Science.gov

Sample records for amendoinzeiro arachis hypogaea

  1. Successful crosses between fungal-resistant wild species of Arachis (section Arachis) and Arachis hypogaea

    PubMed Central

    Fávero, Alessandra Pereira; dos Santos, Rodrigo Furtado; Simpson, Charles E.; Valls, José Francisco Montenegro; Vello, Natal Antonio

    2015-01-01

    Peanut (Arachis hypogaea) is the fifth most produced oil crop worldwide. Besides lack of water, fungal diseases are the most limiting factors for the crop. Several species of Arachis are resistant to certain pests and diseases. This study aimed to successfully cross the A-genome with B-K-A genome wild species previously selected for fungal disease resistance, but that are still untested. We also aimed to polyplodize the amphihaploid chromosomes; cross the synthetic amphidiploids and A. hypogaea to introgress disease resistance genes into the cultivated peanut; and analyze pollen viability and morphological descriptors for all progenies and their parents. We selected 12 A-genome accessions as male parents and three B-genome species, one K-genome species, and one A-genome species as female parents. Of the 26 distinct cross combinations, 13 different interspecific AB-genome and three AA-genome hybrids were obtained. These sterile hybrids were polyploidized and five combinations produced tetraploid flowers. Next, 16 combinations were crossed between A. hypogaea and the synthetic amphidiploids, resulting in 11 different hybrid combinations. Our results confirm that it is possible to introgress resistance genes from wild species into the peanut using artificial hybridization, and that more species than previously reported can be used, thus enhancing the genetic variability in peanut genetic improvement programs. PMID:26500440

  2. Crystal structure of peanut (Arachis hypogaea) allergen Ara h 5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profilins from numerous species are known to be allergens, including food allergens, such as peanut (Arachis hypogaea) allergen Ara h 5, and pollen allergens, such as birch allergen Bet v 2. Patients with pollen allergy can also cross-react to peanut. Structural characterization of allergens will al...

  3. A Developmental Transcriptome Map for Allotetraploid Arachis hypogaea

    PubMed Central

    Clevenger, Josh; Chu, Ye; Scheffler, Brian; Ozias-Akins, Peggy

    2016-01-01

    The advent of the genome sequences of Arachis duranensis and Arachis ipaensis has ushered in a new era for peanut genomics. With the goal of producing a gene atlas for cultivated peanut (Arachis hypogaea), 22 different tissue types and ontogenies that represent the full development of peanut were sequenced, including a complete reproductive series from flower to peg elongation and peg tip immersion in the soil to fully mature seed. Using a genome-guided assembly pipeline, a homeolog-specific transcriptome assembly for Arachis hypogaea was assembled and its accuracy was validated. The assembly was used to annotate 21 developmental co-expression networks as tools for gene discovery. Using a set of 8816 putative homeologous gene pairs, homeolog expression bias was documented, and although bias was mostly balanced, there were striking differences in expression bias in a tissue-specific context. Over 9000 alterative splicing events and over 6000 non-coding RNAs were further identified and profiled in a developmental context. Together, this work represents a major new resource for cultivated peanut and will be integrated into peanutbase.org as an available resource for all peanut researchers. PMID:27746793

  4. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  5. Chemical Composition of the Essential Oils from Leaves of Edible (Arachis hypogaea L.) and Perennial (Arachis glabrata Benth.) Peanut Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts or groundnuts (Arachis hypogaea L.) are a valuable oilseed crop, but other than the seed, the rest of the plant is of minimal value. Plant material including the leaves is used as mulch or as animal feed. Perennial peanut (Arachis glabrata Benth) known as forage or rhizoma peanut produces...

  6. [Research advances in cadmium pollution of peanut (Arachis hypogaea L.)].

    PubMed

    Wang, Kai-rong; Zhang, Lei

    2008-12-01

    Peanut (Arachis hypogaea L.) is a major oil-bearing crop in the world, and as well, an important resource of plant protein and a main raw material for food processing. With the increasing of its direct human consumption and food processing, the Cd concentration in peanut kernel has aroused great concern in recent years. China is a main country of the production and exportation of peanut, but the Cd enrichment in peanut kernel is the main obstacle for its peanut export trade. In this paper, the research advances in Cd pollution of peanut kernel were reviewed, based on the characteristics and mechanisms of Cd accumulation and distribution in peanut kernel, the intra-specific variation of kernel Cd content, and the measures in controlling kernel Cd content. Two strategies were put forward for controlling Cd pollution of peanut kernel, i.e., to reduce the Cd uptake by main root system of peanut plant, and to control the transference of Cd from root to fruit (kernel). In order to applying the strategies effectively, researches on the mechanisms of Cd accumulation in peanut kernel should be enhanced in three aspects, i.e., root vitality and its relationship with Cd accumulation in kernel, mechanism of fruit Cd absorption and its contribution to kernel Cd content, and mechanism of Cd transference in plants and its effects on kernel Cd content.

  7. The complex tale of the high oleic acid trait in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition of oil extracted from peanut (Arachis hypogaea L.) seed is an important quality trait. In particular, a high ratio of oleic (C18:1) relative to linoleic (C18:2) fatty acid (O/L = 10) results in a longer shelf life. Previous reports suggest that the high oleic (~80%) trait wa...

  8. QTL analysis of disease resistance to leaf spots and TSWV in peanut (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early leaf spot (ELS), caused by Cercospora arachidicola, late leaf spot (LLS), caused by Cercosporidium personatum, and Tomato spotted wilt virus (TSWV) result in great losses in yield in peanut (Arachis hypogaea L.). In order to identify quantitative trait loci (QTL) for resistance to these dise...

  9. Improving fatty acid composition in peanuts (Arachis hypogaea) by SNP genotyping and traditional breeding.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition is an important seed quality trait in cultivated peanuts (Arachis hypogaea L.). Monounsaturated fats, such as oleic acid (C18:1), an omega-9 fatty acid, has been shown to have beneficial effects on human health. In addition, peanuts bred to produce high levels of oleic acid ...

  10. Assessment of Adoption Gaps in Management of Aflatoxin Contamination of Groundnut ("Arachis Hypogaea" L.)

    ERIC Educational Resources Information Center

    Kumar, G. D. S.; Popat, M. N.

    2010-01-01

    One of the major impediments for diversification of groundnut ("Arachis Hypogaea" L.) as food crop is aflatoxin contamination. The study was conducted with an objective to assess the adoption gaps in aflatoxin management practices of groundnut (AMPG) and the farmer's characteristics influencing these gaps. The study used an expost-facto research…

  11. TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allergic reactions to peanuts (Arachis hypogaea L.) can cause severe symptoms and in some cases can be fatal, but avoidance is difficult due to the prevalence of peanut-derived products in processed foods. One strategy of reducing the allergenicity of peanuts is to alter or eliminate the allergenic...

  12. Survey of Aspergillus and Aflatoxin in Groundnuts (Arachis hypogaea L.) and Groundnut Cake in Eastern Ethiopia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundnut (Arachis hypogaea L.) is an important cash and food crop in eastern Ethiopia. The lack of awareness and data on Aspergillus and aflatoxin contamination of groundnut and groundnut food products in the area are lacking. Therefore, this study was conducted to: i) assess major Aspergillus spec...

  13. Final report on the safety assessment of Peanut (Arachis hypogaea) Oil, Hydrogenated Peanut Oil, Peanut Acid, Peanut Glycerides, and Peanut (Arachis hypogaea) Flour.

    PubMed

    2001-01-01

    Peanut (Arachis Hypogaea) Oil is the refined fixed oil obtained from the seed kernels of Arachis hypogaea. Hydrogenated Peanut Oil, Peanut Acid, and Peanut Glycerides are all derived from Peanut Oil. Peanut Flour is a powder obtained by the grinding of peanuts. The oils and glycerides function in cosmetic formulations as skin-conditioning agents. The acid functions as a surfactant-cleansing agent, and the flour functions as an abrasive, bulking agent and/or viscosity-increasing agent. In 1998, only Peanut Oil and Hydrogenated Peanut Oil were reported in use. When applied to the skin, Peanut Oil can enhance the absorption of other compounds. Hepatic changes were noted at microscopic examination of rats fed diets containing 15% edible Peanut Oil for 28 days, although no control group was maintained and the findings were also noted in rats fed fresh corn oil. United States Pharmacopeia (USP)-grade Peanut Oil was considered relatively nonirritating when injected into guinea pigs and monkeys. Technical-grade Peanut Oil was moderately irritating to rabbits and guinea pigs and mildly irritating to rats following dermal exposure. This same oil produced reactions in < or = 10% of 50 human males. Peanut Oil was not an ocular irritant in rabbits. Peanut Oil, either "laboratory expressed" or extracted using a food-grade solvent, was not carcinogenic to mice. Peanut Oil exerted anticarcinogenic activity when tested against known carcinogens. Peanuts are the food most likely to produce allergic and anaphylactic reactions. The major allergen is a protein that does not partition into Peanut Oil, Hydrogenated Peanut Oil, Peanut Acid, and Peanut Glycerides. Aflatoxins can be produced in stored agricultural crops such as peanuts, but do not partition into the oils, acids, or glycerides. Manufacturers were cautioned to make certain that the oils, acids, and glycerides are free of aflatoxins and protein. Formulators were cautioned that the oils, acids, or glycerides may enhance

  14. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations, and at different soil sulfur levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi), showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across th...

  15. Antioxidant and antimicrobial properties of water soluble polysaccharide from Arachis hypogaea seeds.

    PubMed

    Jiang, Shengjuan; Ma, Yuhan; Yan, Dazhuang

    2014-10-01

    The water soluble crude polysaccharide (AHP) was obtained from the aqueous extracts of the Arachis hypogaea seeds through hot water extraction followed by ethanol precipitation. Antioxidant activities and inhibitory activities against the bacteria of AHP were investigated. AHP at 2 mg/mL was found to inhibit the formation of superoxide anion (55.33 %) and hydroxyl radicals (30.85 %), to scavenge the DPPH radical (57.43 %) and to chelate iron ion (27.83 %) in in vitro systems. AHP also exhibited the antibacterial activities. AHP at 12.5 mg/mL could inhibit the growth of the Gram-positive bacteria, implying that the Gram-positive bacteria were more sensitive to AHP than the Gram-negative bacteria. Polysaccharide with antioxidant and antibacterial activities in the "Chang Sheng Guo" further increased the nutritive values of peanuts as well as the natural health product potential. PMID:25328235

  16. Detection of peanut (Arachis hypogaea) allergen by Real-time PCR method with internal amplification control.

    PubMed

    Zhang, Wen-Ju; Cai, Qin; Guan, Xiao; Chen, Qin

    2015-05-01

    Specific primer sets were designed based on the DNA sequence of Ara h 1, one of the major peanut (Arachis hypogaea) allergens, and a competitive internal amplification control (IAC) was designed by compound primer technology. By choosing 314 copies/PCR as the IAC dosage, a Real-time PCR method with IAC was established for detecting peanut allergen Ara h 1 DNA. The method showed high specificity with a detection limit of 0.005% peanut. A series of commercial food products with/without peanut components were tested. Among these products, the peanut allergen Ara h 1 DNA could be detected in 12 products labelled containing peanut ingredients, in two without a declaration of peanut and one labelled that was produced in a facility that produced peanut-containing foods. This indicates that the method is highly sensitive for the detection of peanut ingredients in foods.

  17. In vitro propagation of peanut (Arachis hypogaea L.) by shoot tip culture.

    PubMed

    Ozudogru, Elif Aylin; Kaya, Ergun; Lambardi, Maurizio

    2013-01-01

    Peanut (Arachis hypogaea L.), also known as groundnut, is the most important species of Arachis genus, originating from Brazil and Peru. Peanut seeds contain high seed oil, proteins, amino acids, and vitamin E, and are consumed worldwide as edible nut, peanut butter, or candy, and peanut oil extracted from the seeds. The meal remaining after oil extraction is also used for animal feed. However, its narrow germplasm base, together with susceptibility to diseases, pathogens, and weeds, decreases yield and seed quality and causes great economic losses annually. Hence, the optimization of efficient in vitro propagation procedures would be highly effective for peanut propagation, as it would raise yield and improve seed quality and flavor. Earlier reports on traditional micropropagation methods, based on axillary bud proliferation which guarantees the multiplication of true-to-type plants, are still limited. This chapter describes a micropropagation protocol to improve multiple shoot formation from shoot-tip explants by using AgNO(3) in combination with plant growth regulators. PMID:23179691

  18. New hybrids from peanut (Arachis hypogaea L.) and synthetic amphidiploid crosses show promise in increasing pest and disease tolerance.

    PubMed

    Fávero, A P; Pádua, J G; Costa, T S; Gimenes, M A; Godoy, I J; Moretzsohn, M C; Michelotto, M D

    2015-12-11

    The primary gene pool of the cultivated peanut (Arachis hypogaea L., allotetraploid AABB) is very narrow for some important characteristics, such as resistance to pests and diseases. However, the Arachis wild diploid species, particularly those from the section Arachis, still have these characteristics. To improve peanut crops, genes from the wild species can be introgressed by backcrossing the hybrids with A. hypogaea. When diploid species whose genomes are similar to those of the cultivated peanut are crossed, sterile hybrids result. Artificially doubling the number of chromosomes of these hybrids results in fertile synthetic polyploids. The objectives of this study were: 1) to obtain progenies by crossing amphidiploids with the cultivated peanut, and 2) to characterize these two groups of materials (amphidiploids and progenies) so that they may be efficiently conserved and used. Using morphological, molecular, and pollen viability descriptors we evaluated one cultivar of A. hypogaea (IAC 503), eight synthetic amphidiploids, and the progenies resulting from four distinct combinations of crossing between IAC 503 and four amphidiploids.

  19. Release of soluble protein from peanut (Arachis hypogaea, Leguminosae) and its adsorption by activated charcoal.

    PubMed

    Kopper, Randall; Van, Trang; Kim, Ara; Helm, Ricki

    2011-01-12

    Peanut (Arachis hypogaea, Leguminosae) allergy is a major cause of food-induced anaphylaxis. The potential use of activated charcoal (AC) to adsorb and reduce the bioavailability of peanut protein allergens for use in the moderation of hypersensitivity reactions was investigated. The rate and extent of protein release from peanut and the adsorption of the solubilized protein by AC was determined under physiological pH values and confirmed in vivo using a porcine animal model system. Peanut proteins were adsorbed with equal efficiency at pH 2 and 7 and are completely removed from solution by an AC/protein ratio of approximately 80:1. This suggests that AC can bind protein under gastric (pH 2) or intestinal (pH 7) conditions. The rapid adsorption of soluble peanut allergens and the continuous binding of allergens released from peanut particulate material suggest the potential efficacy of using AC for gastric decontamination and possible elimination of a biphasic allergic reaction.

  20. EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.).

    PubMed

    Bi, Yu-Ping; Liu, Wei; Xia, Han; Su, Lei; Zhao, Chuan-Zhi; Wan, Shu-Bo; Wang, Xing-Jun

    2010-10-01

    Peanut (Arachis hypogaea L.) is one of the most important oil crops in the world. However, biotechnological based improvement of peanut is far behind many other crops. It is critical and urgent to establish the biotechnological platform for peanut germplasm innovation. In this study, a peanut seed cDNA library was constructed to establish the biotechnological platform for peanut germplasm innovation. About 17,000 expressed sequence tags (ESTs) were sequenced and used for further investigation. Among which, 12.5% were annotated as metabolic related and 4.6% encoded transcription or post-transcription factors. ESTs encoding storage protein and enzymes related to protein degradation accounted for 28.8% and formed the largest group of the annotated ESTs. ESTs that encoded stress responsive proteins and pathogen-related proteins accounted for 5.6%. ESTs that encoded unknown proteins or showed no hit in the GenBank nr database accounted for 20.1% and 13.9%, respectively. A total number of 5066 EST sequences were selected to make a cDNA microarray. Expression analysis revealed that these sequences showed diverse expression patterns in peanut seeds, leaves, stems, roots, flowers, and gynophores. We also analyzed the gene expression pattern during seed development. Genes that were upregulated (≥twofold) at 15, 25, 35, and 45 days after pegging (DAP) were found and compared with 70 DAP. The potential value of these genes and their promoters in the peanut gene engineering study is discussed.

  1. Impact of Fungicides Chlorothalonil and Propiconazole on Microbial Activities in Groundnut (Arachis hypogaea L.) Soils

    PubMed Central

    Ramudu, A. C.; Mohiddin, G. Jaffer; Srinivasulu, M.; Madakka, M.; Rangaswamy, V.

    2011-01-01

    Introduction of agrochemicals (fungicides) into soil may have lasting effects on soil microbial activities and thus affect soil health. In order to determine the changes in microbial activity in a black clay and red sandy loam soils of groundnut (Arachis hypogaea L.) cultivated fields, a case study was conducted with propiconazole and chlorothalonil to evaluate its effects on soil enzymes (cellulase and invertase) throughout 40 days of incubation under laboratory conditions with different concentrations (1.0, 2.5, 5.0, 7.5, and 10.0 kg ha−1). Individual application of the two fungicides at 1.0, 2.5, and 5.0 kg ha−1 to the soil distinctly enhanced the activities of cellulase and invertase but at higher concentrations of 7.5 and 10 kg ha−1 was toxic or innocuous to both cellulase and invertase activities. In soil samples receiving 2.5–5.0 kg ha−1 of the fungicides, the accumulation of reducing sugar was pronounced more at 20 days, and the activity of the cellulase and invertase was drastically decreased with increasing period of incubation up to 30 and 40 days. PMID:23724306

  2. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea)

    PubMed Central

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  3. [Effects of soil type and crop genotype on cadmium accumulation in peanut (Arachis hypogaea) kernels].

    PubMed

    Wang, Shan-Shan; Zhang, Hong; Wang, Yan-Hong; Wang, Shi-Cheng; Cui, Jie-Hua; Li, Bo; Yang, Jing-Jing

    2012-08-01

    Taking burozem and fluvo-aquic soil in the main peanut (Arachis hypogaea) production areas of China as test soil types and selecting three widely cultivated peanut genotypes Baisha 1016, Huayu 22, and Zhanyou 27 as test crops, a pot experiment with no Cd addition (control) and added with 1.5 mg x kg(-1) of Cd was conducted to elucidate the effects of soil type and crop genotype on the cadmimum (Cd) accumulation in peanut kernels. In the control, the Cd concentrations in the kernels of the three peanut genotypes growing on the two soil types were lower than the national food safety standard. In treatment Cd addition, the opposite was observed. For the same soil types, the Cd concentrations in the kernels of the three peanut genotypes were significantly higher in treatment Cd addition than in the control. The Cd accumulation in the kernels of the three peanut genotypes was in the order of Zhanyou 27 > Baisha 1016 > Huayu 22, and the Cd concentrations in the kernels of the peanut genotypes growing on the two soil types were higher on burozem than on fluvo-aquic soil. The values of the Cd bioaccumulation factor for the kernels of the three peanut genotypes were all higher than 1.0 in the control but lower than 1.0 in treatment Cd addition, suggesting that the peanut kernels had a stronger ability in accumulating the Cd from soil, and, when the soil Cd concentration increased, this ability decreased.

  4. Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis.

    PubMed

    Haldar, Shyamalina; Sengupta, Sanghamitra

    2015-07-01

    Present study investigates the impact of plant development on the structure and composition of root-associated bacterial community of groundnut (Arachis hypogaea) plant, an economically important oilseed legume. Relative abundance of total and active bacteria were studied in bulk soil and rhizosphere samples collected from different growth stages of groundnut plant by sequencing PCR-amplified 16S rRNA gene fragments from soil genomic DNA and reverse-transcribed soil community RNA. Plant growth promoting potential of cultivable rhizobacteria was evaluated using assays for inorganic phosphate solubilization and production of indole acetic acid, siderophores, biofilm, 1-amino-cyclopropane-1-carboxylate deaminase, laccase, and anti-fungal chemicals. Our study demonstrates that groundnut plant rhizosphere harbors a core microbiome populated by Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Acidobacteria. A distinct bacterial assemblage at nodulation stage due to predominance of Flavobacteria and Actinobacteria in DNA and RNA derived libraries respectively was also observed. Majority of cultivable isolates exhibiting plant growth promoting activities belonged to Proteobacteria and Firmicutes. Of them, Pseudomonas indica and Bacillus megaterium were detected in the rhizosphere samples from all the developmental stages of groundnut plant. This polyphasic study establishes the impact of plant development on rhizobacterial population of groundnut and underscores the applicability of soil isolates as a reliable component in sustainable agriculture.

  5. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags.

    PubMed

    Liu, Zhanji; Feng, Suping; Pandey, Manish K; Chen, Xiaoping; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu

    2013-05-01

    Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.

  6. Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.).

    PubMed

    Li, M; Zhao, S Z; Zhao, C Z; Zhang, Y; Xia, H; Lopez-Baltazar, J; Wan, S B; Wang, X J

    2016-02-19

    SQUAMOSA promoter-binding protein-like (SPL) proteins play crucial roles in plant growth, development, and responses to environmental stressors. The peanut (Arachis hypogaea L.) is a globally important oil crop. In this study, we cloned the full-length cDNA of 15 SPLs in the peanut by transcriptome sequencing and rapid amplification of cDNA ends, and analyzed their genomic DNA sequences. cDNA lengths varied significantly, from 369 to 3102 bp. The SBP domain of the peanut SPL proteins was highly conserved compared to SPLs in other plant species. Based on their sequence similarity to SPLs from other plant species, the peanut SPLs could be grouped into five subgroups. In each subgroup, lengths of individual genes, conserved motif numbers, and distribution patterns were similar. Seven of the SPLs were predicted to be targets of miR156. The SPLs were ubiquitously expressed in the roots, leaves, flowers, gynophores, and seeds, with different expression levels and accumulation patterns. Significant differences in the expression of most of the SPLs were observed between juvenile and adult leaves, suggesting that they are involved in developmental regulation. Dynamic changes occurred in transcript levels at stage 1 (aerial grown green gynophores), stage 2 (gynophores buried in soil for about three days), and stage 3 (gynophores buried in soil for about nine days with enlarged pods). Possible roles that these genes play in peanut pod initiation are discussed.

  7. Progress in genetic engineering of peanut (Arachis hypogaea L.)--a review.

    PubMed

    Krishna, Gaurav; Singh, Birendra K; Kim, Eun-Ki; Morya, Vivek K; Ramteke, Pramod W

    2015-02-01

    Peanut (Arachis hypogaea L.) is a major species of the family, Leguminosae, and economically important not only for vegetable oil but as a source of proteins, minerals and vitamins. It is widely grown in the semi-arid tropics and plays a role in the world agricultural economy. Peanut production and productivity is constrained by several biotic (insect pests and diseases) and abiotic (drought, salinity, water logging and temperature aberrations) stresses, as a result of which crop experiences serious economic losses. Genetic engineering techniques such as Agrobacterium tumefaciens and DNA-bombardment-mediated transformation are used as powerful tools to complement conventional breeding and expedite peanut improvement by the introduction of agronomically useful traits in high-yield background. Resistance to several fungal, virus and insect pest have been achieved through variety of approaches ranging from gene coding for cell wall component, pathogenesis-related proteins, oxalate oxidase, bacterial chloroperoxidase, coat proteins, RNA interference, crystal proteins etc. To develop transgenic plants withstanding major abiotic stresses, genes coding transcription factors for drought and salinity, cytokinin biosynthesis, nucleic acid processing, ion antiporter and human antiapoptotic have been used. Moreover, peanut has also been used in vaccine production for the control of several animal diseases. In addition to above, this study also presents a comprehensive account on the influence of some important factors on peanut genetic engineering. Future research thrusts not only suggest the use of different approaches for higher expression of transgene(s) but also provide a way forward for the improvement of crops.

  8. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).

    PubMed

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer.

  9. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).

    PubMed

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  10. Impact of Fungicides Chlorothalonil and Propiconazole on Microbial Activities in Groundnut (Arachis hypogaea L.) Soils.

    PubMed

    Ramudu, A C; Mohiddin, G Jaffer; Srinivasulu, M; Madakka, M; Rangaswamy, V

    2011-01-01

    Introduction of agrochemicals (fungicides) into soil may have lasting effects on soil microbial activities and thus affect soil health. In order to determine the changes in microbial activity in a black clay and red sandy loam soils of groundnut (Arachis hypogaea L.) cultivated fields, a case study was conducted with propiconazole and chlorothalonil to evaluate its effects on soil enzymes (cellulase and invertase) throughout 40 days of incubation under laboratory conditions with different concentrations (1.0, 2.5, 5.0, 7.5, and 10.0 kg ha(-1)). Individual application of the two fungicides at 1.0, 2.5, and 5.0 kg ha(-1) to the soil distinctly enhanced the activities of cellulase and invertase but at higher concentrations of 7.5 and 10 kg ha(-1) was toxic or innocuous to both cellulase and invertase activities. In soil samples receiving 2.5-5.0 kg ha(-1) of the fungicides, the accumulation of reducing sugar was pronounced more at 20 days, and the activity of the cellulase and invertase was drastically decreased with increasing period of incubation up to 30 and 40 days.

  11. Cloning of acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli.

    PubMed

    Chen, Gao; Peng, Zhen-ying; Shan, Lei; Xuan, Ning; Tang, Gui-ying; Zhang, Yan; Li, Lan; He, Qing-fang; Bi, Yu-ping

    2012-01-01

    In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3'-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50-70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli.

  12. Cloning of Acyl-ACP Thioesterase FatA from Arachis hypogaea L. and Its Expression in Escherichia coli

    PubMed Central

    Chen, Gao; Peng, Zhen-ying; Shan, Lei; Xuan, Ning; Tang, Gui-ying; Zhang, Yan; Li, Lan; He, Qing-fang; Bi, Yu-ping

    2012-01-01

    In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3′-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50–70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli. PMID:23093853

  13. Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants.

    PubMed

    McKently, A H; Moore, G A; Doostdar, H; Niedz, R P

    1995-08-01

    Transgenic peanut (Arachis hypogaea L.) plants have been produced using an Agrobacterium-mediated transformation system. Zygotic embryo axes from mature seed were cocultured with Agrobacterium tumefaciens strain EHA101 harboring a binary vector that contained the genes for the scorable marker B-glucuronidase (GUS) and the selectable marker neomycin phosphotransferase II. Nine percent of the germinated seedlings were GUS+. Polymerase chain reaction analysis confirmed that GUS+ shoots and T1 progeny contained T-DNA. Molecular characterization of one primary transformant and its T1 and T2 progeny plants established that T-DNA was integrated into the host genome. PMID:24186625

  14. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  15. The nutritional value of peanut hay (Arachis hypogaea L.) as an alternate forage source for sheep.

    PubMed

    Khan, Muhammad Tahir; Khan, Nazir Ahmad; Bezabih, Melkamu; Qureshi, Muhammad Subhan; Rahman, Altafur

    2013-03-01

    The aim of this study was to evaluate the nutritional and feeding value of peanut hay (Arachis hypogaea L.) produced under tropical environment as an alternate forage resource for sheep. Peanut hay was appreciably high in crude protein [CP; 105 g/kg dry matter (DM)] and lower in neutral detergent fiber (NDF; 466 g/kg DM). Moreover, peanut hay was rich in Ca (12 g/kg DM) and P (1.7 g/kg DM). A feeding trial was conducted to investigate the effect of substituting wheat straw with peanut hay on nutrient intake, digestibility, and N utilization. Four adult Ramghani (Kaghani × Rambouillet) wethers (60 ± 2.5 kg body weight) were randomly assigned to the four dietary treatments according to a 4 × 4 Latin square design. The four rations were formulated on isonitrogenous and isocaloric bases and differed in the proportion (in grams per kilogram DM) of wheat straw/peanut hay, i.e., 700:0, 460:240, 240:460, and 0:700. The replacement of wheat straw with peanut hay increased the intakes of DM (P < 0.001), NDF (P < 0.01), and N (P < 0.001). Moreover, apparent in vivo digestibility of DM, NDF, and CP increased (P < 0.001) with the increasing proportion of peanut hay in the ration. Nitrogen retention in the body increased (P < 0.01; 3.2 to 8.1 g/day) with the replacement of wheat straw with peanut hay. These findings showed that substitution of wheat straw with peanut hay can improve DM and nutrients intake, digestibility, and N retention in sheep.

  16. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).

    PubMed

    Wang, Kairong; Song, Ningning; Zhao, Qiaoqiao; van der Zee, S E A T M

    2016-01-01

    Peanut (Arachis hypogaea L.) genotypes may differ greatly with regard to cadmium (Cd) accumulation, but the underlying mechanisms remain unclear. To determine the key factors that may contribute to Cd re-distribution and accumulation in peanut genotypes with different Cd accumulating patterns, a split-pot soil experiment was conducted with three common Chinese peanut cultivars (Fenghua-6, Huayu-20, and Huayu-23). The growth medium was separated into pod and root zones with varied Cd concentrations in each zone to determine the re-distribution of Cd after it is taken up via different routes. The peanut cultivars were divided into two groups based on Cd translocation efficiency as follows: (1) high internal Cd translocation efficiency cultivar (Fenghua-6) and (2) low internal Cd translocation efficiency cultivars (Huayu-20 and Huayu-23). Compared with Fenghua-6, low Cd translocation cultivars Huayu-20 and Huayu-23 showed higher biomass production, especially in stems and leaves, leading to dilution of metal concentrations. Results also showed that Cd concentration in roots increased significantly with increasing Cd concentrations in soils when Cd was applied in the root zone. However, there were no significant differences in the root Cd concentrations between different pod zone Cd treatments and the control, suggesting that root uptake, rather than pod uptake, is responsible for Cd accumulation in the roots of peanuts. Significant differences of Cd distribution were observed between pod and root zone Cd exposure treatments. The three peanut cultivars revealed higher kernel over total Cd fractions for pod than for root zone Cd exposure if only extra applied Cd was considered. This suggests that uptake through peg and pod shell might, at least partially, be responsible for the variation in Cd re-distribution and accumulation among peanut cultivars. Cd uptake by plants via two routes (i.e., via roots and via pegs and pods, respectively) and internal Cd translocation

  17. Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin.

    PubMed

    Swamy, M J; Gupta, D; Mahanta, S K; Surolia, A

    1991-06-25

    2-Dansylamino-2-deoxy-D-galactose (GalNDns) has been shown to bind to peanut (Arachis hypogaea) agglutinin (PNA) in a saccharide-specific manner. This binding was accompanied by a five-fold increase in the fluorescence of GalNDns. The interaction was characterized by an association constant of 0.15 mM at 15 degrees and delta H and delta S values of -57.04 kJ.mol-1 and -118.1J.mol-1.K-1, respectively. Binding of a variety of other mono-, di- and oligo-saccharides to PNA, studied by monitoring their ability to dissociate the PNA GalNDns complex, revealed that PNA interacts with several T-antigen-related structures, such as beta-D-Galp-(1----3)-D-GalNAc, beta-D-Galp-(1----3)-alpha-D-GalpNAcOMe, and beta-D-Galp-(1----3)-alpha-D-GalpNAc-(1----3)-Ser, as well as the asialo-GM1 tetrasaccharide, with comparable affinity, thus showing that this lectin does not discriminate between saccharides in which the penultimate sugar of the beta-D-Galp-(1----3)-D-GalNAc unit is the alpha or beta anomer, in contrast to jacalin (Artocarpus integrifolia agglutinin), another anti T-lectin which preferentially binds to beta-D-Galp-(1----3)-alpha-D-GalNAc and does not recognize beta-D-Galp-(1----3)-beta-D-GalNAc or the related asialo-GM1 oligosaccharide. These studies also indicated that, in the extended combining region of PNA which accommodates a disaccharide, the primary subsite (subsite A) is highly specific for D-galactose, whereas the secondary subsite (subsite B) is less specific and can accommodate various structures, such as D-galactose, 2-acetamido-2-deoxy-D-galactose, D-glucose, and 2-acetamido-2-deoxy-D-glucose.

  18. Response of progeny bred from Bolivian and North American cultivars in integrated management systems for leaf spot of peanut (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early leaf spot caused by the fungus Cercospora arachidicola, and late leaf spot caused by the fungus Cercosporidium personatum, are major yield-reducing diseases of peanut (Arachis hypogaea L.) in the southeastern U.S. Effective control of both leaf spots can be reached with integrated disease man...

  19. Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to utilize the germplasm more efficiently for peanut (Arachis hypogaea L.) genetic improvement, a core collection of 576 accessions and a primary mini core collection of 298 accessions was developed previously from a collection of 6,839 cultivated peanut lines stored at the Oil Crops Resear...

  20. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.

  1. Data in support of proteome analysis of gynophores and early swelling pods of peanut (Arachis hypogaea L.).

    PubMed

    Xia, Han; Jiang, Nana; Hou, Lei; Zhang, Ye; Li, Changsheng; Li, Aiqin; Zhao, Chuanzhi

    2015-12-01

    Different from most of other plants, peanut (Arachis hypogaea L.) is a typical geocarpic species which flowering and forming pegs (gynophores) above the ground. Pegs penetrate into soil for embryo and pod development. To investigate the molecular mechanism of geocarpy feature of peanut, the proteome profiles of aerial grown gynophores (S1), subterranean unswollen gynophores (S2), and gynophores that had just started to swell into pods (S3) were analyzed by combining 1 DE with nano LC-MS/MS approaches. The proteomic data provided valuable information for understanding pod development of peanut. The data described here can be found in the PRIDE Archive using the reference number PXD002579-81. A more comprehensive analysis of this data may be obtained from the article in BMC Plant Biology (Zhao et al., 2015 [1]).

  2. Data in support of proteome analysis of gynophores and early swelling pods of peanut (Arachis hypogaea L.)

    PubMed Central

    Xia, Han; Jiang, Nana; Hou, Lei; Zhang, Ye; Li, Changsheng; Li, Aiqin; Zhao, Chuanzhi

    2015-01-01

    Different from most of other plants, peanut (Arachis hypogaea L.) is a typical geocarpic species which flowering and forming pegs (gynophores) above the ground. Pegs penetrate into soil for embryo and pod development. To investigate the molecular mechanism of geocarpy feature of peanut, the proteome profiles of aerial grown gynophores (S1), subterranean unswollen gynophores (S2), and gynophores that had just started to swell into pods (S3) were analyzed by combining 1 DE with nano LC–MS/MS approaches. The proteomic data provided valuable information for understanding pod development of peanut. The data described here can be found in the PRIDE Archive using the reference number PXD002579-81. A more comprehensive analysis of this data may be obtained from the article in BMC Plant Biology (Zhao et al., 2015 [1]). PMID:26793750

  3. Oil quality and sugar content of peanuts (Arachis hypogaea) grown in Argentina: their relationship with climatic variables and seed yield.

    PubMed

    Casini, Cristiano; Dardanelli, Julio L; Martínez, María J; Balzarini, Mónica; Borgogno, Carmen S; Nassetta, Mirtha

    2003-10-01

    The ratio of oleic to linoleic acids (O/L) and the tocopherol content are important features in determining peanut (Arachis hypogaea) seed shelf life. Soluble carbohydrates are known to be important precursors in roasted peanut flavor. The chemical qualities of Argentine grain are different from those of other countries, but no previous studies that associate grain quality and environmental parameters have been performed. Relationships were determined between O/L, tocopherol and sugar contents, and variations in temperature and rainfall during the grain filling period of Florman INTA peanuts. Dry seed yield was used as another explanatory variable. Multiple regression procedure gave mean temperature (positive coefficient) and total precipitation (negative coefficient) as the explanatory variables for variations in O/L. Total precipitation and dry seed yield (both negative coefficients) were found to be predictor variables for tocopherol and sugar contents. Total precipitation was an explanatory variable included in all of the linear regression models obtained in this study.

  4. Isolation and identification of allelochemicals produced by B. sonorensis for suppression of charcoal rot of Arachis hypogaea L.

    PubMed

    Pandya, Urja; Saraf, Meenu

    2015-05-01

    Bacillus sonorensis MBCU2 isolated from vermicompost-amended soil from Gujarat, India showed most antagonistic activity against Macrophomina phaseolina by dual culture screening. The culture supernatant of MBCU2 completely suppressed the mycelia growth of pathogen, indicating that suppression was due to the presence of allelochemicals in the culture filtrate. Results of scanning electron microscopy revealed that MBCU2 caused morphological alteration in mycelia of M. phaseolina as evident by hyphal lysis and perforation. Lipopeptides (iturin A and surfactin) produced by MBCU2 were detected and identified by MALDI-TOF-MS as well as liquid chromatography coupled with ESI-MS/MS. Pot trial studies conducted by seed bacterization with MBCU2 resulted in statistically significant increase in Arachis hypogaea L. vegetative growth parameters such as root length (91%), shoot length (252%), fresh weight (71%), dry weight (57%), number of pod (128%), and number of seed (290%) in M. phaseolina infested soil over control as well as decreased M. phaseolina disease severity. We suggest that allelochemicals production can be linked to the mechanism of protection of A. hypogaea L. from M. phaseolina by B. sonorensis MBCU2. PMID:25346523

  5. Detection of S-Nitrosothiol and Nitrosylated Proteins in Arachis hypogaea Functional Nodule: Response of the Nitrogen Fixing Symbiont

    PubMed Central

    Maiti, Debasis; Sarkar, Tuhin Subhra; Ghosh, Sanjay

    2012-01-01

    To detect the presence of NO, ROS and RNS in nodules of crack entry legumes, we used Arachis hypogaea functional nodule. The response of two cognate partner rhizobia was compared towards NO and GSNO using S. meliloti and Bradyrhizobium sp NC921001. ROS, NO, nitrosothiol and bacteroids were detected by fluorescence microscopy. Redox enzymes and thiol pools were detected biochemically. Nitrosothiols were found to be present but ROS and NO were absent in A. hypogaea nodule. A number of S-nitrosylated proteins were also detected. The total thiol pool and most of the redox enzymes were low in nodule cytosolic extract but these were found to be high in the partner microorganisms indicating partner rhizobia could protect the nodule environment against the nitrosothiols. Both S. meliloti and Bradyrhizobium sp NC921001 were found to contain GSNO reductase. Interestingly, there was a marked difference in growth pattern between S. meliloti and Bradyrhizobium sp in presence of sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO). Bradyrhizobium sp was found to be much more tolerant to NO donor compounds than the S. meliloti. In contrast, S. meliloti showed resistance to GSNO but was sensitive to SNP. Together our data indicate that nodule environment of crack entry legumes is different than the nodules of infection mode entry in terms of NO, ROS and RNS. Based on our biochemical characterization, we propose that exchange of redox molecules and reactive chemical species is possible between the bacteroid and nodule compartment. PMID:23029073

  6. Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India.

    PubMed

    Guha, Sohini; Sarkar, Monolina; Ganguly, Pritha; Uddin, Md Raihan; Mandal, Sukhendu; DasGupta, Maitrayee

    2016-09-01

    Bradyrhizobial invasion in dalbergoid legumes like Arachis hypogaea and endophytic bacterial invasions in non-legumes like Oryza sativa occur through epidermal cracks. Here, we show that there is no overlap between the bradyrhizobial consortia that endosymbiotically and endophytically colonise these plants. To minimise contrast due to phylogeographic isolation, strains were collected from Arachis/Oryza intercropped fields and a total of 17 bradyrhizobia from Arachis (WBAH) and 13 from Oryza (WBOS) were investigated. 16SrRNA and concatenated dnaK-glnII-recA phylogeny clustered the nodABC-positive WBAH and nodABC-deficient WBOS strains in two distinct clades. The in-field segregation is reproducible under controlled conditions which limits the factors that influence their competitive exclusion. While WBAH renodulated Arachis successfully, WBOS nodulated in an inefficient manner. Thus, Arachis, like other Aeschynomene legumes support nod-independent symbiosis that was ineffectual in natural fields. In Oryza, WBOS recolonised endophytically and promoted its growth. WBAH however caused severe chlorosis that was completely overcome when coinfected with WBOS. This explains the exclusive recovery of WBOS in Oryza in natural fields and suggests Nod-factors to have a role in counterselection of WBAH. Finally, canonical soxY1 and thiosulphate oxidation could only be detected in WBOS indicating loss of metabolic traits in WBAH with adaptation of symbiotic lifestyle. PMID:27102878

  7. Synergic actions of polyphenols and cyanogens of peanut seed coat (Arachis hypogaea) on cytological, biochemical and functional changes in thyroid.

    PubMed

    Chandra, Amar K; Mondal, Chiranjit; Sinha, Sabyasachi; Chakraborty, Arijit; Pearce, Elizabeth N

    2015-03-01

    In animals, long-term feeding with peanut (Arachis hypogaea) seed coats causes hypertrophy and hyperplasia of the thyroid gland. However, to date there have been no detailed studies. Here, we explored the thyroidal effects of dietary peanut seed coats (PSC) in rats. The PSC has high levels of pro-goitrogenic substances including phenolic and other cyanogenic constituents. The PSC was mixed with a standard diet and fed to rats for 30 and 60 days, respectively. Animals fed with the PSC-supplemented diet showed a significant increase in urinary excretion of thiocyanate and iodine, thyroid enlargement, and hypertrophy and/or hyperplasia of thyroid follicles. In addition, there was inhibition of thyroid peroxidase (TPO) activity, 5'-deiodinase-I (DIO1) activity, and (Na+-K+)-ATPase activity in the experimental groups of rats as compared to controls. Furthermore, the PSC fed animals exhibited decreased serum circulating total T4 and T3 levels, severe in the group treated for longer duration. These data indicate that PSC could be a novel disruptor of thyroid function, due to synergistic actions of phenolic as well as cyanogenic constituents. PMID:25872244

  8. Flowering and Growth Response of Peanut Plants (Arachis hypogaea L. var. Starr) at Two Levels of Relative Humidity 12

    PubMed Central

    Lee, T. A.; Ketring, D. L.; Powell, R. D.

    1972-01-01

    Peanut plants (Arachis hypogaea L. var. Starr) grown under two different relative humidities were used in all experiments. All plants were germinated and grown to flowering in the greenhouse. At this time, one group was moved to a growth room under 95% relative humidity. After 50 days the humidity of the growth room was lowered to 50%. The second group was moved into a growth room at 50% relative humidity and after 50 days the humidity was raised to 95%. Flowering rates of plants under high humidity were greater than rates of those plants under low humidity. Flowering was stimulated by transfer from low to high humidity, and these plants set the largest percentage of pegs, maintained a high rate of ethylene production by 2-centimeter peg sections, a high growth rate of intact pegs, and they had a higher mean content of gibberellins than plants transferred from a high to a low humidity. The plants in the high to low transfer had the least number of flowers, formed the lowest percentage of pegs, had about 50% less ethylene production by 2-centimeter peg sections, and the peg growth rate declined about 50%. Maximum ethylene production occurred during initial stages of peg growth (1- to 5-millimeter sections), and gibberellin content was generally higher in these peg sections. Thus, high humidity enhanced flowering, peg formation, and peg growth rate. A causal relationship between these effects of high humidity and the growth regulator status of the developing fruit is indicated. PMID:16657922

  9. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels.

    PubMed

    Chandran, Manju; Chu, Ye; Maleki, Soheila J; Ozias-Akins, Peggy

    2015-02-18

    Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi) showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across three generations (T3, T4, and T5) under field conditions. Different soil sulfur levels (0.012, 0.3, and 3.0 mM) differentially impacted sulfur-rich (Ara h 2, Ara h 3, and Ara h 6) versus sulfur-poor (Ara h 1) proteins in non-transgenic versus transgenic peanut. The sulfur level had no effect on Ara h 1, whereas low sulfur led to a significant reduction of Ara h 3 in transgenic and non-transgenic seeds and Ara h 2 and Ara h 6 in non-transgenic but not in transgenic peanuts because these proteins already were reduced by gene silencing. These results demonstrate stability of transgene expression and the potential utility of RNAi in allergen manipulation. PMID:25616282

  10. Synergic actions of polyphenols and cyanogens of peanut seed coat (Arachis hypogaea) on cytological, biochemical and functional changes in thyroid.

    PubMed

    Chandra, Amar K; Mondal, Chiranjit; Sinha, Sabyasachi; Chakraborty, Arijit; Pearce, Elizabeth N

    2015-03-01

    In animals, long-term feeding with peanut (Arachis hypogaea) seed coats causes hypertrophy and hyperplasia of the thyroid gland. However, to date there have been no detailed studies. Here, we explored the thyroidal effects of dietary peanut seed coats (PSC) in rats. The PSC has high levels of pro-goitrogenic substances including phenolic and other cyanogenic constituents. The PSC was mixed with a standard diet and fed to rats for 30 and 60 days, respectively. Animals fed with the PSC-supplemented diet showed a significant increase in urinary excretion of thiocyanate and iodine, thyroid enlargement, and hypertrophy and/or hyperplasia of thyroid follicles. In addition, there was inhibition of thyroid peroxidase (TPO) activity, 5'-deiodinase-I (DIO1) activity, and (Na+-K+)-ATPase activity in the experimental groups of rats as compared to controls. Furthermore, the PSC fed animals exhibited decreased serum circulating total T4 and T3 levels, severe in the group treated for longer duration. These data indicate that PSC could be a novel disruptor of thyroid function, due to synergistic actions of phenolic as well as cyanogenic constituents.

  11. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels.

    PubMed

    Chandran, Manju; Chu, Ye; Maleki, Soheila J; Ozias-Akins, Peggy

    2015-02-18

    Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi) showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across three generations (T3, T4, and T5) under field conditions. Different soil sulfur levels (0.012, 0.3, and 3.0 mM) differentially impacted sulfur-rich (Ara h 2, Ara h 3, and Ara h 6) versus sulfur-poor (Ara h 1) proteins in non-transgenic versus transgenic peanut. The sulfur level had no effect on Ara h 1, whereas low sulfur led to a significant reduction of Ara h 3 in transgenic and non-transgenic seeds and Ara h 2 and Ara h 6 in non-transgenic but not in transgenic peanuts because these proteins already were reduced by gene silencing. These results demonstrate stability of transgene expression and the potential utility of RNAi in allergen manipulation.

  12. Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection.

    PubMed

    Jiang, Huifang; Huang, Li; Ren, Xiaoping; Chen, Yuning; Zhou, Xiaojing; Xia, Youlin; Huang, Jiaquan; Lei, Yong; Yan, Liying; Wan, Liyun; Liao, Boshou

    2014-02-01

    Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped using 109 simple sequence repeat (SSR) markers, which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different environments, exhibiting abundant genetic and phenotypic diversity within the panel. A model-based structure analysis assigned all accessions to three groups. Most of the accessions had the relative kinship of less than 0.05, indicating that there were no or weak relationships between accessions of the mini-core collection. For 15 agronomic traits in the peanut panel, generally the Q + K model exhibited the best performance to eliminate the false associated positives compared to the Q model and the general linear model-simple model. In total, 89 SSR alleles were identified to be associated with 15 agronomic traits of three environments by the Q + K model-based association analysis. Of these, eight alleles were repeatedly detected in two or three environments, and 15 alleles were commonly detected to be associated with multiple agronomic traits. Simple sequence repeat allelic effects confirmed significant differences between different genotypes of these repeatedly detected markers. Our results demonstrate the great potential of integrating the association analysis and marker-assisted breeding by utilizing the peanut mini-core collection.

  13. Influence of cadmium on the symbiotic interaction established between peanut (Arachis hypogaea L.) and sensitive or tolerant bradyrhizobial strains.

    PubMed

    Bianucci, Eliana; Furlan, Ana; Rivadeneira, Jesica; Sobrino-Plata, Juan; Carpena-Ruiz, Ramón O; Tordable, María del Carmen; Fabra, Adriana; Hernández, Luis E; Castro, Stella

    2013-11-30

    Heavy metals in soil are known to affect rhizobia-legume interaction reducing not only rhizobia viability, but also nitrogen fixation. In this work, we have compared the response of the symbiotic interaction established between the peanut (Arachis hypogaea L.) and a sensitive (Bradyrhizobium sp. SEMIA6144) or a tolerant (Bradyrhizobium sp. NLH25) strain to Cd under exposure to this metal. The addition of 10 μM Cd reduced nodulation and nitrogen content in both symbiotic associations, being the interaction established with the sensitive strain more affected than that with the tolerant one. Plants inoculated with the sensitive strain accumulated more Cd than those inoculated with the tolerant strain. Nodules showed an increase in reactive oxygen species (ROS) production when exposed to Cd. The histological structure of the nodules exposed to Cd revealed a deposit of unknown material on the cortex and a significant reduction in the infection zone diameter in both strains, and a greater number of uninfected cells in those nodules occupied by the sensitive strain. In conclusion, Cd negatively impacts on peanut-bradyrhizobia interaction, irrespective of the tolerance of the strains to this metal. However, the inoculation of peanut with Bradyrhizobium sp. NLH25 results in a better symbiotic interaction suggesting that the tolerance observed in this strain could limit Cd accumulation by the plant.

  14. Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques.

    PubMed

    Oldoni, Tatiane L C; Melo, Priscilla S; Massarioli, Adna P; Moreno, Ivani A M; Bezerra, Rosângela M N; Rosalen, Pedro L; da Silva, Gil V J; Nascimento, Andréa M; Alencar, Severino M

    2016-02-01

    Purification and bioassay-guided fractionation were employed to isolate proanthocyanidins with antioxidant activity from peanut skin (Arachis hypogaea Runner 886). The crude extract was prepared with acetone (60% v/v) and purified using chromatographic methods, including a semipreparative HPLC technique. As a result, two proanthocyanidins were isolated and identified using NMR, epicatechin-(2 β → O → 7, 4 β → 8)-catechin (proanthocyanidin A1) and epicatechin-(β → 2 O → 7, 4 β → 8)-epicatechin (proanthocyanidin A2). Despite the structural similarity, differences were observed in their antioxidant activity. Proanthocyanidin A1 proved to be more active, with EC50 value for DPPH radical scavenging of 18.25 μg/mL and reduction of Fe(3+)-TPTZ complex of 7.59 mmol/g, higher than that of synthetic antioxidant BHT. This compound evaluated by ABTS(+) was similar to that of natural quercetin. Therefore, peanut skin is an important source of bioactive compounds that may be used as a mild antioxidant for food preservation.

  15. Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing

    PubMed Central

    Chen, Xiaoping; Wang, Jinyan; Pan, Lijuan; Chen, Mingna; Yang, Zhen; He, Yanan; Liang, Xuanqiang; Yu, Shanlin

    2011-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L.), one of the most important oilseed crops cultivated worldwide. Results A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut. PMID:22110666

  16. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds

    PubMed Central

    Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong

    2015-01-01

    Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts. PMID:26302041

  17. Subgroups of the Cowpea Miscellany: Symbiotic Specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum†

    PubMed Central

    Thies, Janice E.; Bohlool, B. Ben; Singleton, Paul W.

    1991-01-01

    Rhizobia classified as Bradyrhizobium spp. comprise a highly heterogeneous group of bacteria that exhibit differential symbiotic characteristics on hosts in the cowpea miscellany cross-inoculation group. To delineate the degree of specificity exhibited by four legumes in the cowpea miscellany, we tested the symbiotic characteristics of indigenous cowpea bradyrhizobia on cowpea (Vigna unguiculata), siratro (Macroptilium atropurpureum), lima bean (Phaseolus lunatus), and peanut (Arachis hypogaea). The most-probable-number counts of indigenous bradyrhizobia at three sites on Maui, Hawaii, were substantially different on the four hosts: highest on siratro, intermediate on cowpea, and significantly lower on both lima bean and peanut. Bradyrhizobia from single cowpea nodules from the most-probable-number assays were inoculated onto the four hosts. Effectiveness patterns of these rhizobia on cowpea followed a normal distribution but were strikingly different on the other legumes. The effectiveness profiles on siratro and cowpea were similar but not identical. The indigenous cowpea-derived bradyrhizobia were of only moderate effectiveness on siratro and were in all cases lower than the inoculant-quality reference strain. Between 5 and 51% of the bradyrhizobia, depending on site, failed to nodulate peanut, whereas 0 to 32% failed to nodulate lima bean. No significant correlation was observed between the relative effectiveness of the bradyrhizobia on cowpea and their corresponding effectiveness on either lima bean or peanut. At all sites, bradyrhizobia that were ineffective on cowpea but that effectively nodulated lima bean, peanut, or both were found. Eighteen percent or fewer of the bradyrhizobia were as effective on lima bean as the reference inoculant strain; 44% or fewer were as effective on peanut as the reference strain. Only 18% of all cowpea-derived bradyrhizobia tested were able to form N2-fixing nodules on both lima bean and peanut. These results indicate the need

  18. Chryseobacterium arachidiradicis sp. nov., isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea).

    PubMed

    Kämpfer, Peter; Busse, Hans-Jürgen; McInroy, John A; Glaeser, Stefanie P

    2015-07-01

    A yellow-pigmented bacterial strain, 91A-612(T), isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea) in Alabama, USA, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Chryseobacterium, showing the highest sequence similarities to the type strains of Chryseobacterium molle (98.4%), C. pallidum (98.3%) and C. hominis (97.8%). The 16S rRNA gene sequence similarities to the type strains of all other species of the genus Chryseobacterium were below 97.0%. The fatty acid profile of strain 91A-612(T) consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) and iso-C17 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine and several unidentified lipids, including two lipids that did not contain a sugar moiety, an amino group or a phosphate group (L3, L8), and an aminolipid (AL1). The quinone system was composed mainly of MK-6. The polyamine pattern contained sym-homospermidine as the major compound and moderate amounts of spermidine and spermine. DNA-DNA hybridizations between strain 91A-612(T) and the type strains of C. molle, C. pallidum and C. hominis resulted in relatedness values well below 70%. These data and the differentiating biochemical and chemotaxonomic properties showed that isolate 91A-612(T) represents a novel species of the genus Chryseobacterium, for which we propose the name Chryseobacterium arachidiradicis sp. nov. (type strain 91A-612(T) = LMG 27814(T)= CCM 8490(T) = CIP 110647(T)).

  19. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds.

    PubMed

    Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong

    2015-01-01

    Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts.

  20. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers.

    PubMed

    Ren, Xiaoping; Jiang, Huifang; Yan, Zhongyuan; Chen, Yuning; Zhou, Xiaojing; Huang, Li; Lei, Yong; Huang, Jiaquan; Yan, Liying; Qi, Yue; Wei, Wenhui; Liao, Boshou

    2014-01-01

    One hundred and forty-six highly polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 196 peanut (Arachis Hypogaea L.) cultivars which had been extensively planted in different regions in China. These SSR markers amplified 440 polymorphic bands with an average of 2.99, and the average gene diversity index was 0.11. Eighty-six rare alleles with a frequency of less than 1% were identified in these cultivars. The largest Fst or genetic distance was found between the cultivars that adapted to the south regions and those to the north regions in China. A neighbor-joining tree of cultivars adapted to different ecological regions was constructed based on pairwise Nei's genetic distances, which showed a significant difference between cultivars from the south and the north regions. A model-based population structure analysis divided these peanut cultivars into five subpopulations (P1a, P1b, P2, P3a and P3b). P1a and P1b included most the cultivars from the southern provinces including Guangdong, Guangxi and Fujian. P2 population consisted of the cultivars from Hubei province and parts from Shandong and Henan. P3a and P3b had cultivars from the northern provinces including Shandong, Anhui, Henan, Hebei, Jiangsu and the Yangtze River region including Sichuan province. The cluster analysis, PCoA and PCA based on the marker genotypes, revealed five distinct clusters for the entire population that were related to their germplasm regions. The results indicated that there were obvious genetic variations between cultivars from the south and the north, and there were distinct genetic differentiation among individual cultivars from the south and the north. Taken together, these results provided a molecular basis for understanding genetic diversity of Chinese peanut cultivars.

  1. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing.

    PubMed

    Geng, Lili; Duan, Xiaohong; Liang, Chun; Shu, Changlong; Song, Fuping; Zhang, Jie

    2014-10-01

    Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters.

  2. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing.

    PubMed

    Geng, Lili; Duan, Xiaohong; Liang, Chun; Shu, Changlong; Song, Fuping; Zhang, Jie

    2014-10-01

    Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters. PMID:25231965

  3. Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea) Disease Resistance.

    PubMed

    Liu, Lifeng; Dang, Phat M; Chen, Charles Y

    2015-01-01

    Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% have been mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. Insertion/deletion (InDel) markers have been reported to be more polymorphic than SSRs in some crops. The goals of this study were to identify novel InDel markers and to evaluate the potential use in peanut breeding. Forty-eight InDel markers were developed from conserved sequences of functional genes and tested in a diverse panel of 118 accessions covering six botanical types of cultivated peanut, of which 104 were from the U.S. mini-core. Results showed that 16 InDel markers were polymorphic with polymorphic information content (PIC) among InDels ranged from 0.017 to 0.660. With respect to botanical types, PICs varied from 0.176 for fastigiata var., 0.181 for hypogaea var., 0.306 for vulgaris var., 0.534 for aequatoriana var., 0.556 for peruviana var., to 0.660 for hirsuta var., implying that aequatoriana var., peruviana var., and hirsuta var. have higher genetic diversity than the other types and provide a basis for gene functional studies. Single marker analysis was conducted to associate specific marker to disease resistant traits. Five InDels from functional genes were identified to be significantly correlated to tomato spotted wilt virus (TSWV) infection and leaf spot, and these novel markers will be utilized to identify disease resistant genotype in breeding populations.

  4. Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea) Disease Resistance

    PubMed Central

    Liu, Lifeng; Dang, Phat M.; Chen, Charles Y.

    2015-01-01

    Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% have been mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. Insertion/deletion (InDel) markers have been reported to be more polymorphic than SSRs in some crops. The goals of this study were to identify novel InDel markers and to evaluate the potential use in peanut breeding. Forty-eight InDel markers were developed from conserved sequences of functional genes and tested in a diverse panel of 118 accessions covering six botanical types of cultivated peanut, of which 104 were from the U.S. mini-core. Results showed that 16 InDel markers were polymorphic with polymorphic information content (PIC) among InDels ranged from 0.017 to 0.660. With respect to botanical types, PICs varied from 0.176 for fastigiata var., 0.181 for hypogaea var., 0.306 for vulgaris var., 0.534 for aequatoriana var., 0.556 for peruviana var., to 0.660 for hirsuta var., implying that aequatoriana var., peruviana var., and hirsuta var. have higher genetic diversity than the other types and provide a basis for gene functional studies. Single marker analysis was conducted to associate specific marker to disease resistant traits. Five InDels from functional genes were identified to be significantly correlated to tomato spotted wilt virus (TSWV) infection and leaf spot, and these novel markers will be utilized to identify disease resistant genotype in breeding populations. PMID:26617627

  5. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  6. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis

    PubMed Central

    Hong, Yanbin; Pandey, Manish K.; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K.; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  7. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation.

    PubMed

    Zhang, Laining; Yang, Xiaoyu; Tian, Li; Chen, Lei; Yu, Weichang

    2016-09-01

    The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut.

  8. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).

    PubMed

    Peng, Ze; Gallo, Maria; Tillman, Barry L; Rowland, Diane; Wang, Jianping

    2016-02-01

    Molecular markers are important tools for genotyping in genetic studies and molecular breeding. The SSR and SNP are two commonly used marker systems developed from genomic or transcript sequences. The objectives of this study were to: (1) assemble and annotate the publicly available ESTs in Arachis and the in-house short reads, (2) develop and validate SSR and SNP markers, and (3) investigate the genetic diversity and population structure of the peanut breeding lines and the U.S. peanut mini core collection using developed SSR markers. An NCBI EST dataset with 252,951 sequences and an in-house 454 RNAseq dataset with 288,701 sequences were assembled separately after trimming. Transcript sequence comparison and phylogenetic analysis suggested that peanut is closer to cowpea and scarlet bean than to soybean, common bean and Medicago. From these two datasets, 6455 novel SSRs and 11,902 SNPs were identified. Of the discovered SSRs, 380 representing various SSR types were selected for PCR validation. The amplification rate was 89.2 %. Twenty-two (6.5 %) SSRs were polymorphic between at least one pair of four genotypes. Sanger sequencing of PCR products targeting 110 SNPs revealed 13 true SNPs between tetraploid genotypes and 193 homoeologous SNPs within genotypes. Eight out of the 22 polymorphic SSR markers were selected to evaluate the genetic diversity of Florida peanut breeding lines and the U.S. peanut mini core collection. This marker set demonstrated high discrimination power by displaying an average polymorphism information content value of 0.783, a combined probability of identity of 10(-11), and a combined power of exclusion of 0.99991. The structure analysis revealed four sub-populations among the peanut accessions and lines evaluated. The results of this study enriched the peanut genomic resources, provided over 6000 novel SSR markers and the credentials for true peanut SNP marker development, and demonstrated the power of newly developed SSR markers in

  9. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).

    PubMed

    Peng, Ze; Gallo, Maria; Tillman, Barry L; Rowland, Diane; Wang, Jianping

    2016-02-01

    Molecular markers are important tools for genotyping in genetic studies and molecular breeding. The SSR and SNP are two commonly used marker systems developed from genomic or transcript sequences. The objectives of this study were to: (1) assemble and annotate the publicly available ESTs in Arachis and the in-house short reads, (2) develop and validate SSR and SNP markers, and (3) investigate the genetic diversity and population structure of the peanut breeding lines and the U.S. peanut mini core collection using developed SSR markers. An NCBI EST dataset with 252,951 sequences and an in-house 454 RNAseq dataset with 288,701 sequences were assembled separately after trimming. Transcript sequence comparison and phylogenetic analysis suggested that peanut is closer to cowpea and scarlet bean than to soybean, common bean and Medicago. From these two datasets, 6455 novel SSRs and 11,902 SNPs were identified. Of the discovered SSRs, 380 representing various SSR types were selected for PCR validation. The amplification rate was 89.2 %. Twenty-two (6.5 %) SSRs were polymorphic between at least one pair of four genotypes. Sanger sequencing of PCR products targeting 110 SNPs revealed 13 true SNPs between tetraploid genotypes and 193 homoeologous SNPs within genotypes. Eight out of the 22 polymorphic SSR markers were selected to evaluate the genetic diversity of Florida peanut breeding lines and the U.S. peanut mini core collection. This marker set demonstrated high discrimination power by displaying an average polymorphism information content value of 0.783, a combined probability of identity of 10(-11), and a combined power of exclusion of 0.99991. The structure analysis revealed four sub-populations among the peanut accessions and lines evaluated. The results of this study enriched the peanut genomic resources, provided over 6000 novel SSR markers and the credentials for true peanut SNP marker development, and demonstrated the power of newly developed SSR markers in

  10. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca

    PubMed Central

    Fletcher, Stephen J.; Shrestha, Anita; Peters, Jonathan R.; Carroll, Bernard J.; Srinivasan, Rajagopalbabu; Pappu, Hanu R.; Mitter, Neena

    2016-01-01

    Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host–virus–vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies.

  11. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca

    PubMed Central

    Fletcher, Stephen J.; Shrestha, Anita; Peters, Jonathan R.; Carroll, Bernard J.; Srinivasan, Rajagopalbabu; Pappu, Hanu R.; Mitter, Neena

    2016-01-01

    Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host–virus–vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies. PMID:27656190

  12. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca.

    PubMed

    Fletcher, Stephen J; Shrestha, Anita; Peters, Jonathan R; Carroll, Bernard J; Srinivasan, Rajagopalbabu; Pappu, Hanu R; Mitter, Neena

    2016-01-01

    Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host-virus-vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies. PMID:27656190

  13. Relationship between biomass, seed components and seed Cd concentration in various peanut (Arachis hypogaea L.) cultivars grown on Cd-contaminated soils.

    PubMed

    Shi, Gangrong; Su, Gengqiang; Lu, Ziwei; Liu, Caifeng; Wang, Xvming

    2014-12-01

    Peanuts (Arachis hypogaea L.) exhibit high genotypic variations in seed Cd accumulation, but the mechanism remains unclear. This study aimed to reveal the main factors that determine Cd concentration in peanut seeds. The biomasses and Cd accumulation in plant tissues as well as the Cd distribution in the seeds of 15 peanut cultivars were analyzed in a pot experiment at 4mgkg(-1) Cd (treatment) and 0mgkg(-1) Cd (control). Peanuts exhibited large variations among cultivars in terms of Cd accumulation and distribution at the whole-plant and seed levels. The peanut cultivars were divided into three groups based on [Cd]embryos as follows: (i) high Cd accumulators (Zhenghong 3 and Haihua 1), (ii) low Cd accumulators (Qishan 208, Luhua 8, and Yuhua 15), and (iii) intermediate Cd accumulators (10 remaining cultivars). [Cd]embryos was significantly correlated with [Cd]testae and [Cd]oils at control conditions, whereas in the 4mgkg(-1) Cd treatment, [Cd]embryos was negatively correlated with plant biomass, total Cd and its proportion in vegetative organs, and seed oil contents. [Cd]embryos was positively correlated with protein contents, [Cd]oils, and proportion of Cd in protein extracts at 4mgkg(-1) Cd treatments. The attenuation of Cd by high biomass of vegetative tissues and Cd-binding proteins in seeds mainly determined the Cd concentration in peanut seeds.

  14. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.

    PubMed

    Jogi, Ansuya; Kerry, John W; Brenneman, Timothy B; Leebens-Mack, James H; Gold, Scott E

    2016-03-01

    Sclerotium rolfsii, a destructive soil-borne fungal pathogen causes stem rot of the cultivated peanut, Arachis hypogaea. This study aimed to identify differentially expressed genes associated with peanut resistance and fungal virulence. Four peanut cultivars (A100-32, Georgia Green, GA-07W and York) with increasing resistance levels were inoculated with a virulent S. rolfsii strain to study the early plant-pathogen interaction. 454 sequencing was performed on RNAs from infected tissue collected at 4 days post inoculation, generating 225,793 high-quality reads. Normalized read counts and fold changes were calculated and statistical analysis used to identify differentially expressed genes. Several genes identified as differential in the RNA-seq experiment were selected based on functions of interest and real-time PCR employed to corroborate their differential expression. Expanding the analysis to include all four cultivars revealed a small but interesting set of genes showing colinearity between cultivar resistance and expression levels. This study identified a set of genes possibly related to pathogen response that may be useful marker assisted selection or transgenic disease control strategies. Additionally, a set of differentially expressed genes that have not been functionally characterized in peanut or other plants and warrant additional investigation were identified.

  15. Application of targeted metagenomics to explore abundance and diversity of CO₂-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea.

    PubMed

    Yousuf, Basit; Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2012-09-10

    Sequestration of CO(2) by autotrophic bacteria is a key process of biogeochemical carbon cycling in soil ecosystem. Rhizosphere is a rich niche of microbial activity and diversity, influenced by change in atmospheric CO(2). Structural changes in rhizosphere composition influence microbial communities and the nutrient cycling. In the present study, the bacterial diversity and population dynamics were established using cbbL and 16S rRNA gene targeted metagenomics approach from the rhizosphere of Arachis hypogaea. A total of 108 cbbL clones were obtained from the rhizospheric soil which revealed predominance of cbbL sequences affiliated to Rhizobium leguminosarum, Bradyrhizobium sp., Sinorhizobium meliloti, Ochrobactrum anthropi and a variety of uncultured cbbL harboring bacteria. The 16S rRNA gene clone library exhibited the dominance of Firmicutes (34.4%), Proteobacteria (18.3%), Actinobacteria (17.2%) and Bacteroidetes (16.1%). About 43% nucleotide sequences of 16S rRNA gene clone library were novel genera which showed <95% homology with published sequences. Gene copy number of cbbL and 16S rRNA genes, determined by quantitative real-time PCR (qRT PCR), was 9.38 ± 0.75 × 10(7) and 5.43 ± 0.79 × 10(8) (per g dry soil), respectively. The results exhibited bacterial community structure with high bacterial diversity and abundance of CO(2)-fixing bacteria, which can be explored further for their role in carbon cycling, sustainable agriculture and environment management.

  16. An efficient method of agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting.

    PubMed

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    Groundnut (Arachis hypogaea L.) is an industrial crop used as a source of edible oil and nutrients. In this study, an efficient method of regeneration and Agrobacterium-mediated genetic transformation is reported for a local cultivar GG-20 using de-embryonated cotyledon explant. A high regeneration 52.69 ± 2.32 % was achieved by this method with 66.6 μM 6-benzylaminopurine (BAP), while the highest number of shoot buds per explant, 17.67 ± 3.51, was found with 20 μM BAP and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial culture OD, acetosyringone and L-cysteine concentration were optimized as 1.8, 200 μM and 50 mg L(-1), respectively, in co-cultivation media. It was observed that the addition of 2,4-D in co-cultivation media induced accumulation of endogenous indole-3-acetic acid (IAA). The optimized protocol exhibited 85 % transformation efficiency followed by 14.65 ± 1.06 % regeneration, of which 3.82 ± 0.6 % explants were survived on hygromycin after selection. Finally, 14.58 ± 2.95 % shoots (regenerated on survived explants) were rooted on rooting media (RM3). In grafting method, regenerated shoots (after hygromycin selection) were grafted on the non-transformed stocks with 100 % survival and new leaves emerged in 3 weeks. The putative transgenic plants were then confirmed by PCR, Southern hybridization, reverse transcriptase PCR (RT-PCR) and β-glucuronidase (GUS) histochemical assay. The reported method is efficient and rapid and can also be applied to other crops which are recalcitrant and difficult in rooting.

  17. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.).

    PubMed

    Pruthvi, Vittal; Narasimhan, Rama; Nataraja, Karaba N

    2014-01-01

    Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been demonstrated. Under drought, traits linked to water mining and water conservation, water use efficiency and cellular tolerance (CT) to desiccation are considered to be relevant. In this study, an attempt has been made to improve CT in drought hardy crop, peanut (Arachis hypogaea L., cv. TMV2) by co-expressing stress-responsive transcription factors (TFs), AtDREB2A, AtHB7 and AtABF3, associated with downstream gene expression. Transgenic plants simultaneously expressing these TFs showed increased tolerance to drought, salinity and oxidative stresses compared to wild type, with an increase in total plant biomass. The transgenic plants exhibited improved membrane and chlorophyll stability due to enhanced reactive oxygen species scavenging and osmotic adjustment by proline synthesis under stress. The improvement in stress tolerance in transgenic lines were associated with induced expression of various CT related genes like AhGlutaredoxin, AhAldehyde reductase, AhSerine threonine kinase like protein, AhRbx1, AhProline amino peptidase, AhHSP70, AhDIP and AhLea4. Taken together the results indicate that co-expression of stress responsive TFs can activate multiple CT pathways, and this strategy can be employed to improve abiotic stress tolerance in crop plants.

  18. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    PubMed Central

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  19. Simultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.)

    PubMed Central

    Pruthvi, Vittal; Narasimhan, Rama; Nataraja, Karaba N.

    2014-01-01

    Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been demonstrated. Under drought, traits linked to water mining and water conservation, water use efficiency and cellular tolerance (CT) to desiccation are considered to be relevant. In this study, an attempt has been made to improve CT in drought hardy crop, peanut (Arachis hypogaea L., cv. TMV2) by co-expressing stress-responsive transcription factors (TFs), AtDREB2A, AtHB7 and AtABF3, associated with downstream gene expression. Transgenic plants simultaneously expressing these TFs showed increased tolerance to drought, salinity and oxidative stresses compared to wild type, with an increase in total plant biomass. The transgenic plants exhibited improved membrane and chlorophyll stability due to enhanced reactive oxygen species scavenging and osmotic adjustment by proline synthesis under stress. The improvement in stress tolerance in transgenic lines were associated with induced expression of various CT related genes like AhGlutaredoxin, AhAldehyde reductase, AhSerine threonine kinase like protein, AhRbx1, AhProline amino peptidase, AhHSP70, AhDIP and AhLea4. Taken together the results indicate that co-expression of stress responsive TFs can activate multiple CT pathways, and this strategy can be employed to improve abiotic stress tolerance in crop plants. PMID:25474740

  20. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (arachis hypogaea)and acts as a transcription factor [corrected].

    PubMed

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  1. Characterization and Transferable Utility of Microsatellite Markers in the Wild and Cultivated Arachis Species

    PubMed Central

    Huang, Li; Wu, Bei; Zhao, Jiaojiao; Li, Haitao; Chen, Weigang; Zheng, Yanli; Ren, Xiaoping; Chen, Yuning; Zhou, Xiaojing; Lei, Yong; Liao, Boshou; Jiang, Huifang

    2016-01-01

    Microsatellite or simple sequence repeat (SSR) is one of the most widely distributed molecular markers that have been widely utilized to assess genetic diversity and genetic mapping for important traits in plants. However, the understanding of microsatellite characteristics in Arachis species and the currently available amount of high-quality SSR markers remain limited. In this study, we identified 16,435 genome survey sequences SSRs (GSS-SSRs) and 40,199 expressed sequence tag SSRs (EST-SSRs) in Arachis hypogaea and its wild relative species using the publicly available sequence data. The GSS-SSRs had a density of 159.9–239.8 SSRs/Mb for wild Arachis and 1,015.8 SSR/Mb for cultivated Arachis, whereas the EST-SSRs had the density of 173.5–384.4 SSR/Mb and 250.9 SSRs/Mb for wild and cultivated Arachis, respectively. The trinucleotide SSRs were predominant across Arachis species, except that the dinucleotide accounted for most in A. hypogaea GSSs. From Arachis GSS-SSR and EST-SSR sequences, we developed 2,589 novel SSR markers that showed a high polymorphism in six diverse A. hypogaea accessions. A genetic linkage map that contained 540 novel SSR loci and 105 anchor SSR loci was constructed by case of a recombinant inbred lines F6 population. A subset of 82 randomly selected SSR markers were used to screen 39 wild and 22 cultivated Arachis accessions, which revealed a high transferability of the novel SSRs across Arachis species. Our results provided informative clues to investigate microsatellite patterns across A. hypogaea and its wild relative species and potentially facilitate the germplasm evaluation and gene mapping in Arachis species. PMID:27243460

  2. Crossability of Arachis valida and B genome Arachis species.

    PubMed

    Wondracek-Lüdke, D C; Custodio, A R; Simpson, C E; Valls, J F M

    2015-12-21

    The peanut (Arachis hypogaea) is an important food crop in much of the tropical and semi-tropical parts of the world. The peanut is an allotetraploid with an AABB genome formula derived from diploids A. duranensis (A genome) and A. ipaënsis (B genome). The success of an introgression program that aims to improve cultivated varieties of the peanut depends on whether the chosen B genome species is homologous with the B genome of the peanut. While not directly involved in the origin of the peanut to the best of our knowledge, Arachis valida is a B genome species that could potentially be a bridge species or a source of new and different alleles, because of its resistance to diseases and pests. In this study, we investigated the crossability of A. valida with five other B genome species of section Arachis. Eight cross-combinations were made with A. valida and A. gregoryi, A. ipaënsis, A. magna, A. valida, and A. williamsii. Two hundred and forty pollinations were made yielding 61 fruit segments, 61 seeds, one abortion, and 24 hybrid plants. An analysis of the morphological characteristics and pollen viability confirmed that the plants were hybrids. Our results indicated that higher pollen viability of hybrid plants corresponded with higher affinity between parent plants used in crossings. This conclusion corroborates much of previous research carried out by many other authors in the past.

  3. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.

    PubMed

    Bertioli, David John; Cannon, Steven B; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D; Cannon, Ethalinda K S; Liu, Xin; Gao, Dongying; Clevenger, Josh; Dash, Sudhansu; Ren, Longhui; Moretzsohn, Márcio C; Shirasawa, Kenta; Huang, Wei; Vidigal, Bruna; Abernathy, Brian; Chu, Ye; Niederhuth, Chad E; Umale, Pooja; Araújo, Ana Cláudia G; Kozik, Alexander; Kim, Kyung Do; Burow, Mark D; Varshney, Rajeev K; Wang, Xingjun; Zhang, Xinyou; Barkley, Noelle; Guimarães, Patrícia M; Isobe, Sachiko; Guo, Baozhu; Liao, Boshou; Stalker, H Thomas; Schmitz, Robert J; Scheffler, Brian E; Leal-Bertioli, Soraya C M; Xun, Xu; Jackson, Scott A; Michelmore, Richard; Ozias-Akins, Peggy

    2016-04-01

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut. PMID:26901068

  4. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.

    PubMed

    Bertioli, David John; Cannon, Steven B; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D; Cannon, Ethalinda K S; Liu, Xin; Gao, Dongying; Clevenger, Josh; Dash, Sudhansu; Ren, Longhui; Moretzsohn, Márcio C; Shirasawa, Kenta; Huang, Wei; Vidigal, Bruna; Abernathy, Brian; Chu, Ye; Niederhuth, Chad E; Umale, Pooja; Araújo, Ana Cláudia G; Kozik, Alexander; Kim, Kyung Do; Burow, Mark D; Varshney, Rajeev K; Wang, Xingjun; Zhang, Xinyou; Barkley, Noelle; Guimarães, Patrícia M; Isobe, Sachiko; Guo, Baozhu; Liao, Boshou; Stalker, H Thomas; Schmitz, Robert J; Scheffler, Brian E; Leal-Bertioli, Soraya C M; Xun, Xu; Jackson, Scott A; Michelmore, Richard; Ozias-Akins, Peggy

    2016-04-01

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.

  5. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populatio...

  6. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most agriculturally important legumes fall within the phaseoloids (containing beans) and galegoids (containing peas and clovers). A notable exception is peanut (Arachis hypogaea) which comes from a basally diverged tropical lineage. To improve our understanding of the Arachis genome, single-copy g...

  7. Molecular analysis of Arachis interspecific hybrids.

    PubMed

    Garcia, G M; Tallury, S P; Stalker, H T; Kochert, G

    2006-05-01

    Incorporation of genetic resistance against several biotic stresses that plague cultivated peanut, Arachis hypogaea (2n = 4x = 40), is an ideal option to develop disease resistant and ecologically safe peanut varieties. The primary gene pool of peanut contains many diploid wild species (2n = 2x = 20) of Arachis, which have high levels of disease and insect resistances. However, transfer of resistant genes from these species into A. hypogaea is difficult due to ploidy level differences and genomic incompatibilities. This study was conducted to monitor alien germplasm transmission, using Random Amplified Polymorphic DNA (RAPD) markers, from two diploid wild species, A. cardenasii and A. batizocoi, into A. hypogaea. Triploid interspecific hybrids were produced by crossing two A. hypogaea cultivars (NC 6 and Argentine) with the two species and by colchicine-treating vegetative meristems, fertility was restored at the hexaploid (C(o)) level in the four hybrids. Hexaploids were allowed to self-pollinate for four generations, each referred to as a cycle (C1, C2, C3, and C4). At each cycle, a backcross was made with the respective A. hypogaea cultivar as the maternal parent and only lineages tracing back to a single hexaploid hybrid were used for RAPD analysis. Analysis of mapped, species-specific RAPD markers in BC1F1 to BC1F3 hybrids indicated that alien germplasm retention decreased every generation of inbreeding, especially in Argentine and in A. batizocoi crosses. A similar trend was also observed for every cycle in BC1F2 and BC1F3 families, possibly, due to the loss of alien chromosomes following selfing of hexaploids. RAPD marker analysis of 40-chromosome interspecific hybrid derivatives from the four crosses supported previous reports that reciprocal recombination and/or translocations are the predominant mechanisms for exchange of chromosomal segments. No evidence was found for preferential transfer of alien chromosomal regions to specific linkage groups. The

  8. Employing microsatellite and SNP markers to track functional mutations and evaluate genetic diversity in the USDA Arachis germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are nutritious because their seeds typically contain high amounts of oil, protein and other phytochemicals such as folic acid, tocopherol, and antioxidants; therefore, they are an important oil seed crop worldwide. The USDA Plant Genetic Resources Conservation Unit mai...

  9. Cultivar specific changes in peanut (Arachis hypogae L.) yield, biomass, and allergenicity in response to elevated atmospheric carbon dioxide concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intraspecific variation in response to rising atmospheric carbon dioxide concentration, [CO2], could, potentially, be used as a means to begin selection for improved quantitative or qualitative characteristics for a given crop. Peanut (Arachis hypogaea L.) is a leguminous crop of global importance;...

  10. Identification of Fungus Resistant Wild Accessions and Interspecific Hybrids of the Genus Arachis

    PubMed Central

    Michelotto, Marcos Doniseti; Barioni, Waldomiro; de Resende, Marcos Deon Vilela; de Godoy, Ignácio José; Leonardecz, Eduardo; Fávero, Alessandra Pereira

    2015-01-01

    Peanut, Arachis hypogaea L., is a protein-rich species consumed worldwide. A key improvement to peanut culture involves the development of cultivars that resist fungal diseases such as rust, leaf spot and scab. Over three years, we evaluated fungal resistance under field conditions of 43 wild accessions and three interspecific hybrids of the genus Arachis, as well as six A. hypogaea genotypes. In the first year, we evaluated resistance to early and late leaf spot, rust and scab. In the second and third years, we evaluated the 18 wild species with the best resistance scores and control cultivar IAC Caiapó for resistance to leaf spot and rust. All wild accessions displayed greater resistance than A. hypogaea but differed in their degree of resistance, even within the same species. We found accessions with as good as or better resistance than A. cardenasii, including: A. stenosperma (V15076 and Sv 3712), A. kuhlmannii (V 6413), A. kempff-mercadoi (V 13250), A. hoehnei (KG 30006), and A. helodes (V 6325). Amphidiploids and hybrids of A. hypogaea behaved similarly to wild species. An additional four accessions deserve further evaluation: A. magna (V 13751 and KG 30097) and A. gregoryi (V 14767 and V 14957). Although they did not display as strong resistance as the accessions cited above, they belong to the B genome type that is crucial to resistance gene introgression and pyramidization in A. hypogaea. PMID:26090811

  11. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.

    PubMed

    Shirasawa, Kenta; Bertioli, David J; Varshney, Rajeev K; Moretzsohn, Marcio C; Leal-Bertioli, Soraya C M; Thudi, Mahendar; Pandey, Manish K; Rami, Jean-Francois; Foncéka, Daniel; Gowda, Makanahally V C; Qin, Hongde; Guo, Baozhu; Hong, Yanbin; Liang, Xuanqiang; Hirakawa, Hideki; Tabata, Satoshi; Isobe, Sachiko

    2013-04-01

    The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)(4×), were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding. PMID:23315685

  12. Resistance to Meloidogyne arenaria in Arachis spp. Germplasm

    PubMed Central

    Nelson, S. C.; Simpson, C. E.; Starr, J. L.

    1989-01-01

    Field and greenhouse evaluations of 116 wild Arachis spp. genotypes demonstrated the presence of resistance to reproduction of the root-knot nematode Meloidogyne arenaria race 1. Resistance in greenhouse tests was based on test lines having ≤ 2.5% of the number of eggs per gram of roots as did the susceptible A. hypogaea cv. Tamnut 74. In field tests, resistant genotypes were identified on the basis of having lower (P = 0.05) final nematode population densities than did Tamnut 74. Resistance was identified in genotypes from 11 of 15 wild species tested and in 10 of 20 genotypes belonging to undescribed species. Results of field and greenhouse experiments were similar; 26 of 31 genotypes common to both tests gave similar responses in both tests. Resistance to M. arenaria was identified in the complex hybrid TP-135, which was derived from A. hypogaea cv. Florunner x (A. batizocoi K 9484 x [A. cardenasii GKP 10017 x A. chacoensis GKP 10602])⁴x. In a single greenhouse test, three of six genotypes resistant to M. arenaria were also resistant to M. hapla. These data indicate that the Arachis spp. germplasm contains several sources of resistance to M. arenaria and possibly M. hapla. Some of this resistance is in germplasm that is genetically compatible with A. hypogaea. The complex hybrid TP-135 incorporates resistance from wild species into the genetic background of A. hypogaea. On the basis of these data, we believe it may be possible to develop peanut cultivars with high levels of resistance to M. arenaria and M. hapla. PMID:19287667

  13. Peanut (Arachis hypogaea) Expressed Sequence Tag Project: Progress and Application

    PubMed Central

    Feng, Suping; Wang, Xingjun; Zhang, Xinyou; Dang, Phat M.; Holbrook, C. Corley; Culbreath, Albert K.; Wu, Yaoting; Guo, Baozhu

    2012-01-01

    Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function. PMID:22745594

  14. Peanut (Arachis hypogaea L.) Cultivar Response to Prohexadione Calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut digging efficiency can be reduced if row visibility is limited by excessive vegetation. The plant growth regulator prohexadione calcium retards vegetative growth and improves row visibility by inhibiting internode elongation. In some instances, prohexadione calcium also increases pod yield....

  15. Newly identified natural high oleate mutant from Arachis hypogaea L. subsp. hypogaea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural genetic variation exists in animals and plants. Mining and utilizing this variation may provide benefits for new breed/cultivar development. From screening over 4,000 cultivated peanut germplasm accessions, we identified two natural mutant lines with 80% oleic acid by gas chromatography anal...

  16. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens

    PubMed Central

    Chen, Xiaoping; Li, Hongjie; Pandey, Manish K.; Yang, Qingli; Wang, Xiyin; Garg, Vanika; Li, Haifen; Chi, Xiaoyuan; Doddamani, Dadakhalandar; Hong, Yanbin; Upadhyaya, Hari; Guo, Hui; Khan, Aamir W.; Zhu, Fanghe; Zhang, Xiaoyan; Pan, Lijuan; Pierce, Gary J.; Zhou, Guiyuan; Krishnamohan, Katta A. V. S.; Chen, Mingna; Zhong, Ni; Agarwal, Gaurav; Li, Shuanzhu; Chitikineni, Annapurna; Zhang, Guo-Qiang; Sharma, Shivali; Chen, Na; Liu, Haiyan; Janila, Pasupuleti; Li, Shaoxiong; Wang, Min; Wang, Tong; Sun, Jie; Li, Xingyu; Li, Chunyan; Wang, Mian; Yu, Lina; Wen, Shijie; Singh, Sube; Yang, Zhen; Zhao, Jinming; Zhang, Chushu; Yu, Yue; Bi, Jie; Zhang, Xiaojun; Paterson, Andrew H.; Wang, Shuping; Liang, Xuanqiang; Varshney, Rajeev K.; Yu, Shanlin

    2016-01-01

    Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45–56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis. For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity. PMID:27247390

  17. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens.

    PubMed

    Chen, Xiaoping; Li, Hongjie; Pandey, Manish K; Yang, Qingli; Wang, Xiyin; Garg, Vanika; Li, Haifen; Chi, Xiaoyuan; Doddamani, Dadakhalandar; Hong, Yanbin; Upadhyaya, Hari; Guo, Hui; Khan, Aamir W; Zhu, Fanghe; Zhang, Xiaoyan; Pan, Lijuan; Pierce, Gary J; Zhou, Guiyuan; Krishnamohan, Katta A V S; Chen, Mingna; Zhong, Ni; Agarwal, Gaurav; Li, Shuanzhu; Chitikineni, Annapurna; Zhang, Guo-Qiang; Sharma, Shivali; Chen, Na; Liu, Haiyan; Janila, Pasupuleti; Li, Shaoxiong; Wang, Min; Wang, Tong; Sun, Jie; Li, Xingyu; Li, Chunyan; Wang, Mian; Yu, Lina; Wen, Shijie; Singh, Sube; Yang, Zhen; Zhao, Jinming; Zhang, Chushu; Yu, Yue; Bi, Jie; Zhang, Xiaojun; Liu, Zhong-Jian; Paterson, Andrew H; Wang, Shuping; Liang, Xuanqiang; Varshney, Rajeev K; Yu, Shanlin

    2016-06-14

    Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity. PMID:27247390

  18. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens.

    PubMed

    Chen, Xiaoping; Li, Hongjie; Pandey, Manish K; Yang, Qingli; Wang, Xiyin; Garg, Vanika; Li, Haifen; Chi, Xiaoyuan; Doddamani, Dadakhalandar; Hong, Yanbin; Upadhyaya, Hari; Guo, Hui; Khan, Aamir W; Zhu, Fanghe; Zhang, Xiaoyan; Pan, Lijuan; Pierce, Gary J; Zhou, Guiyuan; Krishnamohan, Katta A V S; Chen, Mingna; Zhong, Ni; Agarwal, Gaurav; Li, Shuanzhu; Chitikineni, Annapurna; Zhang, Guo-Qiang; Sharma, Shivali; Chen, Na; Liu, Haiyan; Janila, Pasupuleti; Li, Shaoxiong; Wang, Min; Wang, Tong; Sun, Jie; Li, Xingyu; Li, Chunyan; Wang, Mian; Yu, Lina; Wen, Shijie; Singh, Sube; Yang, Zhen; Zhao, Jinming; Zhang, Chushu; Yu, Yue; Bi, Jie; Zhang, Xiaojun; Liu, Zhong-Jian; Paterson, Andrew H; Wang, Shuping; Liang, Xuanqiang; Varshney, Rajeev K; Yu, Shanlin

    2016-06-14

    Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.

  19. Tetrasomic Recombination Is Surprisingly Frequent in Allotetraploid Arachis

    PubMed Central

    Leal-Bertioli, Soraya; Shirasawa, Kenta; Abernathy, Brian; Moretzsohn, Marcio; Chavarro, Carolina; Clevenger, Josh; Ozias-Akins, Peggy; Jackson, Scott; Bertioli, David

    2015-01-01

    Arachis hypogaea L. (cultivated peanut) is an allotetraploid (2n = 4x = 40) with an AABB genome type. Based on cytogenetic studies it has been assumed that peanut and wild-derived induced AABB allotetraploids have classic allotetraploid genetic behavior with diploid-like disomic recombination only between homologous chromosomes, at the exclusion of recombination between homeologous chromosomes. Using this assumption, numerous linkage map and quantitative trait loci studies have been carried out. Here, with a systematic analysis of genotyping and gene expression data, we show that this assumption is not entirely valid. In fact, autotetraploid-like tetrasomic recombination is surprisingly frequent in recombinant inbred lines generated from a cross of cultivated peanut and an induced allotetraploid derived from peanut’s most probable ancestral species. We suggest that a better, more predictive genetic model for peanut is that of a “segmental allotetraploid” with partly disomic, partly tetrasomic genetic behavior. This intermediate genetic behavior has probably had a previously overseen, but significant, impact on the genome and genetics of cultivated peanut. PMID:25701284

  20. Tetrasomic recombination is surprisingly frequent in allotetraploid Arachis.

    PubMed

    Leal-Bertioli, Soraya; Shirasawa, Kenta; Abernathy, Brian; Moretzsohn, Marcio; Chavarro, Carolina; Clevenger, Josh; Ozias-Akins, Peggy; Jackson, Scott; Bertioli, David

    2015-04-01

    Arachis hypogaea L. (cultivated peanut) is an allotetraploid (2n = 4x = 40) with an AABB genome type. Based on cytogenetic studies it has been assumed that peanut and wild-derived induced AABB allotetraploids have classic allotetraploid genetic behavior with diploid-like disomic recombination only between homologous chromosomes, at the exclusion of recombination between homeologous chromosomes. Using this assumption, numerous linkage map and quantitative trait loci studies have been carried out. Here, with a systematic analysis of genotyping and gene expression data, we show that this assumption is not entirely valid. In fact, autotetraploid-like tetrasomic recombination is surprisingly frequent in recombinant inbred lines generated from a cross of cultivated peanut and an induced allotetraploid derived from peanut's most probable ancestral species. We suggest that a better, more predictive genetic model for peanut is that of a "segmental allotetraploid" with partly disomic, partly tetrasomic genetic behavior. This intermediate genetic behavior has probably had a previously overseen, but significant, impact on the genome and genetics of cultivated peanut.

  1. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.

    PubMed

    Chopra, Ratan; Burow, Gloria; Farmer, Andrew; Mudge, Joann; Simpson, Charles E; Burow, Mark D

    2014-01-01

    The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751 bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278-1641 bp in Arachis hypogaea (AABB), 1401-1492 bp in Arachis duranensis (AA), and 1107-1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2 × 50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community.

  2. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  3. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut.

    PubMed

    Leal-Bertioli, Soraya C M; Moretzsohn, Márcio C; Roberts, Philip A; Ballén-Taborda, Carolina; Borba, Tereza C O; Valdisser, Paula A; Vianello, Rosana P; Araújo, Ana Cláudia G; Guimarães, Patricia M; Bertioli, David J

    2016-02-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  4. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut.

    PubMed

    Leal-Bertioli, Soraya C M; Moretzsohn, Márcio C; Roberts, Philip A; Ballén-Taborda, Carolina; Borba, Tereza C O; Valdisser, Paula A; Vianello, Rosana P; Araújo, Ana Cláudia G; Guimarães, Patricia M; Bertioli, David J

    2015-12-12

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs.

  5. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    PubMed Central

    Leal-Bertioli, Soraya C. M.; Moretzsohn, Márcio C.; Roberts, Philip A.; Ballén-Taborda, Carolina; Borba, Tereza C. O.; Valdisser, Paula A.; Vianello, Rosana P.; Araújo, Ana Cláudia G; Guimarães, Patricia M.; Bertioli, David J.

    2015-01-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  6. Cloning and Functional Analysis of Three Diacylglycerol Acyltransferase Genes from Peanut (Arachis hypogaea L.)

    PubMed Central

    Zhang, Xiaowen; Chen, Mingna; Chen, Na; Pan, Lijuan; Wang, Tong; Wang, Mian; Yang, Zhen; Wang, Quanfu; Yu, Shanlin

    2014-01-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more abundant in roots, seeds, and cotyledons, whereas the transcript abundances of AhDGAT1-1 and AhDGAT3-3 were higher in flowers than in the other tissues examined. During seed development, transcript levels of AhDGAT1-1 remained relatively low during the initial developmental stage but increased gradually during later stages, peaking at 50 days after pegging (DAP). Levels of AhDGAT1-2 transcripts were higher at 10 and 60 DAPs and much lower during other stages, whereas AhDGAT3-3 showed higher expression levels at 20 and 50 DAPs. In addition, AhDGAT transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. The activity of the three AhDGAT genes was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. The recombinant yeasts restored lipid body formation and TAG biosynthesis, and preferentially incorporated unsaturated C18 fatty acids into lipids. The present study provides significant information useful in modifying the oil deposition of peanut through molecular breeding. PMID:25181516

  7. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.).

    PubMed

    Chi, Xiaoyuan; Hu, Ruibo; Zhang, Xiaowen; Chen, Mingna; Chen, Na; Pan, Lijuan; Wang, Tong; Wang, Mian; Yang, Zhen; Wang, Quanfu; Yu, Shanlin

    2014-01-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more abundant in roots, seeds, and cotyledons, whereas the transcript abundances of AhDGAT1-1 and AhDGAT3-3 were higher in flowers than in the other tissues examined. During seed development, transcript levels of AhDGAT1-1 remained relatively low during the initial developmental stage but increased gradually during later stages, peaking at 50 days after pegging (DAP). Levels of AhDGAT1-2 transcripts were higher at 10 and 60 DAPs and much lower during other stages, whereas AhDGAT3-3 showed higher expression levels at 20 and 50 DAPs. In addition, AhDGAT transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. The activity of the three AhDGAT genes was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. The recombinant yeasts restored lipid body formation and TAG biosynthesis, and preferentially incorporated unsaturated C18 fatty acids into lipids. The present study provides significant information useful in modifying the oil deposition of peanut through molecular breeding.

  8. Shotgun label-free quantitative proteomics of developing peanut (Arachis hypogaea L.) seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. Owing to their importance in global food security, it is necessary to understand the genetic, biochemical, and physiological mechanisms controlling seed quality and nutritive attributes. A comprehens...

  9. Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.).

    PubMed

    Chen, Xiaoping; Yang, Qingli; Li, Haifen; Li, Heying; Hong, Yanbin; Pan, Lijuan; Chen, Na; Zhu, Fanghe; Chi, Xiaoyuan; Zhu, Wei; Chen, Mingna; Liu, Haiyan; Yang, Zhen; Zhang, Erhua; Wang, Tong; Zhong, Ni; Wang, Mian; Liu, Hong; Wen, Shijie; Li, Xingyu; Zhou, Guiyuan; Li, Shaoxiong; Wu, Hong; Varshney, Rajeev; Liang, Xuanqiang; Yu, Shanlin

    2016-05-01

    A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex. PMID:26502832

  10. Reduction of IgE immunoreactivity of whole peanut (Arachis hypogaea L.) after pulsed light illumination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed light (PL), a novel food processing and preservation technology, has been shown in literature to reduce allergen levels on peanut, soybean, almond, and shrimp protein extracts. This study investigated how PL affected the immunoreactivity of whole peanut kernels at two sample-to-lamp distance...

  11. Evaluation of yield and reproductive efficiency in peanut (Arachis hypogaea L.) under different available soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the responses to difference in available soil water levels for yield and reproductive characters of peanut genotypes and relate these responses to pod yield under drought conditions. Eleven peanut genotypes were tested under three soil moisture levels (Field Cap...

  12. Reduction of aflatoxin B1 in stored peanuts (Arachis hypogaea L.) using Saccharomyces cerevisiae.

    PubMed

    Prado, G; Madeira, J E G Cruz; Morais, V A D; Oliveira, M S; Souza, R A; Peluzio, J M; Godoy, I J; Silva, J F M; Pimenta, R S

    2011-06-01

    Aflatoxin B(1) is a toxigenic and carcinogenic compound produced by Aspergillus flavus and Aspergillus parasiticus. To inhibit aflatoxin contamination of peanuts, seeds of two peanut breeds, IAC Caiapó and IAC Runner 886, were inoculated with A. parasiticus (1.0 × 10(6) spores per ml) and the yeast Saccharomyces cerevisiae (3.2 × 10(7) cells per ml) and incubated at 25°C for 7 and 15 days. Two experiments were conducted for each incubation period separately. The treatments were completely randomized, with three replications per treatment. Treatments included the two cultivars and three types of inoculation (pathogen alone, yeast and pathogen, and yeast 3 h before pathogen). Aflatoxin B(1) was quantified with a densitometer at 366 nm after thin layer chromatography. Aflatoxin B(1) contamination in peanuts was reduced after the addition of S. cerevisiae. The concentration of aflatoxin B(1) decreased by 74.4 and 55.9% after 7 and 15 days, respectively. The greatest aflatoxin reduction was observed when S. cerevisiae was inoculated 3 h before the pathogen in IAC Caiapó seeds and incubated for 7 days at 25°C. The use of S. cerevisiae is a promising strategy for biological control of aflatoxin contamination in peanuts. PMID:21669081

  13. Effects of zinc oxide nano-particles on groundnut (Arachis hypogaea) seedlings

    NASA Astrophysics Data System (ADS)

    Dastjerdi, Ehsan Borzouyan; Sahid, Ismail Bin; Jusoh, Khairiah Binti

    2015-09-01

    Along with the rapid growth of nanoparticle consumption in various industries, concerns about the unknown effects caused by the presence of these materials in the natural environment and agricultural systems are being highlighted. Due to the growing trend of Nano Zinc Oxide Nanoparticle (ZnO-np) which is one of the most widely used nanoparticles being released into the environment, it has attracted the attention for more studies to be done on the effects of this nanoparticle on organisms. This study was carried out to investigate the phytotoxicity effect of ZnO-np on peanut seedlings in Murashige and Skoog medium (MS medium). The experimental treatments of this study include nine concentrations of ZnO-np (0, 10, 30, 50, 100, 200, 400, 1000, 2000 ppm) added to MS medium. Peanut seedlings were incubated for 3 weeks in optimum condition and after that, seedling characteristics such as length, wet and dry weight of root and shoot were measured and the water content of root and shoot were calculated. Results of this study showed that the root and shoot length of peanut seedlings were affected by ZnO-np exposure, in a way that root length in 50 ppm ZnO-np and higher concentrations was significantly lower than that of control treatment and the shortest shoot length was observed to be from 2000 ppm ZnO-np concentration treatment. Also, both the root and shoot wet weight decreased as the nanoparticle concentration increased. However, despite the decreasing root and shoot dry weight with increasing concentration, there was no significant difference. On the other hand, the root dry weight in 10 ppm ZnO-np was significantly higher than the peanut seedlings treated with more than 200 ppm ZnO-np.

  14. Nutritional composition and antioxidant activity of Spanish and Virginia groundnuts (Arachis hypogaea L.): a comparative study.

    PubMed

    Mahatma, M K; Thawait, L K; Bishi, S K; Khatediya, N; Rathnakumar, A L; Lalwani, H B; Misra, J B

    2016-05-01

    Kernels of sixty groundnut genotypes comprising thirty each of Spanish and Virginia groups were characterized and compared for the content of oil, protein, phenols and antioxidant activity along with their fatty acid and sugars profiles. The antioxidant activity for Virginia genotypes was ranged from 12.5 to 16.5 μM Trolox equivalent activity for Spanish genotypes ranged from 6.8-15.2 μM. Amongst Virginia types, the highest oleic acid/linoleic acid (O/L) ratio of 2.38 was observed for NRCG 12312 while from Spanish group the highest O/L ratio of 1.24 was observed for NRCG 12731. The sucrose content for Virginia genotypes ranged from 38.5 to 69.0 mg/g while it was 27.9 to 53.3 mg/g for Spanish genotypes. Average myo-inositol content was higher for Spanish genotypes (0.8-2.1 mg/g) compared to Virginia (0.4-1.8 mg/g) while the reverse was true for stachayose content (Spanish: 3.5-7.9 mg/g; Virginia: 4.6-10.3 mg/g). Thus, Virginia genotypes could be preferred to Spanish genotypes for better oil stability and antioxidant activity. PMID:27407194

  15. Identification of stress-related small RNA's in peanuts (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several classes of small RNAs have been studied in plants with the most extensively studied class being microRNAs (miRNAs). microRNAs (miRNAs) are an endogenous class of 20-25 nucleotide noncoding RNAs that are thought to play an important role in regulating gene expression by targeting mRNAs for cl...

  16. Influence of Application Variables on Peanut (Arachis hypogaea L.) Response to Prohexadione Calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive vegetative growth of peanut reduces row visibility during the digging and inversion process. Prohexadione calcium retards vegetative growth, improves row visibility, and in some instances reduces pod shed and increases pod yield compared with non-treated peanut. However, prohexadione cal...

  17. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.).

    PubMed

    Gajera, H P; Savaliya, Disha D; Patel, S V; Golakiya, B A

    2015-08-01

    The study examine induction of defense enzymes involved in phenylpropanoid pathway and accumulation of pathogenesis related proteins in rot pathogen (Aspergillus niger Van Tieghem) challenged groundnut seedlings in response to Trichoderma viride JAU60. Seeds of five groundnut varieties differing in collar rot susceptibility were sown under non-infested, pathogen infested and pathogen+T. viride JAU60 seed treatment. Collar rot disease evident between 31.0% (J-11, GG-2) and 67.4% (GG-20) in different groundnut varieties under pathogen infested which was significantly reduced from 58.1% (J-11, GG-2) to 51.6% (GG-20) by Trichoderma treatment. The specific activities of polyphenol oxidase (EC 1.14.18.1) and β-1,3 glucanase (EC 3.2.1.6) elevated 3.5 and 2.3-fold, respectively, at 3 days; phenylalanine ammonia lyase (EC 4.3.1.5) evident 1.6-fold higher at 6 days; and chitinase (EC 3.2.1.14) sustained 2.3-2.8 folds up to 9 days in Trichoderma treated+pathogen infested seedlings of tolerant varieties (J-11, GG-2) compared with moderate and susceptible (GAUG-10, GG-13, GG-20). T. viride JAU60 induces defense enzymes in a different way for tolerant and susceptible varieties to combat the disease. This study indicates the synergism activation of defense enzymes under the pathogenic conditions or induced resistance by T. viride JAU60 in a different groundnut varieties susceptible to collar rot disease. PMID:26160540

  18. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  19. Comparison of gene expression profiles in cultivated peanut (Arachis hypogaea) under strong artificial selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past five decades, cultivated peanut in China has been subjected to strong artificial selection in breeding programs. To investigate the impact of artificial selection on expression diversity, we compared gene expression profiles in pod and leaf of five widespread cultivars in Southern Chin...

  20. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA

    PubMed Central

    Iqbal, Amjad; Shah, Farooq; Hamayun, Muhammad; Ahmad, Ayaz; Hussain, Anwar; Waqas, Muhammad; Kang, Sang-Mo; Lee, In-Jung

    2016-01-01

    Food allergies are an emerging public health problem in industrialized areas of the world. They represent a considerable health problem in these areas because of the relatively high number of reported cases. Usually, food allergens are proteins or glycoproteins with a molecular mass ranging from 10 to 70 kDa. Among the food allergies, peanut is accounted to be responsible for more than 50% of the food allergy fatalities. Threshold doses for peanut allergenic reactions have been found to range from as low as 100 µg to 1 g of peanut protein, which equal to 400 µg to 4 g peanut meal. Allergens from peanut are mainly seed storage proteins that are composed of conglutin, vicilin, and glycinin families. Several peanut proteins have been identified to induce allergic reactions, particularly Ara h 1–11. This review is mainly focused on different classes of peanut allergens, the effect of thermal and chemical treatment of peanut allergens on the IgY binding and detectability of these allergens by enzyme linked immunosorbent assay (ELISA) to provide knowledge for food industry. PMID:26931300

  1. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain.

    PubMed

    Sobolev, Victor S; Krausert, Nicole M; Gloer, James B

    2016-01-27

    Two new stilbene derivatives have been isolated from peanut seeds challenged by an Aspergillus flavus strain, along with chiricanine B, which has not been previously reported from peanuts, as well as a stilbenoid reported previously only as a synthetic product. The structures of these new putative phytoalexins were determined by analysis of (1)H and (13)C NMR, HRESIMS, MS(n), and UV data. The new stilbenoids were named arahypin-13 (21), arahypin-14 (22), and arahypin-15 (23). Together with other known bioactive peanut stilbenoids that were also produced in the challenged seeds, these new compounds may play a defensive role against invasive fungi. PMID:26672388

  2. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain.

    PubMed

    Sobolev, Victor S; Krausert, Nicole M; Gloer, James B

    2016-01-27

    Two new stilbene derivatives have been isolated from peanut seeds challenged by an Aspergillus flavus strain, along with chiricanine B, which has not been previously reported from peanuts, as well as a stilbenoid reported previously only as a synthetic product. The structures of these new putative phytoalexins were determined by analysis of (1)H and (13)C NMR, HRESIMS, MS(n), and UV data. The new stilbenoids were named arahypin-13 (21), arahypin-14 (22), and arahypin-15 (23). Together with other known bioactive peanut stilbenoids that were also produced in the challenged seeds, these new compounds may play a defensive role against invasive fungi.

  3. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA.

    PubMed

    Iqbal, Amjad; Shah, Farooq; Hamayun, Muhammad; Ahmad, Ayaz; Hussain, Anwar; Waqas, Muhammad; Kang, Sang-Mo; Lee, In-Jung

    2016-01-01

    Food allergies are an emerging public health problem in industrialized areas of the world. They represent a considerable health problem in these areas because of the relatively high number of reported cases. Usually, food allergens are proteins or glycoproteins with a molecular mass ranging from 10 to 70 kDa. Among the food allergies, peanut is accounted to be responsible for more than 50% of the food allergy fatalities. Threshold doses for peanut allergenic reactions have been found to range from as low as 100 µg to 1 g of peanut protein, which equal to 400 µg to 4 g peanut meal. Allergens from peanut are mainly seed storage proteins that are composed of conglutin, vicilin, and glycinin families. Several peanut proteins have been identified to induce allergic reactions, particularly Ara h 1-11. This review is mainly focused on different classes of peanut allergens, the effect of thermal and chemical treatment of peanut allergens on the IgY binding and detectability of these allergens by enzyme linked immunosorbent assay (ELISA) to provide knowledge for food industry. PMID:26931300

  4. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new stilbene derivatives have been isolated from peanut seeds challenged by an Aspergillus flavus strain, along with chiricanine B that has not been reported from peanuts, as well as a stilbenoid that has been known as a synthetic product. The structures of these new putative phytoalexins were d...

  5. Extraction, Purification and Primary Characterization of Polysaccharides from Defatted Peanut (Arachis hypogaea) Cakes.

    PubMed

    Liu, Hongzhi; Jiang, Nan; Liu, Li; Sheng, Xiaojing; Shi, Aimin; Hu, Hui; Yang, Ying; Wang, Qiang

    2016-06-01

    The hot-water extraction, purification and characterization of polysaccharides from defatted peanut cake (PPC) were investigated in this study. A Box-Behnken factorial design (BBD) was used to investigate the effects of three independent variables, namely extraction temperature (X₁), extraction time (X₂) and ratio of water to raw material (X₃). The optimum conditions were 85 °C, 3 h and 20:1 (mL/g) respectively. Regression analysis was done to reveal the experimental results which include 34.97% extraction rate while the value verified under these conditions was 34.49%. The crude PPC was sequentially further purified by Sephadex G-100 chromatography, and one purified fraction was obtained. The PPC purified fraction was characterized by FT-IR, HPAEC; SEC-MALLS. The average molecular weight of the PPC purified fraction was 2.383 × 10⁵ Da. The polysaccharide was mainly composed of glucose, galactose, arabinose and xylose. The PPC have the typical absorption of polysaccharide.

  6. [Fourier transform infrared spectral analysis on peanut (Arachis Hypogaea) plants under calcium deficiency stress].

    PubMed

    Gao, Li-Li; Wang, Sheng-Feng; Han, Ya; Liu, Zi-Fei; Huang, Jin-Sheng; Hilman; Liu, Rong-Le; Wang, Hong

    2014-11-01

    The objective of the present study was to reveal different tolerance of peanut plants to Ca deficiency by determining Ca uptake and Fourier transform infrared spectral (FTIR) differences of two peanut cultivars grown in nutrition solution. Peanut cultivars LH11 and YZ9102 were selected. Seedlings at the first leaf stage were cultivated for 28 days in nutrient solution with 0, 0.01 and 2.0 mmol x L(-1) Ca treatments, respectively. The results showed that under 0 and 0.01 mmol x L(-1) Ca supply, YZ9102 did not show Ca deficiency symptoms and the plant biomass did not change, whereas LH11 exhibited shoot-tip necrosis, smaller plant size, more lateral branches, and plant dry matter weights decreased significantly. YZ9102 had higher plant Ca concentration and Ca accumulation than LH11. Besides, for LH11, Ca was mainly accumulated in roots, while for YZ9102 mainly in leaves. As compared with plants cultivated in 2.0 mol x L(-1) Ca nutrition, root, stem and leaf of LH11 plants under Ca deficiency stress showed higher transmittance at peaks 1 060, 1 380, 1 655, 2 922, and 3 420 cm(-1) in FTIR spectra, indicating that the contents of protein, sugar and lipid decreased obviously in LH11 plants in condition that Ca supply was limited. However, the FTIR spectra of YZ9102 were less affected by Ca deficiency. It is suggested that YZ9102 might be more tolerant to Ca deficiency.

  7. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.).

    PubMed

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales, Burkholderiales, Bdellovibrionales, and so on, also were affected by plant age.

  8. Sequence and expression analysis of putative Arachis hypogaea (peanut) Nod factor perception proteins.

    PubMed

    Ibáñez, Fernando; Angelini, Jorge; Figueredo, María Soledad; Muñoz, Vanina; Tonelli, María Laura; Fabra, Adriana

    2015-07-01

    Peanut, like most legumes, develops a symbiotic relationship with rhizobia to overcome nitrogen limitation. Rhizobial infection of peanut roots occurs through a primitive and poorly characterized intercellular mechanism. Knowledge of the molecular determinants of this symbiotic interaction is scarce, and little is known about the molecules implicated in the recognition of the symbionts. Here, we identify the LysM extracellular domain sequences of two putative peanut Nod factor receptors, named AhNFR1 and AhNFP. Phylogenetic analyses indicated that they correspond to LjNFR1 and LjNFR5 homologs, respectively. Transcriptional analysis revealed that, unlike LjNFR5, AhNFP expression was not induced at 8 h post bradyrhizobial inoculation. Further examination of AhNFP showed that the predicted protein sequence is identical to GmNFR5 in two positions that are crucial for Nod factor perception in other legumes. Analysis of the AhNFP LysM2 tridimensional model revealed that these two amino acids are very close, delimiting a zone of the molecule essential for Nod factor recognition. These data, together with the analysis of the molecular structure of Nod factors of native peanut symbionts previously reported, suggest that peanut and soybean could share some of the determinants involved in the signalling cascade that allows symbiosis establishment.

  9. Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (Arachis hypogaea L.) Seedlings.

    PubMed

    Wang, Guang; Wu, Liying; Zhang, Hong; Wu, Wenjia; Zhang, Mengmeng; Li, Xiaofeng; Wu, Hui

    2016-05-11

    To clarify the mechanisms of selenium (Se) tolerance in peanut seedlings, we grew peanut seedlings with sodium selenite (0, 3, and 6 mg/L), and investigated the phenylpropanoids metabolism in seedling roots. The results showed that selenite up-regulated the expression of genes and related enzyme activities involving in the phenylpropanoids biosynthesis cascade, such as phenylalanine ammonia-lyase, trans-cinnamate-4-hydroxylase, chalcone synthase, chalcone isomerase, and cinnamyl-alcohol dehydrogenase. Selenite significantly increased phenolic acids and flavonoids, which contributed to the alleviation of selenite-induced stress. Moreover, selenite enhanced the formation of endodermis in roots, which may be attributed to the up-regulation of lignin biosynthesis mediated by the selenite-induced changes of H2O2 and NO, which probably regulated the selenite uptake from an external medium. Accumulation of polyphenolic compounds via the phenylpropanoid pathway may be one of the mechanisms of the increasing selenite tolerance in plants, by which peanut seedlings survived in seleniferous soil, accompanied by accumulation of Se.

  10. Molecular cloning and characterization of annexin genes in peanut (Arachis hypogaea L.).

    PubMed

    He, MeiJing; Yang, XinLei; Cui, ShunLi; Mu, GuoJun; Hou, MingYu; Chen, HuanYing; Liu, LiFeng

    2015-08-15

    Annexin, Ca(2+) or phospholipid binding proteins, with many family members are distributed throughout all tissues during plant growth and development. Annexins participate in a number of physiological processes, such as exocytosis, cell elongation, nodule formation in legumes, maturation and stress response. Six different full-length cDNAs and two partial-length cDNAs of peanut, (AnnAh1, AnnAh2, AnnAh3, AnnAh5, AnnAh6, AnnAh7, AnnAh4 and AnnAh8) encoding annexin proteins, were isolated and characterized using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins were 36.0kDa with acidic pIs of 5.97-8.81. ANNAh1, ANNAh2, ANNAh3, ANNAh5, ANNAh6 and ANNAh7 shared sequence similarity from 35.76 to 66.35% at amino acid level. Phylogenetic analysis revealed their evolutionary relationships with corresponding orthologous sequences in soybean and deduced proteins in various plant species. Real-time quantitative assays indicated that these genes were differentially expressed in various organs. Transcript level analysis for six annexin genes under stress conditions showed that these genes were regulated by drought, salinity, heavy metal stress, low temperature and hormone. Additionally, the prediction of cis-regulatory element suggested that different cis-responsive elements including stress- and hormone-responsive-related elements could respond to various stress conditions. These results indicated that members of AnnAhs family may play important roles in the adaptation of peanut to various environmental stresses.

  11. [Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress].

    PubMed

    Liu, Wen-Long; Wang, Kai-Rong; Wang, Ming-Lun

    2009-02-01

    To have a deep understanding on the mechanisms of cadmium (Cd) toxicity on peanut plants is of theoretical and practical significances for the selection and utilization of Cd-resistant peanut germ plasm resources. With fourteen peanut varieties as test materials and taking the chlorophyll content of functional leaves, malondialdehyde (MDA) content and cell membrane permeability of roots and leaves, and oxidative vitality of roots at flowering stage as test physiological parameters, a sand culture experiment was conducted in an artificial climate chamber to investigate the physiological responses of different peanut varieties to six levels of Cd stress. The results showed that within the range of 0-60 mg Cd x L(-1) addition, the chlorophyll content of functional leaves and the oxidative vitality of roots decreased significantly with increasing Cd addition, while the MDA content and cell membrane permeability of leaves and roots were in adverse. The cell membrane permeability of roots and leaves was the most sensitive physiological parameter, while the chlorophyll content of functional leaves was the least sensitive one in the responses of peanut plant to Cd stress. In the linear regression equations describing the relationships between test physiological parameters and Cd concentrations in nutrient solution, the absolute value of slope (b)/intercept (a) ratio, /b/a/, could better describe the sensitivity of peanut plants to Cd stress. It was known from the integrative evaluation of /b/a/ values and the cluster analysis of sensitivity that among the fourteen peanut varieties, "Zhonghua-4", "Xiangnong-55" and "Xiangnong-3010-w" were highly sensitive to Cd stress (first grade), "Lainong-29", "Xiangnongxiaoguo-w2-7", "Fenghua-2", "Lainong-13", "Yuhua-15" and "Fenghua-3" were sensitive (second grade), "Xiangnong-312", "Qiyangxiaozi" and "Pingdu-01" were less sensitive (third grade), while "Huayu-20" and "Huayu-23" were insensitive (forth grade).

  12. Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.).

    PubMed

    Chen, Xiaoping; Yang, Qingli; Li, Haifen; Li, Heying; Hong, Yanbin; Pan, Lijuan; Chen, Na; Zhu, Fanghe; Chi, Xiaoyuan; Zhu, Wei; Chen, Mingna; Liu, Haiyan; Yang, Zhen; Zhang, Erhua; Wang, Tong; Zhong, Ni; Wang, Mian; Liu, Hong; Wen, Shijie; Li, Xingyu; Zhou, Guiyuan; Li, Shaoxiong; Wu, Hong; Varshney, Rajeev; Liang, Xuanqiang; Yu, Shanlin

    2016-05-01

    A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex.

  13. Molecular cloning, expression, and evolution analysis of type II CHI gene from peanut (Arachis hypogaea L.).

    PubMed

    Liu, Yu; Zhao, Shuzhen; Wang, Jiangshan; Zhao, Chuanzhi; Guan, Hongshan; Hou, Lei; Li, Changsheng; Xia, Han; Wang, Xingjun

    2015-01-01

    Chalcone isomerase (CHI) plays critical roles in plant secondary metabolism, which is important for the interaction between plants and the environment. CHI genes are widely studied in various higher plants. However, little information about CHI genes is available in peanut. Based on conservation of CHI gene family, we cloned the peanut type II CHI gene (AhCHI II) cDNA and genome sequence. The amino acid sequence of peanut CHI II was highly homologous to type II CHI from other plant species. qRT-PCR results showed that peanut CHI II is mainly expressed in roots; however, peanut CHI I is mainly expressed in tissues with high content of anthocyanin. Gene duplication and gene cluster analysis indicated that CHI II was derived from CHI I 65 million years ago approximately. Our gene structure analysis results are not in agreement with the previous hypothesis that CHI II was derived from CHI I by the insertion of an intron into the first exon. Moreover, no positive selection pressure was found in CHIs, while, 32.1 % of sites were under neutral selection, which may lead to mutation accumulation and fixation during great changes of environment.

  14. Development and utilization of InDel markers to identify peanut (Arachis hypogaea) disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, nearly 10,000 SSR-based markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% were mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. I...

  15. Molecular cloning and characterization of annexin genes in peanut (Arachis hypogaea L.).

    PubMed

    He, MeiJing; Yang, XinLei; Cui, ShunLi; Mu, GuoJun; Hou, MingYu; Chen, HuanYing; Liu, LiFeng

    2015-08-15

    Annexin, Ca(2+) or phospholipid binding proteins, with many family members are distributed throughout all tissues during plant growth and development. Annexins participate in a number of physiological processes, such as exocytosis, cell elongation, nodule formation in legumes, maturation and stress response. Six different full-length cDNAs and two partial-length cDNAs of peanut, (AnnAh1, AnnAh2, AnnAh3, AnnAh5, AnnAh6, AnnAh7, AnnAh4 and AnnAh8) encoding annexin proteins, were isolated and characterized using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins were 36.0kDa with acidic pIs of 5.97-8.81. ANNAh1, ANNAh2, ANNAh3, ANNAh5, ANNAh6 and ANNAh7 shared sequence similarity from 35.76 to 66.35% at amino acid level. Phylogenetic analysis revealed their evolutionary relationships with corresponding orthologous sequences in soybean and deduced proteins in various plant species. Real-time quantitative assays indicated that these genes were differentially expressed in various organs. Transcript level analysis for six annexin genes under stress conditions showed that these genes were regulated by drought, salinity, heavy metal stress, low temperature and hormone. Additionally, the prediction of cis-regulatory element suggested that different cis-responsive elements including stress- and hormone-responsive-related elements could respond to various stress conditions. These results indicated that members of AnnAhs family may play important roles in the adaptation of peanut to various environmental stresses. PMID:25958350

  16. A Specific Qualitative Detection Method for Peanut (Arachis Hypogaea) in Foods Using Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a qualitative detection method for peanuts in foods using polymerase chain reaction (PCR). We designed a universal primer pair CP 03-5’/ CP 03-3’ to confirm the validity of the DNAs for PCR. The plant specific amplified fragments were detected from 13 kinds of plants using the universal...

  17. Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (Arachis hypogaea L.) Seedlings.

    PubMed

    Wang, Guang; Wu, Liying; Zhang, Hong; Wu, Wenjia; Zhang, Mengmeng; Li, Xiaofeng; Wu, Hui

    2016-05-11

    To clarify the mechanisms of selenium (Se) tolerance in peanut seedlings, we grew peanut seedlings with sodium selenite (0, 3, and 6 mg/L), and investigated the phenylpropanoids metabolism in seedling roots. The results showed that selenite up-regulated the expression of genes and related enzyme activities involving in the phenylpropanoids biosynthesis cascade, such as phenylalanine ammonia-lyase, trans-cinnamate-4-hydroxylase, chalcone synthase, chalcone isomerase, and cinnamyl-alcohol dehydrogenase. Selenite significantly increased phenolic acids and flavonoids, which contributed to the alleviation of selenite-induced stress. Moreover, selenite enhanced the formation of endodermis in roots, which may be attributed to the up-regulation of lignin biosynthesis mediated by the selenite-induced changes of H2O2 and NO, which probably regulated the selenite uptake from an external medium. Accumulation of polyphenolic compounds via the phenylpropanoid pathway may be one of the mechanisms of the increasing selenite tolerance in plants, by which peanut seedlings survived in seleniferous soil, accompanied by accumulation of Se. PMID:27089243

  18. A SSR-based genetic linkage map of cultivated peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to construct a molecular linkage map of cultivated tetraploid peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Three recombinant inbre...

  19. Extraction, Purification and Primary Characterization of Polysaccharides from Defatted Peanut (Arachis hypogaea) Cakes.

    PubMed

    Liu, Hongzhi; Jiang, Nan; Liu, Li; Sheng, Xiaojing; Shi, Aimin; Hu, Hui; Yang, Ying; Wang, Qiang

    2016-01-01

    The hot-water extraction, purification and characterization of polysaccharides from defatted peanut cake (PPC) were investigated in this study. A Box-Behnken factorial design (BBD) was used to investigate the effects of three independent variables, namely extraction temperature (X₁), extraction time (X₂) and ratio of water to raw material (X₃). The optimum conditions were 85 °C, 3 h and 20:1 (mL/g) respectively. Regression analysis was done to reveal the experimental results which include 34.97% extraction rate while the value verified under these conditions was 34.49%. The crude PPC was sequentially further purified by Sephadex G-100 chromatography, and one purified fraction was obtained. The PPC purified fraction was characterized by FT-IR, HPAEC; SEC-MALLS. The average molecular weight of the PPC purified fraction was 2.383 × 10⁵ Da. The polysaccharide was mainly composed of glucose, galactose, arabinose and xylose. The PPC have the typical absorption of polysaccharide. PMID:27258246

  20. Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species.

    PubMed

    Sobolev, Victor S

    2008-03-26

    Peanuts respond to fungal infection by synthesizing phytoalexins, most of which are antibiotic stilbenes. The mechanism and dynamics of phytoalexin formation in the peanut have not been studied. One of the most popular peanut cultivars in the southeastern United States, Georgia Green, was investigated for its ability to produce phytoalexins in response to infection by soil fungal strains. The experimental design allowed for study of phytoalexin production in peanut kernels layer-by-layer. The layers were dissected from different depths of the kernel starting from the infected area down to healthier tissues. Six peanut phytoalexins, trans-resveratrol, trans-arachidin-1, trans-arachidin-2, trans-arachidin-3, trans-3-isopentadienyl-4,3',5'-trihydroxystilbene, and SB-1, were detected in the kernel slices and quantitated. All of the fungal strains triggered phytoalexin production; however, the composition of phytoalexins varied significantly by layer. After incubation for 24 h, tissues remote from the infected area produced almost exclusively trans-resveratrol, whereas closer to the infected area tissues synthesized all six phytoalexins. In all of the experiments, after 48 h of fungal growth, deeper layers produced all tested phytoalexins. There was a significant difference in phytoalexin production elicited by some fungal isolates. No association was observed between phytoalexin production and toxigenic potential of fungal strains that elicited the production in mature peanut kernels.

  1. Genetic relationships among three chlorophyll-deficient mutants in peanut, Arachis hypogaea L.

    PubMed

    Tai, P Y; Hammons, R O; Matlock, R S

    1977-01-01

    The genetic relationships of three chlorophyll-deficient mutant peanuts, lutescens (lu), aureus (au), and virescent (v) were studied under field and greenhouse conditions. The F1 plants from crosses between these mutants produced phenotypically normal green. In F2, aureus X virescent segregated 675 normal green : 225 virescent : 45 aureus : 15 virescent aureus : 64 seedling lethal, and lutescens X virescent segregated 45 normal green : 15 virescent : 3 lutescens : 1 seedling lethal. (Lutescens peanuts were seedling lethal in the field.) As previously reported, the F2 of aureus X lutescens gave 225 normal green : 15 aureus :15 lutescens : 1 seedling lethal. The three chlorophyll-deficient factors (au, lu, and v) show independent inheritance. The recessive combinations from the parental types between aureus and virescent and between aureus and lutescens would produce plants with a combination of their respective parental characteristics, but the recessive combination between lutescens and virescent was nearly albino. The v-au and lu-au seedlings have a longer life span than the v-lu seedling has. The genotypes for the three mutants are tentatively identified as lutescens VV Au 1 Au 1 Au 2 Au 2 lu 1 lu 1 lu 2 lu 2 L 1 L 1 L 2 L 2, aureus VV au1au1 au2au2 Lu1Lu1 Lu2Lu2 L1L1 l2l2, and virescent vv Au1Au1 Au2Au2 lu1lu1 Lu2Lu2 l1l1 L2L2.

  2. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis.

    PubMed

    Grönemeyer, Jann Lasse; Hurek, Thomas; Bünger, Wiebke; Reinhold-Hurek, Barbara

    2016-01-01

    Twenty one strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata), Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region of Namibia, were previously characterized as a novel group within the genus Bradyrhizobium. To verify their taxonomic position, the strains were further analysed using a polyphasic approach. 16S rRNA gene sequences were most similar to Bradyrhizobium manausense BR 3351T, with Bradyrhizobium ganzhouense RITF806T being the most closely related type strain in the phylogenetic analysis, and Bradyrhizobium yuanmingense CCBAU 10071T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from species of the genus Bradyrhizobium with validly published names; they were most closely related to Bradyrhizobium subterraneum 58 2-1T. The status of the species was validated by results of DNA-DNA hybridization. The combination of phenotypic characteristics from several tests, including carbon source utilization and antibiotic resistance, could be used to differentiate representative strains of species of the genus Bradyrhizobium with validly published names. Novel strain 7-2T induced effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and on Lablab purpureus. The DNA G+C content of strain 7-2T was 65.4 mol% (Tm). Based on the data presented, we conclude that these strains represent a novel species for which the name Bradyrhizobium vignae sp. nov. is proposed, with strain 7-2T [LMG 28791T, DSMZ 100297T, NTCCM0018T (Windhoek)] as the type strain. PMID:26463703

  3. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis.

    PubMed

    Grönemeyer, Jann Lasse; Hurek, Thomas; Bünger, Wiebke; Reinhold-Hurek, Barbara

    2016-01-01

    Twenty one strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata), Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region of Namibia, were previously characterized as a novel group within the genus Bradyrhizobium. To verify their taxonomic position, the strains were further analysed using a polyphasic approach. 16S rRNA gene sequences were most similar to Bradyrhizobium manausense BR 3351T, with Bradyrhizobium ganzhouense RITF806T being the most closely related type strain in the phylogenetic analysis, and Bradyrhizobium yuanmingense CCBAU 10071T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from species of the genus Bradyrhizobium with validly published names; they were most closely related to Bradyrhizobium subterraneum 58 2-1T. The status of the species was validated by results of DNA-DNA hybridization. The combination of phenotypic characteristics from several tests, including carbon source utilization and antibiotic resistance, could be used to differentiate representative strains of species of the genus Bradyrhizobium with validly published names. Novel strain 7-2T induced effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and on Lablab purpureus. The DNA G+C content of strain 7-2T was 65.4 mol% (Tm). Based on the data presented, we conclude that these strains represent a novel species for which the name Bradyrhizobium vignae sp. nov. is proposed, with strain 7-2T [LMG 28791T, DSMZ 100297T, NTCCM0018T (Windhoek)] as the type strain.

  4. Characterization of a Pathogen Induced Thaumatin-Like Protein Gene AdTLP from Arachis diogoi, a Wild Peanut

    PubMed Central

    Singh, Naveen Kumar; Kumar, Koppolu Raja Rajesh; Kumar, Dilip; Shukla, Pawan; Kirti, P. B.

    2013-01-01

    Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants. PMID:24367621

  5. A comparison of methods used to determine the oleic/linoleic acid ratio in cultivated peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts are a cheap source of protein compared to cheese and red meat and a good source of essential vitamins and minerals and are thus a common component of many oil and food products. The fatty acid composition of peanuts has become increasingly important with the realization that the onset of ra...

  6. Cloning and Characterization of 5′ Flanking Regulatory Sequences of AhLEC1B Gene from Arachis Hypogaea L.

    PubMed Central

    Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei

    2015-01-01

    LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444

  7. Genetic mapping of FAD2 genes and their relative contribution towards oil quality in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of oil quality is the major research objective in peanut because of its high economic impact on growers/traders and several health benefits to consumers. Fatty acid desaturase (FAD) genes are known to control quality traits but their position on the peanut genome and their relative contr...

  8. Primed acclimation of cultivated peanut (Arachis hypogaea L.) through the use of deficit irrigation timed to crop developmental periods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-deficits and high temperatures are the predominant factors limiting peanut production across the U.S., either because of regional aridity or untimely rainfall events during crucial crop developmental periods. In the southern High Plains of west Texas and eastern New Mexico, low average annual ...

  9. Characterization of the β-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation.

    PubMed

    Qiao, L X; Ding, X; Wang, H C; Sui, J M; Wang, J-S

    2014-03-17

    Plant β-1,3-glucanases are commonly involved in disease resistance. This report describes the cloning and genetic transformation of a β-1,3-glucanase gene from peanut. The gene was isolated from both the genomic DNA and cDNA of peanut variety Huayu20 by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), respectively. The DNA sequence contained 1471 bp including two exons and one intron, and the coding sequence contained 1047 bp that coded for a 348-amino acid protein with a calculated molecular weight of 38.8 kDa. The sequence was registered in NCBI (GenBank accession No. JQ801335) and was designated as Ah-Glu. As determined by BLAST analysis, the Ah-Glu protein has 42-90% homology with proteins from Oryza sativa (BAC83070.1), Zea mays (NP_001149308), Arabidopsis thaliana (NP_200470.1), Medicago sativa (ABD91577.1), and Glycine max (XP_003530515.1). The over-expression vector pCAMBIA1301-Glu containing Ah-Glu was constructed, confirmed by PCR and restriction enzyme digestion, and transformed into peanut variety Huayu22 by Agrobacterium EHA105-mediated transformation. The putative transformed plants (T0) were confirmed by PCR amplification. RT-PCR analysis and β-glucuronidase (GUS) staining showed that the transferred Ah-Glu was expressed as mRNA and protein. In a laboratory test, the transgenic plants were found to be more resistant to the fungal pathogen Cercospora personata than the non-transgenic plants were.

  10. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.).

    PubMed

    Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-02-01

    The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen.

  11. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.).

    PubMed

    Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-02-01

    The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen. PMID:26620080

  12. Cutleafgroundcherry (physalis angulata) density, biomass and seed production in peanut (arachis hypogaea L.) following regrowth due to inadequate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry density, biomass, seed production, and crop yield in a peanut system. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) alone at 0.027 kg ai h...

  13. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L)

    PubMed Central

    2010-01-01

    Background Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. Results The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1) and a susceptible cultivar (Yueyou 7) under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant cultivar challenged by A. flavus under drought stress. A significant decrease or down regulation of trypsin inhibitor caused by A. flavus in the resistant cultivar was also observed. In addition, variations in protein expression patterns for resistant and susceptible cultivars were further validated by real time RT-PCR analysis. Conclusion In summary, this study provides new insights into understanding of the molecular mechanism of resistance to pre-harvest aflatoxin contamination in peanut, and will help to develop peanut varieties with resistance to pre-harvested aflatoxin contamination. PMID:21118527

  14. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.

    PubMed

    Dey, R; Pal, K K; Bhatt, D M; Chauhan, S M

    2004-01-01

    Although plant growth-promoting rhizobacteria (PGPR) have been reported to influence plant growth, yield and nutrient uptake by an array of mechanisms, the specific traits by which PGPR promote plant growth, yield and nutrient uptake were limited to the expression of one or more of the traits expressed at a given environment of plant-microbe interaction. We selected nine different isolates of PGPR from a pool of 233 rhizobacterial isolates obtained from the peanut rhizosphere on the basis of ACC-deaminase activity. The nine isolates were selected, initially, on the basis of germinating seed bioassay in which the root length of the seedling was enhanced significantly over the untreated control. All the nine isolates were identified as Pseudomonas spp. Four of these isolates, viz. PGPR1, PGPR2, PGPR4 and PGPR7 (all fluorescent pseudomonads), were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, Pseudomonas fluorescens PGPR1 also possessed the characters like tri-calcium phosphate solubilization, ammonification and inhibited Aspergillus niger and A. flavus in vitro. P. fluorescens PGPR2 differed from PGPR1 in the sense that it did not show ammonification. In addition to the traits exhibited by PGPR1, PGPR4 showed strong in vitro inhibition to Sclerotium rolfsii. The performances of these selected plant growth-promoting rhizobacterial isolates were repeatedly evaluated for 3 years in pot and field trials. Seed inoculation of these three isolates, viz. PGPR1, PGPR2 and PGPR4, resulted in a significantly higher pod yield than the control, in pots, during rainy and post-rainy seasons. The contents of nitrogen and phosphorus in soil, shoot and kernel were also enhanced significantly in treatments inoculated with these rhizobacterial isolates in pots during both the seasons. In the field trials, however, there was wide variation in the performance of the PGPR isolates in enhancing the growth and yield of peanut in different years. Plant growth-promoting fluorescent pseudomonad isolates, viz. PGPR1, PGPR2 and PGPR4, significantly enhanced pod yield (23-26%, 24-28% and 18-24%, respectively), haulm yield and nodule dry weight over the control in 3 years. Other attributes like root length, pod number, 100-kernel mass, shelling out-turn and nodule number were also enhanced. Seed bacterization with plant growth-promoting P. fluorescens isolates, viz. PGPR1, PGPR2 and PGPR4, suppressed the soil-borne fungal diseases like collar rot of peanut caused by A. niger and PGPR4 also suppressed stem rot caused by S. rolfsii. Studies on the growth patterns of PGPR isolates utilizing the seed leachate as the sole source of C and N indicated that PGPR4 isolate was the best in utilizing the seed leachate of peanut, cultivar JL24. Studies on the rhizosphere competence of the PGPR isolates, evaluated on the basis of spontaneous rifampicin resistance, indicated that PGPR7 was the best rhizoplane colonizer and PGPR1 was the best rhizosphere colonizer. Although the presence of growth-promoting traits in vitro does not guarantee that an isolate will be plant growth promoting in nature, results suggested that besides ACC-deaminase activity of the PGPR isolates, expression of one or more of the traits like suppression of phytopathogens, solubilization of tri-calcium phosphate, production of siderophore and/or nodulation promotion might have contributed to the enhancement of growth, yield and nutrient uptake of peanut. PMID:15646384

  15. Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes.

    PubMed

    Song, Yi; Du, Bingjian; Zhou, Ting; Han, Bing; Yu, Fei; Yang, Rui; Hu, Xiaosong; Ni, Yuanying; Li, Quanhong

    2011-02-01

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from defatted peanut cake. A central composite design including independent variables, such as extraction temperature (x(1)), extraction time (x(2)), and ethanol concentration (x(3)) was used. Selected response which evaluates the extraction process was polysaccharide yield, and the second-order model obtained for polysaccharide yield revealed coefficient of determination of 97.81%. The independent variable with the largest effect on response was ethanol concentration (x(3)). The optimum extraction conditions were found to be extraction temperature 48.7°C, extraction time 1.52 h, and ethanol concentration of 61.9% (v/v), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 25.89%. The results of structural analysis showed that the main composition of defatted peanut cake polysaccharide was α-galactose.

  16. Morphological and toxigenic variability in the Aspergillus flavus isolates from peanut (Arachis hypogaea L.) production system in Gujarat (India).

    PubMed

    Singh, Diwakar; Thankappan, Radhakrishnan; Kumar, Vinod; Bagwan, Naimoddin B; Basu, Mukti S; Dobaria, Jentilal R; Mishra, Gyan P; Chanda, Sumitra

    2015-03-01

    Morphological and toxigenic variability in 187 Aspergillus flavus isolates, collected from a major Indian peanut production system, from 10 districts of Gujarat was studied. On the basis of colony characteristics, the isolates were grouped as group A (83%), B (11%) and G (6%). Of all the isolates, 21%, 47% and 32% were found to be fast-growing, moderately-fast and slow-growing respectively, and nosclerotia and sclerotia production was recorded in 32.1% and 67% isolates respectively. Large, medium and small number of sclerotia production was observed in 55, 38 and 34 isolates respectively. Toxigenic potential based on ammonia vapour test was not found reliable, while ELISA test identified 68.5%, 18.7% and 12.8% isolates as atoxigenic, moderately-toxigenic and highly-toxigenic, respectively. On clustering, the isolates were grouped into 15 distinct clusters, 'A' group of isolates was grouped distinctly in different clusters, while 'B' and 'G' groups of isolates were clustered together. No association was observed between morphological-diversity and toxigenic potential of the isolates. From the present investigation, most virulent isolates were pooled to form a consortium for sick-plot screening of germplasm, against Aspergillus flavus. In future, atoxigenic isolates may be evaluated for their potential to be used as bio-control agent against toxigenicisolates.

  17. Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.).

    PubMed

    Chen, Na; Yang, Qingli; Pan, Lijuan; Chi, Xiaoyuan; Chen, Mingna; Hu, Dongqing; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    The MYB superfamily constitutes one of the most abundant groups of transcription factors and plays central roles in developmental processes and defense responses in plants. In the work described in this article, 30 unique peanut MYB genes that contained full-length cDNA sequences were isolated. The 30 genes were grouped into three categories: one R1R2R3-MYB, nine R2R3-MYBs and 20 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the nine peanut R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily between peanut and Arabidopsis revealed that the putative functions of some peanut MYB proteins were clustered into the Arabidopsis functional groups. Expression analysis during abiotic stress identified a group of MYB genes that responded to at least one stress treatment. This is the first comprehensive study of the MYB gene family in peanut.

  18. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L.

    PubMed

    Chopra, Ratan; Burow, Gloria; Farmer, Andrew; Mudge, Joann; Simpson, Charles E; Wilkins, Thea A; Baring, Michael R; Puppala, Naveen; Chamberlin, Kelly D; Burow, Mark D

    2015-06-01

    Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.

  19. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.

    PubMed

    Aisyah, Siti; Gruppen, Harry; Slager, Mathijs; Helmink, Bianca; Vincken, Jean-Paul

    2015-10-28

    Aspergillus oryzae and Rhizopus oryzae were compared for inducing the production of prenylated stilbenoids in peanut seedlings. The fungus was applied at two different time points: directly after soaking (day 1) or after 2 days of germination (day 3). Aspergillus- and Rhizopus-elicited peanut seedlings accumulated an array of prenylated stilbenoids, with overlap in compounds induced, but also with compounds specific to the fungal treatment. The differences were confirmed to be due to modification of prenylated stilbenoids by the fungus itself. Each fungus appeared to deploy different strategies for modification. The content of prenylated stilbenoids modified by fungi accounted for around 8% to 49% (w/w) of total stilbenoids. The contents of modified prenylated stilbenoids were higher when the fungus was applied on day 1 instead of day 3. Altogether, type of fungus and time point of inoculation appeared to be crucial parameters for optimizing accumulation of prenylated stilbenoids in peanut seedlings.

  20. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.

    PubMed

    Aisyah, Siti; Gruppen, Harry; Slager, Mathijs; Helmink, Bianca; Vincken, Jean-Paul

    2015-10-28

    Aspergillus oryzae and Rhizopus oryzae were compared for inducing the production of prenylated stilbenoids in peanut seedlings. The fungus was applied at two different time points: directly after soaking (day 1) or after 2 days of germination (day 3). Aspergillus- and Rhizopus-elicited peanut seedlings accumulated an array of prenylated stilbenoids, with overlap in compounds induced, but also with compounds specific to the fungal treatment. The differences were confirmed to be due to modification of prenylated stilbenoids by the fungus itself. Each fungus appeared to deploy different strategies for modification. The content of prenylated stilbenoids modified by fungi accounted for around 8% to 49% (w/w) of total stilbenoids. The contents of modified prenylated stilbenoids were higher when the fungus was applied on day 1 instead of day 3. Altogether, type of fungus and time point of inoculation appeared to be crucial parameters for optimizing accumulation of prenylated stilbenoids in peanut seedlings. PMID:26458982

  1. Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...

  2. Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods.

    PubMed

    Stephan, Oliver; Vieths, Stefan

    2004-06-16

    Hidden allergens in food products are, especially for peanut-allergic consumers, a serious problem because even low amounts (approximately 200 microg) of peanut can elicit allergic reactions. Undeclared peanut traces can be found in processed food products, because contaminations with peanut during production processes are frequent. To minimize the risk of such cross-contaminations, it is necessary to develop sensitive analytical methods for the detection of hidden allergens in foods. For this approach we developed two peanut-specific assays based on the detection of peanut protein by specific antibodies (sandwich ELISA) and by the detection of peanut-specific DNA (part of the coding region of Ara h 2) by a real-time PCR. Both tests did not show any cross-reactivity with 22 common food ingredients (cereals, nuts, legumes), and the limit of detection is <10 ppm peanut in processed foods. Thirty-three random samples of food products were tested for the presence of peanut to compare both assay types with each other and to evaluate the percentage of foods on the German market that are contaminated with peanut traces. We found that four products (13.3%) without peanut in the list of ingredients contained peanut protein in a range from 1 to 74 ppm peanut protein and that the results of both tests correlated well. The real-time PCR was able to detect one more positive sample than the sandwich ELISA. In conclusion, both assays are sensitive and specific tools for the detection of hidden allergens in processed foods.

  3. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL).

    PubMed

    Chen, Hua; Zhang, Chong; Cai, Tie Cheng; Deng, Ye; Zhou, Shuangbiao; Zheng, Yixiong; Ma, Shiwei; Tang, Ronghua; Varshney, Rajeev K; Zhuang, Weijian

    2016-02-01

    Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study.

  4. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina.

    PubMed

    Asis, Ramon; Barrionuevo, Damian L; Giorda, Laura M; Nores, Maria L; Aldao, Mario A

    2005-11-16

    Aflatoxin contamination is one of the main factors affecting peanut seed quality. One of the strategies to decrease the risk of peanut aflatoxin contamination is the use of genotypes with resistance to Aspergillus infection. This laboratory study reports the resistance to Aspergillus infection and aflatoxin contamination of six peanut genotypes inoculated with 21 Aspergillus isolates obtained from the peanut production region of Cordoba, Argentina. The resistance was investigated in the seed coat and cotyledons of three resistant genotypes (J11, PI 337394, and PI 337409) and three breeding lines (Manfredi 68, Colorado Irradiado, and Florman INTA) developed at the Instituto Nacional de Tecnologia Agropecuaria (INTA), Manfredi Experimental Station, Cordoba, Argentina. Resistance to fungal colonization and aflatoxin contamination was found to be associated with seed coat integrity in the PI 337394, PI 337409, and J11 genotypes, whereas the INTA breeding lines such as Colorado Irradiado showed a moderate resistance and the Manfredi 68 and Florman INTA genotypes the least resistance. Furthermore, another type of resistance associated with cotyledons was found only in the PI 337394 genotype.

  5. Progress on genetic linkage maps, traits/QTLs, and utilization in two recombinant inbred line populations of peanuts (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut, a highly nutritional crop, is used in edible products or crushed for cooking oil, and is susceptible to a range of diseases, including Tomato spotted wilt virus (TSWV), early and late leaf spot (ELS and LLS). Losses in productivity and quality are also attributable to environmental stresses ...

  6. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C1...

  7. Boiling and Frying Peanuts Decreases Soluble Peanut (Arachis Hypogaea) Allergens Ara h 1 and Ara h 2 But Does Not Generate Hypoallergenic Peanuts

    PubMed Central

    Comstock, Sarah S.; Maleki, Soheila J.; Teuber, Suzanne S.

    2016-01-01

    Peanut allergy continues to be a problem in most developed countries of the world. We sought a processing method that would alter allergenic peanut proteins, such that allergen recognition by IgE from allergic individuals would be significantly reduced or eliminated. Such a method would render accidental exposures to trace amounts of peanuts safer. A combination of boiling and frying decreased recovery of Ara h 1 and Ara h 2 at their expected MWs. In contrast, treatment with high pressures under varying temperatures had no effect on protein extraction profiles. Antibodies specific for Ara h 1, Ara h 2, and Ara h 6 bound proteins extracted from raw samples but not in boiled/fried samples. However, pre-incubation of serum with boiled/fried extract removed most raw peanut-reactive IgE from solution, including IgE directed to Ara h 1 and 2. Thus, this method of processing is unlikely to generate a peanut product tolerated by peanut allergic patients. Importantly, variability in individual patients’ IgE repertoires may mean that some patients’ IgE would bind fewer polypeptides in the sequentially processed seed. PMID:27310538

  8. An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using ...

  9. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress.

    PubMed

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P; Dobaria, Jentilal R

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  10. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Meng, S; Yang, X L; Dang, P M; Cui, S L; Mu, G J; Chen, C Y; Liu, L F

    2016-01-01

    Peanut is one of the most important oil crops worldwide. We used insertion-deletion (InDel) markers to assess the genetic diversity and population structure in cultivated peanut. Fifty-four accessions from North China were genotyped using 48 InDel markers. The markers amplified 61 polymorphic loci with 1 to 8 alleles and an average of 2.6 alleles per marker. The polymorphism information content values ranged from 0.0364 to 0.9030, with an average of 0.5038. Population structure and neighbor-joining (NJ) tree analyses suggested that all accessions could be divided into four clusters (A1-A4), using the NJ method. Likewise, four subpopulations (G1-G4) were identified using STRUCTURE analysis. A principal component analysis was also used and results concordant with the other analysis methods were found. A multi-linear stepwise regression analysis revealed that 13 InDel markers correlated with five measured agronomical traits. Our results will provide important information for future peanut molecular breeding and genetic research. PMID:27525935

  11. Commercial lateral flow devices for rapid detection of peanut (Arachis hypogaea) and hazelnut (Corylus avellana) cross-contamination in the industrial production of cookies.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2009-09-01

    Lateral flow devices (LFDs) are qualitative immunochromatographic tests for the rapid and specific detection of target analytes. We investigated commercially available LFDs for their ability to detect potentially allergenic peanut and hazelnut in raw cookie dough and chocolate, two important food matrices in the industrial production of cookies. Each three commercial LFDs for the detection of hazelnut and peanut were performed according to the manufacturers' instructions. All LFDs had comparably satisfactory specificity that was investigated with a variety of characteristic foods and food ingredients used in the production of cookies. In concordance with hazelnut-specific enzyme-linked immunosorbent assays (ELISAs), walnut was the most cross-reactive food for hazelnut-specific LFD. The sensitivity was verified in raw cookie doughs and chocolates that were either spiked with peanut or hazelnut between 1 and 25 mg/kg, respectively. Two hazelnut-specific LFDs detected hazelnut at a level of 3.5 mg/kg in both matrices, whereas the third LFD detected hazelnut at a level of 3.9 mg/kg in dough and 12.5 mg/kg in chocolate. Two peanut-specific LFDs detected peanut at a level of 1 mg/kg in both matrices. The third LFD detected peanut at a level of 14.2 mg/kg in chocolate and 4 mg/kg in dough. In conclusion, specific and sensitive LFD were identified for each hazelnut and peanut, having a level of sensitivity that is comparable to commercial ELISA for the investigated matrices. Such sensitive, specific, and rapid tests are useful analytical tools for allergen screening and sanitation in the industrial manufacture of foods.

  12. Influence of the maillard reaction on the allergenicity of rAra h 2, a recombinant major allergen from peanut (Arachis hypogaea), its major epitopes, and peanut agglutinin.

    PubMed

    Gruber, Patrick; Becker, Wolf-Meinhard; Hofmann, Thomas

    2005-03-23

    The influence of thermal processing and nonenzymatic browning reactions on the IgE-binding activity of rAra h 2 was studied and compared to findings recently reported for the allergen's natural counterpart. ELISA experiments as well as inhibition assays revealed that thermal treatment of rAra h 2 in the presence of reactive carbohydrates and carbohydrate breakdown products induces a strong increase of the IgE-binding activity, thus collaborating with the data reported for the natural protein isolated from peanuts. To localize the Ara h 2 sequences responsible for the formation of highly IgE-affine glycation sites, model peptides have been synthesized mimicking sequences which contain possible targets for glycation as well as the immunodominant epitopes. Immunological evaluation of these peptides heated in the absence or presence of reducing sugars and carbonyls, respectively, revealed that neither the two lysine residues of Ara h 2 nor its N-terminus are involved in the formation of IgE-affine structures by Maillard reaction. Also, the cysteine-containing major epitope 3 (aa 27-36) was found to lose its IgE-binding capacity upon heating. By contrast, the overlapping major epitopes 6 and 7, which do not contain any lysine or arginine moieties, showed a distinct higher level of IgE binding when subjected to Maillard reaction, thus giving the first evidence that nonbasic amino acids might be accessible for nonenzymatic glycation reactions and that these posttranslational modifications might induce increased IgE binding of the glycated Ara h 2. Analogous experiments were performed with peanut agglutinin, considered in the literature as a minor allergen. ELISA experiments revealed that the majority of tested sera samples from peanut-sensitive patients showed a high level of IgE binding to the lectin even after heat treatment. In contradiction to published data, nonenzymatic browning reactions seem to deteriorate the IgE affinity of the lectin. PMID:15769170

  13. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress

    PubMed Central

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P.; Dobaria, Jentilal R.

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  14. Boiling and Frying Peanuts Decreases Soluble Peanut (Arachis Hypogaea) Allergens Ara h 1 and Ara h 2 But Does Not Generate Hypoallergenic Peanuts.

    PubMed

    Comstock, Sarah S; Maleki, Soheila J; Teuber, Suzanne S

    2016-01-01

    Peanut allergy continues to be a problem in most developed countries of the world. We sought a processing method that would alter allergenic peanut proteins, such that allergen recognition by IgE from allergic individuals would be significantly reduced or eliminated. Such a method would render accidental exposures to trace amounts of peanuts safer. A combination of boiling and frying decreased recovery of Ara h 1 and Ara h 2 at their expected MWs. In contrast, treatment with high pressures under varying temperatures had no effect on protein extraction profiles. Antibodies specific for Ara h 1, Ara h 2, and Ara h 6 bound proteins extracted from raw samples but not in boiled/fried samples. However, pre-incubation of serum with boiled/fried extract removed most raw peanut-reactive IgE from solution, including IgE directed to Ara h 1 and 2. Thus, this method of processing is unlikely to generate a peanut product tolerated by peanut allergic patients. Importantly, variability in individual patients' IgE repertoires may mean that some patients' IgE would bind fewer polypeptides in the sequentially processed seed. PMID:27310538

  15. Boiling and Frying Peanuts Decreases Soluble Peanut (Arachis Hypogaea) Allergens Ara h 1 and Ara h 2 But Does Not Generate Hypoallergenic Peanuts.

    PubMed

    Comstock, Sarah S; Maleki, Soheila J; Teuber, Suzanne S

    2016-01-01

    Peanut allergy continues to be a problem in most developed countries of the world. We sought a processing method that would alter allergenic peanut proteins, such that allergen recognition by IgE from allergic individuals would be significantly reduced or eliminated. Such a method would render accidental exposures to trace amounts of peanuts safer. A combination of boiling and frying decreased recovery of Ara h 1 and Ara h 2 at their expected MWs. In contrast, treatment with high pressures under varying temperatures had no effect on protein extraction profiles. Antibodies specific for Ara h 1, Ara h 2, and Ara h 6 bound proteins extracted from raw samples but not in boiled/fried samples. However, pre-incubation of serum with boiled/fried extract removed most raw peanut-reactive IgE from solution, including IgE directed to Ara h 1 and 2. Thus, this method of processing is unlikely to generate a peanut product tolerated by peanut allergic patients. Importantly, variability in individual patients' IgE repertoires may mean that some patients' IgE would bind fewer polypeptides in the sequentially processed seed.

  16. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Meng, S; Yang, X L; Dang, P M; Cui, S L; Mu, G J; Chen, C Y; Liu, L F

    2016-08-12

    Peanut is one of the most important oil crops worldwide. We used insertion-deletion (InDel) markers to assess the genetic diversity and population structure in cultivated peanut. Fifty-four accessions from North China were genotyped using 48 InDel markers. The markers amplified 61 polymorphic loci with 1 to 8 alleles and an average of 2.6 alleles per marker. The polymorphism information content values ranged from 0.0364 to 0.9030, with an average of 0.5038. Population structure and neighbor-joining (NJ) tree analyses suggested that all accessions could be divided into four clusters (A1-A4), using the NJ method. Likewise, four subpopulations (G1-G4) were identified using STRUCTURE analysis. A principal component analysis was also used and results concordant with the other analysis methods were found. A multi-linear stepwise regression analysis revealed that 13 InDel markers correlated with five measured agronomical traits. Our results will provide important information for future peanut molecular breeding and genetic research.

  17. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress.

    PubMed

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P; Dobaria, Jentilal R

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity.

  18. Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress.

    PubMed

    Manjulatha, M; Sreevathsa, Rohini; Kumar, A Manoj; Sudhakar, Chinta; Prasad, T G; Tuteja, Narendra; Udayakumar, M

    2014-02-01

    Peanut, a major edible oil seed crop globally is predominantly grown under rainfed conditions and suffers yield losses due to drought. Development of drought-tolerant varieties through transgenic technology is a valid approach. Besides superior water relation traits like water mining, intrinsic cellular level tolerance mechanisms are important to sustain the growth under stress. To achieve this objective, the focus of this study was to pyramid drought adaptive traits by overexpressing a stress responsive helicase, PDH45 in the background of a genotype with superior water relations. PCR, Southern, and RT-PCR analyses confirmed stable integration and expression of the PDH45 gene in peanut transgenics. At the end of T₃ generation, eight transgenic events were identified as promising based on stress tolerance and improvement in productivity. Several transgenic lines showed stay-green phenotype and increased chlorophyll stability under stress and reduced chlorophyll retardation under etherel-induced simulated stress conditions. Stress-induced root growth was also substantially higher in the case of transformants. This was reflected in increased WUE (low Δ¹³C) and improved growth rates and productivity. The transgenics showed 17.2 and 26.75 % increase in yield under non-stress and stress conditions over wild type ascertaining the feasibility of trait pyramiding strategy for the development of drought-tolerant peanut.

  19. Histone deacetylation modification participates in the repression of peanut (Arachis hypogaea L.) seed storage protein gene Ara h 2.02 during germination.

    PubMed

    Yang, P; Zhang, F; Luo, X; Zhou, Y; Xie, J

    2015-03-01

    Genes encoding seed storage proteins (SSPs) are specifically and highly expressed during seed maturation. In Arabidopsis, chromatin-based mechanisms involved in the repression of SSPs during germination have been proposed. However, epigenetic regulation involved in repressing SSPs in vegetative tissues of peanut is not well understood. Histone deacetylase (HDAC) is a chromatin-remodelling factor that contributes to transcriptional repression in eukaryotes. To address whether histone deacetylation modification is involved in the repression of SSP genes during germination in peanut, we generated an Ara h 2.02pro : β-glucuronidase (GUS) construct by fusing the 1972 bp Ara h 2.02 promoter of peanut (from -1972 to -1) to the GUS reporter gene and transformed it into wild-type Arabidopsis plants and HDAC mutants. GUS staining revealed that the mutation in HISTONE DEACETYLASE19 (HDA19) resulted in the ectopic expression of peanut SSP gene Ara h 2.02 in seedlings. In addition, Chromatin immunoprecipitation (ChIP) assays showed that the ectopic expression of Ara h 2.02 was accompanied by histone hyperacetylation during germination. These results suggest that histone deacetylation modification may play a vital role in repressing embryonic properties during the peanut vegetative growth.

  20. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    PubMed

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture.

  1. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.).

    PubMed

    Wang, Ming Li; Khera, Pawan; Pandey, Manish K; Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A; Pinnow, David; Holbrook, Corley C; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.

  2. Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle.

    PubMed

    Wang, Guang; Zhang, Hong; Lai, Furao; Wu, Hui

    2016-02-17

    Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. To elucidate the mechanisms underlying the role of selenite in production and detoxification of oxidative toxicity, peanut seedlings were developed with sodium selenite (0, 3, and 6 mg/L). The effects of selenite on antioxidant capacity, transcript levels of antioxidant enzyme genes, and enzyme activities in hypocotyl were investigated. The CuZn-SOD, GSH-Px, GST, and APX gene expression levels and their enzyme activities in selenite treatments were 1.0-3.6-fold of the control. Selenite also significantly increased the glutathione and ascorbate concentrations by mediating the ascorbate-glutathione cycle, and the selenite-induced hydrogen peroxide may act as a second messenger in the signaling pathways. This work has revealed a complex antioxidative response to selenite in peanut seedling. Understanding these mechanisms may help future research in increasing selenite tolerance and selenium accumulation in peanut and other crops.

  3. An economical and efficient technology for the extraction of resveratrol from peanut (Arachis hypogaea) sprouts by multi-stage countercurrent extraction.

    PubMed

    Zhang, Qianghua; Bian, Yanhong; Shi, Yingying; Zheng, Shangyong; Gu, Xu; Zhang, Danyan; Zhu, Xiufang; Wang, Xiaoli; Jiang, Dingyun; Xiong, Qingping

    2015-07-15

    In this paper, an economical and efficient technology for the extraction of resveratrol from peanut sprouts by multi-stage countercurrent extraction (MSCE) was investigated based on the alkaline extraction and acid precipitation method (AEAP). Firstly, the MSCE equipment and operation procedures were designed. Then, the optimal parameters of MSCE were obtained by using single-factor experiments and Box-Behnken design (BBD) as follows: extraction temperature of 46.6 °C, CaO to raw material ratio of 6:100, water to raw material ratio of 8.8:1 and extraction time of 51.7 min. Finally, the performance of MSCE was compared against the single pot extraction (SPE) under optimal conditions. The results demonstrated that MSCE was a time-saving, energy-saving, and cost-saving extraction technology for manufacturing resveratrol from peanut sprouts.

  4. Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.)

    PubMed Central

    Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A.; Pinnow, David; Holbrook, Corley C.; Culbreath, Albert K.; Varshney, Rajeev K.; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ‘SunOleic 97R’ × low oleic line ‘NC94022’) and T-population (normal oleic line ‘Tifrunner’ × low oleic line ‘GT-C20’) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition. PMID:25849082

  5. Characterization of Brazilian accessions of wild Arachis species of section Arachis (Fabaceae) using heterochromatin detection and fluorescence in situ hybridization (FISH)

    PubMed Central

    Custódio, Adriana Regina; Seijo, Guillermo; Valls, José Francisco Montenegro

    2013-01-01

    The cytogenetic characterization of Arachis species is useful for assessing the genomes present in this genus, for establishing the relationship among their representatives and for understanding the variability in the available germplasm. In this study, we used fluorescence in situ hybridization (FISH) to examine the distribution patterns of heterochromatin and rDNA genes in 12 Brazilian accessions of five species of the taxonomic section Arachis. The heterochromatic pattern varied considerably among the species: complements with centromeric bands in all of the chromosomes (A. hoehnei) and complements completely devoid of heterochromatin (A. gregoryi, A. magna) were observed. The number of 45S rDNA loci ranged from two (A. gregoryi) to eight (A. glandulifera), while the number of 5S rDNA loci was more conserved and varied from two (in most species) to four (A. hoehnei). In some species one pair of 5S rDNA loci was observed adjacent to 45S rDNA loci. The chromosomal markers revealed polymorphism in the three species with more than one accession (A. gregoryi, A. magna and A. valida) that were tested. The previous genome assignment for each of the species studied was confirmed, except for A. hoehnei. The intraspecific variability observed here suggests that an exhaustive cytogenetic and taxonomic analysis is still needed for some Arachis species. PMID:24130444

  6. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β -Carotene Content of Arachis Oil.

    PubMed

    Falade, Ayodeji Osmund; Oboh, Ganiyu

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  7. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  8. Perennial peanut (Arachis glabrata Benth.) contains polyphenol oxidase (PPO) and PPO substrates that can reduce post-harvest proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of perennial peanut (Arachis glaburata Benth.) suggest its hay and haylage have higher levels of rumen undegraded protein (RUP) than other legume forages such as alfalfa. Higher RUP can result in more efficient utilization of nitrogen by ruminant animals with positive economic and environmen...

  9. QTL mapping & quantitative disease resistance to TSWV and leaf spots in a recombinant inbred line population SunOleic 97R and C94022 of peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is susceptible to a range of diseases, such as Tomato spotted wilt virus (TSWV), early leaf spot (ELS) and late leaf spot (LLS). Breeding line NC94022 has been identified with the highest resistance to TSWV in the field. Quantitative trait loci (QTL) mapping is a highly effective approach fo...

  10. Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022

    PubMed Central

    Feng, Suping; Qiao, Lixian; Culbreath, Albert K.; Kale, Sandip; Wang, Jianping; Holbrook, C. Corley; Zhuang, Weijian; Varshney, Rajeev K.; Guo, Baozhu

    2016-01-01

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the cross between SunOleic 97R and NC94022, named as the S-population. An improved genetic linkage map was developed for the S-population with 248 marker loci and a marker density of 5.7 cM/loci. This genetic map was also compared with the physical map of diploid progenitors of tetraploid peanut, resulting in an overall co-linearity of about 60% with the average co-linearity of 68% for the A sub-genome and 47% for the B sub-genome. The analysis using the improved genetic map and multi-season (2010–2013) phenotypic data resulted in the identification of 48 quantitative trait loci (QTLs) with phenotypic variance explained (PVE) from 3.88 to 29.14%. Of the 48 QTLs, six QTLs were identified for resistance to TSWV, 22 QTLs for early leaf spot (ELS) and 20 QTLs for late leaf spot (LLS), which included four, six, and six major QTLs (PVE larger than 10%) for each disease, respectively. A total of six major genomic regions (MGR) were found to have QTLs controlling more than one disease resistance. The identified QTLs and resistance gene-rich MGRs will facilitate further discovery of resistance genes and development of molecular markers for these important diseases. PMID:27427980

  11. Simultaneous analysis of herbicides pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl by LC-MS/MS and safety evaluation of their harvest time residues in peanut (Arachis hypogaea L.).

    PubMed

    Saha, Ajoy; Shabeer T P, Ahammed; Banerjee, Kaushik; Hingmire, Sandip; Bhaduri, Debarati; Jain, N K; Utture, Sagar

    2015-07-01

    This paper reports a simple and rapid method for simultaneous determination of the residues of selected herbicides viz. pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl in peanut by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A modified approach of the QuEChERS methodology was used to extract the herbicides from the peanut kernel without any clean-up. The method showed excellent linearity (r(2) > 0.99) with no significant matrix effect. Accuracy of the method in terms of average recoveries of all the four herbicides ranged between 69.4 -94.4 % at spiking levels of 0.05, 0.10 and 0.25 mg kg(-1) with intra-day and inter-day precision RSD (%) between 2.6-16.6 and 8.0-11.3, respectively. Limit of quantification (LOQs) was 5.0 μg kg(-1) for pendimethalin, imazethapyr and quizalofop-p-ethyl and 10.0 μg kg(-1) for oxyfluorfen. The expanded uncertainties were <11 % for determination of these herbicides in peanut. The proposed method was successfully applied for analysis of these herbicide residues in peanut samples harvested from the experimental field and the residues were below the detection level.

  12. Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022.

    PubMed

    Khera, Pawan; Pandey, Manish K; Wang, Hui; Feng, Suping; Qiao, Lixian; Culbreath, Albert K; Kale, Sandip; Wang, Jianping; Holbrook, C Corley; Zhuang, Weijian; Varshney, Rajeev K; Guo, Baozhu

    2016-01-01

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the cross between SunOleic 97R and NC94022, named as the S-population. An improved genetic linkage map was developed for the S-population with 248 marker loci and a marker density of 5.7 cM/loci. This genetic map was also compared with the physical map of diploid progenitors of tetraploid peanut, resulting in an overall co-linearity of about 60% with the average co-linearity of 68% for the A sub-genome and 47% for the B sub-genome. The analysis using the improved genetic map and multi-season (2010-2013) phenotypic data resulted in the identification of 48 quantitative trait loci (QTLs) with phenotypic variance explained (PVE) from 3.88 to 29.14%. Of the 48 QTLs, six QTLs were identified for resistance to TSWV, 22 QTLs for early leaf spot (ELS) and 20 QTLs for late leaf spot (LLS), which included four, six, and six major QTLs (PVE larger than 10%) for each disease, respectively. A total of six major genomic regions (MGR) were found to have QTLs controlling more than one disease resistance. The identified QTLs and resistance gene-rich MGRs will facilitate further discovery of resistance genes and development of molecular markers for these important diseases. PMID:27427980

  13. Host plant resistance against tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival.

    PubMed

    Sundaraj, Sivamani; Srinivasan, Rajagopalbabu; Culbreath, Albert K; Riley, David G; Pappu, Hanu R

    2014-02-01

    Tomato spotted wilt virus (TSWV) severely affects peanut production in the southeastern United States. Breeding efforts over the last three decades resulted in the release of numerous peanut genotypes with field resistance to TSWV. The degree of field resistance in these genotypes has steadily increased over time, with recently released genotypes exhibiting a higher degree of field resistance than older genotypes. However, most new genotypes have never been evaluated in the greenhouse or laboratory against TSWV or thrips, and the mechanism of resistance is unknown. In this study, TSWV-resistant and -susceptible genotypes were subjected to TSWV mechanical inoculation. The incidence of TSWV infection was 71.7 to 87.2%. Estimation of TSWV nucleocapsid (N) gene copies did not reveal significant differences between resistant and susceptible genotypes. Parsimony and principal component analyses of N gene nucleotide sequences revealed inconsistent differences between virus isolates collected from resistant and susceptible genotypes and between old (collected in 1998) and new (2010) isolates. Amino acid sequence analyses indicated consistent differences between old and new isolates. In addition, we found evidence for overabundance of nonsynonymous substitutions. However, there was no evidence for positive selection. Purifying selection, population expansion, and differentiation seem to have influenced the TSWV populations temporally rather than positive selection induced by host resistance. Choice and no-choice tests indicated that resistant and susceptible genotypes differentially affected thrips feeding and survival. Thrips feeding and survival were suppressed on some resistant genotypes compared with susceptible genotypes. These findings reveal how TSWV resistance in peanut could influence evolution, epidemiology, and management of TSWV.

  14. Registration of "Sugg" Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Sugg’ (Reg. no. CV- , PI ) is a large-seeded virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) with partial resistance to four diseases that occur commonly in the Virginia-Carolina production area: early leafspot caused by Cercospora arachidicola Hori, Cylindroc...

  15. Registration of ‘AU-1101’ peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AU-1101’ (Reg. No. CV-xxx, PI 661498) is a large-seeded virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) with high yield and medium maturity, uniform pod size and shape, high grade, superior shelling characters, low oil content, normal oleic acid content, and good flavor. AU-...

  16. Release of Lariat Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lariat is a high-oleic runner-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Red River Runner. Lariat (experimental designation ARSOK-R35) is the result of a cross between cultivar Red River Ru...

  17. Registration of VENUS peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VENUS is a large-seeded high-oleic Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot resistance when compared to the cultivar Jupiter. VENUS is the first high-oleic Virginia peanut developed for optimal performance in the South...

  18. High-oleic Virginia peanuts in the Southwestern US: A summary of data supporting the release of 'VENUS'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'VENUS' is a large-seeded high-oleic Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Jupiter. 'VENUS' is the first high-oleic Virginia peanut developed for and proposed for release in t...

  19. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour

    PubMed Central

    Lavia, Graciela Inés; Ortiz, Alejandra Marcela; Robledo, Germán; Fernández, Aveliano; Seijo, Guillermo

    2011-01-01

    Background and Aims Polyploidy is a dominant feature of flowering-plant genomes, including those of many important crop species. Arachis is a largely diploid genus with just four polyploid species. Two of them are economically important: the cultivated peanut and A. glabrata, a tropical forage crop. Even though it is usually accepted that polyploids within papilionoid legumes have arisen via hybridization and further chromosome doubling, it has been recently suggested that peanut arose through bilateral sexual polyploidization. In this paper, the polyploid nature of the recent, spontaneously originated triploid cytotype of the tropical lucerne, A. pintoi, was analysed, and thereby the mechanism by which polyploids may arise in the genus. Methods Chromosome morphology of 2x and 3x A. pintoi was determined by the Feulgeńs technique and the rDNA sites were mapped by FISH. To investigate whether polyploidization occurred by means of unreduced gametes, a detailed analysis of the microsporogenesis and pollen grains was made. Key Results The 2x and 3x plants presented 9m + 1sm and a satellited chromosome type 2 in each haploid genome. Physical mapping revealed a cluster of 18S–26S rDNA, proximally located on chromosome 6, and two 5S rDNA loci on chromosomes 3 and 5. Diploid plants presented 10II in meiosis while trivalents were observed in all triploids, with a maximum of 10III by cell. Diploid A. pintoi produced normal tetrads, but also triads, dyads and monads. Two types of pollen grains were detected: (1) normal-sized with a prolate shape and (2) large ones with a tetrahedral morphology. Conclusions Karyotype and meiotic analysis demonstrate that the 3x clone of A. pintoi arose by autopolyploidy. The occurrence of unreduced gametes strongly supports unilateral sexual polyploidization as the most probable mechanism that could have led to the origin of the triploid cytotype. This mechanism of polyploidization would probably be one of the most important mechanisms

  20. Under the volcano: phylogeography and evolution of the cave-dwelling Palmorchestia hypogaea (Amphipoda, Crustacea) at La Palma (Canary Islands)

    PubMed Central

    Villacorta, Carlos; Jaume, Damià; Oromí, Pedro; Juan, Carlos

    2008-01-01

    Background The amphipod crustacean Palmorchestia hypogaea occurs only in La Palma (Canary Islands) and is one of the few terrestrial amphipods in the world that have adapted to a strictly troglobitic life in volcanic cave habitats. A surface-dwelling closely related species (Palmorchestia epigaea) lives in the humid laurel forest on the same island. Previous studies have suggested that an ancestral littoral Orchestia species colonized the humid forests of La Palma and that subsequent drought episodes in the Canaries reduced the distribution of P. epigaea favouring the colonization of lava tubes through an adaptive shift. This was followed by dispersal via the hypogean crevicular system. Results P. hypogaea and P. epigaea did not form reciprocally monophyletic mitochondrial DNA clades. They showed geographically highly structured and genetically divergent populations with current gene flow limited to geographically close surface locations. Coalescence times using Bayesian estimations assuming a non-correlated relaxed clock with a normal prior distribution of the age of La Palma, together with the lack of association of habitat type with ancestral and recent haplotypes, suggest that their adaptation to cave life is relatively ancient. Conclusion The data gathered here provide evidence for multiple invasions of the volcanic cave systems that have acted as refuges. A re-evaluation of the taxonomic status of the extant species of Palmorchestia is needed, as the division of the two species by habitat and ecology is unnatural. The information obtained here, and that from previous studies on hypogean fauna, shows the importance of factors such as the uncoupling of morphological and genetic evolution, the role of climatic change and regressive evolution as key processes in leading to subterranean biodiversity. PMID:18234125

  1. Impact of Elevated CO2 on Tobacco Caterpillar, Spodoptera litura on Peanut, Arachis hypogea

    PubMed Central

    Srinivasa Rao, M; Manimanjari, D; Vanaja, M; Rama Rao, CA; Srinivas, K; Rao, Vum; Venkateswarlu, B

    2012-01-01

    If the carbon dioxide (CO2) concentration in the atmosphere changes in the future, as predicted, it could influence crops and insect pests. The growth and development of the tobacco caterpillar, Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera), reared on peanut (Arachis hypogea L.) foliage grown under elevated CO2 (550 ppm and 700 ppm) concentrations in open top chambers at Central Research Institute for Dryland Agriculture, Hyderabad, India, were examined in this study. Significantly lower leaf nitrogen, higher carbon, higher relative proportion of carbon to nitrogen and higher polyphenols content expressed in terms of tannic acid equivalents were observed in the peanut foliage grown under elevated CO2 levels. Substantial influence of elevated CO2 on S. litura was noticed, such as longer larval duration, higher larval weights, and increased consumption of peanut foliage by S. litura larvae under elevated CO2 compared with ambient CO2. Relative consumption rate was significantly higher for S. litura larva fed plants grown at 550 and 700 ppm than for larvae fed plants grown at ambient condition. Decreased efficiency of conversion of ingested food, decreased efficiency of conversion of digested food, and decreased relative growth rate of larvae was observed under elevated CO2. The present results indicate that elevated CO2 levels altered the quality of the peanut foliage, resulting in higher consumption, lower digestive efficiency, slower growth, and longer time to pupation (one day more than ambient). PMID:23437971

  2. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils.

    PubMed

    Chen, Jing Yu; Gu, Jun; Wang, En Tao; Ma, Xing Xian; Kang, Shi Tong; Huang, Ling Zi; Cao, Xue Ping; Li, Liang Bing; Wu, Yan Ling

    2014-10-01

    Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.

  3. Effects of Perennial Peanut (Arachis glabrata) Ground Cover on Nematode Communities in Citrus.

    PubMed

    Macchia, E T; McSorley, R; Duncan, L W; Syvertsen, J S

    2003-12-01

    The effects of perennial peanut (Arachis glabrata) ground cover on the nematode community in a citrus orchard were examined. Samples were taken from two different ground cover treatments (perennial peanut or bare ground) at each of three distances from the tree trunk. Richness, measured as total numbers of nematode genera per sample, and total numbers of nematodes were greatest in the perennial peanut treatment (P < 0.05). Abundance of many genera of bacterivores, fungivores, and omnivores were increased by the perennial peanut ground cover. Total numbers of plant parasites were greater in perennial peanut treatments on three of the five sampling dates (P < 0.05), mainly due to trends in numbers of Mesocriconema. Distance from a tree trunk and the interaction of ground cover treatments and proximity to a tree trunk were most influential for Belonolaimus and Hoplolaimus. Although differences among treatments were observed for nematode genera and trophic groups, ecological indices were not consistently sensitive to treatments. Among several ecological indices evaluated, richness was most often affected by ground cover treatment.

  4. Perennial peanut (Arachis glabrata Benth.) leaves contain hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase activity and accumulate hydroxycinnamoyl-tartaric acid esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate hydroxycinnamoyl esters to protect against abiotic and biotic stresses. Caffeoyl esters, in particular, can be substrates for endogenous polyphenol oxidases (PPOs). Recently, we showed that perennial peanut (Arachis glabrata Benth.) leaves contain PPO and identified one PPO su...

  5. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata

    PubMed Central

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800

  6. Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection.

    PubMed

    Leal-Bertioli, Soraya C M; Cavalcante, Uiara; Gouvea, Ediene G; Ballén-Taborda, Carolina; Shirasawa, Kenta; Guimarães, Patrícia M; Jackson, Scott A; Bertioli, David J; Moretzsohn, Márcio C

    2015-05-05

    Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts.

  7. Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection

    PubMed Central

    Leal-Bertioli, Soraya C. M.; Cavalcante, Uiara; Gouvea, Ediene G.; Ballén-Taborda, Carolina; Shirasawa, Kenta; Guimarães, Patrícia M.; Jackson, Scott A.; Bertioli, David J.; Moretzsohn, Márcio C.

    2015-01-01

    Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts. PMID:25943521

  8. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  9. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  10. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  11. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  12. Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut.

    PubMed

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    We have identified a transcript derived fragment (TDF) corresponding to SGT1 in a study of differential gene expression on the resistant wild peanut, Arachis diogoi, upon challenge from the late leaf spot pathogen, Phaeoisariopsis personata, and cloned its full-length cDNA followed by subsequent validation through q-PCR. Sodium nitroprusside, salicylic acid, ethephon and methyl jasmonate induced the expression of AdSGT1, while the treatment with abscisic acid did not elicit its up-regulation. AdSGT1 is localized to both nucleus and cytoplasm. Its overexpression induced hypersensitive-like cell death in tobacco under transient conditional expression using the estradiol system, and this conditional expression of AdSGT1 was also associated with the up-regulation of NtHSR203J, HMGR and HIN1, which have been shown to be associated with hypersensitive response in tobacco in earlier studies. Expression of the cDNA in a susceptible cultivated peanut variety enhanced its resistance against the late leaf spot pathogen, Phaeoisariopsis personata, while the heterologous expression in tobacco enhanced its resistance against Phytophthora parasitica var. nicotianae, Alternaria alternata var. nicotianae and Rhizoctonia solani. Constitutive expression in peanut was associated with the co-expression of resistance-related genes, CC-NB-LRR and some protein kinases. PMID:25236372

  13. Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut.

    PubMed

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    We have identified a transcript derived fragment (TDF) corresponding to SGT1 in a study of differential gene expression on the resistant wild peanut, Arachis diogoi, upon challenge from the late leaf spot pathogen, Phaeoisariopsis personata, and cloned its full-length cDNA followed by subsequent validation through q-PCR. Sodium nitroprusside, salicylic acid, ethephon and methyl jasmonate induced the expression of AdSGT1, while the treatment with abscisic acid did not elicit its up-regulation. AdSGT1 is localized to both nucleus and cytoplasm. Its overexpression induced hypersensitive-like cell death in tobacco under transient conditional expression using the estradiol system, and this conditional expression of AdSGT1 was also associated with the up-regulation of NtHSR203J, HMGR and HIN1, which have been shown to be associated with hypersensitive response in tobacco in earlier studies. Expression of the cDNA in a susceptible cultivated peanut variety enhanced its resistance against the late leaf spot pathogen, Phaeoisariopsis personata, while the heterologous expression in tobacco enhanced its resistance against Phytophthora parasitica var. nicotianae, Alternaria alternata var. nicotianae and Rhizoctonia solani. Constitutive expression in peanut was associated with the co-expression of resistance-related genes, CC-NB-LRR and some protein kinases.

  14. Effect of peanut powder (Arachis hypogeae L., 1753) on zootechnic parameters and sex inversion in catfish Clarias gariepinus.

    PubMed

    Jacques, Dougnon T; Elie, Montchowui; Messanvi, Gbeassor

    2015-01-01

    Benin is currently experiencing an overexploitation of piscatorial resources; this requires the research of endogenous means to increase the biomass of fish produced thanks to fish farming activities. The present study intends to improve the zootechnic performances and inverse the sex in catfish Clarias gariepinus. Therefore, 240 larvae obtained from artificial reproduction were used for this study. Three different feed were tested. The control feed (TO) was without peanut powder; contrary, the two experimental feeds were containing the powder at the rates of 10% (T1) and 20% (T2). The best growth of 94.51±27.14 g was recorded with the treatment T2 and 71.32±25.58 g from treatment T1 and finally 54.83±22.19 g from the control group. The sex inversion rate varied from 50% in the control group to 66.13% in lot 1 then 80.13% in lot 2. However, survival rates were low and varied from 26.25% for T2, to 30% in TO then 42.5% in T1. This study permitted to get better results about the zootechnic parameters and the sex inversion in Clarias gariepinus at incorporation rates of 10% and 20% of peanut powder "Arachis hypogeae." PMID:26571988

  15. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L.

    PubMed

    Zhan, Jie; He, Hu-Yi; Wang, Tian-Ju; Wang, Ai-Qin; Li, Chuang-Zhen; He, Long-Fei

    2013-09-01

    Programmed cell death (PCD) is a foundational cellular process in plant development and elimination of damaged cells under environmental stresses. In this study, Al induced PCD in two peanut (Arachis hypoganea L.) cultivars Zhonghua 2 (Al-sensitive) and 99-1507 (Al-tolerant) using DNA ladder, TUNEL detection and electron microscopy. The concentration of Al-induced PCD was lower in Zhonghua 2 than in 99-1507. AhSAG, a senescence-associated gene was isolated from cDNA library of Al-stressed peanut with PCD. Open reading frame (ORF) of AhSAG was 474bp, encoding a SAG protein composed of 157 amino acids. Compared to the control and the antisense transgenic tobacco plants, the fast development and blossom of the sense transgenic plants happened to promote senescence. The ability of Al tolerance in sense transgenic tobacco was lower than in antisense transgenic tobacco according to root elongation and Al content analysis. The expression of AhSAG-GFP was higher in sense transgenic tobacco than in antisense transgenic tobacco. Altogether, these results indicated that there was a negative relationship between Al-induced PCD and Al-resistance in peanut, and the AhSAG could induce or promote the occurrence of PCD in plants. PMID:23849118

  16. Effect of peanut powder (Arachis hypogeae L., 1753) on zootechnic parameters and sex inversion in catfish Clarias gariepinus.

    PubMed

    Jacques, Dougnon T; Elie, Montchowui; Messanvi, Gbeassor

    2015-01-01

    Benin is currently experiencing an overexploitation of piscatorial resources; this requires the research of endogenous means to increase the biomass of fish produced thanks to fish farming activities. The present study intends to improve the zootechnic performances and inverse the sex in catfish Clarias gariepinus. Therefore, 240 larvae obtained from artificial reproduction were used for this study. Three different feed were tested. The control feed (TO) was without peanut powder; contrary, the two experimental feeds were containing the powder at the rates of 10% (T1) and 20% (T2). The best growth of 94.51±27.14 g was recorded with the treatment T2 and 71.32±25.58 g from treatment T1 and finally 54.83±22.19 g from the control group. The sex inversion rate varied from 50% in the control group to 66.13% in lot 1 then 80.13% in lot 2. However, survival rates were low and varied from 26.25% for T2, to 30% in TO then 42.5% in T1. This study permitted to get better results about the zootechnic parameters and the sex inversion in Clarias gariepinus at incorporation rates of 10% and 20% of peanut powder "Arachis hypogeae."

  17. Peanuts and their nutritional aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is a legume crop that belongs to the family of Fabaceae, genus Arachis, and botanically named as Arachis hypogaea. Peanuts are consumed in many forms such as boiled peanuts, peanut oil, peanut butter, roasted peanuts, and added peanut meal in snack food, energy bars and candies. Peanuts are c...

  18. Characterization of a vacuolar processing enzyme expressed in Arachis diogoi in resistance responses against late leaf spot pathogen, Phaeoisariopsis personata.

    PubMed

    Kumar, Dilip; Rampuria, Sakshi; Singh, Naveen Kumar; Shukla, Pawan; Kirti, P B

    2015-05-01

    Vacuolar processing enzymes are cysteine proteases responsible for maturation of vacuolar proteins. They have been shown to possess caspase-1-like activity, mediate cell death and display increased activity during pathogen infections. A transcript derived fragment corresponding to VPE was found to be up-regulated in a cDNA-AFLP analysis of host responses of a wild peanut, Arachis diogoi upon challenge from the late leaf spot pathogen Phaeoisariopsis personata, which was subsequently validated by q-PCR in a time course analysis, where susceptible peanut did not show its upregulation. In transient conditional and constitutive expression studies in tobacco leaves using agroinfiltration, we have observed that expression of AdVPE was associated with hypersensitive response (HR) like cell death. AdVPE expression was found to be high at 24 h post estradiol application and this was associated with the enhanced co-expression of molecular markers of HR cell death genes and genes for pathogenesis related proteins indicating that AdVPE positively regulates defense responses and its estradiol induced expression is sufficient for HR-like cell death in tobacco. We found that AdVPE expression was very strongly induced in response to sodium nitroprusside, which indicates its involvement in stress signaling. Induced expression of AdVPE in response to jasmonic acid and ethylene also indicates its involvement in an interconnected network of signaling. Transgenic tobacco plants ectopically expressing AdVPE exhibited enhanced resistance against Phytophthora parasitica var. nicotianae, Alternaria alternata var.  nicotianae and Rhizoctonia solani. To our knowledge, this is the first report on the heterologous expression of a pathogen induced VPE enhancing resistance to fungal pathogens with cell death phenomenon under transient expression. PMID:25893777

  19. Effect of insecticides alone and in combination with fungicides on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils.

    PubMed

    Srinivasulu, M; Jaffer Mohiddin, G; Subramanyam, K; Rangaswamy, V

    2012-06-01

    The effect of selected pesticides, monocrotophos, chlorpyrifos alone and in combination with mancozeb and carbendazim, respectively, was tested on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils. The oxidation of ammonical nitrogen was significantly enhanced under the impact of selected pesticides alone and in combinations at 2.5 kg ha(-1) in black soil, and furthermore, increase in concentration of pesticides decreased the rate of nitrification, whereas in the case of red soil, the nitrification was increased up to 5.0 kg ha(-1) after 4 weeks, and then decline phase was started gradually from 6 to 8 weeks of incubation. The activity of phosphatase was increased in soils, which received the monocrotophos alone and in combination with mancozeb up to 2.5 and 5.0 kg ha(-1), whereas the application of chlorpyrifos singly and in combination with carbendazim at 2.5 kg ha(-1) profoundly increased the phosphatase activity after 20 days of incubation, in both soils. But higher concentrations of pesticides were either innocuous or inhibitory to the phosphatase activity.

  20. Isolation and characterization of symbiotic mutants of bradyrhizobium sp. (Arachis) strain NC92: mutants with host-specific defects in nodulation and nitrogen fixation.

    PubMed Central

    Wilson, K J; Anjaiah, V; Nambiar, P T; Ausubel, F M

    1987-01-01

    Random transposon Tn5 mutagenesis of Bradyrhizobium sp. (Arachis) strain NC92, a member of the cowpea cross-inoculation group, was carried out, and kanamycin-resistant transconjugants were tested for their symbiotic phenotype on three host plants: groundnut, siratro, and pigeonpea. Two nodulation (Nod- phenotype) mutants were isolated. One is unable to nodulate all three hosts and appears to contain an insertion in one of the common nodulation genes (nodABCD); the other is a host-specific nodulation mutant that fails to nodulate pigeonpea, elicits uninvaded nodules on siratro, and elicits normal, nitrogen-fixing nodules on groundnut. In addition, nine mutants defective in nitrogen fixation (Fix- phenotype) were isolated. Three fail to supply symbiotically fixed nitrogen to all three host plants. Surprisingly, nodules elicited by one of these mutants exhibit high levels of acetylene reduction activity, demonstrating the presence of the enzyme nitrogenase. Three more mutants have partially effective phenotypes (Fix +/-) in symbiosis with all three host plants. The remaining three mutants fail to supply fixed nitrogen to one of the host plants tested while remaining partially or fully effective on the other two hosts; two of these mutants are Fix- in pigeonpea and Fix +/- on groundnut and on siratro, whereas the other one is Fix- on groundnut but Fix+ on siratro and on pigeonpea. These latter mutants also retain significant nodule acetylene reduction activity, even in the ineffective symbioses. Such bacterial host-specific fixation (Hsf) mutants have not previously been reported. Images PMID:3032910

  1. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco

    PubMed Central

    Sharma, Akanksha; Kumar, Dilip; Kumar, Sumit; Rampuria, Sakshi; Reddy, Attipalli R.; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants. PMID:26938884

  2. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco.

    PubMed

    Sharma, Akanksha; Kumar, Dilip; Kumar, Sumit; Rampuria, Sakshi; Reddy, Attipalli R; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants. PMID:26938884

  3. Perennial peanut (Arachis glabrata Benth.) leaves contain hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase activity and accumulate hydroxycinnamoyl-tartaric acid esters.

    PubMed

    Sullivan, Michael L

    2014-05-01

    Many plants accumulate hydroxycinnamoyl esters to protect against abiotic and biotic stresses. Caffeoyl esters in particular can be substrates for endogenous polyphenol oxidases (PPOs). Recently, we showed that perennial peanut (Arachis glabrata Benth.) leaves contain PPO and identified one PPO substrate, caftaric acid (trans-caffeoyl-tartaric acid). Additional compounds were believed to be cis- and trans-p-coumaroyl tartaric acid and cis- and trans-feruloyl-tartaric acid, but lack of standards prevented definitive identifications. Here we characterize enzymatic activities in peanut leaves to understand how caftaric acid and related hydroxycinnamoyl esters are made in this species. We show that peanut leaves contain a hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase (HTT) activity capable of transferring p-coumaroyl, caffeoyl, and feruloyl moieties from CoA to tartaric acid (specific activities of 11 ± 2.8, 8 ± 1.8, 4 ± 0.8 pkat mg(-1) crude protein, respectively). The HTT activity was used to make cis- and trans-p-coumaroyl- and -feruloyl-tartaric acid in vitro. These products allowed definitive identification of the corresponding cis- and trans-hydroxycinnamoyl esters extracted from leaves. We tentatively identified sinapoyl-tartaric acid as another major phenolic compound in peanut leaves that likely participates in secondary reactions with PPO-generated quinones. These results suggest hydroxycinnamoyl-tartaric acid esters are made by an acyltransferase, possibly a BAHD family member, in perennial peanut. Identification of a gene encoding HTT and further characterization of the enzyme will aid in identifying determinants of donor and acceptor substrate specificity for this important class of biosynthetic enzymes. An HTT gene could also provide a means by genetic engineering for producing caffeoyl- and other hydroxycinnamoyl-tartaric acid esters in forage crops that lack them.

  4. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco.

    PubMed

    Sharma, Akanksha; Kumar, Dilip; Kumar, Sumit; Rampuria, Sakshi; Reddy, Attipalli R; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants.

  5. Analysis of Peanut Seed Oil by NIR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectra (NIRS) were collected from Arachis hypogaea seed samples and used in predictive models to rapidly identify varieties with high oleic acid. The method was developed for shelled peanut seeds with intact testa. Spectra were evaluated initially by principal component an...

  6. Effects of irrigation method and tillage regime on peanut reproductive processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage use in peanut (Arachis hypogaea L.) is becoming a favorite choice of many growers. However, grower concerns have arisen about the possible deleterious effects of minimum till systems on peanut reproduction, specifically in regards to interference of pegging by the cover crop re...

  7. Effect of rainfall on applied gypsum and its relationship to the calcium demands of developing peanuts in the pegging zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well documented that peanut (Arachis hypogaea) requires calcium in the upper 7 cm of soil (pegging zone) for proper seed development. The objectives of this study are to (1) determine the peanut developmental stages that absorb calcium, (2) quantify the amount of rainfall required to leach cal...

  8. Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated peanut (Arachis hypogaea L.) is grown throughout the world as a source of oil and protein. A broad genetic base is needed for the genetic improvement of cultivars with quality traits through breeding. In this study, a total of 111 SSR markers with high polymorphic information content (PIC...

  9. Divergence in drought-resistance traits among parents of recombinant peanut inbred lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is often grown in climates of intermittent drought on sandy soils. Plants expressing water-conservative traits would minimize exposure to end-of-season, severe drought. Two traits resulting in conservative transpiration rates (TR s) are limitations on TR with soil dryi...

  10. Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important source for edible oil and protein. It is important to identify genetic diversity of peanut for cultivar development. In this study, 111 SSR markers with high polymorphic information content (PIC) were used to assess the genetic variation of 79 peanut cult...

  11. Characterization of expressed resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated peanut (Arachis hypogaea L.) is one of the most important food legume crops grown worldwide, and is a major source for edible oil and protein. However, due to low genetic variation, peanut is very vulnerable to a variety of pathogens, such as early leaf spot, late leaf spot, rust and Toma...

  12. Identification of expressed resistance gene analogs (RGA.) from peanut expressed sequence tage (EST.) and development of RGA-SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated peanut (Arachis hypogaea L.) is an important food and oil crop grown in more than 100 countries for providing edible oil and protein. A wide variety of pathogens including fungi, bacteria, viruses, and nematodes severely constrain peanut yield and quality. Therefore, it is very imp...

  13. Crop Yield Response to Increasing Biochar Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  14. Field evaluations of leaf spot resistance and yield in peanut genotypes in the United States and Bolivia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted in 2002-2006 to characterize yield potential and disease resistance to Cercospora arachidicola (early leaf spot) and Cercosporidium personatum (late leaf spot) in the Bolivian peanut (Arachis hypogaea) cultivar, Bayo Grande, and breeding lines developed from crosses ...

  15. Generating a Natural Porcine Model of Gastrointestinal Food Allergy to Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The peanut (Arachis hypogaea) is an extremely potent allergen and is one of the most life-threatening food sensitivities known. Peanuts cause the majority of food-related anaphylaxis in children, adolescents, and adults. There is no good animal model currently in place to study peanut allergies. Exp...

  16. Environmental and varietal effects on the niacin content of raw and roasted peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are known to be a source of several important B-vitamins, including niacin (Vitamin B3). A total of 39 Florunner and NC7 samples from the 2007 and 2008 Uniform Peanut Performance Test (UPPT) were analyzed to compare their niacin content from 10 different growing locati...

  17. Quantification of Niacin and Folate Contents in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are known to be sources of several important B-vitamins, including niacin and folate. Recent research has shown that therapeutic doses of niacin are beneficial for vascular health; therefore, determination of the concentrations found in current varieties in production ...

  18. Proteomic analysis of differential protein expression and processing induced modifications in peanuts and peanut skins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is grown extensively worldwide for its edible seed and oil. Proteomics has become a powerful tool in plant research; however, studies involving legumes, and especially peanuts, are in their infancy. Furthermore, protein expression in the peanut seed coat (skin), which is...

  19. Peanut pod, seed, and oil yield for biofuel following conventional and organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in demand for organic peanut (Arachis hypogaea L.) makes it increasingly necessary to develop organic methods in their production. Corn gluten meal (CGM) and vinegar are materials used in organic weed control. These were used alone, or in conjunction with cultivation, to evaluate their ef...

  20. Effects of new field resistant cultivars and in-furrow applications of phorate insecticide on tomato spotted wilt of peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted at Tifton, Georgia from 2008 to 2014 to determine the effects of new peanut (Arachis hypogaea L.) cultivars and in-furrow applications of phorate insecticide on severity of tomato spotted wilt (TSW) caused by Tomato spotted wilt virus. Several cultivars, including Fl...

  1. Registration of high-oleic peanut germplasm line ARSOK-S1 (TX996784) with enhanced resistance to Sclerotinia blight and pod rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high oleic Spanish peanut (Arachis hypogaea L. subsp. fastigiata var. vulgaris) germplasm line ARSOK-S1 was developed cooperatively between the USDA Agricultural Research Service, Texas AgriLife Research, and Oklahoma State University, and was released in 2013. ARSOK-S1 (tested early as TX99678...

  2. Registration of 'OLé' peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OLé peanut (experimental designation ARSOK-S140-1OL) is a high oleic Spanish-type peanut (Arachis hypogaea L. subsp. fastigiata var. vulgaris) that was cooperatively released by the USDA-ARS and the Oklahoma Agricultural Experiment Station in 2014. OLé is the product of a Tamspan 90 X F435, the ori...

  3. Soil organic carbon dynamics in a sod-based rotation on coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A frequently used cropping system in the southeastern Coastal Plain is an annual rotation of cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) under conventional tillage (CT). The traditional peanut-cotton rotation (TR) often results in erosion and loss of soil organic carbon (SOC). In...

  4. Strip tillage for single and twin-row peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil degradation and rising production costs have prompted grower interest in conservation tillage with high residue cover crops for peanut (Arachis hypogaea L.). The objective was to evaluate single and twin-row peanut production across three different strip tillage implements with and without a c...

  5. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region’s water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little publishe...

  6. The Effects of Roast Intensity on the Texture of Peanut Paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texture is central to consumer acceptability of peanut butter and peanut-based food products in general. The majority of peanuts are roasted; however, the effect of this operation on peanut texture was unclear. Accordingly, runner peanut seed (Arachis hypogaea L.) were dry roasted in a forced air co...

  7. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the US mini core collection were analyzed for differentially expressed leaf proteins during reproductive stage under water-deficit stress. Accessions showing tolerant and susceptible responses to stress were selected based on a bioassay involving chloroph...

  8. Transcript and Proteome Response to Water-deficit and Thermal Stress in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) genotypes from the U.S. mini-core collection were screened for contrasting responses to slow-onset water-deficit and supra-optimal temperature. Seventy accessions were initially screened for basal thermotolerance, photosynthetic response, cellular damage, and recovery f...

  9. Assessing genetic diversity in Valencia peanut germplasm using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Valencia peanuts (Arachis hypogaea L.ssp. fastigiata var. fastigiata) are well known for their in-shell market value. Assessment of genetic diversity of the available Valencia germplasm is key to the success of developing improved cultivars with desirable agronomic and quality traits. In the pres...

  10. Relationship between root characteristics of peanut in hydroponics and pot studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large root system can be an important character for drought tolerance. Measuring root characteristics in soil medium is tedious, time consuming, and labor intensive. The objective of this study was to determine the association between root characteristics of peanut (Arachis hypogaea L.) Grown in...

  11. Utilization of SNP, SSR, and biochemical data to evaluate genetic and phenotypic diversity in the U.S. peanut germplasm collection.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are nutritious because their seeds typically contain high amounts of oil, protein, phytochemicals such as resveratrol, and antioxidants such as tocopherol and folic acid; therefore, they are an important oil seed crop worldwide. The genetic diversity and population stru...

  12. Chemical Interruption of Flowering to Improve Harvested Peanut Maturity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is a botanically indeterminate plant where flowering, fruit initiation, and pod maturity occurs over an extended time period during the growing season. As a result, the maturity and size of individual peanut pods varies considerably at harvest. Immature kernels that meet...

  13. Spectroscopic analysis of catechins in peanut seed skins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts, Arachis hypogaea, are cultivated as a source of edible seed oil and protein. The peanut seed testa or skin that surrounds the seed is typically removed after the shelling process by blanching. Several phenolic compounds such as catechins may be isolated as co-products from peanut seed skins...

  14. An overview on peanut germplasm collection, evaluation, and utilization in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important source of vegetable oil and protein worldwide, with China being the largest producer during the past two decades. Genetic enhancement has been crucial in peanut industry development in China and many other countries. Systematic collection and preservation...

  15. Effect of gypsum application on mineral composition in peanut pod walls and seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alleviation of soil-Ca deficiency through gypsum amendment increases the yield potential and ensures high seed quality in peanut (Arachis hypogaea L.). The effects of gypsum treatment, plant life cycle stage, and the fruit development stages on the accrual of several essential minerals (Ca, S, Mg, P...

  16. Strategies to mitigate peanut allergy: production, processing, utilization, and immunotherapy considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important crop grown worldwide for food and edible oil. The surge of peanut allergy in the past 25 years has profoundly impacted both affected individuals and the peanut and related food industries. In response, several strategies to mitigate peanut allergy have em...

  17. QTLs from genome to field using markers and genetic maps for peanut improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is widely grown in the semi-arid tropics regions of Asia, Africa and Latin America where several stress factors together adversely affect productivity. Collaborative efforts led development of large scale genomic resources setting platform for genomics-assisted breeding (GA...

  18. Genetic mapping and QTL analysis of disease resistance traits in peanut population Tifrunner x GT-C20

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetic map of peanut (Arachis hypogaea L.) with 426 SSR markers was constructed using a population of 162 recombinant inbred lines (RILs) from a cross between ‘Tifrunner’ and ‘GT-C20’. Linkage groups (LGs) were assigned to chromosomes using published peanut reference maps. The total length of the...

  19. Potential nitrogen credits from peanut residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Availability of residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Following peanut (Arachis hypogaea L.) production, extension currently recommends 22-67 kg N ha-1 credit to subsequent crops, but these recommendations are not supported in the liter...

  20. EST-based Microsatellite Marker Data Mining and Characterizing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important crop for oil production. In the recent years, molecular marker technologies have been widely applied to genetic diversity analysis, genetic mapping, molecular marker-assisted breeding, gene tagging and QTLs analysis. However, it is expensive, labor-intens...

  1. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress and future perspectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus and A. parasiticus results in the contamination with carcinogenic mycotoxins known as aflatoxins leading to economic losses as well as a potential health threat to human. The interactio...

  2. Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants.

    PubMed Central

    Gillette, W K; Elkan, G H

    1996-01-01

    The common nodulation locus and closely linked nodulation genes of Bradyrhizobium (Arachis) sp. strain NC92 have been isolated on an 11.0-kb EcoRI restriction fragment. The nucleotide sequence of a 7.0-kb EcoRV-EcoRI subclone was determined and found to contain open reading frames (ORFs) homologous to the nodA, nodB, nodD1, nodD2, and nolA genes of Bradyrhizobium japonicum and Bradyrhizobium elkanii. Nodulation assays of nodD1, nodD2, or nolA deletion mutants on the host plants Macroptilium atropurpureum (siratro) and Vigna unguiculata (cowpea) indicate that nolA is required for efficient nodulation, as nolA mutants exhibit a 6-day nodulation delay and reduced nodule numbers. The nolA phenotype was complemented by providing the nolA ORF in trans, indicating that the phenotype is due to the lack of the nolA ORF. nodD1 mutants displayed a 2-day nodulation delay, whereas nodD2 strains were indistinguishable from the wild type. Translational nodA-lacZ, nodD1-lacZ, nodD2-lacZ, and nolA-lacZ fusions were created. Expression of the nodA-lacZ fusion was induced by the addition of peanut, cowpea, and siratro seed exudates and by the addition of the isoflavonoids genistein and daidzein. In a nodD1 or nodD2 background, basal expression of the nodA-lacZ fusion increased two- to threefold. The level of expression of the nodD2-lacZ and nolA-lacZ fusions was low in the wild type but increased in nodD1, nodD2, and nodD1 nodD2 backgrounds independently of the addition of the inducer genistein. nolA was required for increased expression of the nodD2-lacZ fusion. These data suggest that a common factor is involved in the regulation of nodD2 and nolA, and they are also consistent with a model of nod gene expression in Bradyrhizobium (Arachis) sp. strain NC92 in which negative regulation is mediated by the products of the nodD1 and nodD2 genes. PMID:8631662

  3. A novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi, expressed in resistance responses against late leaf spot pathogen, induces cell death when transexpressed in tobacco.

    PubMed

    Kumar, Dilip; Rampuria, Sakshi; Singh, Naveen Kumar; Kirti, Pulugurtha B

    2016-03-01

    A novel zinc-binding alcohol dehydrogenase 2 (AdZADH2) was significantly upregulated in a wild peanut, Arachis diogoi treated with conidia of late leaf spot (LLS) pathogen, Phaeoisariopsis personata. This upregulation was not observed in a comparative analysis of cultivated peanut, which is highly susceptible to LLS. This zinc-binding alcohol dehydrogenase possessed a Rossmann fold containing NADB domain in addition to the MDR domain present in all previously characterized plant ADH genes/proteins. Transient over-expression of AdZADH2 under an estradiol inducible promoter (XVE) resulted in hypersensitive response (HR)-like cell death in tobacco leaf. However, the same level of cell death was not observed when the domains were transiently expressed individually. Cell death observed in tobacco was associated with overexpression of cell death related proteins, antioxidative enzymes such as SOD, CAT and APX and pathogenesis-related (PR) proteins. In A. diogoi, AdZADH2 expression was significantly upregulated in response to the plant signaling hormones salicylic acid, methyl jasmonate, and sodium nitroprusside. PMID:27047748

  4. Recognition of a CD4+ mouse medullary thymocyte subpopulation by Amaranthus leucocarpus lectin.

    PubMed Central

    Lascurain, R; Chávez, R; Gorocica, P; Pérez, A; Montaño, L F; Zenteno, E

    1994-01-01

    We have used the Gal beta(1-->3)GalNAc-specific Amaranthus leucocarpus lectin to isolate a thymus cell subpopulation which is different from that sorted with Arachis hypogaea lectin. The cells recognized by A. leucocarpus lectin were predominantly CD4+, whereas a minor proportion of CD8+ cells (approximately 11%) were also identified. The A. leucocarpus-positive cells were located in the thymus medulla and the cortico-medullary junction. The cortex was negative for A. leucocarpus cells. Images Figure 1 Figure 2 Figure 3 PMID:7835965

  5. Identification and characterization of a hypoallergenic ortholog of Ara h 2.01.

    PubMed

    Ramos, M Laura; Huntley, James J; Maleki, Soheila J; Ozias-Akins, Peggy

    2009-02-01

    Peanut (Arachis hypogaea L.), can elicit type I allergy becoming the most common cause of fatal food-induced anaphylactic reactions. Strict avoidance is the only effective means of dealing with this allergy. Ara h 2, a peanut seed storage protein, has been identified as the most potent peanut allergen and is recognized by approximately 90% of peanut hypersensitive individuals in the US. Because peanut has limited genetic variation, wild relatives are a good source of genetic diversity. After screening 30 Arachis duranensis accessions by EcoTILLing, we characterized five different missense mutations in ara d 2.01. None of these polymorphisms induced major conformational modifications. Nevertheless, a polymorphism in the immunodominant epitope #7 (S73T) showed a 56-99% reduction in IgE-binding activity and did not affect T cell epitopes, which must be retained for effective immunotherapy. The identification of natural hypoallergenic isoforms positively contributes to future immunological and therapeutic studies and peanut cultivar development.

  6. Application of peanut butter to improve fatty acid composition of biscuits.

    PubMed

    Gajera, H P; Kapopara, M B; Patel, V H

    2010-06-01

    Biscuits prepared with different levels of hydrogenated fat (vanaspati) and peanut (Arachis hypogaea L.) butter (PB) (100:00, 75:25, 50;50, 25;75, 00:100) were evaluated for their fatty acid composition and textural property. Saturated fatty acids like myristic, palmitic, stearic acids were higher in control biscuits (100% vanaspati), which decreased with increasing proportion of PB in the experimental biscuits. Oleic acid and linoleic acid were lowest in control biscuits and it gradually increased upon incorporation of PB. The hardness of biscuits also increased with increasing proportion of PB. Overall sensory quality of experimental biscuits improved when 50% vanaspati replaced by PB in the standard biscuits recipe. Biscuits prepared with 50% supplementation of PB had better fatty acid composition with balanced oil quality and also had a greater acceptability by sensory evaluation panel.

  7. Evidence for the Adhesive Function of the Exopolysaccharide of Hyphomonas Strain MHS-3 in Its Attachment to Surfaces

    PubMed Central

    Quintero, E. J.; Weiner, R. M.

    1995-01-01

    Hyphomonas strain MHS-3 (MHS-3) is a marine procaryote with a biphasic life cycle and which has prosthecate stages that adhere to submerged substrata. We found that adherent forms produced an exopolysaccharide (EPS) capsule that bound Glycine max lectin, Arachis hypogaea lectin, and Bauhinia purpurea lectin (BPA), each having affinity for N-acetyl-d-galactosamine. It also bound the dye Calcofluor. BPA and Calcofluor were tested for the ability to hinder MHS-3 adhesion to glass surfaces; they reduced attachment by >50 and >85%, respectively. Periodate treatment also reduced attachment (by >80%), but pronase treatment did not. Furthermore, an EPS(sup-) variant, Hyphomonas strain MHS-3 rad, did not attach well to surfaces. These results suggest that the MHS-3 EPS capsule is an adhesin. PMID:16535028

  8. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    PubMed

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  9. Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought.

    PubMed

    Aninbon, C; Jogloy, S; Vorasoot, N; Patanothai, A; Nuchadomrong, S; Senawong, T

    2016-04-01

    Terminal drought reduces pod yield and affected the phenolic content of leaves, stems and seed of peanut (Arachis hypogaea L.). The aim of this study was to investigate the effects of end of season water deficit on phenolic content in drought tolerant and sensitive genotypes of peanuts. Five peanut genotypes were planted under two water regimes, field capacity and 1/3 available water. Phenolic content was analyzed in seeds, leaves, and stems. The results revealed that terminal drought decreased phenolic content in seeds of both tolerant and sensitive genotypes. Phenolic content in leaves and stems increased under terminal drought stress in both years. This study provides basic information on changes in phenolic content in several parts of peanut plants when subjected to drought stress. Future studies to define the effect of terminal drought stress on specific phenolic compounds and antioxidant properties in peanut are warranted.

  10. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    PubMed

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops.

  11. Nitrogen Fixation in Peanut Nodules during Dark Periods and Detopped Conditions with Special Reference to Lipid Bodies 1

    PubMed Central

    Siddique, Abu-baker M.; Bal, Arya K.

    1991-01-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of β-oxidation pathway and, glyoxylate cycle is shown by the release of 14CO2 from 14C lineoleoyl coenzyme A by the nodule homogenate. Images Figure 2 Figure 4 PMID:16668069

  12. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  13. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  14. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions.

    PubMed

    Qin, Hua; Gu, Qiang; Zhang, Junling; Sun, Li; Kuppu, Sundaram; Zhang, Yizheng; Burow, Mark; Payton, Paxton; Blumwald, Eduardo; Zhang, Hong

    2011-11-01

    Isopentenyltransferase (IPT) is a critical enzyme in the cytokinin biosynthetic pathway. The expression of IPT under the control of a maturation- and stress-induced promoter was shown to delay stress-induced plant senescence that resulted in an enhanced drought tolerance in both monocot and dicot plants. This report extends the earlier findings in tobacco and rice to peanut (Arachis hypogaea L.), an important oil crop and protein source. Regulated expression of IPT in peanut significantly improved drought tolerance in both laboratory and field conditions. Transgenic peanut plants maintained higher photosynthetic rates, higher stomatal conductance and higher transpiration than wild-type control plants under reduced irrigation conditions. More importantly, transgenic peanut plants produced significantly higher yields than wild-type control plants in the field, indicating a great potential for the development of crops with improved performance and yield in water-limited areas of the world.

  15. Investigations into rhizosphere microflora of some plants in Libya.

    PubMed

    Selim, M S; Khalil, G A

    1979-01-01

    The present investigation deals with the effect of raising Hordeum vulgare and Arachis hypogaea at two different stages on the microbial rhizosphere population. The studies were extended to reveal the microbiological occurrence in different horizons of a soil profile corresponding in length to root regions. Bacteria were most abundant, followed by actinomycetes while fungi were less abundant and more restricted in their distribution. The three groups of microorganisms varied markedly in the rhizosphere of the two plants under investigation. The plant age had a great influence on the frequency of occurrence of the different microorganisms. One strain of bacteria, six fungi and the members of the grey series of Streptomyces were dominant. Actinomycetes and fungi diminished with the depth of soil, while the bacterial counts increased.

  16. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect

    Siddique, A.M.; Bal, A.K. )

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  17. Interaction of a novel Tn (GalNAc alpha 1-->Ser/Thr) glycoprotein with Gal, GalNAc and GlcNAc specific lectins.

    PubMed

    Wu, A M; Wu, J H; Shen, F

    1994-01-14

    A naturally occurring Tn glycoprotein (Native ASG-Tn) with GalNAc alpha 1-->Ser/Thr as the only carbohydrate side chains, has been prepared from armadillo submandibular glands. In a quantitative precipitin assay, this glycoprotein completely precipitated Maclura pomifera (MPA), Vicia villosa B4 (VVL-B4) and Artocarpus integrifolia (Jacalin, AIL). It also reacted well with Helix pomatia (HPL) and Wistaria floribunda (WFL) and precipitated over 75% of the lectin nitrogen added, but poorly with Ricinus communis agglutinin (RCA1), ricin, peanut (Arachis hypogaea, PNA), Abrus precatorius agglutinin (APA) and Triticum vulgaris (WGA). This finding suggests that this novel Tn-glycoprotein may serve as a useful reagent for differentiating Tn and T specific monoclonal antibodies and lectins.

  18. Tissue binding pattern of plant lectins in benign and malignant lesions of thyroid.

    PubMed

    Vijayakumar, T; Augustine, J; Mathew, L; Aleykutty, M A; Nair, M B; Remani, P; Nair, M K

    1992-01-01

    N-acetyl D-galactosamine specific lectins were isolated from the seeds of Jack Fruit (Artocarpus integrifolia) and Winged bean (Psophocarpus tetragonolobus) and D-galactose specific lectin was isolated from peanut (Arachis hypogaea). These lectins were conjugated to Horse Radish Peroxidase (HRP) and were used to study the lectin binding properties of benign and malignant lesions of the thyroid. For comparison of the results 10 normal fresh autopsy specimens were included in the study. The Peanut lectin (PNL) and Jack fruit lectin (JFL) conjugates showed positive binding with the cells in different lesions, while Winged Bean Lectin (WBL), despite its having a common inhibitory sugar, showed no binding even after neuraminidase treatment. These lectins revealed difference in the composition of glycoconjugates of benign and malignant thyroid cells. The HRP conjugated JFL and PNL may be of use in distinguishing carcinomatous tissues from benign tissues which makes them potential tools in the differential diagnosis of thyroid lesions.

  19. Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants.

    PubMed

    Figueredo, Maria Soledad; Tonelli, Maria Laura; Taurian, Tania; Angelini, Jorge; Ibanez, Fernando; Valetti, Lucio; Munoz, Vanina; Anzuay, Maria Soledad; Luduena, Liliana; Fabra, Adriana

    2014-12-01

    Plant-growth-promoting bacteria are often used to enhance crop yield and for biological control of phytopathogens. Bacillus sp. CHEP5 is a biocontrol agent that induces systemic resistance (ISR) in Arachis hypogaea L. (peanut) against Sclerotium rolfsii, the causal agent of root and stem wilt. In this work, the effect of the co-inoculation of Bacillus sp. CHEP5 and the peanut nodulating strain Bradyrhizobium sp. SEMIA 6144 was studied on induction of both systemic resistance and nodulation processes. Bradyrhizobium sp. SEMIA 6144 did not affect the ability of Bacillus sp. CHEP5 to protect peanut plants from S. rolfsii by ISR and the priming in challenged-plants, as evidenced by an increment in phenylalanine ammonia-lyase enzyme activity. Additionally, the capacity of Bradyrhizobium sp. SEMIA 6144 to induce nodule formation in pathogen-challenged plants was improved by the presence of Bacillus sp. CHEP5. PMID:25431416

  20. Straightforward protein immobilization on Sylgard 184 PDMS microarray surface.

    PubMed

    Heyries, Kevin A; Marquette, Christophe A; Blum, Loïc J

    2007-04-10

    In this work, a straightforward technique for protein immobilization on Sylgard 184 is described. The method consists of a direct transfer of dried protein/salt solutions to the PDMS interface during the polymer curing. Such non-conventional treatment of proteins was found to have no major negative consequence on their integrity. The mechanisms of this direct immobilization were investigated using a lysine modified dextran molecule as a model. Clear experimental results suggested that both chemical bounding and molding effect were implicated. As a proof of concept study, three different proteins were immobilized on a single microarray (Arachis hypogaea lectin, rabbit IgG, and human IgG) and used as antigens for capture of chemiluminescent immunoassays. The proteins were shown to be easily recognized by their specific antibodies, giving antibody detection limits in the fmol range.

  1. Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth.

    PubMed

    Sobolev, Victor S; Horn, Bruce W; Potter, Thomas L; Deyrup, Stephen T; Gloer, James B

    2006-05-17

    The peanut plant (Arachis hypogaea) is known to produce stilbene phytoalexins as a defensive response to fungal invasion; however, the distribution of phytoalexins among different organs of the peanut plant at early stages of growth under axenic conditions has not been studied. Axenic plants produced a stilbenoid, resveratrol, as well as soluble bound and free phenolic acids, including 4-methoxycinnamic acid, which is reported in peanuts for the first time. Neither resveratrol nor phenolic acids were found in the root mucilage; the prenylated stilbenes were restricted to the mucilage and were not found in other organs of the peanut plant. These findings may lead to a better understanding of the defensive role of peanut stilbenes and phenolic acids.

  2. [Potential allelopathic effects of Piper nigrum, Mangifera indica and Clausena lansium].

    PubMed

    Yan, Guijun; Zhu, Chaohua; Luo, Yanping; Yang, Ye; Wei, Jinju

    2006-09-01

    With Piper nigrum, Mangifera indica and Clausena lansium as the donators, this paper studied their potential allelopathic effects on the germination and growth of Zea mays, Glycine max, Cucurbita moschata, Arachis hypogaea, Raphanus sativus, Echinochloa crusgalli, Digitaria sanguinalis and Stylosanthes guianensis. The results showed that the aqueous extracts of these donators could inhibit the germination and growth of Z. mays, G. max, C. moschata, E. crus-galli and D. sanguinalis at high concentration, but stimulate them at low concentration. In rhizosphere soil of P. nigrum and M. indica, the germination and growth of Z. mays L was stimulated, while A. hypogaea was inhibited. The aqueous extracts of the donators were extracted by ethyl acetate and n-butanol, respectively, and the inhibitory activity of both aqueous and n-butanol fractions from P. nigrum and M. indica on Z. mays, R. sativus and S. guianensis was stronger than that of ethyl acetate fraction, indicating that P. nigrum and M. indica contained the allelochemicals with high polarity.

  3. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes

    PubMed Central

    Chaintreuil, Clémence; Rivallan, Ronan; Bertioli, David J.; Klopp, Christophe; Gouzy, Jérôme; Courtois, Brigitte; Leleux, Philippe; Martin, Guillaume; Rami, Jean-François; Gully, Djamel; Parrinello, Hugues; Séverac, Dany; Patrel, Delphine; Fardoux, Joël; Ribière, William; Boursot, Marc; Cartieaux, Fabienne; Czernic, Pierre; Ratet, Pascal; Mournet, Pierre; Giraud, Eric; Arrighi, Jean-François

    2016-01-01

    Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia. PMID:27298380

  4. Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.)

    NASA Astrophysics Data System (ADS)

    Al-Bachir, Mahfouz

    2015-01-01

    The effect of gamma radiation and storage on the characteristics of oil extracted from peanut seeds has been investigated in this study. Peanut seeds were undergone gamma irradiation process with the doses of 1, 2 and 3 kGy. The changes in chemical and physical attributes were observed immediately after irradiation and after 12 months of storage. The data obtained from the experiments showed that irradiation process had no effect on the chemical and physical qualities such as, fatty acid composition, peroxide value, iodine value specification number, TBA value and color of oil extracted from peanut seeds. On the contrary, the peroxide, acidity and TBA values of the peanut oil were decreased due to storage time.

  5. Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...

  6. Transcriptome and proteome response to water-deficit stress in peanut (Arachis sp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut genotypes from the U.S. mini-core collection were screened under water-deficit stress conditions and two lines, COC041 (Tolerant) and COC166 (Susceptible) were selected for gene expression and protein profiling studies. For transcript profiling, we have developed a high-density oligonucleoti...

  7. Annotation of trait loci on integrated genetic maps of Arachis species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From lack of availability of molecular markers to the release of genome sequence of two of its diploid wild relative, the international peanut community has come a long way in the last decade, particularly during the last five years. However there still is long way to go when genomics-assisted breed...

  8. A Specific Qualitative Detection Method for Peanut (Arachis Hypogagea) in Foods Using Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A qualitative method for detection of peanuts in foods using polymerase chain reaction was developed. A universal primer pair CP 03-5 /CP 03-3 was designed to confirm the validity of the DNAs for PCR. The plant-specific amplified fragments were detected from 13 kinds of plants using the universal pr...

  9. Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Zhang, X K; Li, Y Y; Li, D Y; Ma, M Y; Cai, D T; Wu, W H; Huang, B Q

    2016-01-01

    Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops.

  10. Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts.

    PubMed

    Grönemeyer, Jann Lasse; Chimwamurombe, Percy; Reinhold-Hurek, Barbara

    2015-10-01

    Seven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of ‘Bradyrhizobium arachidis’ CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T m).

  11. Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts.

    PubMed

    Grönemeyer, Jann Lasse; Chimwamurombe, Percy; Reinhold-Hurek, Barbara

    2015-10-01

    Seven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of ‘Bradyrhizobium arachidis’ CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T m). PMID:26198108

  12. Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Zhang, X K; Li, Y Y; Li, D Y; Ma, M Y; Cai, D T; Wu, W H; Huang, B Q

    2016-01-01

    Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops. PMID:27525923

  13. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  14. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  15. Crop Rotation Studies with Velvetbean (Mucuna deeringiana) for the Management of Meloidogyne spp.

    PubMed Central

    Rodríguez-Kábana, R.; Pinochet, J.; Robertson, D. G.; Wells, L.

    1992-01-01

    Results from a greenhouse experiment at Cabrils, Spain, with two velvetbean (Mucuna deeringiana) accessions (Florida and Mozambique) growing in sterilized sandy loam and inoculated with Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica revealed that the legume was not a host for these nematodes. In contrast, roots of 'Clemson Spineless' okra (Hibiscus esculentum), 'Summer Crookneck' squash (Cucurbita pepo), and 'Davis' soybean (Glycine max) were galled by all three root-knot nematodes. Greenhouse experiments at Auburn, Alabama, using soils infested with Heterodera glycines (race 14) + M. incognita or with H. glycines + M. arenaria (race 2) showed that, in contrast to Davis soybean, a Mexican and the Florida velvetbean accessions were not hosts for the nematodes. An experiment with 'Florunner' peanut (Arachis hypogaea) and the Florida velvetbean in a field infested with M. arenaria (race 1), near Headland, Alabama, showed that significant juvenile populations of the nematode at peanut harvest time were present only in plots with peanut. A microplot rotation experiment demonstrated that 'Black Beauty' eggplant (Solanum melongena) following the Florida velvetbean had heavier shoots and lower numbers of M. arenaria juveniles in the roots and in the soil than eggplant after Summer Crookneck squash or Davis soybean. PMID:19283043

  16. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones. PMID:25062779

  17. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    PubMed

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P

  18. Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches'-broom group 16SrII-A.

    PubMed

    Li, Yong; Piao, Chun-gen; Tian, Guo-zhong; Liu, Zhi-xin; Guo, Min-wei; Lin, Cai-li; Wang, Xi-zhuo

    2014-08-01

    Four witches'-broom diseases associated with Arachis hypogaea (peanut), Crotalaria pallida, Tephrosia purpurea, and Cleome viscosa were observed in Hainan Province, China during field surveys in 2004, 2005, and 2007. In previously reported studies, we identified these four phytoplasmas as members of subgroup 16SrII-A, and discovered that their 16S rRNA gene sequences were 99.9-100% identical to one another. In this study, we performed extensive phylogenetic analyses to elucidate relationships among them. We analyzed sequences of the 16S rRNA gene and rplV-rpsC, rpoB, gyrB, dnaK, dnaJ, recA, and secY combined sequence data from two strains each of the four phytoplasmas from Hainan province, as well as strains of peanut witches'-broom from Taiwan (PnWB-TW), "Candidatus Phytoplasma australiense", "Ca. Phytoplasma mali AT", aster yellows witches'-broom phytoplasma AYWB, and onion yellows phytoplasma OY-M. In the 16S rRNA phylogenetic tree, the eight Hainan strains form a clade with PnWB-TW. Analysis of the seven concatenated gene regions indicated that the four phytoplasmas collected from Hainan province cluster most closely with one another, but are closely related to PnWB-TW. The results of field survey and phylogenetic analysis indicated that Cr. pallida, T. purpurea, and Cl. viscosa may be natural plant hosts of peanut witches'-broom phytoplasma.

  19. Intercropping Competition between Apple Trees and Crops in Agroforestry Systems on the Loess Plateau of China

    PubMed Central

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems. PMID:23936246

  20. Global proteomic screening of protein allergens and advanced glycation endproducts in thermally processed peanuts.

    PubMed

    Hebling, Christine M; McFarland, Melinda A; Callahan, John H; Ross, Mark M

    2013-06-19

    Peanuts (Arachis hypogaea) are the cause of one of the most prevalent food allergies worldwide. Thermal processing (e.g., roasting) of peanuts and peanut-containing foods results in complex chemical reactions that alter structural conformations of peanut proteins, preventing accurate detection of allergens by most immunochemical and targeted screening methodologies. To improve food allergen detection and support more accurate food labeling, traditional methods for peanut protein extraction were modified to include protein denaturants and solubilization agents. Qualitative characterization by SDS-PAGE and Western blot analyses of raw and variably roasted peanut extracts confirmed improvements in total protein recovery and provided evidence for the incorporation of Ara h 1, Ara h 3, and, to a lesser extent, Ara h 2 into high molecular weight protein complexes upon roasting. Relative quantification of allergens in peanut lysates was accomplished by label-free spectral feature (MS1) LC-MS/MS methodologies, by which peanut allergen peptides exhibiting a differential MS response in raw versus roasted peanuts were considered to be candidate targets of thermal modification. Identification of lysine-modified Maillard advanced glycation endproducts (AGE) by LC-MS/MS confirmed the formation of (carboxymethyl)lysine (CML), (carboxyethyl)lysine (CEL), and pyrraline (Pyr) protein modifications on Ara h 1 and Ara h 3 tryptic peptides in roasted peanut varieties. These results suggest that complex processed food matrices require initial analysis by an untargeted LC-MS/MS approach to determine optimum analytes for subsequent targeted allergen analyses. PMID:23039025

  1. Molecular characterization of major allergens Ara h 1, 2, 3 in peanut seed.

    PubMed

    Jiang, Shengjuan; Wang, Songhua; Sun, Yujun; Zhou, Zhengyi; Wang, Guiqin

    2011-06-01

    Peanut is among the most commonly used dietary seeds, but peanut allergens, especially Ara h 1 (Arachis hypogaea allergy 1), 2 and 3, can cause severe IgE-mediated reactions. In this study, the molecular characterization and expression pattern of three allergens in peanut LUHUA 8, the representative of the cultivated lines in China, are reported. In situ hybridization and real time PCR analysis revealed high expression levels and different tissue expression patterns of the three allergens, which might be connected with many aspects, such as the strong conservation of intron phase of the allergen genes, the low energy of the mRNA's regions, and the complicated post-translational modifications. Furthermore, the different sequences between the cloned allergens and the reported sequences previously involved the charged amino acids especially in IgE epitopes, which might alter specific physicochemical and physiological properties, and thus influence the immunity of the allergens. The identification of the specific features of the allergen genes would be of considerable importance to the basic understanding of the specific characteristics of peanut seed allergens.

  2. Formation of N-acetylglutamate by extracts of higher plants.

    PubMed

    Morris, C J; Thompson, J F

    1977-04-01

    The enzymic synthesis of N-acetylglutamate was studied in extracts of higher plant tissues, especially in sugar beet leaves (Beta vulgaris L.). Sugar beet leaves had an enzyme that transferred the acetyl group either from acetyl-CoA or from N(2)-acetylornithine to glutamate. The enzyme was so unstable that special precautions were necessary for its detection and appreciable purification was impossible. The Km values were 2.5 and 0.025 mM for acetyl-CoA and N(2)-acetylornithine, respectively. The Km for glutamate was 23 mM with acetylornithine-glutamate transacetylase and 2.7 mM with acetyl-CoA-glutamate transacetylase. The pH optimum for acetyl-CoA-glutamate transacetylase was about 7.2 whereas that for acetylornithine-glutamate transacetylase was about 8.3. Acetylphosphate, N(2)-acetyl-2,4-diaminobutyrate, propionyl-CoA, and succinyl-CoA were not substrates.Arginine inhibited the acetyl-CoA-glutamate transacetylase and acetylglutamate phosphokinase but had no effect on the acetylornithineglutamate transacetylase. Related compounds had either no effect or much less than arginine. Arginine had no effect on enzyme levels.Acetyl-CoA-glutamate transacetylase was also found in Raphanus sativus L., Glycine max L. Merr., Arachis hypogaea L., Brassica rapa L., and Pisum sativum L. Acetylornithine-glutamate transacetylase was found in all of the above species plus Zea mays L., Avena sativa L., and Triticum aestivum L.

  3. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  4. Relative Damage Functions and Reproductive Potentials of Meloidogyne arenaria and M. hapla on Peanut

    PubMed Central

    Koenning, S. R.; Barker, K. R.

    1992-01-01

    The reproductive potential and damage functions for Meloidogyne hapla and M. arenaria race 1 on Virginia-type peanuts (Arachis hypogaea cv. Florigiant) were determined over 2 years in microplot experiments in North Carolina. Peanut yield suppression and damage to pods as a result of galling were greatest in response to M. arenaria (P = 0.01). Damage functions for the two species were adequately described by the quadratic models: yield (g/plot) = 398 - 17.1 (log₁₀[Pi + 1]) - 17.0(log₁₀[Pi + 1])²; (R² = 0.83, P = 0.0001) for M. arenaria; and yield = 388 - 10.2(log₁₀[Pi + 1]) - 7.5(log₁₀[Pi + 1])², (R² = 0.30, P = 0.0001) for M. hapla. Both species caused galling on pods, but this was more severe in response to M. arenaria. Reproduction of M. arenaria race 1 was greater than M. hapla on peanut, which accounts in part for the more severe pod galling. Peanut was an excellent host for both M. arenaria race 1 and for M. hapla, but reproduction by M. hapla was more variable. PMID:19283222

  5. Changes in En(a-) human red blood cell membranes during in vivo ageing.

    PubMed

    Shinozuka, T; Miyata, Y; Takei, S; Yoshida, R; Ogamo, A; Nakagawa, Y; Kuroda, N; Yanagida, J

    1996-01-01

    The human red blood cells with phenotype En(a-) were characterized by the lack of MN antigens. The red blood cells with phenotype En(a-) which were found in a Japanese family were tested to clarify the changes in membrane surfaces of the red blood cells during in vivo ageing. The contents of sialic acid, glucose, mannose, galactose, fucose, N-acetylglucosamine and N-acetylgalactosamine of the red blood cell membranes obtained from the old red blood cells with phenotype En(a-) were significantly lower than those of the young red blood cell membranes. Neither the young nor the old red blood cells with phenotype En(a-) showed the agglutination with Arachis hypogaea (PNA) which was capable of binding to T agglutinogen. It is presumed that En(a-) red blood cells are not exposed to sialidase in vivo. In comparison with the young En(a-) red blood cell membranes, the number and the distribution density of lectin receptor sites on the old ones for Limulus polyphemus (LPA), Canavalia ensiformis (Con A), Triticum vulgaris (WGA) and Bauhinia purpurea (BPA) were significantly lower. It is thought that En(a-) red blood cell ageing is accompanied by elimination of some sialoglycoconjugates which have affinity for LPA, Con A, WGA and BPA, whereas En(a-) red blood cells lack glycophorin A. PMID:8866734

  6. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China.

    PubMed

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.

  7. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway1[OPEN

    PubMed Central

    2016-01-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974

  8. Isolation and functional characterization of a novel seed-specific promoter region from peanut.

    PubMed

    Sunkara, Sowmini; Bhatnagar-Mathur, Pooja; Sharma, Kiran Kumar

    2014-01-01

    The importance of using tissue-specific promoters in the genetic transformation of plants has been emphasized increasingly. Here, we report the isolation of a novel seed-specific promoter region from peanut and its validation in Arabidopsis and tobacco seeds. The reported promoter region referred to as groundnut seed promoter (GSP) confers seed-specific expression in heterologous systems, which include putative promoter regions of the peanut (Arachis hypogaea L.) gene 8A4R19G1. This region was isolated, sequenced, and characterized using gel shift assays. Tobacco transgenics obtained using binary vectors carrying uidA reporter gene driven by GSP and/or cauliflower mosaic virus 35S promoters were confirmed through polymerase chain reaction (PCR), RT-PCR, and computational analysis of motifs which revealed the presence of TATA, CAAT boxes, and ATG signals. This seed-specific promoter region successfully targeted the reporter uidA gene to seed tissues in both Arabidopsis and tobacco model systems, where its expression was confirmed by histochemical analysis of the transgenic seeds. This promoter region is routinely being used in the genetic engineering studies in legumes aimed at targeting novel transgenes to the seeds, especially those involved in micronutrient enhancement, fungal resistance, and molecular pharming.

  9. Larvicidal activity of Acacia nilotica extracts and isolation of D-pinitol--a bioactive carbohydrate.

    PubMed

    Chaubal, Rohini; Pawar, Pushpa V; Hebbalkar, Geeta D; Tungikar, Vijay B; Puranik, Vedavati G; Deshpande, Vishnu H; Deshpande, Nirmala R

    2005-05-01

    A low-molecular-weight, sugar-like compound other than glucose, fructose, sucrose, or myo-inositol showing lipophilic nature was isolated from the EtOH extract of Acacia nilotica. The structure of the compound was determined by spectral methods. This alicyclic polyalcohol was found to be D-pinitol (= 3-O-methyl-D-chiro-inositol; 1). The configuration of the compound was confirmed by single-crystal X-ray analysis. The compound 1 is known from Soybean, Australian mangroves, Fagonia indica, Arachis hypogaea, etc., but we have isolated this compound for the first time from the aerial parts of A. nilotica. Very few references have been cited for compound 1 for its entomological activity, and there are no reports on mosquitoes. Therefore, the crude extracts of A. nilotica were tested for its biological activity against mosquito larvae. Acetone extract at 500-ppm concentration showed chronic toxicity against Aedes aegypti and Culex quinquefasciatus IVth instar mosquito larvae. Such a biological activity has been observed for the first time for this plant. This study could be a stepping stone to a solution for destroying larval species as well as consumption of such a widely grown, problem weed, A. nilotica. This larvicidal agent, since it is derived from plant, is eco-friendly, cost effective, non-hazardous to non-target organisms and would be safe unlike commercially available insecticides. PMID:17192011

  10. H-deficient Bombay and para-Bombay red blood cells are most strongly agglutinated by the galactophilic lectins of Aplysia and Pseudomonas aeruginosa that detect I and P1 antigens.

    PubMed

    Gilboa-Garber, N; Sudakevitz, D; Levene, C; Rahimi-Levene, N; Yahalom, V

    2006-01-01

    The galactophilic lectins Aplysia gonad lectin (AGL) and Pseudomonas aeruginosa lectin (PA-IL), which detect human I and P1 RBC antigens, were examined for hemagglutination of H+ (group O and B) and H-deficient (Bombay and para-Bombay phenotype) RBCs. The results were compared with those obtained using two other galactophilic lectins, Maclura pomifera lectin (MPL) and Arachis hypogaea (peanut) agglutinin (PNA), which share T-antigen affinity, and two fucose-binding H-specific lectins, Ulex europaeus (UEA-I) and Pseudomonas aeruginosa lectin (PA-IIL), as well as with those achieved with anti-I serum. The results revealed that, in contrast to UEA-I and PA-IIL, which preferentially agglutinated H+ RBCs, and to MPL and PNA, which similarly agglutinated all examined RBCs, AGL, PA-IL, and the anti-I serum agglutinated the H-deficient RBCs more strongly than did the H+ RBCs. These findings could be attributed to increased levels of I and P1 antigens on those RBCs resulting from the use of the free common H-type 2 precursor for their synthesis. Since both PA-IL and PA-IIL are regarded as potential pathogen adhesins, it would be interesting to statistically compare the sensitivities of individuals of H+ and H-deficient RBC populations to P. aeruginosa infections.

  11. A rapid and efficient inoculation method for Tomato spotted wilt tospovirus.

    PubMed

    Mandal, B; Csinos, A S; Martinez-Ochoa, N; Pappu, H R

    2008-04-01

    A rapid and efficient method of inoculation for Tomato spotted wilt tospovirus (TSWV) was achieved by applying the inoculum with a device consisting of a spray gun, an atomizer and a CO2-powered sprayer. The inoculum contained infected leaf sap prepared in 0.1M phosphate buffer, pH 7.0, 0.2% sodium sulfite and 0.01 M 2-mercaptoethanol (1g: 10 ml) and 1% each of Celite 545 and Carborundum 320 grit. The spray application of chilled inoculum at the rate of 1.1 ml/plant and at an air pressure of 4.1 bar resulted in systemic infection nearly to a 100% of the tobacco (Nicotiana tabacum) plants inoculated. The inoculation procedure was successfully applied to two other important host species of TSWV, peanut (Arachis hypogaea) and tomato (Lycopersicon esculentum), where 75.0-100% and 72.2-91.6% plants developed systemic infection, respectively. The approach facilitated a much faster inoculation of test plants with TSWV as it was estimated to be about 50 times quicker (depending on the plant species) than the hand inoculation. The procedure is suitable for rapid and simultaneous inoculation of a large number of test plants with TSWV and should facilitate screening of germplasm and breeding lines for virus resistance. PMID:18272238

  12. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.

    PubMed

    Peng, Mengfei; Bitsko, Elizabeth; Biswas, Debabrata

    2015-03-01

    Various compounds found in peanut (Arachis hypogaea) have been shown to provide multiple benefits to human health and may influence the growth of a broad range of gut bacteria. In this study, we investigated the effects of peanut white kernel and peanut skin on 3 strains of Lactobacillus and 3 major foodborne enteric bacterial pathogens. Significant (P < 0.05) growth stimulation of Lactobacillus casei and Lactobacillus rhamnosus was observed in the presence of 0.5% peanut flour (PF) made from peanut white kernel, whereas 0.5% peanut skin extract (PSE) exerted the inhibitory effect on the growth of these beneficial microbes. We also found that within 72 h, PF inhibited growth of enterohemorrhagic Escherichia coli O157:H7 (EHEC), while PSE significantly (P < 0.05) inhibited Listeria monocytogenes but promoted the growth of both EHEC and Salmonella Typhimurium. The cell adhesion and invasion abilities of 3 pathogens to the host cells were also significantly (P < 0.05) reduced by 0.5% PF and 0.5% PSE. These results suggest that peanut white kernel might assist in improving human gut flora as well as reducing EHEC, whereas the beneficial effects of peanut skins require further research and investigation.

  13. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  14. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  15. Effects of an oxidative agent and lectins on the binding inhibition of recombinant hepatitis a virus proteins to oyster digestive tissues.

    PubMed

    Ko, Sang-Mu; Kim, Jong-Oh; Oh, Myung-Joo; Kim, Duwoon

    2011-01-01

    While the exact mechanism of hepatitis A virus (HAV) accumulation remains unclear, it has been demonstrated that viruses related to shellfish-borne gastroenteritis can bind to carbohydrates of oyster tissues. We investigated carbohydrate-binding sites to determine if they were related to the binding of HAV to carbohydrate moieties on oyster digestive tissues (DTs) using recombinant HAV proteins (rHAVPs). In addition, we evaluated lectins to determine if they influenced the inhibition of binding of rHAVPs to carbohydrates present in DT. DT that was treated with 0.5% potassium periodate allowed only 23% ± 3.6% and 33% ± 7.8% binding of VP1-P2A and VP1 rHAVPs, respectively, when compared with a control group (100%) treated with distilled water, indicating that carbohydrate-binding sites are strongly related to the binding of HAV. Soybean agglutinin (SBA) led to the greatest decrease in the binding affinity among six lectins (Helix pomatia, Dolichos biflorus, Ulex europaeus, SBA, Triticum vulgaris, and Arachis hypogaea) tested for inhibition of the binding of rHAVPs to DT, indicating that exposing the virus-contaminated DT to SBA might have the potential to depurate viral contaminants found in shellfish food products by high-affinity binding between SBA and rHAVPs, thus improving food safety.

  16. Peanut cultivar selection for BLSS in terms of the biomass productivity, nutritional quality, photosynthetic character and mineral ions up-take by PTNDS cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Minjuan; Fu, Yuming; Liu, Hong

    2016-11-01

    Peanut (Arachis hypogaea L.) has been selected as one of the crop candidates for BLSS, because its seeds have high nutritional value, being rich in vegetable oil and protein. Porous-Tube Nutrient Delivery System (PTNDS) has been successfully used for crop cultivation in controllable environments. In this paper, four peanut cultivars ('HY25', 'HY28', 'HY31' and 'BS1016') were evaluated in terms of yield, photosynthetic efficiency, insoluble fiber and ions uptake efficiency. Besides protein, total oil content and fatty acid composition were monitored in the seeds. 'HY25' plants showed much higher yield and harvest index, in addition to the lower lignin content of inedible biomass. Data showed that 'HY25' had the higher photosynthetic capacity of peanut leaves with regard to highest photosynthetic rate, qP and ΦPSII, lowest energy dissipation (qN) values, whereas instantaneous carboxylation efficiency and water use efficiency carotenoids content were no difference with the other cultivars. 'BS1016‧ showed the lowest photosynthetic capacity contrarily. These suggested that 'HY25‧ could be the most suitable for the cultivation in a closed controlled environment with PTNDS. While, both cations and anions except NH4+ and H2PO4-, were accumulated excessively compared to controls, especially with anions in PTNDS. Hence, further studies are needed in order to improve the nutritional quality of seeds and modify the fertilization strategy of this cultivar in the growth environment feasible during a closed environment and space mission.

  17. Electrochemical immunosensors for antibodies to peanut allergen ara h2 using gold nanoparticle-peptide films.

    PubMed

    Liu, Hongyun; Malhotra, Ruchika; Peczuh, Mark W; Rusling, James F

    2010-07-01

    Life-threatening allergies to peanuts and tree nuts can be revealed by detecting antibodies (IgEs) to their allergens in patient serum. Herein, we compare several immunosensor-like methodologies for sensitive detection of antibodies to a peptide sequence from the major peanut allergen, Arachis hypogaea 2 (Ara h2). The sensors feature a synthetic peptide layer of the major IgE-binding epitope from Ara h2 attached to a dense gold nanoparticle (AuNP) film on a pyrolytic graphite (PG) electrode. The AuNP-peptide sensor was used to determine model chicken antipeanut antibodies (IgY) in serum. Faradaic and nonfaradaic impedance strategies were compared to amperometric detection. Measurements employed goat antichicken secondary antibodies (Ab(2)) labeled with horseradish peroxidase (HRP) to bind to IgY on the sensor and provide amplified signals. The best impedimetric sensor configuration featured HPR-catalyzed precipitation of the enzyme product onto the sensor measured by nonfaradaic impedance. This sensor configuration had the best detection limit (DL) of 5 pg mL(-1) and the best linear range of over 5 orders of magnitude (from 5 pg mL(-1) to 1 microg mL(-1)) for IgY antibody in undiluted calf serum. This DL was 100-fold lower than label-free impedimetric immunosensors (0.5 ng mL(-1)) and 60-fold lower than when using HRP-Ab(2) in amperometric immunosensors (0.3 ng mL(-1)).

  18. Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils.

    PubMed

    Mohiddin, G Jaffer; Srinivasulu, M; Maddela, N R; Manjunatha, B; Rangaswamy, V; Koch Kaiser, Alma Rosel; Maisincho Asqui, Jessica Cristina; Darwin Rueda, O

    2015-06-01

    The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from L-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha(-1)). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha(-1), persists for 20 days in both the soils. Overall, higher concentrations (5.0-10.0 kg ha(-1)) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities. PMID:26024750

  19. Multiplex DNA detection of food allergens on a digital versatile disk.

    PubMed

    Tortajada-Genaro, Luis A; Santiago-Felipe, Sara; Morais, Sergi; Gabaldón, José Antonio; Puchades, Rosa; Maquieira, Ángel

    2012-01-11

    The development of a DNA microarray method on a digital versatile disk (DVD) is described for the simultaneous detection of traces of hazelnut ( Corylus avellana L.), peanut ( Arachis hypogaea ), and soybean ( Glycine max ) in foods. After DNA extraction, multiplex PCR was set up using 5'-labeled specific primers for Cor a 1, Ar h 2, and Le genes, respectively. Digoxin-labeled PCR products were detected by hybridization with 5'-biotinylated probes immobilized on a streptavidin-modified DVD surface. The reaction product attenuates the signal intensity of the laser that reached the DVD drive used as detector, correlating well with the amount of amplified sequence. Analytical performances showed a detection limit of 1 μg/g and good assay reproducibility (RSD 8%), suitable for the simultaneous detection of the three targeted allergens. The developed methodology was tested with several commercially available foodstuffs, demonstrating its applicability. The results were in good agreement, in terms of sensitivity and reproducibility, with those obtained with ELISA, PCR-gel agarose electrophoresis, and RT-PCR.

  20. Qualitative polymerase chain reaction methods for detecting major food allergens (peanut, soybean, and wheat) by using internal transcribed spacer region.

    PubMed

    Hirao, Takashi; Watanabe, Satoshi; Temmei, Yusuke; Hiramoto, Masayuki; Kato, Hisanori

    2009-01-01

    Allergen detection methods for peanut, soybean, and wheat were developed by designing PCR primer pairs for specific amplification of a fragment of the internal transcribed spacer (ITS) region reported for Arachis spp. for peanut, Glycine spp. for soybean, and Triticum and Aegilops spp. for wheat. The target species for detection included not only cultivated, but also wild and ancestor species, which were thought to be potentially allergenic. The ability of the resultant primer pairs to detect the target species was verified using genomic DNA extracted from A. hypogaea for peanut and G max for soybean; T. aestivum, T. turgidum, T. durum, T. aestivum-rye amphidiploid, T. monococcum, T. timopheevi, Ae. speltoides, and Ae. squarrosa for wheat. The LODs were 50-500 fg of target DNA, which were comparable to those of the most sensitive PCR methods previously reported. The results from the present work, as well as those from our previous work on buckwheat and kiwifruit, prove that the ITS region, for its high copy number and interspecific diversity, is particularly useful as the target of allergen detection methods.

  1. Global proteomic screening of protein allergens and advanced glycation endproducts in thermally processed peanuts.

    PubMed

    Hebling, Christine M; McFarland, Melinda A; Callahan, John H; Ross, Mark M

    2013-06-19

    Peanuts (Arachis hypogaea) are the cause of one of the most prevalent food allergies worldwide. Thermal processing (e.g., roasting) of peanuts and peanut-containing foods results in complex chemical reactions that alter structural conformations of peanut proteins, preventing accurate detection of allergens by most immunochemical and targeted screening methodologies. To improve food allergen detection and support more accurate food labeling, traditional methods for peanut protein extraction were modified to include protein denaturants and solubilization agents. Qualitative characterization by SDS-PAGE and Western blot analyses of raw and variably roasted peanut extracts confirmed improvements in total protein recovery and provided evidence for the incorporation of Ara h 1, Ara h 3, and, to a lesser extent, Ara h 2 into high molecular weight protein complexes upon roasting. Relative quantification of allergens in peanut lysates was accomplished by label-free spectral feature (MS1) LC-MS/MS methodologies, by which peanut allergen peptides exhibiting a differential MS response in raw versus roasted peanuts were considered to be candidate targets of thermal modification. Identification of lysine-modified Maillard advanced glycation endproducts (AGE) by LC-MS/MS confirmed the formation of (carboxymethyl)lysine (CML), (carboxyethyl)lysine (CEL), and pyrraline (Pyr) protein modifications on Ara h 1 and Ara h 3 tryptic peptides in roasted peanut varieties. These results suggest that complex processed food matrices require initial analysis by an untargeted LC-MS/MS approach to determine optimum analytes for subsequent targeted allergen analyses.

  2. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum.

    PubMed

    Zhang, Yu Jing; Zheng, Wen Tao; Everall, Isobel; Young, J Peter W; Zhang, Xiao Xia; Tian, Chang Fu; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin

    2015-09-01

    Four rhizobia-like strains, isolated from root nodules of Pisum sativum and Vicia faba grown in Anhui and Jiangxi Provinces of China, were grouped into the genus Rhizobium but were distinct from all recognized species of the genus Rhizobium by phylogenetic analysis of 16S rRNA and housekeeping genes. The combined sequences of the housekeeping genes atpD, recA and glnII for strain CCBAU 23252(T) showed 86.9 to 95% similarity to those of known species of the genus Rhizobium. All four strains had nodC and nifH genes and could form effective nodules with Pisum sativum and Vicia faba, and ineffective nodules with Phaseolus vulgaris, but did not nodulate Glycine max, Arachis hypogaea, Medicago sativa, Trifolium repens or Lablab purpureus in cross-nodulation tests. Fatty acid composition, DNA-DNA relatedness and a series of phenotypic tests also separated these strains from members of closely related species. Based on all the evidence, we propose a novel species, Rhizobium anhuiense sp. nov., and designate CCBAU 23252(T) ( = CGMCC 1.12621(T) = LMG 27729(T)) as the type strain. This strain was isolated from a root nodule of Vicia faba and has a DNA G+C content of 61.1 mol% (Tm).

  3. Differential Induction of Flavonoids in Groundnut in Response to Helicoverpa armigera and Aphis craccivora Infestation

    PubMed Central

    War, Abdul Rashid; Sharma, Suraj Prasad; Sharma, Hari Chand

    2016-01-01

    Flavonoids are important plant secondary metabolites, which protect plants from various stresses, including herbivory. Plants differentially respond to insects with different modes of action. High performance liquid chromatography (HPLC) fingerprinting of phenols of groundnut (Arachis hypogaea) plants with differential levels of resistance was carried out in response to Helicoverpa armigera (chewing insect) and Aphis craccivora (sucking pest) infestation. The genotypes used were ICGV 86699, ICGV 86031, ICG 2271 (NCAc 343), ICG 1697 (NCAc 17090), and JL 24. Most of the identified compounds were present in H. armigera- and A. craccivora-infested plants of ICGV 86699. Syringic acid was observed in all the genotypes across the treatments, except in the uninfested control plants of ICG 2271 and aphid-infested plants of ICG 1697. Caffeic acid and umbelliferone were observed only in the H. armigera-infested plants of ICGV 86699. Similarly, dihydroxybenzoic acid and vanillic acid were observed in H. armigera- and aphid-infested plants of ICG 2271 and JL 24, respectively. The peak areas were transformed into the amounts of compounds by using internal standard peak areas and were expressed in nanograms. Quantities of the identified compounds varied across genotypes and treatments. The common compounds observed were chlorogenic, syringic, quercetin, and ferulic acids. These results suggest that depending on the mode of feeding, flavonoids are induced differentially in groundnut plants. PMID:27398031

  4. Study of surface carbohydrates in Galba truncatula tissues before and after infection with Fasciola hepatica

    PubMed Central

    Georgieva, Katya; Georgieva, Liliya; Mizinska-Boevska, Yana; Stoitsova, Stoyanka R

    2016-01-01

    The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed. PMID:27384082

  5. Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils.

    PubMed

    Mohiddin, G Jaffer; Srinivasulu, M; Maddela, N R; Manjunatha, B; Rangaswamy, V; Koch Kaiser, Alma Rosel; Maisincho Asqui, Jessica Cristina; Darwin Rueda, O

    2015-06-01

    The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from L-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha(-1)). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha(-1), persists for 20 days in both the soils. Overall, higher concentrations (5.0-10.0 kg ha(-1)) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities.

  6. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  7. Study of surface carbohydrates in Galba truncatula tissues before and after infection with Fasciola hepatica.

    PubMed

    Georgieva, Katya; Georgieva, Liliya; Mizinska-Boevska, Yana; Stoitsova, Stoyanka R

    2016-07-01

    The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed. PMID:27384082

  8. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway.

    PubMed

    Yang, Tianhong; Fang, Lingling; Rimando, Agnes M; Sobolev, Victor; Mockaitis, Keithanne; Medina-Bolivar, Fabricio

    2016-08-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974

  9. Divergent Nod-Containing Bradyrhizobium sp. DOA9 with a Megaplasmid and its Host Range

    PubMed Central

    Teamtisong, Kamonluck; Songwattana, Pongpan; Noisangiam, Rujirek; Piromyou, Pongdet; Boonkerd, Nantakorn; Tittabutr, Panlada; Minamisawa, Kiwamu; Nantagij, Achara; Okazaki, Shin; Abe, Mikiko; Uchiumi, Toshiki; Teaumroong, Neung

    2014-01-01

    Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons. PMID:25283477

  10. Effects of an oxidative agent and lectins on the binding inhibition of recombinant hepatitis a virus proteins to oyster digestive tissues.

    PubMed

    Ko, Sang-Mu; Kim, Jong-Oh; Oh, Myung-Joo; Kim, Duwoon

    2011-01-01

    While the exact mechanism of hepatitis A virus (HAV) accumulation remains unclear, it has been demonstrated that viruses related to shellfish-borne gastroenteritis can bind to carbohydrates of oyster tissues. We investigated carbohydrate-binding sites to determine if they were related to the binding of HAV to carbohydrate moieties on oyster digestive tissues (DTs) using recombinant HAV proteins (rHAVPs). In addition, we evaluated lectins to determine if they influenced the inhibition of binding of rHAVPs to carbohydrates present in DT. DT that was treated with 0.5% potassium periodate allowed only 23% ± 3.6% and 33% ± 7.8% binding of VP1-P2A and VP1 rHAVPs, respectively, when compared with a control group (100%) treated with distilled water, indicating that carbohydrate-binding sites are strongly related to the binding of HAV. Soybean agglutinin (SBA) led to the greatest decrease in the binding affinity among six lectins (Helix pomatia, Dolichos biflorus, Ulex europaeus, SBA, Triticum vulgaris, and Arachis hypogaea) tested for inhibition of the binding of rHAVPs to DT, indicating that exposing the virus-contaminated DT to SBA might have the potential to depurate viral contaminants found in shellfish food products by high-affinity binding between SBA and rHAVPs, thus improving food safety. PMID:21219781

  11. The potential for controlling Pangaeus bilineatus (Heteroptera: Cydnidae) using a combination of entomopathogens and an insecticide.

    PubMed

    Mbata, George N; Shapiro-Ilan, David

    2013-10-01

    The peanut burrower bug, Pangaeus bilineatus (Say), is an important pest of peanut (Arachis hypogaea L.) in the southern United States. Current control methods for this pest, which are based on the use of chemical insecticides, have not been successful. Our objective was to determine if entomopathogens applied alone or in combination with a standard chemical insecticide would provide superior levels of P. bilineatus mortality compared with the standard chemical applied alone. Specifically, we investigated the efficacy of an entomopathogenic nematode, Heterorhabditis bacteriophora Poinar (Oswego strain), and a fungus, Beauveria bassiana (Balsamo) Vuillemin (GHA strain), applied alone or in combination with chlorpyrifos. When applied as single treatments, the two entomopathogens were not pathogenic, that is, they did not cause mortality in P. bilineatus adults that was different from the nontreated control. However, 3 and 7 d posttreatment, the combination of the H. bacteriophora and chlorpyrifos caused higher mortality than the nematode, fungus, or insecticide alone, or the combination of chlorpyrifos and B. bassiana. The nature of the interaction between H. bacteriophora and chlorpyrifos was synergistic, which is of particular interest, given that this is the first time a synergy is being reported between a nematode that was not pathogenic when applied alone and a chemical insecticide. B. bassiana and its combination with the chlorpyrifos did not significantly increase insect mortality compared with chlorpyrifos alone or the control. Based on the observation of synergy, the combination of H. bacteriophora and chlorpyrifos should be investigated further for potential adoption in the management of P. bilineatus.

  12. Enzymatic hydrolysis: a method in alleviating legume allergenicity.

    PubMed

    Kasera, Ramkrashan; Singh, A B; Lavasa, S; Prasad, Komarla Nagendra; Arora, Naveen

    2015-02-01

    Legumes are involved in IgE mediated food allergy in many countries. Avoidance of allergenic food is the only way to avoid symptomatic reaction. The present study investigated the effect of enzymatic hydrolysis on the allergenicity of three legumes - kidney bean (Phaseolus vulgaris), black gram (Vigna mungo) and peanut (Arachis hypogaea). Soluble protein extracts of the study legumes were sequentially treated by Alcalase(®) and Flavourzyme(®). Allergenicity of hydrolysates was then determined by ELISA, immunoblot, stripped basophil histamine release and skin prick test (SPT). Hydrolysis resulted in the loss of all IgE binding fractions determined by immunoblot in the three legumes. Specific IgE binding in ELISA was reduced by 62.2 ± 7.7%, 87.1 ± 9.6% and 91.8 ± 7.2% in the hydrolysates of kidney bean, black gram and peanut, respectively (p < 0.01). The release of histamine was decreased significantly when sensitized basophils were challenged with hydrolysates as compared to raw extracts. Significant reduction in the biopotency of hydrolysates was also observed in SPT where only 1/10 kidney bean-sensitive individuals, 2/6 black gram-sensitive individuals and 1/7 peanut-sensitive individuals were found positive to their respective hydrolysates. In conclusion, enzymatic hydrolysis is effective in attenuating allergenicity of legume proteins and may be employed for preparing hypoallergenic food extracts.

  13. Isolation and functional characterization of a novel seed-specific promoter region from peanut.

    PubMed

    Sunkara, Sowmini; Bhatnagar-Mathur, Pooja; Sharma, Kiran Kumar

    2014-01-01

    The importance of using tissue-specific promoters in the genetic transformation of plants has been emphasized increasingly. Here, we report the isolation of a novel seed-specific promoter region from peanut and its validation in Arabidopsis and tobacco seeds. The reported promoter region referred to as groundnut seed promoter (GSP) confers seed-specific expression in heterologous systems, which include putative promoter regions of the peanut (Arachis hypogaea L.) gene 8A4R19G1. This region was isolated, sequenced, and characterized using gel shift assays. Tobacco transgenics obtained using binary vectors carrying uidA reporter gene driven by GSP and/or cauliflower mosaic virus 35S promoters were confirmed through polymerase chain reaction (PCR), RT-PCR, and computational analysis of motifs which revealed the presence of TATA, CAAT boxes, and ATG signals. This seed-specific promoter region successfully targeted the reporter uidA gene to seed tissues in both Arabidopsis and tobacco model systems, where its expression was confirmed by histochemical analysis of the transgenic seeds. This promoter region is routinely being used in the genetic engineering studies in legumes aimed at targeting novel transgenes to the seeds, especially those involved in micronutrient enhancement, fungal resistance, and molecular pharming. PMID:24078220

  14. Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production.

    PubMed

    Giuffrè, Angelo Maria; Tellah, Sihem; Capocasale, Marco; Zappia, Clotilde; Latati, Mourad; Badiani, Maurizio; Ounane, Sidi Mohamed

    2016-01-01

    As a result of a recent ad hoc prospection of the Algerian territory, a collection of peanut (groundnut; Arachis hypogaea L.) landraces was established, covering a remarkable array of diversity in terms of morphological and physiological features, as well as of adaptation to local bioclimatic conditions. In the present work, the oils extracted from the seeds of these landraces were evaluated in terms of edible properties and suitability for biodiesel production. As for edible use, a low free acidity (ranging from 0.62 to 1.21%) and a high oleic acid content (44.61-50.94%) were common features, although a poor stability to oxidation [high peroxide values, high spectrophotometric indices, and low % of inhibition in the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)· test] was observed in a few cases. As for biodiesel production, low values of acidity [1.23-2.40 mg KOH (g oil)(-1)], low iodine values [90.70-101.54 g I2 (g oil)(-1)], high cetane numbers (56.95-58.88) and high calorific values (higher heating value 37.34-39.27 MJ kg(-1)) were measured. Edible properties and suitability for biodiesel production were discussed with respect to the German standard DIN 51605 for rapeseed oil and to the EN 14214 standard, respectively. One way ANOVA and Hierarchical Cluster Analysis showed significant differences among the oils from the Algerian peanut landraces.

  15. Study of surface carbohydrates in Galba truncatula tissues before and after infection with Fasciola hepatica.

    PubMed

    Georgieva, Katya; Georgieva, Liliya; Mizinska-Boevska, Yana; Stoitsova, Stoyanka R

    2016-07-01

    The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed.

  16. Differential Expression of O-Glycans in CD4(+) T Lymphocytes from Patients with Systemic Lupus Erythematosus.

    PubMed

    Ramos-Martínez, Edgar; Lascurain, Ricardo; Tenorio, Eda Patricia; Sánchez-González, Antonio; Chávez-Rueda, Karina; Chávez-Sánchez, Luis; Jara-Quezada, Luis J; Chávez-Sánchez, Raúl; Zenteno, Edgar; Blanco-Favela, Francisco

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) show a decreased activation threshold and increased apoptosis. These processes seem to be regulated by glycosylated molecules on the T cell surface. Here, we determined through flow cytometry the expression of mucin-type O-glycans on T helper cells in peripheral blood mononuclear cells (PBMC) from 23 SLE patients and its relation with disease activity. We used lectins specific for the disaccharide Gal-GalNAc, such as Amaranthus leucocarpus lectin (ALL), Artocarpus integrifolia lectin (jacalin) and Arachis hypogaea lectin (peanut agglutinin, PNA), as well as lectins for sialic acid such as Sambucus nigra agglutinin (SNA) and Maakia amurensis agglutinin (MAA). The results showed that ALL, but not jacalin or PNA, identified significant differences in O-glycan expression on T helper cells from active SLE patients (n = 10). Moreover, an inverse correlation was found between the frequency of T helper cells recognized by ALL and SLE Disease Activity Index (SLEDAI) score in SLE patients. In contrast, SNA and MAA lectins did not identify any differences between CD4(+) T cells from SLE patients. There was no difference in the recognition by ALL on activated T helper cells and T regulatory (Treg) cells. Our findings point out that activation of SLE disease diminishes the expression of O-glycans in T helper cells; ALL could be considered as a marker to determine activity of the disease. PMID:27600584

  17. Crop candidates for the bioregenerative life support systems in China

    NASA Astrophysics Data System (ADS)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  18. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins.

    PubMed

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sébastien; Cosnier, Serge

    2013-01-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3'-sialyllactosyl at 0.95 V vs. Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3'-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2 × 10(-3) mol L(-1)) as a redox probe in phosphate buffer. The resulting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (R ct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. R ct increases from 77 to 97 Ω cm(2) for PNA binding and from 93 to 131 Ω cm(2) for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilized lectins towards the permeation of the redox probe.

  19. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province.

    PubMed

    Chen, Jingyu; Hu, Meijuan; Ma, Huimin; Wang, Yongshan; Wang, En Tao; Zhou, Zhifeng; Gu, Jun

    2016-09-01

    To reveal the genetic diversity and geographic distribution of peanut (Arachis hypogaea L.) rhizobia in Guangdong Province, one of the main peanut producing regions in China, 216 bradyrhizobial isolates were trapped by peanut plants inoculated with soil samples (pH 4.7-7.4) collected from ten sites in Guangdong. Based on BOX-PCR fingerprinting analysis, 71 representative isolates were selected for sequence analyses of ribosomal IGS, recA, atpD and symbiotic gene nodA. As a result, 22 genospecies were detected in the peanut rhizobia, including eight minor groups or single strains corresponding to Bradyrhizobium diazoefficiens, B. japonicum, B. yuanmingense, B. arachidis, B. guangdongense, B. guangxiense, B. iriomotense and B. liaoningense, as well as 14 novel Bradyrhizobium genospecies covering the majority of isolates. Five symbiotic clusters were obtained based on the phylogenetic relationships of nodA genes, related to the soybean-nodulating or peanut-nodulating reference strains. Biogeographic patterns, which were mainly correlated with potassium content and pH, were detected in the peanut bradyrhizobial community in Guangdong Province. These findings enriched the diversity of peanut rhizobia, and added the K content as a special determinant for peanut rhizobial distribution in acid soils. PMID:27499533

  20. Reproductive and Damage Potential of Ditylenchus destructor on Peanut

    PubMed Central

    Venter, Cheryl; De Waele, D.; Meyer, A. J.

    1991-01-01

    The reproductive and damage potential of Ditylenchus destructor on peanut, Arachis hypogaea cv. Sellie, was determined in greenhouse tests. Final nematode population densities (Pf) in roots, hulls, and seeds increased (P = 0.01) as a function of increasing initial population (Pi). Final population densities were higher in hulls than in seeds and roots. Final densities in hulls and seeds were positively (P = 0.01) correlated. Fresh root and hull weight and number of pods and seeds per plant were not affected by D. destructor. Second generation germination and pod and seed disease severity increased (P = 0.01), whereas fresh seed weight decreased (P = 0.01) as a function of increasing Pi, and Pf in seeds and Pf in hulls. At Pi 250 and higher, 10-25% of seeds germinated into second generation seedlings before harvest. At Pi 250 and higher, fresh weight of harvested seed was suppressed 20-50%. At Pi 50 or Pf greater than 20 per seed, pod disease severity was 3-7 (on a scale of 1 to 10) and 15-80% of seeds were blemished or unsound. PMID:19283089

  1. Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors.

    PubMed

    Devi, M Jyostna; Sinclair, Thomas R; Jain, Mukesh; Gallo, Maria

    2016-04-01

    A plant trait currently being exploited to decrease crop yield loss under water-deficit conditions is limited-transpiration rate (TRlim ) under high atmospheric vapor pressure deficit (VPD) conditions. Although limited genotype comparisons for the TRlim trait have been performed in peanut (Arachis hypogaea), no detailed study to describe the basis for this trait in peanut has been reported. Since it has been hypothesized that the TRlim trait may be a result of low leaf hydraulic conductance associated with aquaporins (AQPs), the first objective of this study was to examine a possible correlation of TRlim to leaf AQP transcriptional profiles in six peanut cultivars. Five of the studied cultivars were selected because they expressed TRlim while the cultivar York did not. Transcripts of six AQPs were measured. Under exposure to high vapor pressure deficit, cultivar C 76-16 had decreased AQP transcript abundance for four of the six AQPs but in York only one AQP had decreased abundance. The second objective was to explore the influence of AQP inhibitors mercury and silver on expression of TRlim and AQP transcription profiles. Quantitative RT-PCR data were compared in cultivars York and C 76-16, which had the extreme response in TR to VPD. Inhibitor treatment resulted in increased abundance of AQP transcripts in both. The results of these experiments indicate that AQP transcript abundance itself may not be useful in identifying genotypes expressing the TRlim trait under high VPD conditions.

  2. Differential Induction of Flavonoids in Groundnut in Response to Helicoverpa armigera and Aphis craccivora Infestation.

    PubMed

    War, Abdul Rashid; Sharma, Suraj Prasad; Sharma, Hari Chand

    2016-01-01

    Flavonoids are important plant secondary metabolites, which protect plants from various stresses, including herbivory. Plants differentially respond to insects with different modes of action. High performance liquid chromatography (HPLC) fingerprinting of phenols of groundnut (Arachis hypogaea) plants with differential levels of resistance was carried out in response to Helicoverpa armigera (chewing insect) and Aphis craccivora (sucking pest) infestation. The genotypes used were ICGV 86699, ICGV 86031, ICG 2271 (NCAc 343), ICG 1697 (NCAc 17090), and JL 24. Most of the identified compounds were present in H. armigera- and A. craccivora-infested plants of ICGV 86699. Syringic acid was observed in all the genotypes across the treatments, except in the uninfested control plants of ICG 2271 and aphid-infested plants of ICG 1697. Caffeic acid and umbelliferone were observed only in the H. armigera-infested plants of ICGV 86699. Similarly, dihydroxybenzoic acid and vanillic acid were observed in H. armigera- and aphid-infested plants of ICG 2271 and JL 24, respectively. The peak areas were transformed into the amounts of compounds by using internal standard peak areas and were expressed in nanograms. Quantities of the identified compounds varied across genotypes and treatments. The common compounds observed were chlorogenic, syringic, quercetin, and ferulic acids. These results suggest that depending on the mode of feeding, flavonoids are induced differentially in groundnut plants. PMID:27398031

  3. N abundance of nodules as an indicator of N metabolism in n(2)-fixing plants.

    PubMed

    Shearer, G; Feldman, L; Bryan, B A; Skeeters, J L; Kohl, D H; Amarger, N; Mariotti, F; Mariotti, A

    1982-08-01

    This paper expands upon previous reports of (15)N elevation in nodules (compared to other tissues) of N(2)-fixing plants. N(2)-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in (15)N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N(2)-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in (15)N. Thus, (15)N elevation in nodules of these plants depends on active N(2)-fixation. Results obtained so far on the generality of (15)N enrichment in N(2)-fixing nodules suggest that only the nodules of plants which actively fix N(2) and which transport allantoin or allantoic acid exhibit (15)N enrichment. PMID:16662517

  4. Allergen composition analysis and allergenicity assessment of Chinese peanut cultivars.

    PubMed

    Wu, Zhihua; Zhou, Ningling; Xiong, Faqian; Li, Xin; Yang, Anshu; Tong, Ping; Tang, Ronghua; Chen, Hongbing

    2016-04-01

    Peanut (Arachis hypogaea) is among the eight major food allergens in the world. Several attempts have been made to decrease or eliminate the allergenicity of peanut. Systemic screening of thousands of peanut cultivars may identify peanut with low allergenicity. In this study, the allergen compositions of 53 Chinese peanut cultivars were characterized, and their allergenicity to sera IgE of Chinese patients and in a mouse model was assessed. Contents of total protein and allergens were quantified by SDS-PAGE and densitometry analysis on gel. Although the contents of allergens broadly varied among cultivars, they were related to one another. The IgE binding capacity of cultivars was tested by ELISA, and their allergenicity was further evaluated in a mouse model by oral sensitization. Results showed that the allergenicity of peanut was affected by allergen composition rather than a single allergen. Peanut cultivars with low allergenicity may contain more Ara h 3/4 (24 kDa), Ara h 2 and less Ara h 3/4 (43, 38, and 36 kDa), Ara h 6. Screening based on allergen composition would facilitate the identification of low-allergenic peanut. PMID:26593515

  5. Ultrasensitive carbohydrate-peptide SPR imaging microarray for diagnosing IgE mediated peanut allergy

    PubMed Central

    Joshi, Amit A.; Peczuh, Mark W.; Kumar, Challa V.; Rusling, James F

    2014-01-01

    Severity of peanut allergies is linked to allergen-specific immunoglobulin E (IgE) antibodies in blood, but diagnostics from assays using glycoprotein allergen mixtures may be inaccurate. Measuring IgEs specific to individual peptide and carbohydrate epitopes of allergenic proteins is promising. We report here the first immunoarray for IgEs utilizing both peptide and carbohydrate epitopes. A surface plasmon resonance imaging (SPRi) microarray was equipped with peptide and β-xylosyl glycoside (BXG) epitopes from major peanut allergen glycoprotein Arachis hypogaea h2 (Ara-h2). A monoclonal anti-IgE antibody was included as positive control. IgEs were precaptured onto magnetic beads loaded with polyclonal anti-IgE antibodies to enhance sensitivity and minimize non-specific binding. As little as 0.1 attomole (0.5 pg/mL) IgE was detected from dilute serum in 45 min. IgEs binding to Ara-h2 peptide and BXG were quantified in 10 μL of patient serum and correlated with standard ImmunoCAP values. PMID:25259443

  6. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment.

    PubMed

    Stanciel, K; Mortley, D G; Hileman, D R; Loretan, P A; Bonsi, C K; Hill, W A

    2000-02-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  7. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants.

    PubMed

    Mortley, D G; Bonsi, C K; Loretan, P A; Hill, W A; Morris, C E

    2000-02-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  8. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  9. 15N Abundance of Nodules as an Indicator of N Metabolism in N2-Fixing Plants 1

    PubMed Central

    Shearer, Georgia; Feldman, Lori; Bryan, Barbara A.; Skeeters, Jerri L.; Kohl, Daniel H.; Amarger, Nöelle; Mariotti, Françoise; Mariotti, André

    1982-01-01

    This paper expands upon previous reports of 15N elevation in nodules (compared to other tissues) of N2-fixing plants. N2-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in 15N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N2-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in 15N. Thus, 15N elevation in nodules of these plants depends on active N2-fixation. Results obtained so far on the generality of 15N enrichment in N2-fixing nodules suggest that only the nodules of plants which actively fix N2 and which transport allantoin or allantoic acid exhibit 15N enrichment. PMID:16662517

  10. Glycoproteins in human parotid saliva assessed by lectin probes after resolution by sodium dodecyl sulphate-polyacrylamide gel electrophoresis.

    PubMed

    Carpenter, G H; Proctor, G B; Pankhurst, C L; Linden, R W; Shori, D K; Zhang, X S

    1996-01-01

    Human parotid salivary glycoproteins separated by gradient sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose have been investigated using a battery of biotinylated lectin probes of characterized sugar specificity. Lectin binding, detected on blots using avidin-biotin complex (ABC) and a chemiluminescence generating substrate, was recorded on photographic film and compared with the original fluorescein isothiocyanate (FITC) stained blots or with Coomassie Brilliant Blue R-250-stained gels run in parallel. A number of glycoprotein bands which were undetected by protein stains or the periodic acid Schiff reaction were revealed by lectins. Binding by lectins from Concanavalia ensiformis, Lens culinaris, Limax flavus, Phaseolus vulgaris, Ricinus communis, Triticum vulgaris, Lotus tetragonobulus and Ulex europaeus indicated that sialylated and fucosylated triantennary and bisected, N-linked complex sugar chains were present on many glycoproteins in addition to the major glycosylated proline-rich glycoprotein (GI). Binding with lectins from Arachis hypogaea and Dolichos biflorus indicated that the O-linked sugar chains were confined to the alpha-heavy chain of Ig A. Comparison of lectin binding in samples from five healthy individuals revealed differences in a number of glycoproteins in addition to the previously characterized G1 and CON 1/CON 2 polymorphisms and demonstrated that the H blood group antigen was expressed mainly on G1 in parotid saliva. This study will be used as a basis upon which to study salivary glycoproteins in diseases affecting parotid glands.

  11. Studies on the methods of identification of irradiated food I. Seedling growth test

    NASA Astrophysics Data System (ADS)

    Qiongying, Liu; Yanhua, Kuang; Yuemei, Zheng

    1993-07-01

    A seedling growth test for the identification of gamma irradiated edible vegetable seeds was described. The identification of gamma irradiated grape and the other seeds has been investigated. The purpose of this study was to develop an easy, rapid and practical technique for the identification of irradiated edible vegetable seeds. Seven different irradiated edible vegetable seeds as: rice ( Oryza sativa), peanut ( Arachis hypogaea), maize ( Zeamays), soybean ( Glycine max), red bean ( Phaseolus angularis), mung bean ( Phaseolus aureus) and catjang cowpea ( Vigna cylindrica) were tested by using the method of seedling growth. All of the edible vegetable seeds were exposed to gamma radiation on different doses, O(CK), 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 kGy. After treatment with above 1.0 kGy dose to the seeds, the seedling rate was less than 50% compared with the control. Although the seedling rate of rice seeds can reached 58%, the seedling growth was not normal and the seedling leaves appeared deformed. The results by this method were helpful to identify gamma treatment of the edible vegetable seeds with above 1.0 kGy dose.

  12. Changes of glycoprotein patterns in sera of humans under stress.

    PubMed

    Barisic, K; Lauc, G; Dumic, J; Pavlovic, M; Flogel, M

    1996-02-01

    Stress exhibits adverse effects on many vital processes in which glycoproteins play a significant role(e.g. cell-cell/matrix interactions, immune response, neoplastic growth, implantation, prenatal development), yet only scarce attention has been directed towards studying stress induced changes in glycoprotein patterns. Using SDS-electrophoresis, blotting and digoxigenin-labelled lectins (Sambucus nigra agglutinin, Galanthus nivalis agglutinin, Datura stramonium agglutinin, Maackia amurensis agglutinin and peanut (Arachis hypogaea) agglutinin),sera were analysed from 30 individuals chosen randomly from a severely stressed population of 309 male volunteers with no specific medical symptoms. Significant changes were found in glycoprotein pattern and content, compared with healthy controls of matching age and sex. Occasionally minor non-specific deviations from the reference values for several analytes (haemoglobin, glucose, bilirubin and alanine aminotransferase) were detected in the tested group, but glycoprotein GP4S (Mr = 45 000), detected by Datura stramonium agglutinin and Sambucus nigra agglutinin, appeared in 96.7% of samples of the stressed population. The same population also revealed an approximately 500-fold increase of GP37 in comparison with the control sera. These results suggest that stress, as a non-specific syndrome, induces specific biochemical changes, which could be of diagnostic relevance as risk makers before any more serious symptoms of stress-related consequences have developed.

  13. Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil.

    PubMed

    Xia, Shenglan; Wang, Xvming; Su, Genqiang; Shi, Gangrong

    2015-12-01

    This study aimed to investigate the effects of drought stress on cadmium (Cd) accumulation in peanut (Arachis hypogaea L.) grown in contaminated calcareous soils. Five peanut cultivars were grown in a calcareous soil spiked with 4 mg Cd kg(-1) soil (dry weight) under well-watered, mild drought, and severe drought conditions. The biomass production, gas exchange, spectral reflectance, and Cd accumulation in plant tissues were determined. The five cultivars significantly differed from each other in biomass production, gas exchange, spectral reflectance, and Cd accumulation. The effect of drought on Cd accumulation in peanuts varies with plant tissues, cultivars, and developmental stages. Drought decreased root Cd concentrations in seedlings of the two high Cd-accumulating cultivars (Haihua 1 and Zhenghong 3), which is associated with increasing leaf active Fe content. However, for the mature plants, drought stress caused an increase in Cd accumulation in roots, pod walls, and seeds depending on peanut cultivars. Negative correlations were found between seed Cd concentration and biomasses in both preflowering seedlings and mature plants. The seed Cd concentration in mature plants was also observed to be positively correlated with the shoot Cd concentration in preflowering seedlings. The increased Cd concentration in seeds of drought-stressed peanut plants grown in Cd-contaminated calcareous soils might be attributed to the drought-induced decrease of biomass production.

  14. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  15. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    PubMed

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation.

  16. [Effects of different cultivation modes on the leaf photosynthetic characteristics and yield of summer-sowing peanut].

    PubMed

    Yang, Fu-Jun; Zhao, Chang-Xing; Yan, Meng-Meng; Wang, Yue-Fu; Wang, Ming-lun

    2013-03-01

    Taking the Arachis hypogaea cv. 'Qinghua 7' as test material, a field experiment was conducted to study the effects of different cultivation modes on the leaf photosynthetic characteristics and yield of summer-sowing peanut after wheat harvest. As compared with conventional cultivation mode, high-yield protective cultivation mode promoted the leaf growth, significantly improved the leaf area index (LAI), and maintained a longer time of high LAI and chlorophyll content. Meanwhile, the net photosynthetic rate, stomatal conductance, and transpiration rate of functional leaves under high-yield protective cultivation mode were higher while the intercellular CO2 concentration was lower, which induced the photosynthetic efficiency of functional leaves being significantly improved. Therefore, under high-yield protective cultivation mode, the yield per peanut plant was higher, the pod yield increased significantly, and the economic coefficient improved obviously. Both film mulching and straw returning could also improve the leaf photosynthesis of summer-sowing peanut, and increase the peanut yield. It was suggested that high-yield protective cultivation mode could effectively alleviate the adverse factors of summer-sowing peanut, such as the short growth period and lower productivity per plant, being a practical high-yield cultivation mode of summer-sowing peanut.

  17. Enhanced Production of Resveratrol, Piceatannol, Arachidin-1, and Arachidin-3 in Hairy Root Cultures of Peanut Co-treated with Methyl Jasmonate and Cyclodextrin.

    PubMed

    Yang, Tianhong; Fang, Lingling; Nopo-Olazabal, Cesar; Condori, Jose; Nopo-Olazabal, Luis; Balmaceda, Carlos; Medina-Bolivar, Fabricio

    2015-04-22

    Peanut (Arachis hypogaea) produces stilbenoids upon exposure to abiotic and biotic stresses. Among these compounds, the prenylated stilbenoids arachidin-1 and arachidin-3 have shown diverse biological activities with potential applications in human health. These compounds exhibit higher or novel biological activities in vitro when compared to their nonprenylated analogues piceatannol and resveratrol, respectively. However, assessment of these bioactivities in vivo has been challenging because of their limited availability. In this study, hairy root cultures of peanut were induced to produce stilbenoids upon treatment with elicitors. Co-treatment with 100 μM methyl jasmonate (MeJA) and 9 g/L methyl-β-cyclodextrin (CD) led to sustained high levels of resveratrol, piceatannol, arachidin-1, and arachidin-3 in the culture medium when compared to other elicitor treatments. The average yields of arachidin-1 and arachidin-3 were 56 and 148 mg/L, respectively, after co-treatment with MeJA and CD. Furthermore, MeJA and CD had a synergistic effect on resveratrol synthase gene expression, which could explain the higher yield of resveratrol when compared to treatment with either MeJA or CD alone. Peanut hairy root cultures were shown to be a controlled and sustainable axenic system for the production of the diverse types of biologically active stilbenoids.

  18. Allergen composition analysis and allergenicity assessment of Chinese peanut cultivars.

    PubMed

    Wu, Zhihua; Zhou, Ningling; Xiong, Faqian; Li, Xin; Yang, Anshu; Tong, Ping; Tang, Ronghua; Chen, Hongbing

    2016-04-01

    Peanut (Arachis hypogaea) is among the eight major food allergens in the world. Several attempts have been made to decrease or eliminate the allergenicity of peanut. Systemic screening of thousands of peanut cultivars may identify peanut with low allergenicity. In this study, the allergen compositions of 53 Chinese peanut cultivars were characterized, and their allergenicity to sera IgE of Chinese patients and in a mouse model was assessed. Contents of total protein and allergens were quantified by SDS-PAGE and densitometry analysis on gel. Although the contents of allergens broadly varied among cultivars, they were related to one another. The IgE binding capacity of cultivars was tested by ELISA, and their allergenicity was further evaluated in a mouse model by oral sensitization. Results showed that the allergenicity of peanut was affected by allergen composition rather than a single allergen. Peanut cultivars with low allergenicity may contain more Ara h 3/4 (24 kDa), Ara h 2 and less Ara h 3/4 (43, 38, and 36 kDa), Ara h 6. Screening based on allergen composition would facilitate the identification of low-allergenic peanut.

  19. New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.

    PubMed

    Yu, Mingli; Liu, Fengzhen; Zhu, Weiwei; Sun, Meihong; Liu, Jiang; Li, Xinzheng

    2015-11-01

    The peanut (Arachis hypogaea L.) is one of the three most important oil crops in the world due to its high average oil content (50 %). To reveal the biosynthetic pathways of seed oil in the early developmental stages of peanut pods with the goal of improving the oil quality, we presented a method combining deep sequencing analysis of the peanut pod transcriptome and quantitative real-time PCR (RT-PCR) verification of seed oil-related genes. From the sequencing data, approximately 1500 lipid metabolism-associated Unigenes were identified. The RT-PCR results quantified the different expression patterns of these triacylglycerol (TAG) synthesis-related genes in the early developmental stages of peanut pods. Based on these results and analysis, we proposed a novel construct of the metabolic pathways involved in the biosynthesis of TAG, including the Kennedy pathway, acyl-CoA-independent pathway and proposed monoacylglycerol pathway. It showed that the biosynthetic pathways of TAG in the early developmental stages of peanut pods were much more complicated than a simple, unidirectional, linear pathway.

  20. Differential Expression of O-Glycans in CD4(+) T Lymphocytes from Patients with Systemic Lupus Erythematosus.

    PubMed

    Ramos-Martínez, Edgar; Lascurain, Ricardo; Tenorio, Eda Patricia; Sánchez-González, Antonio; Chávez-Rueda, Karina; Chávez-Sánchez, Luis; Jara-Quezada, Luis J; Chávez-Sánchez, Raúl; Zenteno, Edgar; Blanco-Favela, Francisco

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) show a decreased activation threshold and increased apoptosis. These processes seem to be regulated by glycosylated molecules on the T cell surface. Here, we determined through flow cytometry the expression of mucin-type O-glycans on T helper cells in peripheral blood mononuclear cells (PBMC) from 23 SLE patients and its relation with disease activity. We used lectins specific for the disaccharide Gal-GalNAc, such as Amaranthus leucocarpus lectin (ALL), Artocarpus integrifolia lectin (jacalin) and Arachis hypogaea lectin (peanut agglutinin, PNA), as well as lectins for sialic acid such as Sambucus nigra agglutinin (SNA) and Maakia amurensis agglutinin (MAA). The results showed that ALL, but not jacalin or PNA, identified significant differences in O-glycan expression on T helper cells from active SLE patients (n = 10). Moreover, an inverse correlation was found between the frequency of T helper cells recognized by ALL and SLE Disease Activity Index (SLEDAI) score in SLE patients. In contrast, SNA and MAA lectins did not identify any differences between CD4(+) T cells from SLE patients. There was no difference in the recognition by ALL on activated T helper cells and T regulatory (Treg) cells. Our findings point out that activation of SLE disease diminishes the expression of O-glycans in T helper cells; ALL could be considered as a marker to determine activity of the disease.

  1. Idiotypes of pre-existing human anti-carcinoma anti-T and anti-Tn antibodies.

    PubMed

    Zanetti, M; Lenert, G; Springer, G F

    1993-02-01

    All humans normally possess antibodies, predominantly IgM, that react specifically with the Thomsen-Friedenreich (T) and the Tn antigens which are present in immunoreactive form on > 85% of all human carcinomas, but not in healthy and otherwise diseased tissues. We report here a serological study of idiotype expression and antigen reactivity of the anti-T and anti-Tn antibodies. Idiotypy was analyzed with rabbit antibodies raised against, and made specific for, affinity-purified polyclonal anti-T and anti-Tn antibodies from blood group A1B healthy adult donors. Anti-T and anti-Tn antibodies cross-reacted idiotypically in spite of their distinct epitope specificities. By adsorbing anti-T antibodies on insolubilized synthetic T carbohydrate we could firmly link idiotype expression with antigen reactivity. The relation of idiotype expression to the antigen-binding site of plant seed lectins was also studied; one originated from Arachis hypogaea [peanut agglutinin (PNA)], the other from Artocarpus integrifolia (Jacalin). PNA inhibited only anti-T antibodies. Jacalin inhibited both anti-T and anti-Tn antibodies in a dose-dependent manner. Neither idiotypic nor anti-idiotypic antibodies diminished the binding of lectins to T and Tn epitopes. The shared idiotypes on natural anti-T and anti-Tn antibodies permit consideration of application of their anti-idiotypes in treatment and/or prevention of human carcinoma.

  2. Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N(2) with common bean (Phaseolus vulgaris L.).

    PubMed

    Cardoso, Juscélio Donizete; Hungria, Mariangela; Andrade, Diva S

    2012-03-01

    Common bean (Phaseolus vulgaris L.) is a legume that has been reported as highly promiscuous in nodulating with a variety of rhizobial strains, often with low effectiveness in fixing nitrogen. The aim of this work was to assess the symbiotic efficiency of rhizobial strains isolated from common bean seeds, nodules of Arachis hypogaea, Mucuna pruriens, and soils from various Brazilian agroecosystems, followed by the characterization of elite strains identified in the first screening. Forty-five elite strains were analyzed for symbiotic properties (nodulation, plant-growth, and nitrogen-fixation parameters) under greenhouse conditions in pots containing non-sterile soil, and variation in symbiotic performance was observed. Elite strains were also characterized in relation to morpho-physiological properties, genetic profiles of rep-polymerase chain reaction (PCR; BOX), and restriction fragment length polymorphism (RFLP)-PCR of the 16S rRNA. Sequence analyses of the 16S rRNA were obtained for 17 strains representative of the main groups resulting from all previous analyses. One of the most effective strains, IPR-Pv 2604, was clustered with Rhizobium tropici, whereas strain IPR-Pv 583, showing lower effectiveness in fixing N(2), was clustered with Herbaspirillum lusitanum. Surprisingly, effective strains were clustered with unusual symbiotic genera/species, including Leifsonia xyli, Stenotrophomonas maltophilia, Burkholderia, and Enterobacter. Some strains recognized in this study were outstanding in their nitrogen-fixing capacity and therefore, show high biotechnological potential for use in commercial inoculants. PMID:22159885

  3. Reproduction of Meloidogyne marylandi and M. incognita on several Poaceae.

    PubMed

    Faske, T R; Starr, J L

    2009-03-01

    The susceptibility of 22 plant species to Meloidogyne marylandi and M. incognita was examined in three greenhouse experiments. Inoculum of M. marylandi was eggs from cultures maintained on Zoysia matrella "Cavalier" or Cynodon dactylon x C. trasvaalensis "Tifdwarf". Inoculum of M. incognita was eggs from cultures maintained on Solanum lycopersicum 'Rutgers'. In each host test the inoculum density was 2,000 nematode eggs/pot. None of the three dicot species tested (Gossypium hirsutum, Arachis hypogaea, and S. lycopersicum) were hosts for M. marylandi but, as expected, M. incognita had high levels of reproduction on G. hirsutum and S. lycopersicum. Meloidogyne marylandi reproduced on all of the 19 grass species (Poaceae) tested but reproduction varied greatly (P = 0.05) among these hosts. The following grasses were identified for the first time as hosts for M. marylandi: Buchloe dactyloides (buffalograss), Echinochloa colona (jungle rice), Eragostis curvula (weeping lovegrass), Paspalum dilatatum (dallisgrass), P. notatum (bahiagrass), Sorghastrum, nutans (indiangrass), Tripsacum dactyloides (eastern gamagrass), and Zoysia matrella (zoysiagrass). No reproduction of M. incognita was observed on B. dactyloides, Cyndon dactylon (common bermudagrass), E. curvula, P. vaginatum (seashore paspalum), S. nutans, T. dactyloides, Z. matrella or Z. japonica. Reproduction of M. incognita was less than reproduction of M. marylandi on the other grass species, except for the Zea mays inbred line B73 on which M. incognita had greater reproduction than did M. marylandi (P = 0.05) and Stenotaphrum secundatum (St. Augustinegrass) on which M. incognita and M. marylandi had similar levels of reproduction.

  4. Cell-surface carbohydrates of Entamoeba invadens.

    PubMed

    Ribeiro, S; Soares, R M; Alviano, C S; Da Silva, E F; De Souza, W; Angluster, J

    1997-01-01

    Cell-surface carbohydrates of Entamoeba invadens trophozoites were analyzed using (a) a panel of highly purified lectins specific for molecules containing N-acetylglucosamine or sialic acid, N-acetylgalactosamine, galactose, mannose-like residues, and fucose; (b) Escherichia coli K-12 with mannose-sensitive fimbria; (c) enzymatic digestion; and (d) scanning electron microscopy. The presence of galactose (D-Gal) and N-acetylgalactosamine (D-GalNAc) was detected in the amoeba. Previous trypsinization induced the appearance of Glycine max (SBA, specific for D-GalNAc residues)-binding sites, whereas such treatment completely abolished the ability of Ricinus communis (RCAI) and Axinalla polypoides (APP, specific for D-Gal) lectins and partially abolished that of Euonymus europaeus (EEL, specific for D-Gal) lectins to agglutinate the trophozoites. The agglutinating activity of E. coli K-12 adheans with the amoeba was markedly increased after trypsin digestion, indicating that mannose units become exposed after enzyme treatment. These findings were essentially confirmed by scanning electron microscopy. After neuraminidase treatment the parasites became strongly agglutinated with SBA and Arachis hypogaea (PNA, specific for D-Gal) and the cell interaction with Wisteria floribunda (WFH, specific for D-GalNAc) was markedly increased. These results suggest that in E. invadens trophozoites, sialic acid residues are linked to D-Gal and D-GalNAc. PMID:9342747

  5. Placental glycosylation in peccary species and its relation to that of swine and dromedary.

    PubMed

    Jones, C J P; Santos, T C; Abd-Elnaeim, M; Dantzer, V; Miglino, M A

    2004-08-01

    Comparison has been made between glycans at the fetomaternal interface of two Tayassu species (New World peccaries or wild pigs) and those of swine (true pigs) and dromedary, which have similar epitheliochorial placentae. Plastic sections of near-term fetomaternal interface from Tayassu tajacu (120 days gestation) and Tayassu pecari (140 days gestation) were stained with 20 lectins and compared with those of swine (109 days) and dromedary (375 days). Both Tayassu species showed similar staining characteristics, which differed only slightly from those of the swine. Most differences were quantitative rather than qualitative, except for binding of Arachis hypogaea lectin to terminal beta-galactose which was absent in swine uterine epithelium though present in both Tayassu species, and binding of Sambucus nigra lectin to sialic acid which was absent in swine epithelium and trophoblast though present in Tayassu. Glycosylation of the dromedary fetomaternal interface showed, in contrast, significant differences compared to Tayassu and swine, particularly regarding fucosyl, sialyl and terminal galactosyl residues. Despite a divergence of between 33 million and 37 million years between true pigs and peccaries, glycosylation of the fetomaternal interface has remained similar, with most of the observed changes affecting terminal structures. The dromedary has an epitheliochorial placenta with a similar architecture, but different glycan expression, suggesting modification of glycosyl transferases with evolution. These data contain clues to changes of glycosyl transferase activity that accompany speciation.

  6. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage.

    PubMed

    Cardoza, Yasmin J; Alborn, Hans T; Tumlinson, James H

    2002-01-01

    Peanut plants, Arachis hypogaea, infected with white mold. Sclerotium rolfsii, emit a blend of organic compounds that differs both quantitatively and qualitatively from the blend emitted from plants damaged by beet armyworm (BAW; Spodoptera exigua) larvae or from uninfected, undamaged plants. Attackby BAW induced release of lipoxygenase products (hexenols, hexenals, and hexenyl esters), terpenoids, and indole. The plant-derived compound methyl salicylate and the fungal-derived compound 3-octanone were found only in headspace samples from white mold infected plants. White mold-infected plants exposed to BAW damage released all the volatiles emitted by healthy plants fed on by BAW in addition to those emitted in response to white mold infection alone. When BAW larvae were given a choice of feeding on leaves from healthy or white mold-infected plants, they consumed larger quantities of the leaves from infected plants. Exposure to commercially available (Z)-3 hexenyl acetate, linalool, and methyl salicylate, compounds emitted by white mold-infected plants, significantly reduced the growth of the white mold in solid-media cultures. Thus, emission of these compounds by infected plants may constitute a direct defense against this pathogen. PMID:11868672

  7. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway.

    PubMed

    Yang, Tianhong; Fang, Lingling; Rimando, Agnes M; Sobolev, Victor; Mockaitis, Keithanne; Medina-Bolivar, Fabricio

    2016-08-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases.

  8. Second generation peanut genotypes resistant to thrips-transmitted tomato spotted wilt virus exhibit tolerance rather than true resistance and differentially affect thrips fitness.

    PubMed

    Shrestha, Anita; Srinivasan, Rajagopalbabu; Sundaraj, Sivamani; Culbreath, Albert K; Riley, David G

    2013-04-01

    Spotted wilt disease caused by Tomato spotted wilt virus (TSWV) (family Bunyaviridae; genus Tospovirus) is a major constraint to peanut (Arachis hypogaea L.) production in the southeastern United States. Reducing yield losses to TSWV has heavily relied on planting genotypes that reduce the incidence of spotted wilt disease. However, mechanisms conferring resistance to TSWV have not been identified in these genotypes. Furthermore, no information is available on how these genotypes influence thrips fitness. In this study, we investigated the effects of newly released peanut genotypes (Georganic, GA-06G, Tifguard, and NC94022) with field resistance to TSWV and a susceptible genotype (Georgia Green) on tobacco thrips, Frankliniella fusca (Hinds), fitness, and TSWV incidence. Thrips-mediated transmission resulted in TSWV infection in both TSWV-resistant and susceptible genotypes and they exhibited typical TSWV symptoms. However, some resistant genotypes had reduced viral loads (fewer TSWV N-gene copies) than the susceptible genotype. F. fusca larvae acquired TSWV from resistant and susceptible genotypes indicating that resistant genotypes also can serve as inoculum sources. Unlike resistant genotypes in other crops that produce local lesions (hypersensitive reaction) upon TSWV infection, widespread symptom development was noticed in peanut genotypes. Results indicated that the observed field resistance in peanut genotypes could be because of tolerance. Further, fitness studies revealed some, but not substantial, differences in thrips adult emergence rates and developmental time between resistant and susceptible genotypes. Thrips head capsule length and width were not different when reared on different genotypes.

  9. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants.

    PubMed

    Shrestha, Anita; Sundaraj, Sivamani; Culbreath, Albert K; Riley, David G; Abney, Mark R; Srinivasan, Rajagopalbabu

    2015-02-01

    Spotted wilt caused by tomato spotted wilt virus (TSWV; family Bunyaviridae; genus Tospovirus) is a serious disease of peanut (Arachis hypogaea L.) in the southeastern United States. Peanut genotypes with field resistance to TSWV are effective in suppressing spotted wilt. All commercially available genotypes with field resistance to TSWV were developed through conventional breeding. As a part of the breeding process, peanut genotypes are regularly screened under field situations. Despite numerous advantages associated with field screening, it is often limited by inconsistent vector (thrips) and TSWV pressure. A greenhouse transmission protocol would aid in thorough screening of selected genotypes and conserve time. In this study, various parameters associated with TSWV transmission, including tobacco thrips, Frankliniella fusca (Hinds) density, mode of inoculation, and plant age, were evaluated. Greater incidences of TSWV infection were obtained with thrips-mediated inoculation when compared with mechanical inoculation. TSWV inoculation with three, five, and 10 thrips resulted in greater incidences of TSWV infection in plants than inoculation with one thrips. However, incidences of TSWV infection did not vary between plants inoculated with three, five, and 10 viruliferous thrips. With both thrips-mediated and mechanical inoculation methods, incidences of TSWV infection in 1-wk-old plants were greater than in 4-wk-old plants. TSWV copy numbers, as determined by qPCR, also decreased with plant age. Results suggest that using at least three thrips per plant and 1- to 2-wk-old plants would maximize TSWV infection in inoculated plants.

  10. Construction of a Genetic Linkage Map and Identification of QTLs for Resistance to TSWV in Cultivated Peanut (Arachis hypagea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetic linkage map is critical for identifying the QTL (quantitative trait loci) underling targeted traits. Over the last few years, progress has been made in marker development from multiple sources enabling the expansion of quality resources needed for genotyping applications in cultivated x cu...

  11. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).

    PubMed

    Shweta, Bhatia; Maheshwari, Dinesh Kumar; Dubey, Ramesh Chand; Arora, Daljit Singh; Bajpai, Vivek K; Kang, Sun Chul

    2008-09-01

    Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at 28+/-1 degrees , both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71% and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was testeds 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut. PMID:18852515

  12. [Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca)].

    PubMed

    Liang, Xiao-yan; Guo, Feng; Zhang, Jia-lei; Meng, Jing-jing; Li, Lin; Wan, Shu-bo; Li, Xin-guo

    2015-12-01

    The large-seed peanut cultivar of Huayu 22 was used to study the differences of canopy microenvironment, photosynthetic characteristics, and pod yield at three single-seed sowing densities, i.e., 225000 (S₁), 195000 (S₂) and 165000 (S₃) holes per hectare, in field experiments. The results showed that the canopy light transmittance, canopy air temperature and canopy CO₂concentration all increased at these three single-seed sowing densities compared with those of double-seed sowing pattern (150000 holes per hectare), while the canopy humidity decreased. It seemed that single-seed sowing was helpful to improve microenvironment and the growth of peanut, especially at late growth stage. Meanwhile, the photosynthetic pigment contents and the net photosynthetic rate of peanut under single-seed sowing, especially in S₂ and S₃, were remarkably higher than those under traditional double-seed sowing. S₂ had the optimum population size with an equal distribution of individuals, which reduced the contradiction between individuals and population, optimized the canopy microenvironment, enhanced the photosynthetic characteristics, and increased the synthesis and accumulation of photosynthetic products to maximize the yield production of peanut.

  13. [Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca)].

    PubMed

    Liang, Xiao-yan; Guo, Feng; Zhang, Jia-lei; Meng, Jing-jing; Li, Lin; Wan, Shu-bo; Li, Xin-guo

    2015-12-01

    The large-seed peanut cultivar of Huayu 22 was used to study the differences of canopy microenvironment, photosynthetic characteristics, and pod yield at three single-seed sowing densities, i.e., 225000 (S₁), 195000 (S₂) and 165000 (S₃) holes per hectare, in field experiments. The results showed that the canopy light transmittance, canopy air temperature and canopy CO₂concentration all increased at these three single-seed sowing densities compared with those of double-seed sowing pattern (150000 holes per hectare), while the canopy humidity decreased. It seemed that single-seed sowing was helpful to improve microenvironment and the growth of peanut, especially at late growth stage. Meanwhile, the photosynthetic pigment contents and the net photosynthetic rate of peanut under single-seed sowing, especially in S₂ and S₃, were remarkably higher than those under traditional double-seed sowing. S₂ had the optimum population size with an equal distribution of individuals, which reduced the contradiction between individuals and population, optimized the canopy microenvironment, enhanced the photosynthetic characteristics, and increased the synthesis and accumulation of photosynthetic products to maximize the yield production of peanut. PMID:27112008

  14. Insights into the Indian Peanut Genotypes for ahFAD2 Gene Polymorphism Regulating Its Oleic and Linoleic Acid Fluxes

    PubMed Central

    Nawade, Bhagwat; Bosamia, Tejas C.; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L.; Kumar, Abhay; Dobaria, Jentilal R.; Kundu, Rahul; Mishra, Gyan P.

    2016-01-01

    In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and “SunOleic95R”—a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism. PMID:27610115

  15. Insights into the Indian Peanut Genotypes for ahFAD2 Gene Polymorphism Regulating Its Oleic and Linoleic Acid Fluxes.

    PubMed

    Nawade, Bhagwat; Bosamia, Tejas C; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L; Kumar, Abhay; Dobaria, Jentilal R; Kundu, Rahul; Mishra, Gyan P

    2016-01-01

    In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and "SunOleic95R"-a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism. PMID:27610115

  16. Insights into the Indian Peanut Genotypes for ahFAD2 Gene Polymorphism Regulating Its Oleic and Linoleic Acid Fluxes

    PubMed Central

    Nawade, Bhagwat; Bosamia, Tejas C.; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L.; Kumar, Abhay; Dobaria, Jentilal R.; Kundu, Rahul; Mishra, Gyan P.

    2016-01-01

    In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and “SunOleic95R”—a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism.

  17. Groundnut improvement: use of genetic and genomic tools

    PubMed Central

    Janila, Pasupuleti; Nigam, S. N.; Pandey, Manish K.; Nagesh, P.; Varshney, Rajeev K.

    2013-01-01

    Groundnut (Arachis hypogaea L.), a self-pollinated legume is an important crop cultivated in 24 million ha world over for extraction of edible oil and food uses. The kernels are rich in oil (48–50%) and protein (25–28%), and are source of several vitamins, minerals, antioxidants, biologically active polyphenols, flavonoids, and isoflavones. Improved varieties of groundnut with high yield potential were developed and released for cultivation world over. The improved varieties belong to different maturity durations and possess resistance to diseases, tolerance to drought, enhanced oil content, and improved quality traits for food uses. Conventional breeding procedures along with the tools for phenotyping were largely used in groundnut improvement programs. Mutations were used to induce variability and wide hybridization was attempted to tap variability from wild species. Low genetic variability has been a bottleneck for groundnut improvement. The vast potential of wild species, reservoir of new alleles remains under-utilized. Development of linkage maps of groundnut during the last decade was followed by identification of markers and quantitative trait loci for the target traits. Consequently, the last decade has witnessed the deployment of molecular breeding approaches to complement the ongoing groundnut improvement programs in USA, China, India, and Japan. The other potential advantages of molecular breeding are the feasibility to target multiple traits for improvement and provide tools to tap new alleles from wild species. The first groundnut variety developed through marker-assisted back-crossing is a root-knot nematode-resistant variety, NemaTAM in USA. The uptake of molecular breeding approaches in groundnut improvement programs by NARS partners in India and many African countries is slow or needs to be initiated in part due to inadequate infrastructure, high genotyping costs, and human capacities. Availability of draft genome sequence for diploid (AA and

  18. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal.

    PubMed

    Foster, J L; Adesogan, A T; Carter, J N; Blount, A R; Myer, R O; Phatak, S C

    2009-09-01

    The high cost of commercial supplements necessitates evaluation of alternatives for ruminant livestock fed poor quality warm-season grasses. This study determined how supplementing bahiagrass haylage (Paspalum notatum Flügge cv. Tifton 9) with soybean [Glycine max (L.) Merr.] meal or warm-season legume haylages affected the performance of lambs. Forty-two Dorper x Katadhin lambs (27.5 +/- 5 kg) were fed for ad libitum intake of bahiagrass haylage (67.8% NDF, 9.6% CP) alone (control) or supplemented with soybean meal (18.8% NDF, 51.4% CP) or haylages of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 39.6% NDF, 18.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 44.1% NDF, 16.0% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 40.0% NDF, 15.8% CP), or pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 65.0% NDF, 13.7% CP]. Haylages were harvested at the optimal maturity for maximizing yield and nutritive value, wilted to 45% DM, baled, wrapped in polyethylene plastic, and ensiled for 180 d. Legumes were fed at 50% of the dietary DM, and soybean meal was fed at 8% of the dietary DM to match the average CP concentration (12.8%) of legume haylage-supplemented diets. Lambs were fed each diet for a 14-d adaptation period and a 7-d data collection period. Each diet was fed to 7 lambs in period 1 and 4 lambs in period 2. Pigeonpea haylage supplementation decreased (P < 0.01) DM and OM intake and digestibility vs. controls. Other legume haylages increased (P < 0.05) DM and OM intake vs. controls; however, only soybean meal supplementation increased (P = 0.01) DM digestibility. All supplements decreased (P = 0.05) NDF digestibility. Except for pigeonpea haylage, all supplements increased (P < 0.01) N intake, digestibility, and retention, and the responses were greatest (P = 0.04) with soybean meal supplementation. Microbial N synthesis was reduced (P = 0.02) by pigeonpea haylage supplementation, but unaffected (P = 0.05) by other supplements

  19. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture.

    PubMed

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-05-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm.

  20. AhDMT1, a Fe(2+) transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils.

    PubMed

    Shen, Hongyun; Xiong, Hongchun; Guo, Xiaotong; Wang, Pengfei; Duan, Penggen; Zhang, Lixia; Zhang, Fusuo; Zuo, Yuanmei

    2014-05-01

    Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe(2+) transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach.

  1. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model.

    PubMed

    Olatinwo, Rabiu O; Prabha, Thara V; Paz, Joel O; Hoogenboom, Gerrit

    2012-03-01

    Early leaf spot of peanut (Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  2. Global Synthesis of Drought Effects on Food Legume Production.

    PubMed

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  3. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses.

    PubMed

    Lasse Grönemeyer, Jann; Hurek, T; Reinhold-Hurek, Barbara

    2015-12-01

    Eight strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata) and Bambara groundnut (Vigna subterranea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to Bradyrhizobium iriomotense EK05T and Bradyrhizobium ingae BR 10250T, and to 'Bradyrhizobium arachidis' CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK sequences placed the strains in a lineage distinct from named species of the genus Bradyrhizobium. The species status was validated by results of DNA-DNA hybridization. Phylogenetic analysis of nifH and nodC genes placed the novel strains in a group with 'B. arachidis' CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 14-3T induces effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and Lablab purpureus. Based on the data presented, it is concluded that the strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium kavangense sp. nov. is proposed. The type strain is 14-3T [ = DSM 100299T = LMG 28790T = NTCCM 0012T (Windhoek)]. The DNA G+C content of strain 14-3T is 63.8 mol% (Tm). PMID:26446190

  4. Response of Photosynthesis and Yield of Sweetpotato and Peanut to Super-optimal CO2 levels

    NASA Astrophysics Data System (ADS)

    Bonsi, C.; Bullard, J.; Hileman, D.; Mortley, D.; Hill, J.; Hill, W.; Morrris, C.

    The fate of persons involved in long-term space travel and habitation will depend greatly on the ability to provide food and a livable environment for them In the National Aeronautics and Space Administration NASA Advanced Life Support ALS program photosynthesis of higher plants will be utilized to provide food and oxygen while removing carbon dioxide produced by humans and other heterotrophs as well as transpiring water that can be recycled for drinking This plant-mediated process is collectively referred to as Bioregenerative Life Support Carbon dioxide concentrations on board a space shuttle cabin atmosphere range between 4000 and 6000 mu mol mol -1 CO 2 but with large crews may exceed 10 000- mu mol mol -1 CO 2 Thus it is critical to evaluate the responses of candidate crops to super optimal levels of CO 2 Soybean and potato have been exposed to CO 2 concentrations up to 5000 and 10 000- mu mol mol -1 Very little research has been published about the effects of super-optimal CO 2 levels on sweetpotato and peanut growth and physiology thus indicating a need for extensive research on these plants The aim of this study was to evaluate the effects of super-optimal CO 2 enrichment on growth of TU-82-155 sweetpotato and Georgia Red peanut in a Microporous Tube Membrane MPT using Turface Media and Nutrient Film Technique NFT nutrient delivery systems Sweetpotato Ipomoea batatas L Lam and peanut Arachis hypogaea L were exposed to three CO 2 levels of 400

  5. Plants with potential use on obesity and its complications.

    PubMed

    Gamboa-Gómez, Claudia I; Rocha-Guzmán, Nuria E; Gallegos-Infante, J Alberto; Moreno-Jiménez, Martha R; Vázquez-Cabral, Blanca D; González-Laredo, Rubén F

    2015-01-01

    Obesity is the most prevalent nutritional disease and a growing public health problem worldwide. This disease is a causal component of the metabolic syndrome related with abnormalities, including hyperglycemia, dyslipidemia, hypertension, inflammation, among others. There are anti-obesity drugs, affecting the fundamental processes of the weight regulation; however they have shown serious side effects, which outweigh their beneficial effects. Most recent studies on the treatment of obesity and its complications have focused on the potential role of different plants preparation that can exert a positive effect on the mechanisms involved in this pathology. For instance, anti-obesity effects of green tea and its isolated active principles have been reported in both in vitro (cell cultures) and in vivo (animal models) that possess healthy effects, decreasing adipose tissue through reduction of adipocytes differentiation and proliferation. A positive effect in lipid profile, and lipid and carbohydrates metabolisms were demonstrated as well. In addition, anti-inflammatory and antioxidant activities were studied. However, the consumption of green tea and its products is not that common in Western countries, where other plants with similar bioactivity predominate; nevertheless, the effect extension has not been analyzed in depth, despite of their potential as alternative treatment for obesity. In this review the anti-obesity potential and reported mechanisms of action of diverse plants such as: Camellia sinensis, Hibiscus sabdariffa, Hypericum perforatum, Persea americana, Phaseolus vulgaris, Capsicum annuum, Rosmarinus officinalis, Ilex paraguariensis, Citrus paradisi, Citrus limon, Punica granatum, Aloe vera, Taraxacum officinale and Arachis hypogaea is summarized. We consider the potential of these plants as natural alternative treatments of some metabolic alterations associated with obesity. PMID:26869866

  6. Burrower bugs (Heteroptera: Cydnidae) in peanut: seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management.

    PubMed

    Chapin, Jay W; Thomas, James S

    2003-08-01

    Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.

  7. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation

    PubMed Central

    Wan, Liyun; Li, Bei; Pandey, Manish K.; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K.; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as “peanut seed coat crack and brown color mutant line (pscb).” The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color. PMID

  8. Characterization of the N-glycans of female Angiostrongylus cantonensis worms.

    PubMed

    Veríssimo, Carolina M; Morassutti, Alessandra L; von Itzstein, Mark; Sutov, Grigorij; Hartley-Tassell, Lauren; McAtamney, Sarah; Dell, Anne; Haslam, Stuart M; Graeff-Teixeira, Carlos

    2016-07-01

    Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans.

  9. Negative biomarker-based male fertility evaluation: sperm phenotypes associated with molecular-level anomalies

    PubMed Central

    Sutovsky, Peter; Aarabi, Mahmoud; Miranda-Vizuete, Antonio; Oko, Richard

    2015-01-01

    Biomarker-based sperm analysis elevates the treatment of human infertility and ameliorates reproductive performance in livestock. The negative biomarker-based approach focuses on proteins and ligands unique to defective spermatozoa, regardless of their morphological phenotype, lending itself to analysis by flow cytometry (FC). A prime example is the spermatid specific thioredoxin SPTRX3/TXNDC8, retained in the nuclear vacuoles and superfluous cytoplasm of defective human spermatozoa. Infertile couples with high semen SPTRX3 are less likely to conceive by assisted reproductive therapies (ART) and more prone to recurrent miscarriage while low SPTRX3 has been associated with multiple ART births. Ubiquitin, a small, proteolysis-promoting covalent posttranslational protein modifier is found on the surface of defective posttesticular spermatozoa and in the damaged protein aggregates, the aggresomes of spermiogenic origin. Semen ubiquitin content correlates negatively with fertility and conventional semen parameters, and with sperm binding of lectins LCA (Lens culinaris agglutinin; reveals altered sperm surface) and PNA (Arachis hypogaea/peanut agglutinin; reveals acrosomal malformation or damage). The Postacrosomal Sheath WWI Domain Binding Protein (PAWP), implicated in oocyte activation during fertilization, is ectopic or absent from defective human and animal spermatozoa. Consequently, FC-parameters of PAWP correlate with ART outcomes in infertile couples and with fertility in bulls. Assays based on the above biomarkers have been combined into multiplex FC semen screening protocols, and the surface expression of lectins and ubiquitin has been utilized to develop nanoparticle-based bull semen purification method validated by field artificial insemination trials. These advances go hand-in-hand with the innovation of FC-technology and genomics/proteomics-based biomarker discovery. PMID:25999356

  10. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols.

    PubMed

    Srinivasarao, Ch; Shanker, Arun K; Kundu, Sumanta; Reddy, Sharanbhoopal

    2016-07-01

    Optimum potassium (K) nutrition in semi-arid regions may help crop plants to overcome constraints in their growth and development such as moisture stress, leading to higher productivity of rainfed crops, thus judicious K management is essential. A study was conducted to evaluate the importance of K nutrition on physiological processes like photosynthesis through chlorophyll a fluorescence and chlorophyll fluorescence induction kinetics (OJIP) of rainfed crops viz., maize (Zea mays L.), pearl millet (Pennisetum glaucum), groundnut (Arachis hypogaea), sunflower (Helianthus annuus), castor (Ricinus communis L.) and cotton (Gossypium hirsutum) under water stress conditions by studying their growth attributes, water relations, yield, K uptake and use efficiency under varied K levels. Highest chlorophyll content was observed under K60 in maize and pearl millet. Narrow and wide Chl a:b ratio was observed in castor and groundnut respectively. The fluorescence yield decreased in the crops as K dosage increased, evidenced by increasing of all points (O, J, I and P) of the OJIP curves. The fluorescence transient curve for K60 was lower than K0 and K40 for all the crops. Potassium levels altered the fluorescence induction and impaired photosynthetic systems in all the crops studied. There was no distinct trend observed in leaf water potential of crops under study. Uptake of K was high in sunflower with increased rate of K application. Quantitatively, K uptake by castor crop was lesser compared to all other crops. Our results indicate that the yield reduction under low K was due to the low capacity of the crops to translocate K from non-photosynthetic organs such as stems and petioles to upper leaves and harvested organs and this in turn influenced the capacity of the crops to produce a high economic yield per unit of K taken up thus reducing utilization efficiency of K. PMID:27101276

  11. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.

    PubMed

    Hammerbacher, Almuth; Ralph, Steven G; Bohlmann, Joerg; Fenning, Trevor M; Gershenzon, Jonathan; Schmidt, Axel

    2011-10-01

    Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense.

  12. Plants with potential use on obesity and its complications

    PubMed Central

    Gamboa-Gómez, Claudia I.; Rocha-Guzmán, Nuria E.; Gallegos-Infante, J. Alberto; Moreno-Jiménez, Martha R.; Vázquez-Cabral, Blanca D.; González-Laredo, Rubén F.

    2015-01-01

    Obesity is the most prevalent nutritional disease and a growing public health problem worldwide. This disease is a causal component of the metabolic syndrome related with abnormalities, including hyperglycemia, dyslipidemia, hypertension, inflammation, among others. There are anti-obesity drugs, affecting the fundamental processes of the weight regulation; however they have shown serious side effects, which outweigh their beneficial effects. Most recent studies on the treatment of obesity and its complications have focused on the potential role of different plants preparation that can exert a positive effect on the mechanisms involved in this pathology. For instance, anti-obesity effects of green tea and its isolated active principles have been reported in both in vitro (cell cultures) and in vivo (animal models) that possess healthy effects, decreasing adipose tissue through reduction of adipocytes differentiation and proliferation. A positive effect in lipid profile, and lipid and carbohydrates metabolisms were demonstrated as well. In addition, anti-inflammatory and antioxidant activities were studied. However, the consumption of green tea and its products is not that common in Western countries, where other plants with similar bioactivity predominate; nevertheless, the effect extension has not been analyzed in depth, despite of their potential as alternative treatment for obesity. In this review the anti-obesity potential and reported mechanisms of action of diverse plants such as: Camellia sinensis, Hibiscus sabdariffa, Hypericum perforatum, Persea americana, Phaseolus vulgaris, Capsicum annuum, Rosmarinus officinalis, Ilex paraguariensis, Citrus paradisi, Citrus limon, Punica granatum, Aloe vera, Taraxacum officinale and Arachis hypogaea is summarized. We consider the potential of these plants as natural alternative treatments of some metabolic alterations associated with obesity. PMID:26869866

  13. Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase).

    PubMed

    Perrine, Cynthia; Ju, Tongzhong; Cummings, Richard D; Gerken, Thomas A

    2009-03-01

    Mucin-type protein O-glycosylation is initiated by the addition of alpha-GalNAc to Ser/Thr residues of a polypeptide chain. The addition of beta-Gal to GalNAc by the UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase), forming the Core 1 structure (beta-Gal(1-3)-alpha-GalNAc-O-Ser/Thr), is a common and biologically significant subsequent step in O-glycan biosynthesis. What dictates the sites of Core 1 glycosylation is poorly understood; however, the peptide sequence and neighboring glycosylation effects have been implicated. To systematically address the role of the peptide sequence on the specificity of T-synthase, we used the oriented random glycopeptide: GAGAXXXX(T-O-GalNAc)XXXXAGAG (where X = G, A, P, V, I, F, Y, S, N, D, E, H, R, and K) as a substrate. The Core 1 glycosylated product was isolated on immobilized PNA (Arachis hypogaea) lectin and its composition determined by Edman amino acid sequencing for comparison with the initial substrate composition, from which transferase preferences were obtained. From these studies, elevated preferences for Gly at the +1 position with moderately high preferences for Phe and Tyr in the +3 position relative to the acceptor Thr-O-GalNAc were found. A number of smaller Pro enhancements were also observed. Basic residues, i.e., Lys, Arg, and His, in any position were disfavored, suggesting electrostatic interactions as an additional important component modulating transferase specificity. This work suggests that there are indeed subtle specific and nonspecific protein-targeting sequence motifs for this transferase.

  14. Role of insecticides in reducing thrips injury to plants and incidence of tomato spotted wilt virus in Virginia market-type peanut.

    PubMed

    Herbert, D Ames; Malone, S; Aref, S; Brandenburg, R L; Jordan, D L; Royals, B M; Johnson, P D

    2007-08-01

    Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV), transmitted by many thrips species, is a devastating pathogen of peanut, Arachis hypogaea L. TSWV has become a serious problem in the Virginia/Carolina peanut-growing region of the United States. During 2002, TSWV was present in 47% of the North Carolina hectarage and caused a 5% yield reduction in Virginia. Factors influencing levels of TSWV in runner market-type peanut cultivars, which are primarily grown in Alabama, Flordia, Georgia, and Texas, have been integrated into an advisory to help those peanut growers reduce losses. An advisory based on the southeast runner market-type version is currently under development for virginia market-type peanut cultivars that are grown primarily in the Virginia/ Carolina region. A version based on preliminary field experiments was released in 2003. One factor used in both advisories relates to insecticide use to reduce the vector populations and disease incidence. This research elucidated the influence of insecticides on thrips populations, thrips plant injury, incidence of TSWV, and pod yield in virginia market-type peanut. Eight field trials from 2003 to 2005 were conducted at two locations. In-furrow application of aldicarb and phorate resulted in significant levels of thrips control, significant reductions in thrips injury to seedlings, reduced incidence of TSWV, and significant increases in pod yield. Foliar application of acephate after aldicarb or phorate applied in the seed furrow further reduced thrips plant injury and incidence of TSWV and improved yield. These findings will be used to improve the current virginia market-type TSWV advisory.

  15. O-Glycosylation of α-1-Acid Glycoprotein of Human Milk Is Lactation Stage Related

    PubMed Central

    Berghausen-Mazur, Marta; Hirnle, Lidia; Kątnik-Prastowska, Iwona

    2015-01-01

    Abstract Background: Human milk provides a multitude of glycoproteins, including highly glycosylated α-1-acid glycoprotein (AGP), which elicits anti-inflammatory and immunomodulatory properties. The milk AGP glycoforms may provide the breastfed infant with a wide range of biological benefits. Here, we analyzed the reactivity of O-linked sugar-specific lectins with human milk AGP over the process of lactation and compared the results with those of the lactating mother's plasma. Materials and Methods: Relative amounts of human skim milk AGP O-glycans were analyzed in early colostrum, colostrum, and transitional and mature milk samples of 127 healthy mothers by lectin–AGP enzyme-linked immunosorbent assay using sialyl T (sialyl-α2,3/α2,6 Galβ1,3GalNAc-), asialyl T (Galβ1,3GalNAc-), and Tn (GalNAc-) antigen-specific biotinylated Artocarpus integrifolia (Jacalin), Arachis hypogaea (PNA), and Vicia villosa (VVA) lectins, respectively. Results: Milk AGP elicited high expression of Jacalin- and PNA-reactive glycotopes and low expression of VVA-reactive glycotopes, which were absent on plasma AGP of lactating mothers and healthy individuals. The expression of sialyl, asialyl T, and Tn glycotopes of human milk AGP was lactation stage related. The relative amount of Jacalin-reactive AGP glycotope was highest in the colostrum samples and then decreased starting from Day 8 of lactation. In contrast, an increase of the relative amount of PNA-reactive glycotope with milk maturation was observed. The relative amount of VVA-reactive glycotope remained almost constant over the development of lactation. Conclusions: Milk AGP differs from mother's plasma AGP by the presence of O-linked sialylated and asialylated T as well as Tn antigens. The variation of the expression of sialylated and asialylated T and Tn antigens on AGP is associated with milk maturation. PMID:26057552

  16. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses.

    PubMed

    Lasse Grönemeyer, Jann; Hurek, T; Reinhold-Hurek, Barbara

    2015-12-01

    Eight strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata) and Bambara groundnut (Vigna subterranea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to Bradyrhizobium iriomotense EK05T and Bradyrhizobium ingae BR 10250T, and to 'Bradyrhizobium arachidis' CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK sequences placed the strains in a lineage distinct from named species of the genus Bradyrhizobium. The species status was validated by results of DNA-DNA hybridization. Phylogenetic analysis of nifH and nodC genes placed the novel strains in a group with 'B. arachidis' CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 14-3T induces effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and Lablab purpureus. Based on the data presented, it is concluded that the strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium kavangense sp. nov. is proposed. The type strain is 14-3T [ = DSM 100299T = LMG 28790T = NTCCM 0012T (Windhoek)]. The DNA G+C content of strain 14-3T is 63.8 mol% (Tm).

  17. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, A; Rafii, Mohd Y; Azizi, Parisa; Idris, A S

    2015-02-10

    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.

  18. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase.

    PubMed

    Saha, Saikat; Enugutti, Balaji; Rajakumari, Sona; Rajasekharan, Ram

    2006-08-01

    Triacylglycerols (TAGs) are the most important storage form of energy for eukaryotic cells. TAG biosynthetic activity was identified in the cytosolic fraction of developing peanut (Arachis hypogaea) cotyledons. This activity was NaF insensitive and acyl-coenzyme A (CoA) dependent. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step in TAG biosynthesis that acylates diacylglycerol to TAG. Soluble DGAT was identified from immature peanuts and purified by conventional column chromatographic procedures. The enzyme has a molecular mass of 41 +/- 1.0 kD. Based on the partial peptide sequence, a degenerate probe was used to obtain the full-length cDNA. The isolated gene shared less than 10% identity with the previously identified DGAT1 and 2 families, but has 13% identity with the bacterial bifunctional wax ester/DGAT. To differentiate the unrelated families, we designate the peanut gene as AhDGAT. Expression of peanut cDNA in Escherichia coli resulted in the formation of labeled TAG and wax ester from [14C]acetate. The recombinant E. coli showed high levels of DGAT activity but no wax ester synthase activity. TAGs were localized in transformed cells with Nile blue A and oil red O staining. The recombinant and native DGAT was specific for 1,2-diacylglycerol and did not utilize hexadecanol, glycerol-3-phosphate, monoacylglycerol, lysophosphatidic acid, and lysophosphatidylcholine. Oleoyl-CoA was the preferred acyl donor as compared to palmitoyl- and stearoyl-CoAs. These data suggest that the cytosol is one of the sites for TAG biosynthesis in oilseeds. The identified pathway may present opportunities of bioengineering oil-yielding plants for increased oil production.

  19. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson’s Disease

    PubMed Central

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N.; Adhikari, Binita; King, Jason F.; King, Michael L.; Peng, Nan; Laine, Roger A.

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes’ hypothesis, suggesting one alternate potential dietary etiology of Parkinson’s disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  20. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species.

    PubMed

    Tzen, JTC.; Cao, Yz.; Laurent, P.; Ratnayake, C.; Huang, AHC.

    1993-01-01

    Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation. PMID:12231682

  1. Comparative and Evolutionary Analysis of Major Peanut Allergen Gene Families

    PubMed Central

    Ratnaparkhe, Milind B.; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K.; Lemke, Cornelia; Compton, Rosana O.; Robertson, Jon; Gallo, Maria; Bertioli, David J.; Paterson, Andrew H.

    2014-01-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  2. High efficiency transformation of banana [Musa acuminata L. cv. Matti (AA)] for enhanced tolerance to salt and drought stress through overexpression of a peanut salinity-induced pathogenesis-related class 10 protein.

    PubMed

    Rustagi, Anjana; Jain, Shalu; Kumar, Deepak; Shekhar, Shashi; Jain, Mukesh; Bhat, Vishnu; Sarin, Neera Bhalla

    2015-01-01

    Bananas and plantains (Musa spp. L.) are important subsistence crops and premium export commodity in several countries, and susceptible to a wide range of environmental and biotic stress conditions. Here, we report efficient, rapid, and reproducible Agrobacterium-mediated transformation and regeneration of an Indian niche cultivar of banana [M. acuminata cv. Matti (AA)]. Apical meristem-derived highly proliferative multiple shoot clump (MSC) explants were transformed with the Agrobacterium strain EHA105 harboring a binary vector pCAMBIA-1301 carrying hptII and uidA. Sequential agro-infiltration (10 min, 400 mmHg), infection (additional 35 min, Agrobacterium density A 600 = 0.8) and co-cultivation (18 h) regimen in 100 µM acetosyringone containing liquid medium were critical factors yielding high transformation efficiency (~81 %) corroborated by transient GUS expression assay. Stable transgenic events were recovered following two cycles of meristem initiation and selection on hygromycin containing medium. Histochemical GUS assay in several tissues of transgenic plants and molecular analyses confirmed stable integration and expression of transgene. The protocol described here allowed recovery of well-established putative transgenic plantlets in as little as 5 months. The transgenic banana plants could be readily acclimatized under greenhouse conditions, and were phenotypically similar to the wild-type untransformed control plants (WT). Transgenic plants overexpressing Salinity-Induced Pathogenesis-Related class 10 protein gene from Arachis hypogaea (AhSIPR10) in banana cv. Matti (AA) showed better photosynthetic efficiency and less membrane damage (P < 0.05) in the presence of NaCl and mannitol in comparison to WT plants suggesting the role of AhSIPR10 in better tolerance of salt stress and drought conditions.

  3. Lectin binding and effects in culture on human cancer and non-cancer cell lines: examination of issues of interest in drug design strategies.

    PubMed

    Petrossian, Karineh; Banner, Lisa R; Oppenheimer, Steven B

    2007-01-01

    By using a non-cancer and a cancer cell line originally from the same tissue (colon), coupled with testing lectins for cell binding and for their effects on these cell lines in culture, this study describes a simple multi-parameter approach that has revealed some interesting results that could be useful in drug development strategies. Two human cell lines, CCL-220/Colo320DM (human colon cancer cells, tumorigenic in nude mice) and CRL-1459/CCD-18Co (non-malignant human colon cells) were tested for their ability to bind to agarose microbeads derivatized with two lectins, peanut agglutinin (Arachis hypogaea agglutinin, PNA) and Dolichos biflorus agglutinin (DBA), and the effects of these lectins were assessed in culture using the MTT assay. Both cell lines bound to DBA-derivatized microbeads, and binding was inhibited by N-acetyl-D-galactosamine, but not by L-fucose. Neither cell line bound to PNA-derivatized microbeads. Despite the lack of lectin binding using the rapid microbead method, PNA was mitogenic in culture at some time points and its mitogenic effect displayed a reverse-dose response. This was also seen with effects of DBA on cells in culture. While this is a simple study, the results were statistically highly significant and suggest that: (1) agents may not need to bind strongly to cells to exert biological effects, (2) cell line pairs derived from diseased and non-diseased tissue can provide useful comparative data on potential drug effects and (3) very low concentrations of potential drugs might be initially tested experimentally because reverse-dose responses should be considered. PMID:17706752

  4. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins

    PubMed Central

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sébastien; Cosnier, Serge

    2013-01-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3′-sialyllactosyl at 0.95 V vs. Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3′-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3′-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2 × 10−3 mol L−1) as a redox probe in phosphate buffer. The resulting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilized lectins towards the permeation of the redox probe. PMID:24790939

  5. An Apparent Anomaly in Peanut Leaf Conductance

    PubMed Central

    Pallas, James E.

    1980-01-01

    Conductance to gaseous transfer is normally considered to be greater from the abaxial than from the adaxial side of a leaf. Measurements of the conductance to water vapor of peanut leaves (Arachis hypogaea L.) under well watered and stress conditions in a controlled environment, however, indicated a 2-fold higher conductance from the adaxial side of the leaf than from the abaxial. Studies of conductance as light level was varied showed an increase in conductance from either surface with increasing light level, but conductance was always greater from the adaxial surface at any given light level. In contrast, measurements of soybean (Glycine max [L.] Merr.) and snapbean (Phaseolus vulgaris L.) leaf conductance showed an approximate 2-fold greater conductance from the abaxial surface than from the adaxial. Approximately the same number of stomata were present on both peanut leaf surfaces and stomatal size was similar. Electron microscopic examination of peanut leaves did not reveal any major structural differences between stomata on the two surfaces that would account for the differences in conductance. Light microscope studies of leaf sections revealed an extensive network of bundle sheaths with achloraplastic bundle sheath extensions; the lower epidermis was lined with a single layer of large achloraplastic parenchyma cells. Measurements of net photosynthesis made on upper and lower leaf surfaces collectively and individually indicated that two-thirds of the peanut leaf's total net photosynthesis can be attributed to diffusion of CO2 through the adaxial leaf surface. Possibly the high photosynthetic efficiency of peanut cultivars as compared with certain other C3 species is associated with the greater conductance of CO2 through their upper leaf surfaces. Images PMID:16661294

  6. Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut.

    PubMed

    Bosamia, Tejas C; Mishra, Gyan P; Thankappan, Radhakrishnan; Dobaria, Jentilal R

    2015-01-01

    With the aim to increase the number of functional markers in resource poor crop like cultivated peanut (Arachis hypogaea), large numbers of available expressed sequence tags (ESTs) in the public databases, were employed for the development of novel EST derived simple sequence repeat (SSR) markers. From 16424 unigenes, 2784 (16.95%) SSRs containing unigenes having 3373 SSR motifs were identified. Of these, 2027 (72.81%) sequences were annotated and 4124 gene ontology terms were assigned. Among different SSR motif-classes, tri-nucleotide repeats (33.86%) were the most abundant followed by di-nucleotide repeats (27.51%) while AG/CT (20.7%) and AAG/CTT (13.25%) were the most abundant repeat-motifs. A total of 2456 EST-SSR novel primer pairs were designed, of which 366 unigenes having relevance to various stresses and other functions, were PCR validated using a set of 11 diverse peanut genotypes. Of these, 340 (92.62%) primer pairs yielded clear and scorable PCR products and 39 (10.66%) primer pairs exhibited polymorphisms. Overall, the number of alleles per marker ranged from 1-12 with an average of 3.77 and the PIC ranged from 0.028 to 0.375 with an average of 0.325. The identified EST-SSRs not only enriched the existing molecular markers kitty, but would also facilitate the targeted research in marker-trait association for various stresses, inter-specific studies and genetic diversity analysis in peanut.

  7. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  8. Use of single-layer centrifugation with Androcoll-C to enhance sperm quality in frozen-thawed dog semen.

    PubMed

    Dorado, J; Gálvez, M J; Morrell, J M; Alcaráz, L; Hidalgo, M

    2013-11-01

    The aim of this study was to investigate whether single-layer centrifugation (SLC) with Androcoll-C could select good quality spermatozoa, including those with specific motility patterns, from doses of frozen dog semen. Semen from five dogs was collected and cryopreserved following a standard protocol. After thawing, the semen samples were divided in two aliquots, one of which was used as a control and the other one processed by SLC. Assessment of sperm motility (assessed by computer-assisted semen analysis), morphology (Diff-Quick staining), viability (dual staining with propidium iodine/acridine orange), and acrosome integrity (dual staining with propidium iodine/isothiocyanate-labeled peanut [Arachis hypogaea] agglutinin) were performed on aliquots of fresh semen, frozen-thawed control samples, and frozen-thawed SLC-treated preparations. A multivariate clustering procedure separated 57,577 motile spermatozoa into three subpopulations (sP): sP1 consisted of poorly active and nonprogressive spermatozoa (48.8%), sP2 consisted of moderately slow but progressive spermatozoa (13.3%), and sP3 consisted of highly active and/or progressive spermatozoa (37.8%). SLC with Androcoll-C yielded sperm suspensions with improved motility, viability, and acrosome integrity (P < 0.01). The frozen-thawed SLC-treated samples were enriched in sP3, representing 38.5% of the sperm population. Likewise, sP2 was more frequently observed after SLC, but not significantly so. From these results, we concluded that for dog semen samples selected by SLC with Androcoll-C after thawing, the sperm quality parameters, including motility patterns, are better than in frozen-thawed control samples.

  9. Single-layer centrifugation through PureSperm® 80 selects improved quality spermatozoa from frozen-thawed dog semen.

    PubMed

    Dorado, J; Alcaraz, L; Gálvez, M J; Acha, D; Ortiz, I; Urbano, M; Hidalgo, M

    2013-08-01

    The aim of this study was to investigate whether single-layer centrifugation (SLC) with PureSperm® 80 could select good quality spermatozoa, including those with specific motility patterns, from doses of frozen dog semen. Semen from 5 dogs was collected and cryopreserved following a standard protocol. After thawing, semen samples were divided into two aliquots: one of them was used as control and the other one processed by SLC. Assessment of sperm motility (assessed by computer-assisted semen analysis), morphology (Diff-Quick staining) and viability (triple fluorescent stain of propidium iodine/isothiocyanate-labeled peanut (Arachis hypogaea) agglutinin/Rhodamine 123), were performed on aliquots of fresh semen, frozen-thawed control and frozen-thawed SLC treated samples. A multivariate clustering procedure separated 26,051 motile spermatozoa into three subpopulations (sP): sP1 consisting of highly active but non-progressive spermatozoa (40.3%), sP2 consisting of spermatozoa with high velocity and progressive motility (30.0%), and sP3 consisting of poorly active and non-progressive spermatozoa (29.7%). SLC with PureSperm® 80 yielded sperm suspensions with improved motility, morphology, viability and acrosome integrity (P<0.001). The frozen-thawed SLC treated samples were enriched in sP2, reaching a proportion of 44.1% of the present spermatozoa. From these results, we concluded that SLC with PureSperm® 80 may be an alternative and successful method for improving the quality of frozen-thawed dog spermatozoa. Moreover, sP2 (high-speed and progressive spermatozoa) was more frequently observed after SLC. Finally, this study also demonstrated that the general motile sperm structure present in dogs remained constant despite the effect caused by either cryopreservation or separation by SLC through PureSperm® 80.

  10. Comparative and evolutionary analysis of major peanut allergen gene families.

    PubMed

    Ratnaparkhe, Milind B; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K; Lemke, Cornelia; Compton, Rosana O; Robertson, Jon; Gallo, Maria; Bertioli, David J; Paterson, Andrew H

    2014-09-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  11. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture.

    PubMed

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-05-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. PMID:25653418

  12. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, A; Rafii, Mohd Y; Azizi, Parisa; Idris, A S

    2015-02-10

    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics. PMID:25479011

  13. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: towards the impedimetric detection of lectins

    NASA Astrophysics Data System (ADS)

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sebastien; Cosnier, Serge

    2013-07-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3’-sialyllactosyl at 0.95 V vs Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3’-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3’-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2×10-3 mol L-1) as a redox probe in phosphate buffer. The resuting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilised lectins towards the permeation of the redox probe.

  14. Spatial and Temporal Dynamics of Stink Bugs in Southeastern Farmscapes

    PubMed Central

    Pilkay, Grant L.; Reay-Jones, Francis P. F.; Toews, Michael D.; Greene, Jeremy K.; Bridges, William C.

    2015-01-01

    A 3-yr study (2009–2011) was conducted to examine the spatial and temporal dynamics of stink bugs in three commercial farmscapes. Study locations were replicated in South Carolina and Georgia, in an agriculturally diverse region known as the southeastern coastal plain. Crops included wheat, Triticum aestivum (L.), corn, Zea mays (L.), soybean, Glycine max (L.), cotton, Gossypium hirsutum (L.), and peanut, Arachis hypogaea (L.). Farmscapes were sampled weekly using whole-plant examinations for corn, with all other crops sampled using sweep nets. The predominant pest species of phytophagous stink bugs were the brown stink bug, Euschistus servus (Say), the green stink bug, Chinavia hilaris (Say), and the southern green stink bug, Nezara viridula (L.). Chi-square tests indicated a departure from a normal distribution in 77% of analyses of the variance to mean ratio, with 37% of slopes of Taylor’s power law and 30% of coefficient β of Iwao’s patchiness regression significantly greater than one, indicating aggregated distributions. Spatial Analyses by Distance IndicEs (SADIE) indicated aggregated patterns of stink bugs in 18% of year-end totals and 42% of weekly counts, with 80% of adults and nymphs positively associated using the SADIE association tool. Maximum stink bug densities in each crop occurred when the plants were producing fruit. Stink bugs exhibited greater densities in crops adjacent to soybean in Barnwell and Lee Counties compared with crops adjacent to corn or fallow areas. The diversity of crops and relatively small size of fields in the Southeast leads to colonization of patches within a farmscape. The ecological and management implications of the spatial and temporal distribution of stink bugs within farmscapes are discussed. PMID:25843577

  15. Phylogeny of bradyrhizobia from Chinese cowpea miscellany inferred from 16S rRNA, atpD, glnII, and 16S-23S intergenic spacer sequences.

    PubMed

    Zhang, Sufang; Xie, Fuli; Yang, Jiangke; Li, Youguo

    2011-04-01

    The cowpea (Vigna unguiculata L.), peanut (Arachis hypogaea L.), and mung bean (Vigna radiata L.) belong to a group of plants known as the "cowpea miscellany" plants, which are widely cultivated throughout the tropic and subtropical zones of Africa and Asia. However, the phylogeny of the rhizobial strains that nodulate these plants is poorly understood. Previous studies have isolated a diversity of rhizobial strains from cowpea miscellany hosts and have suggested that, phylogenetically, they are from different species. In this work, the phylogeny of 42 slow-growing rhizobial strains, isolated from root nodules of cowpea, peanut, and mung bean from different geographical regions of China, was investigated using sequences from the 16S rRNA, atpD and glnII genes, and the 16S-23S rRNA intergenic spacer. The indigenous rhizobial strains from the cowpea miscellany could all be placed in the genus Bradyrhizobium , and Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense were the main species. Phylogenies derived from housekeeping genes were consistent with phylogenies generated from the ribosomal gene. Mung bean rhizobia clustered only into B. liaoningense and B. yuanmingense and were phylogenetically less diverse than cowpea and peanut rhizobia. Geographical origin was significantly reflected in the phylogeny of mung bean rhizobia. Most cowpea rhizobia were more closely related to the 3 major groups B. liaoningense, B. yuanmingense, and Bradyrhizobium elkanii than to the minor groups Bradyrhizobium japonicum or Bradyrhizobium canariense . However, most peanut rhizobia were more closely related to the 2 major groups B. liaoningense and B. yuanmingense than to the minor group B. elkanii.

  16. Comparative and evolutionary analysis of major peanut allergen gene families.

    PubMed

    Ratnaparkhe, Milind B; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K; Lemke, Cornelia; Compton, Rosana O; Robertson, Jon; Gallo, Maria; Bertioli, David J; Paterson, Andrew H

    2014-09-04

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes.

  17. Interaction of hamster submaxillary sialyl-Tn and Tn glycoproteins with Gal, GalNAc and GlcNAc specific lectins.

    PubMed

    Wu, A M; Shen, F; Herp, A; Wu, J H

    1994-04-01

    Hamster submaxillary glycoprotein (HSM), one of the simplest glycoproteins among mammalian salivary mucins, is composed of approximately equivalent amounts of protein, hexosamine and sialic acid. The Thr and Ser residues in the protein core account for more than half of all of the amino acid residues, while Lys, Glu, Pro and Ala are the major components of the remaining portion of amino acids. The carbohydrate side chains of this mucous glycoprotein have mainly the NeuAc-GalNAc-(sialyl-Tn) sequence (HSM), and those of the desialylated product (HSM-Tn) are almost exclusively unsubstituted GalNAc residues (Tn determinants). The binding properties of sialyl-Tn (HSM) and asialo-HSM (HSM-Tn) glycoproteins were tested by precipitin assay with Gal, GalNAc and GlcNAc specific lectins. The HSM-Tn completely precipitated Vicia villosa (VVL both B4 and mixture of A and B), Maclura pomifera (MPL), and Artocarpus integrifolia (Jacalin) lectins; less than 2 micrograms of HSM-Tn were required for precipitating 50% of 5.0-6.3 micrograms lectin nitrogen added. HSM-Tn also reacted well with Helix pomatia lectin (HPL), Wistaria floribunda lectin (WFL) and Abrus precatorius agglutinin (APA) and precipitated in each case over 81% of the lectin nitrogen added. The reactivity of HSM-Tn with other lectins (Ricinus communis, RCA1; Dolichol biflorus, DBL; Viscum album, ML-I; Arachis hypogaea, PNA, and Triticum vulgaris, WGA) was weak or negligible. The activity of sialyl-Tn (HSM) was more restricted; HSM reacted well with Jacalin, moderately with MPL and VVL-B4, but was inactive or only weakly with the other lectins used. These findings indicate that HSM and its desialylated product (HSM-Tn) are highly useful reagents for the differentiation of Tn and T/Gal specific lectins and for anti-T, Tn and Af monoclonal antibodies.

  18. Fraction A of armadillo submandibular glycoprotein and its desialylated product as sialyl-Tn and Tn receptors for lectins.

    PubMed

    Wu, A M; Shen, F; Herp, A; Song, S C; Wu, J H

    1995-02-27

    Fraction A of the armadillo submandibular glycoprotein (ASG-A) is one of the simplest glycoproteins among mammalian salivary mucins. The carbohydrate side chains of this mucous glycoprotein have one-third of the NeuAc alpha 2-->6GalNAc (sialyl-Tn) sequence and two thirds of Tn (GalNAc alpha-->Ser/Thr) residues. Those of the desialylated product (ASG-Tn) are almost exclusively unsubstituted GalNAc residues (Tn determinant). When the binding properties of these glycoproteins were tested by a precipitin assay with Gal, GalNAc and GlcNAc specific lectins, it was found that ASG-Tn reacted strongly with all of the Tn-active lectins and completely precipitated Vicia villosa (VVL both B4 and mixture of A and B), Maclura pomifera (MPA), and Artocarpus integrifolia (jacalin) lectins. However, it precipitated poorly or negligibly with Ricinus communis (RCA1); Dolichos biflorus (DBA); Viscum album, ML-I; Arachis hypogaea (PNA), and Triticum vulgaris (WGA). The reactivity of ASG-A (sialyl-Tn) was as active as that of ASG-Tn with MPA and less or slightly less active than that of ASG-Tn with VVL-A+B, VVL-B4, HPA, WFA, and jacalin, as one-third of its Tn was sialylated. These findings indicate that ASG-A and its desialylated product (ASG-Tn) are highly useful reagents for the differentiation of Tn, T (Gal beta 1-->3GalNAc), A (GalNAc alpha 1-->3Gal) or Gal specific lectins and monoclonal antibodies against such epitopes.

  19. The Glycosylation Pattern of Common Allergens: The Recognition and Uptake of Der p 1 by Epithelial and Dendritic Cells Is Carbohydrate Dependent

    PubMed Central

    Al-Ghouleh, Abeer; Johal, Ramneek; Sharquie, Inas K.; Emara, Mohammed; Harrington, Helen; Shakib, Farouk; Ghaemmaghami, Amir M.

    2012-01-01

    Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1–2, 1–3 and 1–6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production. PMID:22479478

  20. Potential of trap crops for integrated management of the tropical armyworm, Spodoptera litura in tobacco.

    PubMed

    Zhou, Zhongshi; Chen, Zepeng; Xu, Zaifu

    2010-01-01

    The tropical armyworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae), is an important pest of tobacco, Nicotiana tabacum L. (Solanales: Solanaceae), in South China that is becoming increasingly resistant to pesticides. Six potential trap crops were evaluated to control S. litura on tobacco. Castor bean, Ricinus communis L. (Malpighiales: Euphorbiaceae), and taro, Colocasia esculenta (L.) Schott (Alismatales: Araceae), hosted significantly more S. litura than peanut, Arachis hypogaea L. (Fabales: Fabaceae), sweet potato, Ipomoea batata Lam. (Solanales: Convolvulaceae) or tobacoo in a greenhouse trial, and tobacco field plots with taro rows hosted significantly fewer S. litura than those with rows of other trap crops or without trap crops, provided the taro was in a fast-growing stage. When these crops were grown along with eggplant, Solanum melongena L. (Solanales: Solanaceae), and soybean, Glycines max L. (Fabales: Fabaceae), in separate plots in a randomized matrix, tobacco plots hosted more S. litura than the other crop plots early in the season, but late in the season, taro plots hosted significantly more S. litura than tobacco, soybean, sweet potato, peanut or eggplant plots. In addition, higher rates of S. litura parasitism by Microplitis prodeniae Rao and Chandry (Hymenoptera: Bracondidae) and Campoletis chlorideae Uchida (Ichnumonidae) were observed in taro plots compared to other crop plots. Although taro was an effective trap crop for managing S. litura on tobacco, it did not attract S. litura in the seedling stage, indicating that taro should either be planted 20-30 days before tobacco, or alternative control methods should be employed during the seedling stage. PMID:20874598

  1. Effect of agricultural management on nematode communities in a mediterranean agroecosystem.

    PubMed

    Liang, W; Lavian, I; Steinberger, Y

    2001-12-01

    The effects of agricultural management on the soil nematode community were investigated in a field study at depths of 0 to 10 cm and 10 to 20 cm during a peanut (Arachis hypogaea) growing season in Israel. Nineteen nematode families and 23 genera were observed. Rhabditidae, Cephalobus, Eucephalobus, Aphelenchus, Aphelenchoides, Tetylenchus, Tylenchus, Dorylaimus, and Discolaimus were the dominant family and genera. Ecological measures of soil nematode community structure, diversity, and maturity indices were assessed and compared between the managed (by fertilization, irrigation, and pesticide application) and unmanaged fields. The total number of nematodes at a 10-cm depth during peanut-sowing, mid-season, and harvest periods was higher in the treated (managed) plot than in the control (unmanaged) plot. Bacterivores and fungivores were the most abundant trophic groups in both plots and both depths. The relative abundance of each group averaged 60.8 to 67.3% and 11.5 to 19.6% of the nematode community, respectively. Plant parasites and omnivores-predators at the 0 to 10-cm depth were much less abundant than any other two groups in our experimental plots. During the growing season, except the harvest period, populations of plant parasites and omnivores-predators at the 10 to 20-cm depth were lower in the treated plot than in the control plot. Maturity index (MI), plant-parasite index (PPI), and ratio of fungivores and bacterivores to plant parasites (WI) were found to be more sensitive indicators than other ecological indices for assessing the response of nematode communities to agricultural management in an Israeli agroecosystem.

  2. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson's Disease.

    PubMed

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N; Adhikari, Binita; King, Jason F; King, Michael L; Peng, Nan; Laine, Roger A

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes' hypothesis, suggesting one alternate potential dietary etiology of Parkinson's disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  3. Exploratory use of a UAV platform for variety selection in peanut

    NASA Astrophysics Data System (ADS)

    Balota, Maria; Oakes, Joseph

    2016-05-01

    Variety choice is the most important production decision farmers make because high yielding varieties can increase profit with no additional production costs. Therefore, yield improvement has been the major objective for peanut (Arachis hypogaea L.) breeding programs worldwide, but the current breeding approach (selecting for yield under optimal production conditions) is slow and inconsistent with the needs derived from population demand and climate change. To improve the rate of genetic gain, breeders have used target physiological traits such as leaf chlorophyll content using SPAD chlorophyll meter, Normalized Difference Vegetation Index (NDVI) from canopy reflectance in visible and near infra-red (NIR) wavelength bands, and canopy temperature (CT) manually measured with infra-red (IR) thermometers at the canopy level; but its use for routine selection was hampered by the time required to walk hundreds of plots. Recent developments in remote sensing-based high throughput phenotyping platforms using unmanned aerial vehicles (UAV) have shown good potential for future breeding advancements. Recently, we initiated a study for the evaluation of suitability of digital imagery, NDVI, and CT taken from an UAV platform for peanut variety differentiation. Peanut is unique for setting its yield underground and resilience to drought and heat, for which yield is difficult to pre-harvest estimate; although the need for early yield estimation within the breeding programs exists. Twenty-six peanut cultivars and breeding lines were grown in replicated plots either optimally or deficiently irrigated under rain exclusion shelters at Suffolk, Virginia. At the beginning maturity growth stage, approximately a month before digging, NDVI and CT were taken with ground-based sensors at the same time with red, blue, green (RGB) images from a Sony camera mounted on an UAV platform. Disease ratings were also taken pre-harvest. Ground and UAV derived vegetation indices were analyzed for

  4. Characterization of the N-glycans of female Angiostrongylus cantonensis worms.

    PubMed

    Veríssimo, Carolina M; Morassutti, Alessandra L; von Itzstein, Mark; Sutov, Grigorij; Hartley-Tassell, Lauren; McAtamney, Sarah; Dell, Anne; Haslam, Stuart M; Graeff-Teixeira, Carlos

    2016-07-01

    Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans. PMID:27107931

  5. Spatial and temporal dynamics of stink bugs in southeastern farmscapes.

    PubMed

    Pilkay, Grant L; Reay-Jones, Francis P F; Toews, Michael D; Greene, Jeremy K; Bridges, William C

    2015-01-01

    A 3-yr study (2009-2011) was conducted to examine the spatial and temporal dynamics of stink bugs in three commercial farmscapes. Study locations were replicated in South Carolina and Georgia, in an agriculturally diverse region known as the southeastern coastal plain. Crops included wheat, Triticum aestivum (L.), corn, Zea mays (L.), soybean, Glycine max (L.), cotton, Gossypium hirsutum (L.), and peanut, Arachis hypogaea (L.). Farmscapes were sampled weekly using whole-plant examinations for corn, with all other crops sampled using sweep nets. The predominant pest species of phytophagous stink bugs were the brown stink bug, Euschistus servus (Say), the green stink bug, Chinavia hilaris (Say), and the southern green stink bug, Nezara viridula (L.). Chi-square tests indicated a departure from a normal distribution in 77% of analyses of the variance to mean ratio, with 37% of slopes of Taylor's power law and 30% of coefficient β of Iwao's patchiness regression significantly greater than one, indicating aggregated distributions. Spatial Analyses by Distance IndicEs (SADIE) indicated aggregated patterns of stink bugs in 18% of year-end totals and 42% of weekly counts, with 80% of adults and nymphs positively associated using the SADIE association tool. Maximum stink bug densities in each crop occurred when the plants were producing fruit. Stink bugs exhibited greater densities in crops adjacent to soybean in Barnwell and Lee Counties compared with crops adjacent to corn or fallow areas. The diversity of crops and relatively small size of fields in the Southeast leads to colonization of patches within a farmscape. The ecological and management implications of the spatial and temporal distribution of stink bugs within farmscapes are discussed.

  6. Spatiotemporal patterns and dispersal of stink bugs (Heteroptera: Pentatomidae) in peanut-cotton farmscapes.

    PubMed

    Tillman, P G; Northfield, T D; Mizell, R F; Riddle, T C

    2009-08-01

    In the southeast United States, a field of peanuts, Arachis hypogaea L., is often closely associated with a field of cotton, Gossypium hirsutum L. The objective of this 4-yr on-farm study was to examine and compare the spatiotemporal patterns and dispersal of the southern green stink bug, Nezara viridula L., and the brown stink bug, Euschistus servus (Say), in six of these peanut-cotton farmscapes. GS(+) Version 9 was used to generate interpolated estimates of stink bug density by inverse distance weighting. Interpolated stink bug population raster maps were constructed using ArcMap Version 9.2. This technique was used to show any change in distribution of stink bugs in the farmscape over time. SADIE (spatial analysis by distance indices) methodology was used to examine spatial aggregation of individual stink bug species and spatial association of the two stink bug species in the individual crops. Altogether, the spatiotemporal analyses for the farmscapes showed that some N. viridula and E. servus nymphs and adults that develop in peanuts disperse into cotton. When these stink bugs disperse from peanuts into cotton, they aggregate in cotton at the interface, or common boundary, of the two crops while feeding on cotton bolls. Therefore, there is a pronounced edge effect observed in the distribution of stink bugs as they colonize the new crop, cotton. The driving force for the spatiotemporal distribution and dispersal of both stink bug species in peanut-cotton farmscapes seems to be availability of food in time and space mitigated by landscape structure. Thus, an understanding of farmscape ecology of stink bugs and their natural enemies is necessary to strategically place, in time and space, biologically based management strategies that control stink bug populations while conserving natural enemies and the environment and reducing off-farm inputs.

  7. Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence.

    PubMed

    Nielen, Stephan; Vidigal, Bruna S; Leal-Bertioli, Soraya C M; Ratnaparkhe, Milind; Paterson, Andrew H; Garsmeur, Olivier; D'Hont, Angélique; Guimarães, Patricia M; Bertioli, David J

    2012-01-01

    Cultivated peanut is an allotetraploid with an AB-genome. In order to learn more of the genomic structure of peanut, we characterized and studied the evolution of a retrotransposon originally isolated from a resistance gene analog (RGA)-containing bacterial artificial chromosome (BAC) clone. It is a moderate copy number Ty1-copia retrotransposon from the Bianca lineage and we named it Matita. Fluorescent in situ hybridization (FISH) experiments showed that Matita is mainly located on the distal regions of chromosome arms and is of approximately equal frequency on both A- and B-chromosomes. Its chromosome-specific hybridization pattern facilitates the identification of individual chromosomes, a useful cytogenetic tool considering that chromosomes in peanut are mostly metacentric and of similar size. Phylogenetic analysis of Matita elements, molecular dating of transposition events, and an estimation of the evolutionary divergence of the most probable A- and B-donor species suggest that Matita underwent its last major burst of transposition activity at around the same time of the A- and B-genome divergence about 3.5 million years ago. By probing BAC libraries with overgos probes for Matita, resistance gene analogues, and single- or low-copy genes, it was demonstrated that Matita is not randomly distributed in the genome but exhibits a significant tendency of being more abundant near resistance gene homologues than near single-copy genes. The described work is a further step towards broadening the knowledge on genomic and chromosomal structure of peanut and on its evolution. PMID:22120641

  8. The glycans deficiencies of macromolecular IgA1 is a contributory factor of variable pathological phenotypes of IgA nephropathy.

    PubMed

    Xu, L-X; Yan, Y; Zhang, J-J; Zhang, Y; Zhao, M-H

    2005-12-01

    Recent evidence has suggested that IgA1-containing macromolecules and the glycosylation of IgA1 in sera from patients with IgAN might involve the pathogenesis of IgAN. However, whether the different histological phenotypes can be attributed or not to the aberrant glycosylation of macromolecular IgA1 has not yet been elucidated. The aim of the current study is to investigate the glycosylation of IgA1 molecules in serum IgA1-containing macromolecules and their association with pathological phenotypes of IgAN. Sera was collected from 40 patients with IgAN and 20 donors. Twenty patients had mild mesangial proliferative IgAN, the remaining 20 had focal proliferative sclerosing IgAN. Polyethylene glycol 6000 was used to precipitate the macromolecules from sera of patients and controls. Biotinylated lectins were used in an enzyme-linked immunosorbent assay (ELISA) to examine different glycans on IgA1 molecules. The alpha2,6 sialic acid was detected by elderberry bark lectin (SNA) and the exposure of terminal galactose (Gal) and N-acetylgalactosamine (GalNAc) were detected by Arachis hypogaea (PNA) and Vilsa villosa lectin (VVL), respectively. The IgA1 glycans levels corrected by IgA1 concentrations were compared between patients and controls. Reduced terminal alpha2,6 sialic acid of IgA1 (79.89 +/- 25.17 versus 62.12 +/- 24.50, P = 0.034) was demonstrated only in precipitates from sera of patients with focal proliferative sclerosing IgAN, compared with those from controls. Reduced galactosylation of IgA1 molecules in precipitates was demonstrated in patients with both mild mesangial proliferative IgAN and focal proliferative sclerosing IgAN compared with normal controls (24.52 +/- 18.71 versus 76.84 +/- 32.59 P = 0.000 and 33.48 +/- 25.36 versus 76.84 +/- 32.59 P = 0.000). However, no significant difference was found in IgA1 glycosylation in the supernatant between patients and normal controls (P > 0.05). The glycosylation deficiency of IgA1 existed only in serum IgA1

  9. Root vs pod infection by root-knot nematodes on aflatoxin contamination of peanut.

    PubMed

    Timper, P; Holbrook, C; Wilson, D

    2007-01-01

    Aflatoxins are potent carcinogens produced by some Aspergillus spp. Infection of peanut (Arachis hypogaea) by root-knot nematodes (Meloidogyne arenaria) can lead to an increase in aflatoxin contamination of kernels when the plants are subjected to drought stress during pod maturation. It is not clear whether the increased aflatoxin contamination is primarily due to greater invasion of the galled pods by toxigenic Aspergillus spp. or whether root galling is also involved. Our objective was to determine the contribution of root and pod galling caused by root-knot nematodes to the increase in aflatoxin contamination in peanut. Two greenhouse experiments were conducted in which pods and roots were physically separated. Pod set was restricted to soil-filled pans (41 cm dia. x 10 cm depth), while the roots grew underneath the pan into a pot. The experiments had a factorial arrangement of treatments: pod zone with and without nematodes, and root zone with and without nematodes. In Experiment 1, 5000 eggs of M. arenaria were added to the root zone14 days after planting (DAP) and 8000 eggs were added to the pod zone 60 and 80 DAP. In Experiment 2, 3000 eggs were added to the root zone 30 DAP and 8000 eggs were added to the pod zone every week starting 60 DAP. The four treatment combinations were replicated 10 to 13 times. Conidia of Aspergillus flavus/A. parasiticus was added to the soil surface (pods zone) at mid bloom. Plants were subjected to drought stress 40 days before harvest. In Experiment 1, adding nematodes to the pod zone had no effect on aflatoxin concentrations in the peanut kernel. However, the lack of an effect may have been to due to the low occurrence of galling on the hulls. In pots where nematodes were added to the root zone, 50 to 80% of the root system was galled. Adding nematodes to the root zone increased aflatoxin concentrations in the peanut kernels from 34 ppb in the control to 71 ppb. In Experiment 2, there was heavy pod galling with galls present

  10. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

    PubMed

    Varshney, Rajeev K; Kudapa, Himabindu; Roorkiwal, Manish; Thudi, Mahendar; Pandey, Manish K; Saxena, Rachit K; Chamarthi, Siva K; Mohan, S Murali; Mallikarjuna, Nalini; Upadhyaya, Hari; Gaur, Pooran M; Krishnamurthy, L; Saxena, K B; Nigam, Shyam N; Pande, Suresh

    2012-11-01

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance

  11. Biocompatibility of sweetpotato and peanut in a hydroponic system.

    PubMed

    Mortley, D G; Loretan, P A; Hill, W A; Bonsi, C K; Morris, C E; Hall, R; Sullen, D

    1998-12-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  12. Characterization of glycans in the developmental stages of Myxobolus cerebralis (Myxozoa), the causative agent of whirling disease.

    PubMed

    Kaltner, H; Stippl, M; Knaus, M; El-Matbouli, M

    2007-11-01

    agglutinin (SNA) (specific for alpha2,6-sialylated glycans) and Maackia amurensis agglutinin (MAAI) (specific for alpha2,3-sialylated glycans). Arachis hypogaea (peanut) agglutinin (PNA), Erythrina cristagalli agglutinin (ECA), GSA I, Sophora japonica agglutinin (SJA), Dolichos biflorus agglutinin (DBA) and GSA II detected reactive sites solely confined to the developmental stages of M. cerebralis and were not reactive in the fish host. These parasite-specific glycans may play a role in the adhesion process of the parasite to fish epidermis prior to infection, but may provide protection to the host by activating the complement system, or stimulating an adaptive immune response as putative antigens. PMID:17958607

  13. Biocompatibility of sweetpotato and peanut in a hydroponic system

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  14. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid

    PubMed Central

    2009-01-01

    Background Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis. Results Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best

  15. A comparative study on the decomposition of edible and non-edible oil cakes in the Gangetic alluvial soil of West Bengal.

    PubMed

    Mondal, Sudeshna; Das, Ritwika; Das, Amal Chandra

    2014-08-01

    An experiment has been conducted under laboratory conditions to investigate the effect of decomposition of two edible oil cakes, viz. mustard cake (Brassica juncea L) and groundnut cake (Arachis hypogaea L), and two non-edible oil cakes, viz. mahua cake (Madhuca indica Gmel) and neem cake (Azadirachta indica Juss), at the rate of 5.0 t ha(-1) on the changes of microbial growth and activities in relation to transformations and availability of some plant nutrients in the Gangetic alluvial (Typic Haplustept) soil of West Bengal, India. Incorporation of oil cakes, in general, highly induced the proliferation of total bacteria, actinomycetes, and fungi, resulting in greater retention and availability of oxidizable C, N, and P in soil. As compared to untreated control, the highest stimulation of total bacteria and actinomycetes was recorded with mustard cake (111.9 and 84.3 %, respectively) followed by groundnut cake (50.5 and 52.4 %, respectively), while the fungal colonies were highly accentuated due to the incorporation of neem cake (102.8 %) in soil. The retention of oxidizable organic C was highly increased due to decomposition of non-edible oil cakes, more so under mahua cake (14.5 %), whereas edible oil cakes and groundnut cake in particular exerted maximum stimulation (16.7 %) towards the retention of total N in soil. A similar trend was recorded towards the accumulation of available mineral N in soil and this was more pronounced with mustard cake (45.6 %) for exchangeable NH4 (+) and with groundnut cake (63.9 %) for soluble NO3 (-). The highest retention of total P (46.9 %) was manifested by the soil when it was incorporated with neem cake followed by the edible oil cakes; while the available P was highly induced due to the addition of edible oil cakes, the highest being under groundnut cake (23.5 %) followed by mustard cake (19.6 %). PMID:24733437

  16. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  17. Inoculation Response of Legumes in Relation to the Number and Effectiveness of Indigenous Rhizobium Populations

    PubMed Central

    Singleton, P. W.; Tavares, J. W.

    1986-01-01

    The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar

  18. A comparative study on the decomposition of edible and non-edible oil cakes in the Gangetic alluvial soil of West Bengal.

    PubMed

    Mondal, Sudeshna; Das, Ritwika; Das, Amal Chandra

    2014-08-01

    An experiment has been conducted under laboratory conditions to investigate the effect of decomposition of two edible oil cakes, viz. mustard cake (Brassica juncea L) and groundnut cake (Arachis hypogaea L), and two non-edible oil cakes, viz. mahua cake (Madhuca indica Gmel) and neem cake (Azadirachta indica Juss), at the rate of 5.0 t ha(-1) on the changes of microbial growth and activities in relation to transformations and availability of some plant nutrients in the Gangetic alluvial (Typic Haplustept) soil of West Bengal, India. Incorporation of oil cakes, in general, highly induced the proliferation of total bacteria, actinomycetes, and fungi, resulting in greater retention and availability of oxidizable C, N, and P in soil. As compared to untreated control, the highest stimulation of total bacteria and actinomycetes was recorded with mustard cake (111.9 and 84.3 %, respectively) followed by groundnut cake (50.5 and 52.4 %, respectively), while the fungal colonies were highly accentuated due to the incorporation of neem cake (102.8 %) in soil. The retention of oxidizable organic C was highly increased due to decomposition of non-edible oil cakes, more so under mahua cake (14.5 %), whereas edible oil cakes and groundnut cake in particular exerted maximum stimulation (16.7 %) towards the retention of total N in soil. A similar trend was recorded towards the accumulation of available mineral N in soil and this was more pronounced with mustard cake (45.6 %) for exchangeable NH4 (+) and with groundnut cake (63.9 %) for soluble NO3 (-). The highest retention of total P (46.9 %) was manifested by the soil when it was incorporated with neem cake followed by the edible oil cakes; while the available P was highly induced due to the addition of edible oil cakes, the highest being under groundnut cake (23.5 %) followed by mustard cake (19.6 %).

  19. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut.

    PubMed

    Wang, Yun; Zhang, Xingguo; Zhao, Yongli; Prakash, C S; He, Guohao; Yin, Dongmei

    2015-08-01

    The FAD2 gene family is functionally responsible for the conversion of oleic acid to linoleic acid in oilseed plants. Multiple members of the FAD gene are known to occur in several oilseed species. In this study, six novel full-length cDNA sequences (named as AhFAD2-1, -2, -3, -4, -5, and -6) were identified in peanut (Arachis hypogaea L.), an analysis of which revealed open reading frames of 379, 383, 394, or 442 amino acids. Sequence comparisons showed that AhFAD2-1 and AhFAD2-2 shared 76% identity, while AhFAD2-2, -3, and -4 displayed highly significant homology. There was only 27% identity overlap between the microsomal ω-6 fatty acid desaturase and the chloroplast ω-6 fatty acid desaturase encoded by AhFAD2-1, -2, -3, -4, and AhFAD2-5, -6, respectively. The phylogeny tree of FAD2 transcripts showed five major groups, and AhFAD2-1 was clearly separated from other groups. Analysis of AhFAD2-1 and AhFAD2-2 transcript distribution in different peanut tissues showed that the AhFAD2-1 gene showed upward of a 70-fold increase in expression of fatty acid than the AhFAD2-2 gene in peanut developing seeds, while the AhFAD2-2 gene expressed most abundantly in peanut flowers. Because the AhFAD2-1 gene played a major role in the conversion of oleic to linoleic acid during seed development, the identification of this novel member in this study would facilitate the further genetic manipulation of peanut oil quality. The implications of overall results also suggest that there may be more candidate genes controlling levels of oleate acid in developing seeds. Results also may be due to the presence of complex gene networks controlling the fluxes between the endoplasmic reticulum and the chloroplast within the peanut cells.

  20. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  1. Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (beta-D-Gal(1----3)D-GalNAc).

    PubMed

    Sastry, M V; Banarjee, P; Patanjali, S R; Swamy, M J; Swarnalatha, G V; Surolia, A

    1986-09-01

    combining site when compared with that of peanut (Arachis hypogaea) agglutinin. The results of stopped flow spectrometry for the binding of N-dansylgalactosamine tot he Artocarpus lectin are consistent with a simple single-step bimolecular association and unimolecular dissociation rate processes. The value of K+1 and K-1 at 21 degrees C are 8.1 X 10(5) M-1 s-1 and 50 s-1, respectively. The activation parameters indicate an enthalpy-controlled association process.

  2. Characterizing the glycocalyx of poultry spermatozoa: II. In vitro storage of Turkey semen and mobility phenotype affects the carbohydrate component of sperm membrane glycoconjugates.

    PubMed

    Peláez, Jesús; Long, Julie A

    2008-01-01

    The turkey sperm glycocalyx is known to contain residues of sialic acid, alpha-mannose/alpha-glucose, alpha- and beta-galactose, alpha-fucose, alpha- and beta-N-acetyl-galactosamine, monomers and dimers of N-acetyl-glucosamine, and N-acetyl-lactosamine. Potential changes in these carbohydrates during in vitro semen storage at 4 degrees C were evaluated using males of both high- and low-sperm-mobility phenotypes. Changes in carbohydrate residues were quantified by flow cytometry analysis using a battery of 14 fluorescein isothiocyanate-labeled lectins in combination with control (sialylated) or neuraminidase-treated (nonsialylated) sperm. Sperm were evaluated at 0, 2, 4, 8, 12, and 24 hours of storage. For control sperm, 4 different patterns of lectin binding were observed over time: 1) increased mean fluorescence intensity (MnFI) at 2 hours (Griffonia simplicifolia lectin-I [GS-I]) and 8 hours (Ricinus communis lectin-I [RCA-I]) that remained elevated during storage; 2) increased MnFI at specific time points (Limax flavus lectin [LFA], 2 hours; Artocarpus integrifolia lectin [jacalin] and succinyl Triticum vulgare lectin [sWGA], 8 hours; Galanthus nivalis lectin [GNA], 12 hours) followed by decreasing MnFI during the remainder of the 24-hour storage period; 3) increased MnFI only at the 24-hour time point (Lotus tetragonolobus lectin [lotus] and Arachis hypogaea lectin [PNA]); and 4) no changes in MnFI during the 24-hour storage period (Erythrina cristagalli lectin [ECA], GS-II, Pisum sativum lectin [PSA], Glycine max lectin [SBA], and Wisteria floribunda lectin [WFA]). For nonsialylated sperm, increased binding of ECA, GS-II, SBA, and WFA was observed at variable time points; only Canavalia ensiformis lectin (Con A) and PSA remained unchanged during storage. Differences between mobility phenotypes existed for lectins Con A, GS-II, LFA, PSA, SBA, and sWGA, with sperm from low-mobility males exhibiting higher MnFI than high-mobility males throughout 24 hours of

  3. Characterization of glycoconjugate expression during development of Meckel's cartilage in the rat.

    PubMed

    Zschäbitz, A; Weiser, H; Stofft, E; Krahn, V; Gabius, H J; Khaw, A; Biesalski, H K

    1995-01-01

    The staining patterns of 24 biotinylated lectins were analyzed in serial sections of the mandible of 13- to 21-day-old rat embryos by means of the avidin-biotin-peroxidase method. A ubiquitous distribution of binding sites was demonstrated after incubation with Con A (Canavalia ensiformis), DSL (Datura stramonium; except bone matrix), and WGA (Triticum vulgare). ECL (Erythrina cristagalli), GSL I (Griffonia simplicifolia), SJA (Saphora japonica), VVL (Vicia villosa), DBA (Dolichus biflorus), UEA I (Ulex europeus), and LTA (Lotus tetragonobolus) were constantly negative. In early stages of development, GSL II (Griffonia simplicifolia II) was a selective marker of prechondral blastema. In contrast, PNA (Arachis hypogaea) did not stain condensing mesenchyme. During chondrogenesis of Meckels's cartilage a general decrease of lectin binding was observed. Mature cartilage matrix was constantly negative. Chondrocytes were marked by the lectins PSA (Pisum sativum), WGA, PHA-E, and PHA-L (Phaseolus vulgaris E and L). A strong GSL II binding was restricted to the mesial-superior region of the perichondrium. In later stages, several lectins revealed significant differences between preskeletal ("central") areas and the remaining ("peripheral") mesenchyme. A clear binding reaction was noted in central regions by applying LEA (Lycopersicon esculentum) and STL (Solanum tuberosum), while the peripheral tissue was only faintly stained. Developing bone was specifically marked by succinylated WGA (sWGA). The lectins LCA (Lens culinaris) and RCA (Ricinus communis) bound to fibers and extracellular matrix of the connective tissue. Jacalin (Artocarpus integrifolia) and SBA (Glycine max) binding sites were found in macrophages. Affinity of VAA (Viscum album) increased parallel with maturation of endothelial cells. Specific lectin-binding patterns revealed no correlation with the distribution of glycosaminoglycans. The results demonstrate a general reduction of oligosaccharide structures

  4. Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study.

    PubMed

    Timper, Patricia

    2009-12-01

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities

  5. Mapping quantitative trait loci of resistance to Tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogae L.) from SunOleic 97R and NC94022

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots. The most sustainable and economical solution for managing peanut diseases is development of resistance cultivars. The new breeding line NC94022, high resistance to TSWV and moderate resistance to le...

  6. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection

    PubMed Central

    Guo, Baozhu; Chen, Xiaoping; Dang, Phat; Scully, Brian T; Liang, Xuanqiang; Holbrook, C Corley; Yu, Jiujiang; Culbreath, Albert K

    2008-01-01

    Background Peanut (Arachis hypogaea L.) is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database. In order to understand the molecular basis of host resistance to aflatoxin contamination, a large-scale project was conducted to generate expressed sequence tags (ESTs) from developing seeds to identify resistance-related genes involved in defense response against Aspergillus infection and subsequent aflatoxin contamination. Results We constructed six different cDNA libraries derived from developing peanut seeds at three reproduction stages (R5, R6 and R7) from a resistant and a susceptible cultivated peanut genotypes, 'Tifrunner' (susceptible to Aspergillus infection with higher aflatoxin contamination and resistant to TSWV) and 'GT-C20' (resistant to Aspergillus with reduced aflatoxin contamination and susceptible to TSWV). The developing peanut seed tissues were challenged by A. parasiticus and drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST sequences with 1,741 tentative consensus EST sequences (TCs) and 6,948 singleton ESTs. Functional classification was performed according to MIPS functional catalogue criteria. The unique EST sequences were divided into twenty-two categories. A similarity search against the non-redundant protein database available from NCBI indicated that 84.78% of total ESTs showed significant similarity to known proteins, of which 165 genes had been previously reported in peanuts. There were differences in overall expression

  7. Influence of the Size of Indigenous Rhizobial Populations on Establishment and Symbiotic Performance of Introduced Rhizobia on Field-Grown Legumes †

    PubMed Central

    Thies, Janice E.; Singleton, Paul W.; Bohlool, B. Ben

    1991-01-01

    Indigenous rhizobia in soil present a competition barrier to the establishment of inoculant strains, possibly leading to inoculation failure. In this study, we used the natural diversity of rhizobial species and numbers in our fields to define, in quantitative terms, the relationship between indigenous rhizobial populations and inoculation response. Eight standardized inoculation trials were conducted at five well-characterized field sites on the island of Maui, Hawaii. Soil rhizobial populations ranged from 0 to over 3.5 × 104 g of soil-1 for the different legumes used. At each site, no less than four but as many as seven legume species were planted from among the following: soybean (Glycine max), lima bean (Phaseolus lunatus), cowpea (Vigna unguiculata), bush bean (Phaseolus vulgaris), peanut (Arachis hypogaea), Leucaena leucocephala, tinga pea (Lathyrus tingeatus), alfalfa (Medicago sativa), and clover (Trifolium repens). Each legume was (i) inoculated with an equal mixture of three effective strains of homologous rhizobia, (ii) fertilized at high rates with urea, or (iii) left uninoculated. For soybeans, a nonnodulating isoline was used in all trials as the rhizobia-negative control. Inoculation increased economic yield for 22 of the 29 (76%) legume species-site combinations. While the yield increase was greater than 100 kg ha-1 in all cases, in only 11 (38%) of the species-site combinations was the increase statistically significant (P ≤ 0.05). On average, inoculation increased yield by 62%. Soybean (G. max) responded to inoculation most frequently, while cowpea (V. unguiculata) failed to respond in all trials. Inoculation responses in the other legumes were site dependent. The response to inoculation and the competitive success of inoculant rhizobia were inversely related to numbers of indigenous rhizobia. As few as 50 rhizobia g of soil-1 eliminated inoculation response. When fewer than 10 indigenous rhizobia g of soil-1 were present, economic yield was

  8. Development of introgression lines and advanced backcross QTL analysis for disease resistance, oil quality and yield component traits in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, several synthetics have been developed at ICRISAT. Furthermore, two synthetic amphidiploids viz., ISATGR 1212 (A. duranensis...

  9. Improved growth and nutrient status of an oat cover crop in sod-based versus conventional peanut-cotton rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) leaching from agricultural soils is a major concern in the southeastern USA. A winter cover crop following the summer crop rotation is essential for controlling N leaching and soil run-off, thereby improving sustainable development. Rotation of peanut (Arachis hypogea L.) and cotton (Go...

  10. Temporal and spatial distribution of an invasive thrips species Scirtothrips dorsalis (Thysanoptera: Thripidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersion of a new invasive thrips species, chilli thrips Scirtothrips dorsalis Hood, was studied on three hosts, i.e., cotton (Gossypium hirsutum L.), peanut (Arachis hypogeal L.) and pepper (Capsicum annum L.) in the greenhouse and under field conditions in Homestead, Florida. The study of horizo...

  11. Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the peanut (Arachis hypogea L.) digger efficiency by accurate placement over the target rows could minimize damaged pods and yield losses. Producers have traditionally relied solely on tractor operator skills to harvest peanuts. However, as peanut production has shifted to new growing reg...

  12. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium and phosphorus uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of Calcium (Ca) and Phosphorus (P). In 2010, over 10 milli...

  13. Nitrogen, Phosphor, and Potassium Level in Soil and Oil Palm Tree at various Composition of plant species mixtures grown

    NASA Astrophysics Data System (ADS)

    Hanum, C.; Rauf, A.; Fazrin, D. A.; Habibi, A. R.

    2016-08-01

    In productive oil palm plantation areas, poor vegetation is generally caused by low light intensity. This condition causes excessive erosion and decreases soil fertility. One of the efforts for soil and water conservation at oil palm plantations is through increased vegetation diversity. The changes of soil and plant nitrogen, phosporus, and potassium content, observed by planting two types of herbs under oil palm tree, with different compositions. Vegetation composition was set as: Arachis glabrata 100%; Stenotaprum secundatum 100%; Arachis glabrata 50% + Stenotaprum secundatum 50%; Arachis glabrata 75% + Stenotaprum secundatum 25%; Arachis glabrata 25% + Stenotaprum secundatum 75%. The shoot and root fresh/dry weight, nutrient content (nitrogen, phosphor, and potassium) of each cutting were measured at the end of the experiment. Ten of treatment plant were harvested and divided shoots and roots after washing out of soil. Biomass samples were dried at 70 °C for 48 h and weighed. The total N and its proportional concentration (N%) were analyzed with the micro- Kjeldahl method. Potasium analyzing with flamephotometry, and phosphor and from samples was determined by analyzing with spectrophotometry method. The results showed the highest shoot growth of A.glabarata if planting was mixed with S. secundatum, but the result was different with S.secundatum being superior if planted with monoculture system. Combination of interrow cultivation is more recommended for soil conservation and nutrient maintenance in palm oil trees were A. Glabarata 75% + S.secundatum 25%.

  14. Biology, speciation, and utilization of peanut species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Arachis has a large number of highly diverse species. Large collections of cultivated peanut exist at multiple locations and several hundreds of wild species are maintained in germplasm banks. Many of the species have been characterized for agronomic traits, but much of the germplasm colle...

  15. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspe...

  16. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium, phosphorus, copper, iron, manganese and zinc uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...

  17. Roadmap of the USDA peanut germplasm collection: past, present and future direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA ARS PGRCU maintains the second largest Arachis germplasm collection in the world with 9,321 cultivated and 655 wild entries. In the last twenty years, USA germplasm has been provided to over 52 countries around the world for research and breeding purposes. This collection has proven to be...

  18. Comparison of peanut gentics and physical maps provided insights on collinearity, reversions and translocations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...

  19. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  20. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  1. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    NASA Astrophysics Data System (ADS)

    Assali, Mohyeddin; Pernía Leal, Manuel; Fernández, Inmaculada; Khiar, Noureddine

    2013-03-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar-supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane.

  2. Visualization of an extracellular mucoid layer of Treponema denticola ATCC 35405 and surface sugar lectin analysis of some Treponema species.

    PubMed

    Scott, D; Klitorinos, A; Chan, E C; Siboo, R

    1997-04-01

    Slime layers and capsules are common amongst medically relevant bacteria. We herein report that Treponema denticola, which has been associated with periodontitis, synthesizes or acquires an extracellular polysaccharide layer that we have observed through electron microscopy using the polysaccharide-specific dye Alcian blue and phosphotungstate. We have also visualized this extracellular layer by dark-field microscopy of Alcian blue-stained spirochete cells. A representative strain of each of the oral spirochete species T. denticola, Treponema vincentii and Treponema socranskii were differentiated by concanavalin A, phaseolus, lotus A and arachis lectins in a microtiter plate immunoassay for the detection of surface sugars.

  3. Starch grains on human teeth reveal early broad crop diet in northern Peru

    PubMed Central

    Piperno, Dolores R.; Dillehay, Tom D.

    2008-01-01

    Previous research indicates that the Ñanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 14C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 14C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Ñanchoc region by 8000 14C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture. PMID:19066222

  4. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection

    PubMed Central

    Song, Hui; Wang, Pengfei; Li, Changsheng; Han, Suoyi; Lopez-Baltazar, Javier; Zhang, Xinyou; Wang, Xingjun

    2016-01-01

    Lipoxygenase (LOX) genes are widely distributed in plants and play crucial roles in resistance to biotic and abiotic stress. Although they have been characterized in various plants, little is known about the evolution of legume LOX genes. In this study, we identified 122 full-length LOX genes in Arachis duranensis, Arachis ipaënsis, Cajanus cajan, Cicer arietinum, Glycine max, Lotus japonicus and Medicago truncatula. In total, 64 orthologous and 36 paralogous genes were identified. The full-length, polycystin-1, lipoxygenase, alpha-toxin (PLAT) and lipoxygenase domain sequences from orthologous and paralogous genes exhibited a signature of purifying selection. However, purifying selection influenced orthologues more than paralogues, indicating greater functional conservation of orthologues than paralogues. Neutrality and effective number of codons plot results showed that natural selection primarily shapes codon usage, except for C. arietinum, L. japonicas and M. truncatula LOX genes. GCG, ACG, UCG, CGG and CCG codons exhibited low relative synonymous codon usage (RSCU) values, while CCA, GGA, GCU, CUU and GUU had high RSCU values, indicating that the latter codons are strongly preferred. LOX expression patterns differed significantly between wild-type peanut and cultivated peanut infected with Aspergillus flavus, which could explain the divergent disease resistance of wild progenitor and cultivars. PMID:27731413

  5. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments.

    PubMed

    Ritzinger, C H; McSorley, R; Gallaher, R N

    1998-12-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop.

  6. Preceramic adoption of peanut, squash, and cotton in northern Peru.

    PubMed

    Dillehay, Tom D; Rossen, Jack; Andres, Thomas C; Williams, David E

    2007-06-29

    The early development of agriculture in the New World has been assumed to involve early farming in settlements in the Andes, but the record has been sparse. Peanut (Arachis sp.), squash (Cucurbita moschata), and cotton (Gossypium barbadense) macrofossils were excavated from archaeological sites on the western slopes of the northern Peruvian Andes. Direct radiocarbon dating indicated that these plants grew between 9240 and 5500 (14)C years before the present. These and other plants were recovered from multiple locations in a tropical dry forest valley, including household clusters, permanent architectural structures, garden plots, irrigation canals, hoes, and storage structures. These data provide evidence for early use of peanut and squash in the human diet and of cotton for industrial purposes and indicate that horticultural economies in parts of the Andes took root by about 10,000 years ago.

  7. Chromium(III) sorption enhancement through NTA - modification of biological materials

    SciTech Connect

    Low, K.S.; Lee, C.K.; Lee, P.L.

    1997-03-01

    The use of low-cost biological materials for the removal and recovery of heavy metals from solution has been investigated extensively in recent times. To enhance their sorption capacities various chemical modifications on the sorbents were attempted. Freer et al. showed that bark from the Pinus radiata (D. Don) had a greater sorption capacity for metals after treatment with both inorganic acid and formaldehyde. Apple wastes treated with phosphorus oxychloride improved the efficiency of removing metal ions. Ethylenediamine tetraacetic acid (EDTA)-modified groundnut, Arachis hypogea, was reported to improve the sorption of cadmium and lead ions. Modifications with the aid of dyes also enhanced metal sorption. Moss and coconut husk (CH) are readily obtainable in Malaysia. Their sorption potential for metals has been reported. This paper reports on the metal sorption enhancement of these two biosorbents after chemical modification with nitrilotriacetic acid (NTA). 13 refs., 5 figs., 2 tabs.

  8. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    PubMed Central

    Chan, Lai Wah; Cheah, Emily LC; Saw, Constance LL; Weng, Wanyu; Heng, Paul WS

    2008-01-01

    Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao), Folium Murraya Koenigii (Jialiye), Rhizoma Arachis Hypogea (Huashenggen), Herba Houttuyniae (Yuxingcao), Epipremnum pinnatum (Pashulong), Rhizoma Typhonium Flagelliforme (Laoshuyu), Cortex Magnoliae Officinalis (Houpo) and Rhizoma Imperatae (Baimaogen) were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities. PMID:19038060

  9. Root Transcriptome Analysis of Wild Peanut Reveals Candidate Genes for Nematode Resistance

    PubMed Central

    Guimaraes, Patricia M.; Guimaraes, Larissa A.; Morgante, Carolina V.; Silva, Orzenil B.; Araujo, Ana Claudia G.; Martins, Andressa C. Q.; Saraiva, Mario A. P.; Oliveira, Thais N.; Togawa, Roberto C.; Leal-Bertioli, Soraya C. M.; Bertioli, David J.; Brasileiro, Ana Cristina M.

    2015-01-01

    Wild peanut relatives (Arachis spp.) are genetically diverse and were adapted to a range of environments during the evolution course, constituting an important source of allele diversity for resistance to biotic and abiotic stresses. The wild diploid A. stenosperma harbors high levels of resistance to a variety of pathogens, including the root-knot nematode (RKN) Meloidogyne arenaria, through the onset of the Hypersensitive Response (HR). In order to identify genes and regulators triggering this defense response, a comprehensive root transcriptome analysis during the first stages of this incompatible interaction was conducted using Illumina Hi-Seq. Overall, eight cDNA libraries were produced generating 28.2 GB, which were de novo assembled into 44,132 contigs and 37,882 loci. Differentially expressed genes (DEGs) were identified and clustered according to their expression profile, with the majority being downregulated at 6 DAI, which coincides with the onset of the HR. Amongst these DEGs, 27 were selected for further qRT-PCR validation allowing the identification of nematode-responsive candidate genes that are putatively related to the resistance response. Those candidates are engaged in the salycilic (NBS-LRR, lipocalins, resveratrol synthase) and jasmonic (patatin, allene oxidase cyclase) acids pathways, and also related to hormonal balance (auxin responsive protein, GH3) and cellular plasticity and signaling (tetraspanin, integrin, expansin), with some of them showing contrasting expression behavior between Arachis RKN-resistant and susceptible genotypes. As these candidate genes activate different defensive signaling systems, the genetic (HR) and the induced resistance (IR), their pyramidding in one genotype via molecular breeding or transgenic strategy might contribute to a more durable resistance, thus improving the long-term control of RKN in peanut. PMID:26488731

  10. Root Transcriptome Analysis of Wild Peanut Reveals Candidate Genes for Nematode Resistance.

    PubMed

    Guimaraes, Patricia M; Guimaraes, Larissa A; Morgante, Carolina V; Silva, Orzenil B; Araujo, Ana Claudia G; Martins, Andressa C Q; Saraiva, Mario A P; Oliveira, Thais N; Togawa, Roberto C; Leal-Bertioli, Soraya C M; Bertioli, David J; Brasileiro, Ana Cristina M

    2015-01-01

    Wild peanut relatives (Arachis spp.) are genetically diverse and were adapted to a range of environments during the evolution course, constituting an important source of allele diversity for resistance to biotic and abiotic stresses. The wild diploid A. stenosperma harbors high levels of resistance to a variety of pathogens, including the root-knot nematode (RKN) Meloidogyne arenaria, through the onset of the Hypersensitive Response (HR). In order to identify genes and regulators triggering this defense response, a comprehensive root transcriptome analysis during the first stages of this incompatible interaction was conducted using Illumina Hi-Seq. Overall, eight cDNA libraries were produced generating 28.2 GB, which were de novo assembled into 44,132 contigs and 37,882 loci. Differentially expressed genes (DEGs) were identified and clustered according to their expression profile, with the majority being downregulated at 6 DAI, which coincides with the onset of the HR. Amongst these DEGs, 27 were selected for further qRT-PCR validation allowing the identification of nematode-responsive candidate genes that are putatively related to the resistance response. Those candidates are engaged in the salycilic (NBS-LRR, lipocalins, resveratrol synthase) and jasmonic (patatin, allene oxidase cyclase) acids pathways, and also related to hormonal balance (auxin responsive protein, GH3) and cellular plasticity and signaling (tetraspanin, integrin, expansin), with some of them showing contrasting expression behavior between Arachis RKN-resistant and susceptible genotypes. As these candidate genes activate different defensive signaling systems, the genetic (HR) and the induced resistance (IR), their pyramidding in one genotype via molecular breeding or transgenic strategy might contribute to a more durable resistance, thus improving the long-term control of RKN in peanut. PMID:26488731

  11. First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species.

    PubMed

    Samoluk, Sergio Sebastián; Robledo, Germán; Podio, Maricel; Chalup, Laura; Ortiz, Juan Pablo A; Pessino, Silvina Claudia; Seijo, José Guillermo

    2015-02-01

    Peanut is an allotetraploid (2n = 2x = 40, AABB) of recent origin. Arachis duranensis and A. ipaënsis, the most probable diploid ancestors of the cultigen, and several other wild diploid species with different genomes (A, B, D, F and K) are used in peanut breeding programs. However, the genomic relationships and the evolutionary pathways of genome differentiation of these species are poorly understood. We performed a sequence-based phylogenetic analysis of the L1 reverse transcriptase and estimated its representation and chromosome distribution in species of five genomes and three karyotype groups with the aim of contributing to the knowledge of the genomic structure and evolution of peanut and wild diploid relatives. All the isolated rt fragments were found to belong to plant L1 lineage and were named ALI. The best supported phylogenetic groups were not concordant with the genomes or karyotype groups. The copy number of ALI sequences was higher than the expected one for plants and directly related to genome size. FISH experiments revealed that ALI is mainly located on the euchromatin of interstitial and distal regions of most chromosome arms. Divergence of ALI sequences would have occurred before the differentiation of the genomes and karyotype groups of Arachis. The representation and chromosome distribution of ALI in peanut was almost additive of those of the parental species suggesting that the spontaneous hybridization of the two parental species of peanut followed by chromosome doubling would not have induced a significant burst of ALI transposition. PMID:25633099

  12. Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis.

    PubMed

    Ball, Judith M; Medina-Bolivar, Fabricio; Defrates, Katelyn; Hambleton, Emily; Hurlburt, Megan E; Fang, Lingling; Yang, Tianhong; Nopo-Olazabal, Luis; Atwill, Richard L; Ghai, Pooja; Parr, Rebecca D

    2015-01-01

    Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.

  13. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    SciTech Connect

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-08-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with /sup 51/Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but not fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK.

  14. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures.

    PubMed

    Andrade, E A; Almeida, E X; Raupp, G T; Miguel, M F; de Liz, D M; Carvalho, P C F; Bayer, C; Ribeiro-Filho, H M N

    2016-10-01

    Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.

  15. Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues 1

    PubMed Central

    Kelly, G. J.; Gibbs, Martin

    1973-01-01

    Preparations of TPN-linked nonreversible d-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.9), free of TPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase, have been obtained from green shoots, etiolated shoots, and cotyledons of pea (Pisum sativum), cotyledons of peanut (Arachis hypogea), and leaves of maize (Zea mays). The properties of the enzyme were similar from each of these sources: the Km values for d-glyceraldehyde 3-phosphate and TPN were about 20 μm and 3 μm, respectively. The enzyme activity was inhibited by l-glyceraldehyde 3-phosphate, d-erythrose 4-phosphate, and phosphohydroxypyruvate. Activity was found predominantly in photosynthetic and gluconeogenic tissues of higher plants. A light-induced, phytochrome-mediated increase of enzyme activity in a photosynthetic tissue (pea shoots) was demonstrated. Appearance of enzyme activity in a gluconeogenic tissue (endosperm of castor bean, Ricinus communis) coincided with the conversion of fat to carbohydrate during germination. In photosynthetic tissue, the enzyme is located outside the chloroplast, and at in vivo levels of triose-phosphates and pyridine nucleotides, the activity is probably greater than that of DPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase. Several possible roles for the enzyme in plant carbohydrate metabolism are considered. PMID:16658509

  16. The activity of an anti-allergic compound, proxicromil, on models of immunity and inflammation.

    PubMed

    Keogh, R W; Bundick, R V; Cunnington, P G; Jenkins, S N; Blackham, A; Orr, T S

    1981-07-01

    A tricyclic chromone, proxicromil (sodium 6,7,8,9-tetrahydro-5-hydroxy-4-oxo-10-propyl-naphtho (2,3-b) pyran-2-carboxylate), has been tested for activity against certain immunological and inflammatory reactions. When given parenterally it suppressed the development of delayed hypersensitivity reactions in sensitized mice and guinea-pigs but did not affect the rejection of skin allografts in mice. The compound had no activity against certain in vitro correlates of delayed hypersensitivity reactions (lymphocyte transformation and lymphokine activity), but did have an inhibitory effect on lymphokine (MIF) productions at 10(-4) M but not at 10(-5) M. Proxicromil was also found to be active in non-immunologically mediated models of inflammation and in models having an immunological component which are known to be sensitive to non-steroidal anti-inflammatory drugs (adjuvant arthritis, reversed passive Arthus reaction). The activity of this compound was enhanced when administered in arachis oil when compared to its activity in saline. Proxicromil has not direct activity on the development of immune responsiveness but appear to suppress the expression of delayed hypersensitivity and immune complex mediated hypersensitivity reactions by virtue and its anti-inflammatory properties. This activity is not associated with inhibition of cyclo-oxygenase.

  17. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    PubMed

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties.

  18. Successive Use of Non-Host Plant Proteinase Inhibitors Required for Effective Inhibition of Helicoverpa armigera Gut Proteinases and Larval Growth1

    PubMed Central

    Harsulkar, Abhay M.; Giri, Ashok P.; Patankar, Aparna G.; Gupta, Vidya S.; Sainani, Mohini N.; Ranjekar, Prabhakar K.; Deshpande, Vasanti V.

    1999-01-01

    We report on the efficacy of proteinase inhibitors (PIs) from three host plants (chickpea [Cicer arietinum], pigeonpea [Cajanus cajan], and cotton [Gossypium arboreum]) and three non-host (groundnut [Arachis hypogea], winged bean [Psophocarpus tetragonolobus], and potato [Solanum tuberosum]) in retarding the growth of Helicoverpa armigera larvae, a devastating pest of important crop plants. Enzyme assays and electrophoretic analysis of interaction of H. armigera gut proteinases (HGPs) with PIs revealed that non-host PIs inhibited HGP activity efficiently whereas host PIs were ineffective. In the electrophoretic assay, trypsin inhibitor activity bands were detected in all of the host and non-host plants, but HGP inhibitor activity bands were present only in non-host plants (except cotton in the host plant group). H. armigera larvae reared on a diet containing non-host PIs showed growth retardation, a reduction in total and trypsin-like proteinase activity, and the production of inhibitor-insensitive proteinases. Electrophoretic analysis of PI-induced HGP showed differential regulation of proteinase isoforms. Interestingly, HGP activity induced in response to dietary potato PI-II was inhibited by winged bean PIs. The optimized combination of potato PI-II and winged bean PIs identified in the present study and their proposed successive use has potential in developing H. armigera-resistant transgenic plants. PMID:10517841

  19. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  20. Cold tolerance in CCl4-treated rats and its modification by administration of garlic oil and glucose

    NASA Astrophysics Data System (ADS)

    Bhatia, B.; Ahujarai, P. L.

    1984-06-01

    Male Wistar rats weighing 150 200 g maintained under standard laboratory conditions and given Hindustan Lever Pellets and water ad libitum were exposed to -20°C for determination of the rate of fall of rectal temperature and survival time. The rate of fall of body temperature was significantly increased and the survival time was reduced, when animals were given an intraperitoneal injection of 1 ml/kg BW of CCl4 24 h but not 2 h earlier. Pre-treatment of the animals with 0.006 ml of garlic oil in a 2% solution of arachis oil for 3 days gave a significant protection to the animals against the CCl4-induced fall in cold tolerance. Administration of glucose orally 300 mg in 2 ml of saline eliminated the CCl4-induced fall in cold tolerance. The animals displayed a hypoglycemia 24 h, but not 2 h after injection of CCl4. CCl4-induced hypoglycemia was reduced by pre-treatment with garlic oil. The results indicate that the CCl4-induced reduction in cold tolerance is secondary to hypoglycemia and not due to the direct effect of CCl4 on the thermoregulatory mechanism in the CNS. The critical level of blood glucose below which the cold tolerance is reduced was found to be 76 mg/100 ml of blood.

  1. Heat tolerance of CCl4-treated animals and its modification by some agents

    NASA Astrophysics Data System (ADS)

    Ahujarai, P. L.; Bhatia, B.

    1984-06-01

    The rate of rise of body temperature and the survival time on exposure to a temperature of 40°C was recorded in normal Wistar rats and those given ip injection of 1 ml/kg BW of CCl4 24 h earlier with and without administration of (a) garlic oil (0.006 ml in arachis oil) 3 days earlier, (b) Dl-α-tocopherol (450 mg/kg BW) 48 h before CCl4 (c) glucose (300 mg in 2 ml saline) 30 min before exposure to heat stress. Significant protection against the reduction in heat tolerance by CCl4 was provided by glucose and garlic but not by vitamin E. The reduction in heat tolerance by CCl4 was attributed to the hypoglycemia caused by it, followed by breakdown of the thermoregulatory centres in the hypothalamus. The protective effect of glucose was attributed to the restoration of blood glucose levels and that of the garlic oil to its protective effect on hepatocytes against CCl4 toxicity.

  2. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures.

    PubMed

    Andrade, E A; Almeida, E X; Raupp, G T; Miguel, M F; de Liz, D M; Carvalho, P C F; Bayer, C; Ribeiro-Filho, H M N

    2016-10-01

    Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake. PMID:27101877

  3. Evaluation of the nutritional characteristics of a finger millet based complementary food.

    PubMed

    Mbithi-Mwikya, Stephen; Van Camp, John; Mamiro, Peter R S; Ooghe, Wilfried; Kolsteren, Patrick; Huyghebaert, Andre

    2002-05-01

    Finger millet (Eleusine coracana), kidney beans (Phaseolus vulgaris), peanuts (Arachis hypogoea), and mango (Mangifera indica) were processed separately and then combined, on the basis of their amino acid scores and energy content, into a complementary food for children of weaning age. The finger millet and kidney beans were processed by germination, autoclaving, and lactic acid fermentation. A mixture containing, on a dry matter basis, 65.2, 19.1, 8.0, and 7.7% of the processed finger millet, kidney beans, peanuts, and mango, respectively, gave a composite protein with an in vitro protein digestibility of 90.2% and an amino acid chemical score of 0.84. This mixture had an energy density of 16.3 kJ.g(-1) of dry matter and a decreased antinutrient content and showed a measurable improvement in the in vitro extractability for calcium, iron, and zinc. A 33% (w/v) pap made from a mix of the processed ingredients had an energy density of 5.4 kJ.g(-1) of pap, which is sufficient to meet the energy requirements of well-nourished children of 6-24 months of age at three servings a day and at the FAO average breast-feeding frequency. PMID:11982437

  4. Nandrolone Plus Moderate Exercise Increases the Susceptibility to Lethal Arrhythmias

    PubMed Central

    Ghorbani Baravati, Hamideh; Joukar, Siyavash; Fathpour, Hossein; Kordestani, Zeinab

    2015-01-01

    Background: Until now, no experimental study has directly assessed the arrhythmogenesis of chronic consumption of anabolic androgenic steroids along with moderate-intensity endurance exercise. Objectives: We evaluated the influence of integration of anabolic androgenic steroids along with moderate-intensity endurance exercise on susceptibility to lethal ventricular arrhythmias in rat. Materials and Methods: The animal groups were as follows: control group (CTL); exercise group (EX) which were under 6 weeks of treadmill exercise; nandrolone group (Nan) which received 5 mg/kg of nandrolone decanoate twice a week; vehicle group (Arach) which received Arachis oil (solvent of nandrolone); trained vehicle group (Arach + Ex); and trained nandrolone group (Nan + Ex). One day after ending of the intervention period, arrhythmia was inducted by intravenous infusion of aconitine and ventricular arrhythmias were recorded. Then malondialdehyde (MDA) and glutathione peroxidase (GPX) of heart tissue were measured. Results: Nandrolone, exercise, and their combination were associated with heart hypertrophy. Exercise could prevent the incremental effect of nandrolone on MDA/GPX ratio. Chronic administration of nandrolone with moderate-intensity endurance exercise had no significant effect on blood pressure, heart rate, and basal electrocardiographic parameters. Combination of nandrolone and exercise significantly increased the incidence of ventricular fibrillation (VF) and reduced the VF latency (P < 0.05). Conclusions: The findings suggest that chronic coadministration of nandrolone with moderate-intensity endurance exercise facilitates the VF occurrence in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:26396972

  5. Lectin characterization of gonococci from an outbreak caused by penicillin-resistant Neisseria gonorrhoeae.

    PubMed Central

    Schalla, W O; Rice, R J; Biddle, J W; Jeanlouis, Y; Larsen, S A; Whittington, W L

    1985-01-01

    A total of 40 Neisseria gonorrhoeae isolates, representing 19 penicillin-resistant isolates (from 8 heterosexual patients and 11 homosexual patients) and 21 penicillin-susceptible isolates (from 15 heterosexual patients and 6 homosexual patients) and obtained from the same geographic area, were examined. Lectin agglutination patterns were based on the reactivity of the isolates with the following 14 lectins: concanavalin A, Lens culinaris, Trichosanthes kinlowii, Griffonia simplicifolia I, Arachis hypogeae (peanut agglutinin), Glycine max (soybean agglutinin), Dolichos bifloris, Griffonia simplicifolia II, Solanum tuberosum (potato starch agglutinin), Triticum vulgaris (wheat germ agglutinin), Limax flavus, Phaseolus vulgaris, Ulex europaeus I, and Lotus tetragonolobus. All isolates were serotyped with monoclonal antibodies specific for gonococcal outer membrane protein I and auxotyped, and the plasmid content was determined. Resistant patient isolates were selected for their decreased penicillin susceptibility, and control isolates were selected for their penicillin susceptibility. Even though the patient isolates demonstrated resistance to penicillin, no phenotypic differences in lectin-grouping patterns were demonstrated between the two study groups; i.e., two predominant lectin groups were observed. No resistance-associated plasmids were detected. All patient isolates were serogroup IB (serovars IB-1, IB-2, and IB-4), whereas 12 of 21 control isolates were serogroup IA (P less than 0.05). Isolates obtained from different anatomical sites in the same patient (cervical and rectal) agreed with regard to lectin patterns and serovars but not auxotypes. PMID:3935658

  6. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  7. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    PubMed

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties. PMID:26234581

  8. Molecular architecture of the cannabinoid signaling system in the core of the nucleus accumbens.

    PubMed

    Mátyás, Ferenc; Watanabe, Masahiko; Mackie, Ken; Katona, István; Freund, Tamás F

    2007-03-30

    Several abused drugs are known to alter glutamatergic signaling in reward pathways of the brain, and these plastic changes may contribute to the establishment of addiction-related behaviour. Glutamatergic synapses of the prefrontal cortical projections to the nucleus accumbens (nAcb)--which are suggested to be under endocannabinoid (eCB) control - play a central role in the addiction process. The most abundant eCB in the brain is 2-arachi-donoyl-glycerol (2-AG). It is synthesized by diacylglycerol lipase alpha (DGL-alpha), and exerts its action via type 1 cannabinoid receptors (CB1). However, the precise localization of DGL-alpha and CB1 - i.e. the sites of synthesis and action of 2AG - is still unknown. At the light microscopic level, immunocytochemistry revealed a granular pattern of DGL-alpha distribution in the core of the nAcb. Electron microscopic analysis confirmed that these granules corresponded to the heads of dendritic spines. On the other hand, presynaptic axon terminals forming excitatory synapses on these spineheads were found to express CB1 receptors. Our results demonstrate that the molecular constituents for a retrograde endocannabinoid control of glutamatergic transmission are available in the core of the nAcb, and their relative subcellular location is consistent with a role of 2-AG in addiction-related plasticity of cortical excitatory synapses in this reward area.

  9. sup 15 NO sub 3 assimilation and its inhibitory effect on symbiotic nitrogen fixation in peanut

    SciTech Connect

    Stanfill, S.B.; Wells, R.; Israel, D.W.; Rufty, T.W. )

    1990-05-01

    To assess the inhibitory effect of nitrate on the contribution of symbiotic N fixation to total plant N, cultivars of different nodulation capacity were monitored in a growth chamber study. Plants inoculated with Bradyrhizobium sp. (Arachis) strain NC 70.1 were grown in a nutrient solution containing 0, 2.5, 5 or 10 mM NO{sub 3} enriched with 2.5 atom % {sup 15}N. Plant harvests at 30 and 60 DAP provided tissue for measurement of growth, total N, NO{sub 3} and {sup 15}N partitioning. Nitrogenase activity was estimated via C{sub 2}H{sub 2} reduction. Data indicates that plant growth was associated to NO{sub 3} concentration. Average nodule weight and N plant{sup {minus}1} decreased in excess of 2.5mM NO{sub 3}. Specific nitrogenase activity diminished markedly with application of NO{sub 3} with a decline from 40.2 to 25.0 {mu}moles C{sub 2}H{sub 2} g hr{sup {minus}1} at 0 and 2.5mM NO{sub 3}, respectively. Nitrate and fixed N assimilation patterns will be elucidated by {sup 15}N analysis.

  10. Interaction of native and asialo rat sublingual glycoproteins with lectins.

    PubMed

    Wu, A M; Herp, A; Song, S C; Wu, J H; Chang, K S

    1995-01-01

    The binding properties of the rat sublingual glycoprotein (RSL) and its asialo product with lectins were characterized by quantitative precipitin(QPA) and precipitin inhibition(QPIA) assays. Among twenty lectins tested for QPA, native RSL reacted well only with Artocarpus integrifolia (jacalin), but weakly or not at all with the other lectins. However, its asialo product (asialo-RSL) reacted strongly with many Gal and GalNAc specific lectins-it bound best to three of the GalNAc alpha 1-->Ser/Thr (Tn) and/or Gal beta 1-->4GlcNAc (II) active lectins [jacalin, Wistaria floribunda and Ricinus communis agglutinins] and completely precipitated each of these three lectins. Asialo-RSL also reacted well with Abrus precatorius, Glycine max, Bauhinia purpurea alba, and Maclura pomifera agglutinins, and abrin-a, but not with Arachis hypogeae and Dolichos biflorus agglutinins. The interaction between asialo-RSL and lectins were inhibited by either Gal beta 1-->4GlcNAc, p-NO2-phenyl alpha-GalNAc or both. The mapping of the precipitation and inhibition profiles leads to the conclusion that the asialo rat sublingual glycoprotein provides important ligands for II (Gal beta 1-->4GlcNAc beta 1-->) and Tn (GalNAc alpha 1-->Ser/Thr) active lectins.

  11. Interaction of propiconazole in the peanut leafspot disease complex

    SciTech Connect

    Hancock, H.G.

    1985-01-01

    (/sup 14/C)-Propiconazole exhibited characteristics of an apoplastic xenobiotic being acropetally translocated via the transpiration stream to the foliage following root exposure in peanut (Arachis hypogeaea). When applied to leaves, radioactivity was detected distal to the point of application and accumulated along the margins of treated leaves. Redistribution to untreated plant parts was not observed. (/sup 14/C)-propiconazole rapidly penetrated the cuticle of leaves. However, leaves treated with a mixture of (/sup 14/C)-propiconazole and Penetrator 3 exhibited significantly greater foliar uptake of radioactivity than leaves treated with (/sup 14/C)-propiconazole alone. In replicated experiments, leafspot infection (caused by Cercospora arachidicola or Cercosporidium personatum) decreased quadratically with increasing application rate of Tilt 3.6EC (propiconazole) or Vangard 1.0EC (etaconazole). Combinations of fungicide and penetrator 3 gave slightly greater reductions of infection relative to fungicide alone but had no effect on yield. Propiconazole had no effect on the uptake or incorporation of (/sup 14/C)-acetate into the total lipid (TL) of peanut leaf tissue. (/sup 14/C) in the total fatty acids and non-saponifiable lipids was 10 to 20% greater, respectively, in treated tissue relative to the untreated control. Radioactivity of 4-demethyl sterols was up to 57% lower in treated leaves but no differences in radioactivity were detected in 4-methyl and 4,14-dimethyl sterols.

  12. Review of statutory and voluntary labelling of food allergens.

    PubMed

    Boden, Mark; Dadswell, Ruth; Hattersley, Sue

    2005-11-01

    Food allergy represents an increasingly important health problem, with prevalence in Western Europe continuing to rise. While some reactions are mild, others can include life-threatening anaphylactic shock. It is estimated that food allergies affect 1-2% of the adult population and < or =8% of children. Relatively few foods are to blame for a large majority of allergic reactions to food in the UK, with most reactions being to milk, eggs, peanuts (Arachis hypogea), nuts, fish, shellfish, soyabean, sesame (Sesamum indicum L.) and wheat. There is currently no cure for food allergy and the few available treatments are focused on relieving the specific symptoms. Consumers with food allergies and food intolerances rely on food labelling to enable them to make informed choices about the foods they eat. Whilst there have recently been important advances in the labelling of food allergens, these advances relate only to requirements for the labelling of the deliberate use of specified food allergens in foods sold pre-packed. In other areas the development of guidance for food manufacturers and retailers on how to assess the risks of possible allergen cross-contamination during food production and manufacture, and then to determine appropriate advisory labelling, is well advanced. Work to address the issue of how to provide appropriate allergen information for foods sold loose, or in catering establishments, is also in progress.

  13. Tracheobronchial epithelium of the sheep: IV. Lectin histochemical characterization of secretory epithelial cells.

    PubMed

    Mariassy, A T; Plopper, C G; St George, J A; Wilson, D W

    1988-09-01

    Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins--DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus)--for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of less than 10% of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions. PMID:3189886

  14. The protective effect of silymarin on the carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio).

    PubMed

    Jia, Rui; Cao, Liping; Du, Jinliang; Xu, Pao; Jeney, Galina; Yin, Guojun

    2013-03-01

    Silymarin, a mixture of bioactive flavonolignans from the milk thistle (Silybum marianum), is traditionally used in herbal medicine to defend against various hepatotoxic agents. The aim of the present study was to evaluate the protective effect of silymarin against carbon tetrachloride (CCl4)-induced liver injury in fish. Common carp, with an average initial weight of 17.0 ± 1.1 g, were fed diet containing four doses of silymarin (0, 0.1, 0.5, and 1 g/kg diet) for 60 d. Fish were then given an intraperitoneal injection of CCl4 (30% in arachis oil) at a dose of 0.5 ml/kg body weight. At 72 h after CCl4 injection, blood and liver samples were collected for the analyses of serum biochemical parameters, liver index, peroxidation product, glutathione, and antioxidant enzyme activities. The results showed that administration of silymarin at 0.5 and 1 g/kg diet for 60 d prior to CCl4 intoxication significantly reduced the elevated activities of glutamate pyruvate transaminase, glutamate oxalate transaminase, lactate dehydrogenase (LDH), and increased the reduced levels of total protein and albumin in the serum. The reduced levels of liver index, superoxide dismutase, glutathione peroxidase, catalase, glutathione, and total antioxidant capacity were markedly increased, and malondialdehyde formation was significantly restrained in the liver. However, these parameters, except LDH, were not significantly changed in fish fed with silymarin at 0.1 g/kg diet. Based on the results, it can be concluded that silymarin has protective effect against CCl4-induced hepatotoxicity in fish. It is suggested that silymarin may be used as a hepatoprotective agent to prevent liver diseases in fish.

  15. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    PubMed Central

    Varga, J.; Frisvad, J.C.; Samson, R.A.

    2011-01-01

    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented. PMID:21892243

  16. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome

    PubMed Central

    Przysiecka, Łucja; Książkiewicz, Michał; Wolko, Bogdan; Naganowska, Barbara

    2015-01-01

    Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1) main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis, and Glycine

  17. Effect of Solar UV-B Radiation on a Phyllosphere Bacterial Community

    PubMed Central

    Jacobs, Janette L.; Sundin, George W.

    2001-01-01

    The effect of solar UV-B radiation on the population dynamics and composition of the culturable bacterial community from peanut (Arachis hypogeae L.) was examined in field studies using plants grown under UV-B−transmitting (UV-B+) or UV-B−excluding (UV-B−) plastic filters. Our data demonstrate that solar UV-B selection alters phyllosphere bacterial community composition and that UV tolerance is a prevalent phenotype late in the season. The total bacterial population size was not affected by either UV-B treatment. However, isolates from the UV-B+ plots (n = 368) were significantly more UV tolerant than those from the UV-B− (n = 363) plots. UV sensitivity was determined as the minimal inhibitory dose of UV that resulted in an inhibition of growth compared to the growth of a nonirradiated control. The difference in minimal inhibitory doses among bacterial isolates from UV-B+ and UV-B− treatments was mainly partitioned among nonpigmented isolates, with pigmented isolates as a group being characterized as UV tolerant. A large increase in UV tolerance was observed within isolate groups collected late (89 and 96 days after planting) in the season. Identification of 200 late-season isolates indicated that the predominant UV-tolerant members of this group were Bacillus coagulans, Clavibacter michiganensis, and Curtobacterium flaccumfaciens. We selected C. michiganensis as a model UV-tolerant epiphyte to study if cell survival on UV-irradiated peanut leaves was increased relative to UV survival in vitro. The results showed an enhancement in the survival of C. michiganensis G7.1, especially following high UV-C doses (300 and 375 J m−2), that was evident between 24 and 96 h after inoculation. A dramatic increase in the in planta/in vitro survival ratio was observed over the entire 96-h experiment period for C. michiganensis T5.1. PMID:11722897

  18. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus.

    PubMed

    Naumann, H D; Armstrong, S A; Lambert, B D; Muir, J P; Tedeschi, L O; Kothmann, M M

    2014-01-17

    The effect of molecular weight of condensed tannins (CT) from a variety of warm-season perennial legumes commonly consumed by sheep and goats on anthelmintic activity has not been previously explored. The objectives of this study were to determine if molecular weight of CT from warm-season perennial legumes could predict the biological activity of CT relative to anthelmintic activity against ivermectin resistant L3 stage Haemonchus contortus (HC) using a larval migration inhibition (LMI) assay. A second objective was to determine if CT from warm-season perennial legumes possess anthelmintic properties against L3 stage (HC). Lespedeza stuevei had the greatest concentration of total condensed tannin (TCT; 11.7%), whereas, with the exception of Arachis glabrata, a CT-free negative control, Leucaena retusa had the least TCT (3.3%). Weight-average molecular weight of CT ranged from 552 Da for L. stuevei to 1483 Da for Lespedeza cuneata. The treatments demonstrating the greatest percent LMI were L. retusa, L. stuevei and Acacia angustissima var. hirta (65.4%, 63.1% and 42.2%, respectively). The ivermectin treatment had the smallest percent LMI (12.5%) against ivermectin resistant L3 HC. There was a weak correlation (R(2)=0.34; P=0.05) between CT MW and percent LMI, suggesting that molecular weight of CT is a weak contributing factor to CT biological activity as it relates to LMI of L3 stage HC. L. stuevei, L. retusa and A. angustissima var. hirta STP5 warrant further evaluation of anthelmintic properties in vivo.

  19. In vitro permeation characteristics of moxifloxacin from oil drops through excised goat, sheep, buffalo and rabbit corneas.

    PubMed

    Pawar, P K; Majumdar, D K

    2007-11-01

    The objective of present investigation was to study the in vitro permeation characteristics of moxifloxacin from oil drops through freshly excised goat, sheep, buffalo and rabbit corneas. Moxifloxacin, 0.043 to 0.048% (w/v) ophthalmic solutions with or without (0.5% v/v) benzyl alcohol were made in arachis, castor, cottonseed, olive, soybean, sunflower and sesame oils. Permeation studies were conducted by putting 1 ml oil formulation on cornea (0.50 cm2) fixed between donor and receptor compartments of an all glass modified Franz diffusion cell and measuring the drug permeated in receptor (containing 10 ml bicarbonate ringer, pH 7.4 at 37 degrees C under stirring) by spectrophotometry at 291 nm, after 120 min. Post permeation corneal hydration was measured to assess corneal damage. The study was designed with paired corneas i.e. one cornea of an animal received formulation without benzyl alcohol while the contralateral cornea received formulation with benzyl alcohol. Moxifloxacin ophthalmic solution in castor oil showed maximum permeation with all the corneas. Addition of benzyl alcohol, a preservative, to oil drops reduced permeation of moxifloxacin from each oil drop, with corneas of all the species. Partition experiments with moxifloxacin oil drops and phosphate buffer (pH 7.4) indicated higher partitioning of drug in the oil phase, in presence of benzyl alcohol. Thus results of permeation are consistent with the partition characteristics of drug between oil and aqueous phase. Corneal hydration obtained with all the formulations was between 75 to 80% indicating no corneal damage.

  20. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow.

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2015-10-15

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess long-term environmental benefits of conservation tillage data may be needed that quantify both surface and subsurface contaminant fluxes. This study focused on the herbicide fluometuron (N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]-urea) and its soil degradate DMF (N-methyl-N'-[3-(trifluoromethyl) phenyl]-urea). Both compounds are classed as "leachable". They were measured for 10 years in surface runoff and lateral subsurface flow from paired fields located on a hill slope in the Atlantic Coastal Plain region of the southeastern USA. One group of fields was conventionally tilled incorporating all crop residues into soil prior to planting. The second was strip tilled, a common conservation tillage practice. Seven fluometuron applications were made to cotton (Gossypium hirsutum) produced in rotation with peanut (Arachis hypogea). Combined fluometuron and DMF surface and subsurface losses from the conventionally tilled fields were equivalent to 1.2% and 0.13% of fluometuron applied and 0.31% and 0.32% from the strip tilled fields. Annual surface runoff losses were significantly greater from the conventionally tilled fields while the strip tilled fields had significantly greater annual subsurface losses. Results demonstrated that shifting from conventional to conservation tillage management of farm fields in this landscape will reduce surface runoff losses of herbicides like fluometuron but subsurface losses will likely increase. The same trends can be expected in landscapes with similar soil and hydrologic properties. This should be considered when planning implementation of programs that promote conservation tillage use.