2 receptor deletion and blockage ameliorates cisplatin-induced acute renal injury.

    PubMed

    Estrela, Gabriel R; Wasinski, Frederick; Bacurau, Reury F; Malheiros, Denise M A C; Câmara, Niels O S; Araújo, Ronaldo C

    2014-09-01

    Cisplatin treatment has been adopted in some chemotherapies; however, this drug can induce acute kidney injury due its ability to negatively affect renal function, augment serum levels of creatinine and urea, increase the acute tubular necrosis score and up-regulate cytokines (e.g., IL-1β and TNF-α). The kinin B2 receptor has been associated with the inflammation process, as well as the regulation of cytokine expression, and its deletion resulted in an improvement in the diabetic nephropathy status. To examine the role of the kinin B2 receptor in cisplatin-induced acute kidney injury, kinin B2 receptor knockout mice were challenged with cisplatin. Additionally, WT mice were treated with a B2 receptor antagonist after cisplatin administration. B2 receptor-deficient mice were less sensitive to this drug than the WT mice, as shown by reduced weight loss, better preservation of kidney function, down regulation of inflammatory cytokines and less acute tubular necrosis. Moreover, treatment with the kinin B2 receptor antagonist effectively reduced the levels of serum creatinine and blood urea after cisplatin administration. Thus, our data suggest that the kinin B2 receptor is involved in cisplatin-induced acute kidney injury by mediating the necrotic process and the expression of inflammatory cytokines, thus resulting in declined renal function. These results highlight the kinin B2 receptor antagonist treatment in amelioration of nephrotoxicity induced by cisplatin therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3

    PubMed Central

    Zeng, Heng; He, Xiaochen; Hou, Xuwei; Li, Lanfang

    2013-01-01

    Microvascular insufficiency contributes to cardiac hypertrophy and worsens heart dysfunction in diabetic cardiomyopathy. Our recent study shows that apelin may protect ischemic heart failure via upregulation of sirtuin 3 (Sirt3) and angiogenesis. This study investigated whether apelin promotes angiogenesis and ameliorates diabetic cardiomyopathy via activation of Sirt3. Wild-type (WT) and diabetic db/db mice were administrated with adenovirus-apelin to overexpressing apelin. In WT mice, overexpression of apelin increased Sirt3, VEGF/VEGFR2, and angiopoietin-1 (Ang-1)/Tie-2 expression in the heart. In vitro, treatment of endothelial cells (EC) with apelin increased VEGF and Ang-1 expression. In EC isolated from Sirt3KO mice, however, apelin treatment did not upregulate VEGF and Ang-1 expression. Moreover, apelin-induced angiogenesis was diminished in Sirt3KO mice. In db/db mice, the basal levels of apelin and Sirt3 expression were significantly reduced in the heart. This was accompanied by a significant reduction of capillary and arteriole densities in the heart. Overexpression of apelin increased Sirt3, VEGF/VEGFR2, and Ang-1/Tie-2 expression together with improved vascular density in db/db mice. Overexpression of apelin further improved cardiac function in db/db mice. Treatment with apelin significantly attenuated high glucose (HG)-induced reactive oxygen species (ROS) formation and EC apoptosis. The protection of apelin against HG-induced ROS formation and EC apoptosis was diminished in Sirt3KO-EC. We conclude that apelin gene therapy increases vascular density and alleviates diabetic cardiomyopathy by a mechanism involving activation of Sirt3 and upregulation of VEGF/VEGFR2 and Ang-1/Tie-2 expression. PMID:24363305

  9. Dietary nitrite ameliorates renal injury in L-NAME-induced hypertensive rats.

    PubMed

    Tsuchiya, Koichiro; Tomita, Shuhei; Ishizawa, Keisuke; Abe, Shinji; Ikeda, Yasumasa; Kihira, Yoshitaka; Tamaki, Toshiaki

    2010-02-15

    Nitric oxide (NO) has numerous important functions in the kidney, and long-term blockage of nitric oxide synthases in rats by L-NAME results in severe hypertension and progressive kidney damage. On the other hand, NO production seems to be low in patients with chronic kidney disease (CKD), and NO deficiency may play a role in CKD progression. In this review, we summarized the mechanisms of amelioration of renal injury induced by L-NAME treated rats by treatment of nitrite. First, we demonstrate whether orally-administrated nitrite-derived NO can shift to the circulation. When 3mg/kg body weight Na(15)NO(2) was orally administered to rats, an apparent EPR signal derived from Hb(15)NO (A(z)=23.4 gauss) appeared in the blood, indicating that orally ingested nitrite can be a source of NO in vivo. Next, in order to clarify the capacity of nitrite to prevent renal disease, we administered low-dose nitrite (LDN: 0.1mg of sodium nitrite in 1L of drinking water), medium-dose nitrite (MDN: 1mg sodium nitrite/L, which corresponds to the amount of nitrite ingested by vegetarians), or high-dose nitrite (HDN: 10mg sodium nitrite/L) to rats simultaneously with L-NAME (1 g l-NAME/L) for 8 weeks, then examined the blood NO level as a hemoglobin-NO adduct (iron-nitrosyl-hemoglobin) using electron paramagnetic resonance spectroscopy, urinary protein excretion, and renal histological changes at the end of the experiment. It was found that oral administration of MDN and HDN but not LDN increased the blood iron-nitrosyl-hemoglobin concentration to the normal level, ameliorated the L-NAME-induced proteinuria, and reduced renal histological damage. The findings demonstrate that chronic administration of a mid-level dietary dose of nitrite restores the circulating iron-nitrosyl-hemoglobin levels reduced by L-NAME and that maintenance of the circulating iron-nitrosyl-hemoglobin level in a controlled range protects against L-NAME-induced renal injury. Taking these findings together, we

  10. Renal autotransplantation for vascular disease: late outcome according to etiology.

    PubMed

    Chiche, Laurent; Kieffer, Edouard; Sabatier, Jean; Colau, Alexandre; Koskas, Fabien; Bahnini, Amine

    2003-02-01

    The purpose of this study was to evaluate the early and late outcomes of renal autotransplantation (RAT) according to the etiology of the underlying renal artery disease. Between January 1985 and April 2001, we performed 68 RAT procedures in 57 patients. The surgical indications were fibromuscular dysplasia (FMD) for 34 RAT procedures in 30 patients (11 men, 19 women; mean age, 41.3 +/- 14.6 years), Takayasu's disease (TD) for 26 RAT procedures in 19 patients (five men, 14 women; mean age, 33.0 +/- 12.3 years), and atherosclerosis for eight RAT procedures in eight patients (seven men, one woman; mean age, 66.5 +/- 7.9 years). The incidence rate of hypertension was 87% in patients with FMD and 100% in patients with TD and atherosclerosis. The incidence rate of renal dysfunction was 75% in patients with atherosclerosis, 27% in patients with FMD, and 16% in patients with TD. Autotransplantation was isolated in 31 cases and was associated with another vascular procedure in 37 cases, including 22 thoracoabdominal aorta repairs and 11 abdominal aorta or iliac artery repairs. The technique used to achieve renal revascularization was direct reimplantation in 17 cases and indirect reimplantation in 51 cases. The conduit used for indirect reimplantation was an arterial autograft in 42 cases, a vein autograft in seven cases, and a prosthetic graft in two cases. Simultaneous revascularization of the contralateral kidney was performed in 21 patients and included nine RAT procedures. Contralateral nephrectomy was performed in five patients. In the FMD group, early segmental infarction was observed in four cases. Secondary nephrectomy was necessary in one case (at 88 months). Actuarial survival rates were 96.2% +/- 0.03% at 5 years and 84.1% +/- 0.11% at 10 years. Secondary patency rates were 100% at 5 years and 92% +/- 0.07% at 10 years. Hypertension normalized or improved in 96% of patients. Renal function improved in 50% of patients. In the TD group, one patient died of

  11. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-04-01

    Cisplatin is a platinum-based chemotherapy drug. However, its chemotherapeutic use is restricted by serious side effects, especially nephrotoxicity. Inflammatory mechanisms have a significant role in the pathogenesis of cisplatin-induced nephrotoxicity. Thalidomide is an immunomodulatory and anti-inflammatory agent and is used for the treatment of various inflammatory diseases. The purpose of this study was to investigate the potential nephroprotective effect of thalidomide in a mouse model of cisplatin-induced nephrotoxicity. Nephrotoxicity was induced in mice by a single injection of cisplatin (15 mg/kg, i.p.) and treated with thalidomide (50 and 100 mg/kg/day, orally) for 4 days, beginning 24 h prior to the cisplatin injection. Renal toxicity induced by cisplatin was demonstrated by increasing plasma levels of creatinine and blood urea nitrogen (BUN). Cisplatin increased the renal production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition, kidney levels of malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) were increased by cisplatin. Biochemical results showed that thalidomide reduced cisplatin-induced increase in plasma creatinine and BUN. Thalidomide treatment also significantly reduced tissue levels of the proinflammatory cytokines, MDA, MPO, and NO and increased anti-inflammatory cytokine IL-10. Furthermore, histological examination indicated that thalidomide ameliorated renal damage caused by cisplatin. These data suggest that thalidomide attenuates cisplatin-induced nephrotoxicity possibly by inhibition of inflammatory reactions. Taken together, our findings indicate that thalidomide might be a valuable candidate for the prevention of nephrotoxicity in patients receiving cisplatin.

  12. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model.

    PubMed

    Lee, Hong-Joo; Jeong, Kyung Hwan; Kim, Yang Gyun; Moon, Joo Young; Lee, Sang Ho; Ihm, Chun Gyoo; Sung, Ji Youn; Lee, Tae Won

    2014-01-01

    Oxidative stress and inflammation are known to play central roles in the development of diabetic nephropathy (DN). Febuxostat is a novel non-purine xanthine oxidase (XO)-specific inhibitor developed to treat hyperuricemia. In this study, we investigated whether febuxostat could ameliorate DN via renoprotective mechanisms such as alleviation of oxidative stress and anti-inflammatory actions. Male Sprague-Dawley rats were divided into three groups: a normal group, a diabetes group (DM group), and a febuxostat-treated diabetes group (DM+Fx group). We administered 5 mg/kg of febuxostat to experimental rats for 7 weeks and evaluated clinical and biochemical parameters and XO and xanthine dehydrogenase (XDH) activity in hepatic tissue. The degree of oxidative stress and extent of inflammation were evaluated from urine samples and renal tissue collected from each group. Diabetic rats (DM and DM+Fx groups) had higher blood glucose and kidney weight relative to body weight than normal rats. Albuminuria was significantly reduced in febuxostat-treated diabetic rats compared with untreated diabetic rats. Quantitative analysis showed that hepatic XO and XDH activities were higher in the DM groups, but decreased after treatment with febuxostat. Urinary 8-OHdG concentrations and renal cortical nitrotyrosine also indicated reduced oxidative stress in the DM+Fx group relative to the DM group. The number of ED-1-stained cells in the glomerulus and tubule of diabetic renal tissue decreased in febuxostat-treated diabetic rats relative to that of non-treated diabetic rats. Diabetic rats also expressed higher transcript levels of inflammatory genes (E-selectin and VCAM-1), an inflammation-induced enzyme (COX-2), and inflammatory mediators (ED-1 and NF-κB) than control rats; expression of these genes was significantly reduced by treatment with febuxostat. Febuxostat prevents diabetic renal injury such as albuminuria. This renoprotective effect appears to be due to attenuation of the

  13. Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Semon, Julie A.; Zhang, Xiujuan; Pandey, Amitabh C.; Alandete, Sandra M.; Maness, Catherine; Zhang, Shijia; Scruggs, Brittni A.; Strong, Amy L.; Sharkey, Steven A.; Beuttler, Marc M.; Gimble, Jeffrey M.

    2013-01-01

    Administration of adipose-derived stromal/stem cells (ASCs) represents a promising therapeutic approach for autoimmune diseases since they have been shown to have immunomodulatory properties. The uncultured, nonexpanded counterpart of ASCs, the stromal vascular fraction (SVF), is composed of a heterogeneous mixture of cells. Although administration of ex vivo culture-expanded ASCs has been used to study immunomodulatory mechanisms in multiple models of autoimmune diseases, less is known about SVF-based therapy. The ability of murine SVF cells to treat myelin oligodendrocyte glycoprotein35–55-induced experimental autoimmune encephalitis (EAE) was compared with that of culture-expanded ASCs in C57Bl/6J mice. A total of 1 × 106 SVF cells or ASCs were administered intraperitoneally concomitantly with the induction of disease. The data indicate that intraperitoneal administration of ASCs significantly ameliorated the severity of disease course. They also demonstrate, for the first time, that the SVF effectively inhibited disease severity and was statistically more effective than ASCs. Both cell therapies also demonstrated a reduction in tissue damage, a decrease in inflammatory infiltrates, and a reduction in sera levels of interferon-γ and interleukin-12. Based on these data, SVF cells effectively inhibited EAE disease progression more than culture-expanded ASCs. PMID:23981726

  14. Regulation of Vascular and Renal Function by Metabolite Receptors.

    PubMed

    Peti-Peterdi, János; Kishore, Bellamkonda K; Pluznick, Jennifer L

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and

  15. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats.

    PubMed

    Aldini, Giancarlo; Orioli, Marica; Rossoni, Giuseppe; Savi, Federica; Braidotti, Paola; Vistoli, Giulio; Yeum, Kyung-Jin; Negrisoli, Gianpaolo; Carini, Marina

    2011-06-01

    The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β-alanyl-L-histidine, L-CAR) and of its enantiomer (β-alanyl-D-histidine, D-CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products formation and development of nephropathy in the non-diabetic, Zucker obese rat. The Zucker rats received a daily dose of L-CAR or D-CAR (30 mg/kg in drinking water) for 24 weeks. Systolic blood pressure was recorded monthly. At the end of the treatment, plasma levels of triglycerides, total cholesterol, glucose, insulin, creatinine and urinary levels of total protein, albumin and creatinine were measured. Several indices of oxidative/carbonyl stress were also measured in plasma, urine and renal tissue. We found that both L- and D-CAR greatly reduced obese-related diseases in obese Zucker rat, by significantly restraining the development of dyslipidaemia, hypertension and renal injury, as demonstrated by both urinary parameters and electron microscopy examinations of renal tissue. Because the protective effect elicited by L- and D-CAR was almost superimposable, we conclude that the pharmacological action of L-CAR is not due to a pro-histaminic effect (D-CAR is not a precursor of histidine, since it is stable to peptidic hydrolysis), and prompted us to propose that some of the biological effects can be mediated by a direct carbonyl quenching mechanism.

  16. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats

    PubMed Central

    Aldini, Giancarlo; Orioli, Marica; Rossoni, Giuseppe; Savi, Federica; Braidotti, Paola; Vistoli, Giulio; Yeum, Kyung-Jin; Negrisoli, Gianpaolo; Carini, Marina

    2011-01-01

    Abstract The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β-alanyl-L-histidine, L-CAR) and of its enantiomer (β-alanyl-D-histidine, D-CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products formation and development of nephropathy in the non-diabetic, Zucker obese rat. The Zucker rats received a daily dose of L-CAR or D-CAR (30 mg/kg in drinking water) for 24 weeks. Systolic blood pressure was recorded monthly. At the end of the treatment, plasma levels of triglycerides, total cholesterol, glucose, insulin, creatinine and urinary levels of total protein, albumin and creatinine were measured. Several indices of oxidative/carbonyl stress were also measured in plasma, urine and renal tissue. We found that both L- and D-CAR greatly reduced obese-related diseases in obese Zucker rat, by significantly restraining the development of dyslipidaemia, hypertension and renal injury, as demonstrated by both urinary parameters and electron microscopy examinations of renal tissue. Because the protective effect elicited by L- and D-CAR was almost superimposable, we conclude that the pharmacological action of L-CAR is not due to a pro-histaminic effect (D-CAR is not a precursor of histidine, since it is stable to peptidic hydrolysis), and prompted us to propose that some of the biological effects can be mediated by a direct carbonyl quenching mechanism. PMID:20518851

  17. Inhibition of SET Domain–Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis

    PubMed Central

    Sasaki, Kensuke; Nakashima, Ayumu; Irifuku, Taisuke; Yamada, Kyoko; Kokoroishi, Keiko; Ueno, Toshinori; Doi, Toshiki; Hida, Eisuke; Arihiro, Koji; Kohno, Nobuoki

    2016-01-01

    TGF-β1 activity results in methylation of lysine 4 of histone H3 (H3K4) through SET domain–containing lysine methyltransferase 7/9 (SET7/9) induction, which is important for the transcriptional activation of fibrotic genes in vitro. However, in vivo studies utilizing an experimental model of renal fibrosis are required to develop therapeutic interventions that target SET7/9. In this study, we investigated the signaling pathway of TGF-β1-induced SET7/9 expression and whether inhibition of SET7/9 suppresses renal fibrosis in unilateral ureteral obstruction (UUO) mice and kidney cell lines. Among the SET family, SET7/9 was upregulated on days 3 and 7 in UUO mice, and the upregulation was suppressed by TGF-β1 neutralizing antibody. TGF-β1 induced SET7/9 expression via Smad3 in normal rat kidney (NRK)-52E cells. In human kidney biopsy specimens from patients diagnosed with IgA nephropathy and membranous nephropathy, SET7/9 expression was positively correlated with the degree of interstitial fibrosis (r=0.59, P=0.001 in patients with IgA nephropathy; and r=0.58, P<0.05 in patients with membranous nephropathy). In addition, small interfering RNA-mediated knockdown of SET7/9 expression significantly attenuated renal fibrosis in UUO mice. Sinefungin, an inhibitor of SET7/9, also suppressed the expression of mesenchymal markers and extracellular matrix proteins and inhibited H3K4 mono-methylation (H3K4me1) in kidneys of UUO mice. Moreover, sinefungin had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and H3K4me1 in both NRK-52E and NRK-49F cells. In conclusion, sinefungin, a SET7/9 inhibitor, ameliorates renal fibrosis by inhibiting H3K4me1 and may be a candidate therapeutic agent. PMID:26045091

  18. Hyaline Vascular Castleman Disease Involving Renal Parenchyma and a Lymph Node: A Case Report

    PubMed Central

    Kwon, Ji Hyun; Shin, Mi Kyung; Lee, Yong Seong; Lee, Young-Goo; Ko, Young Hyeh

    2012-01-01

    Castleman disease is a rare lymphoproliferative lesion that is predominantly found in the mediastinum. Retroperitoneal and pararenal localizations are very rare. We describe a 36-year-old man with a hyaline vascular type of Castleman disease involving renal parenchyma and a paraaortic lymph node. Most reported renal Castleman disease was plasma cell type with systemic symptoms. Herein, we report the first Korean case of the hyaline vascular type of Castleman disease involving the renal parenchyma and the paraaortic lymph node simultaneously. PMID:23109983

  19. The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats.

    PubMed

    Yeboah, Michael M; Hye Khan, Md Abdul; Chesnik, Marla A; Sharma, Amit; Paudyal, Mahesh P; Falck, John R; Imig, John D

    2016-09-01

    The introduction of calcineurin inhibitors (CNI) into clinical practice in the late 1970s transformed organ transplantation and led to significant improvement in acute rejection episodes. However, despite their significant clinical utility, the use of these agents is hampered by the development of hypertension and nephrotoxicity, which ultimately lead to end-stage kidney disease and overt cardiovascular outcomes. There are currently no effective agents to treat or prevent these complications. Importantly, CNI-free immunosuppressive regimens lack the overall efficacy of CNI-based treatments and put patients at risk of allograft rejection. Cytochrome P-450 epoxygenase metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), have potent vasodilator and antihypertensive properties in addition to many cytoprotective effects, but their effects on CNI-induced nephrotoxicity have not been explored. Here, we show that PVPA, a novel, orally active analog of 14,15-EET, effectively prevents the development of hypertension and ameliorates kidney injury in cyclosporine-treated rats. PVPA treatment reduced proteinuria and renal dysfunction induced by cyclosporine. PVPA inhibited inflammatory cell infiltration into the kidney and decreased renal fibrosis. PVPA also reduced tubular epithelial cell apoptosis, attenuated the generation of reactive oxygen species, and modulated the unfolded protein response that is associated with endoplasmic reticulum stress. Consistent with the in vivo data, PVPA attenuated cyclosporine-induced apoptosis of NRK-52E cells in vitro. These data indicate that the cytochrome P-450/EET system offers a novel therapeutic strategy to treat or prevent CNI-induced nephrotoxicity. Copyright © 2016 the American Physiological Society.

  20. Vascular complication in live related renal transplant: An experience of 1945 cases

    PubMed Central

    Srivastava, Aneesh; Kumar, Jatinder; Sharma, Sandeep; Abhishek; Ansari, M S; Kapoor, Rakesh

    2013-01-01

    Introduction and Objective: Among the surgical complications in renal transplantation, the vascular complications are probably most dreaded, dramatic, and likely to cause sudden loss of renal allograft. We present our experience and analysis of the outcome of such complications in a series of 1945 live related renal transplants. Materials and Methods: One thousand nine hundred and forty five consecutive live related renal transplants were evaluated retrospectively for vascular complications. Complications were recorded and analyzed for frequency, time of presentation, clinical presentation, and their management. Results: The age of patients ranged from 6 to 56 years (mean = 42). Vascular complications were found in 25 patients (1.29%). Most common among these was transplant renal artery stenosis found in 11 (0.58%), followed by transplant reznal artery thrombosis in 9 (0.46%), renal vein thrombosis in 3 (0.15%), and aneurysm formation at arterial anastmosis in 2 (0.10%) patient. The time of presentation also varied amongst complications. All cases of arterial thrombosis had sudden onset anuria with minimal or no abdominal discomfort, while venous thrombosis presented as severe oliguria associated with intense graft site pain and tenderness. Management of cases with vascular thrombosis was done by immediate surgical exploration. Two patients of renal artery stenosis were managed with angioplasty and stent placement. Conclusions: Major vascular complications are relatively uncommon after renal transplantation but still constitute an important cause of graft loss in early postoperative period. Aneurysm and vessel thrombosis usually require graft nephrectomy. Transplant renal artery stenosis is amenable to correction by endovascular techniques. PMID:23671364

  1. Permanent vascular access in patients with end-stage renal disease, Brazil.

    PubMed

    Silva, Gisele Macedo da; Gomes, Isabel Cristina; Andrade, Eli Iola Gurgel; Lima, Eleonora Moreira; Acurcio, Francisco de Assis; Cherchiglia, Mariângela Leal

    2011-04-01

    To assess factors associated with the establishment of permanent vascular access for patients with end-stage renal disease. Cross-sectional study conducted in a nationally representative sample of Brazilian end-stage renal disease patients in dialysis and transplant centers during 2007. The sample comprised only patients who received hemodialysis as a primary therapy modality and reported the type of vascular access for their primary hemodialysis treatment (N=2,276). Data were from the TRS Project--"Economic and Epidemiologic Evaluation of Modalities of Renal Replacement Therapy in Brazil". Multiple logistic regression analysis was used to assess factors associated with the establishment of permanent vascular access in these patients. About 30% of the patients studied had an arteriovenous vascular access. The following factors were associated with a lower likelihood of having an arteriovenous vascular access as a primary type of access: time of hemodialysis start since the diagnosis of chronic renal failure < 1 year; shorter dialysis therapy; having no private health insurance; living in the central-western, northeastern and southeastern regions of Brazil; and living in the northern region plus having no private health insurance. In the final model there was found a positive association between the outcome and pre-dialysis care and no were association with socioeconomic and comorbidity variables. The study results showed that the focus should on pre-dialysis care to increase the establishment of an arteriovenous vascular access before starting hemodialysis in Brazil.

  2. Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration

    PubMed Central

    Amador, Cristian A.; Bertocchio, Jean-Philippe; Andre-Gregoire, Gwennan; Placier, Sandrine; Van Huyen, Jean-Paul Duong; El Moghrabi, Soumaya; Berger, Stefan; Warnock, David G.; Chatziantoniou, Christos; Jaffe, Iris Z.; Rieu, Philippe; Jaisser, Frederic

    2016-01-01

    Calcineurin inhibitors such as cyclosporine A (CsA) are still commonly used after renal transplantation, despite CsA–induced nephrotoxicity (CIN), which is partly related to vasoactive mechanisms. The mineralocorticoid receptor (MR) is now recognized as a key player in the control of vascular tone, and both endothelial cell- and vascular smooth muscle cell (SMC)-MR modulate the vasoactive responses to vasodilators and vasoconstrictors. Here we tested whether vascular MR is involved in renal hemodynamic changes induced by CsA. The relative contribution of vascular MR in acute CsA treatment was evaluated using mouse models with targeted deletion of MR in endothelial cell or SMC. Results indicate that MR expressed in SMC, but not in endothelium, contributes to the increase of plasma urea and creatinine, the appearance of isometric tubular vacuolization, and overexpression of a kidney injury biomarker (neutrophil gelatinase–associated lipocalin) after CsA treatment. Inactivation of MR in SMC blunted CsA–induced phosphorylation of contractile proteins. Finally, the in vivo increase of renal vascular resistance induced by CsA was blunted when MR was deleted from SMC cells, and this was associated with decreased L-type Ca2+ channel activity. Thus, our study provides new insights into the role of vascular MR in renal hemodynamics during acute CIN, and provides rationale for clinical studies of MR antagonism to manage the side effects of calcineurin inhibitors. PMID:26422501

  3. Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway.

    PubMed

    Huang, Junying; Chen, Zhiquan; Li, Jie; Chen, Qiuhong; Li, Jingyan; Gong, Wenyan; Huang, Jiani; Liu, Peiqing; Huang, Heqing

    2017-02-23

    Activation of casein kinase 2 (CK2) is closely linked to the body disturbance of carbohydrate metabolism and inflammatory reaction. The renal chronic inflammatory reaction in the setting of diabetes is one of the important hallmarks of diabetic renal fibrosis. However, it remains unknown whether CK2 influences the process of diabetic renal fibrosis. The current study is aimed to investigate if CK2α ameliorates renal inflammatory fibrosis in diabetes via NF-κB pathway. To explore potential regulatory mechanism of CK2α, the expression and activity of CK2α, which were studied by plasmid transfection, selective inhibitor, small-interfering RNA (siRNA) and adenovirus infection in vitro or in vivo, were analyzed by means of western blotting (WB), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The following findings were observed: (1) Expression of CK2α was upregulated in kidneys of db/db and KKAy diabetic mice; (2) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed high glucose-induced expressions of FN and ICAM-1 in glomerular mesangial cells (GMCs); (3) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression not only restrained IκB degradation, but also suppressed HG-induced nuclear accumulation, transcriptional activity and DNA binding activity of NF-κB in GMCs; (4) Treatment of TBB or CK2α RNAi adenovirus infection ameliorated renal fibrosis in diabetic animals; (5) Treatment of TBB or CK2α RNAi adenovirus infection suppressed IκB degradation and NF-κB nuclear accumulation in glomeruli of diabetic animals. This study indicates the essential role of CK2α in regulating the diabetic renal pathological process of inflammatory fibrosis via NF-κB pathway, and inhibition of CK2α may serve as a promising therapeutic strategy for diabetic nephropathy.

  4. Circulating thrombomodulin and vascular cell adhesion molecule-1 and renal vascular lesion in patients with lupus nephritis.

    PubMed

    Yao, G H; Liu, Z H; Zhang, X; Zheng, C X; Chen, H P; Zeng, C H; Li, L S

    2008-08-01

    Currently, the detection of renal vascular lesions (VLS) in lupus nephritis (LN) mainly depends on biopsy examination, and lack surrogate biomarkers for clinical dynamic evaluation. The aim of the present study is to explore the correlation between circulatory endothelial damage biomarkers and VLS. Soluble E-selectin, thrombomodulin (TM) and vascular cell adhesion molecule-1 (VCAM-1) were measured by ELISA. TM and VCAM-1 levels both were significantly elevated in LN with VLS than in LN without VLS (P < 0.01). However, the serum E-selectin was not significantly changed in LN patients with and without VLS. A positive correlation was found between TM and serum creatinine (r = 0.617, P < 0.05) in patients with vascular lesions. In order to further analyse the relationship between TM level and severity degree of vascular lesions in LN patients, we subdivided the patients with vascular lesions into two groups: with thrombotic microangiopathy (TMA) and without TMA. TM level of the patients with TMA is significantly higher than those without TMA (P < 0.01). In conclusion, combined with renal pathological examination, monitoring the circulatory levels of TM and VCAM-1, can provide circulating biomarkers of VLS in LN patients.

  5. Should blunt segmental vascular renal injuries be considered an American Association for the Surgery of Trauma Grade 4 renal injury?

    PubMed

    Malaeb, Bahaa; Figler, Brad; Wessells, Hunter; Voelzke, Bryan B

    2014-02-01

    Renal segmental vascular injury (SVI) following blunt abdominal trauma is not part of the original American Association for the Surgery of Trauma (AAST) renal injury grading system. Recent recommendations support classifying SVI as an AAST Grade 4 (G4) injury. Our primary aim was to compare outcomes following blunt renal SVI and blunt renal collecting system lacerations (CSLs). We hypothesize that renal SVI fare well with conservative management alone and should be relegated a less severe renal AAST grade. We retrospectively identified patients with SVI and G4 CSL admitted to a Level 1 trauma center between 2003 and 2010. Penetrating trauma was excluded. Need for surgical intervention, length of stay, kidney salvage (>25% renal preservation on renography 6-12 weeks after injury), and delayed complication rates were compared between the SVI and CSL injuries. Statistical analysis used χ, Fisher's exact, and t tests. A total of 56 patients with SVI and 88 patients with G4 CSL sustained blunt trauma. Age, Injury Severity Score (ISS), and length of stay were similar for the two groups. Five patients in each group died of concomitant, nonrenal injuries. In the G4 CSL group, 15 patients underwent major interventions, and 32 patients underwent minor interventions. Only one patient in the SVI group underwent a major intervention. The renal salvage rate was 85.7% following SVI versus 62.5% following CSL (p = 0.107). Overall, surgical interventions are significantly lower among the SVI cohort than the G4 CSL cohort. Further analysis using a larger cohort of patients is recommended before revising the current renal grading system. Adding SVI as a G4 injury could potentially increase the heterogeneity of G4 injuries and decrease the ability of the AAST renal injury grading system to predict outcomes, such as nephrectomy rate. Epidemiologic study, level IV.

  6. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction.

    PubMed

    Pulskens, Wilco P; Butter, Loes M; Teske, Gwendoline J; Claessen, Nike; Dessing, Mark C; Flavell, Richard A; Sutterwala, Fayyaz S; Florquin, Sandrine; Leemans, Jaklien C

    2014-01-01

    Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (-/-) mice to unilateral ureter obstruction (UUO). Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3-/- mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3-/- mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3-/- mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation. Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.

  7. Pseudo-vascular tumor in a renal flow study

    SciTech Connect

    Elgazzar, A.H.; Fernandez-Ulloa, M.; Powers, G.T.

    1985-03-01

    A case in which, for the first time, the superior mesenteric artery caused an appearance mimicking vascular tumor on a kidney radionuclide angiogram (RNA) obtained posteriorly, is reported. A subsequent contrast arteriogram showed that the superior mesenteric artery caused that appearance and confusion with possible vascular tumor on RNA. No similar cases with mesenteric blush simulating vascular tumor have been found in the literature. Mesenteric blushes on RNAs obtained posteriorly have been described only in cases of kidney agenesis and post-nephrectomy. This pattern should be kept in mind when interpreting RNAs to avoid subjecting patients to invasive diagnostic procedures.

  8. [Spontaneous recanalization after embolization of the renal artery with an Amplatzer vascular plug 4].

    PubMed

    Gómez-Martínez, Pablo; Ciampi Dopazo, Juan José; González Fejás, Ariel; Lanciego, Carlos

    2014-01-01

    The Amplatzer vascular plug (AVP) is an occluding device used in vascular embolizations. Thanks to its excellent maneuverability and effectiveness, it is being used more and more often. The latest version, the AVP 4, enables access to smaller and more tortuous vessels. To date, the only cases of spontaneous recanalization published occurred with earlier versions of the AVP. We present a case of recanalization after renal artery embolization with an AVP 4.

  9. Mizoribine Ameliorates Renal Injury and Hypertension along with the Attenuation of Renal Caspase-1 Expression in Aldosterone-Salt-Treated Rats

    PubMed Central

    Doi, Toshiki; Doi, Shigehiro; Nakashima, Ayumu; Ueno, Toshinori; Yokoyama, Yukio; Kohno, Nobuoki; Masaki, Takao

    2014-01-01

    Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group): (1) vehicle infusion group, (2) aldosterone infusion group, or (3) aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension. PMID:24695748

  10. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway.

    PubMed

    Wang, Xueling; Meng, Linghang; Zhao, Long; Wang, Zengfu; Liu, Haiying; Liu, Gang; Guan, Guangju

    2017-04-01

    Oxidative stress plays an important role in the development and progression of diabetic nephropathy (DN). We aimed to investigate if resveratrol (RSV) could ameliorate hyperglycemia-induced oxidative stress in renal tubules via modulating the SIRT1/FOXO3a pathway. The effects of RSV on diabetes rats were assessed by periodic acid-Schiff, Masson staining, immunohistochemistry, and western blot analyses. Additionally, oxidative indicators (such as catalase, superoxide dismutase, reactive oxygen species, and malondialdehyde), the deacetylase activity of SIRT1 and protein expressions of SIRT1, FOXO3a, and acetylated-FOXO3a were measured. These indicators were similarly evaluated in an in vitro study. Furthermore, the silencing of SIRT1 was used to confirm its role in the resistance to oxidative stress and the relationship between SIRT1 and FOXO3a in vitro. After 16weeks of RSV treatment, the renal function and glomerulosclerosis of rats with DN was dramatically ameliorated. RSV treatment increased SIRT1 deacetylase activity, subsequently decreasing the expression of acetylated-FOXO3a and inhibiting the oxidative stress caused by hyperglycemia both in vivo and in vitro. The silencing of SIRT1 in HK-2 cells aggravated the high glucose-induced oxidative stress and overexpression of acetylated-FOXO3a; RSV treatment failed to protect against these effects. RSV modulates the SIRT1/FOXO3a pathway by increasing SIRT1 deacetylase activity, subsequently ameliorating hyperglycemia-induced renal tubular oxidative stress damage. This mechanism provides the basis for a new approach to developing an effective DN treatment, which is of great clinical significance for reducing the morbidity and mortality associated with DN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Impaired renal function impacts negatively on vascular stiffness in patients with coronary artery disease

    PubMed Central

    2013-01-01

    Background Chronic kidney disease (CKD) and coronary artery disease (CAD) are independently associated with increased vascular stiffness. We examined whether renal function contributes to vascular stiffness independently of CAD status. Methods We studied 160 patients with CAD and 169 subjects without CAD. The 4-variable MDRD formula was used to estimate glomerular filtration rate (eGFR); impaired renal function was defined as eGFR <60 mL/min. Carotid-femoral pulse wave velocity (PWV) was measured with the SphygmoCor® device. Circulating biomarkers were assessed in plasma using xMAP® multiplexing technology. Results Patients with CAD and impaired renal function had greater PWV compared to those with CAD and normal renal function (10.2 [9.1;11.2] vs 7.3 [6.9;7.7] m/s; P < 0.001). In all patients, PWV was a function of eGFR (β = −0.293; P < 0.001) even after adjustment for age, sex, systolic blood pressure, body mass index and presence or absence of CAD. Patients with CAD and impaired renal function had higher levels of adhesion and inflammatory molecules including E-selectin and osteopontin (all P < 0.05) compared to those with CAD alone, but had similar levels of markers of oxidative stress. Conclusions Renal function is a determinant of vascular stiffness even in patients with severe atherosclerotic disease. This was paralleled by differences in markers of cell adhesion and inflammation. Increased vascular stiffness may therefore be linked to inflammatory remodeling of the vasculature in people with impaired renal function, irrespective of concomitant atherosclerotic disease. PMID:23937620

  12. Renal vascular response to sodium loading in sons of hypertensive parents.

    PubMed

    Textor, S C; Turner, S T

    1991-06-01

    Studies of normotensive offspring of hypertensive parents offer the potential to identify inherited abnormalities that contribute to essential hypertension. We compared renal and systemic hemodynamic responses to saline infusion between normotensive sons of two hypertensive parents (SOHT) and sons of two normotensive parents (SONT) selected from the general population of Rochester, Minn. Hemodynamic measurements were performed after a week of low sodium intake (10 meq/day) and were repeated after a week of high sodium intake (200 meq/day). Despite being in the normotensive range, blood pressures in SOHT were higher than those in SONT during low sodium (124 +/- 3/85 +/- 3 versus 118 +/- 2/71 +/- 2 mm Hg, p less than 0.01) and high sodium (122 +/- 3/80 +/- 3 versus 112 +/- 2/70 +/- 2 mm Hg, p less than 0.05) conditions. Higher pressures in SOHT were associated with elevated systemic and renal vascular resistance. After a high sodium diet, renal vascular resistance in SOHT rose further during acute saline infusion, whereas systemic vascular resistance did not change. After a low sodium diet, this renal vasoconstrictor response to saline infusion in SOHT was not present, and renal vascular resistance fell to levels not different from SONT. Plasma renin activity, aldosterone, and atrial natriuretic peptide did not differ between SONT and SOHT. Circulating levels of norepinephrine were higher in SOHT. These data demonstrate a renal vasoconstrictor response to saline infusion in normotensive SOHT, which depends on prior sodium intake. This alteration in renal hemodynamics may represent an inherited abnormality related to the development of hypertension.

  13. Vascular and renal effects of dopamine during extracellular volume expansion: Role of nitric oxide pathway.

    PubMed

    Costa, María A; Elesgaray, Rosana; Loria, Analía; Balaszczuk, Ana María; Arranz, Cristina

    2006-02-28

    The aim of the study was to determine the possible role of NO-system activation in vascular and renal effects of the dopaminergic system and the probable interaction between both systems during acute volume expansion in rats. Expanded (10% bw) and non-expanded anaesthetized male Wistar rats were treated with haloperidol, a DA receptor antagonist (3 mg/kg bw, ip). Mean arterial pressure, diuresis, natriuresis, renal plasma flow, glomerular filtration rate, nitrites and nitrates excretion (NOx) were determined. NADPH diaphorase activity was measured using a histochemistry technique in kidney, aorta and renal arteries. NOS activity in kidney and aorta from expanded and non-expanded animals was determined with L-[U14C]-arginine substrate, in basal conditions and after DA (1 microM) administration. The hypotensive effect of L-arg and hypertension induced by L-NAME were not modified by haloperidol. This blocker reverted the increase in diuresis, natriuresis and RPF induced by L-arg in both groups. Dopaminergic blockade induced a decrease in NOx excretion and in NADPH-diaphorase activity in glomeruli, proximal tubule and medullar collecting duct and in endothelium and vascular smooth muscle of renal arteries. DA induced an increase in NOS activity in renal medulla and cortex in both groups, but no changes in the aorta were observed. Our results suggest that renal DA would be associated with the renal response induced by NO during extracellular volume expansion. NO-system activation would be one of the mechanisms involved in renal DA activity during saline load, but NO appears not to be involved in DA vascular effects.

  14. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent.

  15. THE LOCAL EFFECT OF SEROTONIN UPON RENAL VASCULAR RESISTANCE AND URINE FLOW RATE,

    DTIC Science & Technology

    and following denervation plus infusion of phentolamine . Blood flow rate was controlled and uncontrolled. Renal vascular resistance increased, on the... phentolamine . Significant changes in urine flow rate were not observed. Gross and microscopic examination of the kidneys revealed no specific pathological

  16. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin.

    PubMed

    Wu, Duo; Wen, Wei; Qi, Chun-Li; Zhao, Ru-Xia; Lü, Jun-Hua; Zhong, Chun-Yan; Chen, Yi-Yu

    2012-06-15

    Berberine (BBR) is one of the main constituents in Rhizoma coptidis and it has widely been used for the treatment of diabetic nephropathy. The aims of the study were to investigate the effects and mechanism of action of berberine on renal damage in diabetic rats. Diabetes and hyperglycaemia were induced in rats by a high-fat diet and intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Rats were randomly divided into 5 groups, such as i) control rats, ii) untreated diabetic rats iii) 250 mg/kg metformin-treated, iv and v) 100 and 200 mg/kg berberine-treated diabetic rats and treated separately for 8 weeks. The fasting blood glucose, insulin, total cholesterol, triglyceride, glycosylated hemoglobin were measured in rats. Kidneys were isolated at the end of the treatment for histology, Western blot analysis and estimation of malonaldehyde (MDA), superoxide dismutase (SOD) and renal advanced glycation endproducts (AGEs). The results revealed that berberine significantly decreased fasting blood glucose, insulin levels, total cholesterol, triglyceride levels, urinary protein excretion, serum creatinine (Scr) and blood urea nitrogen (BUN) in diabetic rats. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with berberine. In addition, the protein expressions of nephrin and podocin were significantly increased. It seems likely that in rats berberine exerts an ameliorative effect on renal damage in diabetes induced by high-fat diet and streptozotocin. The possible mechanisms for the renoprotective effects of berberine may be related to inhibition of glycosylation and improvement of antioxidation that in turn upregulate the expressions of renal nephrin and podocin.

  17. Embolization of Iatrogenic Vascular Injuries of Renal Transplants: Immediate and Follow-Up Results

    SciTech Connect

    Dorffner, Roland; Thurnher, Siegfried; Prokesch, Rupert; Bankier, Alexander; Turetschek, Karl; Schmidt, Alice; Lammer, Johannes

    1998-03-15

    Purpose: To evaluate the outcome in seven patients in whom iatrogenic vascular complications were treated with catheter embolization. Methods: Angiography showed an arteriovenous fistula in six of the seven patients, a pseudoaneurysm in three patients, and an arteriocaliceal fistula in three patients. Embolization was performed with GAW coils or microcoils in all cases. In three patients enbucrilate, polyvinyl alcohol, or absorbable gelatin powder was administered as an adjunct to the coils. Results: Angiographic success with total occlusion of the vascular injury was achieved in five of the seven patients and clinical success was achieved in four of seven cases. In two cases, nephrectomy after embolization was necessary because of renal artery occlusion or acute hemorrhage at the renal artery anastomosis, respectively. Infarction of 30%-50% of the renal parenchyma was seen in two cases. Conclusion: Angiographically successful embolization is not necessarily associated with clinical success. The complication rate is high.

  18. Low-dose paclitaxel ameliorates renal fibrosis in rat UUO model by inhibition of TGF-beta/Smad activity.

    PubMed

    Zhang, Dongshan; Sun, Lin; Xian, Wang; Liu, Fuyou; Ling, Guanghui; Xiao, Li; Liu, Yanhong; Peng, Youmin; Haruna, Yoshisuke; Kanwar, Yashpal S

    2010-03-01

    Transforming growth factor-beta (TGF-beta) has a pivotal function in the progression of renal fibrosis in a wide variety of renal diseases. Smad proteins have been identified to have an important function in regulating the expression of extracellular matrix (ECM) proteins through TGF-beta signaling pathway. Aberrant TGF-beta/Smad signaling can be modulated by stabilization of microtubules with paclitaxel. In this study, we investigated if paclitaxel can attenuate tubulointerstitial fibrosis in a rat model of unilateral ureteral obstruction (UUO). Rats in groups of six were subjected to UUO and received low-dose intraperitoneal injection of paclitaxel (0.3 mg/kg) twice a week. They were killed at day 7 and 14 after UUO or Sham operation. TGF-beta signaling cascade and status of various ECM proteins were evaluated by RT-PCR, western blotting and immunohistochemical or immunofluorescence staining. The paclitaxel treatment markedly suppressed Smad2 and Smad3 phosphorylation. This was associated with attenuated expression of integrin-linked kinase, collagens I and III, fibronectin (FN) and alpha-smooth muscle actin, and a substantial decrease in renal fibrosis in animals that underwent UUO and received paclitaxel. These data indicate that the low-dose paclitaxel ameliorates renal tubulointerstitial fibrosis by modulating TGF-beta signaling, and thus, the paclitaxel may have some therapeutic value in humans.

  19. Baicalin ameliorates renal fibrosis via inhibition of transforming growth factor β1 production and downstream signal transduction.

    PubMed

    Zheng, Long; Zhang, Chao; Li, Long; Hu, Chao; Hu, Mushuang; Sidikejiang, Niyazi; Wang, Xuanchuan; Lin, Miao; Rong, Ruiming

    2017-04-01

    Previous studies have demonstrated the potential antifibrotic effects of baicalin in vitro, via examination of 21 compounds isolated from plants. However, its biological activity and underlying mechanisms of action in vivo remain to be elucidated. The present study aimed to evaluate the effect of baicalin on renal fibrosis in vivo, and the potential signaling pathways involved. A unilateral ureteral obstruction (UUO)‑induced renal fibrosis model was established using Sprague‑Dawley rats. Baicalin was administrated intraperitoneally every 2 days for 10 days. The degree of renal damage and fibrosis was investigated by histological assessment, and detection of fibronectin and collagen I mRNA expression levels. Epithelial‑mesenchymal transition (EMT) markers, transforming growth factor-β1 (TGF-β1) levels and downstream phosphorylation of mothers against decapentaplegic 2/3 (Smad2/3) were examined in vivo and in an NRK‑52E rat renal tubular cell line in vitro. Baicalin was demonstrated to markedly ameliorate renal fibrosis and suppress EMT, as evidenced by reduced interstitial collagen accumulation, decreased fibronectin and collagen I mRNA expression levels, upregulation of N‑ and E‑cadherin expression levels, and downregulation of α‑smooth muscle actin and vimentin expression. Furthermore, baicalin decreased TGF‑β1 expression levels in serum and kidney tissue following UUO, and suppressed Smad2/3 phosphorylation in rat kidney tissue. In vitro studies identified that baicalin may inhibit the phosphorylation of Smad2/3 under the same TGF‑β1 concentration. In conclusion, baicalin may protect against renal fibrosis, potentially via inhibition of TGF‑β1 production and its downstream signal transduction.

  20. Spiral CT During Selective Accessory Renal Artery Angiography: Assessment of Vascular Territory Before Aortic Stent-Grafting

    SciTech Connect

    Dorffner, Roland; Thurnher, Siegfried; Prokesch, Rupert; Youssefzadeh, Soraya; Hoelzenbein, Thomas; Lammer, Johannes

    1998-03-15

    We evaluated the vascular territory of accessory renal arteries in cases where the vessel might be overlapped by an aortic stent-graft. Spiral CT during selective accessory renal artery angiography was performed in four patients with abdominal aortic aneurysms (including one with a horseshoe kidney). The volume of the vascular territory of each renal artery was measured using a software program provided by the CT unit manufacturer. The supernumerary renal arteries perfused 32%, 37%, 15%, and 16% of the total renal mass, respectively. In two patients, stent-grafts were implanted, which resulted in occlusion of the supernumerary renal artery. The volume of the renal infarction was equal to the volume perfused by the artery as calculated before implantation of the stent-graft.The method proposed is accurate for estimating the size of the expected renal infarction. It might help to determine whether placement of a stent-graft is acceptable.

  1. Ansys Fluent versus Sim Vascular for 4-D patient-specific computational hemodynamics in renal arteries

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Avinash; Yu, Huidan (Whitney); Sawchuk, Alan; Dalsing, Michael

    2015-11-01

    The objective of this clinical-need driven research is to investigate the effect of renal artery stenosis (RAS) on the blood flow and wall shear stress in renal arteries through 4-D patient-specific computational hemodynamics (PSCH) and search for possible critical RASs that significantly alter the pressure gradient across the stenosis by manually varying the size of RAS from 50% to 95%. The identification of the critical RAS is important to understand the contribution of RAS to the overall renal resistance thus appropriate clinical therapy can be determined in order to reduce the hypertension. Clinical CT angiographic data together with Doppler Ultra sound images of an anonymous patient are used serving as the required inputs of the PSCH. To validate the PSCH, we use both Ansys Fluent and Sim Vascular and compare velocity, pressure, and wall-shear stress under identical conditions. Renal Imaging Technology Development Program (RITDP) Grant.

  2. D-ribose ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice.

    PubMed

    Ueki, Masaaki; Ueno, Masaki; Morishita, Jun; Maekawa, Nobuhiro

    2013-01-01

    Cisplatin is one of the most potent chemotherapeutic anticancer drugs, but it can produce side effects such as nephrotoxicity. Inflammatory cytokines, chemokines and adhesion molecules have important roles in the pathogenesis of cisplatin-induced nephrotoxicity. D-Ribose is a naturally occurring five-carbon monosaccharide that is found in all living cells, and has anti-inflammatory effects in renal ischemia/reperfusion injury. The purpose of this study was to determine the protective effects of D-ribose on cisplatin-induced nephrotoxicity. Forty-eight mice were randomly divided into four groups: control, cisplatin, cisplatin + ribose, and ribose. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without D-ribose (400 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). At 72 h after cisplatin injection, we measured serum and renal tumor necrosis factor (TNF)-α and renal monocyte chemoattractant protein (MCP)-1 concentrations by enzyme-linked immunosorbent assay; renal expression of intercellular adhesion molecule (ICAM)-1 mRNA by real-time polymerase chain reaction; serum blood urea nitrogen and creatinine; and histological changes. Cisplatin increased serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Treatment with D-ribose attenuated the increase in serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis were attenuated by D-ribose treatment. This is believed to be the first time that protective effects of D-ribose on cisplatin-induced nephrotoxicity via inhibition of inflammatory reactions have been investigated. Thus, D-ribose may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

  3. Myricetin derived from Hovenia dulcis Thunb. ameliorates vascular endothelial dysfunction and liver injury in high choline-fed mice.

    PubMed

    Guo, Jianjun; Meng, Yonghong; Zhao, Yan; Hu, Yuanyuan; Ren, Daoyuan; Yang, Xingbin

    2015-05-01

    The present study was conducted to explore the protective effects of myricetin (MYR) purified from Hovenia dulcis Thunb. against vascular endothelial dysfunction and liver injury in mice fed with 3% dietary choline water. MYR was shown to possess strong scavenging activities against DPPH˙, HO˙, and O2˙(-) and ferric-reducing antioxidant power in vitro. Mice fed 3% dietary choline water for 8 weeks significantly displayed vascular endothelial dysfunction and liver oxidative stress (p < 0.01). Furthermore, continuous administration of MYR at 400 and 800 mg per kg bw in choline-fed mice could significantly decrease the high choline diet-induced elevation of serum total cholesterol (TC), total triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), endothelin 1 (ET-1) and thromboxane A2 (TXA2) levels as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, while the choline-induced decline of serum high density lipoprotein-cholesterol (HDL-C), endothelin nitric oxide synthase (eNOS), nitric oxide (NO) and prostaglandin I2 (PGI2) levels could be markedly elevated in mice (p < 0.05, p < 0.01). Meanwhile, MYR at 400 and 800 mg per kg bw also increased hepatic total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities and decreased hepatic malonaldehyde (MDA) and non-esterified fatty acid (NEFA) levels in mice, relative to choline-treated mice (p < 0.05, p < 0.01). These results together with conventional haematoxylin and eosin (H&E) and Oil Red O staining observation of the liver and vascular tissues suggested that MYR exerted a significant protective role against high choline diet-induced endothelial dysfunction and liver injury in mice. This is the first report showing that high intake of dietary choline can induce liver damage and that MYR can ameliorate choline-induced vascular endothelial dysfunction and liver injury.

  4. Tephrosia purpurea ameliorates N-diethylnitrosamine and potassium bromate-mediated renal oxidative stress and toxicity in Wistar rats.

    PubMed

    Khan, N; Sharma, S; Alam, A; Saleem, M; Sultana, S

    2001-06-01

    In an earlier communication, we have shown that Tephrosia purpurea ameliorates benzoyl peroxide-induced oxidative stress in murine skin (Saleem et al. 1999). The present study was designed to investigate a chemopreventive efficacy of T purpurea against N-diethylnitrosamine-initiated and potassium bromate-mediated oxidative stress and toxicity in rat kidney. A single intraperitoneal dose of N-diethylnitrosamine (200 mg/kg body weight) one hr prior to the dose of KBrO3 (125 mg/kg body weight) increases microsomal lipid peroxidation and the activity of xanthine oxidase and decreases the activities of renal antioxidant enzymes viz., catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase, phase II metabolizing enzymes such as glutathione-S-transferase and quinone reductase and causes depletion in the level of renal glutathione content. A sharp increase in blood urea nitrogen and serum creatinine has also been observed. Prophylactic treatment of rats with T. purpurea at doses of 5 mg/kg body weight and 10 mg/kg body weight prevented N-diethylnitrosamine-initiated and KBrO3 promoted renal oxidative stress and toxicity. The susceptibility of renal microsomal membrane for iron ascorbate-induced lipid peroxidation and xanthine oxidase activities were significantly reduced (P<0.01). The depleted levels of glutathione, the inhibited activities of antioxidant enzymes, phase II metabolizing enzymes and the enhanced levels of serum creatinine and blood urea nitrogen were recovered to a significant level (P<0.01). All the antioxidant enzymes were recovered dose-dependently. Our data indicate that T purpurea besides a skin antioxidant can be a potent chemopreventive agent against renal oxidative stress and carcinogenesis induced by N-diethylnitrosamine and KBrO3.

  5. The inhibition of calpains ameliorates vascular restenosis through MMP2/TGF-β1 pathway

    PubMed Central

    Tang, Lianghu; Pei, Haifeng; Yang, Yi; Wang, Xiong; Wang, Ting; Gao, Erhe; Li, De; Yang, Yongjian; Yang, Dachun

    2016-01-01

    Restenosis limits the efficacy of vascular percutaneous intervention, in which vascular smooth muscle cell (VSMC) proliferation and activation of inflammation are two primary causal factors. Calpains influence VSMC proliferation and collagen synthesis. However, the roles of calpastatin and calpains in vascular restenosis remain unclear. Here, restenosis was induced by ligating the left carotid artery, and VSMCs were pretreated with platelet-derived growth factor (PDGF)-BB. Adenovirus vector carrying MMP2 sequence and specific small interfering RNA against calpain-1/2 were introduced. Finally, restenosis enhanced the expression of calpain-1/2, but reduced calpastatin content. In calpastatin transgenic mice, lumen narrowing was attenuated gradually and peaked on days 14–21. Cell proliferation and migration as well as collagen synthesis were inhibited in transgenic mice, and expression of calpain-1/2 and MMP2/transforming growth factor-β1 (TGF-β1). Consistently, in VSMCs pretreated with PDGF-BB, calpastatin induction and calpains inhibition suppressed the proliferation and migration of VSMCs and collagen synthesis, and reduced expression of calpain-1/2 and MMP2/TGF-β1. Moreover, simvastatin improved restenosis indicators by suppressing the HIF-1α/calpains/MMP2/TGF-β1 pathway. However, MMP2 supplementation eliminated the vascular protection of calpastatin induction and simvastatin. Collectively, calpains inhibition plays crucial roles in vascular restenosis by preventing neointimal hyperplasia at the early stage via suppression of the MMP2/TGF-β1 pathway. PMID:27453531

  6. Assessment of renal vascular resistance and blood pressure in dogs and cats with renal disease.

    PubMed

    Novellas, R; Ruiz de Gopegui, R; Espada, Y

    2010-05-15

    This study investigated the possible relationships between renal resistive index (RI) or pulsatility index (PI) and systolic blood pressure and biochemical and haematological parameters in dogs and cats with renal disease. The study included 50 dogs and 20 cats with renal disease. RI and PI were significantly higher in both dogs and cats with renal disease than in 27 healthy dogs and 10 healthy cats. In dogs, a significant negative correlation was found between RI and red blood cell count, and a positive correlation was found between PI and serum creatinine. In cats, a positive correlation was found between RI and serum urea, between PI and serum creatinine, and between PI and serum urea. No relationship could be found between either RI or PI and systolic blood pressure.

  7. POEMS syndrome with vascular lesions and renal carcinoma - possible role of cytokines.

    PubMed

    Pasqui, A L; Bova, G; Saletti, M; Bruni, F; Di Renzo, M; Auteri, A

    1998-06-17

    We describe here the case of a 60 years man with POEMS syndrome associated with renal tumor and vascular lesions. The patient had osteosclerotic myeloma IgA-lambda, polyneuropathy, endocrinopathy and skin changes. In addition, he developed renal clear cell carcinoma and gangrena of lower limbs. The humoral study showed thrombocytosis, high levels of IL-1beta and IL-6 and of some coagulative/fibrinolytic and endothelial factors (von Willebrand factor, plasmin-antiplasmine complexes, plasminogen activator). We suggest the hypothesis that these factors are capable of determining some manifestations of POEMS syndrome.

  8. Mid-Term Vascular Safety of Renal Denervation Assessed by Follow-up MR Imaging

    SciTech Connect

    Schmid, Axel Schmieder, Raphael; Lell, Michael; Janka, Rolf; Veelken, Roland; Schmieder, Roland E.; Uder, Michael; Ott, Christian

    2016-03-15

    Background/AimsRenal denervation (RDN) emerged as a treatment option for reducing blood pressure (BP) in patients with treatment-resistant hypertension (TRH). However, concerns have been raised regarding the incidence of late renal artery stenosis or thromboembolism after RDN. The goal of the current study was, therefore, to conduct a prospective clinical trial on the mid-term vascular integrity of the renal arteries and the perfusion of the renal parenchyma assessed by magnetic resonance imaging (MRI) in the follow-up after catheter-based RDN.MethodsIn our single-centre investigator initiated study, 51 patients with true TRH underwent catheter-based RDN using the Symplicity Flex{sup TM} catheter (Medtronic Inc., Palo Alto, CA). Follow-up MRI was performed at a median of 11 months (interquartile range 6–18 months) after RDN on a 1.5T MR unit. High-resolution MR angiography (MRA) and MRI results were compared to the baseline digital angiography of renal arteries obtained at time of RDN. In case of uncertainties (N = 2) catheter angiography was repeated.ResultsBoth office and 24-h ambulatory BP were significantly reduced 6 and 12 months after RDN. Renal function remained unchanged 6 and 12 months after RDN. In all patients, MRA excluded new or progression of pre-existing low grade renal artery stenosis as well as focal aneurysms at the sites of radiofrequency ablation. In none of the patients new segmental perfusion deficits in either kidney were detected on MRI.ConclusionsNo vascular or parenchymal complications after radiofrequency-based RDN were detected in 51 patients followed up by MRI.

  9. Administration of tolvaptan with reduction of loop diuretics ameliorates congestion with improving renal dysfunction in patients with congestive heart failure and renal dysfunction.

    PubMed

    Hanatani, Akihisa; Shibata, Atsushi; Kitada, Ryouko; Iwata, Shinichi; Matsumura, Yoshiki; Doi, Atsushi; Sugioka, Kenichi; Takagi, Masahiko; Yoshiyama, Minoru

    2017-03-01

    In patients with congestive heart failure and renal dysfunction, high dose of diuretics are necessary to improve congestion, which may progress to renal dysfunction. We examined the efficacy of tolvaptan with reduction of loop diuretics to improve renal function in patients with congestive heart failure and renal dysfunction. We conducted a multicenter, prospective, randomized study in 44 patients with congestive heart failure and renal dysfunction (serum creatinine concentration ≥1.1 mg/dl) treated with conventional diuretics. Patients were randomly divided into two groups: tolvaptan (15 mg) with a fixed dose of diuretics or with reducing to a half-dose of diuretics for 7-14 consecutive days. We examined the change of urine volume, body weight, serum creatinine and electrolyte concentrations in each group. Both groups demonstrated significant urine volume increase (724 ± 176 ml/day in the fixed-dose group and 736 ± 114 ml/day in the half-dose group) and body weight reduction (1.6 ± 1.5 kg and 1.6 ± 1.9 kg, respectively) from baseline, with no differences between the two groups. Serum creatinine concentration was significantly increased in the fixed-dose group (from 1.60 ± 0.47 to 1.74 ± 0.66 mg/dl, p = 0.03) and decreased in the half-dose group (from 1.98 ± 0.91 to 1.91 ± 0.97 mg/dl, p = 0.10). So the mean changes in serum creatinine concentration from baseline significantly differed between the two groups (0.14 ± 0.08 mg/dl in the fixed-dose group and -0.07 ± 0.19 mg/dl in the half-dose group, p = 0.006). The administration of tolvaptan with reduction of loop diuretics was clinically effective to ameliorate congestion with improving renal function in patients with congestive heart failure and renal dysfunction.

  10. Sodium Thiosulfate Ameliorates Oxidative Stress and Preserves Renal Function in Hyperoxaluric Rats

    PubMed Central

    Bijarnia, Rakesh K.; Bachtler, Matthias; Chandak, Prakash G.; van Goor, Harry; Pasch, Andreas

    2015-01-01

    Background Hyperoxaluria causes crystal deposition in the kidney, which leads to oxidative stress and to injury and damage of the renal epithelium. Sodium thiosulfate (STS, Na2S2O3) is an anti-oxidant, which has been used in human medicine for decades. The effect of STS on hyperoxaluria-induced renal damage is not known. Methods Hyperoxaluria and renal injury were induced in healthy male Wistar rats by chronic exposure to ethylene glycol (EG, 0.75%) in the drinking water for 4 weeks. The treatment effects of STS, NaCl or Na2SO4 were compared. Furthermore, the effects of STS on oxalate-induced oxidative stress were investigated in vitro in renal LLC-PK1 cells. Results Chronic EG exposure led to hyperoxaluria, oxidative stress, calcium oxalate crystalluria and crystal deposition in the kidneys. Whereas all tested compounds significantly reduced crystal load, only STS-treatment maintained tissue superoxide dismutase activity and urine 8-isoprostaglandin levels in vivo and preserved renal function. In in vitro studies, STS showed the ability to scavenge oxalate-induced ROS accumulation dose dependently, reduced cell-released hydrogen peroxide and preserved superoxide dismutase activity. As a mechanism explaining this finding, STS was able to directly inactivate hydrogen peroxide in cell-free experiments. Conclusions STS is an antioxidant, which preserves renal function in a chronic EG rat model. Its therapeutic use in oxidative-stress induced renal-failure should be considered. PMID:25928142

  11. FTY720 ameliorates renal fibrosis by simultaneously affecting leucocyte recruitment and TGF-β signalling in fibroblasts.

    PubMed

    Tian, T; Zhang, J; Zhu, X; Wen, S; Shi, D; Zhou, H

    2017-10-01

    Renal fibrosis is the common final manifestation of chronic kidney diseases and usually results in end-stage renal failure. In this study, we evaluated the effect of fingolimod (FTY720), an analogue of sphingosine 1-phosphate (S1P), as a treatment for the unilateral ureteral obstruction (UUO)-induced renal fibrosis animal model. We treated mice with FTY720 at a dosage of 1 mg/kg/day by intragastric administration from day 1 until day 7. The control group received the same amount of saline. FTY720 reduced significantly the urine albumin/creatinine ratio (UACR) in treated UUO mice. FTY720 treatment also caused a significant decrease in interstitial expansion and collagen deposition in the kidney, accompanied by reduced mononuclear cell recruitment and inflammatory cytokine expression. In addition, the expression levels of the endothelial cell adhesion molecules P-selectin and vascular cell adhesion protein 1 (VCAM-1) were suppressed in the ligated kidney by FTY720 administration, suggesting reduced renal endothelial cell activation. Furthermore, in renal interstitial fibroblast normal rat kidney (NRK)-49F cells, FTY720 significantly affected transforming growth factor (TGF)-β-induced α-smooth muscle actin (SMA) expression and collagen synthesis by inhibiting both the Mothers against decapentaplegic homologue (Smad)2/3 and phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase 3 beta (PI3K/AKT/GSK3β) signalling pathways. S1P1 knock-down by siRNA reversed this effect significantly in our fibroblast cell culture model. Therefore, FTY720 attenuates renal fibrosis via two different mechanisms: first, FTY720 suppresses the synthesis of extracellular matrix in interstitial fibroblasts by interfering with TGF-β signalling; and secondly, FTY720 affects endothelial cell activation and chemokine expression, thereby reducing immune cell recruitment into the kidney. © 2017 British Society for Immunology.

  12. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro.

    PubMed

    Zhou, Xiangjun; Yao, Qisheng; Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo; Shan, Guang

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)-1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Amelioration of glycerol-induced acute renal failure in the rat with 8-cyclopentyl-1,3-dipropylxanthine.

    PubMed Central

    Kellett, R.; Bowmer, C. J.; Collis, M. G.; Yates, M. S.

    1989-01-01

    1. Previous studies have shown that 8-phenyltheophylline (8-PT), a non-selective antagonist at adenosine A1- and A2-receptors, can ameliorate the severity of glycerol-induced acute renal failure (ARF) in the rat. In the present study we have examined the effects of an antagonist with selectivity for adenosine A1-receptors (8-cyclopentyl-1,3-dipropylxanthine, CPX) on the development of ARF. 2. In the anaesthetised rat 8-PT (4 mg kg-1, i.v.) and CPX (0.1 mg kg-1, i.v.) antagonised adenosine-evoked responses which are thought to be mediated via A1-receptors (bradycardia and decrease in renal blood flow). The agonist dose-ratio produced by CPX was equal to or greater than that found with 8-PT (heart rate and renal blood flow respectively). The hypotensive response to adenosine which is predominantly due to A2-receptor activation was also antagonised by 8-PT, whereas CPX was a much less effective antagonist of this response. 3. Administration of CPX (0.1 mg kg-1, i.v.; twice daily for two days) significantly attenuated the increase in plasma levels of urea and creatinine, the increased kidney weight and the renal tubule damage observed in rats 2 days following induction of ARF with intramuscular glycerol injection. In addition treatment with CPX significantly enhanced the clearances of inulin and p-aminohippurate. 4. After glycerol injection, the mortality rate over 7 days in untreated and vehicle-treated rats was 43% and 21% respectively. In contrast, all animals treated with CPX survived over the 7 day observation period. 5. These results support the suggestion that adenosine is an important factor in the development of ARF and indicate that this effect of the purine is likely to be mediated via an adenosine A1-receptor. PMID:2590769

  14. Metformin ameliorates podocyte damage by restoring renal tissue nephrin expression in type 2 diabetic rats.

    PubMed

    Zhai, Limin; Gu, Junfei; Yang, Di; Hu, Wen; Wang, Wei; Ye, Shandong

    2017-05-01

    Previous studies found that metformin provided some renoprotection for diabetic renal damage. In the present study, we evaluated the effects of different doses of metformin on the expression of renal tissue nephrin in type 2 diabetes mellitus (T2DM) model rats and the possible mechanism underlying its protective effect in kidney podocytes. A high-fat diet combined with a low dose of streptozotocin was used to induce T2DM model rats. Diabetic rats were treated with 150, 300, or 500 mg/kg metformin for 8 weeks. At the end of the study, urine and blood samples were collected for measurement of different indices. Light microscopy and transmission electron microscopy were used to identify morphological changes. Renal expression of nephrin protein was assayed by immunohistochemical staining, whereas real-time polymerase chain reaction was used to detect renal nephrin (Nphs1) mRNA expression. Metformin treatment of T2DM rats produced dose-dependent significant reductions in urinary albumin and nephrin concentrations, glomerular basement membrane thickness (GBMT), and the foot process fusion rate (FPFR) compared with control T2DM model rats, whereas renal expression of nephrin protein and Nphs1 mRNA was dose-dependently increased by metformin treatment. Metformin protects kidney podocytes in T2DM model rats by dose-dependently adjusting renal nephrin expression. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  15. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice.

    PubMed

    Ueki, Masaaki; Ueno, Masaki; Morishita, Jun; Maekawa, Nobuhiro

    2013-05-01

    Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin-induced nephrotoxicity. Curcumin is an orange-yellow polyphenol present in curry spice and has anti-inflammatory and antioxidant effects. The purpose of this study was to determine the protective effects of curcumin on cisplatin-induced nephrotoxicity. Mice were randomly divided into four groups: control, cisplatin, cisplatin + curcumin and curcumin. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without curcumin treatment (100 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). Serum and renal tumor necrosis factor (TNF)-alpha and renal monocyte chemoattractant protein (MCP)-1 concentrations, intercellular adhesion molecule-1 (ICAM-1) mRNA expression in kidney, renal function and histological changes were determined 72 h after cisplatin injection. Serum TNF-alpha concentration in the cisplatin + curcumin group significantly decreased compared with that in the cisplatin group. Renal TNF-alpha and MCP-1 concentrations and ICAM-1 mRNA expression in kidney in the cisplatin + curcumin group also significantly decreased compared with those in the cisplatin group. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis scores were attenuated by curcumin treatment. These results indicate that curcumin acts to reduce cisplatin-induced nephrotoxicity through its anti-inflammatory effects. Thus, curcumin may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

  16. Vascular contractile reactivity in hypotension due to reduced renal reabsorption of Na(+) and restricted dietary Na().

    PubMed

    Alshahrani, Saeed; Rapoport, Robert M; Soleimani, Manoocher

    2017-03-01

    Reduced renal Na(+) reabsorption along with restricted dietary Na(+) depletes intravascular plasma volume which can then result in hypotension. Whether hypotension occurs and the magnitude of hypotension depends in part on compensatory angiotensin II-mediated increased vascular resistance. We investigated whether the ability of vascular resistance to mitigate the hypotension was compromised by decreased contractile reactivity. In vitro reactivity was investigated in aorta from mouse models of reduced renal Na(+) reabsorption and restricted dietary Na(+) associated with considerable hypotension and renin-angiotensin system activation: (1) the Na(+)-Cl(-)-Co-transporter (NCC) knockout (KO) with Na(+) restricted diet (0.1%, 2 weeks) and (2) the relatively more severe pendrin (apical chloride/bicarbonate exchanger) and NCC double KO. Contractile sensitivity to KCl, phenylephrine, and/or U46619 remained unaltered in aorta from both models. Maximal KCl and phenylephrine contraction expressed as force/aorta length from NCC KO with Na(+)-restricted diet remained unaltered, while in pendrin/NCC double KO were reduced to 49 and 64%, respectively. Wet weight of aorta from NCC KO with Na(+)-restricted diet remained unaltered, while pendrin/NCC double KO was reduced to 67%, consistent with decreased medial width determined with Verhoeff-Van Gieson stain. These findings suggest that hypotension associated with severe intravascular volume depletion, as the result of decreased renal Na(+) reabsorption, may in part be due to decreased contractile reactivity as a consequence of reduced vascular hypertrophy.

  17. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    SciTech Connect

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2014-07-01

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, and 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.

  18. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice.

    PubMed

    Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T

    2015-08-01

    Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Simvastatin ameliorates renal lipidosis through the suppression of renal CXCL16 expression in mice with adriamycin-induced nephropathy

    PubMed Central

    Wang, Cong; Li, Qian; Zhen, Junhui; Xu, Yihuai; Sun, Shuzhen

    2015-01-01

    Aims: To investigate the roles of CXCL16 and ox-LDL in adriamycin (ADR)-induced nephropathy mice and to explore the mechanism of simvastatin on the renal protective effects of ADR nephropathy. Methods: Fifteen male Balb/c mice were randomly divided into normal control (NC), ADR nephropathy and simvastatin-treated ADR nephropathy (ADR-SIM) groups. ADR nephropathy was induced by a single intravenous injection of ADR into the tail vein. All mice were sacrificed at the end of the 7th week, with the blood, 24-h urine and kidneys collected. The levels of ox-LDL and total cholesterol in the serum, the serum CXCL16, ox-LDL and NF-κB expression were detected. Results: Compared with the NC group, the levels of serum total cholesterol and ox-LDL in the ADR and ADR-SIM groups were significantly higher, the level of serum albumin was significantly lower and the expression of CXCL16, ox-LDL and NF-κB in the renal tissue of ADR and ADR-SIM groups was significantly increased. Compared with the ADR group, the expressions of renal CXCL16, ox-LDL and NF-κB in the ADR-SIM group were significantly decreased. Levels of serum total cholesterol and ox-LDL were not significantly different between the two groups. Conclusions: Simvastatin exerts a protective effect on renal function and structure in mice with ADR nephropathy. The beneficial effects of simvastatin might be related to the decreasing expression of CXCL16 in glomerular podocytes followed by the decreasing endocytosis of ox-LDL in podocytes and inhibition of NF-κB pathway activation. PMID:26884839

  20. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation.

    PubMed

    Wang, Shaofei; Li, Yubin; Fan, Jiajun; Zhang, Xuyao; Luan, Jingyun; Bian, Qi; Ding, Tao; Wang, Yichen; Wang, Ziyu; Song, Ping; Cui, Daxiang; Mei, Xiaobin; Ju, Dianwen

    2017-07-20

    Diabetic nephropathy (DN) is one of the most lethal complications of diabetes mellitus with metabolic disorders and chronic inflammation. Although the cytokine IL-22 was initially implicated in the pathogenesis of chronic inflammatory diseases, recent studies suggested that IL-22 could suppress inflammatory responses and alleviate tissue injury. Herein, we examined the role of IL-22 in DN. We found that serum levels of IL-22 were significantly downregulated in both patients and mice with DN. The expression of IL-22 was further decreased with the progression of DN, whereas IL-22 gene therapy significantly ameliorated renal injury and mesangial matrix expansion in mice with established nephropathy. IL-22 could also markedly reduce high glucose-induced and TGF-β1-induced overexpression of fibronectin and collagen IV in mouse renal glomerular mesangial cells in a dose-dependent manner, suggesting the potential role of IL-22 to inhibit the overproduction of ECM in vitro. Simultaneously, IL-22 gene therapy drastically alleviated renal fibrosis and proteinuria excretion in DN. In addition, IL-22 gene therapy markedly attenuated hyperglycemia and metabolic disorders in streptozotocin-induced experimental diabetic mice. Notably, IL-22 drastically reversed renal activation of NLRP3, cleavage of caspase-1, and the maturation of IL-1β in DN, suggesting unexpected anti-inflammatory function of IL-22 via suppressing the activation of NLRP3 inflammasome in vivo. Moreover, IL-22 markedly downregulated high glucose-induced activation of NLRP3 inflammasome in renal mesangial cells in a dose-dependent manner, indicating that the effects of IL-22 on NLRP3 inflammasome activation was independent of improved glycemic control. These results suggested that nephroprotection by IL-22 in DN was most likely associated with reduced activation of NLRP3 inflammasome. In conclusion, our finding demonstrated that IL-22 could exert favorable effects on DN via simultaneously alleviating systemic

  1. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure

    PubMed Central

    Lomashvili, Koba A.; Monier-Faugere, Marie-Claude; Wang, Xiaonan; Malluche, Hartmut H.; O’Neill, W. Charles

    2010-01-01

    Although it is known that bisphosphonates prevent medial vascular calcification in vivo, their mechanism of action remains unknown and, in particular, whether they act directly on the blood vessels or indirectly through inhibition of bone resorption. To determine this, we studied the effects of two bisphosphonates on calcification of rat aortas in vitro and on in vivo aortic calcification and bone metabolism in rats with renal failure. We produced vascular calcification in rats with adenine-induced renal failure fed a high-phosphate diet. Daily treatment with either etidronate or pamidronate prevented aortic calcification, with the latter being 100-fold more potent. Both aortic calcification and bone formation were reduced in parallel; however, bone resorption was not significantly affected. In all uremic rats, aortic calcium content correlated with bone formation but not with bone resorption. Bisphosphonates also inhibited calcification of rat aortas in culture and arrested further calcification of precalcified vessels but did not reverse their calcification. Expression of osteogenic factors or calcification inhibitors was not altered by etidronate in vitro. Hence, these studies show that bisphosphonates can directly inhibit uremic vascular calcification independent of bone resorption. The correlation between inhibition of aortic calcification and bone mineralization is consistent with a common mechanism such as the prevention of hydroxyapatite formation and suggests that bisphosphonates may not be able to prevent vascular calcification without inhibiting bone formation in uremic rats. PMID:19129793

  2. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure.

    PubMed

    Lomashvili, Koba A; Monier-Faugere, Marie-Claude; Wang, Xiaonan; Malluche, Hartmut H; O'Neill, W Charles

    2009-03-01

    Although it is known that bisphosphonates prevent medial vascular calcification in vivo, their mechanism of action remains unknown and, in particular, whether they act directly on the blood vessels or indirectly through inhibition of bone resorption. To determine this, we studied the effects of two bisphosphonates on calcification of rat aortas in vitro and on in vivo aortic calcification and bone metabolism in rats with renal failure. We produced vascular calcification in rats with adenine-induced renal failure fed a high-phosphate diet. Daily treatment with either etidronate or pamidronate prevented aortic calcification, with the latter being 100-fold more potent. Both aortic calcification and bone formation were reduced in parallel; however, bone resorption was not significantly affected. In all uremic rats, aortic calcium content correlated with bone formation but not with bone resorption. Bisphosphonates also inhibited calcification of rat aortas in culture and arrested further calcification of precalcified vessels but did not reverse their calcification. Expression of osteogenic factors or calcification inhibitors was not altered by etidronate in vitro. Hence, these studies show that bisphosphonates can directly inhibit uremic vascular calcification independent of bone resorption. The correlation between inhibition of aortic calcification and bone mineralization is consistent with a common mechanism such as the prevention of hydroxyapatite formation and suggests that bisphosphonates may not be able to prevent vascular calcification without inhibiting bone formation in uremic rats.

  3. Impact of multidisciplinary, early renal education on vascular access placement.

    PubMed

    Lindberg, Jill S; Husserl, Fred E; Ross, Jamie L; Jackson, Dina; Scarlata, Debra; Nussbaum, Joyce; Cohen, Andrew; Elzein, Hafez

    2005-02-01

    The Ochsner Clinic Foundation initiated the Healthy Start Clinic to identify, educate, and refer chronic kidney disease patients to nephrologists earlier in the course of their disease. This study investigated the impact of a structured educational session on the type and timing of permanent vascular access placement in patients receiving hemodialysis. Before initiating dialysis, the HSC patient group received a general overview of the kidney and kidney disease, plus one-on-one instruction from a registered nurse, a dietitian, and a social worker. The HSC group was compared with a concurrent, conventionally prepared group of CKD patients who initiated dialysis during the same study period. Of the 147 patients initiating hemodialysis at OCF between April 1997 and December 2000, 61 had received structured HSC education, and 86 had received conventional care. In HSC-educated patients, the incidence of PVAs placed before hemodialysis initiation was twofold greater than in patients who received conventional care (77% HSC; 36% non-HSC, p < 0.001), and more HSC-educated patients initiated hemodialysis using their PVA (49% HSC; 23% non-HSC, p < 0.01). In addition, five times more patients who received HSC education received arteriovenous fistulas (52% HSC; 10% non-HSC, p < 0.001). Finally, significantly fewer HSC-educated patients initiated dialysis on a temporary catheter (51% HSC; 77% non-HSC, p < 0.001). Education programs for CKD patients help increase the number of patients receiving early PVA placement, as well as the proportion of patients receiving AVFs as opposed to grafts or temporary catheters.

  4. A Beverage Containing Fermented Black Soybean Ameliorates Ferric Nitrilotriacetate-Induced Renal Oxidative Damage in Rats

    PubMed Central

    Okazaki, Yasumasa; Iqbal, Mohammad; Kawakami, Norito; Yamamoto, Yorihiro; Toyokuni, Shinya; Okada, Shigeru

    2010-01-01

    It is beneficial to seek scientific basis for the effects of functional foods. Natural pigments derived from plants are widely known as possible antioxidants. Black soybean contains a larger amount of anthocyanins than regular soybean. Here we studied the antioxidative effect of a beverage obtained via citric acid fermentation of black soybean (BBS), using a rat model of renal oxidative injury induced by a renal carcinogen, ferric nitrilotriacetate. BBS (10 ml/kg) was orally administered 30 min before ferric nitrilotriacetate treatment. Renal lipid peroxidation was significantly suppressed in the BBS-pretreated animals concomitant with decrease in 4-hydroxy-2-nonenal-modified proteins and 8-hydroxy-2'-deoxyguanosine. Maintenance of renal activities of antioxidative enzymes including catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, glucose-6-phosphate dehydrogenase and quinone reductase was significantly better in the BBS-pretreated rats. Elevation of serum creatinine and urea nitrogen was significantly suppressed in the BBS-pretreated rats. These data suggest that dietary intake of BBS is useful for the prevention of renal tubular oxidative damage mediate by iron, and warrant further investigation. PMID:21103028

  5. Pharmacologic Blockade of αvβ1 Integrin Ameliorates Renal Failure and Fibrosis In Vivo.

    PubMed

    Chang, Yongen; Lau, Wei Ling; Jo, Hyunil; Tsujino, Kazuyuki; Gewin, Leslie; Reed, Nilgun Isik; Atakilit, Amha; Nunes, Ane Claudia Fernandes; DeGrado, William F; Sheppard, Dean

    2017-02-20

    Activated fibroblasts are deemed the main executors of organ fibrosis. However, regulation of the pathologic functions of these cells in vivo is poorly understood. PDGF receptor β (PDGFRβ) is highly expressed in activated pericytes, a main source of fibroblasts. Studies using a PDGFRβ promoter-driven Cre system to delete αv integrins in activated fibroblasts identified these integrins as core regulators of fibroblast activity across solid organs, including the kidneys. Here, we used the same PDGFRβ-Cre line to isolate and study renal fibroblasts ex vivo We found that renal fibroblasts express three αv integrins, namely αvβ1, αvβ3, and αvβ5. Blockade of αvβ1 prevented direct binding of fibroblasts to the latency-associated peptide of TGF-β1 and prevented activation of the latent TGF-β complex. Continuous administration of a recently described potent small molecule inhibitor of αvβ1, compound 8, starting the day of unilateral ureteral obstruction operation, inhibited collagen deposition in the kidneys of mice 14 days later. Compound 8 also effectively attenuated renal failure, as measured by BUN levels in mice fed an adenine diet known to cause renal injury followed by fibrosis. Inhibition of αvβ1 integrin could thus hold promise as a therapeutic intervention in CKD characterized by renal fibrosis.

  6. Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects.

    PubMed

    Sakurada, Takumi; Ishizawa, Keisuke; Imanishi, Masaki; Izawa-Ishizawa, Yuki; Fujii, Shoko; Tominaga, Erika; Tsuneishi, Teppei; Horinouchi, Yuya; Kihira, Yoshitaka; Ikeda, Yasumasa; Tomita, Shuhei; Aihara, Ken-ichi; Minakuchi, Kazuo; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2013-01-01

    Nifedipine is unstable under light and decomposes to a stable nitroso analog, nitrosonifedipine (NO-NIF). The ability of NO-NIF to block calcium channels is quite weak compared with that of nifedipine. Recently, we have demonstrated that NO-NIF reacts with unsaturated fatty acid leading to generate NO-NIF radical, which acquires radical scavenging activity. However, the effects of NO-NIF on the pathogenesis related with oxidative stress, such as atherosclerosis and hypertension, are unclear. In this study, we investigated the effects of NO-NIF on angiotensin II (Ang II)-induced vascular remodeling. Ang II-induced thickening and fibrosis of aorta were inhibited by NO-NIF in mice. NO-NIF decreased reactive oxygen species (ROS) in the aorta and urinary 8-hydroxy-20-deoxyguanosine. Ang II-stimulated mRNA expressions of p22(phox), CD68, F4/80, monocyte chemoattractant protein-1, and collagen I in the aorta were inhibited by NO-NIF. Moreover, NO-NIF inhibited Ang II-induced cell migration and proliferation of vascular smooth muscle cells (VSMCs). NO-NIF reduced Ang II-induced ROS to the control level detected by dihydroethidium staining and lucigenin chemiluminescence assay in VSMCs. NO-NIF suppressed phosphorylations of Akt and epidermal growth factor receptor induced by Ang II. However, NO-NIF had no effects on intracellular Ca(2+) increase and protein kinase C-δ phosphorylation induced by Ang II in VSMCs. The electron paramagnetic resonance spectra indicated the continuous generation of NO-NIF radical of reaction with cultured VSMCs. These findings suggest that NO-NIF improves Ang II-induced vascular remodeling via the attenuation of oxidative stress.

  7. Dalbergioidin Ameliorates Doxorubicin-Induced Renal Fibrosis by Suppressing the TGF-β Signal Pathway

    PubMed Central

    Ren, Xianguo; Bo, Yun; Fan, Junting; Chen, Maosheng; Xu, Daliang; Dong, Yang; He, Haowei; Ren, Xianzhi; Qu, Rong; Jin, Yulian

    2016-01-01

    We investigated the effect of Dalbergioidin (DAL), a well-known natural product extracted from Uraria crinita, on doxorubicin- (DXR-) induced renal fibrosis in mice. The mice were pretreated for 7 days with DAL followed by a single injection of DXR (10 mg/kg) via the tail vein. Renal function was analyzed 5 weeks after DXR treatment. DXR caused nephrotoxicity. The symptoms of nephrotic syndrome were greatly improved after DAL treatment. The indices of renal fibrosis, the phosphorylation of Smad3, and the expression of alpha-smooth muscle actin (α-SMA), fibronectin, collagen III (Col III), E-cadherin, TGF-β, and Smad7 in response to DXR were all similarly modified by DAL. The present findings suggest that DAL improved the markers for kidney damage investigated in this model of DXR-induced experimental nephrotoxicity. PMID:28100935

  8. Dalbergioidin Ameliorates Doxorubicin-Induced Renal Fibrosis by Suppressing the TGF-β Signal Pathway.

    PubMed

    Ren, Xianguo; Bo, Yun; Fan, Junting; Chen, Maosheng; Xu, Daliang; Dong, Yang; He, Haowei; Ren, Xianzhi; Qu, Rong; Jin, Yulian; Zhao, Weihong; Xu, Changliang

    2016-01-01

    We investigated the effect of Dalbergioidin (DAL), a well-known natural product extracted from Uraria crinita, on doxorubicin- (DXR-) induced renal fibrosis in mice. The mice were pretreated for 7 days with DAL followed by a single injection of DXR (10 mg/kg) via the tail vein. Renal function was analyzed 5 weeks after DXR treatment. DXR caused nephrotoxicity. The symptoms of nephrotic syndrome were greatly improved after DAL treatment. The indices of renal fibrosis, the phosphorylation of Smad3, and the expression of alpha-smooth muscle actin (α-SMA), fibronectin, collagen III (Col III), E-cadherin, TGF-β, and Smad7 in response to DXR were all similarly modified by DAL. The present findings suggest that DAL improved the markers for kidney damage investigated in this model of DXR-induced experimental nephrotoxicity.

  9. Mild Electrical Stimulation and Heat Shock Ameliorates Progressive Proteinuria and Renal Inflammation in Mouse Model of Alport Syndrome

    PubMed Central

    Fukuda, Ryosuke; Morino-Koga, Saori; Suico, Mary Ann; Koyama, Kosuke; Sato, Takashi; Shuto, Tsuyoshi; Kai, Hirofumi

    2012-01-01

    Alport syndrome is a hereditary glomerulopathy with proteinuria and nephritis caused by defects in genes encoding type IV collagen in the glomerular basement membrane. All male and most female patients develop end-stage renal disease. Effective treatment to stop or decelerate the progression of proteinuria and nephritis is still under investigation. Here we showed that combination treatment of mild electrical stress (MES) and heat stress (HS) ameliorated progressive proteinuria and renal injury in mouse model of Alport syndrome. The expressions of kidney injury marker neutrophil gelatinase-associated lipocalin and pro-inflammatory cytokines interleukin-6, tumor necrosis factor-α and interleukin-1β were suppressed by MES+HS treatment. The anti-proteinuric effect of MES+HS treatment is mediated by podocytic activation of phosphatidylinositol 3-OH kinase (PI3K)-Akt and heat shock protein 72 (Hsp72)-dependent pathways in vitro and in vivo. The anti-inflammatory effect of MES+HS was mediated by glomerular activation of c-jun NH2-terminal kinase 1/2 (JNK1/2) and p38-dependent pathways ex vivo. Collectively, our studies show that combination treatment of MES and HS confers anti-proteinuric and anti-inflammatory effects on Alport mice likely through the activation of multiple signaling pathways including PI3K-Akt, Hsp72, JNK1/2, and p38 pathways, providing a novel candidate therapeutic strategy to decelerate the progression of patho-phenotypes in Alport syndrome. PMID:22937108

  10. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats.

  11. Mycelia glycoproteins from Cordyceps sobolifera ameliorate cyclosporine-induced renal tubule dysfunction in rats.

    PubMed

    Chyau, Charny-Cherng; Chen, Chin-Chu; Chen, Jun-Chang; Yang, Te-Cheng; Shu, Kuo-Hsiung; Cheng, Chi-Hung

    2014-05-14

    Cordyceps sorbolifera has been used in Traditional Chinese Medicine for improving the renal function. Cyclosporine A (CsA) is an important immunosuppressive agent in the prevention of renal allograft rejection, but long-term usage of CsA could lead to chronic nephrotoxicity and renal graft failure. The study was aimed to investigate whether the mycelia glycoproteins of Cordyceps sobolifera (CSP) exert prevention effects on CsA-induced nephrotoxicity. Sprague-Dawley (SD) rats were randomly assigned into four groups (n=6 per group): normal saline (control group), CSP group, CsA group, and CSP-CsA group (CsA combined treatment with CSP). Glomerular and tubular functions were assessed and histological studies were performed. CSP, prepared by hot water extraction, ethanol precipitation and membrane dialysis, was found to be composed of three glycoproteins with average molecular weights of 543, 31, and 6.3 kDa, respectively. CsA impaired urea clearance and creatinine clearance were significantly improved by concomitant administration of CSP. TUNEL histochemical stain revealed that CSP significantly decreased CsA-induced apoptosis in renal tubular cells. The reducing effect of caspase-3 activation by CSP was suggested through the over-expression of the anti-apoptosis protein Bcl-2 in renal tubule cells. In assessment of CSP protection of renal tubule function, we found that CSP restored CsA induced magnesium wasting by increasing the magnesium reabsorption channels TRMP6 and TRMP7. The results suggested that CSP had a significant suppressive activity on CsA-induced apoptosis and protective activity against nephron loss possibly via its restoring activity by increasing the magnesium reabsorption channels TRMP6 and TRMP7 on CsA induced magnesium wasting. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Amelioration of cisplatin-induced acute renal failure with 8-cyclopentyl-1,3-dipropylxanthine.

    PubMed Central

    Knight, R. J.; Collis, M. G.; Yates, M. S.; Bowmer, C. J.

    1991-01-01

    1. The effect of the selective adenosine A1-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX), on the development of cisplatin-induced acute renal failure was investigated in the rat. 2. CPX at doses of 0.03, 0.1 and 0.3 mg kg-1, i.v. caused increasing degrees of antagonism of adenosine-induced bradycardia in anaesthetized rats. The magnitude of antagonism was not directly proportional to the increment in dose, but for each dose, it was similar in rats injected with either saline or cisplatin. CPX at a dose of 0.03 mg kg-1 significantly antagonized adenosine-induced bradycardia for up to 2.5 h, while doses of 0.1 and 0.3 mg kg-1 produced significant blockade for periods longer than 5 h. 3. Administration of cisplatin (6 mg kg-1, i.v.) caused acute renal failure characterized by decreased inulin and p-aminohippurate clearances, increased urine volume but decreased excretion of Na+, K+ and Cl- ions and by increased plasma levels of urea and creatinine. Kidney weight was increased in cisplatin-treated rats and renal tubule necrosis occurred. 4. Administration of CPX (0.03 mg kg-1, i.v.; twice daily for two days) to rats given cisplatin did not reduce the severity of the resultant renal failure. However, treatment with 0.1 mg kg-1 CPX attenuated the increases in plasma creatinine/urea levels observed in rats on days 3 and 7 after induction of renal failure. In addition, this dose significantly reduced renal tubule damage and increased inulin and p-aminohippurate clearances. A similar pattern of protection was noted with CPX at a dose of 0.3 mg kg-1 although the increase in inulin clearance was not statistically significant.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1810593

  13. Detection of Accessory Renal Arteries with Virtual Vascular Endoscopy of the Aorta

    SciTech Connect

    Neri, Emanuele; Caramella, Davide; Bisogni, Cristina; Laiolo, Edoardo; Trincavelli, Francesco; Viviani, Adriano; Vignali, Claudio; Cioni, Roberto; Bartolozzi, Carlo

    1999-01-15

    Purpose: To evaluate the diagnostic accuracy of virtual vascular endoscopy (VVE) in the detection of accessory renal arteries. Methods: We retrospectively reviewed the CT angiography data sets of 67 patients (29 male and 38 female; age range 17-72 years, mean age 53 years) imaged for the study of the renal arteries, and affected by renovascular hypertension. All patients also had intraarterial digital subtraction angiography (DSA). CT angiography data sets were processed to obtain maximum intensity projection (MIP) and surface-rendered VVE of the aorta. Axial images, MIP, and VVE were evaluated separately and in combination in the detection of accessory renal arteries. Their results in terms of sensitivity and specificity were then compared with DSA. Results: Axial images had a sensitivity of 88% and specificity of 94% for accessory renal artery detection, MIP had a sensitivity of 88% and specificity of 98%, and VVE had a sensitivity of 63% and a specificity of 88% (p < 0.05 vs DSA), but these increased to 88% and 98% respectively if endoscopic views were integrated with the other display techniques. Conclusion: VVE based on surface rendering does not add substantial benefits to CTY angiography; by contrast MIP is the most accurate display technique for the detection of accessory renal arteries.

  14. Transfection of CYP4A1 cDNA increases vascular reactivity in renal interlobar arteries.

    PubMed

    Kaide, Jun-Ichi; Wang, Mong-Heng; Wang, Ji-Shi; Zhang, Fan; Gopal, V Raj; Falck, John R; Nasjletti, Alberto; Laniado-Schwartzman, Michal

    2003-01-01

    20-HETE, a cytochrome P-450 4A (CYP4A1)-derived arachidonic acid metabolite, is a major eicosanoid formed in renal and extrarenal microcirculation. 20-HETE inhibits Ca(2+)-activated K(+) channels in vascular smooth muscle cells and thereby may modulate vascular reactivity. We transfected renal interlobar arteries with an expression plasmid containing the cDNA of CYP4A1, the low-K(m) arachidonic acid omega-hydroxylase, and examined the consequences of increasing 20-HETE synthesis on constrictor responses to phenylephrine. CYP4A1-transfected interlobar arteries demonstrated a twofold increase in CYP4A protein levels and 20-HETE production compared with arteries transfected with the empty plasmid; they also showed increased sensitivity to phenylephrine, as evidenced by a decrease in EC(50) from 0.37 +/- 0.04 microM in plasmid-transfected arteries to 0.07 +/- 0.01 microM in CYP4A1-transfected arteries. The increased sensitivity to phenylephrine was greatly attenuated by N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), a selective inhibitor of 20-HETE synthesis, and by 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, a specific 20-HETE antagonist. This effect of DDMS was reversed by addition of 20-HETE, further substantiating the notion that increased levels of 20-HETE contribute to the increased sensitivity to phenylephrine in vessels overexpressing CYP4A1. These data suggest that 20-HETE of vascular origin sensitizes renal vascular smooth muscle to phenylephrine.

  15. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function.

    PubMed

    Kang, D H; Hughes, J; Mazzali, M; Schreiner, G F; Johnson, R J

    2001-07-01

    Impaired angiogenesis and decreased vascular endothelial growth factor (VEGF) expression were recently documented in the remnant kidney (RK) model of progressive renal failure. VEGF (50 microg/kg, twice daily) was administered to RK rats between weeks 4 and 8 after surgery, and rats were euthanized at week 8 for histologic study. During the administration of VEGF (n = 7) or vehicle (n = 6), systemic BP was comparable in the two groups. VEGF treatment resulted in improved renal function and lower mortality rates, compared with the vehicle-treated group. Renal histologic analyses confirmed a 3.5-fold increase in glomerular endothelial cell proliferation (0.14 +/- 0.03 versus 0.04 +/- 0.02 proliferating endothelial cells/glomerulus, VEGF versus vehicle, P < 0.05), a twofold increase in peritubular capillary endothelial cell proliferation (1.60 +/- 0.30 versus 0.78 +/- 0.17 cells/mm(2), VEGF versus vehicle, P < 0.01), a threefold decrease in peritubular capillary rarefaction (P < 0.01), and a twofold increase in endothelial nitrix oxide synthase expression (P < 0.05) in the VEGF-treated group; an eightfold increase in urinary nitrate/nitrite levels (P < 0.05) was also noted. Although the difference in glomerulosclerosis scores did not reach statistical significance (0.67 +/- 0.42 versus 1.22 +/- 0.63, VEGF versus vehicle; range, 0 to 4; P = NS), VEGF-treated rats exhibited less interstitial collagen type III deposition (9.32 +/- 3.26 versus 17.45 +/- 7.50%, VEGF versus vehicle, P < 0.01) and reduced tubular epithelial cell injury, as manifested by osteopontin expression (5.57 +/- 1.60 versus 9.58 +/- 3.45%, VEGF versus vehicle, P < 0.01). In conclusion, VEGF treatment reduces fibrosis and stabilizes renal function in the RK model. The use of angiogenic factors may represent a new approach to the treatment of kidney disease.

  16. Beneficial Effects of Renal Denervation on Pulmonary Vascular Remodeling in Experimental Pulmonary Artery Hypertension.

    PubMed

    Qingyan, Zhao; Xuejun, Jiang; Yanhong, Tang; Zixuan, Dai; Xiaozhan, Wang; Xule, Wang; Zongwen, Guo; Wei, Hu; Shengbo, Yu; Congxin, Huang

    2015-07-01

    Activation of both the sympathetic nervous system and the renin-angiotensin-aldosterone system is closely associated with pulmonary arterial hypertension. We hypothesized that renal denervation decreases renin-angiotensin-aldosterone activity and inhibits the progression of pulmonary arterial hypertension. Twenty-two beagles were randomized into 3 groups. The dogs' pulmonary dynamics were measured before and 8 weeks after injection of 0.1mL/kg dimethylformamide (control dogs) or 2mg/kg dehydromonocrotaline (pulmonary arterial hypertension and pulmonary arterial hypertension + renal denervation dogs). Eight weeks after injection, neurohormone levels and pulmonary tissue morphology were measured. Levels of plasma angiotensin II and endothelin-1 were significantly increased after 8 weeks in the pulmonary arterial hypertension dogs and were higher in the lung tissues of these dogs than in those of the control and renal denervation dogs (mean [standard deviation] angiotensin II: 65 [9.8] vs 38 [6.7], 46 [8.1]; endothelin-1: 96 [10.3] vs 54 [6.2], 67 [9.4]; P < .01). Dehydromonocrotaline increased the mean pulmonary arterial pressure (16 [3.4] mmHg vs 33 [7.3] mmHg; P < .01), and renal denervation prevented this increase. Pulmonary smooth muscle cell proliferation was higher in the pulmonary arterial hypertension dogs than in the control and pulmonary arterial hypertension + renal denervation dogs. Renal denervation attenuates pulmonary vascular remodeling and decreases pulmonary arterial pressure in experimental pulmonary arterial hypertension. The effect of renal denervation may contribute to decreased neurohormone levels. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice.

    PubMed

    Kumar, Dev; Singla, Surinder K; Puri, Veena; Puri, Sanjeev

    2015-01-01

    The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) represent family of structurally-related eukaryotic transcription factors which regulate diverse array of cellular processes including immunological responses, inflammation, apoptosis, growth & development. Increased expression of NF-kB has often been seen in many diverse diseases, suggesting the importance of genomic deregulation to disease pathophysiology. In the present study we focused on acute kidney injury (AKI), which remains one of the major risk factor showing a high rate of mortality and morbidity. The pathology associated with it, however, remains incompletely known though inflammation has been reported to be one of the major risk factor in the disease pathophysiology. The role of NF-kB thus seemed pertinent. In the present study we show that high dose of folic acid (FA) induced acute kidney injury (AKI) characterized by elevation in levels of blood urea nitrogen & serum creatinine together with extensive tubular necrosis, loss of brush border and marked reduction in mitochondria. One of the salient observations of this study was a coupled increase in the expression of renal, relA, NF-kB2, and p53 genes and proteins during folic acid induced AKI (FA AKI). Treatment of mice with NF-kB inhibitor, pyrrolidine dithio-carbamate ammonium (PDTC) lowered the expression of these transcription factors and ameliorated the aberrant renal function by decreasing serum creatinine levels. In conclusion, our results suggested that NF-kB plays a pivotal role in maintaining renal function that also involved regulating p53 levels during FA AKI.

  18. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    PubMed

    Westergren, Helena U; Grönros, Julia; Heinonen, Suvi E; Miliotis, Tasso; Jennbacken, Karin; Sabirsh, Alan; Ericsson, Anette; Jönsson-Rylander, Ann-Cathrine; Svedlund, Sara; Gan, Li-Ming

    2015-01-01

    Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob) mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds. In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice. In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  19. Amelioration of renal carcinogenesis by bee propolis: a chemo preventive approach.

    PubMed

    Rashid, Summya; Ali, Nemat; Nafees, Sana; Hasan, Syed Kazim; Sultana, Sarwat

    2013-09-01

    The present study was designed to investigate the chemo preventive efficacy of bee propolis (BP) against diethylnitrosamine (DEN) initiated and ferric nitrilotriacetate (Fe-NTA) promoted renal carcinogenesis in Wistar rats. Chronic treatment of Fe-NTA induced oxidative stress, inflammation and cellular proliferation in Wistar rats. BP is a resinous material collected by bees from various plants which has been used from centuries in folk medicine. Renal cancer was initiated by single intraperitoneal injection of N-nitrosodiethylamine (DEN 200 mg/kg body weight) and promoted by twice weekly administration of Fe-NTA 9 mg Fe/kg body weight for 16 weeks. The chemo preventive efficacy of BP was studied in terms of lipid peroxidation (LPO), renal anti-oxidant armory such as catalase, superoxide dismustase, glutathione S-transferase, glutathione peroxidase, glutathione reductase and glutathione (GSH), serum toxicity markers, cell proliferation, tumor suppressor protein and inflammation markers. Administration of Fe-NTA enhances renal LPO, with concomitant reduction in reduced GSH content and antioxidant enzymes. It induces serum toxicity markers, viz., blood urea nitrogen, creatinine and lactate dehydrogenase. Chemo preventive effects of BP were associated with upregulation of antioxidant armory and down regulation of serum toxicity markers. BP was also able to down regulate expression of proliferative cell nuclear antigen, cyclooxygenase-2, tumor necrosis factor-alpha and upregulated p53 along with induction of apoptosis. Histopathological changes further confirmed the biochemical and immunohistochemical results. These results provide a powerful evidence for the chemo preventive efficacy of BP against renal carcinogenesis possibly by modulation of multiple molecular pathways.

  20. Perivascular radiofrequency renal denervation lowers blood pressure and ameliorates cardiorenal fibrosis in spontaneously hypertensive rats

    PubMed Central

    Zhang, Yan; Su, Linan; Zhang, Yunrong; Wang, Qiang; Yang, Dachun; Li, De; Yang, Yongjian; Ma, Shuangtao

    2017-01-01

    Background Catheter-based renal denervation (RDN) is a promising approach to treat hypertension, but innervation patterns limit the response to endovascular RDN and the post-procedural renal artery narrowing or stenosis questions the endovascular ablation strategy. This study was performed to investigate the anti-hypertensive and target organ protective effects of perivascular RDN in spontaneously hypertensive rats (SHR). Methods SHR and normotensive Wistar-Kyoto (WKY) rats were divided into sham group (n = 10), radiofrequency ablation group (n = 20) in which rats received bilateral perivascular ablation with radiofrequency energy (2 watts), and chemical (10% phenol in 95% ethanol) ablation group (n = 12). The tail-cuff blood pressure was measured before the ablation and on day 14 and day 28 after the procedure. The plasma levels of creatinine, urea nitrogen, and catecholamines, urinary excretion of electrolytes and protein, and myocardial and glomerular fibrosis were analyzed and compared among the groups on day 28 after the procedure. Results We identified that 2-watt is the optimal radiofrequency power for perivascular RDN in rats. Perivascular radiofrequency and chemical ablation achieved roughly comparable blood pressure reduction in SHR but not in WKY on day 14 and day 28 following the procedure. Radiofrequency-mediated ablation substantially destroyed the renal nerves surrounding the renal arteries of both SHR and WKY without damaging the renal arteries and diminished the expression of tyrosine hydroxylase, the enzyme marker for postganglionic sympathetic nerves. Additionally, perivascular radiofrequency ablation also decreased the plasma catecholamines of SHR. Interestingly, both radiofrequency and chemical ablation decreased the myocardial and glomerular fibrosis of SHR, while neither increased the plasma creatinine and blood urea nitrogen nor affected the urinary excretion of electrolytes and protein when compared to sham group. Conclusions Radiofrequency

  1. Perivascular radiofrequency renal denervation lowers blood pressure and ameliorates cardiorenal fibrosis in spontaneously hypertensive rats.

    PubMed

    Wei, Shujie; Li, Dan; Zhang, Yan; Su, Linan; Zhang, Yunrong; Wang, Qiang; Yang, Dachun; Li, De; Yang, Yongjian; Ma, Shuangtao

    2017-01-01

    Catheter-based renal denervation (RDN) is a promising approach to treat hypertension, but innervation patterns limit the response to endovascular RDN and the post-procedural renal artery narrowing or stenosis questions the endovascular ablation strategy. This study was performed to investigate the anti-hypertensive and target organ protective effects of perivascular RDN in spontaneously hypertensive rats (SHR). SHR and normotensive Wistar-Kyoto (WKY) rats were divided into sham group (n = 10), radiofrequency ablation group (n = 20) in which rats received bilateral perivascular ablation with radiofrequency energy (2 watts), and chemical (10% phenol in 95% ethanol) ablation group (n = 12). The tail-cuff blood pressure was measured before the ablation and on day 14 and day 28 after the procedure. The plasma levels of creatinine, urea nitrogen, and catecholamines, urinary excretion of electrolytes and protein, and myocardial and glomerular fibrosis were analyzed and compared among the groups on day 28 after the procedure. We identified that 2-watt is the optimal radiofrequency power for perivascular RDN in rats. Perivascular radiofrequency and chemical ablation achieved roughly comparable blood pressure reduction in SHR but not in WKY on day 14 and day 28 following the procedure. Radiofrequency-mediated ablation substantially destroyed the renal nerves surrounding the renal arteries of both SHR and WKY without damaging the renal arteries and diminished the expression of tyrosine hydroxylase, the enzyme marker for postganglionic sympathetic nerves. Additionally, perivascular radiofrequency ablation also decreased the plasma catecholamines of SHR. Interestingly, both radiofrequency and chemical ablation decreased the myocardial and glomerular fibrosis of SHR, while neither increased the plasma creatinine and blood urea nitrogen nor affected the urinary excretion of electrolytes and protein when compared to sham group. Radiofrequency-mediated perivascular RDN may become a

  2. Glycyrrhizic acid ameliorates HMGB1-mediated cell death and inflammation after renal ischemia reperfusion injury.

    PubMed

    Lau, Arthur; Wang, Shuang; Liu, Weihua; Haig, Aaron; Zhang, Zhu-Xu; Jevnikar, Anthony M

    2014-01-01

    Renal ischemia reperfusion injury (IRI) leads to acute kidney injury (AKI) and the death of tubular epithelial cells (TEC). The release of high-mobility group box-1 (HMGB1) and other damage-associated molecular pattern moieties from dying cells may promote organ dysfunction and inflammation by effects on TEC. Glycyrrhizic acid (GZA) is a functional inhibitor of HMGB1, but its ability to attenuate the HMGB1-mediated injury of TEC has not been tested. In vitro, hypoxia and cytokine treatment killed TEC and resulted in the progressive release of HMGB1 into the supernatant. GZA reduced the hypoxia-induced TEC death as measured by annexin-V and propidium iodide. Hypoxia increased the expression of MCP-1 and CXCL1 in TEC, which was reduced by GZA in a dose-dependent manner. Similarly, the HMGB1 activation of effector NK cells was inhibited by GZA. To test the effect of HMGB1 neutralization by GZA in vivo, mice were subjected to renal IRI. HMGB1 protein expression increased progressively in kidneys from 4 to 24 h after ischemia and was detected in tubular cells by 4 h using immunohistochemistry. GZA preserved renal function after IRI and reduced tubular necrosis and neutrophil infiltration by histological analyses and ethidium homodimer staining. Importantly, these data demonstrate for the first time that AKI following hypoxia and renal IRI may be promoted by HMGB1 release, which can reduce the survival of TEC and augment inflammation. Inhibition of the interaction of HMGB1 with TEC through GZA may represent a therapeutic strategy for the attenuation of renal injury following IRI and transplantation. © 2014 S. Karger AG, Basel.

  3. Pregnancy induced changes in Cox-1, Cox-2 and NOSIII vascular and renal expression.

    PubMed

    Bobadilla, Rosa A; Bracho, Ismael; Alvarez, Victor M Pérez; Anguiano, Liliana; López, Pedro

    2004-01-01

    In order to establish if there is a mutual regulation between COX and NOS in vascular and renal tissue during pregnancy, we measured the protein expression of COX-1, COX-2 and NOSIII by Western blot comparing the thoracic and abdominal aorta and the renal cortex and medulla of non pregnant and pregnant (21st day) Wistar rats. We found there was no difference in the quantity of protein of any of the two isoforms of COX between the two segments of the aorta of non pregnant animals while an increased expression of both COX-1 And COX-2 was found in the abdominal compared to the thoracic segment of the pregnant rats. An increased expression of NOS III was found in the abdominal segment of the aorta form pregnant rats. No changes were found between pregnant and no pregnant animals in the expression of COX-1 and COX-2 in the renal cortex or medulla while an increased expression of NOS III was found in the cortex from pregnant compared to non pregnant animals. These results suggest the influence of pregnancy is not homogeneous along the aorta and also that a balance between prostaglandins and nitric oxide is responsible of the blunted vascular reactivity during pregnancy in the rat.

  4. Congenital capillary proliferation of the kidney: a distinctive renal vascular lesion of childhood.

    PubMed

    Cajaiba, Mariana M; North, Paula E; Gong, Shunyou; Dickman, Paul S; Mroczek-Musulman, Elizabeth; Sauer, David A; Perlman, Elizabeth J

    2017-08-01

    Renal vascular lesions (RVL) are rare, and their morphological spectrum remains largely unknown, particularly in children. In this study, we characterize the clinicopathological features of RVL in a cohort of 12 children. Seven lesions were classified as previously recognized entities: vascular malformations (4), papillary endothelial hyperplasia (2), and pyogenic granuloma (lobular capillary hemangioma; 1). An eighth lesion showed nonspecific findings, which were interpreted as reactive during our review. The remaining 4 cases presented either prenatally, at birth, or shortly after birth and were morphologically similar. These were characterized by a peculiar pattern of capillary proliferation with entrapment of native renal structures, variable amounts of extramedullary hematopoiesis and reactive lymphocytes, foci of infarction and hemorrhage, and the presence of feeding and draining vessels at their periphery. To our knowledge, this represents a previously undescribed congenital vascular lesion involving the kidney, which we have descriptively and provisionally termed congenital capillary proliferation of the kidney (CCPK). While it is unclear whether CCPK represents a malformation or neoplastic proliferation, it shows overlapping features with congenital hemangioma of the liver (solitary congenital hepatic hemangioma) and congenital nonprogressive hemangioma (CNH) of the skin and soft tissue, suggesting a possible common pathogenesis among these 3 entities. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model*

    PubMed Central

    Zhu, Rong; Chen, Yi-ping; Deng, Yue-yi; Zheng, Rong; Zhong, Yi-fei; Wang, Lin; Du, Lan-ping

    2011-01-01

    Background and Objectives: Chronic kidney disease (CKD) is a growing public health problem with an urgent need for new pharmacological agents. Cordyceps cicadae is widely used in traditional Chinese medicine (TCM) and has potential renoprotective benefits. The current study aimed to determine any scientific evidence to support its clinical use. Methods: We analyzed the potential of two kinds of C. cicadae extract, total extract (TE) and acetic ether extract (AE), in treating kidney disease simulated by a subtotal nephrectomy (SNx) model. Sprague-Dawley rats were divided randomly into seven groups: sham-operated group, vehicle-treated SNx, Cozaar, 2 g/(kg∙d) TE SNx, 1 g/(kg∙d) TE SNx, 92 mg/(kg∙d) AE SNx, and 46 mg/(kg∙d) AE SNx. Renal injury was monitored using urine and serum analyses, and hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) stainings were used to analyze the level of fibrosis. The expression of type IV collagen (Col IV), fibronectin (FN), transforming growth factor-β1 (TGF-β1), and connective tissue growth factor (CTGF) was detected by immunohistochemistry. Results: Renal injury, reflected in urine and serum analyses, and pathological changes induced by SNx were attenuated by TE and AE intervention. The depositions of Col IV and FN were also decreased by the treatments and were accompanied by reduced expression of TGF-β1 and CTGF. In some respects, 2 g/(kg∙d) of TE produced better effects than Cozaar. Conclusions: For the first time, we have shown that C. cicadae may inhibit renal fibrosis in vivo through the TGF-β1/CTGF pathway. Therefore, we conclude that the use of C. cicadae could provide a rational strategy for combating renal fibrosis. PMID:22135152

  6. Elevated bilirubin levels are associated with a better renal prognosis and ameliorate kidney fibrosis.

    PubMed

    Park, Sehoon; Kim, Do Hyoung; Hwang, Jin Ho; Kim, Yong-Chul; Kim, Jin Hyuk; Lim, Chun Soo; Kim, Yon Su; Yang, Seung Hee; Lee, Jung Pyo

    2017-01-01

    Bilirubin has been reported to protect against kidney injury. However, further studies highlighting the beneficial effects of bilirubin on renal fibrosis and chronic renal function decline are necessary. We assessed a prospective cohort with a reference range of total bilirubin levels. The primary outcome was a 30% reduction in the estimated glomerular filtration rate (eGFR) from baseline, and the secondary outcome was a doubling of the serum creatinine levels, halving of the eGFR and the initiation of dialysis. In addition, experiments with tubular epithelial cells and C57BL/6 mice were performed to investigate the protective effects of bilirubin on kidney fibrosis. As a result, 1,080 patients were included in the study cohort. The study group with relative hyperbilirubinemia (total bilirubin 0.8-1.2 mg/dL) showed a better prognosis in terms of the primary outcome (adjusted hazard ratio (HR) 0.33, 95% confidence interval (CI) 0.19-0.59, P < 0.001) and the secondary outcome (adjusted HR 0.20, 95% CI 0.05 to 0.71, P = 0.01) than that of the control group. Moreover, the bilirubin-treated mice showed less fibrosis in the unilateral ureteral obstruction (UUO) model (P < 0.05). In addition, bilirubin treatment decreased fibronectin expression in tubular epithelial cells in a dose-dependent manner (P < 0.05). Mildly elevated serum bilirubin levels were associated with better renal prognosis, and bilirubin treatment induced a beneficial effect on renal fibrosis. Therefore, bilirubin could be a potential therapeutic target to delay fibrosis-related kidney disease progression.

  7. Elevated bilirubin levels are associated with a better renal prognosis and ameliorate kidney fibrosis

    PubMed Central

    Hwang, Jin Ho; Kim, Yong-Chul; Kim, Jin Hyuk; Lim, Chun Soo; Kim, Yon Su; Yang, Seung Hee; Lee, Jung Pyo

    2017-01-01

    Background Bilirubin has been reported to protect against kidney injury. However, further studies highlighting the beneficial effects of bilirubin on renal fibrosis and chronic renal function decline are necessary. Methods We assessed a prospective cohort with a reference range of total bilirubin levels. The primary outcome was a 30% reduction in the estimated glomerular filtration rate (eGFR) from baseline, and the secondary outcome was a doubling of the serum creatinine levels, halving of the eGFR and the initiation of dialysis. In addition, experiments with tubular epithelial cells and C57BL/6 mice were performed to investigate the protective effects of bilirubin on kidney fibrosis. Results As a result, 1,080 patients were included in the study cohort. The study group with relative hyperbilirubinemia (total bilirubin 0.8–1.2 mg/dL) showed a better prognosis in terms of the primary outcome (adjusted hazard ratio (HR) 0.33, 95% confidence interval (CI) 0.19–0.59, P < 0.001) and the secondary outcome (adjusted HR 0.20, 95% CI 0.05 to 0.71, P = 0.01) than that of the control group. Moreover, the bilirubin-treated mice showed less fibrosis in the unilateral ureteral obstruction (UUO) model (P < 0.05). In addition, bilirubin treatment decreased fibronectin expression in tubular epithelial cells in a dose-dependent manner (P < 0.05). Conclusions Mildly elevated serum bilirubin levels were associated with better renal prognosis, and bilirubin treatment induced a beneficial effect on renal fibrosis. Therefore, bilirubin could be a potential therapeutic target to delay fibrosis-related kidney disease progression. PMID:28225832

  8. Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats.

    PubMed

    Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P

    2014-05-01

    Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.

  9. Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib.

    PubMed

    Nagasawa, Tasuku; Hye Khan, Md Abdul; Imig, John D

    2012-05-01

    Vascular endothelial growth factor inhibitors (VEGFi) are known to cause hypertension and renal injury that severely limits their use as an anticancer therapy. We hypothesized that the angiotensin-converting enzyme inhibitor captopril not only prevents hypertension, but also decreases renal injury caused by the VEGFi sorafenib. Rats were administered sorafenib (20 mg/kg per day) alone or in combination with captopril (40 mg/kg per day) for 4 weeks. Sorafenib administration increased blood pressure, which plateaued by day 10. Concurrent treatment with captopril for 4 weeks resulted in a 30 mmHg decrease in blood pressure compared with sorafenib alone (155 ± 5 vs 182 ± 6 mmHg, respectively; P < 0.05). Furthermore, concurrent captopril treatment reduced albuminuria by 50% compared with sorafenib alone (20 ± 8 vs 42 ± 9 mg/day, respectively; P < 0.05) and reduced nephrinuria by eightfold (280 ± 96 vs 2305 ± 665 μg/day, respectively; P < 0.05). Glomerular injury, thrombotic microangiopathy and tubular cast formation were also decreased in captopril-treated rats administered sorafenib. Renal autoregulatory efficiency was determined by evaluating the afferent arteriolar constrictor response to ATP. Sorafenib administration attenuated the vasoconstriction to ATP, whereas concurrent captopril treatment improved ATP reactivity. In conclusion, captopril attenuated hypertension and renal injury and improved renal autoregulatory capacity in rats administered sorafenib. These findings indicate that captopril treatment, in addition to alleviating the detrimental side-effect of hypertension, decreases the renal injury associated with anticancer VEGFi therapies such as sorafenib.

  10. Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib

    PubMed Central

    Nagasawa, Tasuku; Khan, Abdul Hye; Imig, John D

    2013-01-01

    SUMMARY Vascular endothelial growth factor inhibitors (VEGFi) are known to cause hypertension and renal injury that severely limits their use as an anticancer therapy. We hypothesized that the angiotensin-converting enzyme inhibitor captopril not only prevents hypertension, but also decreases renal injury caused by the VEGFi sorafenib.Rats were administered sorafenib (20 mg/kg per day) alone or in combination with captopril (40 mg/kg per day) for 4 weeks. Sorafenib administration increased blood pressure, which plateaued by day 10.Concurrent treatment with captopril for 4 weeks resulted in a 30 mmHg decrease in blood pressure compared with sorafenib alone (155 ± 5 vs 182 ± 6 mmHg, respectively; P < 0.05). Furthermore, concurrent captopril treatment reduced albuminuria by 50% compared with sorafenib alone (20 ± 8 vs 42 ± 9 mg/day, respectively; P < 0.05) and reduced nephrinuria by eightfold (280 ± 96 vs 2305 ± 665 μg/day, respectively; P < 0.05). Glomerular injury, thrombotic micro-angiopathy and tubular cast formation were also decreased in captopril-treated rats administered sorafenib. Renal autoregulatory efficiency was determined by evaluating the afferent arteriolar constrictor response to ATP. Sorafenib administration attenuated the vasoconstriction to ATP, whereas concurrent captopril treatment improved ATP reactivity.In conclusion, captopril attenuated hypertension and renal injury and improved renal autoregulatory capacity in rats administered sorafenib. These findings indicate that captopril treatment, in addition to alleviating the detrimental side-effect of hypertension, decreases the renal injury associated with anticancer VEGFi therapies such as sorafenib. PMID:22443474

  11. You-gui Pill ameliorates renal tubulointerstitial fibrosis via inhibition of TGF-β/Smad signaling pathway.

    PubMed

    Wang, Li; Cao, Ai-Li; Chi, Yang-Feng; Ju, Zheng-Cai; Yin, Pei-Hao; Zhang, Xue-Mei; Peng, Wen

    2015-07-01

    You-gui Pill (YGP), a traditional Chinese medicinal prescription, was widely used to warm and recuperate "kidney-yang" clinically for hundreds of years in China. Recent studies found that YGP had a potential benefit for renoprotection. The present study aimed to elucidate the in vivo and in vitro efficacy of YGP on renal tubulointerstitial fibrosis, and the molecular mechanism is also investigated. Rat renal tubulointerstitial fibrosis model was elicited by unilateral ureteral obstruction (UUO). Sprague-Dawley rats underwent UUO and were studied after 14 days. Animals were randomly subjected to six groups: sham, UUO, UUO/YGP (0.14, 0.42, 1.26g/kg/d), and UUO/enalapril (10mg/kg/d). HE, Masson and ELISA were used for evaluate renal injury and function. Immunohistochemical analysis and western blot were used to detect the expressions of α-SMA, fibronectin, collagen matrix and Smads. In vitro studies were investigated in TGF-β1-stiumlated NRK-49F cell line. Oral administration of YGP significantly decreased UUO-induced inflammatory cell infiltration, tubular atrophy and interstitial fibrosis, and there was no significant difference between YGP at 1.26g/kg and enalapril at 10mg/kg treatment (P>0.05). Meanwhile, serum creatinine and blood urea nitrogen levels were reduced dramatically (P<0.01). In coincide with the decreased of TGF-β1, α-SMA, fibronectin and collagen matrix expressions were also declined with YGP treatment in both UUO kidneys and TGF-β1-stimulated NRK-49F cell line. Additionally, nuclear translocation of p-Smad2/3 was markedly down-regulated by YGP (P<0.001), with a relative mild up-regulated expression of Smad7 (P<0.05). Our findings demonstrate that YGP had a renoprotective effect in ameliorating renal tubulointerstitial fibrosis, and this activity possibly via suppression of the TGF-β and its downstream regulatory signaling pathway, including Smad2/3. Copyright © 2015. Published by Elsevier Ireland Ltd.

  12. Boldine Ameliorates Vascular Oxidative Stress and Endothelial Dysfunction: Therapeutic Implication for Hypertension and Diabetes

    PubMed Central

    Lau, Yeh Siiang; Ling, Wei Chih; Murugan, Dharmani

    2015-01-01

    Abstract: Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent “natural” antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47phox and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II–induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress–related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress–mediated signaling pathway. PMID:25469805

  13. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia

    PubMed Central

    Wang, Li; Yu, Tianzheng; Lee, Hakjoo; O'Brien, Dawn K.; Sesaki, Hiromi; Yoon, Yisang

    2015-01-01

    Aims Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. Methods and results In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. Conclusions Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels. PMID:25587046

  14. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia.

    PubMed

    Wang, Li; Yu, Tianzheng; Lee, Hakjoo; O'Brien, Dawn K; Sesaki, Hiromi; Yoon, Yisang

    2015-05-01

    Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  15. Bee Venom Ameliorates Cognitive Dysfunction Caused by Neuroinflammation in an Animal Model of Vascular Dementia.

    PubMed

    Cai, Mudan; Lee, Jun Hwan; Yang, Eun Jin

    2016-09-29

    Vascular dementia (VaD) is caused by the reduction of blood supply by vessel occlusion and is characterized by progressive cognitive decline. VaD incidence has been growing due to the aging population, placing greater strain on social and economic resources. However, the pathological mechanisms underlying VaD remain unclear. Many studies have used the bilateral common carotid artery occlusion (BCCAO) animal model to investigate potential therapeutics for VaD. In this study, we investigated whether bee venom (BV) improves cognitive function and reduces neuroinflammation in the hippocampus of BCCAO animals. Animals were randomly divided into three groups: a sham group (n = 15), BCCAO control group (n = 15), and BV-treated BCCAO group (n = 15). BCCAO animals were treated with 0.1 μg/g BV at ST36 ("Joksamli" acupoint) four times every other day. In order to investigate the effect of BV treatment on cognitive function, we performed a Y-maze test. In order to uncover any potential relationship between these results and neuroinflammation, we also performed Western blotting in the BCCAO group. Animals that had been treated with BV showed an improved cognitive function and a reduced expression of neuroinflammatory proteins in the hippocampus, including Iba-1, TLR4, CD14, and TNF-α. Furthermore, we demonstrated that BV treatment increased pERK and BDNF in the hippocampus. The present study thus underlines the neuroprotective effect of BV treatment against BCCAO-induced cognitive impairment and neuroinflammation. Our findings suggest that BV may be an effective complementary treatment for VaD, as it may improve cognitive function and attenuate neuroinflammation associated with dementia.

  16. Renal responses to central vascular expansion are suppressed at night in conscious primates

    NASA Technical Reports Server (NTRS)

    Kass, D. A.; Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1980-01-01

    The renal and hemodynamic responses of squirrel monkeys to central vascular volume expansion induced by lower body positive pressure (LBPP) during the day and night are investigated. Twelve unanesthetized animals trained to sit in a metabolism chair in which they were restrained only at the waist by a partition separating upper and lower body chambers were subjected to 4 h of continuous LBPP during the day and night, and hemodynamic, urinary and drinking data were monitored. LBPP during day and night is found to induce similar increases in central venous pressure, rises in heart rate and elevations in mean arterial blood pressure. However, although daytime LBPP induced a significant increase in urine flow and sodium excretion, a marked nocturnal inhibition of the renal response to LBPP is observed. Analysis of the time course and circadian regulation patterns of the urinary responses suggests that several separate efferent control pathways are involved.

  17. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction.

    PubMed

    Balasubramanian, Lavanya; Lo, Chun-Min; Sham, James S K; Yip, Kay-Pong

    2013-02-15

    It was previously demonstrated in isolated renal vascular smooth muscle cells (VSMCs) that integrin-mediated mechanotransduction triggers intracellular Ca(2+) mobilization, which is the hallmark of myogenic response in VSMCs. To test directly whether integrin-mediated mechanotransduction results in the myogenic response-like behavior in renal VSMCs, cell traction force microscopy was used to monitor cell traction force when the cells were pulled with fibronectin-coated or low density lipoprotein (LDL)-coated paramagnetic beads. LDL-coated beads were used as a control for nonintegrin-mediated mechanotransduction. Pulling with LDL-coated beads increased the cell traction force by 61 ± 12% (9 cells), which returned to the prepull level after the pulling process was terminated. Pulling with noncoated beads had a minimal increase in the cell traction force (12 ± 9%, 8 cells). Pulling with fibronectin-coated beads increased the cell traction force by 56 ± 20% (7 cells). However, the cell traction force was still elevated by 23 ± 14% after the pulling process was terminated. This behavior is analogous to the changes of vascular resistance in pressure-induced myogenic response, in which vascular resistance remains elevated after myogenic constriction. Fibronectin is a native ligand for α(5)β(1)-integrins in VSMCs. Similar remanent cell traction force was found when cells were pulled with beads coated with β(1)-integrin antibody (Ha2/5). Activation of β(1)-integrin with soluble antibody also triggered variations of cell traction force and Ca(2+) mobilization, which were abolished by the Src inhibitor. In conclusion, mechanical force transduced by α(5)β(1)-integrins triggered a myogenic response-like behavior in isolated renal VSMCs.

  18. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction

    PubMed Central

    Balasubramanian, Lavanya; Lo, Chun-Min; Sham, James S. K.

    2013-01-01

    It was previously demonstrated in isolated renal vascular smooth muscle cells (VSMCs) that integrin-mediated mechanotransduction triggers intracellular Ca2+ mobilization, which is the hallmark of myogenic response in VSMCs. To test directly whether integrin-mediated mechanotransduction results in the myogenic response-like behavior in renal VSMCs, cell traction force microscopy was used to monitor cell traction force when the cells were pulled with fibronectin-coated or low density lipoprotein (LDL)-coated paramagnetic beads. LDL-coated beads were used as a control for nonintegrin-mediated mechanotransduction. Pulling with LDL-coated beads increased the cell traction force by 61 ± 12% (9 cells), which returned to the prepull level after the pulling process was terminated. Pulling with noncoated beads had a minimal increase in the cell traction force (12 ± 9%, 8 cells). Pulling with fibronectin-coated beads increased the cell traction force by 56 ± 20% (7 cells). However, the cell traction force was still elevated by 23 ± 14% after the pulling process was terminated. This behavior is analogous to the changes of vascular resistance in pressure-induced myogenic response, in which vascular resistance remains elevated after myogenic constriction. Fibronectin is a native ligand for α5β1-integrins in VSMCs. Similar remanent cell traction force was found when cells were pulled with beads coated with β1-integrin antibody (Ha2/5). Activation of β1-integrin with soluble antibody also triggered variations of cell traction force and Ca2+ mobilization, which were abolished by the Src inhibitor. In conclusion, mechanical force transduced by α5β1-integrins triggered a myogenic response-like behavior in isolated renal VSMCs. PMID:23325413

  19. Amelioration of renal damage by administration of anti-thymocyte globulin to potential donors in a brain death rat model.

    PubMed

    Cicora, F; Stringa, P; Guerrieri, D; Roberti, J; Ambrosi, N; Toniolo, F; Cicora, P; Palti, G; Vásquez, D; Raimondi, C

    2012-09-01

    Brain death (BD), a non-immunological factor of renal injury, triggers an inflammatory process causing pathological signs of cell death in the kidney, such as necrosis and apoptosis. Kidneys from brain dead donors show lower success rates than kidneys from living donors and one strategy to improve transplantation outcome is to precondition the donors. For the first time, anti-rat thymoglobulin (rATG) was administered in an experimental brain death animal model to evaluate if it could ameliorate histopathological damage and improve organ function. Animals were divided into three groups: V (n=5) ventilated for 2h; BD (n=5) brain death and ventilated for 2h; and BD+rATG (n=5) brain death, ventilated for 2h, rATG was administered during brain death (10mg/kg). We observed lower creatinine levels in treatment groups (means): V, 0·88±0·22 mg/dl; BD, 1·37±0·07 mg/dl; and BD+rATG, 0·64±0·02 mg/dl (BD versus BD+rATG, P<0·001). In the BD group there appeared to be a marked increase of ATN, whereas ATN was decreased significantly in the rATG group (V, 2·25±0·5 versus BD, 4·75±0·5, P<0·01; BD+rATG, 2·75±0·5 versus BD 4·75±0·5 P<0·01). Gene expression was evaluated with reverse transcription-polymerase chain reaction; tumour necrosis factor (TNF)-α, interleukin (IL)-6, C3, CD86 showed no significant difference between groups. Increased IL-10 and decreased CCL2 in BD+rATG compared to BD (both cases P<0·01). Myeloperoxidase was increased significantly after the brain death setting (V: 32±7·5 versus BD: 129±18). Findings suggest that rATG administered to potential donors may ameliorate renal damage caused by BD. These findings could contribute in the search for specific cytoprotective interventions to improve the quality and viability of transplanted organs.

  20. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.

    PubMed

    Abdulla, Mohammed H; Sattar, Munavvar A; Johns, Edward J

    2016-02-01

    This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague-Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L(-1) in drinking water for 8 weeks or as an infusion (1.5 mg·kg(-1)·min(-1)) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p < 0.05) in FT rats compared with their untreated counterparts. The vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%-65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%-75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats.

  1. Spontaneous Dissection of the Renal Artery in Vascular Ehlers-Danlos Syndrome

    PubMed Central

    Pereira, Filipa; Cardoso, Teresa; Sá, Paula

    2015-01-01

    Ehlers-Danlos syndrome (EDS) is a rare heterogeneous group of connective tissue disorders. The vascular type (vEDS) is an autosomal dominant disorder caused by heterozygous mutations in the COL3A1 gene predisposing to premature arterial, intestinal, or uterine rupture. We report a case of a 38-year-old woman with a recent diagnosis of vEDS admitted in the Emergency Department with a suspicion of a pyelonephritis that evolved to a cardiopulmonary arrest. A fatal retroperitoneal hematoma related with a haemorrhagic dissection of the right renal artery was found after emergency surgery. This case highlights the need to be aware of the particular characteristics of vEDS, such as a severe vascular complication that can lead to a fatal outcome. PMID:26175915

  2. Initial vascular access type in patients with a failed renal transplant.

    PubMed

    Chan, Micah R; Oza-Gajera, Bharvi; Chapla, Kevin; Djamali, Arjang X; Muth, Brenda L; Turk, Jennifer; Wakeen, Maureen; Yevzlin, Alexander S; Astor, Brad C

    2014-07-01

    Permanent hemodialysis vascular access is crucial for RRT in ESRD patients and patients with failed renal transplants, because central venous catheters are associated with greater risk of infection and mortality than arteriovenous fistulae or arteriovenous grafts. The objective of this study was to determine the types of vascular access used by patients initiating hemodialysis after a failed renal transplant. Data from the US Renal Data System database on 16,728 patients with a failed renal transplant and 509,643 patients with native kidney failure who initiated dialysis between January 1, 2006, and September 30, 2011 were examined. At initiation of dialysis, of patients with a failed transplant, 27.7% (n=4636) used an arteriovenous fistula, 6.9% (n=1146) used an arteriovenous graft, and 65.4% (n=10,946) used a central venous catheter. Conversely, 80.8% (n=411,997) of patients with native kidney failure initiated dialysis with a central venous catheter (P<0.001). Among patients with a failed transplant, predictors of central venous catheter use included women (adjusted odds ratio, 1.75; 95% confidence interval, 1.63 to 1.87), lack of referral to a nephrologist (odds ratio, 2.00; 95% confidence interval, 1.72 to 2.33), diabetes (odds ratio, 1.14; 95% confidence interval, 1.06 to 1.22), peripheral vascular disease (odds ratio, 1.31; 95% confidence interval, 1.16 to 1.48), and being institutionalized (odds ratio, 1.53; 95% confidence interval, 1.23 to 1.89). Factors associated with lower odds of central venous catheter use included older age (odds ratio, 0.85 per 10 years; 95% confidence interval, 0.83 to 0.87), public insurance (odds ratio, 0.74; 95% confidence interval, 0.68 to 0.80), and current employment (odds ratio, 0.87; 95% confidence interval, 0.80 to 0.95). Central venous catheters are used in nearly two thirds of failed renal transplant patients. These patients are usually followed closely by transplant physicians before developing ESRD after a failed

  3. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness

    PubMed Central

    Steppan, Jochen; Tran, Huang; Benjo, Alexandre M.; Pellakuru, Laxsmi; Barodka, Viachaslau; Ryoo, Sungwoo; Nyhan, Sineád M.; Lussman, Craig; Gupta, Gaurav; White, Anthony R.; Daher, Joao P.; Shoukas, Artin A.; Levine, Benjamin D.; Berkowitz, Dan E.

    2015-01-01

    Advanced glycation end-products (AGEs) initiate cellular inflammation and contribute to cardiovascular disease in the elderly. AGE can be inhibited by Alagebrium (ALT), an AGE cross-link breaker. Moreover, the beneficial effects of exercise on aging are well recognized. Thus, we investigated the effects of ALT and exercise (Ex) on cardiovascular function in a rat aging model. Compared to young (Y) rats, in sedentary old (O) rats, end-systolic elastance (Ees) decreased (0.9±0.2 vs 1.7±0.4 mm Hg/μL, P<0.05), dP/dtmax was attenuated (6054±685 vs 9540±939 mm Hg/s, P<0.05), ventricular compliance (end-diastolic pressure–volume relationship (EDPVR)) was impaired (1.4±0.2 vs 0.5±0.4 mm Hg/μL, P<0.05) and diastolic relaxation time (tau) was prolonged (21±3 vs 14±2 ms, P<0.05). In old rats, combined ALT+Ex (4 weeks) increased dP/dtmax and Ees (8945±665 vs 6054±685 mm Hg/s, and 1.5±0.2 vs 0.9±0.2 respectively, O with ALT+Ex vs O, P<0.05 for both). Diastolic function (exponential power of EDPVR and tau) was also substantially improved by treatment with Alt+Ex in old rats (0.4±0.1 vs 0.9±0.2 and 16±2 vs 21±3 ms, respectively, O with ALT+EX vs O, P<0.05 for both). Pulse wave velocity (PWV) was increased in old rats (7.0±0.7 vs 3.8± 0.3 ms, O vs Y, P<0.01). Both ALT and Ex alone decreased PWV in old rats but the combination decreased PWV to levels observed in young (4.6±0.5 vs 3.8±0.3 ms, O with ALT+Ex vs Y, NS). These results suggest that prevention of the formation of new AGEs (with exercise) and breakdown of already formed AGEs (with ALT) may represent a therapeutic strategy for age-related ventricular and vascular stiffness. PMID:22569357

  4. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits.

    PubMed

    Zhao, Qihan; Li, Jingjing; Yan, Jun; Liu, Shuai; Guo, Yulin; Chen, Dajie; Luo, Qiong

    2016-07-15

    This study was aimed to investigate the effect of Lycium barbarum polysaccharides (LBP) on renal function and inflammatory reaction in rabbits with diabetic nephropathy. Diabetes was induced by injecting alloxan (ALX). Japanese male white rabbits were randomly assigned into 5 groups: normal control group, diabetic nephropathy (DN) model group, LBP prevention group, positive control group and LBP treatment group. LBP (10mg/kg) was given to the LBP prevention group after diabetes mellitus (DM) model succeeded for 12weeks and to the LBP treatment group after DN model succeeded for 4weeks. Telmisartan (3.7mg/kg) was given to the positive group after DN model succeeded for 4weeks, and the same volume of balanced saline was given to the normal group and DN group for 12weeks. Urea nitrogen (BUN), creatinine (SCr), and C-reaction protein (CRP) in serum were detected at the end of the 12th week. The expression of MCP-1 mRNA and ICAM-1 mRNA extracted from cortex were detected by RT-PCR. Western blot analysis was carried out to examine NF-κB p65 protein expression. LBP improves the renal function and alleviates the inflammatory reaction in the kidneys of diabetic rabbits. In addition, the prevention effect of LBP is better than the treatment effect of LBP. LBP has obvious protective effect on the diabetic nephropathy rabbits' renal function and postpones the appearance and development of DN. The mechanisms may be related to the reduction the expression of MCP-1mRNA and ICAM-1mRNA by restraining the expression of NF-κB and AngII. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs.

    PubMed

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-08-04

    BACKGROUND The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. MATERIAL AND METHODS MI and RSD were induced in Sprague-Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. RESULTS In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. CONCLUSIONS The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21.

  6. Ameliorative effect of green tea against contrast-induced renal tubular cell injury.

    PubMed

    Nasri, Hamid; Hajian, Shabnam; Ahmadi, Ali; Baradaran, Azar; Kohi, Golnoosh; Nasri, Parto; Rafieian-Kopaei, Mahmoud

    2015-11-01

    Reactive oxygen species are a mediator of kidney damage by contrast media, and green tea is a potent-free radical scavenger. This study was designed to examine whether green tea could protect against the nephrotoxicity induced by contrast media. Forty rats were randomly divided into 4 groups. Group 1 was control; group 2 received contrast medium (intravenous iodixanol, 10 mL/kg, as a single dose); group 3 received contrast medium and then green tea extract for 3 days (10 mg/kg/d, intraperitoneal); and group 4 first received green tea and then contrast medium. Histological changes (degeneration, vacuolization of tubular renal cells, dilatation of tubular lumen, and presence of debris in the lumens) were assessed and recorded as scores from zero to 4. The sum of scores were used as the overal renal injury level. Groups 3 and 4 with green tea treatment had significantly higher overall scores than the control group, but significantly lower scores than group 2 with contrast medium only. A similar trend was seen for dilatation and degeneration levels. Vacuolization level was not significantly lower in the green tea groups as compared to the contrast medium group. Debris level was not significantly lower in group 3 than group 2. The differences were not significant between groups 3 and 4.   Conclusions. We observed beneficial effect of green tea against nephrotoxicity of contrast media. Green tea extract may offer an inexpensive and nontoxic intervention strategy in patients with a risk for nephrotoxicity with contrast media.

  7. Citrus Bioflavonoids Ameliorate Hyperoxaluria Induced Renal Injury and Calcium Oxalate Crystal Deposition in Wistar Rats

    PubMed Central

    Badrinathan, Sridharan; Shiju, Micheal Thomas; Arya, Ramachandran; Rajesh, Ganesh Nachiappa; Viswanathan, Pragasam

    2015-01-01

    Purpose: Citrus is considered as a medically important plant from ancient times and the bioflavonoids of different variety of citrus fruits were well explored for their biological activities. The study aim was to explore the effect of citrus bioflavonoids (CB) to prevent and cure hyperoxaluria induced urolithiasis. Methods: Twenty four Wistar rats were segregated into 4 Groups. Group 1: Control; Group 2: Urolithic (EG-0.75%); Group 3: Preventive study (EG+CB, day 1-50); Group 4: Curative study (EG+CB, day 30-50). Animals received CB orally (20mg/kg body weight) after performing a toxicity study. Results: Urinary risk factors and serum renal function parameters were significantly reduced by CB administration in both preventive and curative study (p<0.001). Hematoxylin & Eosin and von Kossa staining demonstrated that renal protection was offered by CB against EG insult. Immunohistochemical analyses revealed over expression and abnormal localization of THP and NF-κB in urolithic rats, while it was effectively regulated by CB supplementation. Conclusion: CB prevented and significantly controlled lithogenic factors and CaOx deposition in rats. We propose CB as a potential therapy in management of urolithiasis. PMID:26504765

  8. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats.

    PubMed

    Reshi, Mohd Salim; Shrivastava, Sadhana; Jaswal, Amita; Sinha, Neelu; Uthra, Chhavi; Shukla, Sangeeta

    2017-04-04

    Valuable effects of gold particles have been reported and used in complementary medicine for decades. The aim of this study was to evaluate the therapeutic efficacy of gold nanoparticles (AuNPs) against acetaminophen (APAP) induced toxicity. Albino rats were administered APAP at a dose of 2g/kg p.o. once only. After 24h of APAP intoxication, animals were treated with three different doses of AuNPs (50μg/kg, 100μg/kg, 150μg/kg) orally or silymarin at a dose of 50mg/kg p.o., once only. Animals of all the groups were sacrificed after 24h of last treatment. APAP administered group showed a significant rise in the AST, ALT, SALP, LDH, cholesterol, bilirubin, albumin, urea and creatinine in serum which indicated the hepato-renal damage. A significantly enhanced LPO and a depleted level of GSH were observed in APAP intoxicated rats. Declined activities of SOD and Catalase, after acetaminophen exposure indicated oxidative stress in liver and kidney. The activities of ATPase and glucose-6-Phosphatase were significantly inhibited after APAP administration. AuNPs treatment reversed all variables significantly towards normal level and was found nontoxic. Thus it is concluded that gold nanoparticles played a beneficial role in reducing acetaminophen induced toxicity and can be used in the development of drug against hepatic as well as renal diseases, after further preclinical and clinical studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. [Algal oligosaccharides ameliorate osteoporosis via up-regulation of parathyroid hormone 1-84 and vascular endothelial growth factor].

    PubMed

    Wang, Li; Wang, Haiya; Fang, Ningyuan

    2016-06-01

    To determine whether algal oligosac- charide~ affects the levels of parathyroid hormone 1-84 (PTH1-84) and vascular endothelial growth fac- tor (VEGF). An osteoporosis rat model was estab- lished via bilateral ovariectomy. The model rats were fed algal oligosaccharides (molecular weights: 600-1, 200 Da) for 4 months. Bone mineral density (BMD) was then measured. MG-63 human osteo- blastic cells were treated with algal oligosaccha- rides. The expression of PTH1-84 and VEGF was then examined. Oligosaccharide-treated cells were transfected with PTH1-84 short hairpin RNA (shR- NA), VEGF shRNA, and PTH1-84-VEGF small interfer- ing RNA (siRNA). The growth rates were then com- pared between transfected and non-transfected Algal oligosaccharides increased the BMD of the osteoporosis rat model compared with untreated controls (P < 0.05). When MG-63 cells were treated with algal oligosaccharides, the growth rate increased by 25% compared with the control group at day 3 (P < 0.05). In addition, the ex- pression of P.TH84 and VEGF was. enhanced. Con- versey w hen tecells were tranfected with PTH84 shRNA, VEGF shRNA, or PTH1-84-VEGF siR- NA, the growth rate was decreased by 17%, 35% and 70%, respectively, compared with controls at day 3 (P < 0.05). Algal oligosaccharides ameliorate osteoporosis via up-regulation of PTH1-84 and VEGF. Algal oligosaccharides should be developed as a potential drug for osteoporosis treatment.

  10. Sorafenib ameliorates renal fibrosis through inhibition of TGF-β-induced epithelial-mesenchymal transition.

    PubMed

    Jia, Lining; Ma, Xiaotao; Gui, Baosong; Ge, Heng; Wang, Li; Ou, Yan; Tian, Lifang; Chen, Zhao; Duan, Zhaoyang; Han, Jin; Fu, Rongguo

    2015-01-01

    This study was to investigate whether sorafenib can inhibit the progression of renal fibrosis and to study the possible mechanisms of this effect. Eight-week-old rats were subjected to unilateral ureteral obstruction (UUO) and were intragastrically administered sorafenib, while control and sham groups were administered vehicle for 14 or 21 days. NRK-52E cells were treated with TGF-β1 and sorafenib for 24 or 48 hours. HE and Masson staining were used to visualize fibrosis of the renal tissue in each group. The expression of α-SMA and E-cadherin in kidney tissue and NRK-52E cells were performed using immunohistochemistry and immunofluorescence. The apoptosis rate of NRK-52E cells was determined by flow cytometry analysis. The protein levels of Smad3 and p-Smad3 in kidney tissue and NRK-52E cells were detected by western blot analysis. HE staining demonstrated that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration in the sorafenib-treated-UUO groups were significantly decreased compared with the vehicle-treated-UUO group (p<0.05). Masson staining showed that the area of fibrosis was significantly decreased in the sorafenib-treated-UUO groups compared with vehicle-treated-UUO group (p<0.01). The size of the kidney did not significantly increase; the cortex of the kidney was thicker and had a richer blood supply in the middle-dose sorafenib group compared with the vehicle-treated-UUO group (p<0.05). Compared with the vehicle-treated-UUO and TGF-β-stimulated NRK-52E groups, the expression of a-SMA and E-cadherin decreased and increased, respectively, in the UUO kidneys and NRK-52E cells of the sorafenib-treated groups (p<0.05). The apoptotic rate of NRK-52E cells treated with sorafenib decreased for 24 hours in a dose-dependent manner (p<0.05). Compared with the vehicle-treated UUO and TGF-β-stimulated NRK-52E groups, the ratio of p-Smad3 to Smad3 decreased in the sorafenib-treated groups (p<0.05). Our results suggest that sorafenib

  11. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats.

    PubMed

    Adi, Pradeepkiran Jangampalli; Burra, Siva Prasad; Vataparti, Amardev Rajesh; Matcha, Bhaskar

    2016-01-01

    This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn) or vitamin E (Vit-E) on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g) (n = 6) control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight) alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each) or Vit-E (20 mg/kg body weight) supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid peroxidase (LPx) were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity.

  12. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway.

    PubMed

    Huang, Xin-Zhong; Wen, Donghai; Zhang, Min; Xie, Qionghong; Ma, Leting; Guan, Yi; Ren, Yueheng; Chen, Jing; Hao, Chuan-Ming

    2014-05-01

    TGF-β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF-β. Sirt1 is a NAD(+) -dependent deacetylase that has been reported to modify a number of transcription factors to exert certain beneficial health effects. This study examined the effect of Sirt1 on Smad3 and its role in CKD. Resveratrol attenuated the expression of extracelluar matrix proteins in both the remnant kidney of 5/6th nephrectomized rats and cultured mesangial cells (MMCs) exposed to TGF-β1. The effect of resveratrol was substantially attenuated in cultured MMCs for which Sirt1 had been knocked down by an shRNA lentivirus. Overexpression of Sirt1 attenuated TGF-β1-induced extracelluar matrix expression in cultured cells. Co-immunoprecipitation studies suggested that Sirt1 could bind with Smad3. Resveratrol treatment enhanced this binding and reduced acetylation levels of Smad3. Resveratrol inhibited the transcription activity of Smad3. Knockdown of Sirt1 increased acetylated Smad3 and substantially enhanced the transcriptional activity following TGF-β1. Finally, Sirt1 deficiency aggravated renal function damage and markedly enhanced fibrosis in the remnant kidney of 5/6 nephrectomized mice. Taken together, these results identify Sirt1 as an important protective factor for renal fibrosis in a CKD rodent model, and the protective function of Sirt1 is attributable to its action on TGF-β/Smad3 signaling. Therefore, we suggest that Sirt1 may be a potential therapeutic target for the treatment of CKD. © 2013 Wiley Periodicals, Inc.

  13. Renal-protective and ameliorating impacts of omega-3 fatty acids against aspartame damaged MDCK cells.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Veerappan, Muthuviveganandavel; Mistry, Bhupendra; Patel, Rahul; Moon, So Hyun; Nagajyothi, Patnamsetty Chidanandha; Kim, Doo Hwan

    2017-09-07

    Aspartame is widely used artificial sweeteners as food additives. Several researchers have pointed that the controversial report on the use of aspartame over more than decades. Omega-3 fatty acids are essential and unsaturated fatty acids, and it plays a remarkable role in vision, intelligence, neural development, and metabolism of neurotransmitters. Therefore, the present study was aimed to investigate the effect of omega-3 fatty acids on aspartame treated renal cells. Experimental groups were divided into three such as sham control, aspartame treated, and aspartame with omega-3 fatty acids. Cell viability was determined by sulforhodamine-b assay and flow cytometric analysis. The experimental results showed that the aspartame induced altered cell viability were reduced following treatment of aspartame with omega-3 fatty acids. Altered cell morphology was recovered by omega-3 fatty acids. DNA damage appeared in the highest concentration of aspartame used in this study. DNA damage characteristics such as comet tail and tiny head sections did not appear in the omega-3 fatty acids treated cells. Several microvilli and vesicular structures were found in aspartame treated cells. Altered morphology such as rounding, microvilli, and formation of dome-like structures did not appear in the omega-3 fatty acids with aspartame treated cells. Caspase-3 mRNA and protein expression were increased in aspartame treated cells, and these levels were reduced following omega-3 fatty acids treatment. Taking all these data together, it is suggested that the omega-3 fatty acids may be a therapeutic agent to reduce the aspartame induced biochemical and morphological alterations in normal renal cells. © 2017 BioFactors, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  14. Adipose-derived stem cells ameliorate renal interstitial fibrosis through inhibition of EMT and inflammatory response via TGF-β1 signaling pathway.

    PubMed

    Song, Yan; Peng, Changliang; Lv, Shasha; Cheng, Jing; Liu, Shanshan; Wen, Qing; Guan, Guangju; Liu, Gang

    2017-03-01

    Adipose-derived stem cells (ADSCs) have been successfully used to treat acute kidney injury or acute renal failure. However, the effect of ADSCs on treating renal interstitial fibrosis remains unknown. Here, we assessed the therapeutic efficacy of ADSCs on renal interstitial fibrosis induced by unilateral ureter obstruction (UUO) and explored the potential mechanisms. After 7days of UUO, rats were injected with ADSCs (5×10(6)) or vehicle via tail vein. We found that ADSCs administration significantly ameliorated renal interstitial fibrosis, the occurrence of epithelial-mesenchymal transition (EMT) and inflammatory response. Furthermore, ADSCs administration could inhibit the activation of transforming growth factor-β1 (TGF-β1) signaling pathway, which might play a crucial role in renal interstitial fibrosis of the UUO model rats. These results suggested that ADSCs treatment attenuates renal interstitial fibrosis possibly through inhibition of EMT and inflammatory response via TGF-β1 signaling pathway. Therefore, ADSCs may be an effective therapeutic strategy for the treatment of renal interstitial fibrosis.

  15. Renal, vascular and cardiac fibrosis in rats exposed to passive smoking and industrial dust fibre amosite

    PubMed Central

    Boor, Peter; Casper, Sandra; Celec, Peter; Hurbánková, Marta; Beňo, Milan; Heidland, August; Amann, Kerstin; Šebeková, Katarína

    2009-01-01

    Passive smoking is an independent risk factor for cardiovascular diseases. Industrial fibrous dust, e.g. the asbestos group member, amosite, causes lung cancer and fibrosis. No data are available on renal involvement after inhalational exposure to these environmental pollutants or of their combination, or on cardiovascular and renal toxicity after exposure to amosite. Male Wistar rats were randomized into four groups (n= 6): control and amosite group received initially two intratracheal instillations of saline and amosite solution, respectively. Smoking group was subjected to standardized daily exposure to tobacco smoke for 2 hrs in a concentration resembling human passive smoking. Combined group was exposed to both amosite and cigarette smoke. All rats were killed after 6 months. Rats exposed to either amosite or passive smoking developed significant glomerulosclerosis and tubulointerstitial fibrosis. Combination of both exposures had additive effects. Histomorphological changes preceded the clinical manifestation of kidney damage. In both groups with single exposures, marked perivascular and interstitial cardiac fibrosis was detected. The additive effect in the heart was less pronounced than in the kidney, apparent particularly in changes of vascular structure. Advanced oxidation protein products, the plasma marker of the myeloperoxidase reaction in activated monocytes/macrophages, were increased in all exposed groups, whereas the inflammatory cytokines did not differ between the groups. In rats, passive smoking or amosite instillation leads to renal, vascular and cardiac fibrosis potentially mediated via increased myeloperoxidase reaction. Combination of both pollutants shows additive effects. Our data should be confirmed in subjects exposed to these environmental pollutants, in particular if combined. PMID:19292733

  16. Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects

    PubMed Central

    Yasuda, Hideo; Yuen, Peter S.T.; Hu, Xuzhen; Zhou, Hua; Star, Robert A.

    2008-01-01

    Acute kidney injury (AKI) occurs in about half of patients in septic shock and the mortality of AKI with sepsis is extremely high. An effective therapeutic intervention is urgently required. Statins are HMG-CoA reductase inhibitors that also have pleiotropic actions. They have been reported to increase survival of septic or infectious patients. But the effect of simvastatin, a widely used statin, on sepsis-induced AKI is unknown. The effects of simvastatin and TNF-alpha neutralizing antibody were studied in a clinically relevant model of sepsis-induced AKI using cecal ligation and puncture (CLP) in elderly mice. Simvastatin siginificantly improved CLP-induced mortality and AKI. Simvastatin attenuated CLP-induced tubular damage and reversed CLP-induced reduction of intrarenal microvascular perfusion and renal tubular hypoxia at 24 hours. Simvastatin also restored towards normal CLP-induced renal vascular protein leak and serum TNF-alpha. Neither delayed simvastatin therapy nor TNF-alpha neutralizing antibody improved CLP-induced AKI. Simvastatin improved sepsis-induced AKI by direct effects on the renal vasculature, reversal of tubular hypoxia, and had a systemic anti-inflammatory effect. PMID:16557230

  17. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II.

    PubMed

    de las Heras, Natalia; Ruiz-Ortega, Marta; Rupérez, Mónica; Sanz-Rosa, David; Miana, María; Aragoncillo, Paloma; Mezzano, Sergio; Lahera, Vicente; Egido, Jesus; Cachofeiro, Victoria

    2006-12-01

    We have evaluated the role of connective tissue growth factor (CTGF) in vascular and renal damage associated with hypertension and possible interactions with angiotensin II (Ang II). Spontaneously hypertensive rats (SHR) were treated with either the Ang II receptor antagonist candesartan (C;2 mg/Kg(-1)/day(-1)) or antihypertensive triple therapy (TT; in mg/Kg(-1)/day(-1);20 hydralazine +7 hydrochlorothiazide +0.15 reserpine) for 10 weeks. Wistar Kyoto rats were used as a normotensive control group. Hypertension was associated with an increase in aortic media area, media-to-lumen ratio and collagen density. Kidneys from SHR showed minimum renal alterations. Aorta and renal gene expression and immunostaining of CTGF were higher in SHR. Candesartan decreased arterial pressure, aortic media area, media-to-lumen ratio and collagen density. However, although arterial pressure decrease was comparable for both treatments, TT partially reduced these parameters. Candesartan-treated rats showed lower levels of vascular CTGF expression, aortic media area, media-to-lumen ratio and collagen density than TT-treated animals. Treatments improve renal damage and reduce renal gene expression and CTGF immunostaining in SHR in a similar manner. The results show that vascular and renal damage is associated with stimulation of CTGF gene and protein content. These results also might suggest that CTGF could be one downstream mediator of Ang II in hypertension-associated organ damage in SHR.

  18. Mentha piperita in nephrotoxicity--a possible intervention to ameliorate renal derangements associated with gentamicin.

    PubMed

    Ullah, Naveed; Khan, Mir Azam; Khan, Taous; Asif, Afzal Haq; Ahmad, Waqar

    2014-01-01

    Free radical generation has a strong role in the pathogenesis of renal damage associated with the use of gentamicin. Therefore, the present study was carried out to evaluate the renoprotective effect of Mentha piperita against gentamicin induced nephrotoxicity. A total of 24 male rabbits were divided into 4 groups receiving normal saline, gentamicin, M. piperita extract and co-therapy of extract and gentamicin respectively. Gentamicin was provided as 80 mg/kg/day intramuscularly and extract was given 200 mg/kg/day orally for a period of 21 days. Serum and urinary biochemical parameters and histological changes were studied for each group. The impact of the extract on the antibacterial action of gentamicin was also evaluated. Animals treated with gentamicin showed derangements in serum and urinary biochemical parameters. These alterations were reversed by treatment with M. piperita extract. The histological changes showed in gentamicin group were also reverted by treatment with the extract. Further the plant did not influence the efficacy of gentamicin with respect to its antimicrobial properties. Co-therapy of M. piperita with gentamicin successfully attenuated biochemical kidney functioning derangements and morphological changes associated with gentamicin.

  19. Mentha piperita in nephrotoxicity – a possible intervention to ameliorate renal derangements associated with gentamicin

    PubMed Central

    Ullah, Naveed; Khan, Mir Azam; Khan, Taous; Asif, Afzal Haq; Ahmad, Waqar

    2014-01-01

    Objective: Free radical generation has a strong role in the pathogenesis of renal damage associated with the use of gentamicin. Therefore, the present study was carried out to evaluate the renoprotective effect of Mentha piperita against gentamicin induced nephrotoxicity. Materials and Methods: A total of 24 male rabbits were divided into 4 groups receiving normal saline, gentamicin, M. piperita extract and co-therapy of extract and gentamicin respectively. Gentamicin was provided as 80 mg/kg/day intramuscularly and extract was given 200 mg/kg/day orally for a period of 21 days. Serum and urinary biochemical parameters and histological changes were studied for each group. The impact of the extract on the antibacterial action of gentamicin was also evaluated. Results: Animals treated with gentamicin showed derangements in serum and urinary biochemical parameters. These alterations were reversed by treatment with M. piperita extract. The histological changes showed in gentamicin group were also reverted by treatment with the extract. Further the plant did not influence the efficacy of gentamicin with respect to its antimicrobial properties. Conclusion: Co-therapy of M. piperita with gentamicin successfully attenuated biochemical kidney functioning derangements and morphological changes associated with gentamicin. PMID:24741187

  20. Renal and Vascular Effects of Uric Acid Lowering in Normouricemic Patients With Uncomplicated Type 1 Diabetes.

    PubMed

    Lytvyn, Yuliya; Har, Ronnie; Locke, Amy; Lai, Vesta; Fong, Derek; Advani, Andrew; Perkins, Bruce A; Cherney, David Z I

    2017-07-01

    Higher plasma uric acid (PUA) levels are associated with lower glomerular filtration rate (GFR) and higher blood pressure (BP) in patients with type 1 diabetes (T1D). Our aim was to determine the impact of PUA lowering on renal and vascular function in patients with uncomplicated T1D. T1D patients (n = 49) were studied under euglycemic and hyperglycemic conditions at baseline and after PUA lowering with febuxostat (FBX) for 8 weeks. Healthy control subjects were studied under normoglycemic conditions (n = 24). PUA, GFR (inulin), effective renal plasma flow (para-aminohippurate), BP, and hemodynamic responses to an infusion of angiotensin II (assessment of intrarenal renin-angiotensin-aldosterone system [RAAS]) were measured before and after FBX treatment. Arterial stiffness, flow-mediated dilation (FMD), nitroglycerin-mediated dilation (GMD), urinary nitric oxide (NO), and inflammatory markers were measured before and after FBX treatment. Gomez equations were used to estimate arteriolar afferent resistance, efferent resistance (RE), and glomerular hydrostatic pressure (PGLO). FBX had a modest systolic BP-lowering effect in T1D patients (112 ± 10 to 109 ± 9 mmHg, P = 0.049) without impacting arterial stiffness, FMD, GMD, or NO. FBX enhanced the filtration fraction response to hyperglycemia in T1D patients through larger increases in RE, PGLO, and interleukin-18 but without impacting the RAAS. FBX lowered systolic BP and modulated the renal RE responses to hyperglycemia but without impacting the RAAS or NO levels, suggesting that PUA may augment other hemodynamic or inflammatory mechanisms that control the renal response to hyperglycemia at the efferent arteriole. Ongoing outcome trials will determine cardiorenal outcomes of PUA lowering in patients with T1D. © 2017 by the American Diabetes Association.

  1. Green Tea Polyphenols Ameliorate the Early Renal Damage Induced by a High-Fat Diet via Ketogenesis/SIRT3 Pathway.

    PubMed

    Yi, Weijie; Xie, Xiao; Du, Miying; Bu, Yongjun; Wu, Nannan; Yang, Hui; Tian, Chong; Xu, Fangyi; Xiang, Siyun; Zhang, Piwei; Chen, Zhuo; Zuo, Xuezhi; Ying, Chenjiang

    2017-01-01

    Several reports in the literature have suggested the renoprotective effects of ketone bodies and green tea polyphenols (GTPs). Our previous study found that GTP consumption could elevate the renal expression of the ketogenic rate-limiting enzyme, which was decreased by a high-fat diet (HFD) in rats. Here, we investigated whether ketogenesis can mediate renoprotection by GTPs against an HFD. Wistar rats were fed a standard or HFD with or without GTPs for 18 weeks. The renal oxidative stress level, kidney function, renal expression, and activity levels of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) and sirtuin 3(SIRT3) were detected. The increased renal oxidative stress and the loss of renal function induced by the HFD were ameliorated by GTPs. Renal ketogenesis and SIRT3 expression and activity levels, which were reduced by the HFD, were restored by GTPs. In vitro, HEK293 cells were transfected with the eukaryotic expression plasmid pcDNA HMGCS2. GTP treatment could upregulate HMGCS2 and SIRT3 expression. Although SIRT3 expression was not affected by HMGCS2 transfection, the 4-hydroxy-2-nonenal (4-HNE) level and the acetyl-MnSOD (K122)/MnSOD ratio were reduced in HMGCS2-transfected cells in the context of H2O2. The ketogenesis/SIRT3 pathway mediates the renoprotection of GTPs against the oxidative stress induced by an HFD.

  2. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    PubMed Central

    Wu, Xu; Gu, Wenyu; Lu, Huan; Liu, Chengying; Yu, Biyun; Xu, Hui; Tang, Yaodong

    2016-01-01

    Obstructive sleep apnea (OSA) associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH) triggered tissue damage. Receptor for advanced glycation end product (RAGE) and its ligand high mobility group box 1 (HMGB1) are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE), the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1) normal air (NA), (2) CIH, (3) CIH+sRAGE, and (4) NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6), apoptotic (Bcl-2/Bax), and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK) signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways. PMID:27688824

  3. PO-60 - Renal tumors with extensive vascular disease: management challenges in a pediatric series from the Hospital for Sick Children.

    PubMed

    Zamperlini-Netto, G; Zanette, A; Wehbi, E; Williams, S; Grant, R M; Brandao, L R

    2016-04-01

    Venous thrombotic events (VTE) are becoming more and more common in children, particularly in the hospital setting. To date, 1 in 200 children admitted to tertiary pediatric hospitals are now being recognized to develop VTE. Amongst those patients with an identified thrombotic occlusion, pediatric patients diagnosed with renal tumors have long been recognized, but their ideal management in the instances of vascular invasion remains controversial. We describe the clinical behavior of patients diagnosed with renal tumors and extra renal vascular involvement at The Hospital for Sick Children in Toronto, Canada. A retrospective analysis was conducted in patients diagnosed from 1990 to 2012. Data collected included: age, gender, symptoms at presentation, staging, pathology report, radiological evidence of intravascular thrombus [i.e. renal veins (RV), inferior vena cava (IVC) and right atrium (RA)], intraoperative findings, therapeutic protocol implemented and anticoagulation; for outcomes, tumor and/or thrombus recurrence, thromboembolic phenomena [i.e. pulmonary embolism (PE)] and survival. Of 299 patients with renal tumors identified, 292 were included: Wilms (219), Renal Cell Carcinoma (RCC, 29), Clear Cell Sarcoma of the Kidney (CCSK, 12), others (32). The median age of the group was 4.53years (4days - 18 years). Extra renal vascular disease was identified in 29 patients, with a median age 7.05years (0.6-16 years; p=0.03), including Wilms tumors (22/219, 10%), RCC (2/29, 7%), CCSK (1/12, 8.3%) and others (4/32, 12.5%; p=0.01). Vascular involvement comprised exclusive evidence of RV disease (7), IVC disease (19; 15 infra-hepatic), RA disease (3) and PE (5).Treatment escalation because of vascular disease included neo-adjuvant chemotherapy (12; Wilms [11], RCC [1]), intraoperative cavectomy/ thrombectomy (1; Wilms), and cavotomies (11 Wilms [7], RCC [1], CCSK [1], PNET [1], sarcoma [1]). Four patients were placed under cardiopulmonary bypass. Anticoagulation was

  4. The para-aortic ridge plays a key role in the formation of the renal, adrenal and gonadal vascular systems

    PubMed Central

    Isogai, Sumio; Horiguchi, Mayuko; Hitomi, Jiro

    2010-01-01

    Renal, adrenal, gonadal, ureteral and inferior phrenic arteries vary in their level of origin and in their calibre, number and precise anatomical relationship to other structures. Studies of the origin and early development of these arteries have evoked sharp disputes. The ladder theory of Felix, which states that ‘All the mesonephric arteries may persist; from them are formed the phrenic, suprarenal, renal and internal spermatic arteries’ has been generally quoted in the anatomical textbooks without rigorous verification for 100 years. In this study, we re-examined this theory by performing micro-injection of dye and resin into rat (Rattus norvegicus) embryos. Our results revealed that most of the mesonephric arteries had degenerated before the metanephros started its ascent. The definitive renal, adrenal, gonadal, ureteral and inferior phrenic arteries appeared as new branches from the gonadal artery and/or directly from the abdominal aorta to the para-aortic ridge. Coincidental to this, the anatomical architecture of the inter-renal vascular cage, which consists of the interlobar and arcuate arteries and their collateral veins, was completed within the developing metanephros. We demonstrated that the delicate renal vascular cage switched from the primary renal artery to the definitive renal artery and that the route of venous drainage changed from the posterior cardinal vein to the inferior (caudal) vena cava. PMID:20579173

  5. Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype.

    PubMed

    Yamamoto, Suguru; Zhong, Jiayong; Yancey, Patricia G; Zuo, Yiqin; Linton, MacRae F; Fazio, Sergio; Yang, Haichun; Narita, Ichiei; Kon, Valentina

    2015-09-01

    Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model. Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response. UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change. Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine

  6. Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype

    PubMed Central

    Yamamoto, Suguru; Zhong, Jiayong; Yancey, Patricia G.; Zuo, Yiqin; Linton, MacRae F.; Fazio, Sergio; Yang, Haichun; Narita, Ichiei; Kon, Valentina

    2016-01-01

    Objective Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model. Methods Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response. Results UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change. Conclusion Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects

  7. Endothelin receptor blockade ameliorates renal injury by inhibition of RhoA/Rho-kinase signalling in deoxycorticosterone acetate-salt hypertensive rats.

    PubMed

    Lee, Tsung-Ming; Chung, Tun-Hui; Lin, Shinn-Zong; Chang, Nen-Chung

    2014-04-01

    Excessive production of fibrosis is a feature of hypertension-induced renal injury. Activation of RhoA/Rho-kinase (ROCK) axis has been shown in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed whether selective endothelin receptor blockers can attenuate renal fibrosis by inhibiting RhoA/ROCK axis in DOCA-salt rats. At 4 weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were randomized into three groups for 4 weeks: vehicle, ABT-627 (endothelin-A receptor inhibitor) and A192621 (endothelin-B receptor inhibitor). DOCA-salt was characterized by increased blood pressure, decreased renal function, increased proteinuria, increased glomerulosclerosis and tubulointerstitial fibrosis with myofibroblast accumulation, increased renal endothelin-1 levels and RhoA activity along with increased expression of connective tissue growth factor at both mRNA and protein levels as compared with uninephrectomized control male Wistar rats. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone, ameliorated proteinuria. Impaired renal function and histological changes were overcome by treatment with ABT-627, but not with A192621. The beneficial effects of bosentan, a nonspecific endothelin receptor blocker, on proteinuria, RhoA activity, and connective tissue growth factor levels were similar to ABT-627. Furthermore, in an isolated perfuse kidney, a RhoA inhibitor, C3 exoenzyme, and two ROCK inhibitors, fasudil and Y-27632, significantly attenuated connective tissue growth factor levels. These results indicate that DOCA-salt elevates renal endothelin-1 levels and RhoA activity via activation of mineralocorticoid receptor, resulting in renal fibrosis and proteinuria. Endothelin-A receptor blockade can attenuate DOCA-salt-induced renal fibrosis probably through the inhibition of RhoA/ROCK activity and connective tissue growth factor expression.

  8. Effects of renal denervation on vascular remodelling in patients with heart failure and preserved ejection fraction: A randomised control trial

    PubMed Central

    Hayward, Carl; Keegan, Jennifer; Gatehouse, Peter D; Rajani, Ronak; Khattar, Rajdeep S; Mohiaddin, Raad H; Rosen, Stuart D; Lyon, Alexander R; di Mario, Carlo

    2017-01-01

    Objective To assess the effect of renal denervation (RDT) on micro- and macro-vascular function in patients with heart failure with preserved ejection fraction (HFpEF). Design A prospective, randomised, open-controlled trial with blinded end-point analysis. Setting A single-centre London teaching hospital. Participants Twenty-five patients with HFpEF who were recruited into the RDT-PEF trial. Main outcome measures Macro-vascular: 24-h ambulatory pulse pressure, aorta distensibilty (from cardiac magnetic resonance imaging (CMR), aorta pulse wave velocity (CMR), augmentation index (peripheral tonometry) and renal artery blood flow indices (renal MR). Micro-vascular: endothelial function (peripheral tonometry) and urine microalbuminuria. Results At baseline, 15 patients were normotensive, 9 were hypertensive and 1 was hypotensive. RDT did not lower any of the blood pressure indices. Though there was evidence of abnormal vascular function at rest, RDT did not affect these at 3 or 12 months follow-up. Conclusions RDT did not improve markers of macro- and micro-vascular function. PMID:28228942

  9. Vascular access versus the effect of statins on inflammation and fibrinolysis in renal dialysis patients.

    PubMed

    do Sameiro Faria, Maria; Ribeiro, Sandra; Rocha-Pereira, Petronila; Miranda, Vasco; Quintanilha, Alexandre; Reis, Flávio; Costa, Elísio; Belo, Luís; Santos-Silva, Alice

    2013-01-01

    The aim of this work was to assess the effect of statin therapy on inflammatory and fibrinolytic/endothelial (dys)function markers in end-stage renal disease (ESRD) patients under hemodialysis (HD), according to the type of vascular access. This transversal study includes 191 ESRD patients under regular HD, divided into four groups according to vascular access and statin therapy: 87 patients with arteriovenous fistula (AVF) and no statins (AVF-NS), 61 with AVF and statins (AVF-S), 27 with central venous dialysis catheter (CVC) and no statins (CVC-NS) and 16 with CVC and statins (CVC-S). The basic lipid profile and fibrinolytic/endothelial cell function markers were assessed. Patients with CVC presented significantly higher levels of D-dimers compared with AVF groups. CVC-NS patients also presented the highest IL-6 values, which were significantly higher than those presented by CVC-S patients. AVF-S patients presented significantly higher t-PA and PAI-1 values and lower adiponectin levels compared with AVF-NS. Our results demonstrate that patients with CVC, particularly those not under statin therapy, present a higher production and turnover of fibrin. We also found that statin therapy decreases inflammation in CVC patients but is associated with a reduction of adiponectin and increased endothelial function marker levels in AVF patients.

  10. Associations between Thyroid Hormones, Calcification Inhibitor Levels and Vascular Calcification in End-Stage Renal Disease

    PubMed Central

    Meuwese, Christiaan Lucas; Olauson, Hannes; Qureshi, Abdul Rashid; Ripsweden, Jonaz; Barany, Peter; Vermeer, Cees; Drummen, Nadja; Stenvinkel, Peter

    2015-01-01

    Introduction Vascular calcification is a common, serious and elusive complication of end-stage renal disease (ESRD). As a pro-calcifying risk factor, non-thyroidal illness may promote vascular calcification through a systemic lowering of vascular calcification inhibitors such as matrix-gla protein (MGP) and Klotho. Methods and Material In 97 ESRD patients eligible for living donor kidney transplantation, blood levels of thyroid hormones (fT3, fT4 and TSH), total uncarboxylated MGP (t-ucMGP), desphospho-uncarboxylated MGP (dp-ucMGP), descarboxyprothrombin (PIVKA-II), and soluble Klotho (sKlotho) were measured. The degree of coronary calcification and arterial stiffness were assessed by means of cardiac CT-scans and applanation tonometry, respectively. Results fT3 levels were inversely associated with coronary artery calcification (CAC) scores and measures of arterial stiffness, and positively with dp-ucMGP and sKlotho concentrations. Subfractions of MGP, PIVKA-II and sKlotho did not associate with CAC scores and arterial stiffness. fT4 and TSH levels were both inversely associated with CAC scores, but not with arterial stiffness. Discussion The positive associations between fT3 and dp-ucMGP and sKlotho suggest that synthesis of MGP and Klotho is influenced by thyroid hormones, and supports a link between non-thyroidal illness and alterations in calcification inhibitor levels. However, the absence of an association between serum calcification inhibitor levels and coronary calcification/arterial stiffness and the fact that MGP and Klotho undergo post-translational modifications underscore the complexity of this association. Further studies, measuring total levels of MGP and membrane bound Klotho, should examine this proposed pathway in further detail. PMID:26147960

  11. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury

    PubMed Central

    Chandrika, Bhavya B.; Yang, Cheng; Ou, Yang; Feng, Xiaoke; Muhoza, Djamali; Holmes, Alexandrea F.; Theus, Sue; Deshmukh, Sarika; Haun, Randy S.; Kaushal, Gur P.

    2015-01-01

    We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase–3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase–3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo. PMID:26444017

  12. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

    PubMed

    Chandrika, Bhavya B; Yang, Cheng; Ou, Yang; Feng, Xiaoke; Muhoza, Djamali; Holmes, Alexandrea F; Theus, Sue; Deshmukh, Sarika; Haun, Randy S; Kaushal, Gur P

    2015-01-01

    We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

  13. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats.

  14. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis.

    PubMed

    Wang, Xue-Ling; Wu, Li-Yan; Zhao, Long; Sun, Li-Na; Liu, Hai-Ying; Liu, Gang; Guan, Guang-Ju

    2016-10-01

    We aimed to explore the role of SIRT1 in apoptosis in human kidney proximal tubule epithelial (HK-2) cells, and to determine whether resveratrol (RSV, a SIRT1 activator) could ameliorate apoptosis in rats with streptozotocin-induced diabetes mellitus (DM) and/or in high glucose (HG, 30mM) - stimulated HK-2 cells. Rats were distributed randomly into three groups: 1) control group, 2) DM group, and 3) DM with RSV group (DM+RSV; rats treated with 30mg/kg/d of RSV for 16 weeks). The physical, biochemical, and morphological parameters were then examined. Additionally, the deacetylase activity of SIRT1, and the expression levels of SIRT1 and of representative apoptosis markers, such as p53, acetylated p53, cleaved caspase-3, caspase-9, and cleaved PARP, were measured. HK-2 cells were stimulated by HG for different lengths of time to study the effect of HG on apoptosis. HK-2 cells were treated with or without RSV (25μM) to investigate if RSV has a protective effect on HG-induced apoptosis. A gene-specific small interfering RNA against SIRT1 was used to study the role of SIRT1 in apoptosis. More apoptosis was found in the DM rats than in the control rats. Similarly, the expression levels of cleaved caspase-3, cleaved PARP, and acetylated p53 were significantly higher, and the level of SIRT1 was significantly lower, in the HK-2 cells that were cultured under HG conditions than those in the HK-2 cells that were cultured under low glucose (5.5mM) conditions. Notably, treatment with RSV lessened the HG-induced changes in the levels of apoptosis indicators, and this inhibition of HG-induced apoptosis in HK-2 cells by RSV treatment was abolished by SIRT1 silencing. Our study showed that hyperglycemia contributes to apoptosis in rat kidney and HK-2 cells. SIRT1 activation by RSV can reduce urinary albumin excretion and proximal tubule epithelial apoptosis both in vitro and in vivo. Based on our study, SIRT1/p53 axis played an important role in the hyperglycemia induced apoptosis

  15. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells.

    PubMed

    Suh, Han Na; Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2014-10-01

    The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.

  16. Effects of unfractionated heparin on renal osteodystrophy and vascular calcification in chronic kidney disease rats.

    PubMed

    Meng, Yan; Zhang, Hao; Li, Yingbin; Li, Qingnan; Zuo, Li

    2014-01-01

    Unfractionated heparin (UFH) is the most widely used anticoagulant in hemodialysis for chronic kidney disease (CKD) patients. Many studies have verified that UFH can induce bone loss in subjects with normal bone, but few have focused on its effect on renal osteodystrophy. We therefore investigated this issue in adenine-induced CKD rats. As CKD also impairs mineral metabolism systemically, we also studied the impacts of UFH on serum markers of CKD-mineral and bone disorder (CKD-MBD) and vascular calcification. We administered low and high doses of UFH (1U/g and 2U/g body weight, respectively) to CKD rats and compared them with CKD controls. At sacrifice, the serum markers of CKD-MBD did not significantly differ among the two UFH CKD groups and the CKD control group. The mean bone mineral densities (BMDs) of the total femur and a region of interest (ROI) constituted of trabecular and cortical bone were lower in the high-dose UFH (H-UFH) CKD group than in the CKD control group (P<0.05 and P<0.01, respectively). The BMD of the femoral ROI constituted of cortical bone did not differ between the H-UFH CKD group and the CKD control group. Histomorphometrical changes in the CKD rats indicated secondary hyperparathyroidism, and the femoral trabecular bone volume, but not cortical bone volume, significantly decreased with increasing UFH dose. The same decreasing trend was found in osteoblast parameters, and an increasing trend was found in osteoclast parameters; however, most differences were not significant. Moreover, no distinct statistical differences were found in the comparison of vascular calcium or phosphorus content among the CKD control group and the two UFH CKD groups. Therefore, we concluded that UFH could induce bone loss in CKD rats with secondary hyperparathyroidism, mainly by reducing the trabecular volume and had little effect on cortical bone volume. The underlying mechanism might involve inhibition of osteoblast activity and promotion of osteoclast activity

  17. The Synthetic Tie2 Agonist Peptide Vasculotide Protects Renal Vascular Barrier Function In Experimental Acute Kidney Injury

    PubMed Central

    Rübig, Eva; Stypmann, Jörg; Van Slyke, Paul; Dumont, Daniel J; Spieker, Tilmann; Buscher, Konrad; Reuter, Stefan; Goerge, Tobias; Pavenstädt, Hermann; Kümpers, Philipp

    2016-01-01

    Microvascular barrier dysfunction plays a major role in the pathophysiology of acute kidney injury (AKI). Angiopoietin-1, the natural agonist ligand for the endothelial-specific Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor. Here we evaluate the efficacy of a polyethylene glycol-clustered Tie2 agonist peptide, vasculotide (VT), to protect against endothelial-cell activation with subsequent microvascular dysfunction in a murine model of ischemic AKI. Renal ischemia reperfusion injury (IRI) was induced by clamping of the renal arteries for 35 minutes. Mice were treated with VT or PEGylated cysteine before IRI. Sham-operated animals served as time-matched controls. Treatment with VT significantly reduced transcapillary albumin flux and renal tissue edema after IRI. The protective effects of VT were associated with activation of Tie2 and stabilization of its downstream effector, VE-cadherin in renal vasculature. VT abolished the decline in renal tissue blood flow, attenuated the increase of serum creatinine and blood urea nitrogen after IRI, improved recovery of renal function and markedly reduced mortality compared to PEG [HR 0.14 (95% CI 0.05–0.78) P < 0.05]. VT is inexpensive to produce, chemically stable and unrelated to any Tie2 ligands. Thus, VT may represent a novel therapy to prevent AKI in patients. PMID:26911791

  18. Renal Artery Stump to Inferior Vena Cava Fistula: Unusual Clinical Presentation and Transcatheter Embolization with the Amplatzer Vascular Plug

    SciTech Connect

    Taneja, Manish; Lath, Narayan Soo, Tan Bien; Hiong, Tay Kiang; Htoo, Maung Myint; Richard, Lo; Fui, Alexander Chung Yaw

    2008-07-15

    Fistulous communication between the renal artery stump and inferior vena cava following nephrectomy is rare. We describe the case of a 52-year-old man with a fistula detected on investigation for hemolytic anemia in the postoperative period. The patient had had a nephrectomy performed 2 weeks prior to presentation for blunt abdominal trauma. The fistula was successfully occluded percutaneously using an Amplatzer vascular plug. The patient recovered completely and was discharged 2 weeks later.

  19. Vascular color Doppler ultrasound for assessing renovascular hypertension: accuracy of the direct technique for assessing the renal arteries.

    PubMed

    Engelhorn, Carlos Alberto; Engelhorn, Ana Luiza; Pullig, Renata

    2004-05-01

    To assess the accuracy of vascular color Doppler ultrasound as compared with digital subtraction arteriography for identifying hemodynamically significant renal artery stenoses. One hundred and thirty-seven renal arteries from 69 adult patients suspected of having renovascular arterial hypertension were prospectively studied with ultrasound. The results obtained were compared in a double-blind manner with those obtained on digital subtraction arteriography, and the following parameters were calculated according to previously defined criteria: sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy. The inconclusive results (7 arteries) were excluded. The comparison of the 2 methods in regard to the 130 remaining arteries showed concordant results for 116 (89.2%) arteries and discordant results for 14 (10.8%) arteries. The sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of vascular color Doppler ultrasound were, respectively, 95.33%, 88.14%, 89.86%, 94.55%, and 91.94%. A good correlation between the 2 examinations was observed in the evaluation of the hemodynamically significant renal artery stenoses, making vascular color Doppler ultrasound a noninvasive method useful for selecting patients with suspected renovascular hypertension.

  20. Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study.

    PubMed

    Leung, Wilson Kc; Gao, L; Siu, Parco M; Lai, Christopher Wk

    2016-12-01

    An explosion in global epidemic of type 2 diabetes mellitus poses major rise in cases with vascular endothelial dysfunction ranging from micro- (retinopathy, nephropathy and neuropathy) to macro-vascular (atherosclerosis and cardiomyopathy) conditions. Functional destruction of endothelium is regarded as an early event that lays the groundwork for the development of renal microangiopathy and subsequent clinical manifestation of nephropathic symptoms. Recent research has shed some light on the molecular mechanisms of type 2 diabetes-associated comorbidity of endothelial dysfunction and nephropathy. Stemming from currently proposed endothelium-centered therapeutic strategies for diabetic nephropathy, this review highlighted some most exploited pathways that involve the intricate coordination of vasodilators, vasoconstrictors and vaso-modulatory molecules in the pathogenesis of diabetic nephropathy. We also emphasized the emerging roles of oxidative and epigenetic modifications of microvasculature as our prospective therapeutics for diabetic renal diseases. Finally, this review in particular addressed the potential use of multispectral optoacoustic tomography in real-time, minimally-invasive vascular imaging of small experimental animals for preclinical renal-kinetic drug trials.

  1. Resveratrol Ameliorates High Glucose and High-Fat/Sucrose Diet-Induced Vascular Hyperpermeability Involving Cav-1/eNOS Regulation

    PubMed Central

    Peng, Xiao lin; Qu, Wei; Wang, Lin zhi; Huang, Bin qing; Ying, Chen jiang; Sun, Xiu fa; Hao, Li ping

    2014-01-01

    Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation. PMID:25419974

  2. Resveratrol ameliorates high glucose and high-fat/sucrose diet-induced vascular hyperpermeability involving Cav-1/eNOS regulation.

    PubMed

    Peng, Xiao Lin; Qu, Wei; Wang, Lin Zhi; Huang, Bin Qing; Ying, Chen Jiang; Sun, Xiu Fa; Hao, Li Ping

    2014-01-01

    Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation.

  3. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    PubMed

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  4. DT-13 Ameliorates TNF-α-Induced Vascular Endothelial Hyperpermeability via Non-Muscle Myosin IIA and the Src/PI3K/Akt Signaling Pathway

    PubMed Central

    Zhang, Yuanyuan; Han, Yuwei; Zhao, Yazheng; Lv, Yanni; Hu, Yang; Tan, Yisha; Bi, Xueyuan; Yu, Boyang; Kou, Junping

    2017-01-01

    DT-13(25(R,S)-ruscogenin-1-O-[β-d-glucopyranosyl-(1→2)][β-d-xylopyranosyl-(1→3)]-β-d-fucopyranoside) has been identified as an important factor in TNF-α-induced vascular inflammation. However, the effect of DT-13 on TNF-α-induced endothelial permeability and the potential molecular mechanisms remain unclear. Hence, this study was undertaken to elucidate the protective effect of DT-13 on TNF-α-induced endothelial permeability and the underlying mechanisms in vivo and in vitro. The in vivo results showed that DT-13 could ameliorate endothelial permeability in mustard oil-induced plasma leakage in the skin and modulate ZO-1 organization. In addition, the in vitro results showed that pretreatment with DT-13 could increase the transendothelial electrical resistance value and decrease the sodium fluorescein permeability coefficient. Moreover, DT-13 altered the mRNA and protein levels of ZO-1 as determined by real-time PCR, Western blotting, and immunofluorescence analyses. DT-13 treatment decreased the phosphorylations of Src, PI3K, and Akt in TNF-α-treated human umbilical vein endothelial cells (HUVECs). Further analyses with PP2 (10 µM, inhibitor of Src) indicated that DT-13 modulated endothelial permeability in TNF-α-induced HUVECs in an Src-dependent manner. LY294002 (10 µM, PI3K inhibitor) also had the same effect on DT-13 but did not affect phosphorylation of Src. Following decreased expression of non-muscle myosin IIA (NMIIA), the effect of DT-13 on the phosphorylations of Src, PI3K, and Akt was abolished. This study provides pharmacological evidence showing that DT-13 significantly ameliorated the TNF-α-induced vascular endothelial hyperpermeability through modulation of the Src/PI3K/Akt pathway and NMIIA, which play an important role in this process. PMID:28855900

  5. DT-13 Ameliorates TNF-α-Induced Vascular Endothelial Hyperpermeability via Non-Muscle Myosin IIA and the Src/PI3K/Akt Signaling Pathway.

    PubMed

    Zhang, Yuanyuan; Han, Yuwei; Zhao, Yazheng; Lv, Yanni; Hu, Yang; Tan, Yisha; Bi, Xueyuan; Yu, Boyang; Kou, Junping

    2017-01-01

    DT-13(25(R,S)-ruscogenin-1-O-[β-d-glucopyranosyl-(1→2)][β-d-xylopyranosyl-(1→3)]-β-d-fucopyranoside) has been identified as an important factor in TNF-α-induced vascular inflammation. However, the effect of DT-13 on TNF-α-induced endothelial permeability and the potential molecular mechanisms remain unclear. Hence, this study was undertaken to elucidate the protective effect of DT-13 on TNF-α-induced endothelial permeability and the underlying mechanisms in vivo and in vitro. The in vivo results showed that DT-13 could ameliorate endothelial permeability in mustard oil-induced plasma leakage in the skin and modulate ZO-1 organization. In addition, the in vitro results showed that pretreatment with DT-13 could increase the transendothelial electrical resistance value and decrease the sodium fluorescein permeability coefficient. Moreover, DT-13 altered the mRNA and protein levels of ZO-1 as determined by real-time PCR, Western blotting, and immunofluorescence analyses. DT-13 treatment decreased the phosphorylations of Src, PI3K, and Akt in TNF-α-treated human umbilical vein endothelial cells (HUVECs). Further analyses with PP2 (10 µM, inhibitor of Src) indicated that DT-13 modulated endothelial permeability in TNF-α-induced HUVECs in an Src-dependent manner. LY294002 (10 µM, PI3K inhibitor) also had the same effect on DT-13 but did not affect phosphorylation of Src. Following decreased expression of non-muscle myosin IIA (NMIIA), the effect of DT-13 on the phosphorylations of Src, PI3K, and Akt was abolished. This study provides pharmacological evidence showing that DT-13 significantly ameliorated the TNF-α-induced vascular endothelial hyperpermeability through modulation of the Src/PI3K/Akt pathway and NMIIA, which play an important role in this process.

  6. The cessation of the long-term exposure to low doses of mercury ameliorates the increase in systolic blood pressure and vascular damage in rats.

    PubMed

    Rizzetti, Danize Aparecida; Torres, João Guilherme Dini; Escobar, Alyne Goulart; da Silva, Taiz Martins; Moraes, Paola Zambelli; Hernanz, Raquel; Peçanha, Franck Maciel; Castro, Marta Miguel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, Maria Jesús; Wiggers, Giulia Alessandra

    2017-02-18

    This study aimed to verify whether a prolonged exposure to low-level mercury promotes haemodynamic disorders and studied the reversibility of this vascular damage. Rats were divided into seven groups: three control groups received saline solution (im) for 30, 60 or 90 days; two groups received HgCl2 (im, first dose, 4.6μg/kg, subsequent doses 0.07μg/kg/day) for 30 or 60 days; two groups received HgCl2 for 30 or 60 days (im, same doses) followed by a 30-day washout period. Systolic blood pressure (SBP) was measured, along with analysis of vascular response to acetylcholine (ACh) and phenylephrine (Phe) in the absence and presence of endothelium, a nitric oxide (NO) synthase inhibitor, an NADPH oxidase inhibitor, superoxide dismutase, a non-selective cyclooxygenase (COX) inhibitor and an AT1 receptor blocker. Reactive oxygen species (ROS) levels and antioxidant power were measured in plasma. HgCl2 exposure for 30 and 60 days: a) reduced the endothelium-dependent relaxation; b) increased the Phe-induced contraction and the contribution of ROS, COX-derived vasoconstrictor prostanoids and angiotensin II acting on AT1 receptors to this response while the NO participation was reduced; c) increased the oxidative stress in plasma; d) increased the SBP only after 60 days of exposure. After the cessation of HgCl2 exposure, SBP, endothelium-dependent relaxation, Phe-induced contraction and the oxidative stress were normalised, despite the persistence of the increased COX-derived prostanoids. These results demonstrated that long-term HgCl2 exposure increases SBP as a consequence of vascular dysfunction; however, after HgCl2 removal from the environment the vascular function ameliorates.

  7. Alpha-lipoic acid treatment ameliorates metabolic parameters, blood pressure, vascular reactivity and morphology of vessels already damaged by streptozotocin-diabetes.

    PubMed

    Koçak, G; Aktan, F; Canbolat, O; Ozoğul, C; Elbeğ, S; Yildizoglu-Ari, N; Karasu, C

    2000-12-01

    The present study investigated the effects of alpha-lipoic acid treatment (50 mg/kg/day) on the metabolism and vascular condition already damaged by streptozotocin (STZ)-diabetes in rats. Carbohydrate and lipid metabolism, oxidative stress and antioxidant status were assessed in non-diabetic controls, 12-week untreated diabetic and 12-week treated diabetic (untreated for 6 weeks and then treated with alpha-lipoic acid for the last 6 weeks) rats. Blood pressures of rats were measured by tail-cuff method. Vascular reactivity was evaluated in isolated aortic rings. Morphology of aorta was examined by electron microscopy technique. Alpha-lipoic acid treatment effectively reversed body weight, blood glucose, plasma insulin, cholesterol, triglycerides and lipid peroxidation levels of diabetic animals. STZ-diabetes resulted in increased blood pressure, which was partially improved by alpha-lipoic acid treatment. Although the superoxide dismutase (SOD) activity in aortic homogenates was not changed by diabetes or antioxidant treatment, catalase or glutathione peroxidase (GPx) activity significantly increased in untreated diabetic rats. Alpha-lipoic acid treatment improved catalase activity in diabetic aorta. The contractile effect of phenylephrine markedly increased in diabetic rings, which was completely reversed by alpha-lipoic acid treatment. The maximum vasorelaxant response of pre-contracted aortic rings exposed to cumulatively increased concentrations of acetylcholine was unaffected by diabetes or antioxidant treatment. Sodium nitroprusside-induced endothelium-independent relaxations were similar in all experimental groups. Various alterations caused by STZ-diabetes in aorta structure were partially ameliorated by alpha-lipoic acid treatment. The potency of alpha-lipoic acid on the reversal of hypertension by affecting vascular reactivity and morphology as well as general metabolism of diabetic rats confirms the importance of hyperglycemia-induced oxidative stress in

  8. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension

    PubMed Central

    Guimarães, Danielle A.; Rizzi, Elen; Ceron, Carla S.; Martins-Oliveira, Alisson; Gerlach, Raquel F.; Shiva, Sruti; Tanus-Santos, Jose E.

    2015-01-01

    Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. PMID:26343345

  9. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension.

    PubMed

    Guimarães, Danielle A; Rizzi, Elen; Ceron, Carla S; Martins-Oliveira, Alisson; Gerlach, Raquel F; Shiva, Sruti; Tanus-Santos, Jose E

    2015-12-01

    Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. NLRP3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model of Chronic Kidney Disease

    PubMed Central

    Guo, Honglei; Bi, Xiao; Zhou, Ping; Zhu, Shijian

    2017-01-01

    Background and Aims. The nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) inflammasome has been implicated in the pathogenesis of chronic kidney disease (CKD); however, its exact role in glomerular injury and tubulointerstitial fibrosis is still undefined. The present study was performed to identify the function of NLRP3 in modulating renal injury and fibrosis and the potential involvement of mitochondrial dysfunction in the murine unilateral ureteral obstruction (UUO) model of CKD. Methods. Employing wild-type (WT) and NLRP3−/− mice with or without UUO, we evaluated renal structure, tissue injury, and mitochondrial ultrastructure, as well as expression of some vital molecules involved in the progression of fibrosis, apoptosis, inflammation, and mitochondrial dysfunction. Results. The severe glomerular injury and tubulointerstitial fibrosis induced in WT mice by UUO was markedly attenuated in NLRP3−/− mice as evidenced by blockade of extracellular matrix deposition, decreased cell apoptosis, and phenotypic alterations. Moreover, NLRP3 deletion reversed UUO-induced impairment of mitochondrial morphology and function. Conclusions. NLRP3 deletion ameliorates mitochondrial dysfunction and alleviates renal fibrosis in a murine UUO model of CKD. PMID:28348462

  11. Tumor Vascularity in Renal Masses: Correlation of Arterial Spin-Labeled and Dynamic Contrast Enhanced MR Imaging Assessments

    PubMed Central

    Zhang, Yue; Kapur, Payal; Yuan, Qing; Xi, Yin; Carvo, Ingrid; Signoretti, Sabina; Dimitrov, Ivan; Cadeddu, Jeffrey A.; Margulis, Vitaly; Muradyan, Naira; Brugarolas, James; Madhuranthakam, Ananth J.; Pedrosa, Ivan

    2015-01-01

    Objective To investigate potential correlations between perfusion by arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast enhanced (DCE) MRI derived quantitative measures of vascularity in renal masses >2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC). Methods Informed written consent was obtained from all patients before imaging in this HIPAA-compliant, IRB-approved, prospective study. 36 consecutive patients scheduled for surgery of a known renal mass >2 cm underwent 3T ASL and DCE MRI. ASL measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived Ktrans, Kep, and Ve in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P<0.05 was considered statistically significant. Results Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ±12 years). PASL correlated with Ktrans (ρ=0.48, P=0.0091 for the entire tumor and ρ=0.43, P=0.03 for the high flow area, respectively) and Kep (ρ=0.46, P=0.01 for the entire tumor and ρ=0.52, P=0.008 for the high flow area, respectively). PASL (ρ=0.66, P=0.0002), Ktrans (ρ=0.61, P=0.001), and Kep (ρ=0.64, P=0.0006) also correlated with MVD in high and low perfusion areas in ccRCC. Conclusions PASL correlate with the DCE-derived measures of vascular permeability and flow, Ktrans and Kep, in renal masses >2cm in size. Both measures correlate to MVD in clear cell histology. MICROABSTRACT Arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However there are intrinsic differences between these two imaging methods, such as the relative contribution of vascular permeability

  12. Tumor Vascularity in Renal Masses: Correlation of Arterial Spin-Labeled and Dynamic Contrast-Enhanced Magnetic Resonance Imaging Assessments.

    PubMed

    Zhang, Yue; Kapur, Payal; Yuan, Qing; Xi, Yin; Carvo, Ingrid; Signoretti, Sabina; Dimitrov, Ivan; Cadeddu, Jeffrey A; Margulis, Vitaly; Muradyan, Naira; Brugarolas, James; Madhuranthakam, Ananth J; Pedrosa, Ivan

    2016-02-01

    Arterial spin-labeled (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However, there are intrinsic differences between these 2 imaging methods, such as the relative contribution of vascular permeability and blood flow to signal intensity for DCE MRI. We found a correlation between ASL perfusion and the DCE-derived volume transfer constant and rate constant parameters in renal masses > 2 cm in size and these measures correlated with microvessel density in clear cell RCC. The objective of this study was to investigate potential correlations between perfusion using arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE) MRI-derived quantitative measures of vascularity in renal masses > 2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC). Informed written consent was obtained from all patients before imaging in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, prospective study. Thirty-six consecutive patients scheduled for surgery of a known renal mass > 2 cm underwent 3T ASL and DCE MRI. ASL perfusion measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived volume transfer constant (K(trans)), rate constant (Kep), and fractional volume of the extravascular extracellular space (Ve) in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P < .05 was considered statistically significant. Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ± 12 years). PASL correlated with K(trans) (ρ = 0.48 and P = .0091 for the entire tumor and ρ = 0.43 and P = .03 for the

  13. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  14. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling.

    PubMed

    Liu, Na; He, Song; Ma, Li; Ponnusamy, Murugavel; Tang, Jinhua; Tolbert, Evelyn; Bayliss, George; Zhao, Ting C; Yan, Haidong; Zhuang, Shougang

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) and activation of cultured renal interstitial fibroblasts. The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA). Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta), increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR) and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.

  15. Glomerular filtration rate and renal volume in dogs with congenital portosystemic vascular anomalies before and after surgical ligation.

    PubMed

    Deppe, T A; Center, S A; Simpson, K W; Erb, H N; Randolph, J F; Dykes, N L; Yeager, A E; Reynolds, A J

    1999-01-01

    Glomerular filtration rate (GFR) and renal volume were evaluated in dogs with confirmed portosystemic vascular anomalies (PSVA) before and after surgical ligation of their PSVA. Pre- and postligation CBC, serum biochemistry, urinalysis, abdominal ultrasonography with measurement of renal volume, and per rectal scintigraphy were performed to document resolution of abnormalities consistent with portosystemic shunting. GFR was estimated by plasma 99mTc-diethylenetriaminepentaacetic acid (99mTc-DTPA) clearance before (n = 21) and after (n = 12) surgical correction of PSVA. Preligation 99mTc-DTPA GFR was increased (median, 5.64 mL/minute/kg; range, 3.53-8.49 mL/minute/kg; reference range, 2.83-4.47 mL/minute/kg) in 81% (17/21) of dogs. Postligation 99mTc-DTPA GFR decreased in all 12 evaluated dogs (median change = -42%; P < .001). Preligation renal volume was above the reference range for the left and right kidneys in 71% (10/14) and 69% (11/16) of dogs evaluated, respectively. Right renal volume decreased significantly (n = 5; median change, -45%; P = .03) after surgical ligation of PSVA. These findings document increased GFR and renal volume in dogs with PSVA, which may explain in part the low blood urea nitrogen and serum creatinine concentrations encountered in these dogs. Knowledge of changes in GFR associated with PSVA ligation may prove helpful in the anesthetic, drug, and dietary management of affected dogs.

  16. Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response.

    PubMed

    Wang, Xue-Rui; Shi, Guang-Xia; Yang, Jing-Wen; Yan, Chao-Qun; Lin, Li-Ting; Du, Si-Qi; Zhu, Wen; He, Tian; Zeng, Xiang-Hong; Xu, Qian; Liu, Cun-Zhi

    2015-12-01

    Emerging evidence suggests acupuncture could exert neuroprotection in the vascular dementia via anti-oxidative effects. However, the involvement of Nrf2, a master regulator of antioxidant defense, in acupuncture-induced neuroprotection in vascular dementia remains undetermined. The goal of our study was to investigate the contribution of Nrf2 in acupuncture and its effects on vascular dementia. Morris water maze and Nissl staining were used to assess the effect of acupuncture on cognitive function and hippocampal neurodegeneration in experimental vascular dementia. The distribution of Nrf2 in neurons in hippocampus, the protein expression of Nrf2 in both cytosol and nucleus, and the protein and mRNA levels of its downstream target genes NQO1 and HO-1 were detected by double immunofluorescent staining, Western blotting and realtime PCR analysis respectively. Cognitive function and microglia activation were measured in both wild-type and Nrf2 gene knockout mice after acupuncture treatment. We found that acupuncture could remarkably reverse the cognitive deficits, neuron cell loss, reactive oxygen species production, and decreased cerebral blood flow. It was notable that acupuncture enhanced nuclear translocation of Nrf2 in neurons and up-regulate the protein and mRNA levels of Nrf2 and its target genes HO-1 and NQO1. Moreover, acupuncture could significantly down-regulated the over-activation of microglia after common carotid artery occlusion surgery. However, the reversed cognitive deficits, neuron cell loss and microglia activation by acupuncture were abolished in Nrf2 gene knockout mice. In conclusion, these findings provide evidence that the neuroprotection of acupuncture in models of vascular dementia was via the Nrf2 activation and Nrf2-dependent microglia activation. Copyright © 2015. Published by Elsevier Inc.

  17. Osteopontin expression in vascular smooth muscle cells in patients with end-stage renal disease.

    PubMed

    Nakamura, Hironori; Honda, Hirokazu; Inada, Yoshifumi; Kato, Noriyuki; Kato, Kenichi; Kitazawa, Kozo; Sugisaki, Tetsuzo

    2006-06-01

    beta-glycerophosphate, a phosphate donor, and uremic sera induce osteopontin (OPN) expression in bovine vascular smooth muscle cells (VSMCs). However, the correlations of serum phosphorus level with OPN expression, and blood urea nitrogen (BUN) level with OPN expression in humans have not previously been reported. The purpose of the current study is to compare the expression of OPN in VSMCs with clinical data in patients with end-stage renal disease (ESRD). The radial arteries of 33 patients (21 male and 12 female patients) were examined to determine the expression of OPN and collagen type I (Col I) by immunohistochemistry. The correlation of the expression of bone matrix proteins with clinical data was analyzed. Between the low-serum phosphorus (<6 mg/dL) group and high-serum phosphorus (> or =6 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0049) and the levels of BUN (P = 0.0005), serum phosphorus (P < 0.0001) and calcium x phosphorus products (P < 0.0001). Moreover, between the low-BUN (<70 mg/dL, N = 19) group and high-BUN (> or =70 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0039) and the levels of BUN (P = 0.0002), serum phosphorus (P = 0.0002) and calcium x phosphorus products (P = 0.0003). We have shown that hyperphosphatemia or azotemia is associated with the expression of OPN in VSMCs in patients with ESRD.

  18. Vascular calcifications and renal osteodystrophy in chronic hemodialysis patients: what is the relationship between them?

    PubMed

    Moldovan, Diana; Moldovan, Ioan; Rusu, Crina; Racasan, Simona; Patiu, Ioan M; Brumboiu, Adrian; Bondor, Cosmina; Parvu, Liliana; Kacso, Ina; Orasan, Remus; Gherman-Caprioara, Mirela

    2011-12-01

    Vascular calcifications (VCs) and renal osteodystrophy (ROD) are frequently seen together and represent the major causes of morbidity and mortality in hemodialysis (HD) patients. Some studies suggest a pathogenic link between them, but there is no consensus as yet regarding this issue. The main objective of our study was to establish whether there is any relation between VCs and ROD in our HD patients. We evaluated the prevalence of VCs and ROD and the relationship between VCs and some clinical and biochemical characteristics of HD patients. We examined radiological signs of VCs and ROD on hands and pelvis bone radiographs in 81 chronic HD patients, and we calculated a VC score on this basis. We found a significant relation between radiological signs of ROD and those of VC (P = 0.019). The patients with ROD had a higher mean VC score (P = 0.02). By linear regression, the VC score correlated directly with serum calcium (Ca), phosphorus (P), intact parathyroid hormone (iPTH) and CaxP product and inversely with serum albumin. The logistic regression model revealed that ROD, male gender and treatment with calcium salts were predictive of VCs development. There were no associations between VCs and age, HD vintage, diabetes, dialysate Ca concentration, vitamin D treatment, spKt/V, URR and C-reactive protein (CRP) levels. There seems to be a pathogenetic link between bone and artery diseases in chronic HD patients. Both VCs and ROD have a high prevalence. ROD, male gender and treatment with calcium salts are risk factors for VCs.

  19. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat

    PubMed Central

    Li, Jian-Dong; Cheng, Ai-Yuan; Huo, Yan-Li; Fan, Jie; Zhang, Yu-Ping; Fang, Zhi-Qin; Sun, Hong-Sheng; Peng, Wei; Zhang, Jin-Shun

    2016-01-01

    Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD. PMID:27746855

  1. Dual Inhibiting Senescence and Epithelial-to-Mesenchymal Transition by Erythropoietin Preserve Tubular Epithelial Cell Regeneration and Ameliorate Renal Fibrosis in Unilateral Ureteral Obstruction

    PubMed Central

    Tasanarong, Adis; Kongkham, Supranee; Khositseth, Sookkasem

    2013-01-01

    This study aims to investigate the renoprotective effect of recombinant human erythropoietin (rhEPO) treatment could preserve tubular epithelial cell regeneration and ameliorate renal fibrosis by dual inhibition of stress-induced senescence and EMT in unilateral ureteric obstruction (UUO) mouse model. UUO or sham-operated mice were randomly assigned to receive rhEPO or vehicle treatment and were sacrificed on days 3, 7, and 14. Kidney specimens were fixed for histopathological and immunohistochemical study. The expression of S100A4, TGF-β1, BMP-7, Smad2/3, Smad1/5/8, and p16INK4a was determined by western blot and real-time RT-PCR. Vehicle treated UUO mice had increased tubular atrophy and interstitial fibrosis within 3 to 14 days. An increase in TGF-β1, Smad2/3, S100A4, and p16INK4a expression and a decrease in BMP-7 and Smad1/5/8 expression were observed in the obstructed kidneys. p16INK4a was positively correlated with TGF-β1/Smad2/3 and negatively correlated with BMP-7/Smad1/5/8 in UUO mice. rhEPO treatment significantly suppressed the upregulation of TGF-β, Smad2/3, S100A4, and p16INK4a and preserved the downregulation of BMP-7 and Smad1/5/8, resulting in markedly reduced TA/IF compared to the vehicle treated mice. The renoprotective effects of rhEPO could ameliorate renal TA/IF by modulating senescence and EMT which could be a part of therapeutic option in patients with chronic kidney disease. PMID:24350257

  2. Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1

    PubMed Central

    2014-01-01

    Introduction Studies have demonstrated that mesenchymal stromal cells (MSCs) could reverse acute and chronic kidney injury by a paracrine or endocrine mechanism, and microvesicles (MVs) have been regarded as a crucial means of intercellular communication. In the current study, we focused on the therapeutic effects of human Wharton-Jelly MSCs derived microvesicles (hWJMSC-MVs) in renal ischemia/reperfusion injury and its potential mechanisms. Methods MVs isolated from conditioned medium were injected intravenously in rats immediately after ischemia of the left kidney for 60 minutes. The animals were sacrificed at 24 hours, 48 hours and 2 weeks after reperfusion. The infiltration of inflammatory cells was identified by the immunostaining of CD68+ cells. ELISA was employed to determine the inflammatory factors in the kidney and serum von Willebrand Factor (VWF). Tubular cell proliferation and apoptosis were identified by immunostaining. Renal fibrosis was assessed by Masson’s tri-chrome straining and alpha-smooth muscle actin (α-SMA) staining. The CX3CL1 expression in the kidney was measured by immunostaining and Western blot, respectively. In vitro, human umbilical vein endothelial cells were treated with or without MVs for 24 or 48 hours under hypoxia injury to test the CX3CL1 by immunostaining and Western blot. Results After administration of hWJMSC-MVs in acute kidney injury (AKI) rats, renal cell apoptosis was mitigated and proliferation was enhanced, inflammation was also alleviated in the first 48 hours. MVs also could suppress the expression of CX3CL1 and decrease the number of CD68+ macrophages in the kidney. In the late period, improvement of renal function and abrogation of renal fibrosis were observed. In vitro, MVs could down-regulate the expression of CX3CL1 in human umbilical vein endothelial cells under hypoxia injury at 24 or 48 hours. Conclusions A single administration of MVs immediately after ischemic AKI could ameliorate renal injury in

  3. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats.

    PubMed

    Yamabe, Noriko; Kang, Ki Sung; Hur, Jong Moon; Yokozawa, Takako

    2009-08-01

    Matcha, a powdered green tea produced by grinding with a stone mill, has been popularly used in the traditional tea ceremony and foods in Japan. Matcha is well known to be richer in some nutritional elements and epigallocatechin 3-O-gallate than other green teas. In our previous study, epigallocatechin 3-O-gallate exhibited protective effects against renal damage in a rat model of diabetic nephropathy. In the present study, we investigated the preventive effects of Matcha (50, 100, or 200 mg/kg/day) on the progression of hepatic and renal damage in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats were orally administered Matcha for 16 weeks, and we assessed biochemical parameters in the serum, liver, and kidney and expression levels of major products of advanced glycation end products (AGEs), N(6)-(carboxylmethyl)lysine (CML) and N(6)-(carboxylethyl)lysine (CEL), receptor for AGE (RAGE), and sterol regulatory element binding proteins (SREBPs)-1 and -2. Serum total protein levels were significantly increased by Matcha administration, whereas the serum albumin and glycosylated protein levels as well as the renal glucose and triglyceride levels were only slightly or not at all affected. However, Matcha treatment significantly lowered the glucose, triglyceride, and total cholesterol levels in the serum and liver, renal AGE levels, and the serum thiobarbituric acid-reactive substances levels. In addition, Matcha supplementation resulted in decreases in the renal CML, CEL, and RAGE expressions as well as an increase in hepatic SREBP-2 expression, but not that of SREBP-1. These results suggest that Matcha protects against hepatic and renal damage through the suppression of renal AGE accumulation, by decreases in hepatic glucose, triglyceride, and total cholesterol levels, and by its antioxidant activities.

  4. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro

    PubMed Central

    Chiang, Chih-Kang; Sheu, Meei-Ling; Lin, Yi-Wei; Wu, Cheng-Tien; Yang, Chin-Ching; Chen, Min-Wei; Hung, Kuan-Yu; Wu, Kuan-Dun; Liu, Shing-Hwa

    2011-01-01

    BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. The present study investigated, in vivo and in vitro, the anti-fibrotic and anti-inflammatory effects, particularly on the epithelial to mesenchymal transition of renal tubular cells, exerted by honokiol, a phytochemical used in traditional medicine, and mechanisms underlying these effects. EXPERIMENTAL APPROACH Anti-fibrotic effects in vivo were assayed in a rat model of renal fibrosis [the unilateral ureteral obstruction (UUO) model]. A rat tubular epithelial cell line (NRK-52E) was stimulated by transforming growth factor-β1 (TGF-β1) and treated with honokiol to explore possible mechanisms of these anti-fibrotic effects. Gene or protein expression was analysed by Northern or Western blotting. Transcriptional regulation was investigated using luciferase activity driven by a connective tissue growth factor (CTGF) promoter. KEY RESULTS Honokiol slowed development of renal fibrosis both in vivo and in vitro. Honokiol treatment attenuated tubulointerstitial fibrosis and expression of pro-fibrotic factors in the UUO model. Honokiol also decreased expression of the mRNA for the chemokine CCL2 and for the intracellular adhesion molecule-1, as well as accumulation of type I (α1) collagen and fibronectin in UUO kidneys. Phosphorylation of Smad-2/3 induced by TGF-β1 and CTGF luciferase activity in renal tubular cells were also inhibited by honokiol. CONCLUSIONS AND IMPLICATIONS Honokiol suppressed expression of pro-fibrotic and pro-inflammatory factors and of extracellular matrix proteins. Honokiol may become a therapeutic agent to prevent renal fibrosis. PMID:21265825

  5. Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30

    PubMed Central

    Gu, Di; Ju, Guanqun; Zhang, Guangyuan

    2016-01-01

    Background. The immoderation of mitochondrial fission is one of the main contributors in ischemia reperfusion injury (IRI) and mesenchymal stromal cells (MSCs) derived extracellular vesicles have been regarded as a potential therapy method. Here, we hypothesized that extracellular vesicles (EVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) ameliorate acute renal IRI by inhibiting mitochondrial fission through miR-30b/c/d. Methods. EVs isolated from the condition medium of MCS were injected intravenously in rats immediately after monolateral nephrectomy and renal pedicle occlusion for 45 minutes. Animals were sacrificed at 24 h after reperfusion and samples were collected. MitoTracker Red staining was used to see the morphology of the mitochondria. The expression of DRP1 was measured by western blot. miR-30 in EVs and rat tubular epithelial cells was assessed by qRT-PCR. Apoptosis pathway was identified by immunostaining. Results. We found that the expression of miR-30 in injured kidney tissues was declined and mitochondrial dynamics turned to fission. But they were both restored in EVs group in parallel with reduced cell apoptosis. What is more, when the miR-30 antagomirs were used to reduce the miRNA levels, all the related effects of EVs reduced remarkably. Conclusion. A single administration of hWJMSC-EVs could protect the kidney from IRI by inhibition of mitochondrial fission via miR-30. PMID:27799943

  6. New α-lipoic acid derivative, DHL-HisZn, ameliorates renal ischemia-reperfusion injury in rats.

    PubMed

    Koga, Hironori; Hagiwara, Satoshi; Kusaka, Jyunya; Goto, Koji; Uchino, Tetyuya; Shingu, Chihiro; Kai, Shinya; Noguchi, Takayuki

    2012-05-15

    Ischemia-reperfusion (I/R) occurs frequently in a variety of clinical settings, such as renal transplantation. In addition, I/R is a major cause of acute kidney injury (AKI). A recent study has reported that reactive oxygen species (ROS) are important mediators of AKI, suggesting that reducing ROS generation may prevent renal injury. The present study evaluated the ability of DHL-HisZn, a new α-lipoic acid derivative, to inhibit ROS generation and prevent renal I/R injury in rats. Rats received an intravenous infusion of DHL-HisZn or saline, and then underwent experimentally induced renal I/R injury or sham treatment. Rats were sacrificed after 60 min of ischemia and 24 h of reperfusion. To evaluate the renal protective effects of DHL-HisZn, serum blood urea nitrogen (BUN) and creatinine (Cre) concentrations were determined, kidneys were histologically assessed, and malondialdehyde (MDA), a biomarker of oxidative stress, was evaluated. In addition, antimycin A (AMA)-stimulated RAW264.7 cells were treated with DHL-HisZn to assess its antioxidant effects in vitro. DHL-HisZn treatment attenuated I/R-induced histologic alterations, reduced serum levels of serum BUN and Cre, and decreased MDA levels in the kidneys of rats with renal I/R injury. Furthermore, DHL-HisZn decreased ROS levels in AMA-stimulated RAW264.7 cells. Our in vitro and in vivo findings suggest that DHL-HisZn may have therapeutic potential against various human I/R conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats

    PubMed Central

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  8. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats.

    PubMed

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  9. [Temporary vascular access for extra-renal detoxification: utilization of tunneled silicone double-lumen catheters by the percutaneous route].

    PubMed

    Jean, G; Chazot, C; Vanel, T

    1994-01-01

    Femoral or subclavian central venous catheters are commonly used for temporary vascular access in haemodialysis. We used 36 tunnelized siliconed double lumen catheter (Quinton Permcath or Hickman Bard), most of them in right internal jugular percutaneously. Indication for this catheter were acute or chronic renal failure, plasma exchange, rescue of arterio venous fistula or peritoneal dialysis. Insertion incidents were minors (local haematoma), mean functional time was 51 days. Catheters were changed in 5 cases of infection, 3 cases of obstruction and in 2 accidental remove. Insertion facility, low morbidity, potentially long time use, high blood flow rate with low recirculation argue for this expensive material.

  10. Effects of Fetal and Neonatal Murine Peripheral Blood Mononuclear Cells Infusion on MicroRNA-145 Expression in Renal Vascular Smooth Muscle Cells in MRL/lpr Mice.

    PubMed

    Wen, C; Liu, X Y; Wan, W Q; Yi, Z W

    2015-10-01

    For patients with refractory systemic lupus erythematosus, current medications are insufficient to control their condition, and new treatments are necessary. We aimed to evaluate the therapeutic effect of fetal and neonatal murine peripheral blood (FNPB) mononuclear cells and their impact on microRNA-145 (miR-145) in renal vascular smooth muscle cells (VSMCs) of MRL/lpr lupus-prone mice. MRL/lpr mice aged 20 weeks were randomized to 3 groups of 15 (control group, radiation group, infusion group). The renal tissues were subjected to pathological examination. In situ hybridization assay was applied to measure miR-145 expression in renal vessels of MRL/lpr mice. The infusion group had significantly better results for pathological renal tissue lesions than either the control or radiation group. In MRL/lpr mice, there was positive expression of miR-145 in renal VSMCs, although the expression of miR-145 was not discernible in renal vascular intima and adventitia. The miR-145 expression in renal VSMCs in the infusion group was significantly higher than in the control or radiation group, and higher in the radiation group than in the control group; however, the difference was not statistically significant. The increased expression of miR-145 in renal VSMCs might be one of the mechanisms supporting FNPB as a therapy for lupus nephritis; it also suggests that the miR-145 in renal vessels might be a new target for treatment of lupus nephritis.

  11. Synergistic effects of conjugated linoleic acid and chromium picolinate improve vascular function and renal pathophysiology in the insulin-resistant JCR:LA-cp rat.

    PubMed

    Proctor, S D; Kelly, S E; Stanhope, K L; Havel, P J; Russell, J C

    2007-01-01

    Conjugated linoleic acid (CLA) is a natural constituent of dairy products, specific isomers of which have recently been found to have insulin sensitizing and possible antiobesity actions. Chromium is a micronutrient which, as the picolinate (CrP), has been shown to increase insulin sensitivity in animal models, including the JCR:LA-cp rat. We tested the hypothesis that these agents may have beneficial synergistic effects on the micro- and macrovasculopathy associated with hyperinsulinaemia and early type 2 diabetes. Insulin-resistant cp/cp rats of the JCR:LA-cp strain were treated with mixed isomers of CLA (1.5% w/w in the chow) and/or CrP at 80 microg/kg/day (expressed as Cr) from 4 weeks of age to 12 weeks of age. Plasma insulin, lipid and adiponectin levels, aortic vascular function, renal function and glomerular sclerosis were assessed. CLA administration reduced food intake, body weight and fasting insulin in JCR:LA-cp rats. Plasma adiponectin levels were significantly elevated in rats treated with both CLA and CrP. Aortic hypercontractility was reduced and the relaxant response to the nitric oxide-releasing agent acetylcholine (Ach) was increased in CrP-treated rats. Striking reductions were also observed in the level of urinary albumin and the severity of glomerular sclerosis in rats treated specifically with CLA. CLA and CrP have beneficial effects ameliorating several of the pathophysiologic features of an insulin-resistant rat model. These supplements may be useful adjuncts in the management of patients with the metabolic syndrome and warrant further study.

  12. Amelioration of Doxorubicin-Induced Cardiac and Renal Toxicity by Oxycarotenoid Lutein and Its Mechanism of Action.

    PubMed

    Sindhu, Edakkadath Raghavan; Nithya, Thattaruparambil Raveendran; Binitha, Ponnamparambil Purushothaman; Kuttan, Ramadasan

    2016-01-01

    We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.

  13. [Long-term development of Permacath Quinton catheters used as a vascular access route for extra-renal detoxification].

    PubMed

    Dupont, D; Morinière, P; Pourchez, T; el Esper, N; Fournier, A

    1994-01-01

    Between July 1984 and July 1991, we have inserted surgically 147 Permcath Quinton catheters in 126 uremic patients for the following reasons: group I: necessity of hemodialysis without vascular access for acute (group Ia: 44 patients) or chronic renal failure (group Ib: 11 patients); group II: difficulty of creation or loss of vascular access (group II: 45 patients); group III: hemodialysis for patients with short life expectation or contraindications for vascular access on their limbs (group III: 26 patients). The duration of use (+/- SD and range) were respectively for each group: 1.6 +/- 2 (0-10); 3.4 +/- 2.8 (1-11); 7.4 +/- 11 (0-50); 6.7 +/- 8.7 (0.1-34.5) months. Seventeen patients (group IV) coming from groups Ib and II preferred to go on with the use of their catheter for 10.5 +/- 13.5 (0.1-50) months rather than to use their arteriovenous fistula. The complications observed on whole population were: 11 septicemia responsible of 2 deaths, 9 cutaneous local infections, 28 total obstructions of the catheter, 17 partial obstructions with insufficient flow; 10 destructions of the catheter. In conclusion the Permcath Quinton catheter is an adequate long term vascular access for hemodialysis. It is well tolerated since it is preferred to the usual arteriovenous fistula by many patients who have both. The incidence of infection is low. However, obstruction (partial ou total) is frequent (29%), necessitating local fibrinolytic treatment.

  14. [Effects and mechanisms of Qifu decoction ameliorating renal tubulointerstitial fibrosis through inhibiting ERK1/2 signaling pathway in unilateral ureteral obstruction rats with yang deficiency].

    PubMed

    Sun, Wei; Yin, Xue-Jiao; Tu, Yue; Wan, Yi-Gang; Liu, Hong; Hu, Hao

    2014-11-01

    To demonstrate the effects and mechanisms of Qifu decoction( QFD) on renal interstitial fibrosis (RIF) in model rats with yang-deficiency syndrome. The rats were randomly divided into 3 groups, the Sham group (Group A), the Model group (Group B), the Qifu decoction group (Group C) and the Enalapril group (Group D). The RIF model was established by adenine administrated and unilateral ureteral obstruction (UUO) of the left ureter. After the model was successfully established, the rats in Group C and D were administrated with QFD or the Enalapril suspension,while the rats in Group A and B were administrated with distilled water. All rats were administrated for 3 weeks. Before administration and at the end of week 1, 2 and 3, the rats were weighted, and 24 h urinary protein excretion (Upro), urinary β2-microglobulin (Uβ2-MG) and urinary N-acetyl-D-glucosaminidase (NAG) were examined, respectively. All rats were killed after administration for 3 weeks. Blood and renal tissues were collected, renal morphology and tubulointerstitial morphology were evaluated, respectively. Serum cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), blood urea nitrogen (BUN), serum creatinine (Scr) and uric acid (UA) were detected, respectively. The protein expressions of E-cadherin, α-smooth muscle actin(α-SMA), transforming growth factor-β1 (TGF-β1), onnective tissue growth factor (CTGF) extracellular signal-regulated protein kinase 1/2(ERK1/2) and phosphorylated-ERK1/2 (p-ERK1/2) in kidney were evaluated, respectively. QFD ameliorated serum cAMP level and the rate of cAMP/cGMP, attenuated urinary β2-MG level, NAG level and renal tubulointerstitial fibrosis, increased E-cadherin protein expression, and reduced α-SMA, TGF-β1, CTGF and p-ERK1/2 protein expressions in the kidney. However, QFD had no influence on renal function in vivo. In addition, these effects were better than those of the model rats treated by Enalapril. QFD could alleviate yang

  15. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance.

    PubMed

    Xu, Yixiao; Lin, Hongzhou; Zheng, Wenjie; Ye, Xiaohua; Yu, Lingfang; Zhuang, Jieqiu; Yang, Qing; Wang, Dexuan

    2016-11-15

    Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.

  16. Nitric Oxide Bioavailability and Its Potential Relevance to the Variation in Susceptibility to the Renal and Vascular Complications in Patients With Type 2 Diabetes

    PubMed Central

    Earle, Kenneth A.; Harry, Diane; Madhavi, Mitra; Zitouni, Karima; Barron, Jeffrey

    2009-01-01

    OBJECTIVE—We compared the renal and systemic vascular (renovascular) response to a reduction of bioavailable nitric oxide (NO) in type 2 diabetic patients without nephropathy and of African and Caucasian heritage. RESEARCH DESIGN AND METHODS—Under euglycemic conditions, renal blood flow was determined by a constant infusion of paraminohippurate and changes in blood pressure and renal vascular resistance estimated before and after an infusion of l-Ng-monomethyl-l-arginine. RESULTS—In the African-heritage group, there was a significant fall in renal blood flow (Δ−46.0 ml/min per 1.73 m2; P < 0.05) and rise in systolic blood pressure (Δ10.0 mmHg [95% CI 2.3–17.9]; P = 0.017), which correlated with an increase in renal vascular resistance (r2 = 0.77; P = 0.004). CONCLUSIONS—The renal vasoconstrictive response associated with NO synthase inhibition in this study may be of relevance to the observed vulnerability to renal injury in patients of African heritage. PMID:18945925

  17. Vascular smooth muscle G(q) signaling is involved in high blood pressure in both induced renal and genetic vascular smooth muscle-derived models of hypertension.

    PubMed

    Harris, David M; Cohn, Heather I; Pesant, Stéphanie; Zhou, Rui-Hai; Eckhart, Andrea D

    2007-11-01

    More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.

  18. The Amelioration of Renal Damage in Skp2-Deficient Mice Canceled by p27 Kip1 Deficiency in Skp2−/− p27−/− Mice

    PubMed Central

    Suzuki, Sayuri; Fukasawa, Hirotaka; Misaki, Taro; Togawa, Akashi; Ohashi, Naro; Kitagawa, Kyoko; Kotake, Yojiro; Liu, Ning; Niida, Hiroyuki; Nakayama, Keiko; Nakayama, Keiichi I.; Yamamoto, Tatsuo; Kitagawa, Masatoshi

    2012-01-01

    SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2−/− mice. However, it remains unclear whether the amelioration of renal injury in Skp2−/− mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2−/−p27−/− mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2−/− mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2−/−p27−/− mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2−/− mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2−/−p27−/− mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice. PMID:22558406

  19. Finasteride reduces microvessel density and expression of vascular endothelial growth factor in renal tissue of diabetic rats.

    PubMed

    Tian, He-lin; Zhao, Chao-xian; Wu, Hai-ying; Xu, Zhong-xin; Wei, Li-shun; Zhao, Ru-tong; Jin, Dong-ling

    2015-06-01

    Vascular endothelial growth factor (VEGF) plays a critical role in the pathogenesis of diabetic microvascular complications. Finasteride has been confirmed to decrease VEGF expression in prostate and prostatic suburethral tissue resulting in limiting hematuria from human benign prostatic hyperplasia. The purpose of this study was to evaluate the effects of finasteride on microvessel density (MVD), VEGF protein and mRNA expressions in the renal tissue of diabetic rats. Diabetic rats induced by streptozotocin were intragastrically given finasteride at 30 mg/kg body weight once a day for 4 weeks. Histomorphologic changes in kidney were observed under light microscope. Immunohistochemistry for CD34 and VEGF on kidney sections was performed to assess MVD and VEGF protein expression in glomeruli of rats, respectively. The VEGF mRNA expression in the renal tissue was examined using reverse transcription polymerase chain reaction analysis. The glomerular tuft area, glomerular volume, MVD, VEGF protein expression in glomeruli and VEGF mRNA expression in the renal cortex tissue were significantly increased in diabetic rats and finasteride-treated rats when compared with controls (P < 0.01, P < 0.05). When compared with diabetic rats, the glomerular tuft area, glomerular volume, MVD, VEGF protein expression in glomeruli and VEGF mRNA expression in the renal cortex tissue of finasteride-treated rats were significantly decreased (P < 0.05, P < 0.01). Finasteride reduces the VEGF expression and decreases the MVD in the renal tissue of diabetic rats, suggesting the therapeutic potential of finasteride on diabetic microvascular complications.

  20. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model.

    PubMed

    Grant, Stephan; Tran, Phong; Zhang, Qin; Zou, Aihua; Dinh, Dac; Jensen, Jordan; Zhou, Sue; Kang, Xiaolin; Zachwieja, Joseph; Lippincott, John; Liu, Kevin; Johnson, Sarah Ludlum; Scales, Stephanie; Yin, Chunfeng; Nukui, Seiji; Stoner, Chad; Prasanna, Ganesh; Lafontaine, Jennifer; Wells, Peter; Li, Hui

    2010-02-10

    Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.

  1. Preoperative Lymphocyte-Monocyte Ratio Ameliorates the Accuracy of Differential Diagnosis in Non-Metastatic Infiltrative Renal Masses

    PubMed Central

    Han, Jang Hee; Yoon, Young Eun; Kim, Sook Young; Cho, Young In; Rha, Koon Ho; Choi, Young Deuk

    2017-01-01

    Purpose Distinguishing infiltrative renal cell carcinoma (RCC) from transitional cell carcinoma (TCC) is a challenging issue due to their radiologic similarities. We evaluated systemic inflammatory biomarkers as parameters for distinguishing tumor types. Materials and Methods A computerized search of medical records from November 2005 to October 2015 identified 116 patients with infiltrative renal masses who were difficult to diagnose confirmatively in radiological study. We investigated the diagnostic efficacy among these patients with their preoperative absolute neutrophil counts (ANC), absolute lymphocyte counts (ALC), absolute monocyte counts (AMC), neutrophil-lymphocyte ratio (NLR), and lymphocyte-monocyte ratio (LMR). Results The infiltrative RCC group demonstrated significantly lower ALC {1449/µL (1140–1896), median [interquartile range (IQR)]} than the TCC group [1860/µL (1433–2342), p=0.016]. LMR [median (IQR)] also was lower in the infiltrative RCC group [2.98 (2.32–4.14) vs. TCC group 4.10 (2.86–6.09); p=0.011]. In subgroup analysis, non-metastatic infiltrative RCC showed lower ALC and LMR and higher NLR than non-metastatic TCC. Within non-metastatic infiltrative renal masses, multivariate logistic regression analysis revealed that younger patient age and lower LMR were associated with infiltrative RCC [odds ratios (OR) 0.874, p=0.024 and OR 0.461, p=0.048, respectively]. Receiver operating characteristic curve analysis showed that younger age and lower LMR were highly predictive of non-metastatic RCC (area under the curve=0.919, p<0.001). Conclusion Age and LMR were significantly different between patients with infiltrative renal mass. These are potential markers for distinguishing between infiltrative RCC and TCC without metastasis. PMID:28120570

  2. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling.

    PubMed

    Xie, Xi; Chang, Xiuting; Chen, Lei; Huang, Kaipeng; Huang, Juan; Wang, Shaogui; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2013-12-05

    The accumulation of glomerular extracellular matrix proteins, especially fibronectin (FN), is a critical pathological characteristic of diabetic renal fibrosis. Inflammation mediated by nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of diabetic nephropathy (DN). RhoA/ROCK signaling is responsible for FN accumulation and NF-κB activation. Berberine (BBR) treatment significantly inhibited renal inflammation and thus improved renal damage in diabetes. Here, we study whether BBR inhibits FN accumulation and NF-κB activation by inhibiting RhoA/ROCK signaling and the underlying mechanisms involved. Results showed that BBR effectively inhibited RhoA/ROCK signaling activation in diabetic rat kidneys and high glucose-induced glomerular mesangial cells (GMCs) and simultaneously down-regulated NF-κB activity, which was accompanied by reduced intercellular adhesionmolecule-1, transforming growth factor-beta 1 and FN overproduction. Furthermore, we observed that BBR abrogated high glucose-mediated reactive oxygen species generation in GMCs. BBR and N-acetylcysteine inhibited RhoA/ROCK signaling activation in high glucose-exposed GMCs. Collectively, our data suggest that the renoprotective effect of BBR on DN partly depends on RhoA/ROCK inhibition. The anti-oxidative stress effect of BBR is responsible for RhoA/ROCK inhibition in DN.

  3. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes

    PubMed Central

    Nagaishi, Kanna; Mizue, Yuka; Chikenji, Takako; Otani, Miho; Nakano, Masako; Konari, Naoto; Fujimiya, Mineko

    2016-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have contributed to the improvement of diabetic nephropathy (DN); however, the actual mediator of this effect and its role has not been characterized thoroughly. We investigated the effects of MSC therapy on DN, focusing on the paracrine effect of renal trophic factors, including exosomes secreted by MSCs. MSCs and MSC-conditioned medium (MSC-CM) as renal trophic factors were administered in parallel to high-fat diet (HFD)-induced type 2 diabetic mice and streptozotocin (STZ)-induced insulin-deficient diabetic mice. Both therapies showed approximately equivalent curative effects, as each inhibited the exacerbation of albuminuria. They also suppressed the excessive infiltration of BMDCs into the kidney by regulating the expression of the adhesion molecule ICAM-1. Proinflammatory cytokine expression (e.g., TNF-α) and fibrosis in tubular interstitium were inhibited. TGF-β1 expression was down-regulated and tight junction protein expression (e.g., ZO-1) was maintained, which sequentially suppressed the epithelial-to-mesenchymal transition of tubular epithelial cells (TECs). Exosomes purified from MSC-CM exerted an anti-apoptotic effect and protected tight junction structure in TECs. The increase of glomerular mesangium substrate was inhibited in HFD-diabetic mice. MSC therapy is a promising tool to prevent DN via the paracrine effect of renal trophic factors including exosomes due to its multifactorial action. PMID:27721418

  4. Vitamin E ameliorates renal fibrosis by inhibition of TGF-beta/Smad2/3 signaling pathway in UUO mice.

    PubMed

    Tasanarong, Adis; Kongkham, Supranee; Duangchana, Soodkate; Thitiarchakul, Supachai; Eiam-Ong, Somchai

    2011-12-01

    One striking feature of chronic kidney disease (CKD) is tubular atrophy and interstitial fibrosis (TA/IF). During chronic renal injury, transforming growth factor-beta (TGF-beta) is involved in this process causing progression of renal fibrosis. Smad2/3 proteins have been identified to have an important function in the expression of extracellular matrix (ECM) regulation through TGF-beta signaling pathway. In the present study, the authors investigated the effect of vitamin E on renal fibrosis in mice model of unilateral ureteral obstruction (UUO). UUO or sham-operated mice were randomly assigned to receive vitamin E (alpha tocopherol) or placebo and were sacrificed on days 3, 7 and 14 after UUO or sham operation. Kidney specimens were fixed for pathological study and immunohistochemistry for TGF-beta1. Protein expression of TGF-beta1 and Smad2/3 was determined by western blot analysis. The mRNA expression of TGF-beta1 was measured by real-time RT-PCR. Vitamin E treated UUO mice had less severity of renal fibrosis than placebo treatment. TA/IF was significantly attenuated by vitamin E treatment. Immunohistochemistry revealed increasing of TGF-beta1 protein expression in the interstitium area of obstructed kidneys. Moreover increasing of TGF-beta1 protein and upregulation of TGF-beta1 mRNA in UUO mice were confirmed by western blot and real time RT-PCR. In contrast, vitamin E treatment significantly inhibited the expression of TGF-beta1 protein and mRNA in UUO mice compared with placebo treatment. Interestingly, Smad2/3 protein expression became progressive increasing in UUO mice on day 3, 7 and 14 compared with sham controls. The expression of Smad2/3 protein was significantly lower in vitamin E treated UUO mice than placebo treatment in any time points. Vitamin E treatment attenuated the progression of renal fibrosis in obstructed kidneys. The renoprotective effect of vitamin E could be mediated by inhibition of TGF-beta/Smad2/3 signaling pathway.

  5. Antigenic composition of human renal vascular endothelium assessed by kidney perfusion.

    PubMed

    Baldwin, W M; Claas, F H; van Rood, J J; van Es, L A

    1984-05-01

    Intravascular perfusion of healthy, viable human kidneys either with human sera or with monoclonal antibodies specific for individual HLA-A, B, DR or E-M antigens demonstrated that all of these antigens are exposed to circulating antibodies and thus can serve as stimuli or targets for immunologic mediators of renal transplant rejection. In addition, these antibodies could be recovered from the renal vessels by brief treatment with acid buffer.

  6. Renal and vascular glutathione S-transferase mu is not affected by pharmacological intervention to reduce systolic blood pressure.

    PubMed

    Koh-Tan, Han Hui Caline; Graham, Delyth; Hamilton, Carlene A; Nicoll, Gavin; Fields, Laura; McBride, Martin W; Young, Barbara; Dominiczak, Anna F

    2009-08-01

    Our previous studies demonstrated reduced rat glutathione S-transferase mu type 1 (Gstm1) expression in stroke-prone spontaneously hypertensive rats (SHRSPs), when compared with the normotensive Wistar-Kyoto rat. This study investigated the effects of angiotensin II type 1 receptor blocker (ARB) and a diuretic/vasodilator combination on the expression levels of rat Gstm1 and other Gstm isoforms. Antihypertensive treatments of young and mature SHRSPs with an ARB and a diuretic/vasodilator combination improved SBP but did not affect the expression levels of Gstm1. Although Gstm1 is a member of a family of highly homologous genes, with the exception of Gstm2, there was no evidence for compensatory increase in expression of other Gstm isoforms. In contrast, we observed reduced expression of several other Gstm isoforms in untreated SHRSPs. Untreated SHRSPs demonstrated increased renal and vascular oxidative stress, both of which were not significantly affected by the antihypertensive treatments. Untreated SHRSPs scored significantly higher when assessed for renal histopathological damage, and this was improved by antihypertensive treatments. These results suggest that reduced Gstm1 expression in SHRSPs is due to strain-dependent genetic abnormalities, playing a causative role in the development of hypertension, probably through oxidative stress pathway. Renal changes occur as a consequence of increased blood pressure and can be improved when treated with antihypertensive drugs. In silico comparative genome analysis combined with expression studies in rat and human vascular tissue revealed that there are possible four human homologues (GSTM1, GSTM2, GSTM4 and GSTM5) for rat Gstm1.

  7. Differential changes in vascular mRNA levels between rat iliac and renal arteries produced by cessation of voluntary running.

    PubMed

    Padilla, Jaume; Jenkins, Nathan T; Roberts, Michael D; Arce-Esquivel, Arturo A; Martin, Jeffrey S; Laughlin, M Harold; Booth, Frank W

    2013-01-01

    Early vascular changes at the molecular level caused by adoption of a sedentary lifestyle are incompletely characterized. Herein, we employed the rodent wheel-lock model to identify mRNAs in the arterial wall that are responsive to the acute transition from higher to lower levels of daily physical activity. Specifically, we evaluated whether short-term cessation of voluntary wheel running alters vascular mRNA levels in rat conduit arteries previously reported to have marked increases (i.e. iliac artery) versus marked decreases (i.e. renal artery) in blood flow during running. We used young female Wistar rats with free access to voluntary running wheels. Following 23 days of voluntary running (average distance of ∼15 km per night; ∼4.4 h per night), rats in one group were rapidly transitioned to a sedentary state by locking the wheels for 7 days (n = 9; wheel-lock 7 day rats) or remained active in a second group for an additional 7 days (n = 9; wheel-lock 0 day rats). Real-time PCR was conducted on total RNA isolated from iliac and renal arteries to evaluate expression of 25 pro-atherogenic and anti-atherogenic genes. Compared with the iliac arteries of wheel-lock 0 day rats, iliac arteries of wheel-lock 7 day rats exhibited increased expression of TNFR1 (+19%), ET1 (+59%) and LOX-1 (+31%; all P < 0.05). Moreover, compared with renal arteries of wheel-lock 0 day rats, renal arteries of wheel-lock 7 day rats exhibited decreased expression of ETb (-23%), p47phox (-32%) and p67phox (-19%; all P < 0.05). These data demonstrate that cessation of voluntary wheel running for 7 days produces modest, but differential changes in mRNA levels between the iliac and renal arteries of healthy rats. This heterogeneous influence of short-term physical inactivity could be attributed to the distinct alteration in haemodynamic forces between arteries.

  8. Resveratrol Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Imamura, Haruki; Yamaguchi, Takashi; Nagayama, Daiji; Saiki, Atsuhito; Shirai, Kohji; Tatsuno, Ichiro

    2017-08-03

    Resveratrol has been reported to have potent anti-atherosclerotic effects in animal studies. However, there are few interventional studies in human patients with atherosclerogenic diseases. The cardio-ankle vascular index (CAVI) reflects arterial stiffness and is a clinical surrogate marker of atherosclerosis. The aim of the present study was to investigate the effect of resveratrol on arterial stiffness assessed by CAVI in patients with type 2 diabetes mellitus (T2DM).In this double-blind, randomized, placebo-controlled study, 50 patients with T2DM received supplement of a 100mg resveratrol tablet (total resveratrol: oligo-stilbene 27.97 mg/100 mg/day) or placebo daily for 12 weeks. CAVI was assessed at baseline and the end of study. Body weight (BW), blood pressure (BP), glucose and lipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs; an oxidative stress marker) were also measured.Resveratrol supplementation decreased systolic BP (-5.5 ± 13.0 mmHg), d-ROMs (-25.6 ± 41.8 U.CARR), and CAVI (-0.4 ± 0.7) significantly (P < 0.05) and decreased BW (-0.8 ± 2.1 kg, P = 0.083) and body mass index (-0.5 ± 0.8 kg/m(2), P = 0.092) slightly compared to baseline, while there were no significant changes in the placebo group. Decreases in CAVI and d-ROMs were significantly greater in the resveratrol group than in the placebo group. Multivariate logistic regression analysis identified resveratrol supplementation as an independent predictor for a CAVI decrease of more than 0.5.In conclusion, 12-week resveratrol supplementation may improve arterial stiffness and reduce oxidative stress in patients with T2DM. Resveratrol may be beneficial in preventing the development of atherosclerosis induced by diabetes. However, a large-scale cohort study is required to validate the present findings.

  9. Use of Alendronate Sodium (Fosamax) to Ameliorate Osteoporosis in Renal Transplant Patients: A Case-Control Study

    PubMed Central

    Huang, Wen-Hung; Lee, Shen-Yang; Weng, Cheng-Hao; Lai, Ping-Chin

    2012-01-01

    Background Renal transplant patients often have severe bone and mineral deficiencies. While the clinical effects of immunosuppressive agents like calcineurin inhibitors (CIs) and sirolimus on bone turnover are unclear, bisphosphonates are effective in bone recovery in these patients. Gender is significantly associated with osteoporosis and affects bone turnover, which is different in women and men. The effective gender-related site of action of bisphosphonates is unknown. Methods Initially, we enrolled 84 kidney recipients who had received their transplants at least 5 months ago; of these, 8 were excluded and 76 were finally included in the study. First bone mineral density (BMD) at the lumbar spine, hip, and femoral neck was determined using dual-energy X-ray absorptiometry (DXA) between September 2008 and March 2009. These 76 patients underwent a repeat procedure after a mean period 14 months. Immunosuppressive agents, bisphosphonates, patients' characteristics, and biochemical factors were analyzed on the basis of the BMD determined using DXA. Results After the 14-month period, the BMD of lumbar spine increased significantly (from 0.9 g/cm2 to 0.92 g/cm2, p<0.001), whereas that of the hip and femoral neck did not. Ordinal logistic regression analysis was used to show that Fosamax improved bone condition, as defined by WHO (p = 0.007). The use of immunosuppressive agents did not affect bone turnover (p>0.05). Moreover, in subgroup analysis, Fosamax increased the BMD at the lumbar spine and the hipbone in males (p = 0.028 and 0.03, respectively) but only at the lumbar spine in females (p = 0.022). Conclusion After a long periods after renal transplantation, the detrimental effects of steroid and immunosuppressive agents on bone condition diminished. Short-term Fosamax administration effectively improves BMD in these patients. The efficacy of Fosamax differed between male and female renal transplant patients. PMID:23185261

  10. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H2S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H2S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H2S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  11. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways.

    PubMed

    Yu, Jian-Bo; Shi, Jia; Zhang, Yuan; Gong, Li-Rong; Dong, Shu-An; Cao, Xin-Shun; Wu, Li-Li; Wu, Li-Na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.

  12. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  13. Renal inactivation, mineralocorticoid generation, and 11beta-hydroxysteroid dehydrogenase inhibition ameliorate the antimineralocorticoid effect of progesterone in vivo.

    PubMed

    Quinkler, M; Meyer, B; Oelkers, W; Diederich, S

    2003-08-01

    Progesterone (P) is a strong mineralocorticoid receptor (MR) antagonist in vitro. The high P concentrations seen in normal pregnancy only moderately increase renin and aldosterone concentrations. In previous in vitro studies we hypothesized that this may be explained by intrarenal conversion of P to less potent metabolites. To investigate the in vivo anti-MR potency of P, we performed an infusion study in patients with adrenal insufficiency (n = 8). They omitted 9alpha-fluorocortisol for 4 d and hydrocortisone for 0.5 d before a continuous iv infusion of aldosterone for 8.5 h, with an additional iv P infusion commenced at 4 h. During aldosterone infusions the initially elevated urinary sodium to potassium ratio decreased significantly. Despite the 1000-fold excess of P over aldosterone, the urinary sodium to potassium ratio and urinary sodium excretion increased only slightly after 3 h of P infusion. We detected inhibition of renal 11beta-hydroxysteroid dehydrogenase type 2 by P, thus giving cortisol/prednisolone access to the MR. Urinary and plasma concentrations of 17alpha-hydroxyprogesterone, a major metabolite of renal P metabolism, and those of serum androstenedione and deoxycorticosterone, a mineralocorticoid itself, increased significantly during P infusion. This supports the hypothesis of an effective protection of the MR from P by efficient extraadrenal downstream conversion of P.

  14. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model.

    PubMed

    Abdel-Moneim, Ashraf M; El-Toweissy, Mona Y; Ali, Awatef M; Awad Allah, Abd Allah M; Darwish, Hanaa S; Sadek, Ismail A

    2015-11-01

    This study aims to evaluate the protective role of curcumin (Curc) against hematological and biochemical changes, as well as renal pathologies induced by lead acetate [Pb (CH3COO)2·3H2O] treatment. Male albino rats were intraperitoneally treated with Pb(2+) (25 mg of lead acetate/kg b.w., once a day) alone or in combination with Curc (30 mg of Curc/kg b.w., twice a day) for 7 days. Exposure of rats to Pb(2+) caused significant decreases in hemoglobin (Hb) content, hematocrit (Ht) value, and platelet (Plt) count, while Pb(2+)-related leukocytosis was accompanied by absolute neutrophilia, monocytosis, lymphopenia, and eosinopenia. A significant rise in lipid peroxidation (LPO) and a marked drop of total antioxidant capacity (TAC) were evident in the kidney, liver, and serum of Pb(2+) group compared to that of control. Furthermore, significantly high levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), and a sharp drop in serum high-density lipoprotein (HDL-C) level were also seen in blood after injection of Pb(2+). Additionally, hepatorenal function tests were enhanced. Meanwhile, Pb(2+) produced marked histo-cytological alterations in the renal cortex. Co-administration of Curc to the Pb(2+)-treated animals restored most of the parameters mentioned above to near-normal levels/features. In conclusion, Curc appeared to be a promising agent for protection against Pb(2+)-induced toxicity.

  15. Reducing inflammatory cytokine production from renal collecting duct cells by inhibiting GATA2 ameliorates acute kidney injury.

    PubMed

    Yu, Lei; Moriguchi, Takashi; Kaneko, Hiroshi; Hayashi, Makiko; Hasegawa, Atsushi; Nezu, Masahiro; Saya, Hideyuki; Yamamoto, Masayuki; Shimizu, Ritsuko

    2017-08-14

    Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia-reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulo-macrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were down-regulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a pro-inflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI. Copyright © 2017 American Society for Microbiology.

  16. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway.

    PubMed

    Meng, Qiu-Hong; Liu, Hong-Bao; Wang, Jian-Bo

    2016-10-01

    Polydatin, a glucoside of resveratrol, recently has been demonstrated possibly to exert its biological effects by targeting sonic hedgehog (Shh). However, whether Shh signaling pathway is involved in the therapeutic effects of polydatin for renal ischemia/reperfusion (I/R) injury has not been evaluated. Our results showed that I/R induced the secretion of Shh, upregulated Patched and Smoothened, and enhanced the nuclear translocation and target gene transcription of Glioblastoma 1 in renal I/R injury models, which were further upregulated after the administration of polydatin significantly and in turn exerted prominent nephroprotective effects against cell apoptosis and oxidative stress. The treatment with cyclopamine (a specific inhibitor of Smoothened) or 5E1 (an anti-Shh antibody) not only markedly inhibited the activation of the Shh pathway, but also dramatically suppressed the nephroprotective effects of polydatin above-mentioned. These results advance our knowledge that polydatin can provide protection for kidneys against I/R injury by enhancing antioxidant capacity and decreasing cell apoptosis through activating Shh signaling pathway.

  17. Berberine ameliorates renal injury by regulating G proteins-AC- cAMP signaling in diabetic rats with nephropathy.

    PubMed

    Tang, Li Qin; Wang, Feng Ling; Zhu, Ling Na; Lv, Fei; Liu, Sheng; Zhang, Shan Tang

    2013-06-01

    Diabetic nephropathy (DN) is a progressive kidney disease that is caused by injury to glomerulus and glomerular mesangial cells (MCs) proliferation play a critical role in the pathogenesis of DN. The current studies were undertaken to investigate the protective effects and the possible molecular mechanism of berberine on streptozotocin (STZ)-induced DN rats. Male Wistar rats were randomly assigned to normal control and DN groups of comparable age. Three DN groups received 50, 100 and 200 mg/kg of berberine for 8 weeks via daily intragastrically, respectively. The G proteins-adenylyl cyclase (AC)-cAMP signaling pathway and glomerular MCs proliferation were examined in STZ-induced diabetic rat kidney. Enhanced MCs proliferation and remarkable renal injury were concomitant with activation of Gαi and inhibition of Gαs and cAMP in DN model group. Berberine treatment for 8 weeks abolished the above changes by upregulating the expression of Gαs protein and downregulating the expression of Gαi protein, increasing cAMP level, and inhibiting MCs proliferation compared with model group. Taken together, for the first time, these results demonstrated that berberine can relieve renal injury in DN rats through mediating G proteins-AC-cAMP signaling pathway and inhibiting the abnormal proliferation of MCs by increasing cAMP level, suggesting that berberine could be a potential therapeutic agent for the treatment of DN.

  18. Tripterygium Glycosides Tablet Ameliorates Renal Tubulointerstitial Fibrosis via the Toll-Like Receptor 4/Nuclear Factor Kappa B Signaling Pathway in High-Fat Diet Fed and Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ma, Ze-jun; Zhang, Xiao-na; Li, Li; Yang, Wei; Wang, Shan-shan; Guo, Xin; Sun, Pei; Chen, Li-ming

    2015-01-01

    Tripterygium glycosides tablet (TGT) is a Chinese traditional medicine that has been shown to protect podocytes from injury and reduce the proteinuria. The aim of this study was to assess the effect of TGT on renal tubulointerstitial fibrosis and its potential mechanism in high-fat diet fed and STZ-induced diabetic rats. Rats were randomly divided into normal control rats (NC group), diabetic rats without drug treatment (DM group), and diabetic rats treated with TGT (1, 3, or 6 mg/kg/day, respectively) for 8 weeks. The results showed that 24 h proteinuria and urinary N-acetyl-glucosaminidase (NAG) in diabetic rats were decreased by TGT treatment without affecting blood glucose. Masson's trichrome stains showed that apparent renal tubulointerstitial fibrosis was found in DM group, which was ameliorated by TGT treatment. The expression of α-SMA was significantly decreased, accompanied by increased expression of E-cadherin in TGT-treated rats, but not in untreated DM rats. Further studies showed that TGT administration markedly reduced expression of TLR4, NF-κB, IL-1β, and MCP-1 in TGT-treated diabetic rats. These results showed that TGT could ameliorate renal tubulointerstitial fibrosis, the mechanism which may be at least partly associated with the amelioration of EMT through suppression of the TLR4/NF-κB pathway. PMID:26347890

  19. Distribution of Vascular Patterns in Different Subtypes of Renal Cell Carcinoma. A Morphometric Study in Two Distinct Types of Blood Vessels.

    PubMed

    Ruiz-Saurí, Amparo; García-Bustos, V; Granero, E; Cuesta, S; Sales, M A; Marcos, V; Llombart-Bosch, A

    2017-07-01

    To analyze the presence of mature and immature vessels as a prognostic factor in patients with renal cell carcinoma and propose a classification of renal cancer tumor blood vessels according to morphometric parameters. Tissue samples were obtained from 121 renal cell carcinoma patients who underwent radical nephrectomy. Staining with CD31 and CD34 was used to differentiate between immature (CD31+) and mature (CD34+) blood vessels. We quantified the microvascular density, microvascular area and different morphometric parameters: maximum diameter, minimum diameter, major axis, minor axis, perimeter, radius ratio and roundness. We found that the microvascular density was higher in CD31+ than CD34+ vessels, but CD34+ vessels were larger than CD31+ vessels, as well as being strongly correlated with the ISUP tumor grade. We also identified four vascular patterns: pseudoacinar, fascicular, reticular and diffuse. Pseudoacinar and fascicular patterns were more frequent in clear cell renal cell carcinoma (37.62 and 35.64% respectively), followed by reticular pattern (21.78%), while in chromophobe tumors the reticular pattern predominated (90%). The isolated pattern was present in all papillary tumors (100%). In healthy renal tissue, the pseudoacinar and isolated patterns were differentially found in the renal cortex and medulla respectively. We defined four distinct vascular patterns significantly related with the ISUP tumor grade in renal cell carcinomas. Further studies in larger series are needed in order to validate these results. Analysis of both mature and immature vessels (CD34+ and CD31+) provides additional information when evaluating microvascular density.

  20. Icodextrin eliminates phosphate and ameliorates cardiac hypertrophy and valvular calcification in patients with end-stage renal disease and diabetes mellitus undergoing peritoneal dialysis.

    PubMed

    Hiramatsu, Takeyuki; Hayasaki, Takahiro; Hobo, Akinori; Furuta, Shinji; Kabu, Koki; Tonozuka, Yukio; Iida, Yoshiyasu

    2013-01-01

    Among end-stage renal disease (ESRD) patients, cardiovascular disease is a common comorbidity and one of most important factors affecting clinical prognosis. Calcium deposition has been reported to correlate with plasma phosphate. Icodextrin (Ico)-based peritoneal dialysis (PD) has many advantages over glucose (Glu)-based PD. We aimed to identify factors that suppress arteriosclerosis and valvular disease in patients with ESRD and diabetes mellitus (DM) undergoing Ico-based PD. In this retrospective study, we evaluated the effects of Ico-based PD (n = 20) on phosphate elimination and cardiovascular disease progression in patients with ESRD andDM, and we compared the results with those for Glu-based PD (n = 20). Left ventricular mass index (LVMI) and aortic valve calcification (AVC) score were significantly decreased and daily phosphate elimination was significantly increased in the Ico group compared with the Glu group. Furthermore, mean daily phosphate elimination was significantly and negatively correlated with the amelioration in LVMI and AVC score. Our study suggests that, compared with glucose, icodextrin has the ability to eliminate more phosphate from the body, indicating that phosphate elimination might potentially be a means of controlling cardiovascular disease in PD patients with DM.

  1. PA21, a new iron-based noncalcium phosphate binder, prevents vascular calcification in chronic renal failure rats.

    PubMed

    Phan, Olivier; Maillard, Marc; Peregaux, Christine; Mordasini, David; Stehle, Jean-Christophe; Funk, Felix; Burnier, Michel

    2013-08-01

    Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.

  2. Role of the renal sympathetic nervous system in mediating renal ischaemic injury-induced reductions in renal haemodynamic and excretory functions.

    PubMed

    Salman, Ibrahim M; Ameer, Omar Z; Sattar, Munavvar A; Abdullah, Nor A; Yam, Mun F; Najim, Hafsa S; Khan, Abdul Hye; Johns, Edward J

    2010-04-01

    We investigated the role of renal sympathetic innervation in the deterioration of renal haemodynamic and excretory functions during the early post-ischaemic phase of renal ischaemia/reperfusion injury. Anaesthetised male Sprague-Dawley rats were subjected to unilateral renal ischaemia by clamping the left renal artery for 30 min followed by reperfusion. Following acute renal denervation clearance experiments were performed. In a different set of experiments, the renal nerves were electrically stimulated at increasing frequencies and responses in renal blood flow and renal vascular resistance were recorded. Denervated post-ischaemic acute renal failure (ARF) rats showed higher urine flow rate, absolute and fractional sodium excretions, urinary sodium to urinary potassium, glomerular filtration rate and basal renal blood flow but lower basal renal vascular resistance (all p < 0.05 vs innervated ARF rats). Potassium excretion was significantly lower in denervated group as per fractional (p < 0.05 vs innervated ARF rats) but not absolute potassium excretion (p > 0.05 vs innervated ARF rats). The rise in mean arterial pressure and renal vasoconstrictor response to renal nerve stimulation were blunted in denervated ischaemic ARF rats (all p < 0.05 vs innervated ARF rats). Renal histopathology in denervated ARF rats manifested a significantly lower medullary congestion, inflammation and tubular injury compared to innervated counterparts (p < 0.05 vs innervated ARF rats). The findings strongly suggest the involvement of renal sympathetic tone in the post-ischaemic events of ischaemic ARF, as the removal of its action to a degree ameliorated the post-ischaemic renal dysfunctions.

  3. HuangQi Decoction Ameliorates Renal Fibrosis via TGF-β/Smad Signaling Pathway In Vivo and In Vitro.

    PubMed

    Zhao, Jie; Wang, Li; Cao, Ai-Li; Jiang, Ming-Qian; Chen, Xia; Wang, Yi; Wang, Yun-Man; Wang, Hao; Zhang, Xue-Mei; Peng, Wen

    2016-01-01

    Traditional Chinese Medicine compound HuangQi decoction is widely used in clinical treatment of chronic kidney disease, but its role on renal interstitial fibrosis and the underlying mechanism remains unclear. The aim of this study is to investigate the effect of HuangQi decoction on renal interstitial fibrosis and its association with the TGF-β/Smad signaling pathway Methods: A total of 120 C57/BL mice were randomly divided into six groups: sham group, sham plus high-dose HuangQi decoction (1.08g/kg) group, unilateral ureteral obstruction (UUO) model group, and UUO model plus low to high doses of HuangQi decoction (0.12g/kg, 0.36g/kg and 1.08g/kg respectively) groups. Animals were sacrificed 14 days after the administration and ipsilateral kidney tissue was sampled for pathologic examinations. Immunohistochemistry, PCR and western blot were used to detect the expressions of related molecules in the TGF-β/Smad signaling pathway. TGF-β1 was used in in vitro experiments to induce human kidney proximal tubule epithelial cells (HK2). HuangQi decoction improved ipsilateral kidney fibrosis in UUO mice and downregulated the expressions of TGF-β1, TβRI, TβRII, Smad4, Smad2/3, P-Smad2/3, α-SMA, collagen type I, III and IV in a dose-dependent manner while upregulated the expression of Smad7 in the same fashion. Similar results were found in in vitro studies. The protective effect of HuangQi decoction for unilateral ureteral obstruction kidney damage in mice was mediated by downregulating the TGF-β/Smad signaling pathway. © 2016 The Author(s) Published by S. Karger AG, Basel.

  4. Ultrasound-Mediated Stimulation of Microbubbles after Acute Myocardial Infarction and Reperfusion Ameliorates Left-Ventricular Remodelling in Mice via Improvement of Borderzone Vascularization

    PubMed Central

    Dörner, Jonas; Struck, Rafael; Zimmer, Sebastian; Peigney, Christine; Duerr, Georg Daniel; Dewald, Oliver; Kim, Se-Chan; Malan, Daniela; Bettinger, Thierry; Nickenig, Georg; Ghanem, Alexander

    2013-01-01

    Aims Post-infarction remodelling (PIR) determines left-ventricular (LV) function and prognosis after myocardial infarction. The aim of this study was to evaluate transthoracic ultrasound-mediated microbubble stimulation (UMS) as a novel gene- and cell-free therapeutic option after acute myocardial infarction and reperfusion (AMI/R) in mice. Methods and Results For myocardial delivery of UMS, a novel therapeutic ultrasound-system (TIPS, Philips Medical) and commercially available microbubbles (BR1, Bracco Suisse SA) were utilized in a closed-chest mouse model. UMS was performed as myocardial post-conditioning (PC) on day four after 30 minutes of coronary occlusion and reperfusion. LV-morphology, as well as global and regional function were measured repeatedly with reconstructive 3-dimensional echocardiography applying an additional low-dose dobutamine protocol after two weeks. Scar size was quantified by means of histomorphometry. A total of 41 mice were investigated; 17 received PC with UMS. Mean ejection fraction (EF) prior UMS was similar in both groups 53%±10 (w/o UMS) and 53%±14 (UMS, p = 0.5), reflecting comparable myocardial mass at risk 17%±8 (w/o UMS), 16%±13 (UMS, p = 0.5). Two weeks after AMI/R, mice undergoing UMS demonstrated significantly better global LV-function (EF = 53%±7) as compared to the group without PC (EF = 39%±11, p<0.01). The fraction of akinetic myocardial mass was significantly lower among mice undergoing UMS after AMI/R [27%±10 (w/o UMS), 13%±8 (UMS), p<0.001)]. Our experiments showed a fast onset of transient, UMS-induced upregulation of vascular-endothelial and insulin-like growth factor (VEGF-a, IGF-1), as well as caveolin-3 (Cav-3). The mice undergoing PC with UMS after AMI/R showed a significantly lower scar size. In addition, the microvascular density was significantly higher in the borderzone of UMS-treated animals. Conclusion UMS following AMI/R ameliorates PIR in mice via up-regulation of VEGF-a, IGF-1

  5. [Role of nuclear factor of activated T-cells cytoplasmic 1 on vascular calcification in rats with chronic renal failure].

    PubMed

    Zhang, J X; Xu, J S; Han, Y Y; Bai, Y L; Cui, L W; Zhang, H R; Zhang, S L

    2017-02-14

    Objective: To explore the role of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) on vascular calcification in chronic renal failure rats. Methods: Nineteen male Sprague-Dawley (SD) rats were randomly divided into three groups: sham-operated group (n=6), 5/6 Nephrectomy (Nx) group (n=6), 5/6 Nx+ calcitriol group (n=7). Vascular calcification was determined by von Kossa staining and orthocresolphthalein complexone (OCPC) method. Protein expressions of NFATc1 and runt-related transcription factor 2 (Runx2) in aortas were measured by immunohistochemistry.In vitro, vascular smooth muscle cells (VSMCs) were primarily cultured and calcification was induced by β-glycerophosphate (β-GP). These cells were then randomly divided into control group, calcification group (10 mmol/L β-GP) and cyclosporin A (CsA) intervention group (10 mmol/L β-GP+ 1 μg/ml CsA). Calcium deposition was measured by Alizarin red staining and OCPC method; alkaline phosphatase (ALP) activity was measured by enzyme-linked immunosorbent assay. RT-PCR and Western blotting were used to observe the mRNA and protein expression of VSMCs NFATc1 and Runx2 respectively. Results: Compared to that in sham-operated and 5/6 Nx group, the expression of NFATc1 was obviously up-regulated in 5/6 Nx+ calcitriol group (7.20±0.46 vs 1.52±0.77, 2.04±1.31, P<0.05). In vitro, VSMCs calcification was successfully induced by high phosphorus environment, and RT-PCR and Western blotting showed that the expressions of NFATc1 and Runx2 were up-regulated (P<0.05). The calcification level in CsA intervention group was lower than that in calcification group [(60.86±7.95) vs (107.20±11.07) mg/g, P<0.05], and expression of Runx2 (mRNA and protein level) and ALP activity [(48.63±3.02) vs (98.75±3.46) U/g, P<0.05] decreased as well. Conclusion: NFATc1 contributes to accelerating vascular calcification in rat with chronic renal failure, the possible mechanism of which is that NFATc1 promotes VSMCs transformation to

  6. Amelioration of cardio-renal injury with aging in dahl salt-sensitive rats by H2-enriched electrolyzed water

    PubMed Central

    2013-01-01

    Abstract Recent studies have revealed the biological effects of H2 in suppressing organ injuries due to acute inflammation and oxidative stress. Dahl salt-sensitive (SS) rats naturally develop elevated blood pressure (BP) and kidney injury with aging. The present study examined the effect of long-term supplementation of H2 in drinking water on age-related changes. Four-week-old male Dahl SS rats were fed 3 types of water (n = 30 each) for up to 48 weeks: filtered water (FW), water with a high H2 content (492.5 ppb) obtained with water electrolysis (EW), or dehydrogenated EW (DW). Animals were subjected to histological analysis at 16, 24, and 48 weeks. The FW group showed progressive BP elevation and increases in albuminuria and cardiac remodeling during the course of treatment. Histologically, there were significant changes as a function of aging, i.e., glomerular sclerosis with tubulointerstitial fibrosis in the kidney, and increased cardiomyocyte diameter with interstitial fibrosis in the heart at 48 weeks. These changes were related to the enhanced inflammation and oxidative stress in the respective organs. However, there were no striking differences in BP among the groups, despite histological alterations in the EW group being significantly decreased when compared to FW and DW in both organs, with concurrently lower oxidative stress and inflammatory markers at 48 weeks. Conclusion Long-term ad libitum consumption of H2-enriched electrolyzed water can ameliorate the processes of kidney injury and cardiac remodeling with aging in Dahl SS rats by suppressing, at least partly, elevated inflammation and oxidative stress. PMID:24289332

  7. Effect of Lowering Asymmetric Dimethylarginine (ADMA) on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass

    PubMed Central

    Jacobi, Johannes; Maas, Renke; Arend, Michaela; Cordasic, Nada; Hilgers, Karl F.

    2014-01-01

    The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1), on atherosclerosis in subtotally nephrectomized (SNX) ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39) and C57Bl/6J wild-type littermates (WT, n = 27) with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction) ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11) served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD) in this mouse model. PMID:24690995

  8. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells.

    PubMed

    Li, Min; Balamuthusamy, Saravanan; Simon, Eric E; Batuman, Vecihi

    2008-07-01

    Using target-specific short interfering (si) RNAs, we silenced the tandem endocytic receptors megalin and cubilin genes in cultured human renal proximal tubule epithelial cells. Transfection by siRNA resulted in up to 90% suppression of both megalin and cubilin protein and mRNA expression. In HK-2 cells exposed to kappa-light chain for up to 24 h, light chain endocytosis was reduced in either megalin- or cubilin-silenced cells markedly but incompletely. Simultaneous silencing of both the cubilin and megalin genes, however, resulted in near-complete inhibition of light chain endocytosis, as determined by measuring kappa-light chain protein concentration in cell cytoplasm and by flow cytometry using FITC-labeled kappa-light chain. In these cells, light chain-induced cytokine responses (interleukin-6 and monocyte chemoattractant protein-1) and epithelial-to-mesenchymal transition as well as the associated cellular and morphological alterations were also markedly suppressed. The results demonstrate that light chain endocytosis is predominantly mediated by the megalin-cubilin tandem endocytic receptor and identify endocytosis as a key step in light chain cytotoxicity. Blocking light chain endocytosis prevents its nephrotoxic effects on human kidney proximal tubule cells.

  9. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas.

    PubMed

    Roskoski, Robert

    2017-03-19

    One Von Hippel-Lindau (VHL) tumor suppressor gene is lost in most renal cell carcinomas while the nondeleted allele exhibits hypermethylation-induced inactivation or inactivating somatic mutations. As a result of these genetic modifications, there is an increased production of VEGF-A and pro-angiogenic growth factors in this disorder. The important role of angiogenesis in the pathogenesis of renal cell carcinomas and other tumors has focused the attention of investigators on the biology of VEGFs and VEGFR1-3 and to the development of inhibitors of the intricate and multifaceted angiogenic pathways. VEGFR1-3 contain an extracellular segment with seven immunoglobulin-like domains, a transmembrane segment, a juxtamembrane segment, a protein kinase domain with an insert of about 70 amino acid residues, and a C-terminal tail. VEGF-A stimulates the activation of preformed VEGFR2 dimers by the auto-phosphorylation of activation segment tyrosines followed by the phosphorylation of additional protein-tyrosines that recruit phosphotyrosine binding proteins thereby leading to signalling by the ERK1/2, AKT, Src, and p38 MAP kinase pathways. VEGFR1 modulates the activity of VEGFR2, which is the chief pathway in vasculogenesis and angiogenesis. VEGFR3 and its ligands (VEGF-C and VEGF-D) are involved primarily in lymphangiogenesis. Small molecule VEGFR1/2/3 inhibitors including axitinib, cabozantinib, lenvatinib, sorafenib, sunitinib, and pazopanib are approved by the FDA for the treatment of renal cell carcinomas. Most of these agents are type II inhibitors of VEGFR2 and inhibit the so-called DFG-Aspout inactive enzyme conformation. These drugs are steady-state competitive inhibitors with respect to ATP and like ATP they form hydrogen bonds with the hinge residues that connect the small and large protein kinase lobes. Bevacizumab, a monoclonal antibody that binds to VEGF-A, is also approved for the treatment of renal cell carcinomas. Resistance to these agents invariably occurs

  10. Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell–Renal-Cell-Carcinoma: Proof-of-Concept Study

    PubMed Central

    Yin, Qingbo; Hung, Sheng-Che; Wang, Li; Lin, Weili; Fielding, Julia R.; Rathmell, W. Kimryn; Khandani, Amir H.; Woods, Michael E.; Milowsky, Matthew I.; Brooks, Samira A.; Wallen, Eric. M.; Shen, Dinggang

    2017-01-01

    Studies have shown that tumor angiogenesis is an essential process for tumor growth, proliferation and metastasis. Also, tumor angiogenesis is an important prognostic factor of clear cell renal cell carcinoma (ccRCC), as well as a factor in guiding treatment with antiangiogenic agents. Here, we attempted to find the associations between tumor angiogenesis and radiomic imaging features from PET/MRI. Specifically, sparse canonical correlation analysis was conducted on 3 feature datasets (i.e., radiomic imaging features, tumor microvascular density (MVD), and vascular endothelial growth factor (VEGF) expression) from 9 patients with primary ccRCC. In order to overcome the potential bias of intratumoral heterogeneity of angiogenesis, this study investigated the relationship between regional expressions of angiogenesis and VEGF, and localized radiomic features from different parts within the tumors. Our study highlighted the significant strong correlations between radiomic features and MVD, and also demonstrated that the spatiotemporal features extracted from DCE-MRI provided stronger radiomic correlation to MVD than the textural features extracted from Dixon sequences and FDG PET. Furthermore, PET/MRI, which takes advantage of the combined functional and structural information, had higher radiomics correlation to MVD than solely utilizing PET or MRI alone. PMID:28256615

  11. Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell-Renal-Cell-Carcinoma: Proof-of-Concept Study.

    PubMed

    Yin, Qingbo; Hung, Sheng-Che; Wang, Li; Lin, Weili; Fielding, Julia R; Rathmell, W Kimryn; Khandani, Amir H; Woods, Michael E; Milowsky, Matthew I; Brooks, Samira A; Wallen, Eric M; Shen, Dinggang

    2017-03-03

    Studies have shown that tumor angiogenesis is an essential process for tumor growth, proliferation and metastasis. Also, tumor angiogenesis is an important prognostic factor of clear cell renal cell carcinoma (ccRCC), as well as a factor in guiding treatment with antiangiogenic agents. Here, we attempted to find the associations between tumor angiogenesis and radiomic imaging features from PET/MRI. Specifically, sparse canonical correlation analysis was conducted on 3 feature datasets (i.e., radiomic imaging features, tumor microvascular density (MVD), and vascular endothelial growth factor (VEGF) expression) from 9 patients with primary ccRCC. In order to overcome the potential bias of intratumoral heterogeneity of angiogenesis, this study investigated the relationship between regional expressions of angiogenesis and VEGF, and localized radiomic features from different parts within the tumors. Our study highlighted the significant strong correlations between radiomic features and MVD, and also demonstrated that the spatiotemporal features extracted from DCE-MRI provided stronger radiomic correlation to MVD than the textural features extracted from Dixon sequences and FDG PET. Furthermore, PET/MRI, which takes advantage of the combined functional and structural information, had higher radiomics correlation to MVD than solely utilizing PET or MRI alone.

  12. Calcineurin-inhibition Results in Upregulation of Local Renin and Subsequent Vascular Endothelial Growth Factor Production in Renal Collecting Ducts

    PubMed Central

    Sziksz, Erna; Pap, Domonkos; Balicza-Himer, Leonóra; Boros, Szilvia; Magda, Balázs; Vannay, Ádám; Kis-Petik, Katalin; Fekete, Andrea; Peti-Peterdi, János; Szabó, Attila J.

    2016-01-01

    Background Tacrolimus (Tac) and Cyclosporine A (CyA) calcineurin inhibitors (CNIs) are 2 effective immunosuppressants which are essential to prevent allograft rejection. Calcineurin inhibitors are known to be nephrotoxic. However, the precise mechanism of nephrotoxicity is not fully understood. In this study, we investigated the in vivo effects of CNIs on the local renal renin-angiotensin system in the collecting duct (CD). Methods Three-week-old mice were treated with either vehicle, CyA (2 mg/kg per day), Tac (0.075 mg/kg per day), CyA + Aliskiren (25 mg/kg per day), or Tac + Aliskiren for 3 weeks. Serum creatinine was measured. Renin and vascular endothelial growth factor (VEGF) contents in CD were evaluated with flow cytometry and multiphoton microscopy. The diameter of vessels was assessed with multiphoton microscopy, and the amount of renal collagen was determined by real-time polymerase chain reaction and Masson staining. Results The elevated level of serum creatinine in CNI groups was abolished by Aliskiren. Flow cytometric analysis found elevated renin content in principal cells, which was prevented by Aliskiren. This result was further confirmed with multiphoton microscopy. The VEGF content in CD correlated with reduced capillary diameter and with the formation of fibrotic islands. Conclusions Calcineurin inhibitors induce production of renin in the CD that may contribute to decreased renal blood flow. In turn, CD responds with increased VEGF production, resulting in disproportional vessel growth, further worsening the local hypoxia and striped fibrosis surrounding the CDs. Aliskiren, a direct renin inhibitor blocks these effects and improves CNI-induced nephropathy by decreasing renin production in the CDs. Our data suggest that Aliskiren may be used for the prevention of CNI nephrotoxicity. PMID:26502369

  13. Effect of high salt diet on blood pressure and renal damage during vascular endothelial growth factor inhibition with sunitinib.

    PubMed

    Lankhorst, Stephanie; Baelde, Hans J; Clahsen-van Groningen, Marian C; Smedts, Frank M M; Danser, A H Jan; van den Meiracker, Anton H

    2016-06-01

    Antiangiogenic treatment with the multitargeted vascular endothelial growth factor (VEGF) receptor inhibitor sunitinib associates with a blood pressure (BP) rise and glomerular renal injury. Recent evidence indicates that VEGF derived from tubular cells is required for maintenance of the peritubular vasculature. In the present study, we focussed on tubular and glomerular pathology induced by sunitinib and explored whether a high salt (HS) diet augments the BP rise and renal abnormalities. Normotensive Wistar Kyoto (WKY) rats were exposed to a normal salt (NS) or HS diet for 2 weeks and subsequently for 8 days to sunitinib or vehicle administration after which the rats were euthanized and kidneys excised. Mean arterial pressure (MAP) was telemetrically measured. Urine was sampled for proteinuria and endothelinuria, and blood for measurement of endothelin-1, creatinine and cystatin C. Compared with the NS diet, MAP rapidly rose by 27 ± 3 mmHg with the HS diet. On sunitinib, MAP rose further by 15 ± 1 with the NS and by 23 ± 4 mmHg with the HS diet (P < 0.05). The HS diet itself had no effect on proteinuria, endothelinuria or the plasma levels of endothelin-1, creatinine and cystatin C. Only with the HS diet, sunitinib administration massively increased proteinuria and endothelinuria and these two parameters were related (r = 0.50, P < 0.01). Likewise, renal glomerular pathology was enhanced during sunitinib with the HS diet, whereas tubulointerstitial injury or reduced peritubular capillary density did not occur. An HS diet induces a marked BP rise in WKY rats and exacerbates both the magnitude of the BP rise and glomerular injury induced by sunitinib. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  14. Spectral imaging of microvascular function in a renal cell carcinoma after treatment with a vascular disrupting agent

    NASA Astrophysics Data System (ADS)

    Wankhede, Mamta; deDeugd, Casey; Siemann, Dietmar W.; Sorg, Brian S.

    2009-02-01

    Tumors are highly metabolically active and thus require ample oxygen and nutrients to proliferate. Neovasculature generated by angiogenesis is required for tumors to grow beyond a size of about 1-2mm. Functional tumor vasculature also provides an access point for development of distant metastases. Due to the importance of the microvasculature for tumor growth, proliferation, and metastasis, the microvasculature has emerged as a therapeutic target for treatment of solid tumors. We employed spectral imaging in a rodent window chamber model to observe and measure the oxygen transport function of tumor microvasculature in a human renal cell carcinoma after treatment with a fast acting vascular disrupting agent. Human Caki-1 cells were grown in a dorsal skin-fold window chamber in athymic nude mice. Spectral imaging was used to measure hemoglobin saturation immediately before, immediately after and also at 2, 4, 6, 8, 24 and 48 hours after administration of the tubulin binding agent OXi4503. Up to 4 hours after treatment, tumor microvasculature was disrupted from the tumor core towards the periphery as seen in deoxygenation as well as structural changes of the vasculature. Reoxygenation and neovascularization commenced from the periphery towards the core from 6 - 48 hours after treatment. The timing of the effects of vascular disrupting agents can influence scheduling of repeat treatments and combinatorial treatments such as chemotherapy and radiation therapy. Spectral imaging can potentially provide this information in certain laboratory models from endogenous signals with microvessel resolution.

  15. Serum Fetuin-A Levels Are Associated with Vascular Calcifications and Predict Cardiovascular Events in Renal Transplant Recipients

    PubMed Central

    Maréchal, Céline; Schlieper, Georg; Nguyen, Pauline; Krüger, Thilo; Coche, Emmanuel; Robert, Annie; Floege, Jorgen; Goffin, Eric; Jadoul, Michel

    2011-01-01

    Summary Background and objectives Vascular calcifications predict cardiovascular disease, the major cause of death in renal transplant recipients (RTRs). We studied the determinants of fetuin-A, a potent circulating calcification inhibitor encoded by the AHSG gene, and tested its association with vascular calcifications and long-term survival and cardiovascular events (CVEs) in RTRs. Design, setting, participants, & measurements Two hundred seventy-seven prevalent RTRs from a single center were included. CVEs and deaths were prospectively recorded during a 5-year follow-up. Results Independent determinants of lower serum fetuin-A levels were lower plasma cholesterol, the AHSG rs4918 G allele, and history of smoking. Low serum fetuin-A level was a determinant of aortic calcifications (assessed using spiral CT). Low fetuin-A levels (≤0.47 g/L, first quintile) were independently associated with CVEs and deaths (hazard ratio = 1.83; 95% confidence interval, 1.07 to 3.04). The association was confirmed for all-cause mortality, and the major adverse cardiovascular endpoints were analyzed separately. Patients with low fetuin-A and high high-sensitivity C-reactive protein (>4.36 mg/L, fourth quintile) levels had a 3.5-fold increased risk of all-cause mortality and CVEs. In the presence of inflammation, CVE-free survival was influenced by common variants in the AHSG gene. Conclusions These data show that low fetuin-A levels are independently associated with aortic calcifications and a higher risk of CVEs and mortality. They support fetuin-A as a circulating biomarker able to identify RTRs at risk for vascular calcifications and CVEs. PMID:21527649

  16. Erythropoietin resistance in end-stage renal disease patient with gastric antral vascular ectasia.

    PubMed

    Lee, Desiree Ji Re; Fragata, Juliana; Pestana, José Osmar Medina; Draibe, Sergio; Canziani, Maria Eugênia; Cendoroglo, Miguel; Góes, Miguel Ângelo de

    2015-01-01

    We observed a case of recombinant human erythropoietin resistance caused by Gastric Antral Vascular Ectasia in a 40-year-old female with ESRD on hemodialysis. Some associated factors such as autoimmune disease, hemolysis, heart and liver disease were discarded on physical examination and complementary tests. The diagnosis is based on the clinical history and endoscopic appearance of watermelon stomach. The histologic findings are fibromuscular proliferation and capillary ectasia with microvascular thrombosis of the lamina propria. However, these histologic findings are not necessary to confirm the diagnosis. Gastric Antral Vascular Ectasia is a serious condition and should be considered in ESRD patients on hemodialysis with anemia and resistance to recombinant human erythropoietin because GAVE is potentially curable with specific endoscopic treatment method or through surgical procedure.

  17. Low-dose paclitaxel ameliorates renal fibrosis by suppressing transforming growth factor-β1-induced plasminogen activator inhibitor-1 signaling.

    PubMed

    Jung, Eun Sook; Lee, Jeonghwan; Heo, Nam Ju; Kim, Sejoong; Kim, Dong Ki; Joo, Kwon Wook; Han, Jin Suk

    2016-07-01

    To investigate the effect of microtubule stabilization with low-dose paclitaxel on renal fibrosis, focusing on the transforming growth factor-β1 (TGF-β1)-induced plasminogen activator inhibitor-1 (PAI-1) signaling cascade. Forty-eight rats were randomly assigned to four groups: sham/vehicle, sham/paclitaxel, unilateral ureteral obstruction (UUO)/vehicle and UUO/paclitaxel. Rats were treated with a 0.3 mg/kg intraperitoneal dose of paclitaxel or vehicle twice per week for 14 days. Half of the rats in each group were sacrificed respectively on day 7 and 14 after operation. Inner medullar collecting duct (IMCD) cells stimulated with TGF-β1 were incubated with 0, 1 and 2 nM paclitaxel for 24 and 72 hours. Histological changes were assessed using periodic acid-Schiff and Masson's trichrome. The TGF-β1-induced PAI-1 signaling and status of extracellular matrix proteins were evaluated by western blot analysis. In the UUO kidneys, paclitaxel significantly attenuated tubular damage and interstitial collagen deposition, as well as α-smooth muscle actin (α-SMA), TGF-β1 and PAI-1 protein expression. Paclitaxel also inhibited the UUO-induced activation of Smad2/3 and c-Jun N-terminal kinase (JNK). However, paclitaxel treatment did not inhibit extracellular signal-regulated kinase 1/2 (ERK1/2) or p38 expression. In TGF-β1-treated IMCD cells, treatment with 1 and 2 nM paclitaxel for 72 h reduced fibronectin, α-SMA and PAI-1 protein expression. Moreover, a 2 nM dose of paclitaxel for 24 h significantly inhibited the TGF-β1-stimulated activation of Smad2/3, JNK and ERK1/2 in IMCD cells. Paclitaxel at low non-cytotoxic doses ameliorates renal fibrosis by inhibiting multiple steps in the TGF-β1-induced PAI-1 signaling including Smads and mitogen-activated protein kinases. © 2016 Asian Pacific Society of Nephrology.

  18. Recovery of renal function after administration of adipose-tissue-derived stromal vascular fraction in rat model of acute kidney injury induced by ischemia/reperfusion injury.

    PubMed

    Lee, Chunwoo; Jang, Myoung Jin; Kim, Bo Hyun; Park, Jin Young; You, Dalsan; Jeong, In Gab; Hong, Jun Hyuk; Kim, Choung-Soo

    2017-03-10

    Acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) injury is a major challenge in critical care medicine. The purpose of this study is to determine the therapeutic effects of the adipose-tissue-derived stromal vascular fraction (SVF) and the optimal route for SVF delivery in a rat model of AKI induced by I/R injury. Fifty male Sprague-Dawley rats were randomly divided into five groups (10 animals per group): sham, nephrectomy control, I/R injury control, renal arterial SVF infusion and subcapsular SVF injection. To induce AKI by I/R injury, the left renal artery was clamped with a nontraumatic vascular clamp for 40 min, and the right kidney was removed. Rats receiving renal arterial infusion of SVF had a significantly reduced increase in serum creatinine compared with the I/R injury control group at 4 days after I/R injury. The glomerular filtration rate of the renal arterial SVF infusion group was maintained at a level similar to that of the sham and nephrectomy control groups at 14 days after I/R injury. Masson's trichrome staining showed significantly less fibrosis in the renal arterial SVF infusion group compared with that in the I/R injury control group in the outer stripe (P < 0.001). TUNEL labeling showed significantly decreased apoptosis in both the renal arterial SVF infusion and subcapsular SVF injection groups compared with the I/R injury control group in the outer stripe (P < 0.001). Thus, renal function is effectively rescued from AKI induced by I/R injury through the renal arterial administration of SVF in a rat model.

  19. Systemic and renal vascular responses to dietary calcium and vitamin D.

    PubMed

    Zawada, E T; TerWee, J A; McClung, D E

    1986-11-01

    To assess the consequences of hypercalcemia on systemic and renal hemodynamics, vasoactive hormones, and water and electrolyte excretion in intact, conscious mongrel dogs, measurements in 10 dogs receiving 100 mg/kg calcium gluconate and 10,000 U/kg vitamin D daily for 2 weeks were compared with measurements made in 10 time-control dogs not receiving calcium or vitamin D. Hypercalcemia induced by dietary supplementation with calcium and vitamin D resulted in profoundly reduced glomerular filtration rate (40 vs 78 ml/min in controls; p less than 0.005), estimated renal plasma flow (145 vs 267 ml/min in controls; p less than 0.005), and renal blood flow (254 vs 441 ml/min in controls; p less than 0.005). Renal resistance was significantly increased in the hypercalcemic dogs (0.57 +/- 0.07 vs 0.28 +/- 0.01 mm Hg/ml/min; p less than 0.005). Hypercalcemia also resulted in increased fractional excretion of water (4.8 vs 1.4% in controls; p less than 0.005), sodium (1.4 vs 0.6% in controls; p less than 0.005), calcium (1.7 vs 0.7% in controls; p less than 0.01), and magnesium (10.2 vs 4.1% in controls; p less than 0.005). Systolic blood pressure (160 vs 172 mm Hg in controls; p less than 0.05) and stroke volume were lower (0.024 vs 0.036 L/beat in controls; p less than 0.005) in hypercalcemic dogs, presumably because of the diuresis, while total peripheral resistance was higher (36 vs 31 mm Hg/L/min; p less than 0.05) in controls. Magnesium levels were significantly lower in the experimental group (1.3 vs 1.7 mg/dl in controls; p less than 0.0005). Aldosterone levels, plasma renin activity, and urinary prostaglandin excretion were not significantly affected.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Innate Immunity Stimulation via Toll-Like Receptor 9 Ameliorates Vascular Amyloid Pathology in Tg-SwDI Mice with Associated Cognitive Benefits.

    PubMed

    Scholtzova, Henrieta; Do, Eileen; Dhakal, Shleshma; Sun, Yanjie; Liu, Shan; Mehta, Pankaj D; Wisniewski, Thomas

    2017-01-25

    Alzheimer's disease (AD) is characterized by the presence of parenchymal amyloid-β (Aβ) plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles. Currently there are no effective treatments for AD. Immunotherapeutic approaches under development are hampered by complications related to ineffectual clearance of CAA. Genome-wide association studies have demonstrated the importance of microglia in AD pathogenesis. Microglia are the primary innate immune cells of the brain. Depending on their activation state and environment, microglia can be beneficial or detrimental. In our prior work, we showed that stimulation of innate immunity with Toll-like receptor 9 agonist, class B CpG (cytosine-phosphate-guanine) oligodeoxynucleotides (ODNs), can reduce amyloid and tau pathologies without causing toxicity in Tg2576 and 3xTg-AD mouse models. However, these transgenic mice have relatively little CAA. In the current study, we evaluated the therapeutic profile of CpG ODN in a triple transgenic mouse model, Tg-SwDI, with abundant vascular amyloid, in association with low levels of parenchymal amyloid deposits. Peripheral administration of CpG ODN, both before and after the development of CAA, negated short-term memory deficits, as assessed by object-recognition tests, and was effective at improving spatial and working memory evaluated using a radial arm maze. These findings were associated with significant reductions of CAA pathology lacking adverse effects. Together, our extensive evidence suggests that this innovative immunomodulation may be a safe approach to ameliorate all hallmarks of AD pathology, supporting the potential clinical applicability of CpG ODN. Recent genetic studies have underscored the emerging role of microglia in Alzheimer's disease (AD) pathogenesis. Microglia lose their amyloid-β-clearing capabilities with age and as AD progresses. Therefore, the ability to modulate microglia profiles offers a promising therapeutic avenue for reducing AD

  1. Increased diuresis, renal vascular reactivity, and blood pressure levels in young rats fed high sodium, moderately high fructose, or their association: a comparative evaluation.

    PubMed

    Da Silva, Rita de Cássia Vilhena A F; de Souza, Priscila; da Silva-Santos, José Eduardo

    2016-12-01

    Excessive intakes of sodium or fructose have been described as risk factors for hypertension. We hypothesized that even a moderately high fructose diet (6% fructose), either alone or in combination with high sodium (4% NaCl), may impair diuresis and renal and systemic vascular reactivity, contributing to the onset of high blood pressure in rats. Male Wistar rats were fed chow containing 4% NaCl (HS), 6% fructose (MHF), or both 4% NaCl and 6% fructose (HSMHF) for 6 weeks and had their diuresis, plasma creatinine, vascular reactivity of perfused kidneys and systemic arterial pressure evaluated. We found no differences in augmented diuresis among animals given HS, MHF, or HSMHF diets. After 6 weeks both the HS and HSMHF groups had increased weight in their left kidneys, but only the HSMHF group showed augmented plasma creatinine. The effects of phenylephrine on renal vascular perfusion pressure were similarly enhanced in kidneys from the HS, MHF, and HSMHF groups, but not on the systemic arterial pressure. Although when evaluated in anesthetized rats, only the HSMHF group presented augmented blood pressure, evaluation in conscious animals revealed that both the MHF and HSMHF diets, but not the HS alone, were able to induce tachycardia and hypertension. In conclusion, a MHF diet containing 6% fructose was enough to render the renal vascular bed hyperreactive to phenylephrine and to induce both hypertension and tachycardia. The combination of 6% fructose with 4% NaCl led to plasma accumulation of creatinine and accelerated the development of tachycardia.

  2. Relationship between tumour angiogenesis and expression of cyclo-oxygenase-2 and vascular endothelial growth factor-A in human renal cell carcinoma.

    PubMed

    Yang, Sheng; Gao, Qin; Jiang, Wei

    2015-02-01

    *These authors contributed equally to this work. To study the relationship between tumour angiogenesis and expression of cyclo-oxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-A in human renal cell carcinoma. Archival samples of primary human renal cell carcinoma tissue and surrounding normal renal tissue (control samples) obtained from patients diagnosed with renal cell carcinoma were analysed for COX-2 and VEGF-A expression by immunohistochemistry using specific monoclonal antibodies. Tumour microvasculature was examined using factor VIII-related antigen antibody staining. A total of 33 renal cell carcinoma and 12 control renal tissue specimens were included. COX-2 and VEGF-A genes were overexpressed in tumour specimens compared with normal epithelia. A significant correlation was found between COX-2 and VEGF-A expression. Microvessel density was found to be increased in tumour tissues that expressed COX-2 and VEGF-A. Microvessel density was increased in tumour tissues that expressed COX-2 and VEGF-A, suggesting that COX-2 and VEGF-A are related to tumour angiogenesis in human renal cell carcinoma. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Grape seed proanthocyanidins ameliorates cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements.

    PubMed

    Nazima, Bashir; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2015-06-01

    Cadmium (Cd) preferentially accumulates in the kidney, the major target for Cd-related toxicity. Cd-induced reactive oxygen species (ROS) have been considered crucial mediators for renal injury. The biologically significant ionic form of cadmium (Cd(+)) binds to many bio-molecules, and these interactions underlie the toxicity mechanisms of Cd. The present study was hypothesized to explore the protective effect of grape seed proanthocyanidins (GSP) on Cd-induced renal toxicity and to elucidate the potential mechanism. Male Wistar rats were treated with Cd as cadmium chloride (CdCl2, 5 mg·kg(-1) bw, orally) and orally pre-administered with GSP (100 mg·kg(-1) bw) 90 min before Cd intoxication for 4 weeks to evaluate renal damage of Cd and antioxidant potential of GSP. Serum renal function parameters (blood urea nitrogen and creatinine) levels in serum and urine, renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic, and non-enzymatic antioxidants), inflammatory (NF-κB p65, NO, TNF-α, IL-6), apoptotic (caspase-3, caspase-9, Bax, Bcl-2), membrane bound ATPases, and Nrf2 (HO-1, keap1, γ-GCS, and μ-GST) markers were evaluated in Cd-treated rats. Pretreatment with GSP revealed a significant improvement in renal oxidative stress markers in kidneys of Cd-treated rats. In addition, GSP treatment decreases the amount of iNOS, NF-κB, TNF-α, caspase-3, and Bax and increases the levels Bcl-2 protein expression. Similarly, mRNA and protein analyses substantiated that GSP treatment notably normalizes the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in the Cd-treated rats. Histopathological and ultra-structural observations also demonstrated that GSP effectively protects the kidney from Cd-induced oxidative damage. These findings suggest that GSP ameliorates renal dysfunction and oxidative stress through the activation of Nrf2 pathway in Cd-intoxicated rats.

  4. Curative effect and safety of vascularized fibula grafting in renal transplant recipients with osteonecrosis of the femoral head: three case reports.

    PubMed

    Guo, Y J; Jin, D X; Zhang, C Q; Chen, S B; Sheng, J G; Lee, H S; Zhang, K G; Zeng, B F

    2009-11-01

    Osteonecrosis of the femoral head is a common and severe complication after renal transplantation. It is characterized by deterioration of hip joint function, which impairs quality of life. We present 3 renal transplant case reports of patients with osteonecrosis of the femoral head who underwent free vascularized fibular grafting at our hospital. Follow-up was from 1(1/2) to 2 years. All 3 patients exhibited good recovery with substantial improvement in joint function. Intraoperative and postoperative findings demonstrated the safety of this surgical procedure.

  5. The Impact of Blood Pressure Variability on Subclinical Ventricular, Renal and Vascular Dysfunction, in Patients with Hypertension and Diabetes

    PubMed Central

    CIOBANU, Andrea O; GHERGHINESCU, Carmen Lucia; DULGHERU, Raluca; MAGDA, Stefania; DRAGOI GALRINHO, Ruxandra; FLORESCU, Maria; GUBERNA, Suzana; CINTEZA, Mircea; VINEREANU, Dragos

    2013-01-01

    ABSTRACT Background: Blood pressure variability (BPV) was proved as a cardiovascular risk factor. One of its mechanisms is related to arterial stiffness and ventriculo-arterial coupling; however its impact on subclinical cardiovascular dysfunction has not been evaluated yet. Objectives: To assess the relationship between BPV on 24 hours, and subclinical left ventricle (LV), renal, and vascular dysfunction in diabetic and hypertensive patients. Material and methods: We studied 56 patients (57±9 years, 29 men) with mild-to-moderate hypertension and type 2 diabetes, no cardiovascular disease, normal ejection fraction and normal renal function. 24 hours ambulatory blood pressure monitoring (ABPM) was used to assess BPV, daytime (d) and night time (n), by: 1. mean (M); 2. standard deviation of mean (SD); 3. variance (Vr); 4. coefficient of variation (CV); 5. day/night variation: reverse dippers, non-dippers, dippers and extreme dippers; conventional and 2D speckle tracking echo to assess LV function; myocardial deformation was measured as global longitudinal strain (GLS). Endothelial (flow mediated dilation, FMD) and arterial function (intima media-thickness, IMT; pulse wave velocity, PWV), microalbuminuria were tested. Outcomes: Daytime BPV correlates inversely with subclinical myocardial function evaluated through GLS. Daytime systolic BPV correlates positively with IMT (all rho > 0.30, all p < 0.05). Also, there is a significantly inverse correlation between mean BP and GLS. We found a direct correlation between mean BP, but not BPV, and microalbuminuria (all rho > - 0.30 and all p < 0.05). We found no correlation between BPV and FMD, PWV. There were no differences for GLS, microalbuminuria and FMD between dipper groups. Conclusions: In diabetic patients with mild-to-moderate hypertension, increased daytime blood pressure variability correlates with subclinical left ventricular dysfunction and arterial function (IMT), while microalbuminuria correlates with elevated

  6. Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney. Elucidation of signal transduction pathways.

    PubMed Central

    Badr, K F; Murray, J J; Breyer, M D; Takahashi, K; Inagami, T; Harris, R C

    1989-01-01

    this peptide in the control of mesangial cell function, glomerular filtration rate, and renal vascular tone. Images PMID:2536045

  7. Identification of Risk Factors for Vascular Thrombosis May Reduce Early Renal Graft Loss: A Review of Recent Literature

    PubMed Central

    Keller, Anna Krarup; Jorgensen, Troels Munch; Jespersen, Bente

    2012-01-01

    Renal graft survival has improved over the past years, mainly owing to better immunosuppression. Vascular thrombosis, though rare, therefore accounts for up to one third of early graft loss. We assess current literature on transplantation, identify thrombosis risk factors, and discuss means of avoiding thrombotic events and saving thrombosed grafts. The incidence of arterial thrombosis was reported to 0.2–7.5% and venous thrombosis 0.1–8.2%, with the highest incidence among children and infants, and the lowest in living donor reports. The most significant risk factors for developing thrombosis were donor-age below 6 or above 60 years, or recipient-age below 5-6 years, per- or postoperative hemodynamic instability, peritoneal dialysis, diabetic nephropathy, a history of thrombosis, deceased donor, or >24 hours cold ischemia. Multiple arteries were not a risk factor, and a right kidney graft was most often reported not to be. Given the thrombosed kidney graft is diagnosed in time, salvage is possible by urgent reoperation and thrombectomy. Despite meticulous attentions to reduce thrombotic risk factors, thrombosis cannot be entirely prevented and means to an early detection of this complication is desirable in order to save the kidneys through prompt reoperation. Microdialysis may be a new tool for this. PMID:22701162

  8. D-saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  10. Ligand trap for the Activin Type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease

    PubMed Central

    Agapova, Olga A.; Fang, Yifu; Sugatani, Toshifumi; Seifert, Michael E.; Hruska, Keith A.

    2016-01-01

    The causes of cardiovascular mortality associated with chronic kidney disease (CKD) are partly attributed to the CKD-mineral bone disorder (CKD-MBD). The causes of the early CKD-MBD are not well known. Our discovery of Wnt (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. In the search for such factors, we studied the effects of activin receptor type II A (ActRIIA) signaling by using a ligand trap for the receptor, RAP-011 (a soluble extracellular domain of ActRIIA fused to a murine IgG-Fc fragment). In a mouse model of CKD that stimulated atherosclerotic calcification, RAP-011 significantly increased aortic ActRIIA signaling assessed by the levels of phosphorylated Smad2/3. Furthermore, RAP-011 treatment significantly reversed CKD induced vascular smooth muscle dedifferentiation as assessed by smooth muscle 22α levels, osteoblastic transition and neointimal plaque calcification. In the diseased kidneys, RAP-011 significantly stimulated αklotho levels and it inhibited ActRIIA signaling and decreased renal fibrosis and proteinuria. RAP-011 treatment significantly decreased both renal and circulating Dickkopf 1 levels showing that Wnt activation was downstream of ActRIIA. Thus, ActRIIA signaling in CKD contributes to the CKD-MBD and renal fibrosis. ActRIIA signaling may be a potential therapeutic target in CKD. PMID:27165838

  11. The Impact of Diabetes Mellitus on Vascular Biomarkers in Patients with End-Stage Renal Disease

    PubMed Central

    Moon, Jeonggeun; Lee, Chan Joo; Lee, Sang-Hak; Kang, Seok-Min; Choi, Donghoon

    2017-01-01

    Purpose Diabetes mellitus (DM) is the most common cause of end-stage renal disease (ESRD) and an important risk factor for cardiovascular (CV) disease. We investigated the impact of DM on subclinical CV damage by comprehensive screening protocol in ESRD patients. Materials and Methods Echocardiography, coronary computed tomography angiogram, 24-h ambulatory blood pressure monitoring, and central blood pressure with pulse wave velocity (PWV) were performed in 91 ESRD patients from the Cardiovascular and Metabolic disease Etiology Research Center-HIgh risk cohort. Results The DM group (n=38) had higher systolic blood pressure than the non-DM group (n=53), however, other clinical CV risk factors were not different between two groups. Central aortic systolic pressure (148.7±29.8 mm Hg vs. 133.7±27.0 mm Hg, p= 0.014), PWV (12.1±2.7 m/s vs. 9.4±2.1 m/s, p<0.001), and early mitral inflow to early mitral annulus velocity (16.7±6.4 vs. 13.7±5.9, p=0.026) were higher in the DM group. Although the prevalence of coronary artery disease (CAD) was not different between the DM and the non-DM group (95% vs. 84.4%, p=0.471), the severity of CAD was higher in the DM group (p=0.01). In multivariate regression analysis, DM was an independent determinant for central systolic pressure (p=0.011), PWV (p<0.001) and the prevalence of CAD (p=0.046). Conclusion Diabetic ESRD patients have higher central systolic pressure and more advanced arteriosclerosis than the non-DM control group. These findings suggest that screening for subclinical CV damage may be helpful for diabetic ESRD patients. PMID:27873498

  12. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway.

    PubMed

    Song, Jingjing; Wang, Yingwu; Liu, Chungang; Huang, Yan; He, Liying; Cai, Xueying; Lu, Jiahui; Liu, Yan; Wang, Di

    2016-04-01

    Membranous glomerulonephritis (MGN) is a common pathogenesis of nephritic syndrome in adult patients. Nuclear factor kappa B (NF-κB) serves as the main transcription factor for the inflammatory response mediated nephropathy. Cordyceps militaris, containing various pharmacological components, has been used as a kind of crude drug and folk tonic food for improving immunity and reducing inflammation. The current study aims to investigate the renoprotective activity of Cordyceps militaris aqueous extract (CM) in the cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis. Significant renal dysfunction was observed in MGN rats; comparatively, 4-week CM administration strongly decreased the levels of 24 h urine protein, total cholesterol, triglyceride, blood urea nitrogen and serum creatinine, and increased the levels of serum albumin and total serum protein. Strikingly, recovery of the kidney histological architecture was noted in CM-treated MGN rats. A significant improvement in the glutathione peroxidase and superoxide dismutase levels, and a reduced malondialdehyde concentration were observed in the serum and kidney of CM-treated rats. Altered levels of inflammatory cytokines including interleukins, monocyte chemoattractant protein-1, intercellular adhesion molecule 1, vascular adhesion molecule 1, tumor necrosis factor-α, 6-keto-prostaglandin F1α, and nuclear transcriptional factor subunit NF-κB p65 reverted to normal levels upon treatment with CM. The present data suggest that CM protects rats against membranous glomerulonephritis via the normalization of NF-κB activity, thereby inhibiting oxidative damage and reducing inflammatory cytokine levels, which further provide experimental evidence in support of the clinical use of CM as an effective renoprotective agent.

  13. Expression of intercellular adhesion molecule-1 (ICAM-1) on vascular endothelial cells and renal tubular cells in the generalized Shwartzman reaction as an experimental disseminated intravascular coagulation model.

    PubMed

    Koide, N; Abe, K; Narita, K; Kato, Y; Sugiyama, T; Yoshida, T; Yokochi, T

    1997-05-01

    The participation of adhesion molecules in systemic vascular injuries of the generalized Shwartzman reaction was studied. The generalized Shwartzman reaction was induced in mice by two consecutive injections of lipopolysaccharide. Intercellular adhesion molecule-1 (ICAM-1) was expressed on vascular endothelial cells, renal tubular cells and alveolar wall in generalized Shwartzman reaction-induced mice. The preparative injection of lipopolysaccharides induced ICAM-1 expression in those cells, and the provocative injection of lipopolysaccharides for the generalized Shwartzman reaction augmented it further. The simultaneous administration of anti-gamma interferon antibody with the preparative injection of lipopolysaccharides completely inhibited ICAM-1 expression on vascular endothelial cells. The injection of recombinant gamma interferon in replacement of lipopolysaccharides resulted in ICAM-1 expression. The administration of anti-ICAM-1 antibody together with the provocative injection of lipopolysaccharides significantly blocked the apoptosis of vascular endothelial cells in generalized Shwartzman reaction-induced mice. It was suggested that ICAM-1 expression on vascular endothelial cells might be involved in systemic vascular injuries of the generalized Shwartzman reaction, and that it might be regulated by gamma interferon.

  14. Immunohistochemical expression of vascular endothelial growth factor (VEGF) does not correlate with microvessel density in renal cell carcinoma.

    PubMed

    Raica, M; Cimpean, A M; Anghel, A

    2007-01-01

    The aim of present study was to investigate the relationship between the immunohistochemical expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) assessed by CD31 and endoglin (CD105) in renal cell carcinoma (RCC). Specimens from 45 cases of RCC. were formalin-fixed, paraffin embedded, and sections were stained with H&E. Additional sections from each case were stained for VEGF, CD31, CD105, and alpha smooth muscle cell actin (SMA). VEGF immunohistochemical expression was estimated as negative (0), weak positive (+1), moderate positive (+2), and intense positive (+3). Microvessel density (MVD) was estimated on 5 hot spots (x400) from each case, and the arithmetic media was the final result. MVD was separately calculated on slides stained with CD31 and CD105. The rate between mature and immature blood vessels was calculated on slides stained with CD31/CD105/SMA. Statistic analysis was performed with SPSS10.0. The immunoreaction for VEGF was positive in epithelial cells of the renal tubules, and occasionally, in endothelial cells. In RCC, tumor cells were positive in 34 from 45 cases (75.5%). 11 cases were negative, 14 were slightly positive (+1), 13 moderate (+2), and 7 intense (+3). No relationship was found between the expression of VEGF and pathological form and nuclear grade, excepting for the chromophilic variant (3 cases, all positive). CD31 was positive in all cases, and CD105 in 39 cases. The mean values of MVD on slides stained for CD31 and CD105 were: 31.68 (range 9.8-60.2)/20.66 (range 4.2-52.8). The rate CD31/SMA positive blood vessels was 1/0.62. VEGF was expressed in 75.5% of 45 cases with RCC, and the mean value of MVD CD31/CD105 was 31.68/20.66. The immunohistochemical expression of VEGF does not correlate with MVD performed on slides stained for both CD31 and endoglin. The majority of blood vessels in the tumor area are of mature type, with perivascular cells positive for SMA.

  15. Positive vascular wall margins have minimal impact on cancer outcomes in patients with non-metastatic renal cell carcinoma (RCC) with tumour thrombus.

    PubMed

    Abel, E Jason; Carrasco, Alonso; Karam, Jose; Tamboli, Pheroze; Delacroix, Scott; Vaporciyan, Ara A; Wood, Christopher G

    2014-11-01

    To evaluate the impact of microscopically positive vascular margins on recurrence and cancer-specific survival (CSS) in patients with renal cell carcinoma (RCC) with venous thrombus We reviewed the records from the period 1993 to 2009 of consecutive patients treated surgically for RCC with venous tumour thrombus at the University of Texas MD Anderson Cancer Center. Patients with metastatic disease, positive soft tissue margins or gross residual disease at time of thrombectomy were excluded. The primary outcome measures were local or systemic disease recurrence, and CSS. Univariate and multivariate analysis were used to evaluate whether microscopically positive vascular margins were associated with RCC recurrence or CSS after nephrectomy with thrombectomy. A total of 256 patients with RCC were identified with a median (interquartile range) follow-up of 36.7 (18.4-63.5) months. Microscopic tumour was present at the margin of resection in 47 patients (18.4%). The median recurrence-free interval was significantly shorter in patients with positive vascular margins: 22.1 vs 70.2 months (P = 0.009). The rate of local recurrence was higher in patients with positive vein margins: 12.8 vs 4.3% (P < 0.01). Local recurrence without concomitant systemic recurrence was identified in only two of 256 (0.8%) patients. Patients with positive vascular margins had significantly worse CSS times compared with patients with negative vascular margins: 37.7 vs 93.0 months (P = 0.004). In multivariable analysis, positive vascular margins were found to be independently predictive of local recurrence but not of systemic recurrence or CSS. Complete surgical excision should always be attempted because positive vascular wall margins increase local recurrence rates. Invasion of RCC into the vein wall at the resection margin is associated with aggressive tumour biology, and the majority of patients with positive vascular wall margins experience systemic recurrence. © 2013 The Authors. BJU

  16. Multi-parametric profiling of renal cell, colorectal, and ovarian cancer identifies tumour-type-specific stroma phenotypes and a novel vascular biomarker.

    PubMed

    Corvigno, Sara; Frödin, Magnus; Wisman, G Bea A; Nijman, Hans W; Van der Zee, Ate Gj; Jirström, Karin; Nodin, Björn; Hrynchyk, Ina; Edler, David; Ragnhammar, Peter; Johansson, Martin; Dahlstrand, Hanna; Mezheyeuski, Artur; Östman, Arne

    2017-07-01

    A novel set of integrated procedures for quantification of fibroblast-rich stroma and vascular characteristics has recently been presented allowing discovery of novel perivascular and stromal biomarkers in colorectal, renal cell, and ovarian cancer. In the present study, data obtained through these procedures from clinically well-annotated collections of these three tumour types have been used to address two novel questions. First, data have been used to investigate if the three tumour types demonstrate significant differences regarding features such as vessel diameter, vessel density, and perivascular marker expression. Second, analyses of the cohorts have been used to explore the prognostic significance of a novel vascular metric, 'vessel distance inter-quartile range (IQR)' that describes intra-case heterogeneity regarding vessel distribution. The comparisons between the three tumour types demonstrated a set of significant differences. Vessel density of renal cell cancer was statistically significantly higher than in colorectal and ovarian cancer. Vessel diameter was statistically significantly higher in ovarian cancer. Concerning perivascular status, colorectal cancer displayed significantly higher levels of perivascular PDGFR-β expression than the other two tumour types. Intra-case heterogeneity of perivascular PDGFR-β expression was also higher in colorectal cancer. Notably, these fibroblast-dominated stroma phenotypes matched previously described experimental tumour stroma characteristics, which have been linked to differential sensitivity to anti-VEGF drugs. High 'vessel distance IQR' was significantly associated with poor survival in both renal cell cancer and colorectal cancer. In renal cell cancer, this characteristic also acted as an independent prognostic marker according to multivariate analyses including standard clinico-pathological characteristics. Explorative subset analyses indicated particularly strong prognostic significance of 'vessel

  17. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study.

    PubMed

    Kieneker, Lyanne M; Gansevoort, Ron T; Mukamal, Kenneth J; de Boer, Rudolf A; Navis, Gerjan; Bakker, Stephan J L; Joosten, Michel M

    2014-10-01

    Previous prospective cohort studies on the association between potassium intake and risk of hypertension have almost exclusively relied on self-reported dietary data, whereas repeated 24-hour urine excretions, as estimate of dietary uptake, may provide a more objective and quantitative estimate of this association. Risk of hypertension (defined as blood pressure ≥140/90 mm Hg or initiation of blood pressure-lowering drugs) was prospectively studied in 5511 normotensive subjects aged 28 to 75 years not using blood pressure-lowering drugs at baseline of the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. Potassium excretion was measured in two 24-hour urine specimens at baseline (1997-1998) and midway during follow-up (2001-2003). Baseline median potassium excretion was 70 mmol/24 h (interquartile range, 57-85 mmol/24 h), which corresponds to a dietary potassium intake of ≈91 mmol/24 h. During a median follow-up of 7.6 years (interquartile range, 5.0-9.3 years), 1172 subjects developed hypertension. The lowest sex-specific tertile of potassium excretion (men: <68 mmol/24 h; women: <58 mmol/24 h) had an increased risk of hypertension after multivariable adjustment (hazard ratio, 1.20; 95% confidence interval, 1.05-1.37), compared with the upper 2 tertiles (Pnonlinearity=0.008). The proportion of hypertension attributable to low potassium excretion was 6.2% (95% confidence interval, 1.7%-10.9%). No association was found between the sodium to potassium excretion ratio and risk of hypertension after multivariable adjustment. Low urinary potassium excretion was associated with an increased risk of developing hypertension. Dietary strategies to increase potassium intake to the recommended level of 90 mmol/d may have the potential to reduce the incidence of hypertension. © 2014 American Heart Association, Inc.

  18. Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study.

    PubMed

    Joosten, Michel M; Gansevoort, Ron T; Mukamal, Kenneth J; Kootstra-Ros, Jenny E; Feskens, Edith J M; Geleijnse, Johanna M; Navis, Gerjan; Bakker, Stephan J L

    2013-06-01

    Observational studies on dietary or circulating magnesium and risk of hypertension have reported weak-to-modest inverse associations, but have lacked measures of actual dietary uptake. Urinary magnesium excretion, an indicator of intestinal magnesium absorption, may provide a better insight in this association. We examined 5511 participants aged 28 to 75 years free of hypertension in the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study, a prospective population-based cohort study. Circulating magnesium was measured in plasma and urinary magnesium in two 24-hour urine collections, both at baseline. Incident hypertension was defined as blood pressure ≥140 mm Hg systolic or ≥90 mm Hg diastolic, or initiation of antihypertensive medication. During a median follow-up of 7.6 years (interquartile range, 5.0-9.3 years), 1172 participants developed hypertension. The median urinary magnesium excretion was 3.8 mmol/24 hour (interquartile range, 2.9-4.8 mmol/24 hour). Urinary magnesium excretion was associated with risk of hypertension in an inverse log-linear fashion, and this association remained after adjustment for age, sex, body mass index, smoking status, alcohol intake, parental history of hypertension, and urinary excretion of sodium, potassium, and calcium. Each 1-unit increment in ln-transformed urinary magnesium excretion was associated with a 21% lower risk of hypertension after multivariable adjustment (adjusted hazard ratio, 0.79; 95% confidence interval, 0.71-0.88). No associations were observed between circulating magnesium and risk of hypertension. In conclusion, in this cohort of men and women, urinary magnesium excretion was inversely associated with risk of hypertension across the entire range of habitual dietary intake.

  19. Serum level and immunohistochemical expression of vascular endothelial growth factor for the prediction of postoperative recurrence in renal cell carcinoma

    PubMed Central

    2014-01-01

    Background Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis. One of the functions of VEGF is to regulate neovascularization in clear cell renal cell carcinoma (CCRCC). The objective of our study was to examine whether before nephrectomy serum levels of VEGF or expression of VEGF using immunohistochemistry (IHC) could predict postoperative recurrence in nonmetastatic CCRCC. Results Twelve patients (14.5%) had recurrence during a mean follow-up of 52.6 ± 31.2 months. The serum VEGF level was significantly higher in patients with recurrence than in those without recurrence (P = 0.038). High serum VEGF levels were above 416 pg/mL; this value was chosen based on a receiver operating characteristic analysis. The recurrence-free survival rate in patients with a high serum VEGF level was significantly lower than in those with a low serum VEGF level (P = 0.003). In total, tumors from 26 patients (31.3%) showed overexpression of VEGF using IHC. The recurrence-free survival rate in the IHC-positive group was significantly lower than that in the IHC-negative group (P = 0.044). Multivariate analysis indicated that preoperative serum VEGF levels (P = 0.013) and female gender (P = 0.004) were independent predictors of postoperative recurrence in nonmetastatic CCRCC. Conclusions Preoperative serum VEGF levels is a useful predictor compared with IHC analysis of VEGF of postoperative recurrence in nonmetastatic CCRCC. PMID:24938498

  20. Effect of omega-3 fatty acid supplementation on serum lipids and vascular inflammation in patients with end-stage renal disease: a meta-analysis

    PubMed Central

    Xu, Tianhua; Sun, Yiting; Sun, Wei; Yao, Li; Sun, Li; Liu, Linlin; Ma, Jianfei; Wang, Lining

    2016-01-01

    Omega-3 fatty acids (O3FAs) are associated with lower cardiovascular disease (CVD) risk in adults. However, this association in patients with end-stage renal disease (ESRD) remains controversial prompting the need for investigation into the role of O3FAs on serum lipids and vascular inflammation markers. The present meta-analysis summarized the effects of O3FA supplementation on serum lipids and vascular inflammatory markers in patients with ESRD. PubMed, EmBase, and the Cochrane Library were searched to identify randomized controlled trials (RCTs) focused on serum lipids and vascular inflammation markers in patients with ESRD. Standard mean differences (SMD) were used to measure the effect of O3FA supplementation on serum lipids and vascular inflammatory markers. The final pooled analysis included 20 RCTs involving 1,461 patients with ESRD. The results indicated that O3FA supplementation reduced TG by 0.61, LDL by 0.35 and CRP by 0.56. However, O3FA had no significant effect on TC, HDL, albumin, hemoglobin, homocysteine, DBP, glucose, lipoprotein(a), and ferritin. O3FA supplementation is associated with lower several serum lipids and vascular inflammation markers in patients with ESRD. PMID:28008943

  1. Heterotopic renal transplantation in piglets using vascular closure stapler metallic clips or conventional suturing techniques: comparison of vessel growth and macroscopical study.

    PubMed

    Calles-Vázquez, Maria Carmen; Rubio, Elena Abellán; Ayala, Verónica Crisóstomo; Gargallo, Jesús Usón; Margallo, Francisco Miguel Sánchez

    2012-07-01

    Our aim was to perform a macroscopic and imaging (ultrasonographic and angiographic) evaluation of vascular closure stapler (VCS) metallic clips for renal transplantation in growing piglets to assess their role for transplantation surgery in young children. If these techniques are to be useful, it is necessary to prove that their use avoids one of the main pitfalls of conventional sutures in this setting, namely lack of growth in the suture line. Twenty-four piglets were used for this study. Animals were subjected to a heterotopic renal autotransplantation when they were 45 days old. The right kidney was moved from its normal location to the cranial area of the iliac fossa. The end-to-side anastomoses between the renal artery and vein and the aorta and vena cava, respectively, were performed using VCS metallic clips in 6 animals. Continuous polypropylene suturing was used in another 6 piglets, and continuous polyglycolic acid suture was used in 6 additional piglets. A control group of 6 animals without renal autotransplantation was also included in the study. All animals were allowed to grow for 6 months, during which time serial angiographic and ultrasonographic studies were carried out to assess the existence of vascular flow disturbances or stenosis. Similarly, angiographic measurements were obtained to document growth at the anastomotic site. Longitudinal growth was evaluated postmortem after the 6-month growing period. Angiography showed significant (P < .001) transverse growth in both arteries and veins belonging to the VCS clips, running absorbable suture, or control groups. No significant difference was observed among the 3 groups. Vascular growth in the running nonabsorbable suture (polypropylene) group, however, was significantly less than in the other 3 groups and did not significantly differ from baseline. Baseline luminal diameters at the anastomotic site as measured by angiography in the VCS group were 3.64 ± 0.40 mm in the artery and 5.30 ± 1.43 mm

  2. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Simplicity catheter system and the EnligHTN multi-electrode renal denervation catheter.

    PubMed

    Templin, Christian; Jaguszewski, Milosz; Ghadri, Jelena R; Sudano, Isabella; Gaehwiler, Roman; Hellermann, Jens P; Schoenenberger-Berzins, Renate; Landmesser, Ulf; Erne, Paul; Noll, Georg; Lüscher, Thomas F

    2013-07-01

    Catheter-based renal nerve ablation (RNA) using radiofrequency energy is a novel treatment for drug-resistant essential hypertension. However, the local endothelial and vascular injury induced by RNA has not been characterized, although this importantly determines the long-term safety of the procedure. Optical coherence tomography (OCT) enables in vivo visualization of morphologic features with a high resolution of 10-15 µm. The objective of this study was to assess the morphological features of the endothelial and vascular injury induced by RNA using OCT. In a prospective observational study, 32 renal arteries of patients with treatment-resistant hypertension underwent OCT before and after RNA. All pre- and post-procedural OCT pullbacks were evaluated regarding vascular changes such as vasospasm, oedema (notches), dissection, and thrombus formation. Thirty-two renal arteries were evaluated, in which automatic pullbacks were obtained before and after RNA. Vasospasm was observed more often after RNA then before the procedure (0 vs. 42%, P < 0.001). A significant decrease in mean renal artery diameter after RNA was documented both with the EnligHTN (4.69 ± 0.73 vs. 4.21 ± 0.87 mm; P < 0.001) and with the Simplicity catheter (5.04 ± 0.66 vs. 4.57 ± 0.88 mm; P < 0.001). Endothelial-intimal oedema was noted in 96% of cases after RNA. The presence of thrombus formations was significantly higher after the RNA then before ablation (67 vs. 18%, P < 0.001). There was one evidence of arterial dissection after RNA with the Simplicity catheter, while endothelial and intimal disruptions were noted in two patients with the EnligHTN catheter. Here we show that diffuse renal artery constriction and local tissue damage at the ablation site with oedema and thrombus formation occur after RNA and that OCT visualizes vascular lesions not apparent on angiography. This suggests that dual antiplatelet therapy may be required during RNA.

  3. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Simplicity® catheter system and the EnligHTN™ multi-electrode renal denervation catheter

    PubMed Central

    Templin, Christian; Jaguszewski, Milosz; Ghadri, Jelena R.; Sudano, Isabella; Gaehwiler, Roman; Hellermann, Jens P.; Schoenenberger-Berzins, Renate; Landmesser, Ulf; Erne, Paul; Noll, Georg; Lüscher, Thomas F.

    2013-01-01

    Aims Catheter-based renal nerve ablation (RNA) using radiofrequency energy is a novel treatment for drug-resistant essential hypertension. However, the local endothelial and vascular injury induced by RNA has not been characterized, although this importantly determines the long-term safety of the procedure. Optical coherence tomography (OCT) enables in vivo visualization of morphologic features with a high resolution of 10–15 µm. The objective of this study was to assess the morphological features of the endothelial and vascular injury induced by RNA using OCT. Methods and results In a prospective observational study, 32 renal arteries of patients with treatment-resistant hypertension underwent OCT before and after RNA. All pre- and post-procedural OCT pullbacks were evaluated regarding vascular changes such as vasospasm, oedema (notches), dissection, and thrombus formation. Thirty-two renal arteries were evaluated, in which automatic pullbacks were obtained before and after RNA. Vasospasm was observed more often after RNA then before the procedure (0 vs. 42%, P < 0.001). A significant decrease in mean renal artery diameter after RNA was documented both with the EnligHTN™ (4.69 ± 0.73 vs. 4.21 ± 0.87 mm; P < 0.001) and with the Simplicity® catheter (5.04 ± 0.66 vs. 4.57 ± 0.88 mm; P < 0.001). Endothelial-intimal oedema was noted in 96% of cases after RNA. The presence of thrombus formations was significantly higher after the RNA then before ablation (67 vs. 18%, P < 0.001). There was one evidence of arterial dissection after RNA with the Simplicity® catheter, while endothelial and intimal disruptions were noted in two patients with the EnligHTN™ catheter. Conclusion Here we show that diffuse renal artery constriction and local tissue damage at the ablation site with oedema and thrombus formation occur after RNA and that OCT visualizes vascular lesions not apparent on angiography. This suggests that dual antiplatelet therapy may be required during RNA

  4. Origin of a common trunk for the inferior phrenic arteries from the right renal artery: a new anatomic vascular variant with clinical implications.

    PubMed

    Topaz, On; Topaz, Allyne; Polkampally, Pritam R; Damiano, Thomas; King, Christopher A

    2010-01-01

    The inferior phrenic arteries constitute a pair of important vessels, supplying multiple organs including the diaphragm, adrenal glands, esophagus, stomach, liver, inferior vena cava, and retroperitoneum. The vast majority (80-90%) of inferior phrenic arteries originate as separate vessels with near equal frequency from either the abdominal aorta or the celiac trunk. Infrequently, the right and left inferior phrenic arteries can arise in the form of a common trunk from the aorta or from the celiac trunk. We herein present three patients with a new anatomic vascular variant: a common trunk of the inferior phrenic arteries arising from the right renal artery. In one case, the left inferior phrenic branch of the common trunk provided collaterals connecting with a supra-diaphragmatic branch of the left internal mammary artery and in another with the lateral wall of the pericardium. Angiographic identification of a common trunk for the inferior phrenic arteries arising from the right renal artery is important for proper diagnosis and clinical management. The presence of this unique vascular variant can impact revascularization of the renal arteries.

  5. Transcatheter Amplatzer vascular plug-embolization of a giant postnephrectomy arteriovenous fistula combined with an aneurysm of the renal pedicle by through-and-through, arteriovenous access.

    PubMed

    Kayser, Ole; Schäfer, Philipp

    2013-01-01

    Although endovascular transcatheter embolization of arteriovenous fistulas is minimally invasive, the torrential flow prevailing within a fistula implies the risk of migration of the deployed embolization devices into the downstream venous and pulmonary circulation. We present the endovascular treatment of a giant postnephrectomy arteriovenous fistula between the right renal pedicle and the residual renal vein in a 63-year-old man. The purpose of this case report is to demonstrate that the Amplatzer vascular plug (AVP) can be safely positioned to embolize even relatively large arteriovenous fistulas (AVFs). Secondly, we illustrate that this occluder can even be introduced to the fistula via a transvenous catheter in cases where it is initially not possible to advance the deployment-catheter through a tortuous feeder artery. Migration of the vascular plug was ruled out at follow-up 4 months subsequently to the intervention. Thus, the Amplatzer vascular plug and the arteriovenous through-and-through guide wire access with subsequent transvenous deployment should be considered in similar cases.

  6. Caffeine ameliorates hemodynamic derangements and portosystemic collaterals in cirrhotic rats.

    PubMed

    Hsu, Shao-Jung; Lee, Fa-Yauh; Wang, Sun-Sang; Hsin, I-Fang; Lin, Te-Yueh; Huang, Hui-Chun; Chang, Ching-Chih; Chuang, Chiao-Lin; Ho, Hsin-Ling; Lin, Han-Chieh; Lee, Shou-Dong

    2015-05-01

    Portal hypertension (PH), a pathophysiological derangement of liver cirrhosis, is characterized by hyperdynamic circulation, angiogenesis, and portosystemic collaterals. These may lead to lethal complications, such as variceal bleeding. Caffeine has been noted for its effects on liver inflammation, fibrogenesis, and vasoreactiveness. However, the relevant influences of caffeine in cirrhosis and PH have not been addressed. Spraque-Dawley rats with common bile duct ligation-induced cirrhosis or sham operation received prophylactic or therapeutic caffeine treatment (50 mg/kg/day, the first or 15th day since operation, respectively) for 28 days. Compared to vehicle (distilled water), caffeine decreased cardiac index, increased systemic vascular resistance, reduced portal pressure (PP), superior mesenteric artery flow, mesenteric vascular density, portosystemic shunting (PSS), intrahepatic angiogenesis, and fibrosis without affecting liver and renal biochemistry. The beneficial effects were reversed by selective adenosine A1 agonist N6-cyclopentyladenosine (CPA) or A2A agonist GCS21680. Both prophylactic and therapeutic caffeine treatment decreased portal resistance and PP in thioacetamide (200mg/kg, thrice-weekly for 8 weeks)-induced cirrhotic rats. Caffeine down-regulated endothelial nitric oxide synthase, vascular endothelial growth factor (VEGF), phospho-VEGFR2, and phospho-Akt mesenteric protein expression. Caffeine adversely affected viability of hepatic stellate and sinusoidal endothelial cells, which was reversed by CPA and GCS21680. On the other hand, caffeine did not modify vascular response to vasoconstrictors in splanchnic, hepatic, and collateral vascular beds. Caffeine decreased PP, ameliorated hyperdynamic circulation, PSS, mesenteric angiogenesis, hepatic angiogenesis, and fibrosis in cirrhotic rats. Caffeine may be a feasible candidate to ameliorate PH-related complications in cirrhosis. © 2015 by the American Association for the Study of Liver

  7. Comparison of human adipose stromal vascular fraction and adipose-derived mesenchymal stem cells for the attenuation of acute renal ischemia/reperfusion injury

    PubMed Central

    Zhou, Liuhua; Song, Qun; Shen, Jiangwei; Xu, Luwei; Xu, Zheng; Wu, Ran; Ge, Yuzheng; Zhu, Jiageng; Wu, Jianping; Dou, Quanliang; Jia, Ruipeng

    2017-01-01

    Stem cells therapy has been suggested as a promising option for the treatment of acute kidney injury (AKI). This study was performed to compare the abilities of xenogenic transplantation of human adipose stromal vascular fraction (SVF) and adipose-derived mesenchymal stem cells (AdMSCs) to facilitate the recovery of renal function and structure in a rat model of ischemia/reperfusion (IR) induced AKI. SVF or AdMSCs were transplanted to the injured kidney through intra-parenchymal injection. Significantly improved renal function and reduced tubular injury were observed in SVF and AdMSCs groups. Administration of SVF or AdMSCs contributed to significantly improved cell proliferation and markedly reduced cell apoptosis in parallel with reduced microvascular rarefaction in injured kidney. IR injury resulted in higher levels of inflammatory cytokines, whereas xenogenic transplantation of SVF or AdMSCs reduced but not induced inflammatory cytokines expression. Additionally, in vitro study showed that administration of SVF or AdMSCs could also significantly promote the proliferation and survival of renal tubular epithelial cells underwent hypoxia/reoxygenation injury through secreting various growth factors. However, cell proliferation was significantly promoted in SVF group than in AdMSCs group. In conclusion, our study demonstrated that administration of SVF or AdMSCs was equally effective in attenuating acute renal IR injury. PMID:28276451

  8. High-salt diets during pregnancy increases renal vascular reactivity due to altered soluble guanylyl cyclase-related pathways in rat offspring.

    PubMed

    Jiang, Lin; Yin, Xiaohui; He, Axin; Li, Lingjun; Bo, Le; Zhou, Xiuwen; Tang, Jiaqi; Gu, Xiuxia; Wu, Jue; Gao, Qinqin; Lv, Juanxiu; Mao, Caiping; Xu, Zhice

    2016-02-01

    Adverse prenatal factors such as overtake of salt or fat food are potential risks for cardiovascular diseases in offspring. This study tested the hypothesis that prenatal high-salt (HS) diets may influence renal vascular tone and attenuates signaling pathways related to soluble guanylyl cyclase (sGC) or/and large-conductance Ca(2+)-activated K(+) (BKCa) channels in the offspring. Pregnant rats were fed either normal salt (NS) (1% NaCl) or HS (8% NaCl) diet for the whole gestation. Offspring were maintained on NS diets. Renal interlobar arteries in offspring were tested for vascular responses to phenylephrine (Phe), K(+) channels and signal pathways related to sGC. Phe induced higher vessel tension in interlobar arteries of the HS offspring. Following pretreatment with BKCa channel inhibitor iberiotoxin, Phe-mediated vasoconstrictions were decreased in HS offspring compared to NS. Phe-mediated constrictions following pretreatment with NO synthase inhibitor N(G)-nitro-l-arginine methyl ester or sGC inhibitor 1H-1,2,4-oxadiazolo-4,3-quinoxalin-1-one in the HS offspring were less sensitive than NS. The whole-cell K(+) currents and the component of BKCa channels were not changed in smooth muscle cells from interlobar arteries, whereas the K(+) currents stimulated by sGC activator BAY41-2272 were reduced in the HS offspring. The protein expressions of sGC β1 and β2 in the interlobar arteries of HS offspring were reduced. The results showed that chronic overintake of salt during pregnancy could increase renal vascular tone in the offspring. The affected signal pathways included down-regulation of sGC function and expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways.

    PubMed

    Siddiqi, Aisha; Hasan, Syed Kazim; Nafees, Sana; Rashid, Summya; Saidullah, Bano; Sultana, Sarwat

    2015-12-01

    In the present study, chemopreventive efficacy of hesperidin was evaluated against ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and carcinogenesis in wistar rats. Nephrotoxicity was induced by single intraperitoneal injection of Fe-NTA (9 mg Fe/kg b.wt). Renal cancer was initiated by the administration of N-nitrosodiethylamine (DEN 200mg/kg b.wt ip) and promoted by Fe-NTA (9 mg Fe/kg b.wt ip) twice weekly for 16 weeks. Efficacy of hesperidin against Fe-NTA-induced nephrotoxicity was assessed in terms of biochemical estimation of antioxidant enzyme activities viz. reduced renal GSH, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase, superoxide dismutase and renal toxicity markers (BUN, Creatinine, KIM-1). Administration of Fe-NTA significantly depleted antioxidant renal armory, enhanced renal lipid peroxidation as well as the levels of BUN, creatinine and KIM-1. However, simultaneous pretreatment of hesperidin restored their levels in a dose dependent manner. Expression of apoptotic markers caspase-3, caspase-9, bax, bcl-2 and proliferative marker PCNA along with inflammatory markers (NFκB, iNOS, TNF-α) were also analysed to assess the chemopreventive potential of hesperidin in two-stage renal carcinogenesis model. Hesperidin was found to induce caspase-3, caspase-9, bax expression and downregulate bcl-2, NFκB, iNOS, TNF-α, PCNA expression. Histopathological findings further revealed hesperidin's chemopreventive efficacy by restoring the renal morphology. Our results provide a powerful evidence suggesting hesperidin to be a potent chemopreventive agent against renal carcinogenesis possibly by virtue of its antioxidant properties and by modulation of multiple molecular pathways.

  10. A case report of one of the largest {3.63kg} renal tumour removed in the Western Hemisphere. A combined Uro vascular approach for complete removal.

    PubMed

    Sawh, L R; Budhooram, Steve; Ewe, Peng; Rattan, Ryan; Sawh, Sean L

    2016-01-01

    This paper describes the technique employed for the removal of the largest renal tumour in the Western Hemisphere and the second largest in the World. It is a road map for Surgeons in Training and should be of interest to other Surgeons/Urologists. This tumour weighed 3.63kg; the world's largest weighed 5.44kg. A 52year old male presented with a one year history of progressive weight loss, a gradually enlarging abdomen and no other admissible symptom, including no haematuria. The mass started on his left side of the abdomen. CT scans showed a large tumour arising from the left kidney. A combined Urological and vascular approach was chosen in view of the CT scans images of huge renal veins and collateral vessels. The left pleural cavity was elevated by the mass pushing on the left diaphragm and the heart was also displaced cranially as the mass made its own space. Bowels were displaced as the giant mass reached into his pelvis. A thoraco abdominal supra12 rib bed approach was adopted. The rib was not resected nor was the pleural cavity opened. Histological diagnosis was renal leiomyosarcoma. Large renal tumours or masses are best approached by the Urologist with an experienced vascular/general surgeon as assistant as well as a skilled anesthetist/Intensivist. Optimisation, critical care and early mobilization of the patient by a dedicated nursing staff are essential to minimize complications and ensure a successful end result. The success of this operation underscores what is possible in developing countries. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Treatment options in advanced renal cell carcinoma after first-line treatment with vascular endothelial growth factor receptor tyrosine kinase inhibitors

    PubMed Central

    Basappa, Naveen S.

    2016-01-01

    Targeted therapy for metastatic renal cell carcinoma (mRCC) was introduced a decade ago and since then, a number of therapeutic options have been developed. Vascular endothelial growth factor-targeted therapy is the widely accepted first-line option for mRCC. After progression, treatment in the second-line setting has typically been with either axitinib or everolimus. However, with the advent of several new agents demonstrating efficacy in the second-line setting, including nivolumab, cabozantinib, and the combination of lenvatinib and everolimus, the treatment paradigm has shifted toward these novel therapies with improved patient outcomes. PMID:28096936

  12. Serum Vascular Adhesion Protein-1 Predicts End-Stage Renal Disease in Patients with Type 2 Diabetes

    PubMed Central

    Nien, Feng-Jung; Wu, Vin-Cent; Jiang, Yi-Der; Chang, Tien-Jyun; Kao, Hsien-Li; Lin, Mao-Shin; Wei, Jung-Nan; Lin, Cheng-Hsin; Shih, Shyang-Rong; Hung, Chi-Sheng; Chuang, Lee-Ming

    2016-01-01

    Background Diabetes is the leading cause of end-stage renal disease (ESRD) worldwide. Vascular adhesion protein-1 (VAP-1) participates in inflammation and catalyzes the deamination of primary amines into aldehydes, hydrogen peroxide, and ammonia, both of which are involved in the pathogenesis of diabetic complications. We have shown that serum VAP-1 is higher in patients with diabetes and in patients with chronic kidney disease (CKD), and can predict cardiovascular mortality in subjects with diabetes. In this study, we investigated if serum VAP-1 can predict ESRD in diabetic subjects. Methods In this prospective cohort study, a total of 604 type 2 diabetic subjects were enrolled between 1996 to 2003 at National Taiwan University Hospital, Taiwan, and were followed for a median of 12.36 years. The development of ESRD was ascertained by linking our database with the nationally comprehensive Taiwan Society Nephrology registry. Serum VAP-1 concentrations at enrollment were measured by time-resolved immunofluorometric assay. Results Subjects with serum VAP-1 in the highest tertile had the highest incidence of ESRD (p<0.001). Every 1-SD increase in serum VAP-1 was associated with a hazard ratio of 1.55 (95%CI 1.12–2.14, p<0.01) for the risk of ESRD, adjusted for smoking, history of cardiovascular disease, body mass index, hypertension, HbA1c, duration of diabetes, total cholesterol, use of statins, ankle-brachial index, estimated GFR, and proteinuria. We developed a risk score comprising serum VAP-1, HbA1c, estimated GFR, and proteinuria, which could predict ESRD with good performance (area under the ROC curve = 0.9406, 95%CI 0.8871–0.9941, sensitivity = 77.3%, and specificity = 92.8%). We also developed an algorithm based on the stage of CKD and a risk score including serum VAP-1, which can stratify these subjects into 3 categories with an ESRD risk of 0.101%/year, 0.131%/year, and 2.427%/year, respectively. Conclusions In conclusion, serum VAP-1 can predict ESRD

  13. The associations between five polymorphisms of vascular endothelial growth factor and renal cell carcinoma risk: an updated meta-analysis

    PubMed Central

    Wang, Jiao; Shen, ChangXin; Fu, YouRong; Yu, Tian; Song, JingJing

    2017-01-01

    Background Vascular endothelial growth factor (VEGF) is a key mediator that plays an important role in angiogenesis, tumor growth, and tumor metastasis. The associations between five polymorphisms of VEGF (rs3025039, rs699947, rs10434, rs1570360, and rs2010963) and renal cell carcinoma (RCC) risk have been extensively investigated, but the currently available results are inconsistent and inconclusive. To obtain a more accurate assessment of the associations, we conducted a meta-analysis in this study. Materials and methods Relevant studies were collected systemically from the following three electronic databases: MEDLINE, Web of Science, and CNKI (Chinese National Knowledge Infrastructure). Statistical analyses were performed using Review Manager 5.2 in a fixed- or random-effects model. Pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated to establish the strength of associations. Results A total of eight case–control studies with 1,936 RCC cases and 2,770 controls fulfilling the inclusion criteria were selected for this meta-analysis. The pooled OR indicated that rs699947 polymorphism was significantly associated with RCC risk in all genetic models. A significant association was also found between the rs3025039 polymorphism and RCC risk in a homozygous model (TT vs CC: OR =1.38, 95% CI =1.11–1.72, P=0.004), a dominant model (CT+TT vs CC: OR =1.21, 95% CI =1.05–1.39, P=0.01), and a recessive model (TT vs CC+CT: OR =1.28, 95% CI =1.04–1.57, P=0.02). After a subgroup analysis of ethnicity in the allele contrast model of rs3025039 polymorphism, we found a significant relationship in the allele contrast model (T vs C: OR =1.21, 95% CI =1.05–1.40, P=0.007) in the Asian population. With regard to rs10434 polymorphism, significant association was observed only in a homozygous model (GG vs AA: OR =0.75, 95% CI =0.57–0.98, P=0.03). As to rs1570360 or rs2010963, we did not observe any relationship between the two polymorphisms and RCC

  14. p38 MAPK inhibitors ameliorate target organ damage in hypertension: Part 2. Improved renal function as assessed by dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Lenhard, Stephen C; Nerurkar, Sandhya S; Schaeffer, Thomas R; Mirabile, Rosanna C; Boyce, Rogely W; Adams, David F; Jucker, Beat M; Willette, Robert N

    2003-12-01

    Recent evidence suggests p38 mitogen-activated protein kinase (MAPK) signal transduction plays an important role in the pathogenesis of progressive renal disease. Using dynamic contrast enhanced magnetic resonance imaging (MRI), we evaluated chronic treatment with a p38 MAPK inhibitor, trans-1-(4-hydroxycyclohexyl)-4-(4-fluorophenyl-methoxypyridimidin-4-yl)imidazole (SB-239063), on renal function in a hypertension model of progressing renal dysfunction. Spontaneously hypertensive-stroke prone rats were placed on a high salt/fat diet (SFD) or maintained on normal chow diet (ND). SFD animals with albuminuria at 4 to 8 weeks (> or =10 mg/day inclusion criteria), were randomized into p38 MAPK inhibitor treatment (SB-239063, 1200 ppm in diet) or vehicle groups. The progression of blood pressure and albuminuria during the treatment period (approximately 6 weeks) was decreased by 12 and 60%, respectively, in the SFD + SB-239063 versus SFD control group. Renal perfusion and filtration were assessed by in vivo MRI at the end of the study. Relative cortical perfusion was increased in the SFD + SB-239063 group compared with the SFD control group as reflected by a 29% decrease in time to peak of contrast agent in the cortex. Additionally, the regional renal glomerular filtration rate index (Kcl) was increased by 39% in the SFD + SB-239063 versus SFD control group and was normalized to the ND control group. Greater functional heterogeneity was observed in the SFD control versus SFD + SB-239063 or ND control group. All alterations of renal function were supported by histopathological findings. In conclusion, chronic treatment with a p38 MAPK inhibitor, SB-239063, attenuates functional and structural renal degeneration in a hypertensive model of established renal dysfunction.

  15. Amelioration of Renal Inflammation, Endoplasmic Reticulum Stress and Apoptosis Underlies the Protective Effect of Low Dosage of Atorvastatin in Gentamicin-Induced Nephrotoxicity

    PubMed Central

    Jaikumkao, Krit; Pongchaidecha, Anchalee; Thongnak, La-ongdao; Wanchai, Keerati; Arjinajarn, Phatchawan; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2016-01-01

    Gentamicin is a commonly used aminoglycoside antibiotic. However, its therapeutic use is limited by its nephrotoxicity. The mechanisms of gentamicin-induced nephrotoxicity are principally from renal inflammation and oxidative stress. Since atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, exerts lipid-lowering effects, antioxidant, anti-inflammatory as well as anti-apoptotic effects, this study aimed to investigate the protective effects of atorvastatin against gentamicin-induced nephrotoxicity. Male Sprague Dawley rats were used and nephrotoxicity was induced by intraperitoneal injection of gentamicin, 100 mg/kg/day, for 15 days. Atorvastatin, 10 mg/kg/day, was administered by orally gavage 30 min before gentamicin injection on day 1 to 15 (pretreatment) or on day 10 to15 (delayed treatment). For only atorvastatin treatment group, it was given on day 1 to 15. At the end of the experiment, kidney weight, blood urea nitrogen and serum creatinine as well as renal inflammation (NF-κB, TNFαR1, IL-6 and iNOS), renal fibrosis (TGFβ1), ER stress (calpain, GRP78, CHOP, and caspase 12) and apoptotic markers (cleaved caspase-3, Bax, and Bcl-2) as well as TUNEL assay were determined. Gentamicin-induced nephrotoxicity was confirmed by marked elevations in serum urea and creatinine, kidney hypertrophy, renal inflammation, fibrosis, ER stress and apoptosis and attenuation of creatinine clearance. Atorvastatin pre and delayed treatment significantly improved renal function and decreased renal NF-κB, TNFαR1, IL-6, iNOS and TGFβ1 expressions. They also attenuated calpain, GRP78, CHOP, caspase 12, Bax, and increased Bcl-2 expressions in gentamicin-treated rat. These results indicate that atorvastatin treatment could attenuate gentamicin-induced nephrotoxicity in rats, substantiated by the reduction of inflammation, ER stress and apoptosis. The effect of atorvastatin in protecting from renal damage induced by gentamicin seems to be more effective when it

  16. The effect of lowering LDL cholesterol on vascular access patency: post hoc analysis of the Study of Heart and Renal Protection.

    PubMed

    Herrington, William; Emberson, Jonathan; Staplin, Natalie; Blackwell, Lisa; Fellström, Bengt; Walker, Robert; Levin, Adeera; Hooi, Lai Seong; Massy, Ziad A; Tesar, Vladimir; Reith, Christina; Haynes, Richard; Baigent, Colin; Landray, Martin J

    2014-05-01

    Reducing LDL cholesterol (LDL-C) with statin-based therapy reduces the risk of major atherosclerotic events among patients with CKD, including dialysis patients, but the effect of lowering LDL-C on vascular access patency is unclear. The Study of Heart and Renal Protection (SHARP) randomized patients with CKD to 20 mg simvastatin plus 10 mg ezetimibe daily versus matching placebo. This study aimed to explore the effects of treatment on vascular access occlusive events, defined as any access revision procedure, access thrombosis, removal of an old dialysis access, or formation of new permanent dialysis access. Among 2353 SHARP participants who had functioning vascular access at randomization, allocation to simvastatin plus ezetimibe resulted in a 13% proportional reduction in vascular access occlusive events (355 [29.7%] for simvastatin/ezetimibe versus 388 [33.5%] for placebo; risk ratio [RR], 0.87; 95% confidence interval [95% CI], 0.75 to 1.00; P=0.05). There was no evidence that the effects of treatment differed for any of the separate components of this outcome. To test the hypothesis raised by SHARP, comparable analyses were performed using the AURORA (A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis: An Assessment of Survival and Cardiovascular Events) trial cohort. AURORA did not provide independent confirmation (vascular access occlusive events: 352 [28.9%] for rosuvastatin versus 337 [27.6%] for placebo; RR, 1.06, 95% CI, 0.91 to 1.23; P=0.44). After combining the two trials, the overall effect of reducing LDL-C with a statin-based regimen on vascular access occlusive events was not statistically significant (707 [29.3%] with any LDL-C-lowering therapy versus 725 [30.5%] with placebo; RR, 0.95, 95% CI, 0.85 to 1.05; P=0.29). Exploratory analyses from SHARP suggest that lowering LDL-C with statin-based therapy may improve vascular access patency, but there was no evidence of benefit in AURORA. Taken together, the available

  17. Folate supplementation fails to affect vascular function and carotid artery intima media thickness in cyclosporin A-treated renal transplant recipients.

    PubMed

    Austen, S K; Fassett, R G; Geraghty, D P; Coombes, J S

    2006-11-01

    Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RH) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 0.20 mm, 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.

  18. Effects of complement inhibition with soluble complement receptor-1 on vascular injury and inflammation during renal allograft rejection in the rat.

    PubMed

    Pratt, J R; Hibbs, M J; Laver, A J; Smith, R A; Sacks, S H

    1996-12-01

    Complement is both an effector of the humoral immune response and a stimulator of leukocyte activation. To examine the influence of complement on the allograft response, we inhibited complement using recombinant human soluble complement receptor-1 (sCR1; TP10), in an unsensitized model of rat renal allograft rejection. Lewis to DA renal transplant recipients were treated daily with 25 mg/kg sCR1 or saline and sacrificed on days 1 to 5 after transplant. Transplanted organs were examined histologically and immunohistochemically for leukocyte subset markers and for the third component of complement, C3, and membrane attack complex deposition. A second set of recipients was followed from day 5 to day 9 to assess graft survival. sCR1-treated recipients displayed > 90% inhibition of plasma complement activity and a marked reduction in tissue C3 and membrane attack complex deposition. Inactivation of complement reduced the vascular injury such that there was almost complete sparing of vascular damage in day 5 sCR1-treated rats. There was a significant reduction in infiltrating leukocytes by day 5 after transplant, and complement inhibition delayed the time to reach a histologically defined end point of graft survival from 5 days in controls to 9 days in the sCR1-treated group. These results imply that the vascular and cell-mediated injury arises, in part, from complement activation. The partial inhibition of these injuries by sCR1 may have functional implications for strategies to inhibit allograft rejection.

  19. Amelioration of salt-induced vascular dysfunction in mesenteric arteries of Dahl salt-sensitive rats by missense mutation of extracellular superoxide dismutase

    PubMed Central

    Beyer, Andreas M.; Raffai, Gabor; Weinberg, Brian D.; Fredrich, Katherine; Rodgers, Matthew S.; Geurts, Aron M.; Jacob, Howard J.; Dwinell, Melinda R.

    2013-01-01

    Superoxide dismutase (SOD) enzymes, including extracellular SOD (ecSOD), are important for scavenging superoxide radicals (O2·−) in the vasculature. This study investigated vascular control in rats [SS-Sod3m1Mcwi (ecSODE124D)] with a missense mutation that alters a single amino acid (E124D) of ecSOD that produces a malfunctioning protein in the salt-sensitive (Dahl SS) genetic background. We hypothesized that this mutation would exacerbate endothelial dysfunction due to elevated vascular O2·− levels in SS, even under normal salt (NS; 0.4% NaCl) conditions. Aortas of ecSODE124D rats fed standard rodent chow showed enhanced sensitivity to phenylephrine and reduced relaxation to acetylcholine (ACh) vs. SS rats. Endothelium-dependent dilation to ACh was unaffected by the mutation in small mesenteric arteries of ecSODE124D rats fed NS diet, and mesenteric arteries of ecSODE124D rats were protected from endothelial dysfunction during short-term (3–5 days) high-salt (HS; 4% NaCl) diet. ACh-induced dilation of mesenteric arteries of ecSODE124D rats and SS rats fed NS diet was inhibited by NG-nitro-l-arginine methyl ester and/or by H2O2 scavenging with polyethylene glycol-catalase at higher concentrations of ACh. Total SOD activity was significantly higher in ecSODE124D rats vs. SS controls fed HS diet, most likely reflecting a compensatory response to loss of a functional ecSOD isoform. These findings indicate that, contrary to its effect in the aorta, this missense mutation of ecSOD in the SS rat genome has no negative effect on vascular function in small resistance arteries, but instead protects against salt-induced endothelial dysfunction, most likely via compensatory mechanisms involving an increase in total SOD activity. PMID:24322611

  20. Endothelin Receptor Blockade Ameliorates Vascular Fragility in Endothelial Cell–Specific Fli-1–Knockout Mice by Increasing Fli-1 DNA Binding Ability

    PubMed Central

    Akamata, Kaname; Asano, Yoshihide; Yamashita, Takashi; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Ichimura, Yohei; Toyama, Tetsuo; Trojanowska, Maria; Sato, Shinichi

    2016-01-01

    Objective It is generally accepted that blockade of endothelin receptors has potentially beneficial effects on vasculopathy associated with systemic sclerosis (SSc). The aim of this study was to clarify the molecular mechanism underlying these effects using endothelial cell–specific Fli-1–knockout (Fli-1 ECKO) mice, an animal model of SSc vasculopathy. Methods Levels of messenger RNA for target genes and the expression and phosphorylation levels of target proteins were determined in human and murine dermal microvascular endothelial cells by real-time quantitative reverse transcription–polymerase chain reaction and immunoblotting, respectively. The binding of Fli-1 to the target gene promoters was evaluated using chromatin immunoprecipitation. Expression levels of Fli-1 and α-smooth muscle actin in murine skin were evaluated using immunohistochemistry. Vascular structure and permeability were evaluated in mice injected with fluorescein isothiocyanate–dextran and Evans blue dye, respectively. Results In human dermal microvascular endothelial cells, endothelin 1 induced phosphorylation of Fli-1 at Thr312 through the sequential activation of c-Abl and protein kinase Cδ, leading to a decrease in Fli-1 protein levels as well as a decrease in binding of Fli-1 to the target gene promoters, whereas bosentan treatment reversed those effects. In Fli-1 ECKO mice, 4 weeks of treatment with bosentan increased endothelial Fli-1 expression, resulting in vascular stabilization and the restoration of impaired leaky vessels. Conclusion The vascular fragility of Fli-1 ECKO mice was improved by bosentan through the normalization of Fli-1 protein levels and activity in endothelial cells, which may explain, in part, the mechanism underlying the beneficial effects of endothelin receptor blockade on SSc vasculopathy. PMID:25707716

  1. Conversion to Sirolimus Ameliorates Cyclosporine-Induced Nephropathy in the Rat: Focus on Serum, Urine, Gene, and Protein Renal Expression Biomarkers

    PubMed Central

    Sereno, José; Nunes, Sara; Rodrigues-Santos, Paulo; Rocha-Pereira, Petronila; Fernandes, João; Teixeira, Frederico; Reis, Flávio

    2014-01-01

    Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6) were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-β, NF-κ β, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal damage, without clear changes on the traditional markers, but with changes in serums TGF-β and IL-7, TBARs clearance, and kidney TGF-β and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL. PMID:24971338

  2. Dahuang Fuzi Decoction ameliorates tubular epithelial apoptosis and renal damage via inhibiting TGF-β1-JNK signaling pathway activation in vivo.

    PubMed

    Tu, Yue; Sun, Wei; Wan, Yi-Gang; Gao, Kun; Liu, Hong; Yu, Bing-Yin; Hu, Hao; Huang, Yan-Ru

    2014-10-28

    Dahuang Fuzi Decoction (DFD) is a traditional well-prescribed formula for the treatment of chronic kidney disease (CKD) in China. This study was carried out to examine the effects of DFD in adenine-induced tubular epithelial apoptosis and renal damage, in comparison with allopurinol (AP), then to clarify the therapeutic mechanisms in vivo. A rat model of renal damage was created by adenine. Rats in Normal and Vehicle groups received distilled water, while rats in DFD and AP groups received DFD and AP, respectively. Proteinuria; urinary N-acetyl-β-D-glucosaminidase (NAG) levels; the blood biochemical parameters; renal histopathology damage; transferase-mediated dUTP nick-end labeling (TUNEL)-staining; the key molecular protein expressions in mitochondrial and transforming growth factor (TGF)-β1-c-JunNH2-terminal kinase (JNK) pathways were examined, respectively. Adenine administration induced severe renal damages, as indicated by the mass proteinuria, the heavy urinary NAG, and the marked histopathological injury in tubules and interstitium. This was associated with the activation of TGF-β1-JNK signaling pathway and tubular epithelial apoptosis. DFD treatment, however, significantly prevented proteinuria and urinary NAG elevation, and attenuated tubular epithelial apoptosis. It suppressed the protein expressions of Bax and cleaved caspase-3, whereas it enhanced the protein expression of Bcl-2. Furthermore, it also suppressed the protein levels of TGF-β1 as well as phosphorylated-JNK (p-JNK). DFD alleviated adenine-induced tubular epithelial apoptosis and renal damage in vivo, presumably through the suppression of TGF-β1-JNK pathway activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  4. Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression

    PubMed Central

    Xia, Peng; Jin, Hao; Zhang, Yan

    2016-01-01

    Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation. PMID:28050227

  5. Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression.

    PubMed

    He, Yunqiang; Xia, Peng; Jin, Hao; Zhang, Yan; Chen, Bicheng; Xu, Ziqiang

    2016-01-01

    Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation.

  6. Oxidative Stress and Modification of Renal Vascular Permeability Are Associated with Acute Kidney Injury during P. berghei ANKA Infection

    PubMed Central

    Elias, Rosa Maria; Correa-Costa, Matheus; Barreto, Claudiene Rodrigues; Silva, Reinaldo Correia; Hayashida, Caroline Y.; Castoldi, Ângela; Gonçalves, Giselle Martins; Braga, Tarcio Teodoro; Barboza, Renato; Rios, Francisco José; Keller, Alexandre Castro; Cenedeze, Marcos Antonio; Hyane, Meire Ioshie; D'Império-Lima, Maria Regina; Figueiredo-Neto, Antônio Martins; Reis, Marlene Antônia; Marinho, Cláudio Romero Farias; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2012-01-01

    Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA. PMID:22952850

  7. Influence of vascular endothelial growth factor inhibition on simple renal cysts in patients receiving bevacizumab-based chemotherapy.

    PubMed

    Grenader, Tal; Shavit, Linda

    2015-12-01

    Although angiogenesis has been implicated in the promotion of renal cyst growth in autosomal dominant polycystic kidney disease, no studies have investigated the role of angiogenesis in the growth of simple renal cysts. The aim of current study was to investigate the effect of chemotherapy with the antivascular endothelial growth factor antibody bevacizumab on renal cyst development and growth in cancer patients. We retrospectively reviewed the medical records of 136 patients with a variety of cancers that were treated with bevacizumab-based chemotherapy for metastatic disease. The presence of and changes in renal cysts were evaluated by retrospective analysis of computed tomography scans performed for assessment of tumor response to bevacizumab-based therapy. The median age of the patients was 64 years. Renal cysts were identified in 66 patients, in whom 33 (50%) had a single cyst and the rest had 2 or more cysts. The average dose of bevacizumab was 2.68 mg/kg per week. Median duration of treatment was 33 weeks. Average cyst size was 1.9±2.4 cm at the beginning of the study and the majority of the cysts (54 patients, 84%) did not change in size or shape during bevacizumab treatment. No patients were identified with new cysts. Cyst size changed in 10 patients (16%): an increase of 15% to 40% from the baseline size in 5 patients and a decrease in size of 10% to 70% in another 5 patients. The duration of bevacizumab therapy was significantly longer in the subgroup of patients with diminished or increased cyst size than in the patients with stable cyst size: 62 weeks versus 29 weeks, respectively (p=0.0002). Our data demonstrated that simple renal cysts were stable in size and number in the vast majority of cancer patients treated with bevacizumab.

  8. Influence of vascular endothelial growth factor inhibition on simple renal cysts in patients receiving bevacizumab-based chemotherapy

    PubMed Central

    Shavit, Linda

    2015-01-01

    Purpose Although angiogenesis has been implicated in the promotion of renal cyst growth in autosomal dominant polycystic kidney disease, no studies have investigated the role of angiogenesis in the growth of simple renal cysts. The aim of current study was to investigate the effect of chemotherapy with the antivascular endothelial growth factor antibody bevacizumab on renal cyst development and growth in cancer patients. Materials and Methods We retrospectively reviewed the medical records of 136 patients with a variety of cancers that were treated with bevacizumab-based chemotherapy for metastatic disease. The presence of and changes in renal cysts were evaluated by retrospective analysis of computed tomography scans performed for assessment of tumor response to bevacizumab-based therapy. Results The median age of the patients was 64 years. Renal cysts were identified in 66 patients, in whom 33 (50%) had a single cyst and the rest had 2 or more cysts. The average dose of bevacizumab was 2.68 mg/kg per week. Median duration of treatment was 33 weeks. Average cyst size was 1.9±2.4 cm at the beginning of the study and the majority of the cysts (54 patients, 84%) did not change in size or shape during bevacizumab treatment. No patients were identified with new cysts. Cyst size changed in 10 patients (16%): an increase of 15% to 40% from the baseline size in 5 patients and a decrease in size of 10% to 70% in another 5 patients. The duration of bevacizumab therapy was significantly longer in the subgroup of patients with diminished or increased cyst size than in the patients with stable cyst size: 62 weeks versus 29 weeks, respectively (p=0.0002). Conclusions Our data demonstrated that simple renal cysts were stable in size and number in the vast majority of cancer patients treated with bevacizumab. PMID:26682018

  9. Oxidative stress and modification of renal vascular permeability are associated with acute kidney injury during P. berghei ANKA infection.

    PubMed

    Elias, Rosa Maria; Correa-Costa, Matheus; Barreto, Claudiene Rodrigues; Silva, Reinaldo Correia; Hayashida, Caroline Y; Castoldi, Angela; Gonçalves, Giselle Martins; Braga, Tarcio Teodoro; Barboza, Renato; Rios, Francisco José; Keller, Alexandre Castro; Cenedeze, Marcos Antonio; Hyane, Meire Ioshie; D'Império-Lima, Maria Regina; Figueiredo-Neto, Antônio Martins; Reis, Marlene Antônia; Marinho, Cláudio Romero Farias; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2012-01-01

    Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.

  10. Endothelin-like action of Pausinystalia yohimbe aqueous extract on vascular and renal regional hemodynamics in Sprague Dawley rats.

    PubMed

    Ajayi, A A; Newaz, M; Hercule, H; Saleh, M; Bode, C O; Oyekan, A O

    2003-12-01

    The bark of the African tree Pausinystalia yohimbe has been used as a food additive with aphrodisiac and penile erection enhancing properties. The effect of an aqueous extract of P. yohimbe (CCD-X) on renal circulation was assessed in order to test the hypothesis that it possesses additional effects on nitric oxide production and/or endothelin-1 (ET-1)-like actions. In vivo studies with CCD-X in Sprague Dawley rats demonstrated a dose-dependent (1-1000 ng/kg) increase in mean blood pressure (p < 0.001) and an increase in medullary blood flow (MBF) (p < 0.001). Both the pressor action and renal medullary vasodilation were blocked by endothelinA (ETA) receptor antagonist BMS182874 and endothelinB (ETB) receptor antagonist BQ788 in combination. L-Nomega-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg) also inhibited the increase in MBF induced by CCD-X. In vitro studies in isolated perfused kidney and in pressurized renal microvessels confirmed the dose-dependent vasoconstrictor action of this extract. ETA receptor antagonist BQ610 and ETB receptor antagonist BQ788 separately and significantly attenuated the renal vasoconstrictor actions of the extract (p < 0.001 ANOVA). These preliminary observations indicate that, in addition to the alpha-adrenergic antagonist actions that characterize yohimbine, CCD-X possesses endothelin-like actions and affects nitric oxide (NO) production in renal circulation. These findings suggest a strong possibility of post-receptor cross-talk between alpha2-adrenoceptors and endothelin, as well as a direct effect of alpha2-adrenoceptors on renal NO production.

  11. Tongqiao Huoxue Decoction ameliorates learning and memory defects in rats with vascular dementia by up-regulating the Ca(2+)-CaMKII-CREB pathway.

    PubMed

    Ge, Chao-Liang; Wang, Xin-Ming; Huang, Zhao-Gang; Xia, Quan; Wang, Ning; Xu, Du-Juan

    2015-11-01

    The present study was aimed at determining the effects of Tongqiao Huoxue Decoction (TQHXD) on the Ca(2+)-CaMKII-CREB pathway and the memory and learning capacities of rats with vascular dementia (VD). The rat VD model was established by using an improved bilateral carotid artery ligation method. The Morris water maze experiment was used to evaluate the ethology of the VD rats following treatments with TQHXD at 3.01, 6.02, and 12.04 g·kg(-1) per day for 31 days. At the end of experiment, the hippocampus were harvested and analyzed. Western blotting and RT-PCR were used to measure the expression levels of calmodulin-binding protein kinase II(CaMKII), protein kinase A(PKA), cAMP-response element binding protein(CREB), and three N-methyl-D-aspartic acid receptor subunits (NR1, NR2A, and NR2B). Our results revealed that TQHXD could alleviate the loss of learning abilities and increase the memory capacity (P < 0.05 and P < 0.01 vs the model group, respectively). The treatment with 6.02 and 12.04 g·kg(-1) of TQHXD significantly up-regulated the Ca(2+)-CaMKII-CREB pathway in the hippocampus. In conclusion, TQHXD showed therapeutic effects on a bilateral carotid artery ligation-induced vascular dementia model, through the up-regulation of calcium signalling pathways. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Treatment with enalapril and not diltiazem ameliorated progression of chronic kidney disease in rats, and normalized renal AT1 receptor expression as measured with PET imaging.

    PubMed

    Ismail, Basma; deKemp, Rob A; Croteau, Etienne; Hadizad, Tayebeh; Burns, Kevin D; Beanlands, Rob S; DaSilva, Jean N

    2017-01-01

    ACE inhibitors are considered first line of treatment in patients with many forms of chronic kidney disease (CKD). Other antihypertensives such as calcium channel blockers achieve similar therapeutic effectiveness in attenuating hypertension-related renal damage progression. Our objective was to explore the value of positron emission tomography (PET) imaging of renal AT1 receptor (AT1R) to guide therapy in the 5/6 subtotal-nephrectomy (Nx) rat model of CKD. Ten weeks after Nx, Sprague-Dawley rats were administered 10mg/kg/d enalapril (NxE), 30mg/kg/d diltiazem (NxD) or left untreated (Nx) for an additional 8-10 weeks. Kidney AT1R expression was assessed using in vivo [18F]fluoropyridine-losartan PET and in vitro autoradiography. Compared to shams, Nx rats exhibited higher systolic blood pressure that was reduced by both enalapril and diltiazem. At 18-20 weeks, plasma creatinine and albuminuria were significantly increased in Nx, reduced to sham levels in NxE, but enhanced in NxD rats. Enalapril treatment decreased kidney angiotensin II whereas diltiazem induced significant elevations in plasma and kidney levels. Reduced PET renal AT1R levels in Nx were normalized by enalapril but not diltiazem, and results were supported by autoradiography. Reduction of renal blood flow in Nx was restored by enalapril, while no difference was observed in myocardial blood flow amongst groups. Enhanced left ventricle mass in Nx was not reversed by enalapril but was augmented with diltiazem. Stroke volume was diminished in untreated Nx compared to shams and restored with both therapies. [18F]Fluoropyridine-Losartan PET allowed in vivo quantification of kidney AT1R changes associated with progression of CKD and with various pharmacotherapies.

  13. Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway.

    PubMed

    Lan, Tian; Shen, Xiaoyan; Liu, Peiqing; Liu, Weihua; Xu, Suowen; Xie, Xi; Jiang, Qin; Li, Wenyuan; Huang, Heqing

    2010-10-15

    Berberine (BBR) was previously found to have beneficial effects on renal injury in experimental diabetic rats. However, the mechanisms underlying the effects are not fully understood. Sphingosine kinase-Sphingosine 1-phosphate (SphK-S1P) signaling pathway has been implicated in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the effects of BBR on renal injury and the activation of SphK-S1P signaling pathway in alloxan-induced diabetic mice with nephropathy. Alloxan-induced diabetic mice were treated orally with BBR (300 mg/kg/day) or vehicle for 12 weeks. BBR inhibited the increases in fasting blood glucose, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. It also prevented renal hypertrophy, TGF-beta1 synthesis, FN and Col IV accumulation. Moreover, BBR down-regulated the elevated staining, activity and levels of mRNA and protein of SphK1, and S1P production as well. These findings suggest that the inhibitory effect of BBR on the activation of SphK-S1P signaling pathway in diabetic mouse kidney is a novel mechanism by which BBR partly exerts renoprotective effects on DN.

  14. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    PubMed

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-05

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  15. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  16. Iodination of vasopressin analogues with agonistic and antagonistic properties: effects on biological properties and affinity for vascular and renal vasopressin receptors.

    PubMed

    Jard, S; Lombard, C; Seyer, R; Aumelas, A; Manning, M; Sawyer, W H

    1987-09-01

    Twelve L- and D-tyrosine-containing vasopressin analogues were prepared in their mono- and diiodinated forms. These include six arginine vasopressin (AVP) vascular (V1) type antagonists/antidiuretic (V2) agonists, four V1/V2 antagonists, and two V1/V2 agonists, one of which is AVP itself. Ten peptides were iodinated on the tyrosyl residue in position 2; two were iodinated on a tyrosyl amide residue replacing the glycyl amide residue at position 9. All peptides were tested both for their biological activities in vivo (rat vasopressor and antidiuretic tests) and for their ability to bind to vasopressin receptors of the V1 (vascular) and V2 (renal) types from rat liver and rat kidney membranes, respectively. It is shown that monoiodination of the tyrosyl residue in the vasopressin analogues that were tested either preserves or reduces to a highly variable extent the in vivo and in vitro biological activities of these analogues. In most cases diiodonitation resulted in a marked decrease in biological activity. The effects of iodination on the affinity of vasopressin analogues for hepatic V1 receptors and renal V2 receptors were more related to the affinity of the noniodinated peptide for these receptors than to the biological properties (antagonist versus agonist) of the tested analogues, the nature (L versus D) of the iodinated tyrosyl residue, or the position (2 versus 9) at which this residue was introduced. The loss of affinity due to iodination was usually more pronounced for peptides exhibiting high affinity for vasopressin receptors. However, we show that among the monoiodinated peptides some (especially monoiodinated [2-D-Tyrosine]-AVP) retained enough affinity for vasopressin binding sites to suggest that their radioiodinated conterparts would be promising labeled ligands for use in studies in vasopressin receptors.

  17. Rutin ameliorates renal fibrosis and proteinuria in 5/6-nephrectomized rats by anti-oxidation and inhibiting activation of TGFβ1-smad signaling

    PubMed Central

    Han, Yu; Lu, Jin-Shan; Xu, Yong; Zhang, Lei; Hong, Bao-Fa

    2015-01-01

    Objectives: Rutin, a polyphenolic flavonoid, was reported to have beneficial effect on drug induced nephropathy. The present study aimed to introduce 5/6 nephrectomized rat model to further evaluate its renal protective effect. Methods: Adult Wistar rats were induced to develop chronic renal failure through 5/6 nephrectomy (5/6 Nx). After that, animals were treated orally with saline, rutin at 15 and 45 mg/kg, and losartan (10 mg/kg) daily for 20 weeks; sham-operated animals were also involved as control. After treatment for 8 and 20 weeks, blood and urine samples were collected for biochemical examination; all the kidney remnants were collected for histological examination. The protein levels of TGF-β1, smad2 and phosphorylated-smad2 (p-smad2) in kidney were measured. Immunohistochemistry was used to analyze the expression of TGF-β1, fibronectin and collagen IV in kidney tissues. Results: Results suggested that rutin could reduce the proteinurea, blood urine nitrogen and blood creatinine in 5/6 Nx animals significantly, as well as oxidation stress in the kidney. By histological examination, rutin administration alleviated glomerular sclerosis scores and tubulointerstitial injuries in a dose-dependent manner (P<0.01). Immunohistochemistry also suggested rutin could reduce the expression of TGF-β1, fibronectin and collagen IV in kidney tissues. By western blot, we found the rutin could reduce the TGF-β1, p-smad2 expression in the kidney tissues of rats. Conclusions: This study suggests that the rutin can improve renal function in 5/6 Nx rats effectively. Its effect may be due to its anti-oxidation and inhibiting TGFβ1-Smad signaling. PMID:26191162

  18. The Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitor Cediranib (Recentin; AZD2171) Inhibits Endothelial Cell Function and Growth of Human Renal Tumor Xenografts

    SciTech Connect

    Siemann, Dietmar W. Brazelle, W.D.; Juergensmeier, Juliane M.

    2009-03-01

    Purpose: The goal of this study was to examine the therapeutic potential of the vascular endothelial growth factor (VEGF) signaling inhibitor cediranib in a human model of renal cell carcinoma (Caki-1). Methods and Materials: The effects of cediranib treatment on in vitro endothelial cell function (proliferation, migration, and tube formation), as well as in vivo angiogenesis and tumor growth, were determined. Results: In vitro, cediranib significantly impaired the proliferation and migration of endothelial cells and their ability to form tubes, but had no effect on the proliferation of Caki-1 tumor cells. In vivo, cediranib significantly reduced Caki-1 tumor cell-induced angiogenesis, reduced tumor perfusion, and inhibited the growth of Caki-1 tumor xenografts. Conclusions: The present results are consistent with the notion that inhibition of VEGF signaling leads to an indirect (i.e., antiangiogenic) antitumor effect, rather than a direct effect on tumor cells. These results further suggest that inhibition of VEGF signaling with cediranib may impair the growth of renal cell carcinoma.

  19. Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats.

    PubMed

    Imig, John D; Walsh, Katie A; Hye Khan, Md Abdul; Nagasawa, Tasuku; Cherian-Shaw, Mary; Shaw, Sean M; Hammock, Bruce D

    2012-12-01

    Cardiometabolic syndrome occurs with obesity and consists of pathophysiological factors that increase the risk for cardiovascular events. Soluble epoxide hydrolase inhibition (sEHi) is a novel therapeutic approach that exerts renal and cardiovascular protection. Although sEHi as a therapeutic approach is promising, it could be more effective for the treatment of cardiometabolic syndrome when combined with peroxisome proliferator activated receptor γ (PPARγ) agonists. We hypothesized that the PPARγ agonist, rosiglitazone in combination with a sEHi (tAUCB) will provide synergistic actions to decrease blood pressure, improve vascular function, decrease inflammation, and prevent renal damage in spontaneously hypertensive obese rats (SHROB). SHROB were treated with rosiglitazone, tAUCB or the combination of tAUCB and rosiglitazone for four-weeks and compared with spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Blood pressure increased in SHROB (164 ± 7 mmHg) and decreased 10 mmHg when treated with rosiglitazone, tAUCB, or tAUCB and rosiglitazone. Mesenteric artery dilation to the K(ATP) channel opener pinacidil was attenuated in SHROB (E(Max) = 77 ± 7%), compared with WKY (E(Max) = 115 ± 19) and SHR (E(Max) = 93 ± 12%). Vasodilation to pinacidil was improved by rosiglitazone (E(Max) = 92 ± 14%) but not tAUCB. Renal macrophage infiltration increased in SHROB and significantly decreased with rosiglitazone or tAUCB and rosiglitazone treatment. Albuminuria was increased in SHROB (90 ± 20 mg/d) and was significantly decreased by the combination of tAUCB and rosiglitazone (37 ± 9 mg/d). Glomerular injury in SHROB was also significantly decreased by tAUCB and rosiglitazone. These results indicate that even though sEHi or PPARγ agonist have benefits when used individually, the combination is more beneficial for the multidisease features in cardiometabolic syndrome.

  20. Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats

    PubMed Central

    Imig, John D; Walsh, Katie A; Khan, Md Abdul Hye; Nagasawa, Tasuku; Cherian-Shaw, Mary; Shaw, Sean M; Hammock, Bruce D

    2013-01-01

    Cardiometabolic syndrome occurs with obesity and consists of pathophysiological factors that increase the risk for cardiovascular events. Soluble epoxide hydrolase inhibition (sEHi) is a novel therapeutic approach that exerts renal and cardiovascular protection. Although sEHi as a therapeutic approach is promising, it could be more effective for the treatment of cardiometabolic syndrome when combined with peroxisome proliferator activated receptor γ (PPARγ) agonists. We hypothesized that the PPARγ agonist, rosiglitazone in combination with a sEHi (tAUCB) will provide synergistic actions to decrease blood pressure, improve vascular function, decrease inflammation, and prevent renal damage in spontaneously hypertensive obese rats (SHROB). SHROB were treated with rosiglitazone, tAUCB or the combination of tAUCB and rosiglitazone for four-weeks and compared with spontaneously hypertensive (SHR) and Wistar–Kyoto (WKY) rats. Blood pressure increased in SHROB (164 ±7 mmHg) and decreased 10 mmHg when treated with rosiglitazone, tAUCB, or tAUCB and rosiglitazone. Mesenteric artery dilation to the KATP channel opener pinacidil was attenuated in SHROB (EMax = 77 ±7%), compared with WKY (EMax = 115 ±19) and SHR (EMax = 93 ±12%). Vasodilation to pinacidil was improved by rosiglitazone (EMax = 92 ±14%) but not tAUCB. Renal macrophage infiltration increased in SHROB and significantly decreased with rosiglitazone or tAUCB and rosiglitazone treatment. Albuminuria was increased in SHROB (90 ±20 mg/d) and was significantly decreased by the combination of tAUCB and rosiglitazone (37 ±9 mg/d). Glomerular injury in SHROB was also significantly decreased by tAUCB and rosiglitazone. These results indicate that even though sEHi or PPARγ agonist have benefits when used individually, the combination is more beneficial for the multidisease features in cardiometabolic syndrome. PMID:23354399

  1. Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: role in leptin-induced hypertension.

    PubMed

    Jamroz-Wiśniewska, Anna; Wójcicka, Grazyna; Łowicka, Ewelina; Ksiazek, Marta; Bełtowski, Jerzy

    2008-04-15

    We examined the role of epidermal growth factor (EGF) receptor in the pathogenesis of leptin-induced hypertension in the rat. Leptin, administered in increasing doses (0.1-0.5 mg/kg/day) for 10 days, increased phosphorylation levels of non-receptor tyrosine kinase, c-Src, EGF receptor and extracellular signal-regulated kinases (ERK) in aorta and kidney, which was accompanied by the increase in plasma concentration and urinary excretion of isoprostanes and H2O2. Blood pressure and renal Na+,K+-ATPase activity were higher, whereas urinary sodium excretion was lower in animals receiving leptin. The effects of leptin on renal Na+,K+-ATPase, natriuresis and blood pressure were abolished by NADPH oxidase inhibitor, apocynin, Src kinase inhibitor, PP2, EGF receptor inhibitor, AG1478, protein farnesyltransferase inhibitor, manumycin A, and ERK inhibitor, PD98059. In contrast, inhibitors of insulin-like growth factor-1 and platelet-derived growth factor receptors, AG1024 and AG1295, respectively, only slightly reduced ERK phosphorylation and had no effect on blood pressure in rats receiving leptin. These data indicate that: (1) experimental hyperleptinemia is associated with oxidative stress and c-Src-dependent transactivation of the EGF receptor, which stimulates ERK in vascular wall and the kidney, (2) overactivity of EGF receptor-ERK pathway contributes to leptin-induced hypertension by stimulating renal Na+,K+-ATPase and reducing sodium excretion, (3) inhibitors of c-Src, EGF receptor and ERK may be considered as a novel therapy for hypertension associated with hyperleptinemia, e.g. in patients with obesity and metabolic syndrome.

  2. Renal vascular lesions as a marker of poor prognosis in patients with lupus nephritis. Gruppo Italiano per lo Studio della Nefrite Lupica (GISNEL).

    PubMed

    Banfi, G; Bertani, T; Boeri, V; Faraggiana, T; Mazzucco, G; Monga, G; Sacchi, G

    1991-08-01

    The frequency of renal vascular lesions (RVL) and their relevance in the progression of renal damage were evaluated by the Pathology Group of the "Gruppo Italiano per lo Studio della Nefrite Lupica" (GISNEL). Of 285 patients with lupus nephritis collected from 20 nephrology centers in Italy and classified according to World Health Organization (WHO) criteria, 79 cases (27.7%) with RVL were identified and classified as follows: (1) lupus vasculopathy (n = 27); (2) hemolytic-uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP) malignant hypertension-like lesions (n = 24); (3) vasculitis (n = 8); (4) arterio-arteriosclerosis (n = 20). At the time of renal biopsy, patients with RVL had mean serum creatinine levels significantly higher than patients without RVL (201.8 +/- 195.9 mumol/L [2.2 +/- 2.2 mg/dL] v 108.1 +/- 108.0 mumol/L [1.2 +/- 1.2 mg/dL]; P less than 0.01). Hypertension was more frequent in patients with RVL than in those without (68.4% v 30.5%; P less than 0.01). The probability of kidney survival assessed according to the Kaplan-Meier method at 5 and 10 years was, respectively, 74.3% +/- 5.9% and 58.0% +/- 8.9% in patients with RVL, compared with 89.6% +/- 2.7% and 85.9% +/- 3.7% in patients without RVL. However, the two groups did not differ significantly as regards overall survival, the probability of survival at 5 and 10 years being 86.5% +/- 4.5% and 78.8% +/- 6.6% in patients with RVL and 92.2% +/- 2.2% and 83.3% +/- 4.4% in patients without RVL.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    PubMed

    Das, Jharna R; Gutkind, J Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms.

  4. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells

    PubMed Central

    Das, Jharna R; Gutkind, J. Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  5. Licorice and its active compound glycyrrhizic acid ameliorates cisplatin-induced nephrotoxicity through inactivation of p53 by scavenging ROS and overexpression of p21 in human renal proximal tubular epithelial cells.

    PubMed

    Ju, S-M; Kim, M-S; Jo, Y-S; Jeon, Y-M; Bae, J-S; Pae, H-O; Jeon, B-H

    2017-02-01

    Nephrotoxicity is one of the major side effects that limit the use of cisplatin in cancer therapy. Cisplatin-induced apoptosis in renal cells is associated with reactive oxygen species (ROS)-mediated p53 activation. Licorice (Glycyrrhiza uralensis Fischer) is one of the most widely used medicinal herbs in Korea, China and Japan. The aim of the study was to evaluate the protective effects of licorice extract (LE) and its active compound glycyrrhizic acid (GA) against cisplatin-induced nephrotoxicity in human renal proximal tubular epithelial (HK-2) cells. HK-2 cells were pretreated with LE or GA for 1 h and then treated with 40 μM of cisplatin for indicated times under the serum-free condition. Cell viability was evaluated by MTT assay. Apoptosis was evaluated by flow cytometric analysis and caspase-3 activity. The intracellular ROS levels were determined by DCFH-DA assay. The expression and phosphorylation levels of protein were evaluated by Western blot and densitometry analysis. When treating HK-2 cells with LE or GA, both of them alleviated cisplatin-induced cytotoxicity and apoptosis. LE and GA inhibited caspase-3 activity and polymerase (PARP) cleavage in cisplatin-treated cells. LE and GA also inhibited p53 expression and its phosphorylation as well as ROS production in cells exposed to cisplatin. Meanwhile, LE and GA enhanced cisplatin-induced p21 expression, which then led to S-phase arrest in cell cycle and limited cell growth. Presumably, increased p21 expression may contribute to cellular prevention from cisplatin-induced apoptosis, because p21 is the key molecule to cytoprotection during cisplatin-induced nephrotoxicity. These results suggest that LE and GA ameliorate cisplatin-induced apoptosis through reduction of ROS-mediating p53 activation and promotion of p21 expression in HK-2 cells.

  6. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model.

    PubMed

    Gstalder, Cécile; Ader, Isabelle; Cuvillier, Olivier

    2016-10-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by intratumoral hypoxia and chemoresistance. The hypoxia-inducible factors HIF1α and HIF2α play a crucial role in ccRCC initiation and progression. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF1α and HIF2α under hypoxia in various cancer cell models. Here, we report that FTY720, an inhibitor of the S1P signaling pathway, inhibits both HIF1α and HIF2α accumulation in several human cancer cell lines. In a ccRCC heterotopic xenograft model, we show that FTY720 transiently decreases HIF1α and HIF2α intratumoral level and modifies tumor vessel architecture within 5 days of treatment, suggesting a vascular normalization. In mice bearing subcutaneous ccRCC tumor, FTY720 and a gemcitabine-based chemotherapy alone display a limited effect, whereas, in combination, there is a significant effect on tumor size without toxicity. Noteworthy, administration of FTY720 for 5 days before chemotherapy is not associated with a more effective tumor control, suggesting a mode of action mainly independent of the vascular remodeling. In conclusion, these findings demonstrate that FTY720 could successfully sensitize ccRCC to chemotherapy and establish this molecule as a potent therapeutic agent for ccRCC treatment, independently of drug scheduling. Mol Cancer Ther; 15(10); 2465-74. ©2016 AACR.

  7. Bone mineral density of extremities is associated with coronary calcification and biopsy-verified vascular calcification in living-donor renal transplant recipients.

    PubMed

    Chen, Zhimin; Sun, Jia; Haarhaus, Mathias; Barany, Peter; Wennberg, Lars; Ripsweden, Jonaz; Brismar, Torkel B; Lindholm, Bengt; Wernerson, Annika; Söderberg, Magnus; Stenvinkel, Peter; Qureshi, Abdul Rashid

    2016-12-02

    Chronic kidney disease (CKD) mineral and bone disorders (CKD-MBD) may lead to low bone mineral density (BMD) and vascular calcification (VC), but links to the latter are unclear. Here we investigated associations between BMD, coronary artery calcium (CAC) scores, and histological signs of VC in end-stage renal disease (ESRD) patients undergoing living-donor kidney transplantation (LD-Rtx). In 66 ESRD patients (median age 45 years, 68% males), BMD (by dual-energy X-ray absorptiometry, DXA), CAC score (by computed tomography, CT; n = 54), and degree of VC score (graded by histological examination of epigastric artery specimens collected at LD-Rtx; n = 55) were assessed at the time of LD-Rtx. Of the patients, 26% had osteopenia and 7% had osteoporosis. Of those undergoing artery biopsy, 16% had extensive VC, and of those undergoing CT 28% had high CAC score (>100 Agatston units). CAC scores correlated with BMD of legs and pelvis. BMDs of leg and pelvic sub-regions were significantly lower in patients with extensive VC. In multivariate regression analysis adjusted for age and gender, lower BMD of leg sub-region was associated with CAC score >100 AUs and extensive VC, and patients with extensive VC had significantly higher CAC score. Both high CAC and extensive VC were independently predicted by low BMD of legs. Low BMD has the potential to identify ESRD patients at risk of vascular calcification.

  8. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    PubMed

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  9. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    PubMed

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis.

  10. Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16.

    PubMed

    Tung, Yu-Tang; Huang, Pin-Wu; Chou, Yu-Ching; Lai, Cheng-Wei; Wang, Hsiu-Po; Ho, Heng-Chien; Yen, Chih-Ching; Tu, Chih-Yen; Tsai, Tung-Chou; Yeh, Dah-Cherng; Wang, Jiun-Long; Chong, Kowit-Yu; Chen, Chuan-Mu

    2015-04-30

    Many studies have shown that vascular endothelial growth factor (VEGF), especially the human VEGF-A165 (hVEGF-A165) isoform, is a key proangiogenic factor that is overexpressed in lung cancer. We generated transgenic mice that overexpresses hVEGF-A165 in lung-specific Clara cells to investigate the development of pulmonary adenocarcinoma. In this study, three transgenic mouse strains were produced by pronuclear microinjection, and Southern blot analysis indicated similar patterns of the foreign gene within the genomes of the transgenic founder mice and their offspring. Accordingly, hVegf-A165 mRNA was expressed specifically in the lung tissue of the transgenic mice. Histopathological examination of the lung tissues of the transgenic mice showed that hVEGF-A165 overexpression induced bronchial inflammation, fibrosis, cysts, and adenoma. Pathological section and magnetic resonance imaging (MRI) analyses demonstrated a positive correlation between the development of pulmonary cancer and hVEGF expression levels, which were determined by immunohistochemistry, qRT-PCR, and western blot analyses. Gene expression profiling by cDNA microarray revealed a set of up-regulated genes (hvegf-A165, cyclin b1, cdc2, egfr, mmp9, nrp-1, and kdr) in VEGF tumors compared with wild-type lung tissues. In addition, overexpressing hVEGF-A165 in Clara cells increases CD105, fibrogenic genes (collagen α1, α-SMA, TGF-β1, and TIMP1), and inflammatory cytokines (IL-1, IL-6, and TNF-α) in the lungs of hVEGF-A165-overexpressing transgenic mice as compared to wild-type mice. We further demonstrated that the intranasal administration of microRNA-16 (miR-16) inhibited lung tumor growth by suppressing VEGF expression via the intrinsic and extrinsic apoptotic pathways. In conclusion, hVEGF-A165 transgenic mice exhibited complex alterations in gene expression and tumorigenesis and may be a relevant model for studying VEGF-targeted therapies in lung adenocarcinoma.

  11. Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16

    PubMed Central

    Chou, Yu-Ching; Lai, Cheng-Wei; Wang, Hsiu-Po; Ho, Heng-Chien; Yen, Chih-Ching; Tu, Chih-Yen; Tsai, Tung-Chou; Yeh, Dah-Cherng; Wang, Jiun-Long; Chong, Kowit-Yu; Chen, Chuan-Mu

    2015-01-01

    Many studies have shown that vascular endothelial growth factor (VEGF), especially the human VEGF-A165 (hVEGF-A165) isoform, is a key proangiogenic factor that is overexpressed in lung cancer. We generated transgenic mice that overexpresses hVEGF-A165 in lung-specific Clara cells to investigate the development of pulmonary adenocarcinoma. In this study, three transgenic mouse strains were produced by pronuclear microinjection, and Southern blot analysis indicated similar patterns of the foreign gene within the genomes of the transgenic founder mice and their offspring. Accordingly, hVegf-A165 mRNA was expressed specifically in the lung tissue of the transgenic mice. Histopathological examination of the lung tissues of the transgenic mice showed that hVEGF-A165 overexpression induced bronchial inflammation, fibrosis, cysts, and adenoma. Pathological section and magnetic resonance imaging (MRI) analyses demonstrated a positive correlation between the development of pulmonary cancer and hVEGF expression levels, which were determined by immunohistochemistry, qRT-PCR, and western blot analyses. Gene expression profiling by cDNA microarray revealed a set of up-regulated genes (hvegf-A165, cyclin b1, cdc2, egfr, mmp9, nrp-1, and kdr) in VEGF tumors compared with wild-type lung tissues. In addition, overexpressing hVEGF-A165 in Clara cells increases CD105, fibrogenic genes (collagen α1, α-SMA, TGF-β1, and TIMP1), and inflammatory cytokines (IL-1, IL-6, and TNF-α) in the lungs of hVEGF-A165-overexpressing transgenic mice as compared to wild-type mice. We further demonstrated that the intranasal administration of microRNA-16 (miR-16) inhibited lung tumor growth by suppressing VEGF expression via the intrinsic and extrinsic apoptotic pathways. In conclusion, hVEGF-A165 transgenic mice exhibited complex alterations in gene expression and tumorigenesis and may be a relevant model for studying VEGF-targeted therapies in lung adenocarcinoma. PMID:25912305

  12. Role of adenosine in tubuloglomerular feedback and acute renal failure.

    PubMed

    Osswald, H; Vallon, V; Mühlbauer, B

    1996-12-01

    1. Adenosine (ADO) can induce renal vasoconstriction and a fall in glomerular filtration rate. When the rate of ATP hydrolysis prevails over the rate of ATP synthesis the kidney generates ADO at an enhanced rate. 2. Tubuloglomerular feedback (TGF) is the vascular response to changes of the NaCl concentration in the tubular fluid at the macula densa segment, which is the result of transepithelial electrolyte reabsorption by the proximal tubule and the loop of Henle. 3. TGF can be inhibited by ADO-A1 receptor antagonists and is potentiated by substances that can elevate extracellular ADO concentrations. These observations led to the hypothesis that ADO is an element of the signal transmission processes in the juxtaglomerular apparatus. 4. Renal ischaemia and nephrotoxic substances can induce acute renal failure (ARF). ADO receptor antagonists have been shown to ameliorate renal function in several different models of ARF in laboratory animals and humans. 5. A number of factors, such as extracellular volume contraction, low NaCl diet, angiotensin II and cyclooxygenase inhibitors enhance to a similar extent: (a) the renal vascular response to endogenous and exogenous ADO; (b) the TGF response of the nephron; and (c) the severity of ARF. All three phenomena are susceptible to antagonism by ADO receptor antagonists. 6. Therefore, we conclude that ADO plays a significant role in normal and pathological states of kidney function.

  13. Association of smoking with phenotype at diagnosis and vascular interventions in patients with renal artery fibromuscular dysplasia.

    PubMed

    Savard, Sébastien; Azarine, Arshid; Jeunemaitre, Xavier; Azizi, Michel; Plouin, Pierre-François; Steichen, Olivier

    2013-06-01

    The pathogenesis of fibromuscular dysplasia (FMD) remains unclear, but tobacco use is thought to be involved. This retrospective cross-sectional study aimed to evaluate smoking first as a risk factor for renal artery FMD diagnosis and second as a modifier of the clinical and radiological phenotype of this disease. We retrieved 337 adult patients diagnosed with FMD in a referral center for hypertension management, who were first individually matched to controls with essential hypertension for sex, age, systolic blood pressure, number of antihypertensive drugs, and year of visit. Smoking status and other relevant data were collected at first visit. The proportion of current smokers was higher for patients with FMD than for the controls (30% and 18%, respectively, P<0.001; odds ratio, 2.5 [95% confidence interval, 1.6-3.9]). Second, characteristics of FMD were compared between current smokers and other patients. Among patients with multifocal FMD, current smokers experienced an earlier diagnosis of hypertension (36 versus 42 years, respectively; P<0.001) and FMD (43 versus 51 years; P<0.001) than other patients, and a greater likelihood of renal artery interventions (57% versus 31%; P<0.001) and of kidney asymmetry (21% versus 4%; P=0.001). In conclusion, current smoking is associated with a higher likelihood of renal artery FMD diagnosis. Rather than a higher incidence of FMD, this may reflect a more aggressive course in smokers, who have earlier hypertension leading to increased and earlier recognition of the disease. Smoking cessation should be strongly encouraged in patients with FMD.

  14. The renal and vascular effects of central angiotensin II and atrial natriuretic factor in the anaesthetized rat.

    PubMed Central

    Al-Barazanji, K A; Balment, R J

    1990-01-01

    1. The interaction between atrial natriuretic factor (ANF) and angiotensin II (Ang II) within the brain to influence renal function and blood pressure was studied in Inactin-anaesthetized male Sprague-Dawley rats. 2. Central infusion of ANF produced a diuresis which was associated with a significant decrease in plasma arginine vasopressin (AVP) level. There was no change in sodium excretion rate over the 80 min of intracerebroventricular ANF infusion and ANF produced no detectable change in mean arterial blood pressure. 3. Central Ang II administration produced a significant decrease in urine flow, which was associated with elevated plasma AVP, an increase in sodium excretion and a rise in mean arterial blood pressure. 4. Combined ANF and Ang II infusion produced an antidiuresis, which was associated with increased plasma AVP concentration. Both the natriuretic and vasopressor actions of central Ang II were abolished when ANF was co-administered. 5. It is concluded that ANF and Ang II interact centrally; ANF antagonizes the pressor and natriuretic effects but not the antidiuretic effects of central Ang II. These data suggest the possibility of distinct and separate sites within the brain through which Ang II influences vasopressin release and renal sodium handling and elevates blood pressure. PMID:2143782

  15. A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways.

    PubMed

    Ka, Shuk-Man; Kuoping Chao, Louis; Lin, Jung-Chen; Chen, Shui-Tein; Li, Wen-Tai; Lin, Chien-Nan; Cheng, Jen-Che; Jheng, Huei-Ling; Chen, Ann; Hua, Kuo-Feng

    2016-02-01

    Uncontrolled inflammation is a leading cause of various chronic diseases. Cinnamaldehyde (CA) is a major bioactive compound isolated from the essential oil of the leaves of Cinnamomum osmophloeum kaneh that exhibits anti-inflammatory activity; however, the use of CA is limited by its cytotoxicity. Here, we synthesized three CA derivatives and identified 4-hydroxycinnamaldehyde-galactosamine (HCAG) as a low toxicity anti-inflammatory compound in vitro (HCAG IC50 ≫ 1600 µM; CA IC50=40 µM) and in vivo. HCAG reduced pro-inflammatory mediator expression in LPS-activated macrophages by inhibiting MAPK and PKC-α/δ phosphorylation, decreasing ROS generation and reducing NF-κB activation. HCAG also reduced NLRP3 inflammasome-derived IL-1β secretion by inhibiting the ATP-mediated phosphorylation of AKT and PKC-α/δ. In a mouse model of LPS-induced renal inflammation, we observed reduced albuminuria and a mild degree of glomerular proliferation, glomerular sclerosis and periglomerular inflammation in the HCAG-treated mice compared with the vehicle-treated mice. The underlying mechanisms for these renoprotective effects involved: (1) inhibited NLRP3 inflammasome activation; (2) decreased superoxide anion levels and apoptosis; and (3) suppressed activation of NF-κB and related downstream inflammatory mediators.

  16. Exogenous MSCs ameliorate hypoxia/reoxygenation injury in renal tubular epithelial cells through JAK/STAT signaling pathway-mediated regulation of HMGB1.

    PubMed

    Zhang, Lei; Wang, Yan; Ma, Junjie; Lai, Xingqiang; Fang, Jiali; Li, Guanghui; Xu, Lu; Pan, Guanghui; Chen, Zheng

    2017-01-01

    This study was conducted to investigate the repair mechanism of hypoxia/reoxygenation injury (HRI) in renal tubular epithelial cells (HK-2) by exogenous mesenchymal stem cells (MSCs). The activation of the JAK/STAT pathway in HK-2 cells after HRI and treatment of MSCs, JAK inhibitor WP1066 and STAT inhibitor SOCS3 was investigated using Western blot analysis. HK-2 cells were transfected with siRNA STAT3 and analyzed for expression of STAT3, JAK2 and HMGB1 using fluorescence quantitative PCR and Western blot. Cell viability and apoptosis were analyzed using the MTT assay and flow cytometry. After HRI, the JAK/STAT pathway in HK-2 cells was activated, resulting in the upregulation of JAK1, JAK2, JAK3, p-JAK1, p-JAK2, p-JAK3, STAT1, STAT2, STAT3, p-STAT1, p-STAT2 and p-STAT3. After treatment with MSC conditioned medium (MSCs CM), WP1066, or SOCS, the expression of these proteins was significantly down-regulated. When the cells were transfected with siRNA STAT3, the expression of STAT3 at protein and mRNA levels and JAK2 and HMGB1 at mRNA level was down-regulated; the cell viability was reduced and apoptosis increased. It is concluded that exogenous MSCs reduce HRI of HK-2 cells by suppressing the JAK/STAT signaling pathway and down-regulating the expression of HMGB1.

  17. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene.

    PubMed

    Lakshmi, Arivazhagan; Subramanian, Sorimuthu Pillai

    2014-09-02

    Tangeretin, a citrus polymethoxyflavone, is an antioxidant modulator which has been shown to exhibit a surfeit of pharmacological properties. The present study was hypothesized to explore the therapeutic activity of tangeretin against 7,12-dimethylbenz[a]anthracene (DMBA) induced kidney injury in mammary tumor bearing rats. Recently, we have reported the chemotherapeutic effect of tangeretin in the breast tissue of DMBA induced rats. Breast cancer was induced by "air pouch technique" with a single dose of 25mg/kg of DMBA. Tangeretin (50mg/kg/day) was administered orally for four weeks. The renoprotective nature of tangeretin was assessed by analyzing the markers of oxidative stress, proinflammatory cytokines and antioxidant competence in DMBA induced rats. Tangeretin treatment revealed a significant decline in the levels of lipid peroxides, inflammatory cytokines and markers of DNA damage, and a significant improvement in the levels of enzymatic and non-enzymatic antioxidants in the kidney tissue. Similarly, mRNA, protein and immunohistochemical analysis substantiated that tangeretin treatment notably normalizes the renal expression of Nrf2/Keap1, its downstream regulatory proteins and the inflammatory cytokines in the DMBA induced rats. Histological and ultrastructural observations also evidenced that the treatment with tangeretin effectively protects the kidney from DMBA-mediated oxidative damage, hence, proving its nephroprotective nature.

  18. An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats.

    PubMed

    Anraku, Makoto; Tabuchi, Ryo; Ifuku, Shinsuke; Nagae, Tomone; Iohara, Daisuke; Tomida, Hisao; Uekama, Kaneto; Maruyama, Toru; Miyamura, Shigeyuki; Hirayama, Fumitoshi; Otagiri, Masaki

    2017-04-01

    In this study, we report that surface-deacetylated chitin nano-fibers (SDACNFs) are more effective in decreasing renal injury and oxidative stress than deacetylated chitin powder (DAC) in 5/6 nephrectomized rats. An oral administration of low doses of SDACNFs (40mg/kg/day) over a 4 week period resulted in a significant decrease in serum indoxyl sulfate, creatinine and urea nitrogen levels, compared with a similar treatment with DAC or AST-120. The SDACNFs treatment also resulted in an increase in antioxidant potential, compared with that for DAC or AST-120. Immunohistochemical analyses also demonstrated that SDACNFs treated CRF rats showed a decrease in the amount of accumulated 8-OHdG compared with the CRF group. These results suggest that the ingestion of SDCH-NF results in a significant reduction in the levels of pro-oxidants, such as uremic toxins, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation.

  19. Role of Vitamin D in Uremic Vascular Calcification

    PubMed Central

    Zheng, Jing-Quan

    2017-01-01

    The risk of cardiovascular death is 10 times higher in patients with CKD (chronic kidney disease) than in those without CKD. Vascular calcification, common in patients with CKD, is a predictor of cardiovascular mortality. Vitamin D deficiency, another complication of CKD, is associated with vascular calcification in patients with CKD. GFR decline, proteinuria, tubulointerstitial injury, and the therapeutic dose of active form vitamin D aggravate vitamin D deficiency and reduce its pleiotropic effect on the cardiovascular system. Vitamin D supplement for CKD patients provides a protective role in vascular calcification on the endothelium by (1) renin-angiotensin-aldosterone system inactivation, (2) alleviating insulin resistance, (3) reduction of cholesterol and inhibition of foam cell and cholesterol efflux in macrophages, and (4) modulating vascular regeneration. For the arterial calcification, vitamin D supplement provides adjunctive role in regressing proteinuria, reverse renal osteodystrophy, and restoring calcification inhibitors. Recently, adventitial progenitor cell has been linked to be involved in the vascular calcification. Vitamin D may provide a role in modulating adventitial progenitor cells. In summary, vitamin D supplement may provide an ancillary role for ameliorating uremic vascular calcification. PMID:28286758

  20. Rimonabant-mediated changes in intestinal lipid metabolism and improved renal vascular dysfunction in the JCR:LA-cp rat model of prediabetic metabolic syndrome.

    PubMed

    Russell, James C; Kelly, Sandra E; Diane, Abdoulaye; Wang, Ye; Mangat, Rabban; Novak, Susan; Vine, Donna F; Proctor, Spencer D

    2010-08-01

    Rimonabant (SR141716) is a specific antagonist of the cannabinoid-1 receptor. Activation of the receptor initiates multiple effects on central nervous system function, metabolism, and body weight. The hypothesis that rimonabant has protective effects against vascular disease associated with the metabolic syndrome was tested using JCR:LA-cp rats. JCR:LA-cp rats are obese if they are cp/cp, insulin resistant, and exhibit associated micro- and macrovascular disease with end-stage myocardial and renal disease. Treatment of obese rats with rimonabant (10 mg.kg(-1).day(-1), 12-24 wk of age) caused transient reduction in food intake for 2 wk, without reduction in body weight. However, by 4 wk, there was a modest, sustained reduction in weight gain. Glycemic control improved marginally compared with controls, but at the expense of increased insulin concentration. In contrast, rimonabant normalized fasting plasma triglyceride and reduced plasma plasminogen activator inhibitor-1 and acute phase protein haptoglobin in cp/cp rats. Furthermore, these changes were accompanied by reduced postprandial intestinal lymphatic secretion of apolipoprotein B48, cholesterol, and haptoglobin. While macrovascular dysfunction and ischemic myocardial lesion frequency were unaffected by rimonabant treatment, both microalbuminuria and glomerular sclerosis were substantially reduced. In summary, rimonabant has a modest effect on body weight in freely eating obese rats and markedly reduces plasma triglyceride levels and microvascular disease, in part due to changes in intestinal metabolism, including lymphatic secretion of apolipoprotein B48 and haptoglobin. We conclude that rimonabant improves renal disease and intestinal lipid oversecretion associated with an animal model of the metabolic syndrome that appears to be independent of hyperinsulinemia or macrovascular dysfunction.

  1. Risk factors and model for predicting toxicity-related treatment discontinuation in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy: Results from the International Metastatic Renal Cell Carcinoma Database Consortium.

    PubMed

    Kaymakcalan, Marina D; Xie, Wanling; Albiges, Laurence; North, Scott A; Kollmannsberger, Christian K; Smoragiewicz, Martin; Kroeger, Nils; Wells, J Connor; Rha, Sun-Young; Lee, Jae Lyun; McKay, Rana R; Fay, André P; De Velasco, Guillermo; Heng, Daniel Y C; Choueiri, Toni K

    2016-02-01

    Vascular endothelial growth factor (VEGF)-targeted therapies are standard treatment for metastatic renal cell carcinoma (mRCC); however, toxicities can lead to drug discontinuation, which can affect patient outcomes. This study was aimed at identifying risk factors for toxicity and constructing the first model to predict toxicity-related treatment discontinuation (TrTD) in mRCC patients treated with VEGF-targeted therapies. The baseline characteristics, treatment outcomes, and toxicity data were collected for 936 mRCC patients receiving first-line VEGF-targeted therapy from the International Metastatic Renal Cell Carcinoma Database Consortium. A competing risk regression model was used to identify risk factors for TrTD, and it accounted for other causes as competing risks. Overall, 198 (23.8%) experienced TrTD. Sunitinib was the most common VEGF-targeted therapy (77%), and it was followed by sorafenib (18.4%). The median time on therapy was 7.1 months for all patients and 4.4 months for patients with TrTD. The most common toxicities leading to TrTD included fatigue, diarrhea, and mucositis. In a multivariate analysis, significant predictors for TrTD were a baseline age ≥60 years, a glomerular filtration rate (GFR) <30 mL/min/1.73 m(2) , a single metastatic site, and a sodium level <135 mmol/L. A risk group model was developed that used the number of patient risk factors to predict the risk of TrTD. In the largest series to date, age, GFR, number of metastatic sites, and baseline sodium level were found to be independent risk factors for TrTD in mRCC patients receiving VEGF-targeted therapy. Based on the number of risk factors present, a model for predicting TrTD was built to be used as a tool for toxicity monitoring in clinical practice. © 2015 American Cancer Society.

  2. Plasma 1,25-Dihydroxyvitamin D and the Risk of Developing Hypertension: The Prevention of Renal and Vascular End-Stage Disease Study.

    PubMed

    van Ballegooijen, Adriana J; Gansevoort, Ron T; Lambers-Heerspink, Hiddo J; de Zeeuw, Dick; Visser, Marjolein; Brouwer, Ingeborg A; Kema, Ido P; de Borst, Martin H; Bakker, Stephan J L; Joosten, Michel M

    2015-09-01

    Previous observational studies on the vascular effects of vitamin D have predominantly relied on measurement of its inactive precursor, 25-hydroxyvitamin D, whereas the active metabolite 1,25-dihydroxyvitamin D may be of more physiological relevance. We prospectively studied the associations of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D with hypertension risk (blood pressure ≥140/90 mm Hg or initiation of blood pressure-lowering drugs) in 5066 participants aged 28 to 75 years, free of hypertension at baseline from the Prevention of Renal and Vascular End-Stage Disease Study, a well-defined cohort with serial follow-up. We measured plasma 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D using liquid chromatography-tandem mass spectrometry. Mean±SD plasma concentration of 1,25-dihydroxyvitamin D was 145±47.0 pmol/L and 25-hydroxyvitamin D was 58.6±23.8 nmol/L. During a median follow-up of 6.4 years, 1036 participants (20.5%) developed hypertension. As expected, low 25-hydroxyvitamin D was associated with a higher hypertension risk; each 1-SD decrement in 25-hydroxyvitamin D was associated with a 8% higher hypertension risk (hazard ratio, 1.08; 95% confidence interval, 1.01-1.16) after adjustment for potential confounders. However, the association of 1,25-dihydroxyvitamin D was in the opposite direction; each 1-SD decrement of 1,25-dihydroxyvitamin D was associated with a 10% lower hypertension risk (hazard ratio, 0.90; 95% confidence interval, 0.84-0.96), independent of potential confounders. In contrast to the inverse association between 25-hydroxyvitamin D and hypertension risk, 1,25-dihydroxyvitamin D was positively associated with risk of hypertension. Thus, higher circulating concentrations of 1,25-dihydroxyvitamin D are associated with a higher risk of hypertension. © 2015 American Heart Association, Inc.

  3. ACCESSORY RENAL VESSELS

    PubMed Central

    Ali Mohammed, Ammar Mohammed; Elseed Abdalrasol, Rami Gusm; Alamin Abdalhai, Khatim; Gommaa Hamad, Mohamed

    2012-01-01

    Knowledge of the variations of the renal artery has grown in importance with increasing of renal transplants, vascular reconstructions and various surgical and radiologic techniques performing in recent years. We report the presence of unilateral doubled renal vessels, discovered on routine dissection of a male cadaver, on the right side; additional renal artery originated from the abdominal aorta. In addition the right suprarenal gland received arteries from right renal and inferior phrenic arteries only. The right inferior phrenic originated from the right renal artery. PMID:23322980

  4. Paraneoplastic hormones: parathyroid hormone-related protein (PTHrP) and erythropoietin (EPO) are related to vascular endothelial growth factor (VEGF) expression in clear cell renal cell carcinoma.

    PubMed

    Feng, Chen-chen; Ding, Guan-xiong; Song, Ning-hong; Li, Xuan; Wu, Zhong; Jiang, Hao-wen; Ding, Qiang

    2013-12-01

    To investigate the correlation between parathyroid hormone-related protein (PTHrP), erythropoietin (EPO), and vascular endothelial growth factor (VEGF) expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemical studies on PTHrP, EPO and VEGF were performed in 249 patients with ccRCC. Serum calcium level and haematocrit were analyzed. The expression of the factors and clinicopathological parameters were studied statistically for possible correlations. The incidence for hypercalcaemia and polycythaemia were 15.3% and 2.0% respectively. Expression of PTHrP, EPO, and VEGF were respectively related to advanced stage (P < 0.0001 respectively). PTHrP was not related to tumour grade. Expressions of EPO and VEGF were correlated to tumour grade significantly. All factors were expressed higher in hypercalcaemic patients. PTHrP, EPO, and VEGF were positively correlated with each other in non-hypercalcaemic patients yet not in hypercalcaemic ones. PTHrP and EPO are related to VEGF expression and to the progression of ccRCC. This finding offers us new insight on the behaviour of ccRCC and offers possible targets in RCC treatment.

  5. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats

    PubMed Central

    Van, Tan Vu; Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Shiota, Asuka; Tanaka, Terumi; Tanimura, Ayako; Harada, Nagakatsu; Nakaya, Yutaka; Yamamoto, Hironori; Miyamoto, Ken-ichi; Takeda, Eiji

    2012-01-01

    Hyperphosphatemia causes endothelial dysfunction as well as vascular calcification. Management of serum phosphate level by dietary phosphate restriction or phosphate binders is considered to be beneficial to prevent chronic kidney disease patients from cardiovascular disease, but it has been unclear whether keeping lower serum phosphate level can ameliorate endothelial dysfunction. In this study we investigated whether low-phosphate diet can ameliorate endothelial dysfunction in adenine-induced kidney disease rats, one of useful animal model of chronic kidney disease. Administration of 0.75% adenine-containing diet for 21 days induced renal failure with hyperphosphatemia, and impaired acetylcholine-dependent vasodilation of thoracic aortic ring in rats. Then adenine-induced kidney disease rats were treated with either control diet (1% phosphate) or low-phosphate diet (0.2% phosphate) for 16 days. Low-phosphate diet ameliorated not only hyperphosphatemia but also the impaired vasodilation of aorta. In addition, the activatory phosphorylation of endothelial nitric oxide synthase at serine 1177 and Akt at serine 473 in the aorta were inhibited by in adenine-induced kidney disease rats. The inhibited phosphorylations were improved by the low-phosphate diet treatment. Thus, dietary phosphate restriction can improve aortic endothelial dysfunction in chronic kidney disease with hyperphosphatemia by increase in the activatory phosphorylations of endothelial nitric oxide synthase and Akt. PMID:22798709

  6. Vascular access for incident hemodialysis patients in Catalonia: analysis of data from the Catalan Renal Registry (2000-2011).

    PubMed

    Roca-Tey, Ramon; Arcos, Emma; Comas, Jordi; Cao, Higini; Tort, Jaume

    2015-01-01

    Arteriovenous fístula is the best vascular access (VA) for hemodialysis. We analyzed the VA used at first session and the factors associated with the likelihood to start hemodialysis by fistula in 2000-2011. Data of VA type were obtained in 9,956 incident hemodialysis patients from the Catalan Registry. Overall, 47.9% of patients initiated hemodialysis with a fistula, 1.2% with a graft, 15.9% with a tunneled catheter and 35% with an untunneled catheter. The percentage of incident patients with fistula and catheter has remained stable at around 50% over the years. The likelihood to start hemodialysis with fistula was significantly lower in females [adjusted odds ratio: 0.69, 95% confidence interval (CI): 0.61-0.75], patients aged 18-44 years (0.78, 95% CI: 0.64-0.94), patients with comorbidity (0.67, 95% CI: 0.60-0.75) and tended to be lower in patients aged over 74 years (0.89, 95% CI: 0.78-1.01). The probability to use fistula was significantly higher in patients with polycystic kidney disease (2.08, 95% CI: 1.63-2.67), predialysis nephrology care longer than 2 years (4.14, 95% CI: 3.63-4.73) and steady chronic kidney disease (CKD) progression (10.97, 95% CI: 8.41-14.32). During 1 year of follow-up, 67.2% and 59.6% of patients using untunneled and tunneled catheter changed to fistula, respectively. Starting hemodialysis by fistula was related with nonmodifiable patient characteristics and modifiable CKD practice processes, such as predialysis care duration. Half of the incident patients were exposed annually in Catalonia to potential catheter complications. This scenario can be improved by optimizing the processes of CKD care.

  7. Renal manifestations of plasma cell dyscrasias: an appraisal from the patients' bedside to the research laboratory.

    PubMed

    Herrera, G A

    2000-06-01

    One of the most prominent features of plasma cell dyscrasias is the frequent occurrence of renal dysfunction. Renal insufficiency is a common finding with elevated serum creatinine in more than 50% of patients with multiple myeloma at the time of diagnosis. Renal failure is the second most common cause of death in myeloma surpassed only by infections. The reasons for renal failure are multifactorial and early accurate diagnosis of the renal alterations may significantly impact morbidity and survival. Renal failure may result from selective glomerular, tubular interstitial, or vascular pathology or from a combination of pathologic events. The disorders associated with plasma cell dyscrasias include those characterized by monoclonal light chain deposition, encompassing AL-amyloidosis, in addition to the less well-characterized entities, such as heavy chain deposition disease and heavy chain amyloidosis. Therefore, it is more accurate to refer to them as monoclonal immunoglobulin deposition diseases. Staining of renal biopsy specimens for kappa and lambda light chains using immunofluorescence techniques and more sophisticated advanced diagnostic techniques such as immunoelectron microscopy permit detailed characterization of the various renal pathologic manifestations. Renal biopsies can identify monoclonal immunoglobulin deposition, and nephrologists have an opportunity to detect an underlying plasma cell dyscrasia early in its clinical course before overt hematologic alterations become manifest and irreversible renal damage has occurred. The overall spectrum of clinical and pathologic manifestations of monoclonal immunoglobulin deposition renal diseases has expanded considerably in recent years. Recent developments in the research arena promise new therapeutic interventions aimed at avoiding or ameliorating renal damage and even promoting reversal of some of the pathologic alterations. Currently, the 5-year survival rate in myeloma is 29% in white patients and 30

  8. Development of Response Classifier for Vascular Endothelial Growth Factor Receptor (VEGFR)-Tyrosine Kinase Inhibitor (TKI) in Metastatic Renal Cell Carcinoma.

    PubMed

    Go, Heounjeong; Kang, Mun Jung; Kim, Pil-Jong; Lee, Jae-Lyun; Park, Ji Y; Park, Ja-Min; Ro, Jae Y; Cho, Yong Mee

    2017-09-29

    Vascular endothelial growth factor receptor (VEGFR)-targeted therapy improved the outcome of metastatic renal cell carcinoma (mRCC) patients. However, a prediction of the response to VEGFR-tyrosine kinase inhibitor (TKI) remains to be elucidated. We aimed to develop a classifier for VEGFR-TKI responsiveness in mRCC patients. Among 101 mRCC patients, ones with complete response, partial response, or ≥24 weeks stable disease in response to VEGFR-TKI treatment were defined as clinical benefit group, whereas patients with <24 weeks stable disease or progressive disease were classified as clinical non-benefit group. Clinicolaboratory-histopathological data, 41 gene mutations, 20 protein expression levels and 1733 miRNA expression levels were compared between clinical benefit and non-benefit groups. The classifier was built using support vector machine (SVM). Seventy-three patients were clinical benefit group, and 28 patients were clinical non-benefit group. Significantly different features between the groups were as follows: age, time from diagnosis to TKI initiation, thrombocytosis, tumor size, pT stage, ISUP grade, sarcomatoid change, necrosis, lymph node metastasis and expression of pAKT, PD-L1, PD-L2, FGFR2, pS6, PDGFRβ, HIF-1α, IL-8, CA9 and miR-421 (all, P < 0.05). A classifier including necrosis, sarcomatoid component and HIF-1α was built with 0.87 accuracy using SVM. When the classifier was checked against all patients, the apparent accuracy was 0.875 (95% CI, 0.782-0.938). The classifier can be presented as a simple decision tree for clinical use. We developed a VEGFR-TKI response classifier based on comprehensive inclusion of clinicolaboratory-histopathological, immunohistochemical, mutation and miRNA features that may help to guide appropriate treatment in mRCC patients.

  9. Association studies of calcium-sensing receptor (CaSR) polymorphisms with serum concentrations of glucose and phosphate, and vascular calcification in renal transplant recipients.

    PubMed

    Babinsky, Valerie N; Hannan, Fadil M; Youhanna, Sonia C; Maréchal, Céline; Jadoul, Michel; Devuyst, Olivier; Thakker, Rajesh V

    2015-01-01

    Cardiovascular disease is the major cause of death in renal transplant recipients (RTRs) and linked to arterial calcification. The calcium-sensing receptor (CaSR), a G-protein coupled receptor, plays a pivotal role in extracellular calcium homeostasis and is expressed in the intimal and medial layers of the arterial wall. We investigated whether common CASR gene variants are predictors for aortic and coronary artery calcification or influence risk factors such as serum calcium, phosphate and glucose concentrations in RTRs. Two hundred and eighty four RTRs were investigated for associations between three CASR promoter region single nucleotide polymorphisms (SNPs) (rs115759455, rs7652589, rs1501899), three non-synonymous CASR coding region SNPs (A986S, R990G, Q1011E), and aortic and coronary artery calcium mass scores, cardiovascular outcomes and calcification risk factors that included serum phosphate, calcium, total cholesterol and glucose concentrations. Multivariate analysis revealed that RTRs homozygous for the minor allele (SS) of the A986S SNP, when compared to those homozygous for the major allele (AA), had raised serum glucose concentrations (8.7±5.4 vs. 5.7±2.1 mmol/L, P<0.05). In addition, RTRs who were heterozygous (CT) at the rs115759455 SNP, when compared to those homozygous for the major allele (CC), had higher serum phosphate concentrations (1.1±0.3 vs. 1.0±0.2 mmol/L, P<0.05). CASR SNPs were not significant determinants for aortic or coronary artery calcification, and were not associated with cardiovascular outcomes or mortality in this RTR cohort. Common CASR SNPs may be independent predictors of serum glucose and phosphate concentrations, but are not determinants of vascular calcification or cardiovascular outcomes.

  10. Targeting vascular calcification: softening-up a hard target.

    PubMed

    Kapustin, Alexander; Shanahan, Catherine M

    2009-04-01

    Widespread vascular calcification is a ubiquitous feature of aging and is prevalent in association with a number of common pathologies including atherosclerosis, renal failure, and diabetes. Once thought of as innocuous, emerging evidence suggests that calcification is causal in precipitating vascular events and mediating chronic cardiovascular damage, independent of disease context. Importantly, a large body of data has shed light on the factors that favor the formation of calcification in vivo, as well as on the complex mechanisms that initiate and promote it. This has identified some novel targets and allowed for the possibility that calcification can potentially be blocked and ultimately regressed. Targets include local and circulating inhibitors of calcification as well as factors that may ameliorate vascular smooth muscle cell (VSMC) apoptosis. Despite this, the vasculature remains a difficult tissue to target and currently there are no effective treatments in general use. More crucially, any potential treatments will need to be carefully evaluated as they may impinge on bone metabolism. Our best hope for the near future is to normalize factors associated with accelerated calcification in pathologies such as renal failure where, aberrant mineral metabolism, as well as treatment regimes, may contribute to the initiation and progression of calcification.

  11. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  12. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  13. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    PubMed

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  14. Baseline characteristics of the omega-3 fatty acids (Fish oils) and Aspirin in Vascular access OUtcomes in REnal Disease (FAVOURED) study.

    PubMed

    Viecelli, Andrea K; Pascoe, Elaine M; Polkinghorne, Kevan R; Hawley, Carmel M; Paul-Brent, Peta-Anne; Badve, Sunil V; Cass, Alan; Johnson, David W; Kerr, Peter G; Mori, Trevor A; Scaria, Anish; Hooi, Seong L; Ong, Meng L; Irish, Ashley B

    2016-03-01

    The Fish oils and Aspirin in Vascular access OUtcomes in REnal Disease (FAVOURED) trial investigated whether 3 months of omega-3 polyunsaturated fatty acids, either alone or in combination with aspirin, will effectively reduce primary access failure of de novo arteriovenous fistulae. This report presents the baseline characteristics of all study participants, examines whether study protocol amendments successfully increased recruitment of a broader and more representative haemodialysis cohort, including patients already receiving aspirin, and contrasts Malaysian participants with those from Australia, New Zealand and the United Kingdom (UK). This international, randomized, double-blind, placebo-controlled trial included patients older than 19 years with stage 4 or 5 chronic kidney disease currently receiving, or planned within 12 months to receive haemodialysis. Participants (n = 568) were overweight (28.6 ± 7.3 kg/m(2) ), relatively young (54.8 ± 14.3 years), and predominantly male (63%) with a high prevalence of diabetes mellitus (46%) but low rate of ischaemic heart disease (8%). Sixty one percent were planned for lower arm arteriovenous fistula creation. Malaysian participants (n = 156) were younger (51.8 ± 13.6 years vs 57.1 ± 14.2 years, P < 0.001) with a higher prevalence of diabetes mellitus (65% vs 43%, P < 0.001), but less ischaemic heart disease (5% vs 14%, P < 0.01) compared with the combined Australian, New Zealand and UK cohort (n = 228). Protocol modifications allowing for inclusion of patients receiving aspirin increased the prevalence of co-morbidities compared with the original cohort. The FAVOURED study participants, while mostly similar to patients in contemporary national registry reports and comparable recent clinical trials, were on average younger and had less ischaemic heart disease. These differences were reduced as a consequence of including patients already receiving aspirin. © 2015 Asian

  15. RECIST 1.1 Compared With RECIST 1.0 in Patients With Advanced Renal Cell Carcinoma Receiving Vascular Endothelial Growth Factor–Targeted Therapy

    PubMed Central

    Krajewski, Katherine M.; Nishino, Mizuki; Ramaiya, Nikhil H.; Choueiri, Toni K.

    2015-01-01

    OBJECTIVE Response Evaluation Criteria in Solid Tumors (RECIST) is the most widely accepted method to objectively assess response to therapy in renal cell carcinoma (RCC) treated with vascular endothelial growth factor (VEGF)–targeted therapy. Both RECIST 1.0 and 1.1 have been used to assess response to VEGF-targeted therapies; however, systematic comparisons are lacking. MATERIALS AND METHODS Sixty-two patients with metastatic RCC treated with VEGF-targeted therapies were retrospectively studied. Tumor measurements and response assessment according to RECIST 1.1 and RECIST 1.0 were compared, including the number of target lesions, baseline measurements, response at each follow-up, best overall response, and time to progression (TTP). Morphologic changes and new enhancement were also assessed over the course of treatment, and TTP was evaluated using morphologic change criteria in combination with RECIST 1.1. RESULTS The number of target lesions according to RECIST 1.1 was significantly fewer than by RECIST 1.0 (median, 2 vs 4; p < 0.0001). At first imaging follow-up, the percentage change of the sums of the diameter measurements by RECIST 1.1 and RECIST 1.0 were highly concordant (R = 0.857; mean shrinkage, 12.1% by RECIST 1.1 vs 10.8% by RECIST 1.0). Best response assessment was highly concordant between the two criteria (weighted κ = 0.819). There was no evidence of a difference in TTP by the two criteria, with a median TTP of 8.9 months (95% CI for the median, 5.5–13.9) by RECIST 1.1 and 8.9 months (95% CI for the median, 5.8–13.6) by RECIST 1.0. The median TTP by RECIST 1.1 alone was 8.9 months compared with 5.6 months for RECIST 1.1 and morphologic changes combined. CONCLUSION RECIST 1.1 and RECIST 1.0 response assessments were overall highly concordant in patients with RCC treated with VEGF-targeted therapy, with fewer target lesions according to RECIST 1.1 but no difference in TTP. PMID:25714313

  16. [Complex vascular access].

    PubMed

    Mangiarotti, G; Cesano, G; Thea, A; Hamido, D; Pacitti, A; Segoloni, G P

    1998-03-01

    Availability of a proper vascular access is a basic condition for a proper extracorporeal replacement in end-stage chronic renal failure. However, biological factors, management and other problems, may variously condition their middle-long term survival. Therefore, personal experience of over 25 years has been critically reviewed in order to obtain useful information. In particular "hard" situations necessitating complex procedures have been examined but, if possible, preserving the peripherical vascular features.

  17. Potential benefits of renal diets on cardiovascular risk factors in chronic kidney disease patients.

    PubMed

    Cupisti, Adamasco; Aparicio, Michel; Barsotti, Giuliano

    2007-01-01

    Dietary manipulation, including protein, phosphorus, and sodium restriction, when coupled with the vegetarian nature of the renal diet and ketoacid supplementation can potentially exert a cardiovascular protective effect in chronic renal failure patients by acting on both traditional and nontraditional cardiovascular risk factors. Blood pressure control may be favored by the reduction of sodium intake and by the vegetarian nature of the diet, which is very important also for lowering serum cholesterol and improving plasma lipid profile. The low protein and phosphorus intake has a crucial role for reducing proteinuria and preventing and reversing hyperphosphatemia and secondary hyperparathyroidism, which are major causes of the vascular calcifications, cardiac damage, and mortality risk of uremic patients. The reduction of nitrogenous waste products and lowering of serum PTH levels may also help ameliorate insulin sensitivity and metabolic control in diabetic patients, as well as increase the responsiveness to erythropoietin therapy, thus allowing greater control of anemia. Protein-restricted diets may have also anti-inflammatory and anti-oxidant properties. Thus, putting aside the still debatable effects on the progression of renal disease and the more admitted effects on uremic signs and symptoms, it is possible that a proper nutritional treatment early in the course of renal disease may be useful also to reduce the cardiovascular risk in the renal patient. However, conclusive data cannot yet be drawn because quality studies are lacking in this field; future studies should be planned to assess the effect of renal diets on hard outcomes, as cardiovascular events or mortality.

  18. N-acetylcysteine infusion reduces the resistance index of renal artery in the early stage of systemic sclerosis

    PubMed Central

    Rosato, Edoardo; Cianci, Rosario; Barbano, Biagio; Menghi, Ginevra; Gigante, Antonietta; Rossi, Carmelina; Zardi, Enrico M; Amoroso, Antonio; Pisarri, Simonetta; Salsano, Felice

    2009-01-01

    Aim: To evaluate resistance index (RI) changes in renal artery after N-acetylcysteine infusion in patients with systemic sclerosis. Methods: In an open-label study 40 patients with systemic sclerosis (SSc) were treated with N-acetylcysteine (NAC) iv infusion over 5 consecutive hours, at a dose of 0.015 g·kg−1·h−1. Renal haemodynamic effects were evaluated by color Doppler examination before and after NAC infusion. Results: NAC infusion significantly reduced RI in a group of sclerodermic patients with early/active capillaroscopic pattern, modified Rodnan Total Skin Score (mRTSS) <14 and mild-moderate score to the vascular domain of Medsger Scleroderma Disease Severity Scale (DSS). RI increased after NAC infusion in patients with late capillaroscopic pattern, mTRSS>14 and severe-end stage score to the vascular domain of DSS. In patients with reduction of RI after NAC infusion, diffusion capacity for carbon monoxide mean value was significantly higher than in those patients with an increase of RI. No significant differences in renal blood flow were found between patients with different subsets of SSc. Conclusion: In patients with low disease severity NAC ameliorates vascular renal function. PMID:19730428

  19. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    PubMed

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  20. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation.

  1. Vascular Cures

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  2. Successful microscopic renal autotransplantation for left renal aneurysm associated with segmental arterial mediolysis.

    PubMed

    Yoshioka, Takashi; Araki, Motoo; Ariyoshi, Yuichi; Wada, Koichiro; Tanaka, Noriyuki; Nasu, Yasutomo

    2016-12-14

    Segmental arterial mediolysis (SAM) is an uncommon, nonarteriosclerotic vascular disease. SAM is characterized by lysis of arterial media and can lead to aneurysm formation. The renal arteries are the third most common arteries associated with SAM. We report the case of a 32-year-old man with left renal artery aneurysm associated with SAM. We successfully performed left renal autotransplantation using microscopic vascular reconstruction. SAM is characterized by vascular fragility; therefore, microscopic surgery is favorable for treating aneurysms associated with SAM.

  3. Renal Artery Embolization

    PubMed Central

    Sauk, Steven; Zuckerman, Darryl A.

    2011-01-01

    Renal artery embolization (RAE) is an effective minimally invasive alternative procedure for the treatment of a variety of conditions. Since the 1970s when RAE was first developed, technical advances and growing experience have expanded the indications to not only include treatment of conditions such as symptomatic hematuria and palliation for metastatic renal cancer, but also preoperative infarction of renal tumors, treatment of angiomyolipomas, vascular malformations, medical renal disease, and complications following renal transplantation. With the drastically improved morbidity associated with this technique in part due to the introduction of more precise embolic agents and smaller delivery catheters, RAE continues to gain popularity for various urologic conditions. The indications and techniques for renal artery embolization are reviewed in the following sections. PMID:23204638

  4. Renal tubule cell repair following acute renal injury.

    PubMed

    Humes, H D; Lake, E W; Liu, S

    1995-01-01

    Experimental data suggests the recovery of renal function after ischemic or nephrotoxic acute renal failure is due to a replicative repair process dependent upon predominantly paracrine release of growth factors. These growth factors promote renal proximal tubule cell proliferation and a differentiation phase dependent on the interaction between tubule cells and basement membrane. These insights identify the molecular basis of renal repair and ischemic and nephrotoxic acute renal failure, and may lead to potential therapeutic modalities that accelerate renal repair and lessen the morbidity and mortality associated with these renal disease processes. In this regard, there is a prominent vasoconstrictor response of the renal vasculature during the postischemic period of developing acute renal failure. The intravenous administration of pharmacologic doses of atrial natriuretic factor (ANF) in the postischemic period have proven efficacious by altering renal vascular resistance, so that renal blood flow and glomerular filtration rate improve. ANF also appears to protect renal tubular epithelial integrity and holds significant promise as a therapeutic agent in acute renal failure. Of equal or greater promise are the therapeutic interventions targeting the proliferative reparative zone during the postischemic period. The exogenous administration of epidermal growth factor or insulin-like growth factor-1 in the postischemic period have effectively decreased the degree of renal insufficiency as measured by the peak serum creatinine and has hastened renal recovery as measured by the duration of time required to return the baseline serum creatinine values. A similarly efficacious role for hepatocyte growth factor has also been recently demonstrated.

  5. Glyoxalase I retards renal senescence.

    PubMed

    Ikeda, Yoichiro; Inagi, Reiko; Miyata, Toshio; Nagai, Ryoji; Arai, Makoto; Miyashita, Mitsuhiro; Itokawa, Masanari; Fujita, Toshiro; Nangaku, Masaomi

    2011-12-01

    Although kidney functions deteriorate with age, little is known about the general morphological alterations and mechanisms of renal senescence. We hypothesized that carbonyl stress causes senescence and investigated the possible role of glyoxalase I (GLO1), which detoxifies precursors of advanced glycation end products in the aging process of the kidney. We observed amelioration of senescence in GLO1-transgenic aged rats (assessed by expression levels of senescence markers such as p53, p21(WAF1/CIP1), and p16(INK4A)) and a positive rate of senescence-associated β-galactosidase (SABG) staining, associated with reduction of renal advanced glycation end product accumulation (estimated by the amount of carboxyethyl lysine). GLO1-transgenic rats showed amelioration of interstitial thickening (observed as an age-related presentation in human renal biopsy specimens) and were protected against age-dependent decline of renal functions. We used GLO1 overexpression or knockdown in primary renal proximal tubular epithelial cells to investigate the effect of GLO1 on cellular senescence. Senescence markers were significantly up-regulated in renal proximal tubular epithelial cells at late passage and in those treated with etoposide, a chemical inducer of senescence. GLO1 cellular overexpression ameliorated and knockdown enhanced the cellular senescence phenotypes. Furthermore, we confirmed the association of decreased GLO1 enzymatic activity and age-dependent deterioration of renal function in aged humans with GLO1 mutation. These findings indicate that GLO1 ameliorates carbonyl stress to retard renal senescence. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. The Association Between PD-L1 Expression and the Clinical Outcomes to Vascular Endothelial Growth Factor-Targeted Therapy in Patients With Metastatic Clear Cell Renal Cell Carcinoma

    PubMed Central

    Shin, Su-Jin; Jeon, Yoon Kyung; Cho, Yong Mee; Lee, Jae-Lyun; Chung, Doo Hyun; Park, Ji Young

    2015-01-01

    Background. Vascular endothelial growth factor pathway (VEGF)-tyrosine kinase inhibitors (TKIs) are used as the first-line treatment for patients with metastatic clear cell renal cell carcinoma (mCCRCC). Recently, programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) blockade emerged as promising therapy for renal cell carcinoma. However, the expression pattern and prognostic implication of programmed death-ligands (PD-Ls) in mCCRCC patients receiving VEGF-TKI remain unclear. Patients and Methods. PD-L1 and PD-L2 expression in tumor cells and the quantities of PD-1+ tumor-infiltrating lymphocytes were immunohistochemically evaluated in 91 mCCRCC patients treated with VEGF-TKI, and their associations with VEGF-TKI responsiveness and clinical outcome were analyzed. Results. PD-L1 immunopositivity was observed in 17.6% and significantly associated with a high International Society of Urological Pathology grade (p = .031) and sarcomatoid features (p = .014). PD-L2 immunopositivity was observed in 39.6% and was not associated with any of the assessed clinicopathological variables. PD-L1-positive cases showed poor VEGF-TKI responsiveness (p = .012) compared with PD-L1-negative cases. In univariate survival analysis, PD-L1 immunopositivity was significantly associat