Sample records for amf spore density

  1. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity

    PubMed Central

    Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun

    2016-01-01

    To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems. PMID:27098761

  2. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun

    2016-04-01

    To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems.

  3. Arbuscular mycorrhizal fungi facilitate the invasion of Solidago canadensis L. in southeastern China

    NASA Astrophysics Data System (ADS)

    Yang, Ruyi; Zhou, Gang; Zan, Shuting; Guo, Fuyu; Su, Nannan; Li, Jing

    2014-11-01

    The significance of arbuscular mycorrhizal fungi (AMF) in the process of plant invasion is still poorly understood. We hypothesize that invasive plants would change local AMF community structure in a way that would benefit themselves but confer less advantages to native plants, thus influencing the extent of plant interactions. An AMF spore community composed of five morphospecies of Glomus with equal density (initial AMF spore community, I-AMF) was constructed to test this hypothesis. The results showed that the invasive species, Solidago canadensis, significantly increased the relative abundance of G. geosperum and G. etunicatum (altered AMF spore community, A-AMF) compared to G. mosseae, which was a dominant morphospecies in the monoculture of native Kummerowia striata. The shift in AMF spore community composition driven by S. canadensis generated functional variation between I-AMF and A-AMF communities. For example, I-AMF increased biomass and nutrient uptake of K. striata in both monocultures and mixtures of K. striata and S. canadensis compared to A-AMF. In contrast, A-AMF significantly enhanced root nitrogen (N) acquisition of S. canadensis grown in mixture. Moreover, mycorrhizal-mediated 15N uptake provided direct evidence that I-AMF and A-AMF differed in their affinities with native and invading species. The non-significant effect of A-AMF on K. striata did not result from allelopathy as root exudates of S. canadensis exhibited positive effects on seed germination and biomass of K. striata under naturally occurring concentrations. When considered together, we found that A-AMF facilitated the invasion of S. canadensis through decreasing competitiveness of the native plant K. striata. The results supported our hypothesis and can be used to improve our understanding of an ecosystem-based perspective towards exotic plant invasion.

  4. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  5. Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

    PubMed

    Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K

    2016-10-01

    Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

  6. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  7. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    PubMed

    Selvakumar, G; Shagol, C C; Kang, Y; Chung, B N; Han, S G; Sa, T M

    2018-06-01

    The propagation of pure cultures of arbuscular mycorrhizal fungal (AMF) is an essential requirement for their large-scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single-spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of sorghum-sudangrass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1-kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2·5-kg capacity pots containing sterilized soil. Among the 150 inoculated seedlings, only 27 seedlings were colonized by AMF spores. After 240 days, among the 27 seedlings, five inoculants resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single-spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum and Funneliformis mosseae. Furthermore, indigenous spore F. mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using the single-spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describe the feasible and cost-effective method to mass produce AMF spores for large-scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. © 2018 The Society for Applied Microbiology.

  8. Spatiotemporal variation of arbuscular mycorrhizal fungal colonization in olive (Olea europaea L.) roots across a broad mesic-xeric climatic gradient in North Africa.

    PubMed

    Meddad-Hamza, Amel; Hamza, Nabila; Neffar, Souad; Beddiar, Arifa; Gianinazzi, Silvio; Chenchouni, Haroun

    2017-04-01

    This study aims to determine the spatiotemporal dynamics of root colonization and spore density of arbuscular mycorrhizal fungi (AMF) in the rhizosphere of olive trees (Olea europaea) with different plantation ages and under different climatic areas in Algeria. Soil and root samples were seasonally collected from three olive plantations of different ages. Other samples were carried out in productive olive orchards cultivated under a climatic gradient (desertic, semi-arid, subhumid, and humid). The olive varieties analysed in this study were Blanquette, Rougette, Chemlel and the wild-olive. Spore density, mycorrhization intensity (M%), spore diversity and the most probable number (MPN) were determined. Both the intensity of mycorrhizal colonization and spore density increased with the increase of seasonal precipitation and decreased with the increase of air temperature regardless of the climatic region or olive variety. The variety Rougette had the highest mycorrhizal levels in all plantation ages and climates. Spore community was composed of the genera Rhizophagus, Funneliformis, Glomus, Septoglomus, Gigaspora, Scutellospora and Entrophospora. The genus Glomus, with four species, predominated in all climate regions. Spores of Gigaspora sp. and Scutellospora sp. were the most abundant in desertic plantations. Statistical models indicated a positive relationship between spore density and M% during spring and winter in young seedlings and old plantations. A significant positive relationship was found between MPN and spore density under different climates. For a mycotrophic species, the rhizosphere of olive trees proved to be poor in mycorrhiza in terms of mycorrhizal colonization and numbers of the infective AMF propagules. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    PubMed Central

    2011-01-01

    Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage. PMID:21349193

  10. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.

    PubMed

    Marleau, Julie; Dalpé, Yolande; St-Arnaud, Marc; Hijri, Mohamed

    2011-02-24

    A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  11. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination.

    PubMed

    Franco-Ramírez, Alicia; Ferrera-Cerrato, Ronald; Varela-Fregoso, Lucía; Pérez-Moreno, Jesús; Alarcón, Alejandro

    2007-10-01

    Arbuscular mycorrhizal fungi (AMF) have been hypothesized to enhance plant adaptation and growth in petroleum-contaminated soils. Nevertheless, neither AMF-biodiversity under chronically petroleum-contaminated soils nor spore germination response to petroleum hydrocarbons has been well studied. Chronically petroleum-contaminated rhizosphere soil and roots from Echinochloa polystachya, Citrus aurantifolia and C. aurantium were collected from Activo Cinco Presidentes, Tabasco, Mexico. Root colonization and spore abundance were evaluated. Additionally, rhizosphere soil samples were propagated using Sorghum vulgare L. as a plant trap under greenhouse conditions; subsequently, AMF-spores were identified. AMF-colonization ranged from 63 to 77% while spore number ranged from 715 to 912 in 100 g soil, suggesting that AMF tolerate the presence of petroleum hydrocarbons in the rhizosphere. From grass species, four AMF-morphospecies were identified: Glomus ambisporum, G. sinuosum (previously described as Sclerocystis sinuosum), Acaulospora laevis, and Ambispora gerdermanni. From citrus trees, four AMF-species were also identified: Scutellospora heterogama, G. ambisporum, Acaulospora scrobiculata, and G. citricola. In a second study, it was observed that spore germination and hyphal length of G. mosseae, G. ambisporum, and S. heterogama were significantly reduced by either volatile compounds of crude oil or increased concentrations of benzo[a ]pyrene or phenanthrene in water-agar.

  12. Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid.

    PubMed

    de Souza, Tancredo Augusto Feitosa; Rodriguez-Echeverría, Susana; de Andrade, Leonaldo Alves; Freitas, Helena

    2016-01-01

    Many plant species from Brazilian semi-arid present arbuscular mycorrhizal fungi (AMF) in their rhizosphere. These microorganisms play a key role in the establishment, growth, survival of plants and protection against drought, pathogenic fungi and nematodes. This study presents a quantitative analysis of the AMF species associated with Mimosa tenuiflora, an important native plant of the Caatinga flora. AMF diversity, spore abundance and root colonization were estimated in seven sampling locations in the Ceará and Paraíba States, during September of 2012. There were significant differences in soil properties, spore abundance, percentage of root colonization, and AMF diversity among sites. Altogether, 18 AMF species were identified, and spores of the genera Acaulospora, Claroideoglomus, Dentiscutata, Entrophospora, Funneliformis, Gigaspora, Glomus, Racocetra, Rhizoglomus and Scutellospora were observed. AMF species diversity and their spore abundance found in M. tenuiflora rhizosphere shown that this native plant species is an important host plant to AMF communities from Brazilian semi-arid region. We concluded that: (a) during the dry period and in semi-arid conditions, there is a high spore production in M. tenuiflora root zone; and (b) soil properties, as soil pH and available phosphorous, affect AMF species diversity, thus constituting key factors for the similarity/dissimilarity of AMF communities in the M. tenuiflora root zone among sites. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes.

    PubMed

    Wang, Qi; Bao, Yuying; Liu, Xiaowei; Du, Guoxin

    2014-10-01

    Temporal and spatial patterns of arbuscular mycorrhizal fungi (AMF) and glomalin and soil enzyme activities were investigated in different managed semiarid steppes located in Inner Mongolia, North China. Soils were sampled in a depth up to 30 cm from non-grazed, overgrazed, and naturally restored steppes from June to September. Roots of Leymus chinense (Trin.) Tzvel. and Stipagrandis P. Smirn. were also collected over the same period. Results showed that overgrazing significantly decreased the total mycorrhizal colonization of S. grandis; total colonization of L. chinensis roots was not significantly different in the three managed steppes. Nineteen AMF species belonging to six genera were isolated. Funneliformis and Glomus were dominant genera in all three steppes. Spore density and species richness were mainly influenced by an interaction between plant growth stage and management system (P < 0.001). Spore densities were higher in 0-10-cm soil depth. AMF species richness was significantly positively correlated with soil acid phosphatase activity, alkaline phosphatase activity, and two Bradford-reactive soil protein (BRSP) fractions (P < 0.01). It is concluded that the dynamics of AMF have highly temporal and spatial patterns that are related to soil glomalin and phosphatase activity in different managed semiarid steppes. Based on these observations, AMF communities could be useful indicators for evaluating soil quality and function of semiarid grassland ecosystems.

  14. Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations.

    PubMed

    Ehinger, Martine O; Croll, Daniel; Koch, Alexander M; Sanders, Ian R

    2012-11-01

    Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  15. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.

    PubMed

    Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann

    2009-06-01

    The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.

  16. Propagules of arbuscular mycorrhizal fungi in a secondary dry forest of Oaxaca, Mexico.

    PubMed

    Guadarrama, Patricia; Castillo-Argüero, Silvia; Ramos-Zapata, José A; Camargo-Ricalde, Sara L; Alvarez-Sánchez, Javier

    2008-03-01

    Plant cover loss due to changes in land use promotes a decrease in spore diversity of arbuscular mycorrhizal fungi (AMF), viable mycelium and, therefore, in AMF colonization, this has an influence in community diversity and, as a consequence, in its recovery. To evaluate different AMF propagules, nine plots in a tropical dry forest with secondary vegetation were selected: 0, 1, 7, 10, 14, 18, 22, 25, and 27 years after abandonment in Nizanda, Oaxaca, Mexico. The secondary vegetation with different stages of development is a consequence of slash and burn agriculture, and posterior abandonment. Soil samples (six per plot) were collected and percentage of AMF field colonization, extrarradical mycelium, viable spore density, infectivity and most probable number (MPN) ofAMF propagules were quantified through a bioassay. Means for field colonization ranged between 40% and 70%, mean of total mycelium length was 15.7 +/- 1.88 mg(-1) dry soil, with significant differences between plots; however, more than 40% of extracted mycelium was not viable, between 60 and 456 spores in 100 g of dry soil were recorded, but more than 64% showed some kind of damage. Infectivity values fluctuated between 20% and 50%, while MPN showed a mean value of 85.42 +/- 44.17 propagules (100 g dry soil). We conclude that secondary communities generated by elimination of vegetation with agricultural purposes in a dry forest in Nizanda do not show elimination of propagules, probably as a consequence of the low input agriculture practices in this area, which may encourage natural regeneration.

  17. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth

    PubMed Central

    Becerra, Alejandra; Bartoloni, Norberto; Cofré, Noelia; Soteras, Florencia; Cabello, Marta

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0–50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0–10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina. PMID:25242945

  18. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Native arbuscular mycorrhizal fungi in the Yungas forests, Argentina.

    PubMed

    Becerra, Alejandra G; Cabello, Marta N; Bartoloni, Norberto J

    2011-01-01

    The arbuscular mycorrhizal fungal (AMF) communities from the Yungas forests of Argentina were studied. The AMF species present in the rhizosphere of some dominant native plants (one tree: Alnus acuminata; three herbaceous species: Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub: Sambucus peruviana) from two sites (Quebrada del Portugués and Narváez Range) of the Yungas forests were isolated, identified and quantified during the four seasons of the year. Twenty-two AMF morphotaxa were found. Spore density of some AMF species at each site varied among seasons. The genera that most contributed to the biodiversity index were Acaulospora for Quebrada del Portugués and Glomus for Narváez Range. High diversity values were observed in the Yungas forests, particularly in the spring (rainy season). We concluded AMF differed in species composition and seasonal sporulation dynamics in the Yungas forests.

  20. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest.

    PubMed

    de Oliveira Freitas, Rejane; Buscardo, Erika; Nagy, Laszlo; dos Santos Maciel, Alex Bruno; Carrenho, Rosilaine; Luizão, Regina C C

    2014-01-01

    Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a 'terra firme forest' in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.

  1. Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback.

    PubMed

    Mangan, Scott A; Herre, Edward A; Bever, James D

    2010-09-01

    A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.

  2. Predictors of Arbuscular Mycorrhizal Fungal Communities in the Brazilian Tropical Dry Forest.

    PubMed

    Sousa, Natália M F; Veresoglou, Stavros D; Oehl, Fritz; Rillig, Matthias C; Maia, Leonor C

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi with a broad distribution, and many taxa have physiological and ecological adaptations to specific environments, including semiarid ecosystems. Our aim was to address regional distribution patterns of AMF communities in such semiarid environments based on spore morphological techniques. We assessed AMF spores at the bottom and top of inselbergs distributed throughout the tropical dry forest in the Northeast region of Brazil. Across 10 replicate inselbergs and the surrounding area, spanning a range of altitude between 140 and 2000 m, we scored the AMF soil diversity and properties in 52 plots. We fitted parsimonious ordination analyses and variance partitioning models to determine the environmental factors which explained the variation in AMF community, based on morphological spore analysis. The diversity of AMF was similar at the bottom and top of inselbergs; however, we detected high variation in abundance and richness across sites. We formulated a parsimonious richness model that used physical soil factors as predictors. The AMF community structure could be best explained through the variables coarse and total sand, iron, organic matter, potassium, silt, and sodium which together accounted for 17.8% of total variance. Several AMF species were indicators of either deficiency or high values of specific soil properties. We demonstrated that habitat isolation of the inselbergs compared with surrounding areas did not trigger differences in AMF communities in semiarid regions of Brazil. At the regional scale, soil predictors across sites drove the distribution of symbiotic mycorrhizal fungi.

  3. Composition of the root mycorrhizal community associated with Coffea arabica in Fifa Mountains (Jazan region, Saudi Arabia).

    PubMed

    Mahdhi, Mosbah; Tounekti, Taieb; Al-Turki, Turki Ali; Khemira, Habib

    2017-08-01

    Arbuscular mycorrhizal fungi (AMF) constitute a key functional group of soil biota that can greatly contribute to crop productivity and ecosystem sustainability. They improve nutrient uptake and enhance the ability of plants to cope with abiotic stresses. The presence of AMF in coffee (Coffea arabica L.) plant roots have been reported in several locations but not in Saudi Arabia despite the fact that coffee has been in cultivation here since ancient times. The objective of the present study was to investigate the diversity of AMF communities colonizing the roots of coffee trees growing in two sites of Fifa Mountains (south-west Saudi Arabia): site 1 at 700 m altitude and site 2 at 1400 m. The AMF large subunit rDNA regions (LSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Microscopic observations indicated higher mycorrhizal intensity (24.3%) and spore density (256 spores/100 g of soil) in site 2 (higher altitude). Phylogenetic analysis revealed 10 phylotypes, six belonging to the family Glomeraceae, two to Claroideoglomercea, one to Acaulosporaceae and one to Gigasporaceae family. Glomus was the dominant genus at both sites and the genus Gigaspora was detected only at site 2. This is the first study reporting the presence of AMF in coffee roots and the composition of this particular mycorrhizal community in Saudi Arabia. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation and analysis of bacteria associated with spores of Gigaspora margarita.

    PubMed

    Cruz, A F; Horii, S; Ochiai, S; Yasuda, A; Ishii, T

    2008-06-01

    The aim of this work was to observe bacteria associated with the spores of Gigaspora margarita, an arbuscular mycorrhizal fungus (AMF). First, a direct analysis of DNA from sterilized spores indicated the bacteria belonging to the genus Janthinobacterium. In the second assay, two bacterial strains were isolated by osmosis from protoplasts, which were derived from spores by using two particular enzymes: lysing enzymes and yatalase. After isolation, cultivation and identification by their DNA as performed in the first experiment, the species with the closest relation were Janthinobacterium lividum (KCIGM01) and Paenibacillus polymyxa (KCIGM04) isolated with lysing enzymes and yatalase respectively. Morphologically, J. lividum was Gram negative and oval, while P. polymyxa was also oval, but Gram positive. Both strains had antagonistic effects to the pathogenic fungi Rosellimia necatrix, Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani. In particular, J. lividum was much stronger in this role. However, in phosphorus (P) solubilization P. polymyxa functioned better than J. lividum. This experiment had revealed two new bacteria species (P. polymyxa and J. lividum), associated with AMF spores, which functioned to suppress diseases and to solubilize P. AMF spores could be a useful source for bacterial antagonists to soil-borne diseases and P solubilization.

  5. Morphological and molecular diversity of arbuscular mycorrhizal fungi in revegetated iron-mining site has the same magnitude of adjacent pristine ecosystems.

    PubMed

    Vieira, Caroline Krug; Marascalchi, Matheus Nicoletti; Rodrigues, Arthur Vinicius; de Armas, Rafael Dutra; Stürmer, Sidney Luiz

    2018-05-01

    Arbuscular mycorrhizal fungi (AMF) are important during revegetation of mining sites, but few studies compared AMF community in revegetated sites with pristine adjacent ecosystems. The aim of this study was to assess AMF species richness in a revegetated iron-mining site and adjacent ecosystems and to relate AMF occurrence to soil chemical parameters. Soil samples were collected in dry and rainy seasons in a revegetated iron-mining site (RA) and compared with pristine ecosystems of forest (FL), canga (NG), and Cerrado (CE). AMF species were identified by spore morphology from field and trap cultures and by LSU rDNA sequencing using Illumina. A total of 62 AMF species were recovered, pertaining to 18 genera and nine families of Glomeromycota. The largest number of species and families were detected in RA, and Acaulospora mellea and Glomus sp1 were the most frequent species. Species belonging to Glomeraceae and Acaulosporaceae accounted for 42%-48% of total species richness. Total number of spores and mycorrhizal inoculum potential tended to be higher in the dry than in the rainy season, except in RA. Sequences of uncultured Glomerales were dominant in all sites and seasons and five species were detected exclusively by DNA-based identification. Redundancy analysis evidenced soil pH, organic matter, aluminum, and iron as main factors influencing AMF presence. In conclusion, revegetation of the iron-mining site seems to be effective in maintaining a diverse AMF community and different approaches are complementary to reveal AMF species, despite the larger number of species being identified by traditional identification of field spores. Copyright © 2017. Published by Elsevier B.V.

  6. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    PubMed Central

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  7. Allelic differences within and among sister spores of the arbuscular mycorrhizal fungus Glomus etunicatum suggest segregation at sporulation.

    PubMed

    Boon, Eva; Zimmerman, Erin; St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.

  8. Allelic Differences within and among Sister Spores of the Arbuscular Mycorrhizal Fungus Glomus etunicatum Suggest Segregation at Sporulation

    PubMed Central

    St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae. PMID:24386173

  9. Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina.

    PubMed

    Velázquez, María S; Cabello, Marta N; Barrera, Marcelo

    2013-01-01

    The arbuscular-mycorrhizal-fungal (AMF) communities from the El Palmar National Park of Entre Ríos Province, Argentina, were investigated and characterized. The species of AMF present in five distinct vegetation types-gallery forest, grassland, marsh, palm forest, and scrubland-were isolated, identified and quantified over 2 y. Forty-six AMF morphotaxa were found. The composition of the AMF communities differed between the seasons, soil and vegetation types. Seasonal variations were observed in members of the Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Pacisporaceae. Depending on soil type, the AMF-spore communities were dominated by members of one of the two main orders of the Glomeromycota. AMF communities from grassland and palm forest, which occur on sandy soils, comprised primarily members of the Diversisporales, with a high percentage of species of Acaulospora and of Gigasporaceae. Communities from the gallery forest, marsh and scrubland, which occur on loam-clay soils, were composed of members of the Glomerales, with a high percentage of spores from species of Glomus. Thus, both AMF and plant communities would appear to be strongly and similarly influenced by edaphic conditions.

  10. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems.

    PubMed

    de Azevedo, Lucas Carvalho Basilio; Stürmer, Sidney Luiz; Lambais, Marcio Rodrigues

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.

  11. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    PubMed Central

    de Azevedo, Lucas Carvalho Basilio; Stürmer, Sidney Luiz; Lambais, Marcio Rodrigues

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development. PMID:25477936

  12. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens

    PubMed Central

    Cruz, Andre Freire; Ishii, Takaaki

    2012-01-01

    Summary The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria ‘probable endobacteria’ (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200 μm). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores. PMID:23213368

  13. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis.

    PubMed

    Selvakumar, Gopal; Shagol, Charlotte C; Kim, Kiyoon; Han, Seunggab; Sa, Tongmin

    2018-06-05

    The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB) were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate the response of maize plants to co-inoculation of AMF and SAB under salinity stress. The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline in shoots and Na + in roots. Co-inoculated maize plants also exhibited high K + /Na + ratios in roots at 25 mM NaCl concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and ZmSKOR genes, to maintain K + and Na + ion homeostasis. Confocal laser scanning microscope (CLSM) view showed that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely associated with the spore outer hyaline layer. These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental effects of salinity through regulation of SOS pathway gene expression and K + /Na + homeostasis to improve maize plant growth.

  14. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi

    PubMed Central

    Beaudet, Denis; Chen, Eric C H; Mathieu, Stephanie; Yildirir, Gokalp; Ndikumana, Steve; Dalpé, Yolande; Séguin, Sylvie; Farinelli, Laurent; Stajich, Jason E; Corradi, Nicolas

    2018-01-01

    Abstract Arbuscular mycorrhizal fungi (AMF) are a group of soil microorganisms that establish symbioses with the vast majority of land plants. To date, generation of AMF coding information has been limited to model genera that grow well axenically; Rhizoglomus and Gigaspora. Meanwhile, data on the functional gene repertoire of most AMF families is non-existent. Here, we provide primary large-scale transcriptome data from eight poorly studied AMF species (Acaulospora morrowiae, Diversispora versiforme, Scutellospora calospora, Racocetra castanea, Paraglomus brasilianum, Ambispora leptoticha, Claroideoglomus claroideum and Funneliformis mosseae) using ultra-low input ribonucleic acid (RNA)-seq approaches. Our analyses reveals that quiescent spores of many AMF species harbour a diverse functional diversity and solidify known evolutionary relationships within the group. Our findings demonstrate that RNA-seq data obtained from low-input RNA are reliable in comparison to conventional RNA-seq experiments. Thus, our methodology can potentially be used to deepen our understanding of fungal microbial function and phylogeny using minute amounts of RNA material. PMID:29211832

  15. [DNA marker-assisted selection of medicinal plants (Ⅰ) .Breeding research of disease-resistant cultivars of Panax notoginseng].

    PubMed

    Liu, Min; Huang, Wen-Li; Wang, Xiao; Wan, Rui-Han; Wang, Hai; Yan, Zhu-Yun

    2017-01-01

    The study is aimed to estimate the diversity of arbuscular mycorrhizal fungi (AMF) in the main producing areas of Salvia miltiorrhiza.Diversity of AMF was surveyed directly on spores isolated from the field soil, collected from 20 sites of 8 provinces. Identification of the AMF was made by observation of spore morphology. At least 27 recognized AMF species were identified in samples from field soil, belonging to seven genera of AMF-Acaulospora, Glomus, Funneliformis, Ambispora, Rhizophagus, Pacispora, and Claroideoglomus. Acaulospora and Glomus were the dominant genera, respectively including nine and eight species. A. laevis (90%), R.manihotis (80%), A. brieticulata (75%), A. tuberculata (70%) were the dominant species.Colonization rate was determined,colonization was easily found, but the colonization intensities were low, the colonization rate remained at 10.92%-25.93%. The similarity between provinces is generally low, and the similarity coefficients were from 0.20 to 0.57. Copyright© by the Chinese Pharmaceutical Association.

  16. Promiscuous arbuscular mycorrhizal symbiosis of yam (Dioscorea spp.), a key staple crop in West Africa.

    PubMed

    Tchabi, Atti; Burger, Stefanie; Coyne, Danny; Hountondji, Fabien; Lawouin, Louis; Wiemken, Andres; Oehl, Fritz

    2009-08-01

    Yam (Dioscorea spp.) is a tuberous staple food crop of major importance in the sub-Saharan savannas of West Africa. Optimal yields commonly are obtained only in the first year following slash-and-burn in the shifting cultivation systems. It appears that the yield decline in subsequent years is not merely caused by soil nutrient depletion but might be due to a loss of the beneficial soil microflora, including arbuscular mycorrhizal fungi (AMF), associated with tropical "tree-aspect" savannas and dry forests that are the natural habitats of the wild relatives of yam. Our objective was to study the AMF communities of natural savannas and adjacent yam fields in the Southern Guinea savanna of Benin. AMF were identified by morphotyping spores in the soil from the field sites and in AMF trap cultures with Sorghum bicolor and yam (Dioscorea rotundata and Dioscorea cayenensis) as bait plants. AMF species richness was higher in the savanna than in the yam-field soils (18-25 vs. 11-16 spp.), but similar for both ecosystems (29-36 spp.) according to the observations in trap cultures. Inoculation of trap cultures with soil sampled during the dry season led to high AMF root colonization, spore production, and species richness (overall 45 spp.) whereas inoculation with wet-season soil was inefficient (two spp. only). The use of D. cayenensis and D. rotundata as baits yielded 28 and 29 AMF species, respectively, and S. bicolor 37 species. AMF root colonization, however, was higher in yam than in sorghum (70-95 vs. 11-20%). After 8 months of trap culturing, the mycorrhizal yam had a higher tuber biomass than the nonmycorrhizal controls. The AMF actually colonizing D. rotundata roots in the field were also studied using a novel field sampling procedure for molecular analyses. Multiple phylotaxa were detected that corresponded with the spore morphotypes observed. It is, therefore, likely that the legacy of indigenous AMF from the natural savanna plays a crucial role for yam productivity, particularly in the low-input traditional farming systems prevailing in West Africa.

  17. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription.

    PubMed

    Angelard, Caroline; Colard, Alexandre; Niculita-Hirzel, Hélène; Croll, Daniel; Sanders, Ian R

    2010-07-13

    Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome.

    PubMed

    Badri, Amine; Stefani, Franck O P; Lachance, Geneviève; Roy-Arcand, Line; Beaudet, Denis; Vialle, Agathe; Hijri, Mohamed

    2016-10-01

    Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers. From the sequencing of 14 complete AMF mitochondrial (mt) genomes, a qPCR assay using a hydrolysis probe designed in the single copy cox3-rnl intergenic region was tested and validated to specifically and accurately quantify the spores of R. irregularis isolate DAOM-197198. Specificity tests were performed using standard PCR and qPCR, and results clearly showed that the primers specifically amplified the isolate DAOM-197198, yielding a PCR product of 106 bp. According to the qPCR analyses on spores produced in vitro, the average copy number of mt genomes per spore was 3172 ± 304 SE (n = 6). Quantification assays were successfully undertaken on known and unknown samples in liquid suspensions and commercial dry formulations to show the accuracy, precision, robustness, and reproducibility of the qPCR assay. This study provides a powerful molecular toolkit specifically designed to quantify spores of the model AMF isolate DAOM-197198. The approach of molecular toolkit used in our study could be applied to other AMF taxa and will be useful to research institutions and governmental and industrial laboratories running routine quality control of AMF-based products.

  19. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi.

    PubMed

    Beaudet, Denis; Chen, Eric C H; Mathieu, Stephanie; Yildirir, Gokalp; Ndikumana, Steve; Dalpé, Yolande; Séguin, Sylvie; Farinelli, Laurent; Stajich, Jason E; Corradi, Nicolas

    2017-12-02

    Arbuscular mycorrhizal fungi (AMF) are a group of soil microorganisms that establish symbioses with the vast majority of land plants. To date, generation of AMF coding information has been limited to model genera that grow well axenically; Rhizoglomus and Gigaspora. Meanwhile, data on the functional gene repertoire of most AMF families is non-existent. Here, we provide primary large-scale transcriptome data from eight poorly studied AMF species (Acaulospora morrowiae, Diversispora versiforme, Scutellospora calospora, Racocetra castanea, Paraglomus brasilianum, Ambispora leptoticha, Claroideoglomus claroideum and Funneliformis mosseae) using ultra-low input ribonucleic acid (RNA)-seq approaches. Our analyses reveals that quiescent spores of many AMF species harbour a diverse functional diversity and solidify known evolutionary relationships within the group. Our findings demonstrate that RNA-seq data obtained from low-input RNA are reliable in comparison to conventional RNA-seq experiments. Thus, our methodology can potentially be used to deepen our understanding of fungal microbial function and phylogeny using minute amounts of RNA material. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Sporulation and diversity of arbuscular mycorrhizal fungi in Brazil Pine in the field and in the greenhouse.

    PubMed

    Moreira, Milene; Nogueira, Marco A; Tsai, Siu M; Gomes-da-Costa, Sandra M; Cardoso, Elke J B N

    2007-09-01

    The aim of this work was to assess the sporulation and diversity of arbuscular mycorrhizal fungi (AMF) at different forest sites with Araucaria angustifolia (Bert.) O. Ktze. (Brazil Pine). In addition, a greenhouse experiment was carried out to test the use of traditional trap plants (maize + peanut) or A. angustifolia to estimate the diversity of AMF at each site. Soil samples were taken in two State Parks at southwestern Brazil: Campos do Jordão (Parque Estadual de Campos do Jordão [PECJ]) and Apiaí (Parque Estadual Turístico do Alto Ribeira [PETAR]), São Paulo State, in sites of either native or replanted forest. In PECJ, an extra site of replanted forest that was impacted by accidental fire and is now in a state of recuperation was also sampled. The spore densities and their morphological identification were compiled at each site. In the greenhouse, soil samples from each site were used as inoculum to promote spore multiplication on maize + peanut or A. angustifolia grown on a sandy, low-fertility substrate. Plants were harvested, respectively, after 4 months or 1 year of growth and assessed for mycorrhizal root colonization. Spore counts and identification were also performed in the substrate, after the harvest of plants. Twenty-five taxa were identified considering all sites. Species richness and diversity were greater in native forest areas, being Acaulospora, the genus with the most species. Differences in number of spores, diversity, and richness were found at the different sites of each State Park. Differences were also found when maize + peanut or A. angustifolia were used as trap plants. The traditional methodology using trap plants seems to underestimate the diversity of the AMF. The use of A. angustifolia as trap plant showed similar species richness to the field in PECJ, but the identified species were not necessarily the same. Nevertheless, for PETAR, both A. angustifolia and maize + peanut underestimated the species richness. Because the AMF sporulation can be affected by many conditions, it is impossible to draw detailed conclusions from this kind of survey. More precise experiments have to be set up to isolate the different factors that modulate the ecophysiological interactions between host plant and endophyte.

  1. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  2. [Mycotrophic capacity and efficiency of microbial consortia of arbuscular mycorrhizal fungi native of soils from Buenos Aires province under contrasting management].

    PubMed

    Thougnon Islas, Andrea J; Eyherabide, Mercedes; Echeverría, Hernán E; Sainz Rozas, Hernán R; Covacevich, Fernanda

    2014-01-01

    We characterized the infective and sporulation capacities of microbial consortia of arbuscular mycorrhizal fungi (AMF) native of Buenos Aires province (Argentina) and determined if some soil characteristics and mycorrhizal parameters could allow to select potentially beneficial inocula. Soil samples were selected from seven locations in Buenos Aires province all under agricultural (A) and pristine (P) conditions. The AMF were multiplied and mycorrhizal root colonization of trap plants was observed at 10 weeks of growth. Spore number in field was low; however, after multiplication spore density accounted for 80-1175 spores per 100g of soil. The principal component analysis showed that the P and Fe soil contents are the main modulators of infectivity and sporulation capacity. The mycorrhizal potential was determined in three locations, being high in Pristine Lobería and Agricultural Trenque Lauquen and low in Junín. Agricultural Lobería (AL) and Pristine Lobería (PL) inocula were selected and their efficiency was evaluated under controlled conditions. Even though shoot dry matter increases after inoculation was not significant (p>0.05) mycorrhizal response was greater than 40% for tomato and 25% for corn, particularly after inoculation with inocula from the agricultural management. These results could be associated to the incipient development of mycorrhizae in both species. Additional research should be conducted to further develop our findings in order to determine the factors involved in the selection of efficient inocula. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment.

    PubMed

    Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin

    2011-05-01

    The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.

  4. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    PubMed Central

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil. PMID:28848583

  5. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil.

  6. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions.

    PubMed

    Torres-Arias, Yamir; Fors, Rosalba Ortega; Nobre, Camila; Gómez, Eduardo Furrazola; Berbara, Ricardo Luis Louro

    In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Application of Arbuscular Mycorrhizal Fungi during the Acclimatization of Alpinia purpurata to Induce Tolerance to Meloidogyne arenaria

    PubMed Central

    da Silva Campos, Maryluce Albuquerque; da Silva, Fábio Sérgio Barbosa; Yano-Melo, Adriana Mayumi; de Melo, Natoniel Franklin; Maia, Leonor Costa

    2017-01-01

    An experiment was conducted to evaluate the tolerance of micropropagated and mycorrhized alpinia plants to the parasite Meloidogyne arenaria. The experimental design was completely randomized with a factorial arrangement of four inoculation treatments with arbuscular mycorrhizal fungi (AMF) (Gigaspora albida, Claroideoglomus etunicatum, Acaulospora longula, and a non-inoculated control) in the presence or absence of M. arenaria with five replicates. The following characteristics were evaluated after 270 days of mycorrhization and 170 days of M. arenaria inoculation: height, number of leaves and tillers, fresh mass of aerial and subterranean parts, dry mass of aerial parts, foliar area, nutritional content, mycorrhizal colonization, AMF sporulation, and the number of galls, egg masses, and eggs. The results indicated a significant interaction between the treatments for AMF spore density, total mycorrhizal colonization, and nutrient content (Zn, Na, and N), while the remaining parameters were influenced by either AMF or nematodes. Plants inoculated with A. longula or C. etunicatum exhibited greater growth than the control. Lower N content was observed in plants inoculated with AMF, while Zn and Na were found in larger quantities in plants inoculated with C. etunicatum. Fewer galls were observed on mycorrhized plants, and egg mass production and the number of eggs were lower in plants inoculated with G. albida. Plants inoculated with A. longula showed a higher percentage of total mycorrhizal colonization in the presence of the nematode. Therefore, the association of micropropagated alpinia plants and A. longula enhanced tolerance to parasitism by M. arenaria. PMID:28592951

  8. The Diversity of Arbuscular Mycorrhizal Fungi Amplified from Grapevine Roots (Vitis vinifera L.) in Oregon Vineyards is Seasonally Stable and Influenced by Soil and Vine Age

    USDA-ARS?s Scientific Manuscript database

    The diversity of arbuscular mycorrhizal fungi (AMF) associated with the roots of grapevines in 10 commercial Oregon vineyards was assessed by examining spores in soil and by amplifying mycorrhizal DNA from ‘Pinot noir’ root extracts. Seventeen spore morphotypes were found in the soil beneath the vin...

  9. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem.

    PubMed

    Bai, Gegenbaoleer; Bao, Yuying; Du, Guoxin; Qi, Yunlong

    2013-05-01

    The impact of rest grazing on arbuscular mycorrhizal fungi (AMF) and the interactions of AMF with vegetation and soil parameters under rest grazing condition were investigated between spring and late summer in a desert steppe ecosystem with different grazing managements (rest grazing with different lengths of resting period, banned or continuous grazing) in Inner Mongolia, China. AMF diversity and colonization, vegetation biomass, soil properties and soil phosphatase activity were examined. In rest grazing areas of 60 days, AMF spore number and diversity index at a 0-10 cm soil depth as well as vesicular and hyphal colonization rates were higher compared with other grazing treatments. In addition, soil organic matter and total N contents were highest and soil alkaline phosphatase was most active under 60-day rest grazing. In August and September, these areas also had the highest amount of aboveground vegetation. The results indicated that resting grazing for an appropriate period of time in spring has a positive effect on AMF sporulation, colonization and diversity, and that under rest grazing conditions, AMF parameters are positively correlated with some soil characteristics.

  10. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi.

    PubMed

    Lee, Jaikoo; Lee, Sangsun; Young, J Peter W

    2008-08-01

    A set of PCR primers that should amplify all subgroups of arbuscular mycorrhizal fungi (AMF, Glomeromycota), but exclude sequences from other organisms, was designed to facilitate rapid detection and identification directly from field-grown plant roots. The small subunit rRNA gene was targeted for the new primers (AML1 and AML2) because phylogenetic relationships among the Glomeromycota are well understood for this gene. Sequence comparisons indicate that the new primers should amplify all published AMF sequences except those from Archaeospora trappei. The specificity of the new primers was tested using 23 different AMF spore morphotypes from trap cultures and Miscanthus sinensis, Glycine max and Panax ginseng roots sampled from the field. Non-AMF DNA of 14 plants, 14 Basidiomycota and 18 Ascomycota was also tested as negative controls. Sequences amplified from roots using the new primers were compared with those obtained using the established NS31 and AM1 primer combination. The new primers have much better specificity and coverage of all known AMF groups.

  11. Diversity of Arbuscular Mycorrhizal Fungi in a Brazilian Atlantic Forest Toposequence.

    PubMed

    Bonfim, Joice Andrade; Vasconcellos, Rafael Leandro Figueiredo; Gumiere, Thiago; de Lourdes Colombo Mescolotti, Denise; Oehl, Fritz; Nogueira Cardoso, Elke Jurandy Bran

    2016-01-01

    The diversity of arbuscular mycorrhizal fungi (AMF) was studied in the Atlantic Forest in Serra do Mar Park (SE Brazil), based on seven host plants in relationship to their soil environment, altitude and seasonality. The studied plots along an elevation gradient are located at 80, 600, and 1,000 m. Soil samples (0-20 cm) were collected in four seasons from SE Brazilian winter 2012 to autumn 2013. AMF spores in rhizosperic soils were morphologically classified and chemical, physical and microbiological soil caracteristics were determined. AMF diversity in roots was evaluated using the NS31/AM1 primer pair, with subsequent cloning and sequencing. In the rhizosphere, 58 AMF species were identified. The genera Acaulospora and Glomus were predominant. However, in the roots, only 14 AMF sequencing groups were found and all had high similarity to Glomeraceae. AMF species identities varied between altitudes and seasons. There were species that contributed the most to this variation. Some soil characteristics (pH, organic matter, microbial activity and microbial biomass carbon) showed a strong relationship with the occurrence of certain species. The highest AMF species diversity, based on Shannon's diversity index, was found for the highest altitude. Seasonality did not affect the diversity. Our results show a high AMF diversity, higher than commonly found in the Atlantic Forest. The AMF detected in roots were not identical to those detected in rhizosperic soil and differences in AMF communities were found in different altitudes even in geographically close-lying sites.

  12. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.

    PubMed

    Zhang, Qian; Yang, Ruyi; Tang, Jianjun; Yang, Haishui; Hu, Shuijin; Chen, Xin

    2010-08-24

    Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.

  13. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant.

    PubMed

    Renker, C; Blanke, V; Buscot, F

    2005-05-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region.

  14. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  15. Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil.

    PubMed

    Coutinho, Etiene Silva; Fernandes, G Wilson; Berbara, Ricardo Luís Louro; Valério, Henrique Maia; Goto, Bruno Tomio

    2015-11-01

    Variation in arbuscular mycorrhizal fungi (AMF) communities is described for the first time in rupestrian grasslands in Brazil along an altitudinal gradient of 700 m (800 to 1400 m a.s.l.). Hypotheses tested were that soil properties influence the variation in AMF communities and that the frequency of the most common species of AMF is inversely influenced by the richness of other AMF. Field and laboratory data were collected on AMF community composition, richness, density, and frequency in the altitudinal gradient, and the relationships with several physical-chemical soil properties and altitude were evaluated. Fifty-one species of AMF were recorded, with 14 species being reported as possibly new to science and nine species representing new records for Brazil. This single elevation gradient alone contains 22% of the known world diversity of AMF. Soil properties and AMF community density and richness varied significantly along the elevation (p < 0.05). AMF density and richness were higher at the intermediate altitude, while AMF species composition differed statistically among the altitudes.

  16. Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer

    PubMed Central

    Coelho, Ieda R; Pedone-Bonfim, Maria VL; Silva, Fábio SB; Maia, Leonor C

    2014-01-01

    The system for production of inoculum of arbuscular mycorrhizal fungi (AMF) using sand and vermiculite irrigated with nutrient solution is promising. However, organic amendments added to the substrate can stimulate sporulation of AMF and replace the nutrient solution. The aim of this study was to maximize the production of AMF (Acaulospora longula, Claroideoglomus etunicatum, Dentiscutata heterogama and Gigaspora albida) using selected organic substrates (vermicompost, coir dust and Tropstrato) together with sand and vermiculite. The production of spores varied among the tested AMF and according to the organic source added to the substrate. The vermicompost promoted higher sporulation of A. longula in relation to the other AMF and substrates. The Tropstrato® inhibited the sporulation of D. heterogama while the reproduction of C. etunicatum was not affected by the organic compounds. The inoculum of A. longula also showed a high number of infective propagules and promoted biomass accumulation in maize plants. The system of inoculum production using sand and vermiculite + 10% vermicompost favors the production of infective inoculum of A. longula with the fungus benefiting growth of corn plants. PMID:25763020

  17. Responses of Guava Plants to Inoculation with Arbuscular Mycorrhizal Fungi in Soil Infested with Meloidogyne enterolobii.

    PubMed

    Campos, Maryluce Albuquerque da Silva; da Silva, Fábio Sérgio Barbosa; Yano-Melo, Adriana Mayumi; de Melo, Natoniel Franklin; Pedrosa, Elvira Maria Régis; Maia, Leonor Costa

    2013-09-01

    In the Northeast of Brazil, expansion of guava crops has been impaired by Meloidogyne enterolobii that causes root galls, leaf fall and plant death. Considering the fact that arbuscular mycorrhizal Fungi (AMF) improve plant growth giving protection against damages by plant pathogens, this work was carried out to select AMF efficient to increase production of guava seedlings and their tolerance to M. enterolobii. Seedlings of guava were inoculated with 200 spores of Gigaspora albida, Glomus etunicatum or Acaulospora longula and 55 days later with 4,000 eggs of M. enterolobii. The interactions between the AMF and M. enterolobii were assessed by measuring leaf number, aerial dry biomass, CO2 evolution and arbuscular and total mycorrhizal colonization. In general, plant growth was improved by the treatments with A. longula or with G. albida. The presence of the nematode decreased arbuscular colonization and increased general enzymatic activity. Higher dehydrogenase activity occurred with the A. longula treatment and CO2 evolution was higher in the control with the nematode. More spores and higher production of glomalin-related soil proteins were observed in the treatment with G. albida. The numbers of galls, egg masses and eggs were reduced in the presence of A. longula. Inoculation with this fungus benefitted plant growth and decreased nematode reproduction.

  18. Responses of Guava Plants to Inoculation with Arbuscular Mycorrhizal Fungi in Soil Infested with Meloidogyne enterolobii

    PubMed Central

    Campos, Maryluce Albuquerque da Silva; da Silva, Fábio Sérgio Barbosa; Yano-Melo, Adriana Mayumi; de Melo, Natoniel Franklin; Pedrosa, Elvira Maria Régis; Maia, Leonor Costa

    2013-01-01

    In the Northeast of Brazil, expansion of guava crops has been impaired by Meloidogyne enterolobii that causes root galls, leaf fall and plant death. Considering the fact that arbuscular mycorrhizal Fungi (AMF) improve plant growth giving protection against damages by plant pathogens, this work was carried out to select AMF efficient to increase production of guava seedlings and their tolerance to M. enterolobii. Seedlings of guava were inoculated with 200 spores of Gigaspora albida, Glomus etunicatum or Acaulospora longula and 55 days later with 4,000 eggs of M. enterolobii. The interactions between the AMF and M. enterolobii were assessed by measuring leaf number, aerial dry biomass, CO2 evolution and arbuscular and total mycorrhizal colonization. In general, plant growth was improved by the treatments with A. longula or with G. albida. The presence of the nematode decreased arbuscular colonization and increased general enzymatic activity. Higher dehydrogenase activity occurred with the A. longula treatment and CO2 evolution was higher in the control with the nematode. More spores and higher production of glomalin-related soil proteins were observed in the treatment with G. albida. The numbers of galls, egg masses and eggs were reduced in the presence of A. longula. Inoculation with this fungus benefitted plant growth and decreased nematode reproduction. PMID:25288951

  19. Influence of arbuscular mycorrhizal fungi on antimony phyto-uptake and compartmentation in vegetables cultivated in urban gardens.

    PubMed

    Pierart, Antoine; Dumat, Camille; Maes, Arthur QuyManh; Sejalon-Delmas, Nathalie

    2018-01-01

    1. Urban areas are often contaminated with various forms of persistent metal (loid) and emerging contaminants such as antimony (Sb). Thus, in the context of urban agriculture where sustainable practices such as biofertilizers application (arbuscular mycorrhizal fungi, AMF) could improve nutrient transfer from the soil to the vegetables, the effect of AMF on metal (loid) mobility and human bioaccessibility is still poorly known. 2. The role of AMF in Sb uptake by lettuce and carrot grown in artificial substrate spiked with different Sb chemical species was investigated. Plants were grown under hydroponic conditions and half of the treatments received a concentrated spore solution to obtain mycorrhized and non-mycorrhized plants. Three weeks before harvest, plants were exposed to 10 mg.L -1 of either Sb 2 O 3 or KSbO-tartrate (KSb). 3. The presence of AMF significantly increased its accumulation in carrots (all organs) with higher accumulation in roots. In lettuce, accumulation appeared to be dependent on the Sb chemical species. Moreover, it was observed for the first time that AMF changed the human bioaccessible fraction of Sb in edible organs. 4. The present results highlight a possible risk of Sb transfer from soil to edible plants cultivated in soil naturally containing AMF propagules, or when AMF are added as biofertilizers. After validating the influence of soil environment and AMF on Sb behavior in the field, these results should be considered in health risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)].

    PubMed

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    PubMed

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  2. Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome.

    PubMed

    Boon, E; Zimmerman, E; Lang, B F; Hijri, M

    2010-07-01

    Arbuscular mycorrhizal fungi (AMF) are heterokaryotes with an unusual genetic makeup. Substantial genetic variation occurs among nuclei within a single mycelium or isolate. AMF reproduce through spores that contain varying fractions of this heterogeneous population of nuclei. It is not clear whether this genetic variation on the genome level actually contributes to the AMF phenotype. To investigate the extent to which polymorphisms in nuclear genes are transcribed, we analysed the intra-isolate genomic and cDNA sequence variation of two genes, the large subunit ribosomal RNA (LSU rDNA) of Glomus sp. DAOM-197198 (previously known as G. intraradices) and the POL1-like sequence (PLS) of Glomus etunicatum. For both genes, we find high sequence variation at the genome and transcriptome level. Reconstruction of LSU rDNA secondary structure shows that all variants are functional. Patterns of PLS sequence polymorphism indicate that there is one functional gene copy, PLS2, which is preferentially transcribed, and one gene copy, PLS1, which is a pseudogene. This is the first study that investigates AMF intra-isolate variation at the transcriptome level. In conclusion, it is possible that, in AMF, multiple nuclear genomes contribute to a single phenotype.

  3. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest.

    PubMed

    Aguilar-Fernández, Mónica; Jaramillo, Víctor J; Varela-Fregoso, Lucía; Gavito, Mayra E

    2009-03-01

    Rates of land conversion from forest to cultivated land by slash-and-burn practices are higher in tropical dry forest (TDF) than any other Neotropical forest type. This study examined the short-term consequences of the slash-and-burn process on arbuscular mycorrhizal fungi (AMF). We expected that slash-and-burn would reduce mycorrhizal colonization and propagules and change species richness and composition. Soil and root samples were taken from TDF control and pasture plots originated after slash-and-burn at four dates during the year of conversion to examine species composition, spore abundance, and infective propagules. Additionally, spore abundance and viability and viable intraradical colonization were measured twice during the second year after conversion. Forest and pasture plots maintained similar species richness and an overall 84% similarity during the first year after conversion. Infective propagules were reduced in pasture plots during the first year after slash-and-burn, whereas spore abundance and intraradical colonization remained similar in TDF and pasture plots both years of the study. Our results suggest, contrary to the expected, that forest conversion by means of slash-and-burn followed by cultivation resulted in few immediate changes in the AMF communities, likely because of the low heat conductivity of the soil and rapid combustion of plant residues.

  4. Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus.

    PubMed

    Purin, Sonia; Morton, Joseph B

    2013-01-01

    The life history of arbuscular mycorrhizal fungi (AMF, Glomeromycota) consists of a short asymbiotic phase when spores germinate and a longer symbiotic phase where hyphae form a network within roots and subsequently in the rhizosphere. Hyphal anastomosis contributes to colony formation, yet this process has been studied mostly in the asymbiotic phase rather than in mycorrhizal plants because of methodological limitations. We sought to compare patterns of anastomosis during each phase of fungal growth by measuring hyphal fusions in genetically identical and different single spore isolates of Rhizophagus clarus from different environments and geographic locations. These isolates were genotyped with two anonymous markers of microsatellite-flanking regions. Anastomosis of hyphae from germinating spores was examined in axenic Petri dishes. A rhizohyphatron consisting of agar-coated glass slides bridging single or paired mycorrhizal sorghum plants allowed evaluation of anastomosis of symbiotic hyphae. Anastomosis of hyphae within a colony, defined here as a mycelium from an individual germinating spore or from mycorrhizal roots of one plant, occurred with similar frequencies (8-38%). However, anastomosis between paired colonies was observed in germinating spores from either genetically identical or different isolates, but it was never detected in symbiotic hyphae. The frequency of anastomosis in asymbiotic hyphae from paired interactions was low, occurring in fewer than 6% of hyphal contacts. These data suggest that anastomosis is relatively unconstrained when interactions occur within a colony but is confined to asymbiotic hyphae when interactions occur between paired colonies. This pattern of behavior suggests that asymbiotic and symbiotic phases of mycelium development by R. clarus may differ in function. Anastomosis in the asymbiotic phase may provide brief opportunities for gene flow between populations of this and possibly other AMF species.

  5. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  6. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2014-09-01

    Arbuscular mycorrhizal fungi (AMF) belong to phylum Glomeromycota, an early divergent fungal lineage forming symbiosis with plant roots. Many reports have documented that bacteria are intimately associated with AMF mycelia in the soil. However, the role of these bacteria remains unclear and their diversity within intraradical AMF structures has yet to be explored. We aim to assess the bacterial communities associated within intraradical propagules (vesicles and intraradical spores) harvested from roots of plant growing in the sediments of an extremely petroleum hydrocarbon-polluted basin. Solidago rugosa roots were sampled, surface-sterilized, and microdissected. Eleven propagules were randomly collected and individually subjected to whole-genome amplification, followed by PCRs, cloning, and sequencing targeting fungal and bacterial rDNA. Ribotyping of the 11 propagules showed that at least five different AMF OTUs could be present in S. rugosa roots, while 16S rRNA ribotyping of six of the 11 different propagules showed a surprisingly high bacterial richness associated with the AMF within plant roots. Most dominant bacterial OTUs belonged to Sphingomonas sp., Pseudomonas sp., Massilia sp., and Methylobacterium sp. This study provides the first evidence of the bacterial diversity associated with AMF propagules within the roots of plants growing in extremely petroleum hydrocarbon-polluted conditions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis1[W

    PubMed Central

    Courty, Pierre-Emmanuel; Walder, Florian; Boller, Thomas; Ineichen, Kurt; Wiemken, Andres; Rousteau, Alain; Selosse, Marc-André

    2011-01-01

    Most achlorophyllous mycoheterotrophic (MH) plants obtain carbon (C) from mycorrhizal networks and indirectly exploit nearby autotrophic plants. We compared overlooked tropical rainforest MH plants associating with arbuscular mycorrhizal fungi (AMF) to well-reported temperate MH plants associating with ectomycorrhizal basidiomycetes. We investigated 13C and 15N abundances of MH plants, green plants, and AMF spores in Caribbean rainforests. Whereas temperate MH plants and fungi have higher δ13C than canopy trees, these organisms displayed similar δ13C values in rainforests, suggesting differences in C exchanges. Although temperate green and MH plants differ in δ15N, they display similar 15N abundances, and likely nitrogen (N) sources, in rainforests. Contrasting with the high N concentrations shared by temperate MH plants and their fungi, rainforest MH plants had lower N concentrations than AMF, suggesting differences in C/N of exchanged nutrients. We provide a framework for isotopic studies on AMF networks and suggest that MH plants in tropical and temperate regions evolved different physiologies to adapt in diverging environments. PMID:21527422

  8. Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining.

    PubMed

    Wei, Yuan; Chen, ZhiPeng; Wu, FengChang; Li, JiNing; ShangGuan, YuXian; Li, FaSheng; Zeng, Qing Ru; Hou, Hong

    2015-08-01

    Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the symbiosis of AMF associated with an antimony (Sb) accumulator plant under natural conditions. Therefore, the objective of this study was to investigate the colonization and molecular diversity of AMF associated with the Sb accumulator ramie (Boehmeria nivea) growing in Sb-contaminated soils. Four Sb mine spoils and one adjacent reference area were selected from Xikuangshan in southern China. PCR-DGGE was used to analyze the AMF community composition in ramie roots. Morphological identification was also used to analyze the species in the rhizosphere soil of ramie. Results obtained showed that mycorrhizal symbiosis was established successfully even in the most heavily polluted sites. From the unpolluted site Ref to the highest polluted site T4, the spore numbers and AMF diversity increased at first and then decreased. Colonization increased consistently with the increasing Sb concentrations in the soil. A total of 14 species were identified by morphological analysis. From the total number of species, 4 (29%) belonged to Glomus, 2 (14%) belonged to Acaulospora, 2 (14%) belonged to Funneliformis, 1 (7%) belonged to Claroideoglomus, 1 (7%) belonged to Gigaspora, 1 (7%) belonged to Paraglomus, 1 (7%) belonging to Rhizophagus, 1 (7%) belonging to Sclervocystis, and 1 (7%) belonged to Scutellospora. Some AMF sequences were present even in the most polluted site. Morphological identification and phylogenetic analysis both revealed that most species were affiliated withGlomus, suggesting that Glomus was the dominant genus in this AMF community. This study demonstrated that ramie associated with AMF may have great potential for remediation of Sb-contaminated soils.

  9. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China.

    PubMed

    Xiang, Dan; Verbruggen, Erik; Hu, Yajun; Veresoglou, Stavros D; Rillig, Matthias C; Zhou, Wenping; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Yongliang; Chen, Baodong

    2014-12-01

    We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.

  10. Grassland invaders and their mycorrhizal symbionts: a study across climate and invasion gradients

    PubMed Central

    Bunn, Rebecca A; Lekberg, Ylva; Gallagher, Christopher; Rosendahl, Søren; Ramsey, Philip W

    2014-01-01

    Controlled experiments show that arbuscular mycorrhizal fungi (AMF) can increase competitiveness of exotic plants, potentially increasing invasion success. We surveyed AMF abundance and community composition in Centaurea stoebe and Potentilla recta invasions in the western USA to assess whether patterns were consistent with mycorrhizal-mediated invasions. We asked whether (1) AMF abundance and community composition differ between native and exotic forbs, (2) associations between native plants and AMF shift with invading exotic plants, and (3) AMF abundance and/or community composition differ in areas where exotic plants are highly invasive and in areas where they are not. We collected soil and roots from invaded and native forb communities along invasion gradients and in regions with different invasion densities. We used AMF root colonization as a measure of AMF abundance and characterized AMF communities in roots using 454-sequencing of the LSU-rDNA region. All plants were highly colonized (>60%), but exotic forbs tended to be more colonized than natives (P < 0.001). We identified 30 AMF operational taxonomic units (OTUs) across sites, and community composition was best predicted by abiotic factors (soil texture, pH). Two OTUs in the genera Glomus and Rhizophagus dominated in most communities, and their dominance increased with invasion density (r = 0.57, P = 0.010), while overall OTU richness decreased with invasion density (r = −0.61, P = 0.006). Samples along P. recta invasion gradients revealed small and reciprocal shifts in AMF communities with >45% fungal OTUs shared between neighboring native and P. recta plants. Overall, we observed significant, but modest, differences in AMF colonization and communities between co-occurring exotic and native forbs and among exotic forbs across regions that differ in invasion pressure. While experimental manipulations are required to assess functional consequences, the observed patterns are not consistent with those expected from strong mycorrhizal-mediated invasions. PMID:24683461

  11. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes.

    PubMed

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.

  12. Mitochondrial Genome Rearrangements in Glomus Species Triggered by Homologous Recombination between Distinct mtDNA Haplotypes

    PubMed Central

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms. AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence, were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigate dpo diversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity. We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants. PMID:23925788

  13. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza.

    PubMed

    Rivera-Becerril, Facundo; Juárez-Vázquez, Lucía V; Hernández-Cervantes, Saúl C; Acevedo-Sandoval, Otilio A; Vela-Correa, Gilberto; Cruz-Chávez, Enrique; Moreno-Espíndola, Iván P; Esquivel-Herrera, Alfonso; de León-González, Fernando

    2013-02-01

    The mining district of Molango in the Hidalgo State, Mexico, possesses one of the largest deposits of manganese (Mn) ore in the world. This research assessed the impacts of Mn mining activity on the environment, particularly the interactions among soil, plants, and arbuscular mycorrhiza (AM) at a location under the influence of an open Mn mine. Soils and plants from three sites (soil under maize, soil under native vegetation, and mine wastes with some vegetation) were analyzed. Available Mn in both soil types and mine wastes did not reach toxic levels. Samples of the two soil types were similar regarding physical, chemical, and biological properties; mine wastes were characterized by poor physical structure, nutrient deficiencies, and a decreased number of arbuscular mycorrhizal fungi (AMF) spores. Tissues of six plant species accumulated Mn at normal levels. AM was absent in the five plant species (Ambrosia psilostachya, Chenopodium ambrosoides, Cynodon dactylon, Polygonum hydropiperoides, and Wigandia urens) established in mine wastes, which was consistent with the significantly lower number of AMF spores compared with both soil types. A. psilostachya (native vegetation) and Zea mays showed mycorrhizal colonization in their root systems; in the former, AM significantly decreased Mn uptake. The following was concluded: (1) soils, mine wastes, and plant tissues did not accumulate Mn at toxic levels; (2) despite its poor physical structure and nutrient deficiencies, the mine waste site was colonized by at least five plant species; (3) plants growing in both soil types interacted with AMF; and (4) mycorrhizal colonization of A. psilostachya influenced low uptake of Mn by plant tissues.

  14. High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem.

    PubMed

    Gavito, Mayra E; Pérez-Castillo, Daniel; González-Monterrubio, César F; Vieyra-Hernández, Teresa; Martínez-Trujillo, Miguel

    2008-12-01

    We conducted this study to explore limitations for the establishment of mycorrhizal associations in disturbed areas of the tropical dry ecosystem in the Chamela region of Jalisco, Mexico. Specifically, we: (1) assessed the diversity and composition of arbuscular mycorrhizal fungal (AMF) communities through spore morphospecies identification in three common land uses (primary forest, secondary forest, and pasture), (2) tested the inoculum potential of the AMF communities and the effect of water stress on the establishment of mycorrhizal associations in seedlings of various plant species, and (3) explored the importance of AMF community composition on early seedling development. Soil and root samples were taken from 15 random points in each of three plots established in two primary forests, two 26-year-old secondary forests, and two 26-year-old pastures. We expected that because of soil degradation and management, pastures would have the lowest and primary forests the highest AMF species richness. We found evidence for changes in AMF species composition due to land use and for higher morphospecies richness in primary forests than in secondary forests and pastures. We expected also that water stress limited plant and mycorrhizal development and that plants and AMF communities from secondary forests and pastures would be less affected by (better adapted to) water stress than those from the primary forest. We found that although all plant species showed biomass reductions under water stress, only some of the plant species had lower mycorrhizal development under water stress, and this was regardless of the AMF community inoculated. The third hypothesis was that plant species common to all land use types would respond similarly to all AMF communities, whereas plant species found mainly in one land use type would grow better when inoculated with the AMF community of that specific land use type. All plant species were however equally responsive to the three AMF communities inoculated, indicating that all plants established functionally compatible AMF in each community, with no preferences. The results suggest that early seedling growth and mycorrhizal development in secondary forests and pastures is not likely limited by diversity, quantity, or quality of mycorrhizal propagules but by the high temperature and water stress conditions prevailing at those sites.

  15. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage.

    PubMed

    Halary, Sébastien; Malik, Shehre-Banoo; Lildhar, Levannia; Slamovits, Claudio H; Hijri, Mohamed; Corradi, Nicolas

    2011-01-01

    Arbuscular mycorrhizal fungi (AMF) represent an ecologically important and evolutionarily intriguing group of symbionts of land plants, currently thought to have propagated clonally for over 500 Myr. AMF produce multinucleate spores and may exchange nuclei through anastomosis, but meiosis has never been observed in this group. A provocative alternative for their successful and long asexual evolutionary history is that these organisms may have cryptic sex, allowing them to recombine alleles and compensate for deleterious mutations. This is partly supported by reports of recombination among some of their natural populations. We explored this hypothesis by searching for some of the primary tools for a sustainable sexual cycle--the genes whose products are required for proper completion of meiotic recombination in yeast--in the genomes of four AMF and compared them with homologs of representative ascomycete, basidiomycete, chytridiomycete, and zygomycete fungi. Our investigation used molecular and bioinformatic tools to identify homologs of 51 meiotic genes, including seven meiosis-specific genes and other "core meiotic genes" conserved in the genomes of the AMF Glomus diaphanum (MUCL 43196), Glomus irregulare (DAOM-197198), Glomus clarum (DAOM 234281), and Glomus cerebriforme (DAOM 227022). Homology of AMF meiosis-specific genes was verified by phylogenetic analyses with representative fungi, animals (Mus, Hydra), and a choanoflagellate (Monosiga). Together, these results indicate that these supposedly ancient asexual fungi may be capable of undergoing a conventional meiosis; a hypothesis that is consistent with previous reports of recombination within and across some of their populations.

  16. Conserved Meiotic Machinery in Glomus spp., a Putatively Ancient Asexual Fungal Lineage

    PubMed Central

    Halary, Sébastien; Malik, Shehre-Banoo; Lildhar, Levannia; Slamovits, Claudio H.; Hijri, Mohamed; Corradi, Nicolas

    2011-01-01

    Arbuscular mycorrhizal fungi (AMF) represent an ecologically important and evolutionarily intriguing group of symbionts of land plants, currently thought to have propagated clonally for over 500 Myr. AMF produce multinucleate spores and may exchange nuclei through anastomosis, but meiosis has never been observed in this group. A provocative alternative for their successful and long asexual evolutionary history is that these organisms may have cryptic sex, allowing them to recombine alleles and compensate for deleterious mutations. This is partly supported by reports of recombination among some of their natural populations. We explored this hypothesis by searching for some of the primary tools for a sustainable sexual cycle—the genes whose products are required for proper completion of meiotic recombination in yeast—in the genomes of four AMF and compared them with homologs of representative ascomycete, basidiomycete, chytridiomycete, and zygomycete fungi. Our investigation used molecular and bioinformatic tools to identify homologs of 51 meiotic genes, including seven meiosis-specific genes and other “core meiotic genes” conserved in the genomes of the AMF Glomus diaphanum (MUCL 43196), Glomus irregulare (DAOM-197198), Glomus clarum (DAOM 234281), and Glomus cerebriforme (DAOM 227022). Homology of AMF meiosis-specific genes was verified by phylogenetic analyses with representative fungi, animals (Mus, Hydra), and a choanoflagellate (Monosiga). Together, these results indicate that these supposedly ancient asexual fungi may be capable of undergoing a conventional meiosis; a hypothesis that is consistent with previous reports of recombination within and across some of their populations. PMID:21876220

  17. Impact of plant growth-promoting rhizobacteria on root colonization potential and life cycle of Rhizophagus irregularis following co-entrapment into alginate beads.

    PubMed

    Loján, P; Demortier, M; Velivelli, S L S; Pfeiffer, S; Suárez, J P; de Vos, P; Prestwich, B D; Sessitsch, A; Declerck, S

    2017-02-01

    This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria (PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-entrapped in alginate beads. Two in vitro experiments were conducted. The first consisted of the immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best performing PGPR from experiment 1 was tested for its ability to promote the symbiotic development of the AMF in potato plantlets from three cultivars. Results showed that only one isolate identified as Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of germinated spores during the pre-symbiotic phase of the fungus. This PGPR further promoted the symbiotic development of the AMF in potato plants. The co-entrapment of Ps. plecoglossicida R-67094 and R. irregularis MUCL 41833 in alginate beads improved root colonization by the AMF and its further life cycle under the experimental conditions. Co-entrapment of suitable AMF-PGPR combinations within alginate beads may represent an innovative technology that can be fine-tuned for the development of efficient consortia-based bioformulations. © 2016 The Society for Applied Microbiology.

  18. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars.

    PubMed

    Salloum, M S; Guzzo, M C; Velazquez, M S; Sagadin, M B; Luna, C M

    2016-12-01

    Breeding selection of germplasm under fertilized conditions may reduce the frequency of genes that promote mycorrhizal associations. This study was developed to compare variability in mycorrhizal colonization and its effect on mycorrhizal dependency (MD) in improved soybean genotypes (I-1 and I-2) with differential tolerance to drought stress, and in unimproved soybean genotypes (UI-3 and UI-4). As inoculum, a mixed native arbuscular mycorrhizal fungi (AMF) was isolated from soybean roots, showing spores mostly of the species Funneliformis mosseae. At 20 days, unimproved genotypes followed by I-2, showed an increase in arbuscule formation, but not in I-1. At 40 days, mycorrhizal plants showed an increase in nodulation, this effect being more evident in unimproved genotypes. Mycorrhizal dependency, evaluated as growth and biochemical parameters from oxidative stress was increased in unimproved and I-2 since 20 days, whereas in I-1, MD increased at 40 days. We cannot distinguish significant differences in AMF colonization and MD between unimproved and I-2. However, variability among improved genotypes was observed. Our results suggest that selection for improved soybean genotypes with good and rapid AMF colonization, particularly high arbuscule/hyphae ratio could be a useful strategy for the development of genotypes that optimize AMF contribution to cropping systems.

  19. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities--marker design, verification, calibration and field validation.

    PubMed

    Thonar, C; Erb, A; Jansa, J

    2012-03-01

    Quantitative real-time PCR (qPCR) is slowly becoming established as a tool to quantify abundance of different arbuscular mycorrhizal fungal (AMF) taxa in roots and in soil. Here, we describe the development and field validation of qPCR markers (i.e. primers with associated hydrolysis probes), targeting taxon-specific motifs in the nuclear large ribosomal subunit RNA genes. Design of such markers is complicated by the multinuclear and multigenomic cellular organization of these fungi and the high DNA sequence diversity within the smallest biologically relevant units (i.e. single-spore isolates). These limitations are further compounded by inefficient biomass production of these fungi, resulting in limited availability of pure genomic DNA (gDNA) of well-defined isolates for cross-specificity testing of the markers. Here we demonstrate, using a number of AMF isolates, the possibility to establish stringent qPCR running conditions allowing quantification of phylogenetically disjunctive AMF taxa. Further, we show that these markers can more generally be used to quantify abundance (i.e. number of target gene copies or amount of gDNA) of what is usually considered the level of AMF species, regardless of the isolate identities. We also illustrate the range of variation within qPCR signal strength across different AMF taxa with respect to the detected number of gene copies per unit amount of gDNA. This information is paramount for interpretation of the qPCR analyses of field samples. Finally, the field validation of these markers confirmed their potential to assess composition of field AMF communities and monitor the changes owing to agricultural practices such as soil tillage. © 2011 Blackwell Publishing Ltd.

  20. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan, E-mail: liuzy@mail.xjtu.edu.cn

    2016-06-15

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density B{sub AMF} can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera wasmore » used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.« less

  1. A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis

    PubMed Central

    Mercy, Louis; Lucic-Mercy, Eva; Nogales, Amaia; Poghosyan, Areg; Schneider, Carolin; Arnholdt-Schmitt, Birgit

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) are crucial components of fertile soils, able to provide several ecosystem services for crop production. Current economic, social and legislative contexts should drive the so-called “second green revolution” by better exploiting these beneficial microorganisms. Many challenges still need to be overcome to better understand the mycorrhizal symbiosis, among which (i) the biotrophic nature of AMF, constraining their production, while (ii) phosphate acts as a limiting factor for the optimal mycorrhizal inoculum application and effectiveness. Organism fitness and adaptation to the changing environment can be driven by the modulation of mitochondrial respiratory chain, strongly connected to the phosphorus processing. Nevertheless, the role of the respiratory function in mycorrhiza remains largely unexplored. We hypothesized that the two mitochondrial respiratory chain components, alternative oxidase (AOX) and cytochrome oxidase (COX), are involved in specific mycorrhizal behavior. For this, a complex approach was developed. At the pre-symbiotic phase (axenic conditions), we studied phenotypic responses of Rhizoglomus irregulare spores with two AOX and COX inhibitors [respectively, salicylhydroxamic acid (SHAM) and potassium cyanide (KCN)] and two growth regulators (abscisic acid – ABA and gibberellic acid – Ga3). At the symbiotic phase, we analyzed phenotypic and transcriptomic (genes involved in respiration, transport, and fermentation) responses in Solanum tuberosum/Rhizoglomus irregulare biosystem (glasshouse conditions): we monitored the effects driven by ABA, and explored the modulations induced by SHAM and KCN under five phosphorus concentrations. KCN and SHAM inhibited in vitro spore germination while ABA and Ga3 induced differential spore germination and hyphal patterns. ABA promoted mycorrhizal colonization, strong arbuscule intensity and positive mycorrhizal growth dependency (MGD). In ABA treated plants, R. irregulare induced down-regulation of StAOX gene isoforms and up-regulation of genes involved in plant COX pathway. In all phosphorus (P) concentrations, blocking AOX or COX induced opposite mycorrhizal patterns in planta: KCN induced higher Arum-type arbuscule density, positive MGD but lower root colonization compared to SHAM, which favored Paris-type formation and negative MGD. Following our results and current state-of-the-art knowledge, we discuss metabolic functions linked to respiration that may occur within mycorrhizal behavior. We highlight potential connections between AOX pathways and fermentation, and we propose new research and mycorrhizal application perspectives. PMID:28424712

  2. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    NASA Astrophysics Data System (ADS)

    Melo, Catarina Drumonde; Luna, Sara; Krüger, Claudia; Walker, Christopher; Mendonça, Duarte; Fonseca, Henrique M. A. C.; Jaizme-Vega, Maria; da Câmara Machado, Artur

    2017-02-01

    The communities of glomeromycotan fungi (arbuscular mycorrhizal fungi, AMF) under native Juniperus brevifolia forest from two Azorean islands, Terceira and São Miguel, were compared, mainly by spore morphology, and when possible, by molecular analysis. Thirty-nine morphotypes were detected from 12 genera. Glomeromycotan fungal richness was similar in Terceira and São Miguel, but significantly different among the four fragments of native forest. Spore diversity and community composition differed significantly between the two islands. The less degraded island, Terceira, showed 10 exclusive morphotypes including more rare types, whereas the more disturbed forest on São Miguel showed 13 morphs, mostly of common types. Forests from Terceira were dominated by Acaulosporaceae and Glomeraceae. Whereas members of Acaulosporaceae, Glomeraceae and Ambisporaceae were most frequent and abundant in those from São Miguel. Spore abundance was greatest on Terceira, and correlated with soil chemical properties (pH), average monthly temperature and relative humidity.

  3. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress.

    PubMed

    Mathur, Sonal; Sharma, Mahaveer P; Jajoo, Anjana

    2018-03-01

    In this study, pot experiments were performed to investigate the effects of high temperature stress (44 °C) in maize plants colonized with and without arbuscular mycorrhizal fungi (AMF). Various parameters characterizing photosynthetic activity were measured in order to estimate the photosynthetic efficiency in maize plants. It was observed that density of active reaction centers of PSII, quantum efficiency of photosystem II (PSII), linear electron transport, excitation energy trapping, performance index, net photosynthesis rate increased in AMF (+) plants at 44 °C ± 0.2 °C. Efficiency of primary photochemical reaction (represented as F v /F o ) increased in AMF (+) plants as compared to AMF (-) plants. AMF seems to have protected water splitting complex followed by enhanced primary photochemistry of PSII under high temperature. Basic morphological parameters like leaf width, plant height and cob number increased in AMF (+) plants as compared to AMF (-) plants. AMF (+) plants grew faster than AMF (-) plants due to larger root systems. Chl content increased in AMF (+) plants as compared to AMF (-) maize plants. AMF hyphae likely increased Mg uptake which in turn increased the total chlorophyll content in AMF (+) maize plants. This subsequently led to a higher production in photosynthate and biomass. Thus AMF (+) plants have shown better photosynthesis performance as compared to AMF (-) maize plants under high temperature stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Meadow, James; Rohr, Jason R; Redecker, Dirk; Zabinski, Catherine A

    2011-06-01

    The relative importance of dispersal and niche restrictions remains a controversial topic in community ecology, especially for microorganisms that are often assumed to be ubiquitous. We investigated the impact of these factors for the community assembly of the root-symbiont arbuscular mycorrhizal fungi (AMF) by sampling roots from geothermal and nonthermal grasslands in Yellowstone National Park (YNP), followed by sequencing and RFLP of AMF ribosomal DNA. With the exception of an apparent generalist RFLP type closely related to Glomus intraradices, a distance-based redundancy analysis indicated that the AMF community composition correlated with soil pH or pH-driven changes in soil chemistry. This was unexpected, given the large differences in soil temperature and plant community composition between the geothermal and nonthermal grasslands. RFLP types were found in either the acidic geothermal grasslands or in the neutral to alkaline grasslands, one of which was geothermal. The direct effect of the soil chemical environment on the distribution of two AMF morphospecies isolated from acidic geothermal grasslands was supported in a controlled greenhouse experiment. Paraglomus occultum and Scutellospora pellucida were more beneficial to plants and formed significantly more spores when grown in acidic than in alkaline soil. Distance among grasslands, used as an estimate of dispersal limitations, was not a significant predictor of AMF community similarity within YNP, and most fungal taxa may be part of a metacommunity. The isolation of several viable AMF taxa from bison feces indicates that wide-ranging bison could be a vector for at least some RFLP types among grasslands within YNP. In support of classical niche theory and the Baas-Becking hypothesis, our results suggest that AMF are not limited by dispersal at the scale of YNP, but that the soil environment appears to be the primary factor affecting community composition and distribution.

  5. Investigating the context-dependency of plant-soil-AMF-microbe interactions along a pollution gradient

    NASA Astrophysics Data System (ADS)

    Glassman, S. I.; Casper, B. B.

    2010-12-01

    Background/Question/Methods Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions, which is currently recognized as a major avenue of future research. We study plant-mycorrhiza symbiotic relationships along a gradient of heavy metal contamination at a recently revegetated “Superfund” site on Blue Mountain, in Palmerton, Pennsylvania. We investigated the interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, and two plant species (a C3 and C4 grass) along the contamination gradient. The native C3 study species Deschampsia flexuosa, is dominant along the gradient and established naturally; the C4 Sorghastrum nutans, is native to Pennsylvania but not to the site and was introduced during restoration. Because C4 grasses are obligate mycotrophs, we expected S. nutans to have a different effect on and response to the soil symbiont community than the C3 grass. We carried out a full factorial greenhouse experiment using field-collected seeds of D. flexuosa and S. nutans, soil, AMF spores, and non-mycorrhizal microbes from both high and low contaminated ends of the gradient. After 11 weeks of growth in the greenhouses, we harvested above and belowground plant biomass, and quantified AMF root colonization and AMF sporulation. Results/Conclusions Our results indicate that context-dependent function is an important factor driving specific ecological interactions between plants and soil microbes. We found that soil origin significantly affected plant growth. Plants from both species grew much larger in soil from low contaminated (LC) origin than high contaminated (HC) origin. Furthermore, we found that the efficacy of AMF in promoting plant growth depended on AMF origin. Specifically, AMF from LC improved growth of D. flexuosa best in either soil background and improved survivorship of S. nutans in HC soil compared to AMF from HC. We also found that the origin of non-mycorrhizal soil microbes affects the benefit provided to plants and likely interacts with AMF in affecting AMF function. Non-mycorrhizal soil microbes from HC origin decreased mean plant size in D. flexuosa while microbes from LC origin increased mean plant size compared to plants with no non-mycorrhizal soil microbes added. Our results may be useful for improving our basic ecological understanding of plant-soil interactions and ecotypic variation/context-dependent function. There are also potential applications for restoration of heavy metal polluted sites.

  6. [Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings].

    PubMed

    Jiang, Xia; Chen, Wei-li; Xu, Chun-xiang; Zhu, Hong-hui; Yao, Qing

    2015-04-01

    To explore the influences of arbuscular mycorrhizal fungi (AMF) and P level on plant root system architecture, tomato seedlings were inoculated with AMF strain Rhizophagus irregularis BGC JX04B under two P levels, and the influences of AMF and P level on lateral root (LR) formation of tomato seedlings were studied. Results indicated that the promoting effect of AMF on plant biomass was not evident, but significantly decreased the root to shoot ratio of plants. AMF significantly increased the primary root length but decreased the 1st order LR length and interacted with the mycorrhizal colonization period. AMF significantly lowered the 2nd-3rd order LR number and the ratio of 2nd order LR number to 1st order LR number, but did not significantly affect the 1st-2nd order LR density. High P level (50 mg x kg(-1) P) significantly promoted the plant growth and decreased the root to shoot ratio of plants. It had no significant effect on the primary root length and the 1st order root length, but significantly enhanced the 1st-3rd order LR number and the ratio of 2nd order LR number to P order LR number, increased the 1st-2nd order LR density. It suggested that AMF and P level did not share a common mechanism to influence the LR formation of tomato plants. The influence of high P level may depend on its promoting effects on nutrient uptake and plant growth, while the influence of AMF is more complex. Furthermore, the interaction between AMF and mycorrhizal colonization period implies the possible involvement of carbohydrate distribution (sugar signaling) in the regulation of root system architecture by AMF.

  7. Role and Variation of the Amount and Composition of Glomalin in Soil Properties in Farmland and Adjacent Plantations with Reference to a Primary Forest in North-Eastern China

    PubMed Central

    Wang, Qiong; Wang, Wenjie; He, Xingyuan; Zhang, Wentian; Song, Kaishan; Han, Shijie

    2015-01-01

    The glycoprotein known as glomalin-related soil protein (GRSP) is abundantly produced on the hyphae and spores of arbuscular mycorrhizal fungi (AMF) in soil and roots. Few studies have focused on its amount, composition and associations with soil properties and possible land-use influences, although the data hints at soil rehabilitation. By choosing a primary forest soil as a non-degraded reference, it is possible to explore whether afforestation can improve degraded farmland soil by altering GRSP. In this paper, close correlations were found between various soil properties (soil organic carbon, nitrogen, pH, electrical conductivity (EC), and bulk density) and the GRSP amount, between various soil properties and GRSP composition (main functional groups, fluorescent substances, and elements). Afforestation on farmland decreased the EC and bulk density (p < 0.05). The primary forest had a 2.35–2.56-fold higher GRSP amount than those in the plantation forest and farmland, and GRSP composition (tryptophan-like and fulvic acid-like fluorescence; functional groups of C–H, C–O, and O–H; elements of Al, O, Si, C, Ca, and N) in primary forest differed from those in plantation forest and farmland (p < 0.05). However, no evident differences in GRSP amount and composition were observed between the farmland and the plantation forest. Our finding highlights that 30 years poplar afforestation on degraded farmland is not enough to change GRSP-related properties. A longer period of afforestation with close-to-nature managements may favor the AMF-related underground recovery processes. PMID:26430896

  8. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    PubMed

    Tamayo, Elisabeth; Gómez-Gallego, Tamara; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization.

  9. Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe

    2017-06-01

    After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.

  10. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis.

    PubMed

    Tisserant, Emilie; Malbreil, Mathilde; Kuo, Alan; Kohler, Annegret; Symeonidi, Aikaterini; Balestrini, Raffaella; Charron, Philippe; Duensing, Nina; Frei dit Frey, Nicolas; Gianinazzi-Pearson, Vivienne; Gilbert, Luz B; Handa, Yoshihiro; Herr, Joshua R; Hijri, Mohamed; Koul, Raman; Kawaguchi, Masayoshi; Krajinski, Franziska; Lammers, Peter J; Masclaux, Frederic G; Murat, Claude; Morin, Emmanuelle; Ndikumana, Steve; Pagni, Marco; Petitpierre, Denis; Requena, Natalia; Rosikiewicz, Pawel; Riley, Rohan; Saito, Katsuharu; San Clemente, Hélène; Shapiro, Harris; van Tuinen, Diederik; Bécard, Guillaume; Bonfante, Paola; Paszkowski, Uta; Shachar-Hill, Yair Y; Tuskan, Gerald A; Young, J Peter W; Young, Peter W; Sanders, Ian R; Henrissat, Bernard; Rensing, Stefan A; Grigoriev, Igor V; Corradi, Nicolas; Roux, Christophe; Martin, Francis

    2013-12-10

    The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

  11. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

    PubMed Central

    Tisserant, Emilie; Malbreil, Mathilde; Kuo, Alan; Kohler, Annegret; Symeonidi, Aikaterini; Balestrini, Raffaella; Charron, Philippe; Duensing, Nina; Frei dit Frey, Nicolas; Gianinazzi-Pearson, Vivienne; Gilbert, Luz B.; Handa, Yoshihiro; Herr, Joshua R.; Hijri, Mohamed; Koul, Raman; Kawaguchi, Masayoshi; Krajinski, Franziska; Lammers, Peter J.; Masclaux, Frederic G.; Murat, Claude; Morin, Emmanuelle; Ndikumana, Steve; Pagni, Marco; Petitpierre, Denis; Requena, Natalia; Rosikiewicz, Pawel; Riley, Rohan; Saito, Katsuharu; San Clemente, Hélène; Shapiro, Harris; van Tuinen, Diederik; Bécard, Guillaume; Bonfante, Paola; Paszkowski, Uta; Shachar-Hill, Yair Y.; Tuskan, Gerald A.; Young, J. Peter W.; Sanders, Ian R.; Henrissat, Bernard; Rensing, Stefan A.; Grigoriev, Igor V.; Corradi, Nicolas; Roux, Christophe; Martin, Francis

    2013-01-01

    The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota. PMID:24277808

  12. Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi.

    PubMed

    Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.

  13. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also evaluated as mycorrhizal parameters. The results showed a different response to mycorrhization of the four lettuce Cvs. In general, mycorrhized lettuce plants had a better response to lower level of nitrogen and phosphorus sources.

  14. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi-bacteria and aboveground herbivores.

  15. Host-specific effects of soil microbial filtrates prevail over those of arbuscular mycorrhizae in a fragmented landscape.

    PubMed

    Pizano, Camila; Mangan, Scott A; Graham, James H; Kitajima, Kaoru

    2017-09-01

    Plant-soil interactions have been shown to determine plant community composition in a wide range of environments. However, how plants distinctly interact with beneficial and detrimental organisms across mosaic landscapes containing fragmented habitats is still poorly understood. We experimentally tested feedback responses between plants and soil microbial communities from adjacent habitats across a disturbance gradient within a human-modified tropical montane landscape. In a greenhouse experiment, two components of soil microbial communities were amplified; arbuscular mycorrhizal fungi (AMF) and a filtrate excluding AMF spores from the soils of pastures (high disturbance), coffee plantations (intermediate disturbance), and forest fragments (low disturbance), using potted seedlings of 11 plant species common in these habitats (pasture grass, coffee, and nine native species). We then examined their effects on growth of these same 11 host species with reciprocal habitat inoculation. Most plant species received a similar benefit from AMF, but differed in their response to the filtrates from the three habitats. Soil filtrate from pastures had a net negative effect on plant growth, while filtrates from coffee plantations and forests had a net positive effect on plant growth. Pasture grass, coffee, and five pioneer tree species performed better with the filtrate from "away" (where these species rarely occur) compared to "home" (where these species typically occur) habitat soils, while four shade-tolerant tree species grew similarly with filtrates from different habitats. These results suggest that pastures accumulate species-specific soil enemies, while coffee plantations and forests accumulate beneficial soil microbes that benefit pioneer native plants and coffee, respectively. Thus, compared to AMF, soil filtrates exerted stronger habitat and host-specific effects on plants, being more important mediators of plant-soil feedbacks across contrasting habitats. © 2017 by the Ecological Society of America.

  16. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    PubMed

    Vannini, Candida; Carpentieri, Andrea; Salvioli, Alessandra; Novero, Mara; Marsoni, Milena; Testa, Lorenzo; de Pinto, Maria Concetta; Amoresano, Angela; Ortolani, Francesca; Bracale, Marcella; Bonfante, Paola

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. The virome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals the first report of DNA fragments corresponding to replicating non-retroviral RNA viruses in fungi.

    PubMed

    Turina, Massimo; Ghignone, Stefano; Astolfi, Nausicaa; Silvestri, Alessandro; Bonfante, Paola; Lanfranco, Luisa

    2018-02-02

    Arbuscular Mycorrhizal Fungi (AMF) are key components of the plant microbiota. AMF genetic complexity is increased by the presence of endobacteria, which live inside many species. A further component of such complexity is the virome associated to AMF, whose knowledge is still very limited. Here, by exploiting transcriptomic data we describe the virome of Gigaspora margarita. A BLAST search for viral RNA-dependent RNA polymerases sequences allowed the identification of four mitoviruses, one Ourmia-like narnavirus, one Giardia-like virus, and two sequences related to Fusarium graminearum mycoviruses. Northern blot and RT-PCR confirmed the authenticity of all the sequences with the exception of the F. graminearum-related ones. All the mitoviruses are replicative and functional since both positive strand and negative strand RNA are present. The abundance of the viral RNA molecules is not regulated by the presence or absence of Candidatus Glomeribacter gigasporarum, the endobacterium hosted by G. margarita, with the exception of the Ourmia-like sequence which is absent in bacteria-cured spores. In addition, we report, for the first time, DNA fragments corresponding to mitovirus sequences associated to the presence of viral RNA. These sequences are not integrated in the mitochondrial DNA and preliminary evidence seems to exclude integration in the nuclear genome. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions

    PubMed Central

    Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.

    2015-01-01

    Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247

  19. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).

  20. Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi.

    PubMed

    de la Providencia, Ivan Enrique; Nadimi, Maryam; Beaudet, Denis; Morales, Gabriela Rodriguez; Hijri, Mohamed

    2013-10-01

    Nonself fusion and nuclear genetic exchange have been documented in arbuscular mycorrhizal fungi (AMF), particularly in Rhizophagus irregularis. However, mitochondrial transmission accompanying nonself fusion of genetically divergent isolates remains unknown. Here, we tested the hypothesis that mitochondrial DNA (mtDNA) heteroplasmy occurs in the progeny of spores, obtained by crossing genetically divergent mtDNAs in R. irregularis isolates. Three isolates of geographically distant locations were used to investigate nonself fusions and mtDNA transmission to the progeny. We sequenced two additional mtDNAs of two R. irregularis isolates and developed isolate-specific size-variable markers in intergenic regions of these isolates and those of DAOM-197198. We achieved three crossing combinations in pre-symbiotic and symbiotic phases. Progeny spores per crossing combination were genotyped using isolate-specific markers. We found evidence that nonself recognition occurs between isolates originating from different continents both in pre-symbiotic and symbiotic phases. Genotyping patterns of individual spores from the progeny clearly showed the presence of markers of the two parental mtDNA haplotypes. Our results demonstrate that mtDNA heteroplasmy occurs in the progeny of the crossed isolates. However, this heteroplasmy appears to be a transient stage because all the live progeny spores that were able to germinate showed only one mtDNA haplotype. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    PubMed

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  2. Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting.

    PubMed

    Davidson, Bill E; Novak, Stephen J; Serpe, Marcelo D

    2016-08-01

    In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant-AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p = 0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p < 0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar (13)C/(12)C isotope ratios (δ (13)C). A positive correlation between AMF colonization and δ (13)C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ (13)C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p = 0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p = 0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.

  3. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  4. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  5. Initial Spore Density Has an Influence on Ochratoxin A Content in Aspergillus ochraceus CGMCC 3.4412 in PDB and Its Interaction with Seeds.

    PubMed

    Li, Caiyan; Song, Yanmin; Xiong, Lu; Huang, Kunlun; Liang, Zhihong

    2017-04-21

    The morphology and secondary metabolism of Aspergillus spp. are associated with initial spore density (ISD). Fatty acids (FA) are involved in the biosynthesis of aflatoxins (AF) through Aspergillus quorum sensing (QS). Here, we studied how ochratoxin A (OTA) was regulated by spore density in Aspergillus ochraceus CGMCC 3.4412. The results contribute to understanding the role of spore density in morphogenesis, OTA biosynthesis, and host-pathogen interactions. When A. ochraceus was grown in Potato Dextrose Broth (PDB) media at different spore densities (from 10¹ to 10⁶ spores/mL), more OTA was produced when ISD were increased, but a higher level of ISD inhibited OTA biosynthesis. Seed infection studies showed that peanuts ( Arachis hypogaea ) and soybeans ( Glycine max ) with high FA content were more susceptible to OTA production when infected by A. ochraceus and reactive oxygen species (ROS)-induced OTA biosynthesis. These results suggested that FA was vital for OTA biosynthesis, and that oxidative stress was closely related to OTA biosynthesis in A. ochraceus .

  6. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    PubMed

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of culture conditions on the size, morphology and wet density of spores of Bacillus cereus 569 and Bacillus megaterium QM B1551.

    PubMed

    Xu Zhou, K; Wisnivesky, F; Wilson, D I; Christie, G

    2017-07-01

    The influence of variable culture conditions on the size and wet density of spores of Bacillus cereus and Bacillus megaterium were examined in this work. Culture temperature and initial pH was shown to have a significant impact on the size of both species, with increasingly alkaline culture media and elevated culture temperatures resulting in spores that were, on average, up to 25% reduced in volume. Increasing concentrations of inorganic salts in sporulation media exerted differing effects on each species; whereas a fivefold increase in the concentration of all salts resulted in only minor differences to the dimensions of B. cereus spores, B. megaterium spores became more elongated, displaying an average increase in volume of almost 30%. Similarly, as the spore elongated to yield aspect ratios larger than 1·4, their shape changed from typical prolate spheroids to cylinders with hemispherical ends. In contrast with previous studies, culture conditions employed in this study exerted no discernible impact on the wet density of B. cereus or B. megaterium spores. Bacterial spores of the genera Bacillus and Clostridium represent nature's most durable cells in terms of their extreme resistance to a variety of deleterious environments. As a result, they are of concern in the food processing, healthcare and other sectors, and are of increasing biotechnological interest. Improved understanding of variance in spore size, morphology and density may aid the development of certain spore-associated applications (e.g. spore surface display) while contributing to active areas of research such as spore adhesion and resistance to heat. © 2017 The Authors. Letters in Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  8. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on fungal occupancy in chickpea root and nodule determined by real-time PCR.

    PubMed

    Tavasolee, Alireza; Aliasgharzad, Naser; Salehi, Gholam Reza; Mardi, Mohsen; Asgharzadeh, Ahmad; Akbarivala, Sepide

    2011-08-01

    Legume roots in nature are usually colonized with rhizobia and different arbuscular mycorrhizal fungi (AMF) species. Light microscopy that visualizes the presence of AMF in roots is not able to differentiate the ratio of each AMF species in the root and nodule tissues in mixed fungal inoculation. The purpose of this study was to characterize the dominant species of mycorrhiza in roots and nodules of plants co-inoculated with mycorrhizal fungi and rhizobial strains. Glomus intraradices (GI), Glomus mosseae (GM), their mix (GI + GM), and six Mesorhizobium ciceri strains were used to inoculate chickpea. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess occupancy of these fungal species in roots and nodules. Results showed that GI molecular ratio and relative density were higher than GM in both roots and nodules. These differences in molecular ratio and density between GI and GM in nodules were three folds higher than roots. The results suggested that M. ciceri strains have different effects on nodulation and mycorrhizal colonization pattern. Plants with bacterial S3 and S1 strains produced the highest root nodulation and higher fungal density in both the roots and nodules.

  9. Arbuscular and Ectomycorrhizal Fungi Associated with the Invasive Brazilian Pepper Tree (Schinus terebinthifolius) and Two Native Plants in South Florida

    PubMed Central

    Dawkins, Karim; Esiobu, Nwadiuto

    2017-01-01

    The potential role of soil fungi in the invasion of the Brazilian pepper tree (Schinus terebinthifolius—BP) in Florida is not known; although the low biotic resistance of Florida soils is often invoked to explain the prevalence of many invasive species. To gain an initial insight into BP's mycorrhizal associations, this study examined the rhizobiome of BP and two native plants (Hamelia patens and Bidens alba) across six locations. Arbuscular mycorrhizal fungi (AMF) associated with the roots of the target plants and bulk soil was characterized by spore morphotyping. Sequence analysis of metagenomic DNA from lateral roots/rhizosphere of BP (n = 52) and a native shrub H. patens (n = 37) on the same parcel yielded other fungal associates. Overall, the total population of AMF associated with BP was about two folds greater than that of the two native plants (p = 0.0001) growing on the same site. The dominant AMF under Schinus were members of the common Glomus and Rhizophagus spp. By contrast, the most prevalent AMF in the bulk soil and rhizosphere of the two Florida native plants, Acaulospora spp (29%) was sharply diminished (9%) under BP rhizosphere. Analysis of the ITS2 sequences also showed that Schinus rhizosphere had a high relative abundance of ectomycorrhizal fungi (76.5%) compared to the native H. patens (2.6%), with the species Lactifluus hygrophoroides (Basidiomycota) being the most prevalent at 61.5% (p < 0.05). Unlike the native plants where pathogenic fungi like Phyllosticta sp., Phoma sp., and Neofusicoccum andium were present (8.1% for H. patens), only one potentially pathogenic fungal taxon was detected (3.9%) under BP. The striking disparity in the relative abundance of AMF and other fungal types between BP and the native species is quite significant. Fungal symbionts could aide plant invasion via resource-use efficiency and other poorly defined mechanisms of protection from pathogens in their invaded range. This report exposes a potentially significant but previously unappreciated fungal dimension of a complex invasion system and underscores the need to characterize these fungal symbionts, their role and mode of action during invasion; with the goal of devising measures for invasion control and ecological restoration. PMID:28473811

  10. Bayesian methodology incorporating expert judgment for ranking countermeasure effectiveness under uncertainty: example applied to at grade railroad crossings in Korea.

    PubMed

    Washington, Simon; Oh, Jutaek

    2006-03-01

    Transportation professionals are sometimes required to make difficult transportation safety investment decisions in the face of uncertainty. In particular, an engineer may be expected to choose among an array of technologies and/or countermeasures to remediate perceived safety problems when: (1) little information is known about the countermeasure effects on safety; (2) information is known but from different regions, states, or countries where a direct generalization may not be appropriate; (3) where the technologies and/or countermeasures are relatively untested, or (4) where costs prohibit the full and careful testing of each of the candidate countermeasures via before-after studies. The importance of an informed and well-considered decision based on the best possible engineering knowledge and information is imperative due to the potential impact on the numbers of human injuries and deaths that may result from these investments. This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to "stated preference" methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain 'best' estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.

  11. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization.

    PubMed

    Arthikala, Manoj-Kumar; Sánchez-López, Rosana; Nava, Noreide; Santana, Olivia; Cárdenas, Luis; Quinto, Carmen

    2014-05-01

    The reactive oxygen species (ROS) generated by respiratory burst oxidative homologs (Rbohs) are involved in numerous plant cell signaling processes, and have critical roles in the symbiosis between legumes and nitrogen-fixing bacteria. Previously, down-regulation of RbohB in Phaseolus vulgaris was shown to suppress ROS production and abolish Rhizobium infection thread (IT) progression, but also to enhance arbuscular mycorrhizal fungal (AMF) colonization. Thus, Rbohs function both as positive and negative regulators. Here, we assessed the effect of enhancing ROS concentrations, by overexpressing PvRbohB, on the P. vulgaris--rhizobia and P. vulgaris--AMF symbioses. We estimated superoxide concentrations in hairy roots overexpressing PvRbohB, determined the status of early and late events of both Rhizobium and AMF interactions in symbiont-inoculated roots, and analyzed the nodule ultrastructure of transgenic plants overexpressing PvRbohB. Overexpression of PvRbohB significantly enhanced ROS production, the formation of ITs, nodule biomass, and nitrogen-fixing activity, and increased the density of symbiosomes in nodules, and the density and size of bacteroides in symbiosomes. Furthermore, PvCAT, early nodulin, PvSS1, and PvGOGAT transcript abundances were elevated in these nodules. By contrast, mycorrhizal colonization was reduced in roots that overexpressed RbohB. Overexpression of PvRbohB augmented nodule efficiency by enhancing nitrogen fixation and delaying nodule senescence, but impaired AMF colonization. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Rain Splash Dispersal of Gibberella zeae Within Wheat Canopies in Ohio.

    PubMed

    Paul, P A; El-Allaf, S M; Lipps, P E; Madden, L V

    2004-12-01

    ABSTRACT Rain splash dispersal of Gibberella zeae, causal agent of Fusarium head blight of wheat, was investigated in field studies in Ohio between 2001 and 2003. Samplers placed at 0, 30, and 100 cm above the soil surface were used to collect rain splash in wheat fields with maize residue on the surface and fields with G. zeae-infested maize kernels. Rain splash was collected during separate rain episodes throughout the wheat-growing seasons. Aliquots of splashed rain were transferred to petri dishes containing Komada's selective medium, and G. zeae was identified based on colony and spore morphology. Dispersed spores were measured in CFU/ml. Intensity of splashed rain was highest at 100 cm and ranged from 0.2 to 10.2 mm h(-1), depending on incident rain intensity and sampler height. Spores were recovered from splash samples at all heights in both locations for all sampled rain events. Both macroconidia and ascospores were found based on microscopic examination of random samples of splashed rain. Spore density and spore flux density per rain episode ranged from 0.4 to 40.9 CFU cm(-2) and 0.4 to 84.8 CFU cm(-2) h(-1), respectively. Spore flux density was higher in fields with G. zeae-infested maize kernels than in fields with maize debris, and generally was higher at 0 and 30 cm than at 100 cm at both locations. However, on average, spore flux density was only 30% lower at 100 cm (height of wheat spikes) than at the other heights. The log of spore flux density was linearly related to the log of splashed rain intensity and the log of incident rain intensity. The regression slopes were not significantly affected by year, location, height, and their interactions, but the intercepts were significantly affected by both sampler height and location. Thus, our results show that spores of G. zeae were consistently splash dispersed to spike heights within wheat canopies, and splashed rain intensity and spore flux density could be predicted based on incident rain intensity in order to estimate inoculum dispersal within the wheat canopy.

  13. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Wang, Jian-Ping

    2017-05-01

    The heating performance of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.

  14. Arbuscular mycorrhizal propagules in soils from a tropical forest and an abandoned cornfield in Quintana Roo, Mexico: visual comparison of most-probable-number estimates.

    PubMed

    Ramos-Zapata, José A; Guadarrama, Patricia; Navarro-Alberto, Jorge; Orellana, Roger

    2011-02-01

    The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a "most probable number" (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.

  15. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any pore size, smaller structural pore radii and an increase in plant available water. Interestingly, a synergistic effect of leek roots and AMF in the absence of the earthworms was highlighted, and this synergistic effect was not observed in presence of earthworms. The structural pore volume generated by root and AMF growth was several orders of magnitude larger than the volume of the organisms. Root exudates as well as other AMF secretion have served as carbon source for bacteria that in turn would enhance soil aggregation and porosity, thus supporting the idea of a self-organization of the soil-plant-microbe complex previously described.

  16. Effects of Metal Phytoextraction Practices on the Indigenous Community of Arbuscular Mycorrhizal Fungi at a Metal-Contaminated Landfill

    PubMed Central

    Pawlowska, Teresa E.; Chaney, Rufus L.; Chin, Mel; Charvat, Iris

    2000-01-01

    Phytoextraction involves use of plants to remove toxic metals from soil. We examined the effects of phytoextraction practices with three plant species (Silene vulgaris, Thlaspi caerulescens, and Zea mays) and a factorial variation of soil amendments (either an ammonium or nitrate source of nitrogen and the presence or absence of an elemental sulfur supplement) on arbuscular mycorrhizal (AM) fungi (Glomales, Zygomycetes) at a moderately metal-contaminated landfill located in St. Paul, Minn. Specifically, we tested whether the applied treatments affected the density of glomalean spores and AM root colonization in maize. Glomalean fungi from the landfill were grouped into two morphotypes characterized by either light-colored spores (LCS) or dark-colored spores (DCS). Dominant species of the LCS morphotype were Glomus mosseae and an unidentified Glomus sp., whereas the DCS morphotype was dominated by Glomus constrictum. The density of spores of the LCS morphotype from the phytoremediated area was lower than the density of these spores in the untreated landfill soil. Within the experimental area, spore density of the LCS morphotype in the rhizosphere of mycorrhizal maize was significantly higher than in rhizospheres of nonmycorrhizal S. vulgaris or T. caerulescens. Sulfur supplement increased vesicular root colonization in maize and exerted a negative effect on spore density in maize rhizosphere. We conclude that phytoextraction practices, e.g., the choice of plant species and soil amendments, may have a great impact on the quantity and species composition of glomalean propagules as well as on mycorrhiza functioning during long-term metal-remediation treatments. PMID:10831433

  17. Characterization of the yrbA Gene of Bacillus subtilis, Involved in Resistance and Germination of Spores

    PubMed Central

    Takamatsu, Hiromu; Kodama, Takeko; Nakayama, Tatsuo; Watabe, Kazuhito

    1999-01-01

    Insertional inactivation of the yrbA gene of Bacillus subtilis reduced the resistance of the mutant spores to lysozyme. The yrbA mutant spores lost their optical density at the same rate as the wild-type spores upon incubation with l-alanine but became only phase gray and did not swell. The response of the mutant spores to a combination of asparagine, glucose, fructose, and KCl was also extremely poor; in this medium yrbA spores exhibited only a small loss in optical density and gave a mixture of phase-bright, -gray, and -dark spores. Northern blot analysis of yrbA transcripts in various sig mutants indicated that yrbA was transcribed by RNA polymerase with ςE beginning at 2 h after the start of sporulation. The yrbA promoter was localized by primer extension analysis, and the sequences of the −35 (TCATAAC) and −10 (CATATGT) regions were similar to the consensus sequences of genes recognized by ςE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins solubilized from intact yrbA mutant spores showed an alteration in the protein profile, as 31- and 36-kDa proteins, identified as YrbA and CotG, respectively, were absent, along with some other minor changes. Electron microscopic examination of yrbA spores revealed changes in the spore coat, including a reduction in the density and thickness of the outer layer and the appearance of an inner coat layer-like structure around the outside of the coat. This abnormal coat structure was also observed on the outside of the developing forespores of the yrbA mutant. These results suggest that YrbA is involved in assembly of some coat proteins which have roles in both spore lysozyme resistance and germination. PMID:10438771

  18. Establishment of Mimosa biuncifera (Fabaceae) inoculated with arbuscular mycorrhizal fungi in greenhouse and field drought conditions.

    PubMed

    Peña-Becerril, Juan C; Monroy-Ata, Arcadio; Orozco-Almanza, María del Socorro; García-Amador, Esther Matiana

    2016-06-01

    Mexico is dominated by arid or semi-arid ecosystems, predominantly characterized as xeric shrublands. These areas are frequently deteriorated due to agriculture or over-grazing by livestock (sheep and goats). The vegetation type mainly consists of thorny plant species, and among these, the dominant one in overgrazed areas is catclaw (Mimosa biuncifera). This is a nurse plant that facilitates establishment of other vegetation and promotes plant succession. Catclaw plants form a mutualistic association with arbuscular mycorrhizal fungi (AMF), which improves uptake of nutrients and water. The objective of this study was to determine the effect of inoculating catclaw plants with native AMF and starting their growth under a low water availability treatment in a greenhouse, and later transplanting them to field conditions of drought and deterioration. Field plants were evaluated according to their survivorship and growth. The seeds of catclaw plants and soil with AMF spores were collected in the Mezquital Valley of Hidalgo State, in Central Mexico. Seedlings were grown in individual pots in a greenhouse. The experimental design consisted of two levels of pot irrigation, wet (W) and dry (D), as well as the presence (M+) or absence (M-) of AMF inoculum, with 20 replicates for each treatment. The following plant parameters were recorded every week: height, number of leaves and pinnae, and mean diameter of coverage. After 20 weeks in the greenhouse, determination was made of fresh and dry biomass, relative growth rate (RGR), root/shoot ratio, real evapotranspiration (RET), water-use efficiency (WUE), and percentage of mycorrhizal colonization. The remaining plants growing under the dry treatment (M+ and M-) were then transplanted to a semi-arid locality in the Mezquital Valley. During one year, monthly records were kept of their height, number of leaves, mean diameter of coverage and survival. Results showed that compared to greenhouse plants under other treatments, those under the wet mycorrhizal (WM+) treatment were taller, had more pinnae, and were characterized by greater coverage, faster RGR, and greater fresh and dry biomass. Moreover, inoculated plants (WM+ and DM+) showed higher WUE than those uninoculated (WM- and DM-, respectively). After one year in field conditions, there was a higher survival rate for previously inoculated versus uninoculated plants. Hence, mycorrhization of M. biuncifera with native AMF inoculum increased plant efficiency in biomass production, thus favoring establishment and survival in field conditions. We concluded that inoculation of catclaw plants is recommendable for revegetation programs in deteriorated semi-arid zones.

  19. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area

    PubMed Central

    Huang, Li; Ban, Yihui; Tang, Ming

    2017-01-01

    Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations at different soil depths (0–10, 10–20, 20–30, 30–40 cm). Our results showed that the mycorrhizal colonization (MC), hyphal length density (HLD), GRSP, soil organic matter (SOM) and soil organic carbon (SOC) were significantly inhibited by Pb compared to Zn at 0–20 cm soil depth, indicating that HM had significant inhibitory effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 μm) and mean weight diameter (MWD) were positively correlated with GRSP, SOM and SOC at 0–20 cm soil depth (P < 0.05), proving the important contributions of GRSP, SOM and SOC for binding soil particles together into large macroaggregates and improving aggregate stability. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation and subsequently influencing aggregate formation and particle-size distribution in HM polluted soils. Our study highlighted that the introduction of indigenous plant associated with AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils, and that proper management practices should be developed to guarantee maximum benefits from plant-AMF symbiosis during ecological restoration. PMID:28771531

  20. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area.

    PubMed

    Yang, Yurong; He, Chuangjun; Huang, Li; Ban, Yihui; Tang, Ming

    2017-01-01

    Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations at different soil depths (0-10, 10-20, 20-30, 30-40 cm). Our results showed that the mycorrhizal colonization (MC), hyphal length density (HLD), GRSP, soil organic matter (SOM) and soil organic carbon (SOC) were significantly inhibited by Pb compared to Zn at 0-20 cm soil depth, indicating that HM had significant inhibitory effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 μm) and mean weight diameter (MWD) were positively correlated with GRSP, SOM and SOC at 0-20 cm soil depth (P < 0.05), proving the important contributions of GRSP, SOM and SOC for binding soil particles together into large macroaggregates and improving aggregate stability. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation and subsequently influencing aggregate formation and particle-size distribution in HM polluted soils. Our study highlighted that the introduction of indigenous plant associated with AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils, and that proper management practices should be developed to guarantee maximum benefits from plant-AMF symbiosis during ecological restoration.

  1. Evaluation of non-stationarity of floods in the Northeastern and Upper Midwest United States

    NASA Astrophysics Data System (ADS)

    Dhakal, N.; Palmer, R. N.

    2017-12-01

    Climate change is likely to impact precipitation as well as snow accumulation and melt in the Northeastern and Upper Midwest Unites States, ultimately affecting the quantity and seasonal distribution of streamflow. Such information is crucial for flood protection polices for example for regional flood frequency analysis. The objective of this study is to analyze seasonality and magnitude of long-term daily annual maximum streamflow (AMF) records and its changes for 158 sites in Northeastern and Upper Midwest Unites States. Temporal trends were analyzed based on two 30-year blocks (1951-1980 and 1981-2010) of AMF. Seasonality is assessed based on nonparametric directional/circular statistical method that allows for an adaptive estimation of seasonal density. The results for temporal change in seasonality showed mixed pattern/trend across the stations. While for majority of the stations, the distribution of AMF timing is strongly unimodal (concentrated around Spring season) for the earlier time period, the strength in the modes have gotten weaker during the recent time period for a number of stations along the coastal states indicating the emergence of multiple modes and change in seasonality therein. Assessment of the temporal change in magnitude of AMF based on the Mann-Kendall nonparametric test shows that majority of the stations do not show significant increasing or decreasing trend for either time period. It is also observed that comparatively more stations show increasing trends in magnitude based on AMF from earlier time period and most of these stations are coastal sites concentrated in the southeastern part of the region. Our study focused on both seasonality and magnitude of AMF has important implications for flood management and mitigation.

  2. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [heat sensitivity of bacterial spores

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.; Reyes, A. L.; Wehby, A. J.; Crawford, R. G.; Wimsatt, J. C.; Peeler, J. T.

    1973-01-01

    The mechanism for thermal inactivation of bacterial spores under moist or dry heat was studied. Experimental conditions were established relating to spore loss of heat resistance and loss of optical density as a measure of the rate and extent of germination in spore suspensions. Events occurring during germination were correlated with phase darkening (refractility and non-refractility of spores), stainability characteristics of heat and non-heat treated spores, morphological characteristics, and studies on swelling of spores by an increase in packed cell volume.

  3. Aerosol and Surface Deposition Characteristics of Two Surrogates for Bacillus anthracis Spores

    PubMed Central

    Stapleton, Helen L.

    2016-01-01

    ABSTRACT Spores of an acrystalliferous derivative of Bacillus thuringiensis subsp. kurstaki, termed Btcry−, are morphologically, aerodynamically, and structurally indistinguishable from Bacillus anthracis spores. Btcry− spores were dispersed in a large, open-ended barn together with spores of Bacillus atrophaeus subsp. globigii, a historically used surrogate for Bacillus anthracis. Spore suspensions (2 × 1012 CFU each of B. atrophaeus subsp. globigii and Btcry−) were aerosolized in each of five spray events using a backpack misting device incorporating an air blower; a wind of 4.9 to 7.6 m s−1 was also flowing through the barn in the same direction. Filter air samplers were situated throughout the barn to assess the aerosol density of the spores during each release. Trays filled with a surfactant in aqueous buffer were placed on the floor near the filter samplers to assess spore deposition. Spores were also recovered from arrays of solid surfaces (concrete, aluminum, and plywood) that had been laid on the floor and set up as a wall at the end of the barn. B. atrophaeus subsp. globigii spores were found to remain airborne for significantly longer periods, and to be deposited on horizontal surfaces at lower densities, than Btcry− spores, particularly near the spray source. There was a 6-fold-higher deposition of Btcry− spores than of B. atrophaeus subsp. globigii spores on vertical surfaces relative to the surrounding airborne density. This work is relevant for selecting the best B. anthracis surrogate for the prediction of human exposure, hazard assessment, and hazard management following a malicious release of B. anthracis. IMPORTANCE There is concern that pathogenic bacteria could be maliciously disseminated in the air to cause human infection and disruption of normal life. The threat from spore-forming organisms, such as the causative agent of anthrax, is particularly serious. In order to assess the extent of this risk, it is important to have a surrogate organism that can be used to replicate the dispersal characteristics of the threat agent accurately. This work compares the aerosol dispersal and deposition behaviors of the surrogates Btcry− and B. atrophaeus subsp. globigii. Btcry− spores remained in the air for a shorter time, and were markedly more likely to adhere to vertical surfaces, than B. atrophaeus subsp. globigii spores. PMID:27613681

  4. Use of alternative carrier materials in AOAC Official Method 2008.05, efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface, quantitative three-step method.

    PubMed

    Tomasino, Stephen F; Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Hamilton, Martin A; Pines, Rebecca M

    2010-01-01

    The quantitative Three-Step Method (TSM) for testing the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface (glass) was adopted as AOAC Official Method 2008.05 in May 2008. The TSM uses 5 x 5 x 1 mm coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure of inoculated carriers and neutralization, spores are removed from carriers in three fractions (gentle washing, fraction A; sonication, fraction B; and gentle agitation, fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. The counts are summed over the three fractions to provide the density (viable spores per carrier), which is log10-transformed to arrive at the log density. The log reduction is calculated by subtracting the mean log density for treated carriers from the mean log density for control carriers. This paper presents a single-laboratory investigation conducted to evaluate the applicability of using two porous carrier materials (ceramic tile and untreated pine wood) and one alternative nonporous material (stainless steel). Glass carriers were included in the study as the reference material. Inoculated carriers were evaluated against three commercially available liquid sporicides (sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde), each at two levels of presumed efficacy (medium and high) to provide data for assessing the responsiveness of the TSM. Three coupons of each material were evaluated across three replications at each level; three replications of a control were required. Even though all carriers were inoculated with approximately the same number of spores, the observed counts of recovered spores were consistently higher for the nonporous carriers. For control carriers, the mean log densities for the four materials ranged from 6.63 for wood to 7.14 for steel. The pairwise differences between mean log densities, except for glass minus steel, were statistically significant (P < 0.001). The repeatability standard deviations (Sr) for the mean control log density per test were similar for the four materials, ranging from 0.08 for wood to 0.13 for tile. Spore recovery from the carrier materials ranged from approximately 20 to 70%: 20% (pine wood), 40% (ceramic tile), 55% (glass), and 70% (steel). Although the percent spore recovery from pine wood was significantly lower than that from other materials, the performance data indicate that the TSM provides a repeatable and responsive test for determining the efficacy of liquid sporicides on both porous and nonporous materials.

  5. Microbial decontamination of onion powder using microwave-powered cold plasma treatments.

    PubMed

    Kim, Jung Eun; Oh, Yeong Ji; Won, Mee Yeon; Lee, Kwang-Sik; Min, Sea C

    2017-04-01

    The effects of microwave-integrated cold plasma (CP) treatments against spores of Bacillus cereus and Aspergillus brasiliensis and Escherichia coli O157:H7 on onion powder were investigated. The growth of B. cereus, A. brasiliensis, and E. coli O157:H7 in the treated onion powder was assessed during storage at 4 and 25 °C, along with the physicochemical and sensory properties of the powder. Onion powder inoculated with B. cereus was treated with CP using helium as a plasma-forming gas, with simultaneous exposure to low microwave density at 170 mW m -2 or high microwave density at 250 mW m -2 . High microwave density-CP treatment (HMCPT) was more effective than low microwave density-CP treatment (LMCPT) in inhibiting B. cereus spores, but induced the changes in the volatile profile of powder. Increase in treatment time in HMCPT yielded greater inhibition of B. cereus spores. Vacuum drying led to greater inhibition of spores of B. cereus and A. brasiliensis than hot-air drying. HMCPT at 400 W for 40 min, determined as the optimum conditions for B. cereus spore inhibition, initially reduced the numbers of B. cereus, A. brasiliensis, and E. coli O157:H7 by 2.1 log spores/cm 2 , 1.6 log spores/cm 2 , and 1.9 CFU/cm 2 , respectively. The reduced number of B. cereus spores remained constant, while the number of A. brasiliensis spores in the treated powder increased gradually during storage at 4 and 25 °C and was not different from the number of spores in untreated samples by the end of storage at 4 °C. The E. coli counts in the treated powder fell below the level of detection after day 21 at both temperatures. HMCPT did not affect the color, antioxidant activity, or quercetin concentration of the powder during storage at both temperatures. The microwave-integrated CPTs showed potential for nonthermal decontamination of onion powder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Decrease in optical density as a results of germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Porębska, I.; Rutkowska, M.; Sokołowska, B.

    2015-01-01

    Alicyclobacillus acidoterrestris is a spore-forming bacterium, causing spoilage of juices. The spores of these bacteria have the ability to survive in the typical conditions used for thermal pasteurization. Therefore, the use of other techniques such as high hydrostatic pressure is considered for their inactivation. The effect of hydrostatic pressure of 200-500 MPa, at temperatures 4-50 °C for 15 min, on the dynamics of germination of A. acidoterrestris spores in apple juice and pH 4 buffer was studied. To estimate the share of germinated spores, the method of determining the optical density at a wavelength of 660 nm (OD660) was used. Parameters of hydrostatic pressure treatment used in this work affected the dynamics of germination of A. acidoterrestris spores in apple juice, and the temperature had the greatest effect. The results indicate that nutrients present in apple juice can promote the germination of A. acidoterrestris spores. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014) in Nantes (France) 15-18 July 2014.

  8. [Temporal diversity dynamics of the arbuscular mycorrhizal fungi of Larrea tridentata (Sesse & Mocino ex DC) Coville in a semi-arid ecosystem].

    PubMed

    Hernández-Zamudio, Genoveva; Sáenz-Mata, Jorge; Moreno-Reséndez, Alejandro; Castañeda-Gaytán, Gamaliel; Ogaz, Alfredo; Carballar-Hernández, Santos; Hernández-Cuevas, Laura

    2017-12-06

    Arbuscular mycorrhizal fungi (AMF) of arid and semiarid ecosystems are important for the development of plants that grow under biotic stress in wild or in agro-ecosystems. There is little information on the temporal diversity of these organisms in perennial plants from arid ecosystems in northern Mexico. On this study, the mycorrhizal colonization and the temporal diversity of AMF in the rhizosphere of Larrea tridentata, perennial plant abundant in the Chihuahuan Desert region were explored. Samples of the rhizosphere and roots of fifteen plants in each of the three sampling dates during the 2015 year were obtained. A total of 17 species of HMA belonging to 12 genera and 7 families within the phylum Glomeromycota in all three sampling dates were found. Funneliformis geosporum was the dominant species belonging to the family Glomeraceae which possess the highest genera number on L. tridentata. The highest mycorrhization percentage was in February with 83.22, followed by September and May with 75.27 and 65.27%, respectively. A maximum of 16 AM fungal species were isolated and identified from L. tridentata rhizosphere in February, 15 species in May and 12 species in September. Statistical analysis showed significant differences between sampling dates in the spores number. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    NASA Astrophysics Data System (ADS)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.

  10. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  11. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    PubMed

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. IDENTIFICATION AND CHARACTERIZATION OF INFECTIOUS AND NON-INFECTIOUS SUB-POPULATIONS OF ENCEPHALITIZOON INTESTINALIS SPORES PURIFIED FROM IN VITRO CELL CULTURE

    EPA Science Inventory

    Background: Encephalitizoon intestinalis spores were propagated in rabbit kidney (RK-13) cells and were purified using density gradient (Percoll [registered trademark]) centrifugation. Purified spores were enumeraged and aliquotted using flow cytometry with cell sorting for use...

  13. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    PubMed

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.

  14. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur; Chen, Xi

    2014-03-01

    Materials that mechanically respond to external chemical stimuli have applications in a wide range of fields. Inspired by biological systems, stimuli-responsive materials that can oscillate, transport fluid, mimic homeostasis, and undergo complex changes in shape have been previously demonstrated. However, the effectiveness of synthetic stimuli-responsive materials in generating work is limited when compared to mechanical actuators. During studies of bacterial sporulation, we have found that the mechanical response of Bacillus spores to water gradients exhibits an energy density of more than 10 MJ/m3, which is two orders of magnitude higher than synthetic water-responsive materials. We also identified mutations that can approximately double the energy density of the spores, and found that spores can self-assemble into dense, submicron-thick monolayers on substrates such as silicon microcantilevers and elastomer sheets, creating self-assembled actuators that can remotely generate electrical power from an evaporating body of water. The energy conversion mechanism of Bacillus spores may facilitate synthetic stimuli-responsive materials with significantly higher energy densities. We acknowledge support from the U.S. Dept. of Energy Early Career Research Program, the Wyss Institute for Biologically Inspired Engineering, and the Rowland Institute at Harvard.

  15. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest.

    PubMed

    Chen, Liang; Zheng, Yong; Gao, Cheng; Mi, Xiang-Cheng; Ma, Ke-Ping; Wubet, Tesfaye; Guo, Liang-Dong

    2017-05-01

    Elucidating symbiotic relationships between arbuscular mycorrhizal fungi (AMF) and plants contributes to a better understanding of their reciprocally dependent coexistence and community assembly. However, the main drivers of plant and AMF community assembly remain unclear. In this study, we examined AMF communities from 166 root samples of 17 woody plant species from 10 quadrats in a Chinese subtropical forest using 454 pyrosequencing of 18S rRNA gene to describe symbiotic AMF-plant association. Our results show the woody plant-AMF networks to be highly interconnected and nested, but in antimodular and antispecialized manners. The nonrandom pattern in the woody plant-AMF network was explained by plant and AMF phylogenies, with a tendency for a stronger phylogenetic signal by plant than AMF phylogeny. This study suggests that the phylogenetic niche conservatism in woody plants and their AMF symbionts could contribute to interdependent AMF and plant community assembly in this subtropical forest ecosystem. © 2017 John Wiley & Sons Ltd.

  17. Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota).

    PubMed

    Corradi, Nicolas; Hijri, Mohamed; Fumagalli, Luca; Sanders, Ian R

    2004-11-01

    The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.

  18. Novel Formulation Strategy to Improve the Feasibility of Amifostine Administration.

    PubMed

    Ranganathan, Kavitha; Simon, Eric; Lynn, Jeremy; Snider, Alicia; Zhang, Yu; Nelson, Noah; Donneys, Alexis; Rodriguez, Jose; Buchman, Lauren; Reyna, Dawn; Lipka, Elke; Buchman, Steven R

    2018-03-19

    Amifostine (AMF), a radioprotectant, is FDA-approved for intravenous administration in cancer patients receiving radiation therapy (XRT). Unfortunately, it remains clinically underutilized due to adverse side effects. The purpose of this study is to define the pharmacokinetic profile of an oral AMF formulation potentially capable of reducing side effects and increasing clinical feasibility. Calvarial osteoblasts were radiated under three conditions: no drug, AMF, and WR-1065 (active metabolite). Osteogenic potential of cells was measured using alkaline phosphatase staining. Next, rats were given AMF intravenously or directly into the jejunum, and pharmacokinetic profiles were evaluated. Finally, rats were given AMF orally or subcutaneously, and blood samples were analyzed for pharmacokinetics. WR-1065 preserved osteogenic potential of calvarial osteoblasts after XRT to a greater degree than AMF. Direct jejunal AMF administration incurred a systemic bioavailability of 61.5%. Subcutaneously administrated AMF yielded higher systemic levels, a more rapid peak exposure (0.438 vs. 0.875 h), and greater total systemic exposure of WR-1065 (116,756 vs. 16,874 ng*hr/ml) compared to orally administered AMF. Orally administered AMF achieves a similar systemic bioavailability and decreased peak plasma level of WR-1065 compared to intravenously administered AMF, suggesting oral AMF formulations maintain radioprotective efficacy without causing onerous side effects, and are clinically feasible.

  19. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance.

    PubMed

    Gehring, Catherine A; Connell, Joseph H

    2006-03-01

    The roots of rain forest plants are frequently colonized by arbuscular mycorrhizal fungi (AMF) that can promote plant growth in the nutrient poor soils characteristic of these forests. However, recent studies suggest that both the occurrence of AMF on rain forest plants and the dependence of rain forest plants on AMF can be highly variable. We examined the occurrence and levels of AMF colonization of some common seedling species in a tropical and a subtropical rain forest site in Queensland, Australia. We also used a long-term database to compare the growth and mortality rates of seedling species that rarely formed AMF with those that regularly formed AMF. In both forests, more than one-third of the seedling species rarely formed AMF associations, while 40% of species consistently formed AMF in the tropical site compared to 27% in the subtropical site. Consistent patterns of AMF occurrence were observed among plant families at the two sites. Variation among seedling species in AMF occurrence or colonization was not associated with differences in seed mass among species, variation in seedling size and putative age within a species, or lack of AMF inoculum in the soil. Comparisons of four seedling species growing both in the shaded understory and in small canopy gaps revealed an increase in AMF colonization in two of the four species in gaps, suggesting that light limitation partially explains the low occurrence of AMF. Seedling survival was significantly positively associated with seed biomass but not with AMF colonization. Furthermore, seedling species that regularly formed AMF and those that did not had similar rates of growth and survival, suggesting that mycorrhizal and nonmycorrhizal strategies were equivalent in these forests. Furthermore, the high numbers of seedlings that lacked AMF and the overall low rate of seedling growth (the average seedling required 6 years to double its height) suggest that most seedlings did not receive significant indirect benefits from AMF through connection to canopy trees via a common mycorrhizal network.

  20. Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions.

    PubMed

    Saia, Sergio; Ruisi, Paolo; Fileccia, Veronica; Di Miceli, Giuseppe; Amato, Gaetano; Martinelli, Federico

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant's reaction to stressful environments, soil fertility, and a plant's relationship with other microorganisms. Such effects imply a broad reprogramming of the plant's metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth-promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth-promoting rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-rich environment. These two treatments were compared to infection by the natural AMF population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by AMF and decreased the root concentrations of most compounds in all metabolic pathways, especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF+PGPR increased the concentrations of such compounds compared to inoculation with AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were mostly changed by the treatments, with reduced amination activity in roots most likely due to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic compounds for their own growth, it is likely that this result was due to an increased concentration of mineral N in soil inoculated with AMF+PGPR compared to AMF alone.

  1. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2 O hotspots.

    PubMed

    Storer, Kate; Coggan, Aisha; Ineson, Phil; Hodge, Angela

    2017-12-05

    Nitrous oxide (N 2 O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N 2 O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N 2 O production was measured both before and after addition of ammonium and nitrate. In both experiments, N 2 O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N 2 O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N 2 O was produced following nitrate application to either AMF treatment. Thus, the main N 2 O source in this system appeared to be via nitrification, and the production of N 2 O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N 2 O production. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Mutualism in a Reduced Gravity Environment (MuRGE)

    NASA Technical Reports Server (NTRS)

    Haire, Timothy C.

    2010-01-01

    Mutualism in a Reduced Gravity Environment (MuRGE) is a ground research study to determine the feasibility of assessing fungi-plant (Piriformospora indica-Arabidopsis thaliana) interactions in microgravity. Seeds from the plant Arabiddospsis thaliana (At) will be grown in the presence of Piriformospora indica (Pi) an endophytic Sebacinacae family fungus. Pi is capable of colonizing the roots of a wide variety of plant species, including non-mycorrhizal hosts like At, and promoting plant growth similarly to AMF (arbusuclar mychorrizal fungi) unlike most AMF, Pi is not an obligate plant symbiont and can be grown in the absence of a host. In the presence of a suitable plant host, Pi can attach to and colonize root tips. Interaction visualization is accomplished with strong autofluorescence in the roots, followed by root colonization via fungal hyphae, and chlamydospore production. Increased root growth can be observed even before root colonization is detectable. In addition, Pi chlamydospores generated from axenic culture in microgravity will be used to inoculate roots of At grown in 1g to determine the effect of microgravity upon the inherent virulence or beneficial effects. Based on recent reports of increased virulence of S. typhimurium, P. aeruginosa, and S. Pneumoniae in reduced gravity, differences in microbial pathogenic responses and host plant systemic acquired resistance are expected. The focus of this project within MuRGE involved the development P. indica culture media evaluation and microscopy protocol development. High, clean spore harvest yields for the detection of fungi-plant interactions microscopically was the immediate goal of this experiment.

  3. Rapid Mitochondrial Genome Evolution through Invasion of Mobile Elements in Two Closely Related Species of Arbuscular Mycorrhizal Fungi

    PubMed Central

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers. PMID:23637766

  4. Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi.

    PubMed

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers.

  5. Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China.

    PubMed

    Xu, Tianle; Veresoglou, Stavros D; Chen, Yongliang; Rillig, Matthias C; Xiang, Dan; Ondřej, Daniel; Hao, Zhipeng; Liu, Lei; Deng, Ye; Hu, Yajun; Chen, Weiping; Wang, Juntao; He, Jizheng; Chen, Baodong

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualists of terrestrial plants and play key roles in regulating various ecosystem processes, but little is known about AMF biogeography at regional scale. This study aims at exploring the key predictors of AMF communities across a 5000-km transect in northern China. We determined the soil AMF species richness and community composition at 47 sites representative of four vegetation types (meadow steppe, typical steppe, desert steppe and desert) and related them to plant community characteristics, abiotic factors and geographic distance. The results showed that soil pH was the strongest predictor of AMF richness and phylogenetic diversity. However, abiotic factors only have a low predictive effect on AMF community composition or phylogenetic patterns. By contrast, we found a significant relationship between community composition of AMF and plants, which was a surprising result given the extent of heterogeneity in the plant community across this transect. Moreover, the geographic distance predominantly explained the AMF phylogenetic structure, implying that history evolutionary may play a role in shaping AMF biogeographic patterns. This study highlighted the different roles of main factors in predicting AMF biogeography, and bridge landscape-scale studies to more recent global-scale efforts. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF effects on growth may overlook changes in plant traits that have the potential to influence interactions, and hence yield, on farms. Given the effects of AMF on plant traits documented here, and the great importance of both herbivores and pollinators to wild and cultivated plants, we advocate for comprehensive assessments of mycorrhizal effects in complex community contexts, with the aim of incorporating multispecies interactions both above and below the soil surface.

  7. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    PubMed

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  8. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    PubMed Central

    Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation. PMID:28738069

  9. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    PubMed

    Janoušková, Martina; Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  10. Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding

    PubMed Central

    Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng

    2016-01-01

    Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection. PMID:26799713

  11. Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding.

    PubMed

    Fan, Wei; Zong, Jie; Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng

    2016-01-01

    Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.

  12. Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions

    PubMed Central

    Saia, Sergio; Ruisi, Paolo; Fileccia, Veronica; Di Miceli, Giuseppe; Amato, Gaetano; Martinelli, Federico

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant’s reaction to stressful environments, soil fertility, and a plant’s relationship with other microorganisms. Such effects imply a broad reprogramming of the plant’s metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth—promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth–promoting rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-rich environment. These two treatments were compared to infection by the natural AMF population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by AMF and decreased the root concentrations of most compounds in all metabolic pathways, especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF+PGPR increased the concentrations of such compounds compared to inoculation with AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were mostly changed by the treatments, with reduced amination activity in roots most likely due to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic compounds for their own growth, it is likely that this result was due to an increased concentration of mineral N in soil inoculated with AMF+PGPR compared to AMF alone. PMID:26067663

  13. Simple coil-powering techniques for generating 10KA/m alternating magnetic field at multiple frequencies using 0.5KW RF power for magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Sun, Tengfei; Ranjan, Ashish

    2017-02-01

    Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.

  14. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange.

    PubMed

    Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina

    2017-01-01

    Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Spore Density Determines Infection Strategy by the Plant Pathogenic Fungus Plectosphaerella cucumerina1[OPEN

    PubMed Central

    2016-01-01

    Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host. PMID:26842622

  16. Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China

    PubMed Central

    Zhang, Zhiming; Yang, Jiantao; Zhu, Yiwei

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China). Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05). The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities. PMID:29230378

  17. Herbivore removal reduces influence of arbuscular mycorrhizal fungi on plant growth and tolerance in an East African savanna.

    PubMed

    González, Jonathan B; Petipas, Renee H; Franken, Oscar; Kiers, E Toby; Veblen, Kari E; Brody, Alison K

    2018-05-01

    The functional relationship between arbuscular mycorrhizal fungi (AMF) and their hosts is variable on small spatial scales. Here, we hypothesized that herbivore exclusion changes the AMF community and alters the ability of AMF to enhance plant tolerance to grazing. We grew the perennial bunchgrass, Themeda triandra Forssk in inoculum from soils collected in the Kenya Long-term Exclosure Experiment where treatments representing different levels of herbivory have been in place since 1995. We assessed AMF diversity in the field, using terminal restriction fragment length polymorphism and compared fungal diversity among treatments. We conducted clipping experiments in the greenhouse and field and assessed regrowth. Plants inoculated with AMF from areas accessed by wild herbivores and cattle had greater biomass than non-inoculated controls, while plants inoculated with AMF from where large herbivores were excluded did not benefit from AMF in terms of biomass production. However, only the inoculation with AMF from areas with wild herbivores and no cattle had a positive effect on regrowth, relative to clipped plants grown without AMF. Similarly, in the field, regrowth of plants after clipping in areas with only native herbivores was higher than other treatments. Functional differences in AMF were evident despite little difference in AMF species richness or community composition. Our findings suggest that differences in large herbivore communities over nearly two decades has resulted in localized, functional changes in AMF communities. Our results add to the accumulating evidence that mycorrhizae are locally adapted and that functional differences can evolve within small geographical areas.

  18. Colonization and community structure of root-associated microorganisms of Sabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater.

    PubMed

    Taniguchi, Takeshi; Usuki, Hiroyuki; Kikuchi, Junichi; Hirobe, Muneto; Miki, Naoko; Fukuda, Kenji; Zhang, Guosheng; Wang, Linhe; Yoshikawa, Ken; Yamanaka, Norikazu

    2012-08-01

    Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.

  19. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    PubMed

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  20. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China.

    PubMed

    Li, Ling-Fei; Li, Tao; Zhang, Yan; Zhao, Zhi-Wei

    2010-03-01

    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of Bothriochloa pertusa, Cajanus cajan and Heteropogon contortus in a fallow land (FL) and an undisturbed land (UL) were characterized. The large subunit rDNA genes of AMF from roots were amplified and cloned. A total of 2353 clones were screened by restriction fragment length polymorphism, and 428 clones were subsequently sequenced. A total of 393 AMF sequences, which were grouped into 100 operational taxonomic units, were obtained. Phylogenetic analysis revealed that the AMF sequences belonged to Glomus, Acaulospora and Scutellospora, and that Glomus was the dominant genus. Of the 393 AMF sequences, 81% were novel. The diversity of AMF colonizing the same plant species was higher in the UL than in the FL, which confirmed strongly from the molecular evidence that soil disturbance reduced AMF population and species richness. The results revealed that AMF communities were significantly different among host-plant species and between the two habitats. The similarity of AMF communities colonizing different plant species within a habitat was higher than that of the same plant species from different habitats. The molecular evidence supported our previous hypothesis based on morphological analyses that AMF communities were more influenced by habitats compared with host preference.

  1. Communities of arbuscular mycorrhizal fungi in Pyrus pyrifolia var. culta (Japanese pear) and an understory herbaceous plant Plantago asiatica.

    PubMed

    Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide

    2013-01-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees.

  2. Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems

    PubMed Central

    Sanders, Ian R; Rodriguez, Alia

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems. PMID:27128992

  3. Communities of Arbuscular Mycorrhizal Fungi in Pyrus pyrifolia var. culta (Japanese pear) and an Understory Herbaceous Plant Plantago asiatica

    PubMed Central

    Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide

    2013-01-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees. PMID:23614902

  4. Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau.

    PubMed

    Xiang, Xingjia; Gibbons, Sean M; He, Jin-Sheng; Wang, Chao; He, Dan; Li, Qian; Ni, Yingying; Chu, Haiyan

    2016-01-01

    The Qinghai-Tibet Plateau (QTP) is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF) communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300). Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3 (-) were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity.

  5. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration.

    PubMed

    Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun

    2008-11-08

    We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.

  6. Decrease in diversity and changes in community composition of arbuscular mycorrhizal fungi in roots of apple trees with increasing orchard management intensity across a regional scale.

    PubMed

    van Geel, Maarten; Ceustermans, An; van Hemelrijck, Wendy; Lievens, Bart; Honnay, Olivier

    2015-02-01

    Understanding which factors drive the diversity and community composition of arbuscular mycorrhizal fungi (AMF) is important due to the role of these soil micro-organisms in ecosystem functioning and current environmental threats to AMF biodiversity. Additionally, in agro-ecosystems, this knowledge may help to evaluate their use in making agriculture more sustainable. Here, we used 454-pyrosequencing of small subunit rRNA gene amplicons to quantify AMF diversity and community composition in the roots of cultivated apple trees across 24 orchards in central Belgium. We aimed at identifying the factors (soil chemical variables, organic vs. conventional farming, and geographical location) that affect AMF diversity and community composition. In total, 110 AMF OTUs were detected, of which the majority belonged to the Glomeraceae (73%) and the Claroideoglomeraceae (19%). We show that soil characteristics and farming system, rather than the geographical location of the orchards, shape AMF communities on apple trees. Particularly, plant-available P content of the soil was associated with lower AMF diversity. In orchards with a lower plant-available P content of the soil (P < 100 mg/kg soil), we also found a significantly higher AMF diversity in organically managed orchards as compared to conventionally managed orchards. Finally, the degree of nestedness of the AMF communities was related to plant-available P and N content of the soil, pointing at a progressive loss of AMF taxa with increasing fertilization. Overall, we conclude that a combination of organic orchard management and moderate fertilization may preserve diverse AMF communities on apple trees and that AMF in the roots of apple trees appear not to be dispersal limited at the scale of central Belgium. © 2015 John Wiley & Sons Ltd.

  7. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    PubMed Central

    Veiga, Rita S. L.; Jansa, Jan; Frossard, Emmanuel; van der Heijden, Marcel G. A.

    2011-01-01

    Background Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. Methodology/Principal Findings First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. Conclusions/Significance Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions. PMID:22164216

  8. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best practices are given and they will be used in QA4ECV community effort retrieval algorithm to be applied in past and future UV/Vis instrumentation for generating quality assured multi decadal NO2 and HCHO records.

  9. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms

    PubMed Central

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W.; Stout, Michael

    2018-01-01

    Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil (Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm (Spodoptera frugiperda, FAW), and against infection by sheath blight (Rhizoctonia solani, ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens. PMID:29922319

  10. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms.

    PubMed

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W; Stout, Michael

    2018-01-01

    Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil ( Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm ( Spodoptera frugiperda , FAW), and against infection by sheath blight ( Rhizoctonia solani , ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens.

  11. High-resolution community profiling of arbuscular mycorrhizal fungi.

    PubMed

    Schlaeppi, Klaus; Bender, S Franz; Mascher, Fabio; Russo, Giancarlo; Patrignani, Andrea; Camenzind, Tessa; Hempel, Stefan; Rillig, Matthias C; van der Heijden, Marcel G A

    2016-11-01

    Community analyses of arbuscular mycorrhizal fungi (AMF) using ribosomal small subunit (SSU) or internal transcribed spacer (ITS) DNA sequences often suffer from low resolution or coverage. We developed a novel sequencing based approach for a highly resolving and specific profiling of AMF communities. We took advantage of previously established AMF-specific PCR primers that amplify a c. 1.5-kb long fragment covering parts of SSU, ITS and parts of the large ribosomal subunit (LSU), and we sequenced the resulting amplicons with single molecule real-time (SMRT) sequencing. The method was applicable to soil and root samples, detected all major AMF families and successfully discriminated closely related AMF species, which would not be discernible using SSU sequences. In inoculation tests we could trace the introduced AMF inoculum at the molecular level. One of the introduced strains almost replaced the local strain(s), revealing that AMF inoculation can have a profound impact on the native community. The methodology presented offers researchers a powerful new tool for AMF community analysis because it unifies improved specificity and enhanced resolution, whereas the drawback of medium sequencing throughput appears of lesser importance for low-diversity groups such as AMF. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.

    PubMed

    Croll, Daniel; Sanders, Ian R

    2009-01-15

    Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory. We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences. Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.

  13. Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.

    2006-01-01

    ??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).

  14. Asexual and sexual replication in sporulating organisms

    NASA Astrophysics Data System (ADS)

    Lee, Bohyun; Tannenbaum, Emmanuel

    2007-08-01

    Replication via sporulation is the replication strategy for all multicellular life, and may even be observed in unicellular life (such as with budding yeast). We consider diploid populations replicating via one of two possible sporulation mechanisms. (1) Asexual sporulation, whereby adult organisms produce single-celled diploid spores that grow into adults themselves. (2) Sexual sporulation, whereby adult organisms produce single-celled diploid spores that divide into haploid gametes. The haploid gametes enter a haploid “pool,” where they may recombine with other haploids to form a diploid spore that then grows into an adult. We consider a haploid fusion rate given by second-order reaction kinetics. We work with a simplified model where the diploid genome consists of only two chromosomes, each of which may be rendered defective with a single point mutation of the wild-type. We find that the asexual strategy is favored when the rate of spore production is high compared to the characteristic growth rate from a spore to a reproducing adult. Conversely, the sexual strategy is favored when the rate of spore production is low compared to the characteristic growth rate from a spore to a reproducing adult. As the characteristic growth time increases, or as the population density increases, the critical ratio of spore production rate to organism growth rate at which the asexual strategy overtakes the sexual one is pushed to higher values. Therefore, the results of this model suggest that, for complex multicellular organisms, sexual replication is favored at high population densities and low growth and sporulation rates.

  15. Severe plant invasions can increase mycorrhizal fungal abundance and diversity.

    PubMed

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-07-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.

  16. ITS fungal barcoding primers versus 18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three mountain vineyards.

    PubMed

    Berruti, Andrea; Desirò, Alessandro; Visentin, Stefano; Zecca, Odoardo; Bonfante, Paola

    2017-10-01

    ITS primers commonly used to describe soil fungi are flawed for AMF although it is unknown the extent to which they distort the interpretation of community patterns. Here, we focus on how the use of a specific ITS2 fungal barcoding primer pair biased for AMF changes the interpretation of AMF community patterns from three mountain vineyards compared to a novel AMF-specific approach on the 18S. We found that although discrepancies were present in the taxonomic composition of the two resulting datasets, the estimation of diversity patterns among AMF communities was similar and resulted in both primer systems being able to correctly assess the community-structuring effect of location, compartment (root vs. soil) and environment. Both methodologies made it possible to detect the same alpha-diversity trend among the locations under study but not between root and soil transects. We show that the ITS2 primer system for fungal barcoding provides a good estimate of both AMF community structure and relation to environmental variables. However, this primer system does not fit in with cross-compartment surveys (roots vs. soil) as it can underestimate AMF diversity in soil samples. When specifically focusing on AMF, the 18S primer system resulted in wide coverage and marginal non-target amplification. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    PubMed Central

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

  18. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  19. Soil moisture--a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake.

    PubMed

    Deepika, Sharma; Kothamasi, David

    2015-01-01

    Multiple species of arbuscular mycorrhizal fungi (AMF) can colonize roots of an individual plant species but factors which determine the selection of a particular AMF species in a plant root are largely unknown. The present work analysed the effects of drought, flooding and optimal soil moisture (15-20 %) on AMF community composition and structure in Sorghum vulgare roots, using PCR-RFLP. Rhizophagus irregularis (isolate BEG 21), and rhizosphere soil (mixed inoculum) of Heteropogon contortus, a perennial C4 grass, collected from the semi-arid Delhi ridge, were used as AMF inocula. Soil moisture functioned as an abiotic filter and affected AMF community assembly inside plant roots by regulating AMF colonization and phylotype diversity. Roots of plants in flooded soils had lowest AMF diversity whilst root AMF diversity was highest under the soil moisture regime of 15-20 %. Although plant biomass was not affected, root P uptake was significantly influenced by soil moisture. Plants colonized with R. irregularis or mixed AMF inoculum showed higher root P uptake than non-mycorrhizal plants in drought and control treatments. No differences in root P levels were found in the flooded treatment between plants colonized with R. irregularis and non-mycorrhizal plants, whilst under the same treatment, root P uptake was lower in plants colonized with mixed AMF inoculum than in non-mycorrhizal plants.

  20. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies.

    PubMed

    Ramírez-Viga, Thai Khan; Aguilar, Ramiro; Castillo-Argüero, Silvia; Chiappa-Carrara, Xavier; Guadarrama, Patricia; Ramos-Zapata, José

    2018-06-04

    The presence of arbuscular mycorrhizal fungi (AMF) in wetlands is widespread. Wetlands are transition ecosystems between aquatic and terrestrial systems, where shallow water stands or moves over the land surface. The presence of AMF in wetlands suggests that they are ecologically significant; however, their function is not yet clearly understood. With the aim of determining the overall magnitude and direction of AMF effect on wetland plants associated with them in pot assays, we conducted a meta-analysis of data extracted from 48 published studies. The AMF effect on their wetland hosts was estimated through different plant attributes reported in the studies including nutrient acquisition, photosynthetic activity, biomass production, and saline stress reduction. As the common metric, we calculated the standardized unbiased mean difference (Hedges' d) of wetland plant performance attributes in AMF-inoculated plants versus non-AMF-inoculated plants. Also, we examined a series of moderator variables regarding symbiont identity and experimental procedures that could influence the magnitude and direction of an AMF effect. Response patterns indicate that wetland plants significantly benefit from their association with AMF, even under flooded conditions. The beneficial AMF effect differed in magnitude depending on the plant attribute selected to estimate it in the published studies. The nature of these benefits depends on the identity of the host plant, phosphorus addition, and water availability in the soil where both symbionts develop. Our meta-analysis synthetizes the relationship of AMF with wetland plants in pot assays and suggests that AMF may be of comparable importance to wetland plants as to terrestrial plants.

  1. Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau

    PubMed Central

    Xiang, Xingjia; Gibbons, Sean M.; He, Jin-Sheng; Wang, Chao; He, Dan; Li, Qian; Ni, Yingying

    2016-01-01

    Background: The Qinghai-Tibet Plateau (QTP) is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF) communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. Methods: We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300). Results: Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3− were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Discussion: Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity. PMID:27478711

  2. Aboveground Epichloë coenophiala-Grass Associations Do Not Affect Belowground Fungal Symbionts or Associated Plant, Soil Parameters.

    PubMed

    Slaughter, Lindsey C; McCulley, Rebecca L

    2016-10-01

    Cool season grasses host multiple fungal symbionts, such as aboveground Epichloë endophytes and belowground arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs). Asexual Epichloë endophytes can influence root colonization by AMF, but the type of interaction-whether antagonistic or beneficial-varies. In Schedonorus arundinaceus (tall fescue), Epichloë coenophiala can negatively affect AMF, which may impact soil properties and ecosystem function. Within field plots of S. arundinaceus that were either E. coenophiala-free (E-), infected with the common, mammal-toxic E. coenophiala strain (CTE+), or infected with one of two novel, non-toxic strains (AR542 NTE+ and AR584 NTE+), we hypothesized that (1) CTE+ would decrease AMF and DSE colonization rates and reduce soil extraradical AMF hyphae compared to E- or NTE+, and (2) this would lead to E- and NTE+ plots having greater water stable soil aggregates and C than CTE+. E. coenophiala presence and strain did not significantly alter AMF or DSE colonization, nor did it affect extraradical AMF hypha length, soil aggregates, or aggregate-associated C and N. Soil extraradical AMF hypha length negatively correlated with root AMF colonization. Our results contrast with previous demonstrations that E. coenophiala symbiosis inhibits belowground AMF communities. In our mesic, relatively nutrient-rich grassland, E. coenophiala symbiosis did not antagonize belowground symbionts, regardless of strain. Manipulating E. coenophiala strains within S. arundinaceus may not significantly alter AMF communities and nutrient cycling, yet we must further explore these relationships under different soils and environmental conditions given that symbiont interactions can be important in determining ecosystem response to global change.

  3. Changes in Arbuscular Mycorrhizal Fungal Abundance and Community Structure in Response to the Long-Term Manipulation of Inorganic Nutrients in a Lowland Tropical Forest

    NASA Astrophysics Data System (ADS)

    Sheldrake, Merlin; Rosenstock, Nicholas; Tanner, Ed

    2014-05-01

    The arbuscular mycorrhizal (AM) symbiosis is considered primarily mutualistic. In exchange for up to 30% of plants' total photosynthate, AM provide improved access to mineral nutrients. While there is evidence that AM fungi provide nitrogen, potassium and other nutrients to their host plants, most research has focused on their effect on plant phosphorus uptake. Pot experiments have shown, and field experiments have provided further support, that nutrient availability (primarily P, but also N) is inversely correlated with mycorrhizal colonization, indicating plant control over carbon losses to AM fungi. Yet pot experiments have also shown that some fungal species are more mutualistic than others and that AM colonization may cause decreased plant growth, suggesting that plant control is not absolute. AMF communities are diverse, and it is poorly understood how factors such as adaptation to local soil environment, fungal-plant compatibility, and plant nutrient status combine to shape AMF community structure. We conducted a study to examine the relative effects of N, P, and K addition on the AMF community in a plant species rich tropical forest, given the long-held belief that AMF are primarily involved in plant P uptake, particularly on weathered tropical soils. Our study site is the Barro Colorado Nature Monument in Panama. It is a 13 year-old factorial N, P, and K addition experiment (40 m x 40m plots; n=4) in an AMF dominated, old (>200 yr), secondary, tropical forest. Previous research has shown co-limitation by N, P, and K, but the strongest plant growth responses were obtained with K additions. We analyzed the AMF community using 454 pyrosequencing of the ribosomal small subunit (SSU) on both soils and the roots of the 6 dominant AMF tree species. Additionally, we used the AMF-specific neutral lipid fatty acid (NLFA) biomarker as a measure of AMF biomass. Both AMF biomass and community structure were altered by nutrient additions. AMF biomass in soil was reduced by N or P additions (~30% reduction) and heavily reduced by combined N and P addition (~50%), but not affected by K addition, despite K addition bringing about a strong reduction (~ 30%) in plant root biomass at this site. AMF biomass in roots was similarly affected, though the plant roots generally did not have a greater reduction in the +N,+P treatments than in either the +N or +P treatments. Phosphorus had the strongest effect on AMF community composition, although nitrogen also had a strong effect in roots; N and P interacted in their effect on both soil and root AMF communities. K addition did not have an effect on the AMF communities in soil or roots. These finding implicates AMF in plant acquisition of both N and P, particularly given that K addition had a marked effect on root growth but not on AMF community composition or biomass. Responses of AMF to fertilization differed between root and soil communities with some treatments; the reasons for these asymmetric changes in soil versus root AMF communities are discussed as are fungal and plant species-specific responses to fertilization.

  4. Abdominal muscle function and incisional hernia: a systematic review.

    PubMed

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2014-08-01

    Although ventral incisional hernia (VIH) repair in patients is often evaluated in terms of hernia recurrence rate and health-related quality of life, there is no clear consensus regarding optimal operative treatment based on these parameters. It was proposed that health-related quality of life depends largely on abdominal muscle function (AMF), and the present review thus evaluates to what extent AMF is influenced by VIH and surgical repair. The PubMed and EMBASE databases were searched for articles following a systematic strategy for inclusion. A total of seven studies described AMF in relation to VIH. Five studies examined AMF using objective isokinetic dynamometers to determine muscle strength, and two studies examined AMF by clinical examination-based muscle tests. Both equipment-related and functional muscle tests exist for use in patients with VIH, but very few studies have evaluated AMF in VIH. There are no randomized controlled studies to describe the impact of VIH repair on AMF, and no optimal surgical treatment in relation to AMF after VIH repair can be advocated for at this time.

  5. Reinterpreting the Anomalous Mole Fraction Effect: The Ryanodine Receptor Case Study

    PubMed Central

    Gillespie, Dirk; Giri, Janhavi; Fill, Michael

    2009-01-01

    Abstract The origin of the anomalous mole fraction effect (AMFE) in calcium channels is explored with a model of the ryanodine receptor. This model predicted and experiments verified new AMFEs in the cardiac isoform. In mole fraction experiments, conductance is measured in mixtures of ion species X and Y as their relative amounts (mole fractions) vary. This curve can have a minimum (an AMFE). The traditional interpretation of the AMFE is that multiple interacting ions move through the pore in a single file. Mole fraction curves without minima (no AMFEs) are generally interpreted as X displacing Y from the pore in a proportion larger than its bath mole fraction (preferential selectivity). We find that the AMFE is also caused by preferential selectivity of X over Y, if X and Y have similar conductances. This is a prediction applicable to any channel and provides a fundamentally different explanation of the AMFE that does not require single filing or multiple occupancy: preferential selectivity causes the resistances to current flow in the baths, channel vestibules, and selectivity filter to change differently with mole fraction, and produce the AMFE. PMID:19843453

  6. Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi

    PubMed Central

    Hashem, Abeer; Abd_Allah, E.F.; Alqarawi, A.A.; Egamberdieva, Dilfuza

    2015-01-01

    Cassia italica Mill is an important medicinal plant within the family Fabaceae. Pot experiment was conducted to evaluate cadmium stress induced changes in physiological and biochemical attributes in C. italica with and without arbuscular mycorrhizal fungi (AMF). Cadmium stressed plant showed reduced chlorophyll pigment and protein content while AMF inoculation enhanced the chlorophyll and protein content considerably. AMF also ameliorated the cadmium stress induced reduction in total chlorophyll and protein contents by 19.30% and 38.29%, respectively. Cadmium stress enhanced lipid peroxidation while AMF inoculation reduced lipid peroxidation considerably. Increase in proline and phenol content was observed due to cadmium stress and AMF inoculation caused a further increase in proline and phenol content ensuring better growth under stressed conditions. AMF alone also enhanced proline and phenol content. Activity of antioxidant enzymes enhanced under cadmium treatment and AMF inoculation further enhanced their activity thereby strengthening the antioxidant system. Enhanced activities of antioxidants and increased accumulation of osmolytes help plants to avoid damaging impact of oxidative damage. The research has shown that AMF inoculation mitigated the negative impact of stress by reducing the lipid peroxidation and enhancing the antioxidant activity. The present study strongly supports employing AMF as the biological mean for enhancing the cadmium stress tolerance of C. italica. PMID:26858537

  7. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    PubMed

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  9. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    PubMed Central

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  10. The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China.

    PubMed

    Sun, Yuqing; Zhang, Xin; Wu, Zhaoxiang; Hu, Yajun; Wu, Songlin; Chen, Baodong

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) can establish a mutualistic association with most terrestrial plants even in heavy metal contaminated environments. It has been documented that high concentrations of toxic metals, such as arsenic (As) in soil could adversely affect the diversity and function of AMF. However, there are still gaps in understanding the community composition of AMF under long-term As contaminations. In the present study, six sampling sites with different As concentrations were selected in the Realgar mining area in Hunan Province of China. The AMF biodiversity in the rhizosphere soils of the dominant plant species was investigated by sequencing the nuclear small subunit ribosomal RNA (SSU rRNA) gene fragments using 454-pyrosequencing technique. A total of 11 AMF genera were identified, namely Rhizophagus, Glomus, Funneliformis, Acaulospora, Diversispora, Claroideoglomus, Scutellopora, Gigaspora, Ambispora, Praglomus, and Archaeospora, among which Glomus, Rhizophagus, and Claroideoglomus clarodeum were detected in all sampling sites, and Glomus was the dominant AMF genus in the Realgar mining area. Redundancy analysis indicated that soil pH, total As and Cd concentrations were the main factors influencing AMF community structure. There was a negative correlation between the AMF species richness and the total As concentration in the soil, but no significant correlation between the Shannon-Wiener index of the AMF and plants. Our study showed that high As concentrations can exert a selective effect on the AMF populations. Copyright © 2015. Published by Elsevier B.V.

  11. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats.

    PubMed

    Kohout, Petr; Doubková, Pavla; Bahram, Mohammad; Suda, Jan; Tedersoo, Leho; Voříšková, Jana; Sudová, Radka

    2015-04-01

    Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis (Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454-sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3-3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils. © 2015 John Wiley & Sons Ltd.

  12. Plant epiphytism in semiarid conditions revealed the influence of habitat and climate variables on AM fungi communities distribution

    NASA Astrophysics Data System (ADS)

    Torrecillas, Emma; Torres, Pilar; Díaz, Gisela; del Mar Alguacil, Maria; Querejeta, Jose Ignacio; García, Fuensanta; Roldán, Antonio

    2014-05-01

    In semiarid Mediterranean ecosystems epiphytic plant species are practically absent and only some species of palm-trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study we focused in Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils, Our aim was to determine the possible presence of AMF in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AM fungi as determined by microscopic observation, all epiphytic and terrestrial samples analysed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF OTUs. The AMF community composition was clearly different between epiphytic and terrestrial root samples and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.

  13. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi.

    PubMed

    Igiehon, Nicholas O; Babalola, Olubukola O

    2017-06-01

    Worldwide agricultural food production has to double in 2050 so as to feed the global increasing population while reducing dependency on conventional chemical fertilizers plus pesticides. To accomplish this objective, there is the need to explore the several mutualistic interactions between plant roots and rhizosphere microbiome. Biofertilization is the process of boosting the abundance of microorganisms such as arbuscular mycorrhizal fungi (AMF) in the natural plant rhizosphere which depicts a beneficial alternative to chemical fertilization practices. Mineral nutrients uptake by AMF are plausible by means of transporters coded for by different genes and example include phosphate transporter. These fungi can be produced industrially using plant host and these, including the possibility of AMF contamination by other microorganism, are factors militating against large scale production of AMF. AMF isolates can be inoculated in the greenhouse or field, and it has been shown that AMF survival and colonization level were enhanced in soybeans grown on land that was previously cultivated with the same plant. Next generation sequencing (NGS) is now used to gain insight into how AMF interact with indigenous AMF and screen for beneficial microbial candidates. Besides application as biofertilizers, novel findings on AMF that could contribute to maintenance of agricultural development include AMF roles in controlling soil erosion, enhancing phytoremediation, and elimination of other organisms that may be harmful to crops through common mycelia network. The combination of these potentials when fully harnessed under agricultural scenario will help to sustain agriculture and boost food security globally.

  14. Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis

    PubMed Central

    Gao, Xiang; Lu, Xing; Wu, Man; Zhang, Haiyan; Pan, Ruqian; Tian, Jiang; Li, Shuxian; Liao, Hong

    2012-01-01

    Background Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases. Principal Findings We firstly investigated the disease incidence and index of soybean red crown rot under different phosphorus (P) additions in field and found that the natural inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF) could affect soybean red crown rot, particularly without P addition. Further studies in sand culture experiments showed that inoculation with rhizobia or AMF significantly decreased severity and incidence of soybean red crown rot, especially for co-inoculation with rhizobia and AMF at low P. The root colony forming unit (CFU) decreased over 50% when inoculated by rhizobia and/or AMF at low P. However, P addition only enhanced CFU when inoculated with AMF. Furthermore, root exudates of soybean inoculated with rhizobia and/or AMF significantly inhibited pathogen growth and reproduction. Quantitative RT-PCR results indicated that the transcripts of the most tested pathogen defense-related (PR) genes in roots were significantly increased by rhizobium and/or AMF inoculation. Among them, PR2, PR3, PR4 and PR10 reached the highest level with co-inoculation of rhizobium and AMF. Conclusions Our results indicated that inoculation with rhizobia and AMF could directly inhibit pathogen growth and reproduction, and activate the plant overall defense system through increasing PR gene expressions. Combined with optimal P fertilization, inoculation with rhizobia and AMF could be considered as an efficient method to control soybean red crown rot in acid soils. PMID:22442737

  15. Effects of amine fluoride on biofilm growth and salivary pellicles.

    PubMed

    van der Mei, H C; Engels, E; de Vries, J; Busscher, H J

    2008-01-01

    The amine fluoride (AmF) N'-octadecyl-trimethylene-diamine-N,N,N'-tris(2-ethanol)-dihydro-fluoride is a cationic antimicrobial which can have beneficial effects on plaque formation. Here, we determine changes in pellicle and bacterial cell surface properties of the strains Actinomyces naeslundii HM1, Streptococcus mutans NS, S.mutans ATCC 700610, S. sobrinus HG1025 and S. oralis HM1 upon adsorption of this AmF and accompanying effects on bacterial adhesion and biofilm growth. In vitro pellicles had a zeta potential of -12 mV that became less negative upon adsorption of AmF. The chemical functionalities in which carbon and oxygen were involved changed after AmF adsorption and AmF-treated pellicles had a greater surface roughness than untreated pellicles. Water contact angles in vitro decreased from 56 to 45 degrees upon AmF treatment, which corresponded with water contact angles (44 degrees ) measured intraorally on the front incisors of volunteers immediately after using an AmF-containing toothpaste. All bacterial strains were negatively charged and their isoelectric points (IEP) increased upon AmF adsorption. Minimal inhibitory concentrations were smallest for strains exhibiting the largest increase in IEP. Adhesion to salivary pellicles and biofilm growth of the mutans streptococcal strains were significantly reduced after AmF treatment, but not of A. naeslundii or S. oralis. However, regardless of the strain involved, biofilm viability decreased significantly after AmF treatment. The electrostatic interaction between cationic AmF and negatively charged bacterial cell surfaces is pivotal in establishing reduced biofilm formation by AmF through a combination of effects on initial adhesion and killing. The major effect of AmF treatment, however, was a reduction brought about in biofilm viability.

  16. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis.

    PubMed

    Savary, Romain; Masclaux, Frédéric G; Wyss, Tania; Droh, Germain; Cruz Corella, Joaquim; Machado, Ana Paula; Morton, Joseph B; Sanders, Ian R

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF; phylum Gomeromycota) associate with plants forming one of the most successful microbe-plant associations. The fungi promote plant diversity and have a potentially important role in global agriculture. Plant growth depends on both inter- and intra-specific variation in AMF. It was recently reported that an unusually large number of AMF taxa have an intercontinental distribution, suggesting long-distance gene flow for many AMF species, facilitated by either long-distance natural dispersal mechanisms or human-assisted dispersal. However, the intercontinental distribution of AMF species has been questioned because the use of very low-resolution markers may be unsuitable to detect genetic differences among geographically separated AMF, as seen with some other fungi. This has been untestable because of the lack of population genomic data, with high resolution, for any AMF taxa. Here we use phylogenetics and population genomics to test for intra-specific variation in Rhizophagus irregularis, an AMF species for which genome sequence information already exists. We used ddRAD sequencing to obtain thousands of markers distributed across the genomes of 81 R. irregularis isolates and related species. Based on 6 888 variable positions, we observed significant genetic divergence into four main genetic groups within R. irregularis, highlighting that previous studies have not captured underlying genetic variation. Despite considerable genetic divergence, surprisingly, the variation could not be explained by geographical origin, thus also supporting the hypothesis for at least one AMF species of widely dispersed AMF genotypes at an intercontinental scale. Such information is crucial for understanding AMF ecology, and how these fungi can be used in an environmentally safe way in distant locations.

  17. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing.

    PubMed

    Van Geel, Maarten; Busschaert, Pieter; Honnay, Olivier; Lievens, Bart

    2014-11-01

    In the last few years, 454 pyrosequencing-based analysis of arbuscular mycorrhizal fungal (AMF; Glomeromycota) communities has tremendously increased our knowledge of the distribution and diversity of AMF. Nonetheless, comparing results between different studies is difficult, as different target genes (or regions thereof) and primer combinations, with potentially dissimilar specificities and efficacies, are being utilized. In this study we evaluated six primer pairs that have previously been used in AMF studies (NS31-AM1, AMV4.5NF-AMDGR, AML1-AML2, NS31-AML2, FLR3-LSUmBr and Glo454-NDL22) for their use in 454 pyrosequencing based on both an in silico approach and 454 pyrosequencing of AMF communities from apple tree roots. Primers were evaluated in terms of (i) in silico coverage of Glomeromycota fungi, (ii) the number of high-quality sequences obtained, (iii) selectivity for AMF species, (iv) reproducibility and (v) ability to accurately describe AMF communities. We show that primer pairs AMV4.5NF-AMDGR, AML1-AML2 and NS31-AML2 outperformed the other tested primer pairs in terms of number of Glomeromycota reads (AMF specificity and coverage). Additionally, these primer pairs were found to have no or only few mismatches to AMF sequences and were able to consistently describe AMF communities from apple roots. However, whereas most high-quality AMF sequences were obtained for AMV4.5NF-AMDGR, our results also suggest that this primer pair favored amplification of Glomeraceae sequences at the expense of Ambisporaceae, Claroideoglomeraceae and Paraglomeraceae sequences. Furthermore, we demonstrate the complementary specificity of AMV4.5NF-AMDGR with AML1-AML2, and of AMV4.5NF-AMDGR with NS31-AML2, making these primer combinations highly suitable for tandem use in covering the diversity of AMF communities. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis.

    PubMed

    Casazza, Gabriele; Lumini, Erica; Ercole, Enrico; Dovana, Francesco; Guerrina, Maria; Arnulfo, Annamaria; Minuto, Luigi; Fusconi, Anna; Mucciarelli, Marco

    2017-01-01

    Berardia subacaulis Vill. is a monospecific genus that is endemic to the South-western Alps, where it grows on alpine screes, which are extreme habitats characterized by soil disturbance and limiting growth conditions. Root colonization by arbuscular mycorrhizal fungi (AMF) is presumably of great importance in these environments, because of its positive effect on plant nutrition and stress tolerance, as well as on structuring the soil. However, there is currently a lack of information on this topic. In this paper, we tested which soil characteristics and biotic factors could contribute to determining the abundance and community composition of AMF in the roots of B. subacaulis, which had previously been found to be mycorrhizal. For such a reason, the influence of soil properties and environmental factors on AMF abundance and community composition in the roots of B. subacaulis, sampled on three different scree slopes, were analysed through microscopic and molecular analysis. The results have shown that the AMF community of Berardia roots was dominated by Glomeraceae, and included a core of AMF taxa, common to all three scree slopes. The vegetation coverage and dark septate endophytes were not related to the AMF colonization percentage and plant community did not influence the root AMF composition. The abundance of AMF in the roots was related to some chemical (available extractable calcium and potassium) and physical (cation exchange capacity, electrical conductivity and field capacity) properties of the soil, thus suggesting an effect of AMF on improving the soil quality. The non-metric multidimensional scaling (NMDS) ordination of the AMF community composition showed that the diversity of AMF in the various sites was influenced not only by the soil quality, but also by the slope. Therefore, the slope-induced physical disturbance of alpine screes may contribute to the selection of disturbance-tolerant AMF taxa, which in turn may lead to different plant-fungus assemblages.

  19. Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass

    NASA Astrophysics Data System (ADS)

    Petipas, Renee H.; González, Jonathan B.; Palmer, Todd M.; Brody, Alison K.

    2017-01-01

    The role of arbuscular mycorrhizal fungi (AMF) in enhancing plant tolerance to drought is well known. However, the degree to which AMF-plant symbioses are locally adapted has been suggested but is less well understood, especially at small spatial scales. Here, we examined the effects of two arbuscular mycorrhizal fungal communities on drought tolerance of Themeda triandra, a native African perennial bunchgrass. In our study area, mound building activities of Odontotermes sp. termites produce heterogeneous habitat, particularly with respect to water availability, and do so over small spatial scales (<50 m). Thus, plants and their AMF symbionts may experience identical climatic conditions but very different edaphic conditions. We hypothesized that AMF from off-mound areas, where plants experience drought more intensely than on termite mounds, would confer greater protection from drought conditions than AMF from termite mound soils. To test this, we conducted a greenhouse experiment in which we grew plants in soils that we inoculated with fungi from on or off termite mounds, or with a sterilized control inoculum. Our results reveal habitat-specific AMF effects on host stomatal functioning and growth. Contrary to our expectations, drought stressed grasses inoculated with AMF from termite mounds closed stomata less, and produced 60% more leaves than those inoculated with off-mound AMF, thus exhibiting higher levels of tolerance. Mound-inoculated plants that were drought stressed also produced more than twice as many leaves as non-inoculated plants. Longer-term productivity measurements indicate both on- and off-mound inoculated plants were able to recover to a greater extent than non-inoculated plants, indicating that AMF associations in general help plants recover from drought. These findings highlight the important role that AMF play in mitigating drought stress and indicate that AMF affect how plants experience drought in a small scale, habitat-specific manner.

  20. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis

    PubMed Central

    Casazza, Gabriele; Lumini, Erica; Ercole, Enrico; Dovana, Francesco; Guerrina, Maria; Arnulfo, Annamaria; Minuto, Luigi; Fusconi, Anna

    2017-01-01

    Berardia subacaulis Vill. is a monospecific genus that is endemic to the South-western Alps, where it grows on alpine screes, which are extreme habitats characterized by soil disturbance and limiting growth conditions. Root colonization by arbuscular mycorrhizal fungi (AMF) is presumably of great importance in these environments, because of its positive effect on plant nutrition and stress tolerance, as well as on structuring the soil. However, there is currently a lack of information on this topic. In this paper, we tested which soil characteristics and biotic factors could contribute to determining the abundance and community composition of AMF in the roots of B. subacaulis, which had previously been found to be mycorrhizal. For such a reason, the influence of soil properties and environmental factors on AMF abundance and community composition in the roots of B. subacaulis, sampled on three different scree slopes, were analysed through microscopic and molecular analysis. The results have shown that the AMF community of Berardia roots was dominated by Glomeraceae, and included a core of AMF taxa, common to all three scree slopes. The vegetation coverage and dark septate endophytes were not related to the AMF colonization percentage and plant community did not influence the root AMF composition. The abundance of AMF in the roots was related to some chemical (available extractable calcium and potassium) and physical (cation exchange capacity, electrical conductivity and field capacity) properties of the soil, thus suggesting an effect of AMF on improving the soil quality. The non-metric multidimensional scaling (NMDS) ordination of the AMF community composition showed that the diversity of AMF in the various sites was influenced not only by the soil quality, but also by the slope. Therefore, the slope-induced physical disturbance of alpine screes may contribute to the selection of disturbance-tolerant AMF taxa, which in turn may lead to different plant-fungus assemblages. PMID:28192471

  1. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    PubMed Central

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions. PMID:27016567

  2. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata.

    PubMed

    Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin

    2012-04-12

    Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.

  3. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    PubMed

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  5. Mate Limitation in Fungal Plant Parasites Can Lead to Cyclic Epidemics in Perennial Host Populations.

    PubMed

    Ravigné, Virginie; Lemesle, Valérie; Walter, Alicia; Mailleret, Ludovic; Hamelin, Frédéric M

    2017-03-01

    Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.

  6. Evidence of Differences between the Communities of Arbuscular Mycorrhizal Fungi Colonizing Galls and Roots of Prunus persica Infected by the Root-Knot Nematode Meloidogyne incognita▿

    PubMed Central

    Alguacil, Maria del Mar; Torrecillas, Emma; Lozano, Zenaida; Roldán, Antonio

    2011-01-01

    Arbuscular mycorrhizal fungi (AMF) play important roles as plant protection agents, reducing or suppressing nematode colonization. However, it has never been investigated whether the galls produced in roots by nematode infection are colonized by AMF. This study tested whether galls produced by Meloidogyne incognita infection in Prunus persica roots are colonized by AMF. We also determined the changes in AMF composition and biodiversity mediated by infection with this root-knot nematode. DNA from galls and roots of plants infected by M. incognita and from roots of noninfected plants was extracted, amplified, cloned, and sequenced using AMF-specific primers. Phylogenetic analysis using the small-subunit (SSU) ribosomal DNA (rDNA) data set revealed 22 different AMF sequence types (17 Glomus sequence types, 3 Paraglomus sequence types, 1 Scutellospora sequence type, and 1 Acaulospora sequence type). The highest AMF diversity was found in uninfected roots, followed by infected roots and galls. This study indicates that the galls produced in P. persica roots due to infection with M. incognita were colonized extensively by a community of AMF, belonging to the families Paraglomeraceae and Glomeraceae, that was different from the community detected in roots. Although the function of the AMF in the galls is still unknown, we hypothesize that they act as protection agents against opportunistic pathogens. PMID:21984233

  7. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription.

    PubMed

    Colard, Alexandre; Angelard, Caroline; Sanders, Ian R

    2011-09-01

    Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth.

  8. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation

    PubMed Central

    Angelard, Caroline; Tanner, Colby J; Fontanillas, Pierre; Niculita-Hirzel, Hélène; Masclaux, Frédéric; Sanders, Ian R

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF. PMID:24030596

  9. Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure

    PubMed Central

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585

  10. Evidence of differences between the communities of arbuscular mycorrhizal fungi colonizing galls and roots of Prunus persica infected by the root-knot nematode Meloidogyne incognita.

    PubMed

    Alguacil, Maria del Mar; Torrecillas, Emma; Lozano, Zenaida; Roldán, Antonio

    2011-12-01

    Arbuscular mycorrhizal fungi (AMF) play important roles as plant protection agents, reducing or suppressing nematode colonization. However, it has never been investigated whether the galls produced in roots by nematode infection are colonized by AMF. This study tested whether galls produced by Meloidogyne incognita infection in Prunus persica roots are colonized by AMF. We also determined the changes in AMF composition and biodiversity mediated by infection with this root-knot nematode. DNA from galls and roots of plants infected by M. incognita and from roots of noninfected plants was extracted, amplified, cloned, and sequenced using AMF-specific primers. Phylogenetic analysis using the small-subunit (SSU) ribosomal DNA (rDNA) data set revealed 22 different AMF sequence types (17 Glomus sequence types, 3 Paraglomus sequence types, 1 Scutellospora sequence type, and 1 Acaulospora sequence type). The highest AMF diversity was found in uninfected roots, followed by infected roots and galls. This study indicates that the galls produced in P. persica roots due to infection with M. incognita were colonized extensively by a community of AMF, belonging to the families Paraglomeraceae and Glomeraceae, that was different from the community detected in roots. Although the function of the AMF in the galls is still unknown, we hypothesize that they act as protection agents against opportunistic pathogens.

  11. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation.

    PubMed

    Angelard, Caroline; Tanner, Colby J; Fontanillas, Pierre; Niculita-Hirzel, Hélène; Masclaux, Frédéric; Sanders, Ian R

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF.

  12. Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings.

    PubMed

    Mwangi, Margaret W; Monda, Ethel O; Okoth, Sheila A; Jefwa, Joyce M

    2011-04-01

    A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P≥ 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.

  13. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.

    PubMed

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-03-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis ('everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.

  14. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale

    PubMed Central

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-01-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition. PMID:23096401

  15. The effect of Amifostine prophylaxis on bone densitometry, biomechanical strength and union in mandibular pathologic fracture repair.

    PubMed

    Tchanque-Fossuo, Catherine N; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S; Weiss, Daniela M; Buchman, Steven R

    2013-11-01

    Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine's effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. © 2013.

  16. Amifostine Prophylaxis on Bone Densitometry, Biomechanical Strength and Union in Mandibular Pathologic Fracture Repair

    PubMed Central

    Tchanque-Fossuo, Catherine N.; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S.; Weiss, Daniela M.

    2013-01-01

    Background Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine’s effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Materials and Methods Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. Results All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Conclusion Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. PMID:23860272

  17. Differential modulation of host plant delta13C and delta18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment.

    PubMed

    Querejeta, J I; Allen, M F; Caravaca, F; Roldán, A

    2006-01-01

    Native, drought-adapted arbuscular mycorrhizal fungi (AMF) often improve host-plant performance to a greater extent than nonnative AMF in dry environments. However, little is known about the physiological basis for this differential plant response. Seedlings of Olea europaea and Rhamnus lycioides were inoculated with either a mixture of eight native Glomus species or with the nonnative Glomus claroideum before field transplanting in a semiarid area. Inoculation with native AMF produced the greatest improvement in nutrient and water status as well as in long-term growth for both Olea and Rhamnus. Foliar delta18O measurements indicated that native AMF enhanced stomatal conductance to a greater extent than nonnative AMF in Olea and Rhamnus.delta13C data showed that intrinsic water-use efficiency in Olea was differentially stimulated by native AMF compared with nonnative AMF. Our results suggest that modulation of leaf gas exchange by native, drought-adapted AMF is critical to the long-term performance of host plants in semiarid environments. delta18O can provide a time-integrated measure of the effect of mycorrhizal infection on host-plant water relations.

  18. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Characteristics of Deoxyribonucleic Acid Polymerase Isolated from Spores of Rhizopus stolonifer1

    PubMed Central

    Gong, Cheng-Shung; Dunkle, Larry D.; Van Etten, James L.

    1973-01-01

    Deoxyribonucleic acid (DNA)-dependent DNA polymerase was purified several hundredfold from germinated and ungerminated spores of the fungus Rhizopus stolonifer. The partially purified enzymes from both spore stages exhibited identical characteristics; incorporation of [3H]deoxythymidine monophosphate into DNA required Mg2+, DNA, a reducing agent, and the simultaneous presence of deoxyguanosine triphosphate, deoxycytidine triphosphate, and deoxyadenosine triphosphate. Heat-denatured and activated DNAs were better templates than were native DNAs. The buoyant density of the radioactive product of the reaction was similar to that of the template DNA. The enzyme is probably composed of a single polypeptide chain with an S value of 5.12 and an estimated molecular weight of 70,000 to 75,000. During the early stages of purification, the enzyme fraction from ungerminated spores required exogenous DNA for maximum activity, whereas the corresponding enzyme fraction from germinated spores did not require added DNA. Apparently DNA polymerase from germinated spores was more tightly bound to endogenous DNA than was the enzyme from ungerminated spores. PMID:4728271

  20. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings

    PubMed Central

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N-containing compounds (methionine, threonine, histidine, and proline). As a result, application of Funneliformis mosseae or A. scrobiculata in mulberry plantation could be a promising management strategy to promote silkworm cultivation and relevant textile industry. PMID:27446063

  1. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    PubMed

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N-containing compounds (methionine, threonine, histidine, and proline). As a result, application of Funneliformis mosseae or A. scrobiculata in mulberry plantation could be a promising management strategy to promote silkworm cultivation and relevant textile industry.

  2. Theory of advection-driven long range biotic transport

    USDA-ARS?s Scientific Manuscript database

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  3. Development of novel magnetic nanoparticles for hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2011-03-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values.

  4. Community Dynamics of Arbuscular Mycorrhizal Fungi in High-Input and Intensively Irrigated Rice Cultivation Systems

    PubMed Central

    Wang, Yutao; Li, Ting; Li, Yingwei; Björn, Lars Olof; Rosendahl, Søren; Olsson, Pål Axel; Fu, Xuelin

    2015-01-01

    Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands. PMID:25681190

  5. Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems.

    PubMed

    Wang, Yutao; Li, Ting; Li, Yingwei; Björn, Lars Olof; Rosendahl, Søren; Olsson, Pål Axel; Li, Shaoshan; Fu, Xuelin

    2015-04-01

    Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site.

    PubMed

    Wang, Chao; White, Philip J; Li, Chunjian

    2017-05-01

    Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1  yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.

  7. Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions.

    PubMed

    Cely, Martha V T; de Oliveira, Admilton G; de Freitas, Vanessa F; de Luca, Marcelo B; Barazetti, André R; Dos Santos, Igor M O; Gionco, Barbara; Garcia, Guilherme V; Prete, Cássio E C; Andrade, Galdino

    2016-01-01

    Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.

  8. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem

    PubMed Central

    Barber, Nicholas A.; Kiers, E. Toby; Hazzard, Ruth V.; Adler, Lynn S.

    2013-01-01

    Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant–AMF interactions should include these indirect effects. To determine how AMF affect plant–insect interactions, we grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context-dependency of plant–AMF interactions. PMID:24046771

  9. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils.

    PubMed

    Mishra, Vartika; Gupta, Antriksh; Kaur, Parvinder; Singh, Simranjeet; Singh, Nasib; Gehlot, Praveen; Singh, Joginder

    2016-01-01

    Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils.

  10. Angiomyofibroblastoma of the Broad Ligament: A Case Report.

    PubMed

    Huang, Hsiao-Chin; Chen, Ying-Ren; Tsai, Horng-Der; Cheng, Ya-Min; Hsiao, Yi-Hsuan

    2017-09-01

    Angiomyofibroblastoma (AMF) is a distinctive, rare, benign mesenchymal tumor that often occurs in the lower genital region of women. The most commonly reported location of an AMF is in the vulvovaginal area. We describe a rare case of an AMF located in the broad ligament in a 47-yr-old woman. The patient experienced menorrhagia, dysmenorrhea, and subsequent menstrual spotting. She sought help at the National Cheng Kung University Hospital. Ultrasonography showed an echo-complex mass in the left adnexal area. The patient underwent laparoscopic surgery to remove the soft tissue mass located in the left broad ligament. The final pathology of the mass was reported as an AMF. We reviewed all of the AMF cases reported in the English-language literature found in Pubmed. This case is the first of AMF located in the broad ligament.

  11. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells

    PubMed Central

    Berruti, Andrea; Borriello, Roberto; Lumini, Erica; Scariot, Valentina; Bianciotto, Valeria; Balestrini, Raffaella

    2013-01-01

    Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum) are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intra-cellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells (AC) through a laser microdissection (LMD) approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the AC. Unexpectedly, one taxon was found in the AC, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community. PMID:23675380

  12. Arbuscular mycorrhiza fungi facilitate rapid adaptation of Elsholtzia splendens to copper.

    PubMed

    Li, Junmin; Liang, Huijuan; Yan, Ming; Chen, Luxi; Zhang, Huating; Liu, Jie; Wang, Suizi; Jin, Zexin

    2017-12-01

    Closely associated microbes have been shown to drive local adaptation of plants. However, few studies provide direct evidence, disclosing the role of arbuscular mycorrhiza fungi (AMF) in their rapid adaptation of plants toward heavy metal tolerance. Elsholtzia splendens is a Cu-tolerant plant that was used as a model plant to study seed morphological traits as well as traits related to seed germination and seedling growth. This was achieved after acclimation for two generations with 1000mg/kg CuSO 4 in either absence or presence of AMF. In the absence of AMF, acclimation to Cu for two generations significantly decreased surface area, perimeter length, and perimeter width of E. splendens seeds, as well as seedling survival rate and fresh weight of the radicle of seedlings. However, in the presence of AMF, both the germination rate and the germination index of E. splendens seeds as well as the fresh weights of hypocotyl and radicle significantly increased. These results revealed that after Cu acclimation treatment, seeds and seedlings that had been inoculated with AMF outperformed those without AMF inoculation under Cu addition, indicating that AMF can facilitate rapid adaptation of E. splendens to Cu stress. In addition, two generations of Cu acclimation under AMF absence significantly increased radicle length, while amplitude increased under AMF presence, indicating that the direct adaptive plasticity response of radicle length to Cu stress helps with the Cu stress adaptation of E. splendens. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF

    PubMed Central

    De Kleer, Ismé; Henri, Sandrine; Post, Sijranke; Vanhoutte, Leen; De Prijck, Sofie; Deswarte, Kim; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N.

    2013-01-01

    Tissue-resident macrophages can develop from circulating adult monocytes or from primitive yolk sac–derived macrophages. The precise ontogeny of alveolar macrophages (AMFs) is unknown. By performing BrdU labeling and parabiosis experiments in adult mice, we found that circulating monocytes contributed minimally to the steady-state AMF pool. Mature AMFs were undetectable before birth and only fully colonized the alveolar space by 3 d after birth. Before birth, F4/80hiCD11blo primitive macrophages and Ly6ChiCD11bhi fetal monocytes sequentially colonized the developing lung around E12.5 and E16.5, respectively. The first signs of AMF differentiation appeared around the saccular stage of lung development (E18.5). Adoptive transfer identified fetal monocytes, and not primitive macrophages, as the main precursors of AMFs. Fetal monocytes transferred to the lung of neonatal mice acquired an AMF phenotype via defined developmental stages over the course of one week, and persisted for at least three months. Early AMF commitment from fetal monocytes was absent in GM-CSF–deficient mice, whereas short-term perinatal intrapulmonary GM-CSF therapy rescued AMF development for weeks, although the resulting AMFs displayed an immature phenotype. This demonstrates that tissue-resident macrophages can also develop from fetal monocytes that adopt a stable phenotype shortly after birth in response to instructive cytokines, and then self-maintain throughout life. PMID:24043763

  14. Airborne and Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-421 Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) As of FY 2017...Information Program Name Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) DoD Component Army Responsible Office References SAR...UNCLASSIFIED 5 Mission and Description Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) products are software programmable

  15. Fungal root symbionts of high-altitude vascular plants in the Himalayas.

    PubMed

    Kotilínek, Milan; Hiiesalu, Inga; Košnar, Jiří; Šmilauerová, Marie; Šmilauer, Petr; Altman, Jan; Dvorský, Miroslav; Kopecký, Martin; Doležal, Jiří

    2017-07-26

    Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) form symbiotic relationships with plants influencing their productivity, diversity and ecosystem functions. Only a few studies on these fungi, however, have been conducted in extreme elevations and none over 5500 m a.s.l., although vascular plants occur up to 6150 m a.s.l. in the Himalayas. We quantified AMF and DSE in roots of 62 plant species from contrasting habitats along an elevational gradient (3400-6150 m) in the Himalayas using a combination of optical microscopy and next generation sequencing. We linked AMF and DSE communities with host plant evolutionary history, ecological preferences (elevation and habitat type) and functional traits. We detected AMF in elevations up to 5800 m, indicating it is more constrained by extreme conditions than the host plants, which ascend up to 6150 m. In contrast, DSE were found across the entire gradient up to 6150 m. AMF diversity was unimodally related to elevation and positively related to the intensity of AMF colonization. Mid-elevation steppe and alpine plants hosted more diverse AMF communities than plants from deserts and the subnival zone. Our results bring novel insights to the abiotic and biotic filters structuring AMF and DSE communities in the Himalayas.

  16. Preliminary study on biodiversity of arbuscular mycorrhizal fungi (AMF) in oil palm (Elaeis guineensis Jacq.) plantations in Thailand

    NASA Astrophysics Data System (ADS)

    Auliana; Kaonongbua, W.

    2018-04-01

    Oil palm (Elaeis guineensis Jacq.) is one of the promising crop plants which has been used as raw material for producing daily products. In agricultural ecosystems, crop plants could develop a plant-fungal association with arbuscular mycorrhizal fungi (AMF). The objectives of this study were to determine the AMF biodiversity and mycorrhizal infection percentage (MIP) from field-collected soil samples of three oil palm plantations from Nong Khai, Surat Thani, and Chiang Rai provinces of Thailand. Soil characteristics (moisture content, pH, and available phosphorus) were also measured. Thirteen AMF species belonging to seven genera were identified from all soil samples, whereas Glomus spp. and Acaulospora spp. were most commonly found species. AMF biodiversity value from Chiang Rai was statistically different from other two provinces (p < 0.05). MIP value of soil samples from Surat Thani was statistically different as well. Furthermore, soil pH showed a positive correlation with AMF biodiversity. These results confirmed that AMF normally occurs in oil palm plantations, but at different levels of biodiversity possibly due to different environmental factors in each plantation. Nevertheless, this information could be useful for using AMF in plant growth promoter and pathogen resistance programs in order to achieve the agricultural sustainability, especially in oil palm plantations.

  17. Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland.

    PubMed

    Ciccolini, Valentina; Ercoli, Laura; Davison, John; Vasar, Martti; Öpik, Maarja; Pellegrino, Elisa

    2016-12-01

    Land-use change is known to be a major threat to biodiversity and ecosystem services in Mediterranean areas. However, the potential for different host plants to modulate the effect of land-use intensification on community composition of arbuscular mycorrhizal fungi (AMF) is still poorly understood. To test the hypothesis that low land-use intensity promotes AMF diversity at different taxonomic scales and to determine whether any response is dependent upon host plant species identity, we characterised AMF communities in the roots of 10 plant species across four land use types of differing intensity in a Mediterranean peatland system. AMF were identified using 454 pyrosequencing. This revealed an overall low level of AMF richness in the peaty soils; lowest AMF richness in the intense cropping system at both virtual taxa and family level; strong modulation by the host plant of the impact of land-use intensification on AMF communities at the virtual taxa level; and a significant effect of land-use intensification on AMF communities at the family level. These findings have implications for understanding ecosystem stability and productivity and should be considered when developing soil-improvement strategies in fragile ecosystems, such as Mediterranean peatlands. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    PubMed

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Measuring spore settling velocity for an improved assessment of dispersal rates in mosses

    PubMed Central

    Zanatta, Florian; Patiño, Jairo; Lebeau, Frederic; Massinon, Mathieu; Hylander, Kristofer; de Haan, Myriam; Ballings, Petra; Degreef, Jerôme; Vanderpoorten, Alain

    2016-01-01

    Background and Aims The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes’ Law or if specific traits of spore ornamentation cause departures from theoretical expectations. Methods A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. Key Results Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s–1. There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. Conclusions Settling velocities in mosses can significantly depart from expectations derived from Stokes’ Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores. PMID:27296133

  20. Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants.

    PubMed

    Wang, Yutao; Huang, Yelin; Qiu, Qiu; Xin, Guorong; Yang, Zhongyi; Shi, Suhua

    2011-01-01

    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of three mangrove species were characterized along a tidal gradient in a mangrove swamp. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU), the entire internal transcribed spacer (ITS) and part of the large subunit (LSU) of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. Similar levels of AMF diversity to those observed in terrestrial ecosystems were detected in the roots, indicating that the communities of AMF in wetland ecosystems are not necessarily low in diversity. In total, 761 Glomeromycota sequences were obtained, which grouped, according to phylogenetic analysis using the SSU-ITS-LSU fragment, into 23 phylotypes, 22 of which belonged to Glomeraceae and one to Acaulosporaceae. The results indicate that flooding plays an important role in AMF diversity, and its effects appear to depend on the degree (duration) of flooding. Both host species and tide level affected community structure of AMF, indicating the presence of habitat and host species preferences.

  1. Flooding Greatly Affects the Diversity of Arbuscular Mycorrhizal Fungi Communities in the Roots of Wetland Plants

    PubMed Central

    Wang, Yutao; Huang, Yelin; Qiu, Qiu; Xin, Guorong; Yang, Zhongyi; Shi, Suhua

    2011-01-01

    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of three mangrove species were characterized along a tidal gradient in a mangrove swamp. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU), the entire internal transcribed spacer (ITS) and part of the large subunit (LSU) of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. Similar levels of AMF diversity to those observed in terrestrial ecosystems were detected in the roots, indicating that the communities of AMF in wetland ecosystems are not necessarily low in diversity. In total, 761 Glomeromycota sequences were obtained, which grouped, according to phylogenetic analysis using the SSU-ITS-LSU fragment, into 23 phylotypes, 22 of which belonged to Glomeraceae and one to Acaulosporaceae. The results indicate that flooding plays an important role in AMF diversity, and its effects appear to depend on the degree (duration) of flooding. Both host species and tide level affected community structure of AMF, indicating the presence of habitat and host species preferences. PMID:21931734

  2. The role of community and population ecology in applying mycorrhizal fungi for improved food security

    PubMed Central

    Rodriguez, Alia; Sanders, Ian R

    2015-01-01

    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner. PMID:25350159

  3. The role of community and population ecology in applying mycorrhizal fungi for improved food security.

    PubMed

    Rodriguez, Alia; Sanders, Ian R

    2015-05-01

    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner.

  4. Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing

    PubMed Central

    Gillespie, Dirk; Boda, Dezső; He, Yan; Apel, Pavel; Siwy, Zuzanna S.

    2008-01-01

    The predictions of a theory for the anomalous mole fraction effect (AMFE) are tested experimentally with synthetic nanopores in plastic. The negatively charged synthetic nanopores under consideration are highly cation selective and 50 Å in diameter at their smallest point. These pores exhibit an AMFE in mixtures of Ca2+ and monovalent cations. An AMFE occurs when the conductance through a pore is lower in a mixture of salts than in the pure salts at the same concentration. For ion channels, the textbook interpretation of the AMFE is that multiple ions move through the pore in coordinated, single-file motion. However, because the synthetic nanopores are so wide, their AMFE shows that single filing is not necessary for the AMFE. It is shown that the AMFE in the synthetic nanopores is explained by a theory of preferential ion selectivity. The unique properties of the synthetic nanopores allow us to experimentally confirm several predictions of this theory. These same properties make synthetic nanopores an interesting new platform to test theories of ion channel permeation and selectivity in general. PMID:18390596

  5. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles.

    PubMed

    Liang, Jin-Feng; An, Jing; Gao, Jun-Qin; Zhang, Xiao-Ya; Yu, Fei-Hai

    2018-01-01

    The frequency of soil drying-rewetting cycles is predicted to increase under future global climate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. However, it remains unknown how AMF affect plant growth under different frequencies of soil drying-rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a significant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewetting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without nutrient addition, AMF increased leaf area and decreased belowground to aboveground biomass ratio. These results indicate that AMF may assist P. australis in coping with medium frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how wetland plants respond to future global climate change.

  6. The effect of different initial densities of nematode (Meloidogyne javanica) on the build-up of Pasteuria penetrans population.

    PubMed

    Darban, Daim Ali; Pathan, Mumtaz Ali; Bhatti, Abdul Ghaffar; Maitelo, Sultan Ahmed

    2005-02-01

    Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.

  7. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.

    PubMed

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-07-01

    In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.

  8. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.

    PubMed

    Jankong, P; Visoottiviseth, P

    2008-07-01

    Arbuscular mycorrhizal fungi (AMF) may play an important role in phytoremediation of As-contaminated soil. In this study the effects of AMF (Glomus mosseae, Glomus intraradices and Glomus etunicatum) on biomass production and arsenic accumulation in Pityrogramma calomelanos, Tagetes erecta and Melastoma malabathricum were investigated. Soil (243 +/- 13 microg As g(-1)) collected from Ron Phibun District, an As-contaminated area in Thailand, was used in a greenhouse experiment. The results showed different effects of AMF on phytoremediation of As-contaminated soil by different plant species. For P. calomelanos and T. erecta, AMF reduced only arsenic accumulation in plants but had no significant effect on plant growth. In contrast, AMF improved growth and arsenic accumulation in M. malabathricum. These findings show the importance of understanding different interactions between AMF and their host plants for enhancing phytoremediation of As-contaminated soils.

  9. Distribution of resting spores of the Lymantria dispar pathogen Entomophaga maimaiga in soil and on bark

    Treesearch

    A. E. Hajek; L. Bauer; M. L. McManus; M. M. Wheeler

    1998-01-01

    Cadavers of late instar Lymantria dispar (gypsy moth) larvae killed by the fungal pathogen Entomophaga maimaiga predominantly contain resting spores (azygospores). These cadavers frequently remain attached to tree trunks for several weeks before they detach and fall to the ground. Density gradient centrifugation was used to...

  10. Suppression of AMF/PGI-mediated tumorigenic activities by ursolic acid in cultured hepatoma cells and in a mouse model.

    PubMed

    Shih, Wen-Ling; Yu, Feng-Ling; Chang, Ching-Dong; Liao, Ming-Huei; Wu, Hung-Yi; Lin, Ping-Yuan

    2013-10-01

    Our previous studies demonstrated that autocrine motility factor/phosphoglucose isomerase (AMF/PGI) possesses tumorigenic activities through the modulation of intracellular signaling. We then investigated the effects of ursolic acid (UA), oleanolic acid (OA), tangeretin, and nobiletin against AMF/PGI-mediated oncogenesis in cultured stable Huh7 and Hep3B cells expressing wild-type or mutated AMF/PGI and in a mouse model in this study. The working concentrations of the tested compounds were lower than their IC10 , which was determined by Brdu incorporation and colony formation assay. Only UA efficiently suppressed the AMF/PGI-induced Huh7 cell migration and MMP-3 secretion. Additionally, UA inhibited the AMF/PGI-mediated protection against TGF-β-induced apoptosis in Hep3B cells, whereas OA, tangeretin, and nobiletin had no effect. In Huh7 cells and tumor tissues, UA disrupted the Src/RhoA/PI 3-kinase signaling and complex formation induced by AMF/PGI. In the Hep3B system, UA dramatically suppressed AMF/PGI-induced anti-apoptotic signaling transmission, including Akt, p85, Bad, and Stat3 phosphorylation. AMF/PGI enhances tumor growth, angiogenesis, and pulmonary metastasis in mice, which is correlated with its enzymatic activity, and critically, UA intraperitoneal injection reduces the tumorigenesis in vivo, enhances apoptosis in tumor tissues and also prolongs mouse survival. Combination of sub-optimal dose of UA and cisplatin, a synergistic tumor cell-killing effects was found. Thus, UA modulates intracellular signaling and might serve as a functional natural compound for preventing or alleviating hepatocellular carcinoma. © 2012 Wiley Periodicals, Inc.

  11. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    PubMed

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  12. Infrared Extinction Performance of Randomly Oriented Microbial-Clustered Agglomerate Materials.

    PubMed

    Li, Le; Hu, Yihua; Gu, Youlin; Zhao, Xinying; Xu, Shilong; Yu, Lei; Zheng, Zhi Ming; Wang, Peng

    2017-11-01

    In this study, the spatial structure of randomly distributed clusters of fungi An0429 spores was simulated using a cluster aggregation (CCA) model, and the single scattering parameters of fungi An0429 spores were calculated using the discrete dipole approximation (DDA) method. The transmittance of 10.6 µm infrared (IR) light in the aggregated fungi An0429 spores swarm is simulated by using the Monte Carlo method. Several parameters that affect the transmittance of 10.6 µm IR light, such as the number and radius of original fungi An0429 spores, porosity of aggregated fungi An0429 spores, and density of aggregated fungi An0429 spores of the formation aerosol area were discussed. Finally, the transmittances of microbial materials with different qualities were measured in the dynamic test platform. The simulation results showed that the parameters analyzed were closely connected with the extinction performance of fungi An0429 spores. By controlling the value of the influencing factors, the transmittance could be lower than a certain threshold to meet the requirement of attenuation in application. In addition, the experimental results showed that the Monte Carlo method could well reflect the attenuation law of IR light in fungi An0429 spore agglomerates swarms.

  13. The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes.

    PubMed

    Hijri, Mohamed; Sanders, Ian R

    2004-02-01

    The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.

  14. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice.

    PubMed

    Akamatsu, Akira; Shimamoto, Ko; Kawano, Yoji

    2016-08-01

    Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.

  15. Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy.

    PubMed

    Dixon, P B; Hahn, D W

    2005-01-15

    The detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy (LIBS) is investigated using aerosolized Bacillus spores. Spores of Bacillus atrophaeous, Bacillus pumilus, and Bacillus stearothemophilus were introduced into an aerosol flow stream in a prescribed manner such that single-particle LIBS detection was realized. Bacillus spores were successfully detected based on the presence of the 393.4- and 396.9-nm calcium atomic emission lines. Statistical analyses based on the aerosol number density, the LIBS-based spore sampling frequency, and the distribution of the resulting calcium mass loadings support the conclusion of individual spore detection within single-shot laser-induced plasmas. The average mass loadings were in the range of 2-3 fg of calcium/Bacillus spore, which corresponds to a calcium mass percentage of approximately 0.5%. While individual spores were detected based on calcium emission, the resulting Bacillus spectra were free from CN emission bands, which has implications for the detection of elemental carbon, and LIBS-based detection of single spores based on the presence of magnesium or sodium atomic emission was unsuccessful. Based on the current instrumental setup and analyses, real-time LIBS-based detection and identification of single Bacillus spores in ambient (i.e., real life) conditions appears unfeasible.

  16. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.

  17. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed Central

    Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance. PMID:29682413

  18. Biological control potential of the obligate parasite Pasteuria penetransagainst the root-knot nematode, Meloidogyne incognita infestation in Brinjal.

    PubMed

    Kumari, N Swarna; Sivakumar, C V

    2005-01-01

    The efficacy of the obligate bacterial parasite, Pasteuria penetrans against the rootknot nematode, Meloidogyne incognita infestation was assessed in brinjal. The seedling pans with sterilized soil were inoculated with nematodes and root powder of P. penetrans were applied at different dosages viz., 0 x 10(6), 0.5 x 10(6) spores and 1 x 10(6) spores/pan. Seeds of brinjal cv Co2 were sown in the pans and seedlings were allowed to grow. The seedlings were transplanted to microplots containing sterilized soil. Observations on nematode infestation and plant growth were recorded at seedling, flowering, and fruiting stages. Nematode infestation was significantly reduced by P. penetrans treatment. There was 22, 75 and 86% reduction in nematode population of soil over control at seedling, flowering and fruiting stages, respectively, at higher spore density (1 x 10(6)). Egg mass production was decreased by 63, 78 and 89% over control at 35 (seedling), 100 (flowering) and 160 (fruiting) days after sowing respectively, at 1 x 10(6) spores treated soil. The parasitizing ability of P. penetrans increased with the age of the crop. At higher spore density the percentage of parasitization was increased from 52.0 (35 days after sowing) to 90.0 (160 days after sowing) %. At these stages of the crop, the spore load per juvenile also increased at the higher dose. The P. penetrans application enhanced the plant growth. The weight of the shoot was increased by 17.6% whereas root weight by 41.0% over the control at fruiting stage. The experimental results revealed the potential use of P. penetrans as biological control agent of M. incognita. Application of P. penetrans spores in the nursery is a good strategy since the mass multiplication is quite difficult.

  19. Permeability of bacterial spores. IV. Water content, uptake, and distribution.

    PubMed

    BLACK, S H; GERHARDT, P

    1962-05-01

    Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. IV. Water content, uptake, and distribution. J. Bacteriol. 83:960-967. 1962.-Dormant and germinated spores of Bacillus cereus strain terminalis were examined for water properties. Respectively, they exhibited a mean density of 1.28 and 1.11 g/ml, a water content of 64.8 and 73.0%, and a total water uptake of 66.6 and 75.6%, based on spore weight, or 86.0 and 83.9%, based on spore volume. The results confirmed a previous report that internal and external water are in virtually complete equilibrium, but refuted a prevailing hypothesis that heat resistance is attributable to a dry core. A model of spore ultrastructure that evolved from the cumulative results pictures a moist, dense, heteroporous core. A new hypothesis is formulated as an explanation for thermostability in spores and possibly in other instances; it postulates the occurrence of an insolubly gelled core with cross-linking between macromolecules through stable but reversible bonds so as to form a high-polymer matrix with entrapped free water.

  20. Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence?

    PubMed Central

    Horn, Sebastian; Hempel, Stefan; Verbruggen, Erik; Rillig, Matthias C; Caruso, Tancredi

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) are crucial to plants and vice versa, but little is known about the factors linking the community structure of the two groups. We investigated the association between AMF and the plant community structure in the nearest neighborhood of Festuca brevipila in a semiarid grassland with steep environmental gradients, using high-throughput sequencing of the Glomeromycotina (former Glomeromycota). We focused on the Passenger, Driver and Habitat hypotheses: (i) plant communities drive AMF (passenger); (ii) AMF communities drive the plants (driver); (iii) the environment shapes both communities causing covariation. The null hypothesis is that the two assemblages are independent and this study offers a spatially explicit novel test of it in the field at multiple, small scales. The AMF community consisted of 71 operational taxonomic units, the plant community of 47 species. Spatial distance and spatial variation in the environment were the main determinants of the AMF community. The structure of the plant community around the focal plant was a poor predictor of AMF communities, also in terms of phylogenetic community structure. Some evidence supports the passenger hypothesis, but the relative roles of the factors structuring the two groups clearly differed, leading to an apparent decoupling of the two assemblages at the relatively small scale of this study. Community phylogenetic structure in AMF suggests an important role of within-assemblage interactions. PMID:28244977

  1. The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site.

    PubMed

    White, Jennifer A; Tallaksen, J; Charvat, I

    2008-01-01

    Arbuscular mycorrhizal fungi (AMF) may play an important role in ecological succession, but few studies have documented the effectiveness of mycorrhizal inoculation at restoration/reclamation sites. At a roadside prairie restoration in Shakopee, Minnesota, we compared AMF root colonization and resulting vegetative cover among four inoculation treatments. After 15 mo of growth, we found that AMF colonization was high in all treatments but was significantly higher in treatments that received AMF inoculum propagated from a local prairie site or commercially available inoculum than the uninoculated control. For the prairie inoculum, this increase in colonization occurred whether the inoculum was applied with seeds in furrows or broadcast with seeds on the soil surface. However, increased colonization did not discernibly affect the restored vegetation; neither total vegetative cover nor the proportion "desired" prairie vegetation differed among inoculation treatments. By the end of the third growing season (27 mo after planting) there were no longer differences in AMF colonization among the inoculation treatments nor were there differences in vegetative cover. It is likely that natural recolonization of the plots by remnant AMF populations at the site limited the duration of the inoculation effect. This natural recolonization, in combination with relatively high soil phosphorus levels, likely rendered inoculation unnecessary. In contrast to previous published studies of AMF inoculation in landscape restorations, this study shows that AMF inoculation may not be warranted under some circumstances.

  2. Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil.

    PubMed

    Schneider, Jerusa; Labory, Claudia Regina Gontijo; Rangel, Wesley Melo; Alves, Eduardo; Guilherme, Luiz Roberto Guimarães

    2013-11-15

    Many studies demonstrate the potential application of arbuscular mycorrhizal fungi (AMF) for remediation purposes, but little is known on AMF potential to enhance plant tolerance to arsenic (As) and the mechanisms involved in this process. We carried anatomical and ultrastructural studies to examine this symbiotic association and the characteristics of shoots and roots of Leucaena leucocephala in As-amended soils (35 and 75 mg As dm(-3)). The experiment used 3 AMF isolates from uncontaminated soils: Acaulospora morrowiae, Glomus clarum, and Gigaspora albida; a mixed inoculum derived from combining these 3 isolates (named Mix AMF); and, 3 AMF isolates from As-contaminated areas: A. morrowiae, G. clarum and Paraglomus occultum. Phytotoxicity symptoms due to arsenic contamination appeared during plant growth, especially in treatments without AMF application. Inoculation with G. clarum and the mixture of species (A. morrowiae, G. albida, and G. clarum) resulted in better growth of L. leucocephala in soils with high As concentrations, as well as significant As removal from the soil, showing a potential for using AMF in phytoextraction. Light microscopy (LS), transmission (TEM) and scanning electron microscopies (SEM) studies showed the colonization of the AMF in plant tissues and damage in all treatments, with ultrastructural changes being observed in leaves and roots of L. leucocephala, especially with the addition of 75 mg dm(-3) of As. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Communities of arbuscular mycorrhizal fungi in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards with variable amounts of soil-available phosphorus.

    PubMed

    Yoshimura, Yuko; Ido, Akifumi; Iwase, Koji; Matsumoto, Teruyuki; Yamato, Masahide

    2013-01-01

    We examined the colonization rate and communities of arbuscular mycorrhizal fungi (AMF) in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards to investigate the effect of phosphorus (P) fertilization on AMF. Soil cores containing the roots of Japanese pear were collected from 13 orchards in Tottori Prefecture, Japan. Soil-available P in the examined orchards was 75.7 to 1,200 mg kg(-1), showing the extreme accumulation of soil P in many orchards. The AMF colonization rate was negatively correlated with soil-available P (P <0.01). AMF communities were examined on the basis of the partial fungal DNA sequences of the nuclear small-subunit ribosomal RNA gene (SSU rDNA) amplified by AMF-specific primers AML1 and AML2. The obtained AMF sequences were divided into 14 phylotypes, and the number of phylotypes (species richness) was also negatively correlated with soil-available P (P <0.05). It was also suggested that some AM fungi may be adapted to high soil-available P conditions. Redundancy analysis showed the significant effects of soil pH, available P in soil, and P content in leaves of P. pyrifolia var. culta trees on AMF distribution. These results suggested that the accumulation of soil-available P affected AMF communities in the roots of Japanese pear in the orchard environment.

  4. Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence?

    PubMed

    Horn, Sebastian; Hempel, Stefan; Verbruggen, Erik; Rillig, Matthias C; Caruso, Tancredi

    2017-06-01

    Arbuscular mycorrhizal fungi (AMF) are crucial to plants and vice versa, but little is known about the factors linking the community structure of the two groups. We investigated the association between AMF and the plant community structure in the nearest neighborhood of Festuca brevipila in a semiarid grassland with steep environmental gradients, using high-throughput sequencing of the Glomeromycotina (former Glomeromycota). We focused on the Passenger, Driver and Habitat hypotheses: (i) plant communities drive AMF (passenger); (ii) AMF communities drive the plants (driver); (iii) the environment shapes both communities causing covariation. The null hypothesis is that the two assemblages are independent and this study offers a spatially explicit novel test of it in the field at multiple, small scales. The AMF community consisted of 71 operational taxonomic units, the plant community of 47 species. Spatial distance and spatial variation in the environment were the main determinants of the AMF community. The structure of the plant community around the focal plant was a poor predictor of AMF communities, also in terms of phylogenetic community structure. Some evidence supports the passenger hypothesis, but the relative roles of the factors structuring the two groups clearly differed, leading to an apparent decoupling of the two assemblages at the relatively small scale of this study. Community phylogenetic structure in AMF suggests an important role of within-assemblage interactions.

  5. Impacts of Fertilization Regimes on Arbuscular Mycorrhizal Fungal (AMF) Community Composition Were Correlated with Organic Matter Composition in Maize Rhizosphere Soil

    PubMed Central

    Zhu, Chen; Ling, Ning; Guo, Junjie; Wang, Min; Guo, Shiwei; Shen, Qirong

    2016-01-01

    The understanding of the response of arbuscular mycorrhizal fungi (AMF) community composition to fertilization is of great significance in sustainable agriculture. However, how fertilization influences AMF diversity and composition is not well-established yet. A field experiment located in northeast China in typical black soil (Chernozem) was conducted and high-throughput sequencing approach was used to investigate the effects of different fertilizations on the variation of AMF community in the rhizosphere soil of maize crop. The results showed that AMF diversity in the maize rhizosphere was significantly altered by different fertilization regimes. As revealed by redundancy analysis, the application of organic manure was the most important factor impacting AMF community composition between samples with and without organic manure, followed by N fertilizer and P fertilizer inputs. Moreover, the organic matter composition in the rhizosphere, determined by GC–MS, was significantly altered by the organic manure amendment. Many of the chemical components displayed significant relationships with the AMF community composition according to the Mantel test, among those, 2-ethylnaphthalene explained the highest percentage (54.2%) of the variation. The relative contents of 2-ethylnaphthalene and 2, 6, 10-trimethyltetradecane had a negative correlation with Glomus relative abundance, while the relative content of 3-methylbiphenyl displayed a positive correlation with Rhizophagus. The co-occurrence patterns in treatments with and without organic manure amendment were analyzed, and more hubs were detected in the network of soils with organic manure amendment. Additionally, three operational taxonomic units (OTUs) belonging to Glomerales were identified as hubs in all treatments, indicating these OTUs likely occupied broad ecological niches and were always active for mediating AMF species interaction in the maize rhizosphere. Taken together, impacts of fertilization regimes on AMF community composition were correlated with organic matter composition in maize rhizosphere soil and the application of manure could activate more AMF species to interact with other species in the maize rhizosphere. This knowledge can be valuable in regulating the symbiotic system of plants and AMF, maintaining the health and high yields of crops and providing a primary basis for rational fertilization. PMID:27899920

  6. Population Dynamics of Meloidogyne arenaria and Pasteuria penetrans in a Long-Term Crop Rotation Study

    PubMed Central

    2009-01-01

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population. PMID:22736828

  7. Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study.

    PubMed

    Timper, Patricia

    2009-12-01

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population.

  8. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes.

    PubMed

    Berruti, Andrea; Lumini, Erica; Balestrini, Raffaella; Bianciotto, Valeria

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) constitute a group of root obligate biotrophs that exchange mutual benefits with about 80% of plants. They are considered natural biofertilizers, since they provide the host with water, nutrients, and pathogen protection, in exchange for photosynthetic products. Thus, AMF are primary biotic soil components which, when missing or impoverished, can lead to a less efficient ecosystem functioning. The process of re-establishing the natural level of AMF richness can represent a valid alternative to conventional fertilization practices, with a view to sustainable agriculture. The main strategy that can be adopted to achieve this goal is the direct re-introduction of AMF propagules (inoculum) into a target soil. Originally, AMF were described to generally lack host- and niche-specificity, and therefore suggested as agriculturally suitable for a wide range of plants and environmental conditions. Unfortunately, the assumptions that have been made and the results that have been obtained so far are often worlds apart. The problem is that success is unpredictable since different plant species vary their response to the same AMF species mix. Many factors can affect the success of inoculation and AMF persistence in soil, including species compatibility with the target environment, the degree of spatial competition with other soil organisms in the target niche and the timing of inoculation. Thus, it is preferable to take these factors into account when "tuning" an inoculum to a target environment in order to avoid failure of the inoculation process. Genomics and transcriptomics have led to a giant step forward in the research field of AMF, with consequent major advances in the current knowledge on the processes involved in their interaction with the host-plant and other soil organisms. The history of AMF applications in controlled and open-field conditions is now long. A review of biofertilization experiments, based on the use of AMF, has here been proposed, focusing on a few important factors that could increase the odds or jeopardize the success of the inoculation process.

  9. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes

    PubMed Central

    Berruti, Andrea; Lumini, Erica; Balestrini, Raffaella; Bianciotto, Valeria

    2016-01-01

    Arbuscular Mycorrhizal Fungi (AMF) constitute a group of root obligate biotrophs that exchange mutual benefits with about 80% of plants. They are considered natural biofertilizers, since they provide the host with water, nutrients, and pathogen protection, in exchange for photosynthetic products. Thus, AMF are primary biotic soil components which, when missing or impoverished, can lead to a less efficient ecosystem functioning. The process of re-establishing the natural level of AMF richness can represent a valid alternative to conventional fertilization practices, with a view to sustainable agriculture. The main strategy that can be adopted to achieve this goal is the direct re-introduction of AMF propagules (inoculum) into a target soil. Originally, AMF were described to generally lack host- and niche-specificity, and therefore suggested as agriculturally suitable for a wide range of plants and environmental conditions. Unfortunately, the assumptions that have been made and the results that have been obtained so far are often worlds apart. The problem is that success is unpredictable since different plant species vary their response to the same AMF species mix. Many factors can affect the success of inoculation and AMF persistence in soil, including species compatibility with the target environment, the degree of spatial competition with other soil organisms in the target niche and the timing of inoculation. Thus, it is preferable to take these factors into account when “tuning” an inoculum to a target environment in order to avoid failure of the inoculation process. Genomics and transcriptomics have led to a giant step forward in the research field of AMF, with consequent major advances in the current knowledge on the processes involved in their interaction with the host-plant and other soil organisms. The history of AMF applications in controlled and open-field conditions is now long. A review of biofertilization experiments, based on the use of AMF, has here been proposed, focusing on a few important factors that could increase the odds or jeopardize the success of the inoculation process. PMID:26834714

  10. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  11. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    PubMed

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method.

    PubMed

    Truong, Tuyen; Palmer, Martin; Bansal, Nidhi; Bhandari, Bhesh

    2017-12-15

    This study aims to examine the solubility of CO 2 in anhydrous milk fat (AMF) as functions of partial pressure, temperature, chemical composition and physical state of AMF. AMF was fractionated at 21°C to obtain stearin and olein fractions. The CO 2 solubility was measured using a home-made experimental apparatus based on changes of CO 2 partial pressures. The apparatus was found to be reliable as the measured and theoretical values based on the ideal gas law were comparable. The dissolved CO 2 concentration in AMF increased with an increase in CO 2 partial pressure (0-101kPa). The apparent CO 2 solubility coefficients (molkg -1 Pa -1 ) in the AMF were 5.75±0.16×10 -7 , 3.9±0.19×10 -7 and 1.19±0.14×10 -7 at 35, 24 and 4°C, respectively. Higher liquid oil proportions resulted in higher CO 2 solubility in the AMF. There was insignificant difference in the dissolved CO 2 concentration among the AMF, stearin and olein fractions in their liquid state at 40°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient.

    PubMed

    Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.

  14. Tumor Secreted Autocrine Motility Factor (AMF): Causal Role in an Animal Model of Cachexia

    DTIC Science & Technology

    2005-08-01

    AD Award Number: DAMD17-02-1-0586 TITLE: Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia PRINCIPAL...5a. CONTRACT NUMBER Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia 5b. GRANT NUMBER DAM D1 7-02-1-0586 5c...quality of life and postpone mortality. We proposed that autocrine motility factor ( AMF ) is released into the bloodstream from cancer sites and

  15. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  16. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi.

    PubMed

    Majewska, Marta L; Rola, Kaja; Zubek, Szymon

    2017-02-01

    While a number of recent studies have revealed that arbuscular mycorrhizal fungi (AMF) can mediate invasive plant success, the influence of these symbionts on the most successful and high-impact invaders is largely unexplored. Two perennial herbs of this category of invasive plants, Rudbeckia laciniata and Solidago gigantea (Asteraceae), were thus tested in a pot experiment to determine whether AMF influence their growth, the concentration of phosphorus in biomass, and photosynthesis. The following treatments, including three common AMF species, were prepared on soils representative of two habitats that are frequently invaded by both plants, namely fallow and river valley: (1) control-soil without AMF, (2) Rhizophagus irregularis, (3) Funneliformis mosseae, and (4) Claroideoglomus claroideum. The invaders were strongly dependent on AMF for their growth. The mycorrhizal dependency of R. laciniata was 88 and 63 % and of S. gigantea 90 and 82 % for valley and fallow soils, respectively. The fungi also increased P concentration in their biomass. However, we found different effects of the fungal species in the stimulation of plant growth and P acquisition, with R. irregularis and C. claroideum being the most and least effective symbionts, respectively. None of AMF species had an impact on the photosynthetic performance indexes of both plants. Our findings indicate that AMF have a direct effect on the early stages of R. laciniata and S. gigantea growth. The magnitude of the response of both plant species to AMF was dependent on the fungal and soil identities. Therefore, the presence of particular AMF species in a site may determine the success of their invasion.

  17. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands

    PubMed Central

    Asmelash, Fisseha; Bekele, Tamrat; Birhane, Emiru

    2016-01-01

    Experiences worldwide reveal that degraded lands restoration projects achieve little success or fail. Hence, understanding the underlying causes and accordingly, devising appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration and global commitments in degraded lands restoration could be realized. Here we explain that arbuscular mycorrhizal fungi (AMF) biotechnology is a potential mechanism to significantly improve the restoration success of degraded lands. There are abundant scientific evidences to demonstrate that AMF significantly improve soil attributes, increase above and belowground biodiversity, significantly improve tree/shrub seedlings survival, growth and establishment on moisture and nutrient stressed soils. AMF have also been shown to drive plant succession and may prevent invasion by alien species. The very few conditions where infective AMF are low in abundance and diversity is when the soil erodes, is disturbed and is devoid of vegetation cover. These are all common features of degraded lands. Meanwhile, degraded lands harbor low levels of infective AMF abundance and diversity. Therefore, the successful restoration of infective AMF can potentially improve the restoration success of degraded lands. Better AMF inoculation effects result when inocula are composed of native fungi instead of exotics, early seral instead of late seral fungi, and are consortia instead of few or single species. Future research efforts should focus on AMF effect on plant community primary productivity and plant competition. Further investigation focusing on forest ecosystems, and carried out at the field condition is highly recommended. Devising cheap and ethically widely accepted inocula production methods and better ways of AMF in situ management for effective restoration of degraded lands will also remain to be important research areas. PMID:27507960

  18. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    PubMed Central

    Liang, Yan; Ghosh, Amit; Chen, Jie; Tang, Ming

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated soils. PMID:26698576

  19. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination.

    PubMed

    Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schäfer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, François

    2010-08-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells

    PubMed Central

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-01-01

    Aim: In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Materials & methods: Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. Results: TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Conclusion: Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise. PMID:27388639

  1. Do genetically modified plants impact arbuscular mycorrhizal fungi?

    PubMed

    Liu, Wenke

    2010-02-01

    The development and use of genetically modified plants (GMPs), as well as their ecological risks have been a topic of considerable public debate since they were first released in 1996. To date, no consistent conclusions have been drawn dealing with ecological risks on soil microorganisms of GMPs for the present incompatible empirical data. Arbuscular mycorrhizal fungi (AMF), important in regulating aboveground and underground processes in ecosystems, are the most crucial soil microbial community worthy of being monitored in ecological risks assessment of GMPs for their sensitivity to environmental alterations (plant, soil, climatic factor etc.). Based on current data, we suggest that there is a temporal-spatial relevance between expression and rhizosphere secretion of anti-disease and insecticidal proteins (e.g., Bt-Bacillus thuringiensis toxins) in and outer roots, and AMF intraradical and extraradical growth and development. Therefore, taking Bt transgenic plants (BTPs) for example, Bt insecticidal proteins constitutive expression and rhizosphere release during cultivation of BTPs may damage some critical steps of the AMF symbiotic development. More important, these processes of BTPs coincide with the entire life cycle of AMF annually, which may impact the diversity of AMF after long-term cultivation period. It is proposed that interactions between GMPs and AMF should be preferentially studied as an indicator for ecological impacts of GMPs on soil microbial communities. In this review, advances in impacts of GMPs on AMF and the effect mechanisms were summarized, highlighting the possible ecological implications of interactions between GMPs and AMF in soil ecosystems.

  2. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    PubMed

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

  3. Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil.

    PubMed

    Wang, Xin-Xin; Wang, Xiaojing; Sun, Yu; Cheng, Yang; Liu, Shitong; Chen, Xinping; Feng, Gu; Kuyper, Thomas W

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the acquisition of immobile nutrients, particularly phosphorus. However, because nitrogen (N) is more mobile in the soil solution and easier to access by plants roots, the role of AMF in enhancing N acquisition is regarded as less important for host plants. Because AMF have a substantial N demand, competition for N between AMF and plants particularly under low N condition is possible. Thus, it is necessary to know whether or not AMF affect N uptake of plants and thereby affect plant growth under field conditions. We conducted a 2-year field trial and pot experiments in a greenhouse by using benomyl to suppress colonization of maize roots by indigenous AMF at both low and high N application rates. Benomyl reduced mycorrhizal colonization of maize plants in all experiments. Benomyl-treated maize had a higher shoot N concentration and content and produced more grain under field conditions. Greenhouse pot experiments showed that benomyl also enhanced maize growth and N concentration and N content when the soil was not sterilized, but had no effect on maize biomass and N content when the soil was sterilized but a microbial wash added, providing evidence that increased plant performance is at least partly caused by direct effects of benomyl on AMF. We conclude that AMF can reduce N acquisition and thereby reduce grain yield of maize in N-limiting soils.

  4. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    USDA-ARS?s Scientific Manuscript database

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  5. A survey of dairy calf management practices among farms using manual and automated milk feeding systems in Canada.

    PubMed

    Medrano-Galarza, Catalina; LeBlanc, Stephen J; DeVries, Trevor J; Jones-Bitton, Andria; Rushen, Jeffrey; Marie de Passillé, Anne; Haley, Derek B

    2017-08-01

    Dairy calves in North America traditionally are housed individually and fed by manual milk feeding (MMF) systems with buckets or bottles. Automated milk feeders (AMF) allow for more natural milk feeding frequencies and volumes, and calves are usually housed in groups. The objectives of this study were to (1) determine the prevalence of various milk-fed calf management and feeding practices and (2) compare these practices between dairy farms using MMF and AMF systems. A national online survey was performed from January to May 2015 to quantify management practices for the care of milk-fed dairy calves in Canada. A total of 670 responses were received (6% of all dairy farms in Canada). Among respondents, 16% used AMF and 84% used MMF. Seventy percent of the farms using AMF had freestall barns compared with only 48% of those using MMF. A greater proportion of AMF farms (30%) also had automatic milking systems (AMS) compared with MMF farms (8%). Among tiestall farms, a herd size of >80 milking cows was associated with having an AMF [odds ratio (OR) = 3.8; 95% confidence interval (CI): 1.6-11.4]. For freestall or bedded-pack farms, a herd size of >80 milking cows (OR = 3.5; CI: 1.8-6.6), having an AMS (OR = 3.1; CI: 1.6-5.7), and use of cow brushes (OR = 3.1; CI: 1.3-6.9) were associated with having an AMF. Calves fed with AMS typically were housed in groups of 10 to 15, whereas almost 76% of the farms with MMF housed calves individually. Although both AMF and MMF farms fed similar amounts of milk in the first week of life (median = 6 L/d), the cumulative volume fed in the first 4 wk differed significantly, with a median of 231 versus 182 L for AMF and MMF, respectively. Median peak milk allowance was higher for AMF than for MMF (10 vs. 8 L/d, respectively). In summary, farms using AMF were larger, provided more milk to calves, and used more automation in general (i.e., in other areas of their operation). These data provide insights into calf-rearing practices across Canada and into how the use of AMF is affecting calf feeding and management on dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation

    PubMed Central

    Cote, Christopher K.; Buhr, Tony; Bernhards, Casey B.; Bohmke, Matthew D.; Calm, Alena M.; Esteban-Trexler, Josephine S.; Hunter, Melissa; Katoski, Sarah E.; Kennihan, Neil; Klimko, Christopher P.; Miller, Jeremy A.; Minter, Zachary A.; Pfarr, Jerry W.; Prugh, Amber M.; Quirk, Avery V.; Rivers, Bryan A.; Shea, April A.; Shoe, Jennifer L.; Sickler, Todd M.; Young, Alice A.; Fetterer, David P.; Welkos, Susan L.; McPherson, Derrell; Fountain, Augustus W.

    2018-01-01

    ABSTRACT In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10−6. Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques. IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism. PMID:29654186

  7. An exotic grass disrupts mycorrhizal fungi which increases the mortality of Artemisia tridentata

    USDA-ARS?s Scientific Manuscript database

    Invasive plant species are capable of changing the community composition of arbuscular mycorrhizal fungi (AMF). Changes to AMF communities may contribute to the net negative impact of invasives on resident plants. Here we compared the AMF communities of the invasive grass Agropyron cristatum acros...

  8. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil

    DOE PAGES

    Yang, Yurong; Liang, Yan; Han, Xiaozhen; ...

    2016-02-04

    Understanding the roles of arbuscular mycorrhizal fungi (AMF) in plant interaction is essential for optimizing plant distribution to restore degraded ecosystems. Here, our study investigated the effects of AMF and the presence of legume or grass herbs on phytoremediation with a legume tree, Robinia pseudoacacia, in Pb polluted soil. In monoculture, mycorrhizal dependency of legumes was higher than that of grass, and AMF benefited the plant biomass of legumes but had no effect on grass. Mycorrhizal colonization of plant was enhanced by legume neighbors but inhibited by grass neighbor in co-culture system. N, P, S and Mg concentrations of mycorrhizalmore » legumes were larger than these of non-mycorrhizal legumes. Legume herbs decreased soil pH and thereby increased the Pb concentrations of plants. The neighbor effects of legumes shifted from negative to positive with increasing Pb stress levels, whereas grass provided a negative effect on the growth of legume tree. AMF enhanced the competition but equalized growth of legume-legume under unpolluted and Pb stress conditions, respectively. In conclusion, (1) AMF mediate plant interaction through directly influencing plant biomass, and/or indirectly influencing plant photosynthesis, macronutrient acquisition, (2) legume tree inoculated with AMF and co-planted with legume herbs provides an effective way for Pb phytoremediation.« less

  9. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil

    PubMed Central

    Yang, Yurong; Liang, Yan; Han, Xiaozhen; Chiu, Tsan-Yu; Ghosh, Amit; Chen, Hui; Tang, Ming

    2016-01-01

    Understanding the roles of arbuscular mycorrhizal fungi (AMF) in plant interaction is essential for optimizing plant distribution to restore degraded ecosystems. This study investigated the effects of AMF and the presence of legume or grass herbs on phytoremediation with a legume tree, Robinia pseudoacacia, in Pb polluted soil. In monoculture, mycorrhizal dependency of legumes was higher than that of grass, and AMF benefited the plant biomass of legumes but had no effect on grass. Mycorrhizal colonization of plant was enhanced by legume neighbors but inhibited by grass neighbor in co-culture system. N, P, S and Mg concentrations of mycorrhizal legumes were larger than these of non-mycorrhizal legumes. Legume herbs decreased soil pH and thereby increased the Pb concentrations of plants. The neighbor effects of legumes shifted from negative to positive with increasing Pb stress levels, whereas grass provided a negative effect on the growth of legume tree. AMF enhanced the competition but equalized growth of legume-legume under unpolluted and Pb stress conditions, respectively. In conclusion, (1) AMF mediate plant interaction through directly influencing plant biomass, and/or indirectly influencing plant photosynthesis, macronutrient acquisition, (2) legume tree inoculated with AMF and co-planted with legume herbs provides an effective way for Pb phytoremediation. PMID:26842958

  10. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi.

    PubMed

    Ropars, Jeanne; Toro, Kinga Sędzielewska; Noel, Jessica; Pelin, Adrian; Charron, Philippe; Farinelli, Laurent; Marton, Timea; Krüger, Manuela; Fuchs, Jörg; Brachmann, Andreas; Corradi, Nicolas

    2016-03-21

    Sexual reproduction is ubiquitous among eukaryotes, and fully asexual lineages are extremely rare. Prominent among ancient asexual lineages are the arbuscular mycorrhizal fungi (AMF), a group of plant symbionts with a multinucleate cytoplasm. Genomic divergence among co-existing nuclei was proposed to drive the evolutionary success of AMF in the absence of sex(1), but this hypothesis has been contradicted by recent genome analyses that failed to find significant genetic diversity within an AMF isolate(2,3). Here, we set out to resolve issues surrounding the genome organization and sexual potential of AMF by exploring the genomes of five isolates of Rhizophagus irregularis, a model AMF. We find that genetic diversity in this species varies among isolates and is structured in a homo-dikaryon-like manner usually linked with the existence of a sexual life cycle. We also identify a putative AMF mating-type locus, containing two genes with structural and evolutionary similarities with the mating-type locus of some Dikarya. Our analyses suggest that this locus may be multi-allelic and that AMF could be heterothallic and bipolar. These findings reconcile opposing views on the genome organization of these ubiquitous plant symbionts and open avenues for strain improvement and environmental application of these organisms.

  11. Communities of Arbuscular Mycorrhizal Fungi Detected in Forest Soil Are Spatially Heterogeneous but Do Not Vary throughout the Growing Season

    PubMed Central

    Davison, John; Öpik, Maarja; Zobel, Martin; Vasar, Martti; Metsis, Madis; Moora, Mari

    2012-01-01

    Despite the important ecosystem role played by arbuscular mycorrhizal fungi (AMF), little is known about spatial and temporal variation in soil AMF communities. We used pyrosequencing to characterise AMF communities in soil samples (n = 44) from a natural forest ecosystem. Fungal taxa were identified by BLAST matching of reads against the MaarjAM database of AMF SSU rRNA gene diversity. Sub-sampling within our dataset and experimental shortening of a set of long reads indicated that our approaches to taxonomic identification and diversity analysis were robust to variations in pyrosequencing read length and numbers of reads per sample. Different forest plots (each 10×10 m and separated from one another by 30 m) contained significantly different soil AMF communities, and the pairwise similarity of communities decreased with distance up to 50 m. However, there were no significant changes in community composition between different time points in the growing season (May-September). Spatial structure in soil AMF communities may be related to the heterogeneous vegetation of the natural forest study system, while the temporal stability of communities suggests that AMF in soil represent a fairly constant local species pool from which mycorrhizae form and disband during the season. PMID:22879900

  12. The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field.

    PubMed

    Stockinger, Herbert; Peyret-Guzzon, Marine; Koegel, Sally; Bouffaud, Marie-Lara; Redecker, Dirk

    2014-01-01

    Due to the potential of arbuscular mycorrhizal fungi (AMF, Glomeromycota) to improve plant growth and soil quality, the influence of agricultural practice on their diversity continues to be an important research question. Up to now studies of community diversity in AMF have exclusively been based on nuclear ribosomal gene regions, which in AMF show high intra-organism polymorphism, seriously complicating interpretation of these data. We designed specific PCR primers for 454 sequencing of a region of the largest subunit of RNA polymerase II gene, and established a new reference dataset comprising all major AMF lineages. This gene is known to be monomorphic within fungal isolates but shows an excellent barcode gap between species. We designed a primer set to amplify all known lineages of AMF and demonstrated its applicability in combination with high-throughput sequencing in a long-term tillage experiment. The PCR primers showed a specificity of 99.94% for glomeromycotan sequences. We found evidence of significant shifts of the AMF communities caused by soil management and showed that tillage effects on different AMF taxa are clearly more complex than previously thought. The high resolving power of high-throughput sequencing highlights the need for quantitative measurements to efficiently detect these effects.

  13. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest.

    PubMed

    Opik, M; Metsis, M; Daniell, T J; Zobel, M; Moora, M

    2009-10-01

    * Knowledge of the diversity of arbuscular mycorrhizal fungi (AMF) in natural ecosystems is a major bottleneck in mycorrhizal ecology. Here, we aimed to apply 454 sequencing--providing a new level of descriptive power--to assess the AMF diversity in a boreonemoral forest. * 454 sequencing reads of the small subunit ribosomal RNA (SSU rRNA) gene of Glomeromycota were assigned to sequence groups by blast searches against a custom-made annotated sequence database. * We detected 47 AMF taxa in the roots of 10 plant species in a 10 x 10 m plot, which is almost the same as the number of plant species in the whole studied forest. There was a significant difference between AMF communities in the roots of forest specialist plant species and in the roots of habitat generalist plant species. Forest plant species hosted 22 specialist AMF taxa, and the generalist plants shared all but one AMF taxon with forest plants, including globally distributed generalist fungi. These AMF taxa that have been globally recorded only in forest ecosystems were significantly over-represented in the roots of forest plant species. * Our findings suggest that partner specificity in AM symbiosis may occur at the level of ecological groups, rather than at the species level, of both plant and fungal partners.

  14. Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Bi, Yin-Li; Jiang, Bin; Zhakypbek, Yryszhan; Peng, Su-Ping; Liu, Wen-Wen; Liu, Hao

    2016-10-01

    Carbon storage is affected by photosynthesis (Pn) and soil respiration (Rs), which have been studied extensively in natural and agricultural systems. However, the effects of Pn and Rs on carbon storages in the presence of arbuscular mycorrhizal fungi (AMF) in coalfields remain unclear. A field experiment was established in 2014 in Shendong coal mining subsidence area. The treatments comprised two inoculation levels (inoculated with or without 100 g AMF inoculums per seedlings) and four plant species [wild cherry (Prunus discadenia Koebne L.), cerasus humilis (Prunus dictyneura Diels L.), shiny leaf Yellow horn (Xanthoceras sorbifolium Bunge L.) and apricot (Armeniaca sibirica L.)]. AMF increased Pn of four species ranging from 15.3% to 33.1% and carbon storage, averaged by 17.2% compared to controls. Soil organic carbon (OC), easily extractable glomalin-relation soil protein (EE-GRSP), and total glomalin-relation soil protein (T-GRSP) were significantly increased by AMF treatment. The effect of AMF on the sensitivity of Rs depended on soil temperature. The results highlighted the exponential models to explain the responses of Rs to soil temperature, and for the first time quantified AMF caused carbon sequestration and Rs. Thus, to our knowledge, AMF is beneficial to ecosystems through facilitating carbon conservation in coalfield soils.

  15. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.

    PubMed

    Ordoñez, Yuli Marcela; Fernandez, Belen Rocio; Lara, Lidia Susana; Rodriguez, Alia; Uribe-Vélez, Daniel; Sanders, Ian R

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing Pseudomonas bacteria (PSB) could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities.

  16. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species.

    PubMed

    de Melo, Rangel Wesley; Schneider, Jerusa; de Souza, Costa Enio Tarso; Sousa, Soares Cláudio Roberto Fonsêca; Guimarães, Guilherme Luiz Roberto; de Souza, Moreira Fatima Maria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) improve the tolerance of hosting plants to arsenic (As) in contaminated soils. This work assessed the phytoprotective effect of Glomus etunicatum, Acaulospora morrowiae, Gigaspora gigantea, and Acaulospora sp. on four leguminous species (Acacia mangium, Crotalaria juncea, Enterolobium contortisiliquum, and Stizolobium aterrimum) in an As-contaminated soil from a gold mining area. AMF root colonization, biomass production, As and P accumulation, as well as arsenic translocation index (TI) from roots to shoots were measured. The AMF phytoprotective effect was assessed by the P/As ratio and the activity of plant antioxidant enzymes. The AMF colonization ranged from 24 to 28%. In general, all leguminous species had low As TI when inoculated with AMF species. Inoculation of C. juncea with Acaulospora sp. improved significantly As accumulation in roots, and decreased the activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), highlighting its phytoprotective effect and the potential use of this symbiosis for phytoremediation of As-contaminated soils. However, S. aterrimum has also shown a potential for phytoremediation irrespectively of AMF inoculation. APX was a good indicator of the phytoprotective effect against As contamination in C. juncea and A. mangium. In general P/As ratio in shoots was the best indicator of the phytoprotective effect of all AMF species in all plant species.

  17. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants.

    PubMed

    Vályi, Kriszta; Rillig, Matthias C; Hempel, Stefan

    2015-03-01

    We studied the effect of host plant identity and land-use intensity (LUI) on arbuscular mycorrhizal fungi (AMF, Glomeromycota) communities in roots of grassland plants. These are relevant factors for intraradical AMF communities in temperate grasslands, which are habitats where AMF are present in high abundance and diversity. In order to focus on fungi that directly interact with the plant at the time, we investigated root-colonizing communities. Our study sites represent an LUI gradient with different combinations of grazing, mowing, and fertilization. We used massively parallel multitag pyrosequencing to investigate AMF communities in a large number of root samples, while being able to track the identity of the host. We showed that host plants significantly differed in AMF community composition, while land use modified this effect in a plant species-specific manner. Communities in medium and low land-use sites were subsets of high land-use communities, suggesting a differential effect of land use on the dispersal of AMF species with different abundances and competitive abilities. We demonstrate that in these grasslands, there is a small group of highly abundant, generalist fungi which represent the dominating species in the AMF community. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  18. AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).

  19. Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells under a Confocal Microscope.

    PubMed

    Connord, Vincent; Clerc, Pascal; Hallali, Nicolas; El Hajj Diab, Darine; Fourmy, Daniel; Gigoux, Véronique; Carrey, Julian

    2015-05-01

    Combining high-frequency alternating magnetic fields (AMF) and magnetic nanoparticles (MNPs) is an efficient way to induce biological responses through several approaches: magnetic hyperthermia, drug release, controls of gene expression and neurons, or activation of chemical reactions. So far, these experiments cannot be analyzed in real-time during the AMF application. A miniaturized electromagnet fitting under a confocal microscope is built, which produces an AMF of frequency and amplitude similar to the ones used in magnetic hyperthermia. AMF application induces massive damages to tumoral cells having incorporated nanoparticles into their lysosomes without affecting the others. Using this setup, real-time analyses of molecular events occurring during AMF application are performed. Lysosome membrane permeabilization and reactive oxygen species production are detected after only 30 min of AMF application, demonstrating they occur at an early stage in the cascade of events leading eventually to cell death. Additionally, lysosomes self-assembling into needle-shaped organization under the influence of AMF is observed in real-time. This experimental approach will permit to get a deeper insight into the physical, molecular, and biological process occurring in several innovative techniques used in nanomedecine based on the combined use of MNPs and high-frequency magnetic fields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improvement of Verticillium Wilt Resistance by Applying Arbuscular Mycorrhizal Fungi to a Cotton Variety with High Symbiotic Efficiency under Field Conditions

    PubMed Central

    Zhang, Qiang; Gao, Xinpeng; Ren, Yanyun; Ding, Xinhua; Qiu, Jiajia; Li, Ning; Zeng, Fanchang

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in nutrient cycling processes and plant stress resistance. To evaluate the effect of Rhizophagus irregularis CD1 on plant growth promotion (PGP) and Verticillium wilt disease, the symbiotic efficiency of AMF (SEA) was first investigated over a range of 3% to 94% in 17 cotton varieties. The high-SEA subgroup had significant PGP effects in a greenhouse. From these results, the highest-SEA variety of Lumian 1 was selected for a two-year field assay. Consistent with the performance from the greenhouse, the AMF-mediated PGP of Lumian 1 also produced significant results, including an increased plant height, stem diameter, number of petioles, and phosphorus content. Compared with the mock treatment, AMF colonization obviously inhibited the symptom development of Verticillium dahliae and more strongly elevated the expression of pathogenesis-related genes and lignin synthesis-related genes. These results suggest that AMF colonization could lead to the mycorrhiza-induced resistance (MIR) of Lumian 1 to V. dahliae. Interestingly, our results indicated that the AMF endosymbiont could directly inhibit the growth of phytopathogenic fungi including V. dahliae by releasing undefined volatiles. In summary, our results suggest that stronger effects of AMF application result from the high-SEA. PMID:29342876

  1. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yurong; Liang, Yan; Han, Xiaozhen

    Understanding the roles of arbuscular mycorrhizal fungi (AMF) in plant interaction is essential for optimizing plant distribution to restore degraded ecosystems. Here, our study investigated the effects of AMF and the presence of legume or grass herbs on phytoremediation with a legume tree, Robinia pseudoacacia, in Pb polluted soil. In monoculture, mycorrhizal dependency of legumes was higher than that of grass, and AMF benefited the plant biomass of legumes but had no effect on grass. Mycorrhizal colonization of plant was enhanced by legume neighbors but inhibited by grass neighbor in co-culture system. N, P, S and Mg concentrations of mycorrhizalmore » legumes were larger than these of non-mycorrhizal legumes. Legume herbs decreased soil pH and thereby increased the Pb concentrations of plants. The neighbor effects of legumes shifted from negative to positive with increasing Pb stress levels, whereas grass provided a negative effect on the growth of legume tree. AMF enhanced the competition but equalized growth of legume-legume under unpolluted and Pb stress conditions, respectively. In conclusion, (1) AMF mediate plant interaction through directly influencing plant biomass, and/or indirectly influencing plant photosynthesis, macronutrient acquisition, (2) legume tree inoculated with AMF and co-planted with legume herbs provides an effective way for Pb phytoremediation.« less

  2. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    PubMed Central

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the dual inoculation significantly improved cassava yield compared to the commercial inoculant. This is the first report on native AMF species exhibiting multiple benefits for cassava crop productivity, namely improved plant growth and yield, water stress tolerance and nematode resistance. PMID:28066381

  3. Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla

    PubMed Central

    Symanczik, Sarah; Gisler, Michelle; Thonar, Cécile; Schlaeppi, Klaus; Van der Heijden, Marcel; Kahmen, Ansgar; Boller, Thomas; Mäder, Paul

    2017-01-01

    Naranjilla (Solanum quitoense) is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF) can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains (Rhizoglomus irregulare, Claroideoglomus claroideum, and Cetraspora helvetica) and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture) have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains) versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS) methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104%) compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with permaculture soil might have been caused by a higher abundance of AMF and the presence of Piriformospora indica as revealed by NGS. A higher frequency of AMF and enhanced root colonization rates in the trap cultures supplemented with permaculture soil highlight the importance of diverse agricultural systems for soil quality and crop production. PMID:28769964

  4. Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla.

    PubMed

    Symanczik, Sarah; Gisler, Michelle; Thonar, Cécile; Schlaeppi, Klaus; Van der Heijden, Marcel; Kahmen, Ansgar; Boller, Thomas; Mäder, Paul

    2017-01-01

    Naranjilla ( Solanum quitoense ) is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF) can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains ( Rhizoglomus irregulare , Claroideoglomus claroideum , and Cetraspora helvetica ) and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture) have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains) versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS) methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104%) compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with permaculture soil might have been caused by a higher abundance of AMF and the presence of Piriformospora indica as revealed by NGS. A higher frequency of AMF and enhanced root colonization rates in the trap cultures supplemented with permaculture soil highlight the importance of diverse agricultural systems for soil quality and crop production.

  5. Arbuscular mycorrhizal fungi in two vertical-flow wetlands constructed for heavy metal-contaminated wastewater bioremediation.

    PubMed

    Xu, Zhouying; Wu, Yang; Jiang, Yinghe; Zhang, Xiangling; Li, Junli; Ban, Yihui

    2018-05-01

    Over the last three decades, the presence of arbuscular mycorrhizal fungi (AMF) in wetland habitats had been proven, and their roles played in wetland ecosystems and potential functions in wastewater bioremediation technical installations are interesting issues. To increase knowledge on the functions of AMF in the plant-based bioremediation of wastewater, we constructed two vertical-flow wetlands planting with Phragmites australis and investigated AMF distribution in plant roots and their roles played in purification of wastewater polluted by heavy metals (HMs), utilizing the Illumina sequencing technique. A total of 17 operational taxonomic units (OTUs) from 33,031 AMF sequences were obtained, with Glomus being the most dominant. P. australis living in the two vertical-flow constructed wetlands (CWs) harbored diverse AMF comparable with the AM fungal communities in upland habitats. The AMF composition profiles of CW1 (vegetated with non-inoculated plants) and CW2 (vegetated with mycorrhizal plants inoculated with Rhizophagus intraradices) were significantly different. CW1 (15 OTUs) harbored more diverse AMF than CW2 (7 OTUs); however, CW2 harbored much more OTU13 than CW1. In addition, a zipf species abundance distribution (SAD), which might due to the heavy overdominance of OTU13, was observed across AM fugal taxa in P. australis roots of the two CWs. CW1 and CW2 showed high (> 70%) removal capacity of HMs. CW2 exhibited significant higher Cd and Zn removal efficiencies than CW1 (CK) (p = 0.005 and p = 0.008, respectively). It was considered that AMF might play a role in HM removal in CWs.

  6. The effect of different land uses on arbuscular mycorrhizal fungi in the northwestern Black Sea Region.

    PubMed

    Palta, Şahin; Lermi, Ayşe Genç; Beki, Rıdvan

    2016-06-01

    The object of the present research was to establish correlations between the status of root colonization of arbuscular mycorrhizal fungi (AMF) and different types of land use. In order to achieve this aim, rhizosphere soil samples from grassland crops were taken during June and July of 2013 in order to use for determining several soil characteristics. The 27 different taxa and 60 soil samples were collected from the rhizosphere level in the study areas. The existence of AMF was confirmed in 100 % of these plants with different rations of colonization (approximately 12-89 %). Bromus racemosus L. (pasture) was the most dense taxon with the percentage of AMF colonization of 88.9 %, and Trifolium pratense L. (forest) was the least dense taxon with the percentage of AMF colonization of 12.2 % (average 52.0 %). As a result of the statistical analysis, a positive relationship was found between the botanical composition of legumes and AMF colonization (r = 0.35; p = 0.006). However, a negative relationship was determined between botanical composition of other plant families and AMF colonization (r = -0.39; p = 0.002). In addition, a positive relationship was defined between soil pH (H2O) and the root colonization of AMF (r = 0.35; p = 0.005). The pasture had the highest mean value of AMF root colonization. However, the pasture and gap in the forest were in the same group, according to the results of the S-N-K test.

  7. The Interaction between Arbuscular Mycorrhizal Fungi and Endophytic Bacteria Enhances Plant Growth of Acacia gerrardii under Salt Stress

    PubMed Central

    Hashem, Abeer; Abd_Allah, Elsayed F.; Alqarawi, Abdulaziz A.; Al-Huqail, Asma A.; Wirth, Stephan; Egamberdieva, Dilfuza

    2016-01-01

    Microbes living symbiotically in plant tissues mutually cooperate with each other by providing nutrients for proliferation of the partner organism and have a beneficial effect on plant growth. However, few studies thus far have examined the interactive effect of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) in hostile conditions and their potential to improve plant stress tolerance. In this study, we investigated how the synergistic interactions of endophytic bacteria and AMF affect plant growth, nodulation, nutrient acquisition and stress tolerance of Acacia gerrardii under salt stress. Plant growth varied between the treatments with both single inoculants and was higher in plants inoculated with the endophytic B. subtilis strain than with AMF. Co-inoculated A. gerrardii had a significantly greater shoot and root dry weight, nodule number, and leghemoglobin content than those inoculated with AMF or B. subtilis alone under salt stress. The endophytic B. subtilis could alleviate the adverse effect of salt on AMF colonization. The differences in nitrate and nitrite reductase and nitrogenase activities between uninoculated plants and those inoculated with AMF and B. subtilis together under stress were significant. Both inoculation treatments, either B. subtilis alone or combined with AMF, enhanced the N, P, K, Mg, and Ca contents and phosphatase activities in salt-stressed A. gerrardii tissues and reduced Na and Cl concentration, thereby protecting salt-stressed plants from ionic and osmotic stress-induced changes. In conclusion, our results indicate that endophytic bacteria and AMF contribute to a tripartite mutualistic symbiosis in A. gerrardii and are coordinately involved in the plant adaptation to salt stress tolerance. PMID:27486442

  8. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem.

    PubMed

    Guo, Xiaohong; Gong, Jun

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.

  9. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    NASA Astrophysics Data System (ADS)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  10. TaqMan Real-Time PCR Assays To Assess Arbuscular Mycorrhizal Responses to Field Manipulation of Grassland Biodiversity: Effects of Soil Characteristics, Plant Species Richness, and Functional Traits▿ †

    PubMed Central

    König, Stephan; Wubet, Tesfaye; Dormann, Carsten F.; Hempel, Stefan; Renker, Carsten; Buscot, François

    2010-01-01

    Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community. PMID:20418424

  11. Shoot δ(15)N and δ (13)C values of non-host Brassica rapa change when exposed to ±Glomus etunicatum inoculum and three levels of phosphorus and nitrogen.

    PubMed

    Fonseca, Henrique M; Berbara, Ricardo L; Daft, Melvin J

    2001-08-01

    Glasshouse experiments were conducted to study the response of non-host Brassica rapa and host Sorghum bicolor to inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus etunicatum when given different levels of N (0.9 mmol kg(-1) sand, 2.7 mmol kg(-1) sand, 8.1 mmol kg(-1) sand) and P (3.6 µmol kg(-1) sand, 10.7 µmol kg(-1) sand, 32.0 µmol kg(-1) sand) fertiliser. On both plant species, the presence of G. etunicatum inoculum (+AMF) was associated with significant changes of shoot δ(15)N values, with +AMF plants having larger average δ(15)N values than uninoculated plants (-AMF). These values are the largest average differences in shoot δ(15)N yet recorded for AMF and nutrient effects. B. rapa shoot δ(15)N average differences ranged from 1.67‰ to 2.70‰, while for S. bicolor they range between 2.07‰ and 4.40‰. For shoot δ(13)C only the non-host B. rapa responded to ±AMF and added N. Although the harvested dry weight biomass (-35.2% B. rapa; +39.8% S. bicolor) of both plant species responded to AMF inoculation, no direct relationship was observed between isotopic discrimination and growth inhibition for the non-host B. rapa. In this paper we discuss some implications regarding AMF inocula on the basis of our findings and current literature.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijun; Deng, Jie; Zhou, Xin

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much moremore » significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B{sub t} and AMF B{sub z} (B{sub t}/B{sub z}). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.« less

  13. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  14. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium.

    PubMed

    Ren, Cheng-Gang; Kong, Cun-Cui; Bian, Bian; Liu, Wei; Li, Yan; Luo, Yong-Ming; Xie, Zhi-Hong

    2017-09-02

    Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.

  15. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance

    PubMed Central

    Hashem, Abeer; Abd_Allah, E.F.; Alqarawi, A.A.; Al Huqail, Asma A.; Egamberdieva, D.; Wirth, S.

    2015-01-01

    Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato. PMID:26981010

  16. Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings

    PubMed Central

    Solís-Domínguez, Fernando A.; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2011-01-01

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p < 0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by AMF, or a combination of both mechanisms. PMID:21211826

  17. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    DOE PAGES

    Yang, Yurong; Han, Xiaozhen; Liang, Yan; ...

    2015-12-23

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg -1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulationmore » of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H 2O 2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. In conclusion, our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated soils.« less

  18. Arbuscular Mycorhizal Fungi Associated with the Olive Crop across the Andalusian Landscape: Factors Driving Community Differentiation

    PubMed Central

    Montes-Borrego, Miguel; Metsis, Madis; Landa, Blanca B.

    2014-01-01

    Background In the last years, many olive plantations in southern Spain have been mediated by the use of self-rooted planting stocks, which have incorporated commercial AMF during the nursery period to facilitate their establishment. However, this was practised without enough knowledge on the effect of cropping practices and environment on the biodiversity of AMF in olive orchards in Spain. Methodology/Principal Findings Two culture-independent molecular methods were used to study the AMF communities associated with olive in a wide-region analysis in southern Spain including 96 olive locations. The use of T-RFLP and pyrosequencing analysis of rDNA sequences provided the first evidence of an effect of agronomic and climatic characteristics, and soil physicochemical properties on AMF community composition associated with olive. Thus, the factors most strongly associated to AMF distribution varied according to the technique but included among the studied agronomic characteristics the cultivar genotype and age of plantation and the irrigation regimen but not the orchard management system or presence of a cover crop to prevent soil erosion. Soil physicochemical properties and climatic characteristics most strongly associated to the AMF community composition included pH, textural components and nutrient contents of soil, and average evapotranspiration, rainfall and minimum temperature of the sampled locations. Pyrosequencing analysis revealed 33 AMF OTUs belonging to five families, with Archaeospora spp., Diversispora spp. and Paraglomus spp., being first records in olive. Interestingly, two of the most frequent OTUs included a diverse group of Claroideoglomeraceae and Glomeraceae sequences, not assigned to any known AMF species commonly used as inoculants in olive during nursery propagation. Conclusions/Significance Our data suggests that AMF can exert higher host specificity in olive than previously thought, which may have important implications for redirecting the olive nursery process in the future as well as to take into consideration the specific soils and environments where the mycorrhized olive trees will be established. PMID:24797669

  19. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance.

    PubMed

    Khalloufi, Mouna; Martínez-Andújar, Cristina; Lachaâl, Mokhtar; Karray-Bouraoui, Najoua; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2017-07-01

    The agriculture industry is frequently affected by various abiotic stresses limiting plant productivity. To decrease the negative effect of salinity and improve growth performance, some strategies have been used, such as exogenous application of plant growth regulators (i.e. gibberellic acid, GA 3 ), or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights about the cross-talk effect of exogenous GA 3 application and AMF inoculation on growth under salinity conditions, tomato plants (Solanum lycopersicum, cv. TT-115) were inoculated or not with the AMF Rhizophagus irregularis and exposed to different treatments during two weeks: 0M GA 3 +0mM NaCl, 10 -6 M GA 3 +0mM NaCl, 0M GA 3 +100mM NaCl and 10 -6 M GA 3 +100mM NaCl. Results have revealed that AMF inoculation or GA 3 application alone, but especially their interaction, resulted in growth improvement under salinity conditions. The growth improvement observed in AMF-inoculated tomato plants under salinity conditions was mainly associated to ionic factors (higherK concentration and K/Na ratio) while the alleviating effect of GA 3 application and its interaction with AMF appear to be due to changes in the hormonal balance. Foliar GA 3 application was found to increase the active gibberellins (GAs), resulting in a positive correlation between GA 3 and the growth-related parameters. Furthermore, cytokinins, indoleacetic acid and abscisic acid concentrations increased in AMF inoculated or GA 3 treated plants but, notably, in AMF plants treated with GA 3 , which showed improved growth under salinity conditions. This suggests that there is an interactive positive effect between GAs and AMF which alleviates growth impairment under salinity conditions by modifying the hormonal balance of the plant. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Prunus persica crop management as step toward AMF diversity conservation for the sustainable soil management

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Lozano, Z.; Garcia-Orenes, F.; Roldan, A.

    2012-04-01

    We investigated the diversity of arbuscular mycorrhizal fungi (AMF) in roots of Prunus persica under two fertilization treatments (CF: consisted of application of chicken manure (1400 kg.ha-1), urea (140 kg.ha-1), complex fertilizer 12-12-17/2 (280 kg.ha-1), and potassium sulfate (40 kg.ha-1) and IF: consisted of application of urea (140 kg.ha-1), complex fertilizer 12-12-17/2 (400 kg.ha-1) and potassium sulfate (70 kg.ha-1)) combined with integrated pest management (IM) or chemical pest management (CM), in a tropical agroecosystem in the north of Venezuela. Our goal was to ascertain how different fertilizers/pest management can modify the AMF diversity colonizing P. persica roots as an important step towards sustainable soil use and therefore protection of biodiversity. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty-one different phylotypes were identified, which were grouped in five families: Glomeraceae, Paraglomeraceae, Acaulosporaceae, Gigasporaceae and Archaeosporaceae. Sixteen of these sequence groups belonged to the genus Glomus, two to Paraglomus, one to Acaulospora, one to Scutellospora and one to Archaeospora. A different distribution of the AMF phylotypes as consequence of the difference between treatments was observed. Thus, the AMF communities of tree roots in the (IF+CM) treatment had the lowest diversity (H'=1.78) with the lowest total number of AMF sequence types (9). The trees from both (CF+IM) and (IF+IM) treatments had similar AMF diversity (H'?2.00); while the treatment (CF+CM) yielded the highest number of different AMF sequence types (17) and showed the highest diversity index (H'=2.69). In conclusion, the crop management including combination of organic and inorganic fertilization and chemical pest control appears to be the most suitable strategy with respect to reactivate the AMF diversity in the roots of this crop and thus, the agricultural and environmental sustainability in the agroecosystem.

  1. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yurong; Han, Xiaozhen; Liang, Yan

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg -1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulationmore » of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H 2O 2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. In conclusion, our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated soils.« less

  2. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat

    PubMed Central

    Saia, Sergio; Rappa, Vito; Ruisi, Paolo; Abenavoli, Maria Rosa; Sunseri, Francesco; Giambalvo, Dario; Frenda, Alfonso S.; Martinelli, Federico

    2015-01-01

    In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4+) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3- transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem. PMID:26483827

  3. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats.

    PubMed

    Bothe, Hermann; Turnau, Katarzyna; Regvar, Marjana

    2010-10-01

    Ecosystems worldwide are threatened with the extinction of plants and, at the same time, invasion by new species. Plant invasiveness and loss of species can be caused by similar but opposing pressures on the community structures. Arbuscular mycorrhizal fungi (AMF) can have multiple positive effects on plant growth, productivity, health, and stress relief. Many endangered species live in symbiosis with AMF. However, the list of the International Union for Conservation of Nature and Natural Resources (IUCN Red List of Threatened Species) indicates that the mycorrhizal status of most of the threatened species has not been assessed. Rare plants often occur in specialized and also endangered habitats and might utilize specialized or unique AMF. The specificity of any endangered plant to its AMF population has not been investigated. Because most of the current AMF isolates that are available colonize a broad range of plant species, selected inocula could be used to promote growth of endangered plants before the proper and more effective indigenous AMF are characterized. Application of AMF in field sites to protect endangered plants is hardly feasible due to the complexity of plant community structures and the large amount of fungal inocula needed. Endangered plants could, however, be grown as greenhouse cultures together with appropriate fungi, and, at the relevant developmental stage, they could be re-planted into native sites to prevent extinction and to preserve plant community ecology.

  4. Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance.

    PubMed

    Li, Tao; Hu, Ya-Jun; Hao, Zhi-Peng; Li, Hong; Chen, Bao-Dong

    2013-05-01

    Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.

  5. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models.

    PubMed

    Dan, Mo; Bae, Younsoo; Pittman, Thomas A; Yokel, Robert A

    2015-05-01

    Superparamagnetic iron oxide nanoparticles (IONPs) are being investigated for brain cancer therapy because alternating magnetic field (AMF) activates them to produce hyperthermia. For central nervous system applications, brain entry of diagnostic and therapeutic agents is usually essential. We hypothesized that AMF-induced hyperthermia significantly increases IONP blood-brain barrier (BBB) association/uptake and flux. Cross-linked nanoassemblies loaded with IONPs (CNA-IONPs) and conventional citrate-coated IONPs (citrate-IONPs) were synthesized and characterized in house. CNA-IONP and citrate-IONP BBB cell association/uptake and flux were studied using two BBB Transwell(®) models (bEnd.3 and MDCKII cells) after conventional and AMF-induced hyperthermia exposure. AMF-induced hyperthermia for 0.5 h did not alter CNA-IONP size but accelerated citrate-IONP agglomeration. AMF-induced hyperthermia for 0.5 h enhanced CNA-IONP and citrate-IONP BBB cell association/uptake. It also enhanced the flux of CNA-IONPs across the two in vitro BBB models compared to conventional hyperthermia and normothermia, in the absence of cell death. Citrate-IONP flux was not observed under these conditions. AMF-induced hyperthermia also significantly enhanced paracellular pathway flux. The mechanism appears to involve more than the increased temperature surrounding the CNA-IONPs. Hyperthermia induced by AMF activation of CNA-IONPs has potential to increase the BBB permeability of therapeutics for the diagnosis and therapy of various brain diseases.

  6. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms

    DOE PAGES

    Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.; ...

    2016-02-10

    In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less

  7. Barcoded NS31/AML2 primers for sequencing of arbuscular mycorrhizal communities in environmental samples1

    PubMed Central

    Morgan, Benjamin S. T.; Egerton-Warburton, Louise M.

    2017-01-01

    Premise of the study: Arbuscular mycorrhizal fungi (AMF) are globally important root symbioses that enhance plant growth and nutrition and influence ecosystem structure and function. To better characterize levels of AMF diversity relevant to ecosystem function, deeper sequencing depth in environmental samples is needed. In this study, Illumina barcoded primers and a bioinformatics pipeline were developed and applied to study AMF diversity and community structure in environmental samples. Methods: Libraries of small subunit ribosomal RNA fragment amplicons were amplified from environmental DNA using a single-step PCR reaction with barcoded NS31/AML2 primers. Amplicons were sequenced on an Illumina MiSeq sequencer using version 2, 2 × 250-bp paired-end chemistry, and analyzed using QIIME and RDP Classifier. Results: Sequencing captured 196 to 6416 operational taxonomic units (OTUs; depending on clustering parameters) representing nine AMF genera. Regardless of clustering parameters, ∼20 OTUs dominated AMF communities (78–87% reads) with the remaining reads distributed among other OTUs. Analyses also showed significant biogeographic differences in AMF communities and that community composition could be linked to specific edaphic factors. Discussion: Barcoded NS31/AML2 primers and Illumina MiSeq sequencing provide a powerful approach to address AMF diversity and variations in fungal assemblages across host plants, ecosystems, and responses to environmental drivers including global change. PMID:28924511

  8. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.

    In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less

  9. Enhancement of the efficacy of a carbamate nematicide against the potato cyst nematode, Globodera pallida, through mycorrhization in commercial potato fields.

    PubMed

    Deliopoulos, T; Minnis, S T; Jones, P W; Haydock, P P J

    2010-03-01

    Two experiments were conducted over 2 years in commercial potato fields in Shropshire, UK, to evaluate the compatibility of the nematicide aldicarb with commercial inocula of arbuscular mycorrhizal fungi (AMF) in the control of the potato cyst nematode Globodera pallida. The AMF used were Vaminoc (mixed-AMF inoculum), Glomus intraradices (BioRize BB-E) and G. mosseae (isolate BEG 12). In the absence of AMF, the in-soil hatch of G. pallida increased 30% (P < 0.01) from wk-2 to wk-4 after planting. Inoculation of physiologically-aged potato (cv. Golden Wonder) tubers with AMF eliminated this delay in G. pallida hatch by stimulating a mean increase of 32% (P < 0.01) in hatch within 2 wk after planting. In the aldicarb-treated plots in Experiment 1, G. pallida multiplication rate was 38% lower (P < 0.05) in roots of AMF-inoculated than noninoculated plants, but in Experiment 2, this effect was slightly lower (P = 0.07). In these plots, the single AMF inocula showed also a weak trend (P = 0.10) towards greater tuber yields relative to their noninoculated counterparts. Mycorrhization therefore appears to enhance the efficacy of carbamate nematicides against G. pallida and consequently more research is proposed to validate these findings and fully explore the potential of this model.

  10. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Treesearch

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  11. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    NASA Astrophysics Data System (ADS)

    Takemiya, Tetsushi

    In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.

  12. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were observed in similar studies with Air-O-Cell samplers. These count differences were relatively small compared with the large differences observed among three count magnifications.

  13. Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation

    PubMed Central

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2016-01-01

    We investigated the role of arbuscular mycorrhizal fungal (AMF) hyphae in alternation of soil microbial community and Aroclor 1242 dissipation. A two-compartment rhizobox system with double nylon meshes in the central was employed to exclude the influence of Cucurbita pepo L. root exudates on hyphal compartment soil. To assess the quantitative effect of AMF hyphae on soil microbial community, we separated the hyphal compartment soil into four horizontal layers from the central mesh to outer wall (e.g., L1–L4). Soil total PCBs dissipation rates ranged from 35.67% of L4 layer to 57.39% of L1 layer in AMF inoculated treatment, which were significant higher than the 17.31% of the control (P < 0.05). The dissipation rates of tri-, tetrachlorinated biphenyls as well as the total PCBs were significantly correlated with soil hyphal length (P < 0.01). Real-time quantitative PCR results indicated that the Rhodococcus-like bphC gene was 2–3 orders of magnitude more than that of Pseudomonas-like bphC gene, and was found responded positively to AMF. Phylogenetic analyses of the 16S rDNA sequenced by the Illumina Miseq sequencing platform indicated that AMF hyphae altered bacterial community compositions. The phylum Betaproteobacteria and Actinobacteria were dominated in the soil, while Burkholderiales and Actinomycetales were dominated at the order level. Taxa from the Comamonadaceae responded positively to AMF and trichlorinated biphenyl dissipation, while taxa from the Oxalobacteraceae and Streptomycetaceae responded negatively to AMF and PCB congener dissipation. Our results suggested that the AMF hyphal exudates as well as the hyphae per se did have quantitative effects on shaping soil microbial community, and could modify the PCBs dissipation processes consequently. PMID:27379068

  14. Arbuscular Mycorrhizal Fungal Community Composition in Carludovica palmata, Costus scaber and Euterpe precatoria from Weathered Oil Ponds in the Ecuadorian Amazon

    PubMed Central

    Garcés-Ruiz, Mónica; Senés-Guerrero, Carolina; Declerck, Stéphane; Cranenbrouck, Sylvie

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous to most natural and anthropized ecosystems, and are often found in polluted environments. However, their occurrence and community composition in highly weathered petroleum-polluted soils has been infrequently reported. In the present study, two ponds of weathered crude oil and their surrounding soil from the Charapa field in the Amazon region of Ecuador were selected and root colonization by AMF of their native plants investigated. The AMF community was further analyzed in three selected plant species (i.e., Carludovica palmata, Costus scaber and Euterpe precatoria) present in the two ponds and the surrounding soil. A fragment covering partial SSU, the whole ITS and partial LSU rDNA region was amplified (i.e., 1.5 kb), cloned and sequenced from the roots of each host species. AMF root colonization exceeded 56% in all plant species examined and no significant difference was observed between sites or plants. For AMF community analysis, a total of 138 AMF sequences were obtained and sorted into 32 OTUs based on clustering (threshold ≥97%) by OPTSIL. The found OTUs belonged to the genera Rhizophagus (22%), Glomus (31%), Acaulospora (25%) and Archaeospora (22%). Glomus and Archaeospora were always present regardless of the plant species or the site. Acaulospora was found in the three plant species and in the two ponds while Rhizophagus was revealed only in the surrounding soil in one plant species (Euterpe precatoria). Our study contributed to the molecular community composition of AMF and revealed an unexpected high presence of four AMF genera which have established a symbiosis with roots of native plants from the Amazon forest under high polluted soil conditions. PMID:29163421

  15. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization.

    PubMed

    Estrada-Luna, Andrés A; Davies, Fred T

    2003-09-01

    Little is known about the role of arbuscular mycorrhiza fungi (AMF) on physiological changes of micropropagated plantlets during acclimatization and post-acclimatization. Using chile ancho pepper (Capsicum annuum L. cv. San Luis), measurements were made of water relations, gas exchange, abscisic acid (ABA), plantlet growth and AMF development. Plantlets had low photosynthetic rates (A) and poor initial growth during acclimatization. Relative water content (RWC) decreased during the first days after transfer from tissue culture containers to ex vitro conditions. Consequently, transpiration rates (E) and stomatal conductance (gs) declined, confirming that in vitro formed stomata were functional and able to respond ex vitro to partial desiccation--thus avoiding excessive leaf dehydration and plant death. Colonization by AMF occurred within 3 days after inoculation. Colonized plantlets had lower leaf ABA and higher RWC than noncolonized (NonAMF) plantlets during peak plant dehydration (6 days after plant transfer)--and a higher A and gs as early as days 5 and 7. During post-acclimatization [after day 8, when RWC increased and stabilized], A increased in all plantlets; however, more dramatic changes occurred with AMF plantlets. Within 48 days, 45% of the roots sampled of inoculated plantlets were colonized and had extensive arbuscule development. At this time, AMF plantlets also had greater E, A, leaf chlorophyll, leaf elemental N, P and K, leaf dry biomass and leaf area, fruit production and differences in carbon partitioning [lower root/shoot ratio and higher leaf area ratio] compared with NonAMF plantlets. Rapid AMF colonization enhanced physiological adjustments, which helped plantlets recover rapidly during acclimatization and obtain greater growth during post-acclimatization.

  16. Arbuscular Mycorrhizal Fungal Community Composition in Carludovica palmata, Costus scaber and Euterpe precatoria from Weathered Oil Ponds in the Ecuadorian Amazon.

    PubMed

    Garcés-Ruiz, Mónica; Senés-Guerrero, Carolina; Declerck, Stéphane; Cranenbrouck, Sylvie

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous to most natural and anthropized ecosystems, and are often found in polluted environments. However, their occurrence and community composition in highly weathered petroleum-polluted soils has been infrequently reported. In the present study, two ponds of weathered crude oil and their surrounding soil from the Charapa field in the Amazon region of Ecuador were selected and root colonization by AMF of their native plants investigated. The AMF community was further analyzed in three selected plant species (i.e., Carludovica palmata, Costus scaber and Euterpe precatoria ) present in the two ponds and the surrounding soil. A fragment covering partial SSU, the whole ITS and partial LSU rDNA region was amplified (i.e., 1.5 kb), cloned and sequenced from the roots of each host species. AMF root colonization exceeded 56% in all plant species examined and no significant difference was observed between sites or plants. For AMF community analysis, a total of 138 AMF sequences were obtained and sorted into 32 OTUs based on clustering (threshold ≥97%) by OPTSIL. The found OTUs belonged to the genera Rhizophagus (22%), Glomus (31%), Acaulospora (25%) and Archaeospora (22%). Glomus and Archaeospora were always present regardless of the plant species or the site. Acaulospora was found in the three plant species and in the two ponds while Rhizophagus was revealed only in the surrounding soil in one plant species ( Euterpe precatoria ). Our study contributed to the molecular community composition of AMF and revealed an unexpected high presence of four AMF genera which have established a symbiosis with roots of native plants from the Amazon forest under high polluted soil conditions.

  17. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields

    PubMed Central

    Chatzinoff, Yonatan; Szczepanski, Debby; Bing, Chenchen; Shaikh, Sumbul; Wyman, Omar; Perry, Cameron E.; Richardson, James A.; Burns, Dennis K.; Evers, Bret M.; Greenberg, David E.; Chopra, Rajiv

    2018-01-01

    Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants. PMID:29746579

  18. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields.

    PubMed

    Cheng, Bingbing; Chatzinoff, Yonatan; Szczepanski, Debby; Bing, Chenchen; Shaikh, Sumbul; Wyman, Omar; Perry, Cameron E; Richardson, James A; Burns, Dennis K; Evers, Bret M; Greenberg, David E; Chopra, Rajiv

    2018-01-01

    Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants.

  19. Contrasting the Community Structure of Arbuscular Mycorrhizal Fungi from Hydrocarbon-Contaminated and Uncontaminated Soils following Willow (Salix spp. L.) Planting

    PubMed Central

    Stefani, Franck O. P.; Denis, David; Hijri, Mohamed; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF) form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Although AMF are suspected to play a role in plant adaptation to hydrocarbon contamination, their distribution in hydrocarbon-contaminated soils is not well known. In this study, we examined how AMF communities were structured within the rhizosphere of 11 introduced willow cultivars as well as unplanted controls across uncontaminated and hydrocarbon-contaminated soils at the site of a former petrochemical plant. We obtained 69 282 AMF-specific 18S rDNA sequences using 454-pyrosequencing, representing 27 OTUs. Contaminant concentration was the major influence on AMF community structure, with different AMF families dominating at each contaminant level. The most abundant operational taxonomic unit in each sample represented a large proportion of the total community, and this proportion was positively associated with increasing contamination, and seemingly, by planting as well. The most contaminated soils were dominated by three phylotypes closely related to Rhizophagus irregularis, while these OTUs represented only a small proportion of sequences in uncontaminated and moderately contaminated soils. These results suggest that in situ inoculation of AMF strains could be an important component of phytoremediation treatments, but that strains should be selected from the narrow group that is both adapted to contaminant toxicity and able to compete with indigenous AMF species. PMID:25032685

  20. Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction

    NASA Astrophysics Data System (ADS)

    Piao, Daqing

    2017-02-01

    The magneto-thermo-acoustic effect that we predicted in 2013 refers to the generation of acoustic-pressure wave from magnetic nanoparticle (MNP) when thermally mediated under an alternating magnetic field (AMF) at a pulsed or frequency-chirped application. Several independent experimental studies have since validated magneto-thermoacoustic effect, and a latest report has discovered acoustic-wave generation from MNP at the second-harmonic frequency of the AMF when operating continuously. We propose that applying two AMFs with differing frequencies to MNP will produce acoustic-pressure wave at the summation and difference of the two frequencies, in addition to the two second-harmonic frequencies. Analysis of the specific absorption dynamics of the MNP when exposed to two AMFs of differing frequencies has shown some interesting patterns of acoustic-intensity at the multiple frequency components. The ratio of the acoustic-intensity at the summation-frequency over that of the difference-frequency is determined by the frequency-ratio of the two AMFs, but remains independent of the AMF strengths. The ratio of the acoustic-intensity at the summation- or difference-frequency over that at each of the two second-harmonic frequencies is determined by both the frequency-ratio and the field-strength-ratio of the two AMFs. The results indicate a potential strategy for localization of the source of a continuous-wave magneto-thermalacoustic signal by examining the frequency spectrum of full-field non-differentiating acoustic detection, with the field-strength ratio changed continuously at a fixed frequency-ratio. The practicalities and challenges of this magnetic spatial localization approach for magneto-thermo-acoustic imaging using a simple envisioned set of two AMFs arranged in parallel to each other are discussed.

  1. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants

    PubMed Central

    Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462

  2. Moist-Heat Resistance, Spore Aging, and Superdormancy in Clostridium difficile▿†

    PubMed Central

    Rodriguez-Palacios, Alexander; LeJeune, Jeffrey T.

    2011-01-01

    Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log10 within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log10 within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log10, 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores. PMID:21398481

  3. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.

    PubMed

    Faille, Christine; Jullien, Celine; Fontaine, Francoise; Bellon-Fontaine, Marie-Noelle; Slomianny, Christian; Benezech, Thierry

    2002-08-01

    The ability of bacterial spores and vegetative cells to adhere to inert surfaces was investigated by means of the number of adherent spores (Bacillus cereus and Bacillus subtilis spores) and Escherichia coli cells and their resistance to cleaning or rinsing procedures (adhesion strength). Six materials (glass, stainless steel, polyethylene high density (PEHD), polyamide-6, polyvinyl chloride, and Teflon) were tested. Slight differences in the number of adherent spores (less than 1 log unit) were observed between materials, but a higher number of adherent E. coli cells was found on the hydrophobic materials PEHD and Teflon. Conversely, the resistance of both B. cereus and B. subtilis spores to a cleaning procedure was significantly affected by the material. Hydrophobic materials were harder to clean. The topography parameter derived from the Abbott-Firestone curve, RVK, and, to a lesser extent, the widely used roughness parameters RA (average roughness) and Rz (maximal roughness), were related to the number of adherent cells. Lastly, the soiling level as well as the adhesion strength were shown to depend largely on the microorganism. The number of adhering B. cereus hydrophobic spores and their resistance to a cleaning procedure were found to be 10 times greater than those of the B. subtilis hydrophilic spores. Escherichia coli was loosely bound to all the materials tested, even after 24 h biofilm formation.

  4. Dipicolinic Acid Release and the Germination of Alicyclobacillus acidoterrestris Spores under Nutrient Germinants.

    PubMed

    Porębska, Izabela; Sokołowska, Barbara; Woźniak, Łukasz

    2017-03-30

    The presence of Alicyclobacillus, a thermoacidophilic and spore-forming bacterium, in acidic fruit juices poses a serious problem for the processing industry. A typical sign of spoilage in contaminated juices is a characteristic phenolic off-flavour associated with the production of guaiacol. Spores are formed in response to starvation and in a natural environment re-access the nutrients, e.g.: L-alanine and AGFK - a mixture of asparagine, glucose, fructose and potassium, triggers germination. The aim of this study was to estimate the impact of L-alanine and AGFK on the germination of the spores of two Alicyclobacillus acidoterrestris strains and to evaluate the relationship of the germination rate with dipicolinic acid (DPA) release. The spores were suspended in apple juice or in buffers at pH 4 and pH 7, followed by the addition of L-alanine and AGFK. Suspensions were or were not subjected, to a temperature of 80°C/10 min and incubated for various periods of time at 45°C. Optical density (OD660) was used to estimate the number of germinated spores. The amount of DPA released was determined using HPLC. The results indicate that the degree of germination of A. acidoterrestris spores depended on the strain and time of incubation and the nutritious compounds used. The data obtained show that the amount of DPA released correlated to the number of A. acidoterrestris spores germinated.

  5. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  6. A combination of a SEM technique and X-ray microanalysis for studying the spore germination process of Clostridium tyrobutyricum.

    PubMed

    Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro

    2009-06-01

    Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.

  7. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei.

    PubMed

    Hijri, Mohamed; Sanders, Ian R

    2005-01-13

    Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.

  8. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi.

    PubMed

    Krüger, Manuela; Stockinger, Herbert; Krüger, Claudia; Schüssler, Arthur

    2009-01-01

    * At present, molecular ecological studies of arbuscular mycorrhizal fungi (AMF) are only possible above species level when targeting entire communities. To improve molecular species characterization and to allow species level community analyses in the field, a set of newly designed AMF specific PCR primers was successfully tested. * Nuclear rDNA fragments from diverse phylogenetic AMF lineages were sequenced and analysed to design four primer mixtures, each targeting one binding site in the small subunit (SSU) or large subunit (LSU) rDNA. To allow species resolution, they span a fragment covering the partial SSU, whole internal transcribed spacer (ITS) rDNA region and partial LSU. * The new primers are suitable for specifically amplifying AMF rDNA from material that may be contaminated by other organisms (e.g., samples from pot cultures or the field), characterizing the diversity of AMF species from field samples, and amplifying a SSU-ITS-LSU fragment that allows phylogenetic analyses with species level resolution. * The PCR primers can be used to monitor entire AMF field communities, based on a single rDNA marker region. Their application will improve the base for deep sequencing approaches; moreover, they can be efficiently used as DNA barcoding primers.

  9. Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes.

    PubMed

    Senés-Guerrero, Carolina; Torres-Cortés, Gloria; Pfeiffer, Stefan; Rojas, Mercy; Schüßler, Arthur

    2014-08-01

    The world's fourth largest food crop, potato, originates in the Andes. Here, the community composition of arbuscular mycorrhizal fungi (AMF) associated with potato in Andean ecosystems is described for the first time. AMF were studied in potato roots and rhizosphere soil at four different altitudes from 2,658 to 4,075 m above mean sea level (mamsl) and in three plant growth stages (emergence, flowering, and senescence). AMF species were distinguished by sequencing an approx. 1,500 bp nuclear rDNA region. Twenty species of AMF were identified, of which 12 came from potato roots and 15 from rhizosphere soil. Seven species were found in both roots and soil. Interestingly, altitude affected species composition with the highest altitude exhibiting the greatest species diversity. The three most common colonizers of potato roots detected were Funneliformis mosseae, an unknown Claroideoglomus sp., and Rhizophagus irregularis. Notably, the potato-associated AMF diversity observed in this Andean region is much higher than that reported for potato in other ecosystems. Potato plants were colonized by diverse species from 8 of the 11 Glomeromycota families. Identification of the AMF species is important for their potential use in sustainable management practices to improve potato production in the Andean region.

  10. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.

    PubMed

    Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X

    2015-01-01

    This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.

  11. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development

    PubMed Central

    Gui, Heng; Hyde, Kevin; Xu, Jianchu; Mortimer, Peter

    2017-01-01

    Although there is a growing amount of evidence that arbuscular mycorrhizal fungi (AMF) influence the decomposition process, the extent of their involvement remains unclear. Therefore, given this knowledge gap, our aim was to test how AMF influence the soil decomposer communities. Dual compartment microcosms, where AMF (Glomus mosseae) were either allowed access (AM+) to or excluded (AM−) from forest soil compartments containing litterbags (leaf litter from Calophyllum polyanthum) were used. The experiment ran for six months, with destructive harvests at 0, 90, 120, 150, and 180 days. For each harvest we measured AMF colonization, soil nutrients, litter mass loss, and microbial biomass (using phospholipid fatty acid analysis (PLFA)). AMF significantly enhanced litter decomposition in the first 5 months, whilst delaying the development of total microbial biomass (represented by total PLFA) from T150 to T180. A significant decline in soil available N was observed through the course of the experiment for both treatments. This study shows that AMF have the capacity to interact with soil microbial communities and inhibit the development of fungal and bacterial groups in the soil at the later stage of the litter decomposition (180 days), whilst enhancing the rates of decomposition. PMID:28176855

  12. Area and Carbon Content of Sphagnum Since Last Glacial Maximum

    DOE Data Explorer

    Gajewski, K. [University of Ottawa, Ottawa, Ontario (Canada); Viau, A. [University of Ottawa, Ottawa, Ontario (Canada); Sawada, M. [University of Ottawa, Ottawa, Ontario (Canada); Atkinson, D. [University of Ottawa, Ottawa, Ontario (Canada); Wilson, S. [University of Ottawa, Ottawa, Ontario (Canada)

    2002-01-01

    The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds closely to areas with peatland development, with maximum Sphagnum abundance between 630 and 1300 mm annual precipitation and between -2° and 60°C mean annual air temperature. Carbon content of peatlands was generated from estimated peatland area, calculated values of peat thickness, and specified values of bulk density (112 × 103 g m-3) and fraction of carbon (51.7%).

  13. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential.

    PubMed

    Salvioli, Alessandra; Ghignone, Stefano; Novero, Mara; Navazio, Lorella; Venice, Francesco; Bagnaresi, Paolo; Bonfante, Paola

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) occur in the rhizosphere and in plant tissues as obligate symbionts, having key roles in plant evolution and nutrition. AMF possess endobacteria, and genome sequencing of the endobacterium Candidatus Glomeribacter gigasporarum revealed a reduced genome and a dependence on the fungal host. To understand the effect of bacteria on fungal fitness, we used next-generation sequencing to analyse the transcriptional profile of Gigaspora margarita in the presence and in the absence of its endobacterium. Genomic data on AMF are limited; therefore, we first generated a gene catalogue for G. margarita. Transcriptome analysis revealed that the endobacterium has a stronger effect on the pre-symbiotic phase of the fungus. Coupling transcriptomics with cell biology and physiological approaches, we demonstrate that the bacterium increases the fungal sporulation success, raises the fungal bioenergetic capacity, increasing ATP production, and eliciting mechanisms to detoxify reactive oxygen species. By using TAT peptide to translocate the bioluminescent calcium reporter aequorin, we demonstrated that the line with endobacteria had a lower basal intracellular calcium concentration than the cured line. Lastly, the bacteria seem to enhance the fungal responsiveness to strigolactones, the plant molecules that AMF perceive as branching factors. Although the endobacterium exacts a nutritional cost on the AMF, endobacterial symbiosis improves the fungal ecological fitness by priming mitochondrial metabolic pathways and giving the AMF more tools to face environmental stresses. Thus, we hypothesise that, as described for the human microbiota, endobacteria may increase AMF innate immunity.

  14. Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus).

    PubMed

    Cosme, Marco; Stout, Michael J; Wurst, Susanne

    2011-10-01

    Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference-performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions. © Springer-Verlag 2011

  15. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate.

    PubMed

    Lazzara, Silvia; Militello, Marcello; Carrubba, Alessandra; Napoli, Edoardo; Saia, Sergio

    2017-05-01

    St. John's Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass under low P conditions and increased the production of root biomass. AMF almost halved the number of flowers per plant by means of a reduction of the number of flower-bearing stems per plant under high P availability and through a lower number of flowers per stem in the low-P treatment. Flower hyperforin concentration was 17.5% lower in mycorrhizal than in non-mycorrhizal plants. On the contrary, pseudohypericin and hypericin concentrations increased by 166.8 and 279.2%, respectively, with AMF under low P availability, whereas no effect of AMF was found under high P availability. These results have implications for modulating the secondary metabolite production of H. perforatum. However, further studies are needed to evaluate the competition for photosynthates between AMF and flowers at different nutrient availabilities for both plant and AM fungus.

  16. The dynamic life of arbuscular mycorrhizal fungal symbionts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bach, Elizabeth M.; Narvaez-Rivera, Giselle; Murray, Kira

    One of the most fascinating biological interactions lies just beneath our feet. Arbuscular mycorrhizal fungi (AMF), fungi from the phylum Glomeromycota, form a text-book example of symbiosis with more than 80% of plant species. Yet, few people have the opportunity to observe AMF directly. Most AMF living within a root have three distinct body structures that can be observed under a microscope: hyphae, arbuscules, and vesicles. Hyphae are thin, wispy projections that reach out from the root and absorb nutrients like phosphorous from the soil (Fig. 1a, c). Hyphae transport nutrients back to the roots through arbuscules that extend intomore » the root cells. Arbuscules are highly branched networks that exchange the nutrients from the soil for carbohydrates produced by the host plant during photosynthesis. AMF are also able to store lipids in vesicles, which are small, round structures within the root cells (Fig. 1b, d). AMF produce the lipids stored in vesicles from plant-derived carbon and use them for energy when the plant is not actively photosynthesizing. The host plant cannot access lipids within vesicles, so their production represents a complete transfer of carbon from plant host to fungus. Most roots do not contain all AMF structures. Even on plants colonized by AMF, not all roots show signs of colonization. On some roots, a multitude of fungal structures are evident within the roots. On others, those structures are nowhere to be found.« less

  17. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential

    PubMed Central

    Salvioli, Alessandra; Ghignone, Stefano; Novero, Mara; Navazio, Lorella; Venice, Francesco; Bagnaresi, Paolo; Bonfante, Paola

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) occur in the rhizosphere and in plant tissues as obligate symbionts, having key roles in plant evolution and nutrition. AMF possess endobacteria, and genome sequencing of the endobacterium Candidatus Glomeribacter gigasporarum revealed a reduced genome and a dependence on the fungal host. To understand the effect of bacteria on fungal fitness, we used next-generation sequencing to analyse the transcriptional profile of Gigaspora margarita in the presence and in the absence of its endobacterium. Genomic data on AMF are limited; therefore, we first generated a gene catalogue for G. margarita. Transcriptome analysis revealed that the endobacterium has a stronger effect on the pre-symbiotic phase of the fungus. Coupling transcriptomics with cell biology and physiological approaches, we demonstrate that the bacterium increases the fungal sporulation success, raises the fungal bioenergetic capacity, increasing ATP production, and eliciting mechanisms to detoxify reactive oxygen species. By using TAT peptide to translocate the bioluminescent calcium reporter aequorin, we demonstrated that the line with endobacteria had a lower basal intracellular calcium concentration than the cured line. Lastly, the bacteria seem to enhance the fungal responsiveness to strigolactones, the plant molecules that AMF perceive as branching factors. Although the endobacterium exacts a nutritional cost on the AMF, endobacterial symbiosis improves the fungal ecological fitness by priming mitochondrial metabolic pathways and giving the AMF more tools to face environmental stresses. Thus, we hypothesise that, as described for the human microbiota, endobacteria may increase AMF innate immunity. PMID:26046255

  18. Viability of fungal and actinomycetal spores after microwave radiation of building materials.

    PubMed

    Górny, Rafał L; Mainelis, Gediminas; Wlazło, Agnieszka; Niesler, Anna; Lis, Danuta O; Marzec, Stanisław; Siwińska, Ewa; Łudzeń-Izbińska, Beata; Harkawy, Aleksander; Kasznia-Kocot, Joanna

    2007-01-01

    The effects of microwave radiation on viability of fungal and actinomycetal spores growing on agar (medium optimal for growth) as well as on wooden panel and drywall (common building construction/finishing materials) were studied. All materials were incubated at high (97-99%) and low (32-33%) relative humidity to mimic "wet" and "dry" environmental conditions. Two microwave power densities (10 and 60 mW/cm2) and three times of exposure (5, 30, and 60 min) were tested to find the most effective parameters of radiation which could be applied to non-invasive reduction or cleaning of building materials from microbial contaminants. Additionally, a control of the surface temperature during the experiments allowed differentiation between thermal and microwave effect of such radiation. The results showed that the viability of studied microorganisms differed depending on their strains, growth conditions, power density of microwave radiation, time of exposure, and varied according to the applied combination of the two latter elements. The effect of radiation resulting in a decrease of spore viability on "wet" wooden panel and drywall was generally observed at 60 min exposure. Shorter exposure times decreased the viability of fungal spores only, while in actinomycetes colonizing the studied building materials, such radiation caused an opposite (supporting growth) effect.

  19. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    PubMed

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner.

  20. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce.

    PubMed

    Baslam, Marouane; Garmendia, Idoia; Goicoechea, Nieves

    2011-05-25

    Lettuce can be associated with arbuscular mycorrhizal fungi (AMF). This symbiosis involves a molecular dialogue between fungus and plant that includes the activation of antioxidant, phenylpropanoid, or carotenoid pathways. The objective of this study was to test if the association of lettuce with AMF benefited plant growth and increased the contents of compounds potentially beneficial for human health. Results showed that AMF improved growth of lettuce, thus producing a dilution effect on the concentrations of some mineral nutrients (e.g., Ca and Mn). However, Cu, Fe, anthocyanins, carotenoids, and, to a lesser extent, phenolics appeared in higher concentrations (on a wet basis) in mycorrhizal than in nonmycorrhizal plants.

  1. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    PubMed

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  2. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot

    PubMed Central

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-01-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires. PMID:26473720

  3. Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold.

    PubMed

    Engel, Rita; Szabó, Krisztina; Abrankó, László; Rendes, Kata; Füzy, Anna; Takács, Tünde

    2016-05-18

    The aim of this study is to examine the effect of arbuscular mycorrhizal fungi (AMF) colonization on biomass, polyphenol profile, and content of economically important herbs. A pot experiment was performed with marjoram, lemon balm, and marigold applying a commercially available AMF mixture for inoculation. Major polyphenols were identified using HPLC-UV-ESI-qTOFMS on the basis of their UV-vis and mass spectral characteristics, and selected ones were quantified. We showed that AMF can provide different services for each herb. Marjoram had the highest level of fungal colonization (82 M%) followed by lemon balm (62 M%) and marigold (17 M%). AMF inoculation significantly increased the biomass of marjoram (1.5-fold), the number of marigold flowers (1.2-fold), and the yield of rosmarinic acid and lithospermic acid isomers of marjoram (1.5-fold) and lemon balm (1.2-fold). Therefore, the quantity and quality of plant material could be improved by the application of optimized AMF inoculum.

  4. Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation

    PubMed Central

    Fester, Thomas

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF), which are present in most natural environments, have demonstrated capacity to promote biodegradation of organic pollutants in the greenhouse. However, it is not certain whether AMF can spontaneously establish in phytoremediation systems constructed to decontaminate groundwater, because of the unusual conditions during the construction and operation of such systems. To assess this possibility, root samples from a wetland constructed for the phytoremediation of groundwater contaminated with benzene, methyl tert-butyl ether and ammonia were analysed. Substantial AMF colonization was observed in plant roots sampled close to the inlet of a basin filled with fine gravel and planted with Phragmites australis. In addition, analysis of a fragment of the nuclear large ribosomal subunit, amplified by nested PCR, revealed the presence of AMF molecular operational taxonomic units closely related to Funneliformis mosseae and Rhizophagus irregularis in the samples. These findings demonstrate the capacity of generalist AMF strains to establish spontaneously, rapidly and extensively in groundwater bioremediation technical installations. PMID:22846140

  5. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe

    PubMed Central

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant–soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010–2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m−2 across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons. PMID:26818214

  6. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content.

    PubMed

    Lu, Fun-Chi; Lee, Chen-Yu; Wang, Chun-Li

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are widely distributed in nature. They live in the roots of higher plants, in a symbiotic relationship. In this study, five commercial species of yams (Dioscorea spp.) were inoculated with six species of AMF, Glomus clarum, G. etunicatum, G. fasciculatum, Gigaspora sp., G. mosseae, and Acaulospora sp., in field cultivation conditions to investigate the influence of AMF inoculation on tuber weights and secondary metabolite content in yam tubers. The results showed that mycorrhizae formation rates ranged from 63.33% to 90%. G. etunicatum inoculation treatment increased the tube weights of the five species of yam tubers by 39%, 35%, 20%, 56%, and 40% for Tainung 1, Tainung 2, Ercih, Zihyuxieshu, and Tainung 5, respectively. The content of secondary metabolites, such as polyphenols, flavonoids, and anthocyanin, was significantly increased by the AMF treatment in tuber flesh and peel of all the tested yam species. Specifically, the maximums exchange of secondary metabolite contents increased to 40%, 42%, and 106% for polyphenols, flavonoids, and anthocyanin, respectively, in the tuber fresh. This study revealed that different species of yam had varying degrees of affinity with various AMF species; selecting effective AMF species is necessary to facilitate yam growth and improve the quality and quantity of yam tubers.

  7. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil

    PubMed Central

    Ambrosini, Vítor Gabriel; Voges, Joana Gerent; Canton, Ludiana; Couto, Rafael da Rosa; Ferreira, Paulo Ademar Avelar; Comin, Jucinei José; de Melo, George Wellington Bastos; Brunetto, Gustavo; Soares, Cláudio Roberto Fonsêca Sousa

    2015-01-01

    Abstract High copper (Cu) levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P) absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis) and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM), height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels. PMID:26691462

  8. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe.

    PubMed

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-28

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m(-2) across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  9. Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes.

    PubMed

    Hill, Elizabeth M; Robinson, Lynne A; Abdul-Sada, Ali; Vanbergen, Adam J; Hodge, Angela; Hartley, Sue E

    2018-02-01

    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.

  10. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe

    NASA Astrophysics Data System (ADS)

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m-2 across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  11. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects.

    PubMed

    Verzeaux, Julien; Hirel, Bertrand; Dubois, Frédéric; Lea, Peter J; Tétu, Thierry

    2017-11-01

    Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.

    PubMed

    Singh, A K; Hamel, C; Depauw, R M; Knox, R E

    2012-03-01

    Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, 'AC Morse' had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas 'Commander', which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of 'Mongibello', which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

  13. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association.

    PubMed

    Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur

    2015-06-23

    For more than 450 million years, arbuscular mycorrhizal fungi (AMF) have formed intimate, mutualistic symbioses with the vast majority of land plants and are major drivers in almost all terrestrial ecosystems. The obligate plant-symbiotic AMF host additional symbionts, so-called Mollicutes-related endobacteria (MRE). To uncover putative functional roles of these widespread but yet enigmatic MRE, we sequenced the genome of DhMRE living in the AMF Dentiscutata heterogama. Multilocus phylogenetic analyses showed that MRE form a previously unidentified lineage sister to the hominis group of Mycoplasma species. DhMRE possesses a strongly reduced metabolic capacity with 55% of the proteins having unknown function, which reflects unique adaptations to an intracellular lifestyle. We found evidence for transkingdom gene transfer between MRE and their AMF host. At least 27 annotated DhMRE proteins show similarities to nuclear-encoded proteins of the AMF Rhizophagus irregularis, which itself lacks MRE. Nuclear-encoded homologs could moreover be identified for another AMF, Gigaspora margarita, and surprisingly, also the non-AMF Mortierella verticillata. Our data indicate a possible origin of the MRE-fungus association in ancestors of the Glomeromycota and Mucoromycotina. The DhMRE genome encodes an arsenal of putative regulatory proteins with eukaryotic-like domains, some of them encoded in putative genomic islands. MRE are highly interesting candidates to study the evolution and interactions between an ancient, obligate endosymbiotic prokaryote with its obligate plant-symbiotic fungal host. Our data moreover may be used for further targeted searches for ancient effector-like proteins that may be key components in the regulation of the arbuscular mycorrhiza symbiosis.

  14. Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China.

    PubMed

    Chen, Xun-Wen; Wu, Fu-Yong; Li, Hui; Chan, Wai-Fung; Wu, Sheng-Chun; Wong, Ming-Hung

    2017-02-01

    The accumulation, distribution, and speciation of contaminants, such as arsenic, in rice can be affected by soil microorganisms such as arbuscular mycorrhizal fungi (AMF). As a potential measure to control contaminant acquisition in rice, the status and performance of AMF in the field need to be investigated. Root samples of rice plants were collected in seven different cities in Guangdong, Jiangxi, Hubei, and Jiangsu Provinces in China in order to investigate the colonization rate of AMF. The total DNA of the roots was extracted, followed by PCR and sequencing, and further confirmed the existence of AMF. The highest colonization rates (19.5 ± 7.2%) were observed in samples from Huizhou City, Guangdong Province. Sequences of ribosomal DNA derived from Pingtan (PT) and Shuikou (SK) in Huizhou shared a similarity of 73 and 86% to Glomus cf. clarum Att894-7 (FM865542) and "uncultured fungus" (EF434122.1), respectively. The moisture tolerance of the AMF from different sources was tested by subjecting to different levels of water content in the soil. Only AMF from PT, SK, and LJ colonized rice under a condition of 100% of the soil water holding capacity (WHC), but not those isolated from upland plants. The AM colonization rate could be governed by the lighting conditions and temperature. AMF isolated in paddy fields has been shown to have more tolerance to moisture than other upland species. Radial oxygen loss (species and stress dependent) could be an essential factor influencing the colonization rate and requires more investigation.

  15. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site.

    PubMed

    Schneider, Jerusa; Bundschuh, Jochen; do Nascimento, Clístenes Williams Araújo

    2016-12-01

    Knowledge of the behavior of plant species associated with arbuscular mycorrhizal fungi (AMF) and the ability of such plants to grow on metal-contaminated soils is important to phytoremediation. Here, we evaluate the occurrence and diversity of AMF and plant species as well as their interactions in soil contaminated with lead (Pb) from the recycling of automotive batteries. The experimental area was divided into three locations: a non-contaminated native area, a coarse rejects deposition area, and an area receiving particulate material from the chimneys during the Pb melting process. Thirty-nine AMF species from six families and 10 genera were identified. The Acaulospora and Glomus genera exhibited the highest occurrences both in the bulk (10 and 6) and in the rhizosphere soils (9 and 6). All of the herbaceous species presented mycorrhizal colonization. The highest Pb concentrations (mgkg -1 ) in roots and shoots, respectively, were observed in Vetiveria zizanoides (15,433 and 934), Pteris vitata (9343 and 865), Pteridim aquilinun (1433 and 733), and Ricinus communis (1106 and 625). The diversity of AMF seems to be related to the area heterogeneity; the structure communities of AMF are correlated with the soil Pb concentration. We found that plant diversity was significantly correlated with AMF diversity (r=0.645; P>0.05) in areas with high Pb soil concentrations. A better understanding of AMF communities in the presence of Pb stress may shed light on the interactions between fungi and metals taking place in contaminated sites. Such knowledge can aid in developing soil phytoremediation techniques such as phytostabilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    PubMed

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  17. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke

    PubMed Central

    Rüber, Theodor

    2012-01-01

    Objectives: Studies on nonhuman primates have demonstrated that the cortico-rubro-spinal system can compensate for damage to the pyramidal tract (PT). In humans, so-called alternate motor fibers (aMF), which may comprise the cortico-rubro-spinal tract, have been suggested to play a similar role in motor recovery after stroke. Using diffusion tensor imaging, we examined PT and aMF in the context of human motor recovery by relating their microstructural properties to functional outcome in chronic stroke patients. Methods: PT and aMF were reconstructed based on their origins in primary motor, dorsal premotor, and supplementary motor cortices in 18 patients and 10 healthy controls. The patients' degree of motor recovery was assessed using the Wolf Motor Function Test (WMFT). Results: Compared to controls, fractional anisotropy (FA) was lower along ipsilesional PT and aMF in chronic stroke patients, but clusters of higher FA were found bilaterally in aMF within the vicinity of the red nuclei. FA along ipsilesional PT and aMF and within the red nuclei correlated significantly with WMFT scores. Probabilistic connectivity of aMF originating from ipsilesional primary motor cortex was higher in patients, whereas the ipsilesional PT exhibited lower connectivity compared to controls. Conclusions: The strong correlations observed between microstructural properties of bilateral red nuclei and the level of motor function in chronic stroke patients indicate possible remodeling during recovery. Our results shed light on the role of different corticofugal motor tracts, and highlight a compensatory function of the cortico-rubro-spinal system which may be used as a target in future restorative treatments. PMID:22843266

  18. The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression.

    PubMed

    Krüger, Manuela; Teste, François P; Laliberté, Etienne; Lambers, Hans; Coghlan, Megan; Zemunik, Graham; Bunce, Michael

    2015-10-01

    Ecosystem retrogression following long-term pedogenesis is attributed to phosphorus (P) limitation of primary productivity. Arbuscular mycorrhizal fungi (AMF) enhance P acquisition for most terrestrial plants, but it has been suggested that this strategy becomes less effective in strongly weathered soils with extremely low P availability. Using next generation sequencing of the large subunit ribosomal RNA gene in roots and soil, we compared the composition and diversity of AMF communities in three contrasting stages of a retrogressive >2-million-year dune chronosequence in a global biodiversity hotspot. This chronosequence shows a ~60-fold decline in total soil P concentration, with the oldest stage representing some of the most severely P-impoverished soils found in any terrestrial ecosystem. The richness of AMF operational taxonomic units was low on young (1000's of years), moderately P-rich soils, greatest on relatively old (~120 000 years) low-P soils, and low again on the oldest (>2 000 000 years) soils that were lowest in P availability. A similar decline in AMF phylogenetic diversity on the oldest soils occurred, despite invariant host plant diversity and only small declines in host cover along the chronosequence. Differences in AMF community composition were greatest between the youngest and the two oldest soils, and this was best explained by differences in soil P concentrations. Our results point to a threshold in soil P availability during ecosystem regression below which AMF diversity declines, suggesting environmental filtering of AMF insufficiently adapted to extremely low P availability. © 2015 John Wiley & Sons Ltd.

  19. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria.

    PubMed

    Zubek, Szymon; Turnau, Katarzyna; Tsimilli-Michael, Merope; Strasser, Reto J

    2009-02-01

    Three endangered plant species, Plantago atrata and Pulsatilla slavica, which are on the IUCN red list of plants, and Senecio umbrosus, which is extinct in the wild in Poland, were inoculated with soil microorganisms to evaluate their responsiveness to inoculation and to select the most effective microbial consortium for application in conservation projects. Individuals of these taxa were cultivated with (1) native arbuscular mycorrhizal fungi (AMF) isolated from natural habitats of the investigated species, (2) a mixture of AMF strains available in the laboratory, and (3) a combination of AMF lab strains with rhizobacteria. The plants were found to be dependent on AMF for their growth; the mycorrhizal dependency for P. atrata was 91%, S. umbrosus-95%, and P. slavica-65%. The applied inocula did not significantly differ in the stimulation of the growth of P. atrata and S. umbrosus, while in P. slavica, native AMF proved to be the less efficient. We therefore conclude that AMF application can improve the ex situ propagation of these three threatened taxa and may contribute to the success of S. umbrosus reintroduction. A multilevel analysis of chlorophyll a fluorescence transients by the JIP test permitted an in vivo evaluation of plant vitality in terms of biophysical parameters quantifying photosynthetic energy conservation, which was found to be in good agreement with the results concerning physiological parameters. Therefore, the JIP test can be used to evaluate the influence of AMF on endangered plants, with the additional advantage of being applicable in monitoring in a noninvasive way the acclimatization of reintroduced species in nature.

  20. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  1. The version 3 OMI NO2 standard product

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; Lamsal, Lok N.; Celarier, Edward A.; Swartz, William H.; Marchenko, Sergey V.; Bucsela, Eric J.; Chan, Ka Lok; Wenig, Mark; Zara, Marina

    2017-09-01

    We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry-transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ˜ 10-40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.

  2. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  3. Ultrastructure of developing ascospores in Sordaria brevicollis.

    PubMed

    Hackett, C J; Chen, K C

    1976-05-01

    The ultrastructure of ascospore wall formation in the pyrenomycete Sordaria brevicollis was studied in developing asci at progressive time intervals. From early spore delimitation through final stage of maturation, the wall of the ascospore differentiated into four composite layers, the periascosporium the delineation ascosporium, the subascosproium, and the endoascosproium, While ascospores were at the hyaline stage of development,they possessed only the periascosporium and delineation ascosporium as their wall components. At about 7 to 8 days from the initiation of the cross, the spores developed a yellow color, and this coloration was always associated with the elaboration of the subascorsporium just internal to the ascosporium. Asthe spores continued to progressively darken in color, the subascosporium was seen to increase in complexity, electron density, and thickness. Soon after the formation of the subascosporium, the endoascosporium began to develop de novo and was, therefore, the last wall layer formed as the spore approached maturity.

  4. Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site.

    PubMed

    Sánchez-Castro, I; Gianinazzi-Pearson, V; Cleyet-Marel, J C; Baudoin, E; van Tuinen, D

    2017-11-15

    Abandoned tailing basins and waste heaps of orphan mining sites are of great concern since extreme metal contamination makes soil improper for any human activity and is a permanent threat for nearby surroundings. Although spontaneous revegetation can occur, the process is slow or unsuccessful and rhizostabilisation strategies to reduce dispersal of contaminated dust represent an option to rehabilitate such sites. This requires selection of plants tolerant to such conditions, and optimization of their fitness and growth. Arbuscular mycorrhizal fungi (AMF) can enhance metal tolerance in moderately polluted soils, but their ability to survive extreme levels of metal contamination has not been reported. This question was addressed in the tailing basin and nearby waste heaps of an orphan mining site in southern France, reaching in the tailing basin exceptionally high contents of zinc (ppm: 97,333 total) and lead (ppm: 31,333 total). In order to contribute to a better understanding of AMF ecology under severe abiotic stress and to identify AMF associated with plants growing under such conditions, that may be considered in future revegetation and rhizostabilisation of highly polluted areas, nine plant species were sampled at different growing seasons and AMF root colonization was determined. Glomeromycota diversity was monitored in mycorrhizal roots by sequencing of the ribosomal LSU. This first survey of AMF in such highly contaminated soils revealed the presence of several AMF ribotypes, belonging mainly to the Glomerales, with some examples from the Paraglomerales and Diversisporales. AMF diversity and root colonization in the tailing basin were lower than in the less-contaminated waste heaps. A Paraglomus species previously identified in a polish mining site was common in roots of different plants. Presence of active AMF in such an environment is an outstanding finding, which should be clearly considered for the design of efficient rhizostabilisation processes. Copyright © 2017. Published by Elsevier B.V.

  5. Nondestructive Biophysical Probes of the Basis and Mechanism of Resistance in Microbial Spores.

    DTIC Science & Technology

    1983-05-10

    correlated with their water content, wet density, and protoplast/sporoplast volume ratio; (2) photometric immersion refractometry was used to show that the...immersion refractometry was used to determine if dehydration of the protoplast accounts for sporal resistance to heat. These and other approaches...in above). c. Gerhardt, P., T.C. Beaman, T.R. Corner, J.T. Greenamayer and L.S. Tisa. 1981. Photometric immersion Refractometry of Bacterial Spores

  6. Diversity of arbuscular mycorrhiza in the rhizosphere of Cajeput in agroforestry system with different fertilizer management of maize

    NASA Astrophysics Data System (ADS)

    Parwi; Pudjiasmanto, B.; Purnomo, D.; Cahyani, VR

    2017-11-01

    This study investigated the diversity of arbuscular mycorrhiza in rhizosphere of cajeput with different fertilizer management of maize. This research was conducted by observation on cajeput agroforestry system in Ponorogo that have different fertilizer management of maize: conventional management (CM), universal management (UM) and alternative management (AM1, AM2, and AM3). The result showed that the highest infection of arbuscular mycorrhiza was observed in the plot of AM3, while the lowest colonization was observed in the plot of CM. Infection of arbuscular mycorrhiza in roots cajeput from five fertilizer management, ranging from 32.64% - 63.33%. In all fertilizer management, there were eight species of arbuscular mycorrhiza which five species were Glomus genus, one species was Acaulospora genus and two species were Gigaspora genus. Glomus constrictum was the dominant species in all fertilizer management. Acaulospora favoeta was found only in the plot of AM3. Spore density varies between 150-594 / 100g of soil. The highest spore density was observed in the plot of AM3, while the lowest spore density was observed in the plot of AM1. The highest diversity index value of arbuscular mycorrhiza (Species richness and Shannon-Wiener) was observed in the plot of AM3.

  7. Advanced Microwave Ferrite Research (AMFeR): Phase Three

    DTIC Science & Technology

    2008-07-31

    lApril 1, 2006 thru June 30, 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Microwave Ferrite Research (AMFeR): Phase Three 5b. GRANT NUMBER...Advance Microwave Ferrite Research (AMFeR), Phase III project. The purpose of this research endeavor is to devise ferrite materials for microwave, self...biased circulator applications. The central task of the project is to fabricate ferrites that have a high magnetic saturation, high coercivity and low

  8. Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi.

    PubMed

    Lanfranco, Luisa; Young, J Peter W

    2012-08-01

    Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant microbiome. Nowadays, their obligate biotrophy is no longer an obstacle to deciphering the role played by AMF in this fascinating symbiosis. The first genome-wide transcriptomic analysis of an AMF showed a metabolic complexity with no sign of massive gene loss, and the presence of genes for meiotic recombination suggests that AMF are not simple clonal organisms, as originally thought. New findings on suppression of host defenses and nutrient exchange processes have shed light on the mechanisms that contribute to such an intimate and long-lasting integration between living plant and fungal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings.

    PubMed

    Chen, Shuangchen; Zhao, Hongjiao; Zou, Chenchen; Li, Yongsheng; Chen, Yifei; Wang, Zhonghong; Jiang, Yan; Liu, Airong; Zhao, Puyan; Wang, Mengmeng; Ahammed, Golam J

    2017-01-01

    Mycorrhizal inoculation stimulates growth, photosynthesis and nutrient uptake in a wide range of host plants. However, the ultimate effects of arbuscular mycorrhyzal (AM) symbiosis vary with the plants and fungal species involved in the association. Therefore, identification of the appropriate combinations of AM fungi (AMF) that interact synergistically to improve their benefits is of high significance. Here, three AM fungal compositions namely VT ( Claroideoglomus sp., Funneliformis sp., Diversispora sp., Glomus sp., and Rhizophagus sp.) and BF ( Glomus intraradices , G. microageregatum BEG and G. Claroideum BEG 210), and Funneliformis mosseae (Fm) were investigated with respect to the growth, gas exchange parameters, enzymes activities in Calvin cycles and related gene expression in cucumber seedlings. The results showed that VT, BF and Fm could successfully colonize cucumber root to a different degree with the colonization rates 82.38, 74.65, and 70.32% at 46 days post inoculation, respectively. The plant height, stem diameter, dry weight, root to shoot ratio of cucumber seedlings inoculated with AMF increased significantly compared with the non-inoculated control. Moreover, AMF colonization greatly increased the root activity, chlorophyll content, net photosynthetic rate, light saturated rate of the CO 2 assimilation ( A sat), maximum carboxylation rate ( V cmax ) and maximum ribulose-1,5-bis-phosphate (RuBP) regeneration rate ( J max), which were increased by 52.81, 30.75, 58.76, 47.00, 69.15, and 65.53% when inoculated with VT, respectively. The activities of some key enzymes such RuBP carboxylase/oxygenase (RuBisCO), D-fructose-1,6-bisphosphatase (FBPase), D-fructose-6-phosphatase (F6P) and ribulose-5-phosphate kinase (Ru5PK), and related gene expression involved in the Calvin cycle including RCA , FBPase , FBPA , SBPase , rbcS and rbcL were upregulated by AMF colonization. AMF inoculation also improved macro- and micro nutrient contents such as N, P, K, S, Ca, Cu, Fe, Mn, Mg, and Zn in roots. Further analysis revealed that inoculation with VT had relatively better effect on growth of cucumber seedling followed by BF and Fm, indicating that AMF composition consisting of distant AMF species may have a better effect than a single or closely related AMF spp. This study advances the understanding of plant responses to different AM fungi toward development of strategies on AMF-promoted vegetable production.

  10. Studying Genome Heterogeneity within the Arbuscular Mycorrhizal Fungal Cytoplasm

    PubMed Central

    Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. PMID:25573960

  11. Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.

    PubMed

    Boon, Eva; Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-07

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species.

    PubMed

    Vannette, Rachel L; Hunter, Mark D; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

  13. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    PubMed

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  14. An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon

    PubMed Central

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W. H.; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1–3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts. PMID:24817325

  15. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon.

    PubMed

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W H; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1-3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts.

  16. Jatropha curcas and Ricinus communis differentially affect arbuscular mycorrhizal fungi diversity in soil when cultivated for biofuel production in a Guantanamo (Cuba) tropical system.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Hernández, G.; Torres, P.; Roldán, A.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a control soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) disappeared in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were improved by the cultivation of the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the control soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable in long-term conservation and sustainable management of these tropical ecosystems.

  17. Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

    PubMed Central

    Alguacil, Maria del Mar; Torrecillas, Emma; Hernández, Guillermina; Roldán, Antonio

    2012-01-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems. PMID:22536339

  18. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  19. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    PubMed Central

    Vannette, Rachel L.; Hunter, Mark D.; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense. PMID:24065971

  20. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau.

    PubMed

    Li, Xiaoliang; Zhang, Junling; Gai, Jingping; Cai, Xiaobu; Christie, Peter; Li, Xiaolin

    2015-08-01

    The diversity of arbuscular mycorrhizal fungi (AMF) in sedges on the Tibetan Plateau remains largely unexplored, and their contribution to soil aggregation can be important in understanding the ecological function of AMF in alpine ecosystems. Roots of Kobresia pygmaea C.B. Clarke and Carex pseudofoetida Kük. in alpine Kobresia pastures along an elevational transect (4149-5033 m) on Mount Mila were analysed for AMF diversity. A structural equation model was built to explore the contribution of biotic factors to soil aggregation. Sedges harboured abundant AMF communities covering seven families and some operational taxonomic units are habitat specific. The two plant species hosted similar AMF communities at most altitudes. The relative abundance of the two sedges contributed largely to soil macroaggregates, followed by extraradical mycorrhizal hyphae (EMH) and total glomalin-related soil protein (T-GRSP). The influence of plant richness was mainly due to its indirect influence on T-GRSP and EMH. There was a strong positive correlation between GRSP and soil total carbon and nitrogen. Our results indicate that mycorrhization might not be a major trait leading to niche differentiation of the two co-occurring sedge species. However, AMF contribute to soil aggregation and thus may have the potential to greatly influence C and N cycling in alpine grasslands. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases.

    PubMed

    Wang, Ying; Ha, Seung-Wook; Zhang, Tianpeng; Kho, Dhong-Hyo; Raz, Avraham; Xie, Youming

    2014-04-30

    gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation.

  2. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases

    PubMed Central

    Kho, Dhong-Hyo; Raz, Avraham; Xie, Youming

    2014-01-01

    gp78 is a ubiquitin ligase that plays a vital role in endoplasmic reticulum (ER)-associated degradation (ERAD). Here we report that autocrine motility factor (AMF), also known as phosphoglucose isomerase (PGI), is a novel substrate of gp78. We show that polyubiquitylation of AMF requires cooperative interaction between gp78 and the ubiquitin ligase TRIM25 (tripartite motif-containing protein 25). While TRIM25 mediates the initial round of ubiquitylation, gp78 catalyzes polyubiquitylation of AMF. The E4-like activity of gp78 was illustrated by an in vitro polyubiquitylation assay using Ub-DHFR as a model substrate. We further demonstrate that TRIM25 ubiquitylates gp78 and that overexpression of TRIM25 accelerates the degradation of gp78. Our data suggest that TRIM25 not only cooperates with gp78 in polyubiquitylation of AMF but also gauges the steady-state level of gp78. This study uncovers a previously unknown functional link between gp78 and TRIM25 and provides mechanistic insight into gp78-mediated protein ubiquitylation. PMID:24810856

  3. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales

    PubMed Central

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-01-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota. PMID:24824667

  4. Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera.

    PubMed

    Cosme, Marco; Franken, Philipp; Mewis, Inga; Baldermann, Susanne; Wurst, Susanne

    2014-10-01

    Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.

  5. Theory and compensation method of axial magnetic error induced by axial magnetic field in a polarization-maintaining fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Zhou, Yanru; Zhao, Yuxiang; Tian, Hui; Zhang, Dengwei; Huang, Tengchao; Miao, Lijun; Shu, Xiaowu; Che, Shuangliang; Liu, Cheng

    2016-12-01

    In an axial magnetic field (AMF), which is vertical to the plane of the fiber coil, a polarization-maintaining fiber optic gyro (PM-FOG) appears as an axial magnetic error. This error is linearly related to the intensity of an AMF, the radius of the fiber coil, and the light wavelength, and also influenced by the distribution of fiber twist. When a PM-FOG is manufactured completely, this error only appears a linear correlation with the AMF. A real-time compensation model is established to eliminate the error, and the experimental results show that the axial magnetic error of the PM-FOG is decreased from 5.83 to 0.09 deg/h in 12G AMF with 18-dB suppression.

  6. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Plasma sterilization of Geobacillus Stearothermophilus by O{mathsf2}:N{mathsf2} RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Sasaki, T.; Rossi, F.

    2006-05-01

    The aim of this work is to identify the main process responsible for sterilization of Geobacillus Stearothermophilus spores in O{2}:N{2} RF inductively coupled plasma. In order to meet this objective the sterilization efficiencies of discharges in mixtures differing in the initial O{2}/N{2} ratios are compared with plasma properties and with scanning electron microscopy images of treated spores. According to the obtained results it can be concluded that under our experimental conditions the time needed to reach complete sterilization is more related to O atom density than UV radiation intensity, i.e. complete sterilization is not related only to DNA damage as in UV sterilization but more likely to the etching of the spore.

  8. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  9. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  10. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.

    2017-02-01

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  11. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    PubMed

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  12. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  13. Drug releasing nanoplatforms activated by alternating magnetic fields.

    PubMed

    Mertz, Damien; Sandre, Olivier; Bégin-Colin, Sylvie

    2017-06-01

    The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Growth and photochemical efficiency of photosystem ii in seedlings of two varieties of Capsicum annuum L. inoculated with rhizobacteria and arbuscular mycorrhizal fungi].

    PubMed

    Angulo-Castro, Azareel; Ferrera-Cerrato, Ronald; Alarcón, Alejandro; Almaraz-Suárez, Juan José; Delgadillo-Martínez, Julián; Jiménez-Fernández, Maribel; García-Barradas, Oscar

    Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.).

    PubMed

    Elhindi, Khalid M; El-Din, Ahmed Sharaf; Elgorban, Abdallah M

    2017-01-01

    Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil ( Osmium basilicum ) plants were grown in a non-saline soil (EC = 0.64 dS m -1 ), in low saline soil (EC = 5 dS m -1 ), and in a high saline soil (EC = 10 dS m -1 ). There were differences between arbuscular mycorrhizal ( Glomus deserticola ) colonized plants (+AMF) and non-colonized plants (-AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.

  16. Inactivation of B. subtilis spores by low pressure plasma—influence of optical filters and photon/particle fluxes on the inactivation efficiency

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Hillebrand, Bastian; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2018-01-01

    Inactivation experiments were performed with Bacillus subtilis spores in a low pressure double inductively coupled plasma (DICP) system. Argon, nitrogen and oxygen at 5 Pa were used as feed gas to change the emission spectrum in the range of 100 nm to 400 nm, as well as between radical and metastable densities. Optical filters were applied, to block particles and selected wavelengths from the spores. By determining absolute photon fluxes, the sporicidal efficiency of various wavelength ranges was evaluated. The results showed good agreement with other plasma experiments, as well as with monochromatic light inactivation experiments from a synchrotron. The findings indicated that the inactivation rate constants of broadband plasma emission and monochromatic light were identical, and that no synergistic effect exists. Furthermore, the influence of radicals, ions and metastables on the inactivation efficiency was of minor importance in the set-up used, and radiation was the main reason for spore inactivation.

  17. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

    PubMed Central

    Řezáčová, Veronika; Zemková, Lenka; Beskid, Olena; Püschel, David; Konvalinková, Tereza; Hujslová, Martina; Slavíková, Renata; Jansa, Jan

    2018-01-01

    Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF. PMID:29681914

  18. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  19. Erato polymnioides - A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation.

    PubMed

    Chamba, Irene; Rosado, Daniel; Kalinhoff, Carolina; Thangaswamy, Selvaraj; Sánchez-Rodríguez, Aminael; Gazquez, Manuel Jesús

    2017-12-01

    Mercury (Hg) accumulation capacity was assessed in three plant species (Axonopus compressus, Erato polymnioides, and Miconia zamorensis) that grow on soils polluted by artisanal small-scale gold mines in the Ecuadorian rainforest. Individuals of three species were collected at two sampling zones: i) an intensive zone (IZ, 4.8 mg Hg kg -1 of soil) where gold extraction continues to occur, and ii) a natural zone (NZ, 0.19 mg Hg kg -1 of soil). In addition, the percentage of arbuscular mycorrhizal fungi (AMF) colonization was determined in plant roots and seven fungal morphotypes isolated from rhizospheric soil. Results suggest a facilitation role of native and pollution adapted AMF on Hg phytoaccumulation. E.g., E. polymnioides increased Hg accumulation when growing with greater AMF colonization. We concluded that E. polymnioides is a good candidate for the design of microbe-assisted strategies for Hg remediation at gold mining areas. The consortia between E. polymnioides and the AMF isolated in this study could be instrumental to get a deeper understanding of the AMF role in Hg phytoaccumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Use of Arbuscular Mycorrhizal Fungi to Improve Strawberry Production in Coir Substrate

    PubMed Central

    Robinson Boyer, Louisa; Feng, Wei; Gulbis, Natallia; Hajdu, Klara; Harrison, Richard J.; Jeffries, Peter; Xu, Xiangming

    2016-01-01

    Strawberry is an important fruit crop within the UK. To reduce the impact of soil-borne diseases and extend the production season, more than half of the UK strawberry production is now in substrate (predominantly coir) under protection. Substrates such as coir are usually depleted of microbes including arbuscular mycorrhizal fungi (AMF) and consequently the introduction of beneficial microbes is likely to benefit commercial cropping systems. Inoculating strawberry plants in substrate other than coir has been shown to increase plants tolerance to soil-borne pathogens and water stress. We carried out studies to investigate whether AMF could improve strawberry production in coir under low nitrogen input and regulated deficit irrigation. Application of AMF led to an appreciable increase in the size and number of class I fruit, especially under either deficient irrigation or low nitrogen input condition. However, root length colonization by AMF was reduced in strawberry grown in coir compared to soil and Terragreen. Furthermore, the appearance of AMF colonizing strawberry and maize roots grown in coir showed some physical differences from the structure in colonized roots in soil and Terragreen: the colonization structure appeared to be more compact and smaller in coir. PMID:27594859

  1. Interconnected Cavernous Structure of Bacterial Fruiting Bodies

    DOE PAGES

    Harvey, Cameron W.; Du, Huijing; Xu, Zhiliang; ...

    2012-12-27

    The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicelular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to Imitations at different imaging methods. A new technique using Infrared Opticalmore » Coherence Tomography (OCT) revealed previously unknown details of the Internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative nigh and low spore density regions. Here, to make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The Integration of novel OCT experimental techniques with computational simulations can provide new insight Into the mechanisms that can give rise to the pattern formation seen In other biological systems such as dlctyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.« less

  2. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis

    PubMed Central

    Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings (Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF. PMID:29238356

  3. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis.

    PubMed

    Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings ( Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF.

  4. Effects of different management practices on fungal biodiversity in agricultural soils

    NASA Astrophysics Data System (ADS)

    Borriello, R.; Lumini, E.; Bonfante, P.; Bianciotto, V.

    2009-04-01

    Symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plant roots are widespread in natural environments and provide a range of benefits to the host plant. These include improved nutrition, enhanced resistance to soil-borne pests, diseases, and drought, as well as tolerance to heavy metals. In addition, the presence of a well developed AMF hyphal network improve the soil structure. As obligate mutualistic symbionts these fungi colonize the roots of many agricultural crops and it is often claimed that agricultural practices (use of fertilizers and biocides, tillage, dominance of monocultures and the growing of non-mycorrhizal crops) are detrimental to AMF. As a result, agro ecosystems impoverished in AMF may not get the fully expected range of benefits from these fungi. Using molecular markers on DNA extracted directly from soil and roots we studied the effects of different management practices (tillage and nitrogen fertilization) on the AMF populations colonizing an experimental agro ecosystem in Central Italy. Fungi in roots and soil were identified by cloning and sequencing a region of ~550bp of the 18S rDNA and ~600bp of the 28S rDNA. In symbiosis with the maize roots we detected only members of Glomeraceae group A that showed decrement in number under nitrogen fertilization. Instead in soil were mainly present members of two AMF groups, respectively Gigasporaceae and Glomeraceae group A. In addition only the low input management practices preserve also members of Diversisporaceae and Glomeraceae group B. From our study we can conclude that agricultural practices can directly or indirectly influence AMF biodiversity. The result of this study highlight the importance and significant effects of the long term nitrogen fertilization and tillage practices on specific groups of fungi playing a key role in arable soils. The research was founded by Biodiversity Project (IPP-CNR) and by SOILSINK (FISR-MIUR)

  5. Soil-occupancy effects of invasive and native grassland plant species on composition and diversity of mycorrhizal associations

    USGS Publications Warehouse

    Jordan, Nicholas R.; Aldrich-Wolfe, Laura; Huerd, Sheri C.; Larson, Diane L.; Muehlbauer, Gary

    2012-01-01

    Diversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects can inhibit growth of native plant species in invaded communities.

  6. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    PubMed Central

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  7. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study.

    PubMed

    Wu, Sheng Chun; Wong, Ching Chi; Shu, Wen Sheng; Khan, Adual G; Wong, Ming Hung

    2011-01-01

    A field study of Pb/Zn mine tailings was conducted to assess the influence of AM fungi and refuse compost on phytoremediation using vetiver grass slips. Our investigation revealed that vetiver could thrive on Pb/Zn mine tailings. The addition of refuse compost resulted in biomass that was more than 3-times higher when compared with the control, and were mainly attributed to an improvement of soil properties, as well as better nutrient supply than untreated control. AMF inoculation also significantly increased the dry matter of vetiver by a rate of 8.1-13.8%. It was observed that concentrations of N and P in the shoots were significantly higher in mycorrhizal treatments than those without AMF inoculation. However, AMF inoculation significantly decreased the metal concentrations in root, but not in shoot. Based on the results, it seems clear that AMF can play an essential role in the phytostabilization of metal contaminated soils.

  8. [Diversity of arbuscular mycorrhizal fungi in special habitats: a review].

    PubMed

    Li, Su-Mei; Wang, Yin-Qiao; Liu, Run-Jin

    2013-11-01

    Arbuscular mycorrhizal fungi (AMF) are one of the important components in ecosystems, which not only have the diversity in genetics, species composition, and function, but also have the diversity in distribution and habitat. AMF infect plant root, form mycorrhiza, and nourish as obligate biotroph symbiont, with strong ecological adaptability. They not only distribute in forest, prairie, and farm land, but also distribute in the special habitats with less plant species diversity, such as commercial greenhouse soil, saline-alkali soil, mining pollution land, petroleum-contaminated land, pesticide-polluted soil, desert, dry land, wetland, marsh, plateau, volcanic, cooler, and arctic tundra, composing a unique community structure and playing an important irreplaceable role in the physiological and ecological functions. This paper summarized the species diversity and mycorrhizal morphological features of AMF in special habitats, aimed to provide essential information for the further studies on the AMF in these special habitats and extreme environments.

  9. Evidence for Reciprocal Selection between Populations of Meloidogyne arenaria and Pasteuria penetrans in a Field Study

    USDA-ARS?s Scientific Manuscript database

    Beginning in 1998, a bioassay using second-stage juveniles (J2) from a greenhouse (GH) population of Meloidogyne arenaria (Ma) was used to monitor endospore densities of the bacterium Pasteuria penetrans, which was parasitizing Ma in a crop rotation study. Spore densities of the bacterium were very...

  10. New iron-oxide particles for magnetic nanoparticle hyperthermia: an in-vitro and in-vivo pilot study

    NASA Astrophysics Data System (ADS)

    Hedayati, Mohammad; Attaluri, Anilchandra; Bordelon, David; Goh, R.; Armour, Michael; Zhou, Haoming; Cornejo, Christine; Wabler, Michele; Zhang, Yonggang; DeWeese, Theodore; Ivkov, Robert

    2013-02-01

    Magnetic nanoparticle hyperthermia (mNHP) is regarded as a promising minimally invasive procedure. These nanoparticles generate heat when exposed to alternating magnetic fields (AMFs) and thus have shown a potential for selective delivery of heat to a target such as a cancer cell. Despite the great promise however, successful clinical translation has been limited in part by technical challenges of selectively delivering heat only to the target tissue. Interaction of AMF with tissues also deposits heat through Joule heating via eddy currents. Considerations of patient safety thus constrain the choice of AMF power and frequency to values that are insufficient to produce desirable heating from available nanoparticle formulations. Therefore, considerable effort must be directed to the design of particles and the AMF device to maximize the specific delivery of heat to the intended target while minimizing the unintended and non-specific heating. We have recently developed new iron-oxide nanoparticles (IONPs) having much higher heating capability at the clinically relevant amplitudes and frequencies than other formulations. Here, we utilize a new rectangular coil designed for treating multi well tissue culture plate and show that these particles are superior to two commercially available IONPs for hyperthermia of DU145 prostate cancer cells in culture. We report results of pilot in-vivo experiments using the DU145 human prostate xenograft model in nude male mouse. AMF treatment yielded an intratumor temperature rise > 10 °C in <10 min heating (AMF amplitude 29 kA/m @160 kHz) with ~4 mg nanoparticle /g tumor while maintaining rectal (core) temperature well within physiological range.

  11. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils.

    PubMed

    Hassan, Saad El Din; Boon, Eva; St-Arnaud, Marc; Hijri, Mohamed

    2011-08-01

    We assessed the indigenous arbuscular mycorrhizal fungi (AMF) community structure from the roots and associated soil of Plantago major (plantain) plants growing on sites polluted with trace metals (TM) and on unpolluted sites. Uncontaminated and TM-contaminated sites containing As, Cd, Cu, Pb, Sn and Zn were selected based on a survey of the TM concentration in soils of community gardens in the City of Montréal. Total genomic DNA was extracted directly from these samples. PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE), augmented by cloning and sequencing, as well as direct sequencing techniques, was all used to investigate AMF community structure. We found a decreased diversity of native AMF (assessed by the number of AMF ribotypes) in soils and plant roots harvested from TM-polluted soils compared with unpolluted soils. We also found that community structure was modified by TM contamination. Various species of Glomus, Scutellospora aurigloba and S. calospora were the most abundant ribotypes detected in unpolluted soil; ribotypes of G. etunicatum, G. irregulare/G. intraradices and G. viscosum were found in both polluted and unpolluted soils, while ribotypes of G. mosseae and Glomus spp. (B9 and B13) were dominant in TM-polluted soils. The predominance of G. mosseae in metal-polluted sites suggests the tolerance of this species to TM stress, as well as its potential use for phytoremediation. These data are relevant for our understanding of how AMF microbial communities respond to natural environments that contain a broad variety of toxic inorganic compounds and will substantially expand our knowledge of AMF ecology and biodiversity. © 2011 Blackwell Publishing Ltd.

  12. Differential effects of ephemeral colonization by arbuscular mycorrhizal fungi in two Cuscuta species with different ecology.

    PubMed

    Behdarvandi, Behrang; Guinel, Frédérique C; Costea, Mihai

    2015-10-01

    Seedlings of parasitic Cuscuta species are autotrophic but can survive only a short period of time, during which they must locate and attach to a suitable host. They have an ephemeral root-like organ considered not a "true" root by most studies. In the present study, two species with contrasting ecology were examined: Cuscuta gronovii, a North American riparian species, and Cuscuta campestris, an invasive dodder that thrives in disturbed habitats. The morphology, structure, and absorptive capability of their root-like organ were compared, their potential for colonization by two species of arbuscular mycorrhizal fungi (AMF) was assessed, and the effect of the AMF on seedling growth and survival was determined. The root of both species absorbed water and interacted with AMF, but the two species exhibited dissimilar growth and survival patterns depending on the colonization level of their seedlings. The extensively colonized seedlings of C. gronovii grew more and survived longer than non-colonized seedlings. In contrast, the scarce colonization of C. campestris seedlings did not increase their growth or longevity. The differential growth responses of the AMF-colonized and non-colonized Cuscuta species suggest a mycorrhizal relationship and reflect their ecology. While C. gronovii roots have retained a higher ability to interact with AMF and are likely to take advantage of fungal communities in riparian habitats, the invasive C. campestris has largely lost this ability possibly as an adaptation to disturbed ecosystems. These results indicate that dodders have a true root, even if much reduced and ephemeral, that can interact with AMF.

  13. Lead accumulation by jabon seedling (Anthocephalus cadamba) on tailing media with application of compost and arbuscular mycorrhizal fungi

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L.; Setiadi, Y.; Budi, S. W.; Hamim; Sopandie, D.

    2017-03-01

    Lead (Pb) is one of the dangerous heavy metal contained in tailing that needs remediation activity. This study aimed to investigate the potency of jabon to take up and accumulate lead in its tissue by the application of compost and arbuscular mycorrhiza fungus (AMF) on pot observation. In Pb-containing tailing media, the average levels of Pb in roots seedling was 50% greater as compared to the levels of Pb in the stem and leaves of seedlings. Application of compost in tailings media significantly increased (p ≤ 0.5) the average levels of Pb in the roots and stems, but decreased Pb levels in leaves. Applications AMF significantly decreased (p ≤ 0.5) the average levels of Pb in the roots, stem and leaves of seedlings by approximately 18-33%. The combination applications of compost and AMF significantly (p ≤ 0.5) increased the level of Pb in the roots, stems and leaves of seedlings at 6, 16 and 27 fold respectively than that in control plant (without compost and AMF). After 12 weeks exposure, lead bioconcentration factor varied from 0.1-1.6 in seedling tissue with transport factor varied from 0.1-1.0. The application of active compost and AMF increased 1-15 fold lead accumulation from control, and the biggest accumulation was 452.9 x10-2 mg/plant with Pb concentration of 1.5 mM. Active compost and AMF application supported jabon seedling to act as lead phytostabilizer and to remove lead from the tailing to the above part of the plant.

  14. The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment.

    PubMed

    Sýkorová, Zuzana; Ineichen, Kurt; Wiemken, Andres; Redecker, Dirk

    2007-12-01

    The community composition of arbuscular mycorrhizal fungi (AMF) was investigated in roots of four different plant species (Inula salicina, Medicago sativa, Origanum vulgare, and Bromus erectus) sampled in (1) a plant species-rich calcareous grassland, (2) a bait plant bioassay conducted directly in that grassland, and (3) a greenhouse trap experiment using soil and a transplanted whole plant from that grassland as inoculum. Roots were analyzed by AMF-specific nested polymerase chain reaction, restriction fragment length polymorphism screening, and sequence analyses of rDNA small subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic phylotypes. Overall, 16 phylotypes from several lineages of AMF were detected. The community composition was strongly influenced by the experimental approach, with additional influence of cultivation duration, substrate, and host plant species in some experiments. Some fungal phylotypes, e.g., GLOM-A3 (Glomus mosseae) and several members of Glomus group B, appeared predominantly in the greenhouse experiment or in bait plants. Thus, these phylotypes can be considered r strategists, rapidly colonizing uncolonized ruderal habitats in early successional stages of the fungal community. In the greenhouse experiment, for instance, G. mosseae was abundant after 3 months, but could not be detected anymore after 10 months. In contrast, other phylotypes as GLOM-A17 (G. badium) and GLOM-A16 were detected almost exclusively in roots sampled from plants naturally growing in the grassland or from bait plants exposed in the field, indicating that they preferentially occur in late successional stages of fungal communities and thus represent the K strategy. The only phylotype found with high frequency in all three experimental approaches was GLOM A-1 (G. intraradices), which is known to be a generalist. These results indicate that, in greenhouse trap experiments, it is difficult to establish a root-colonizing AMF community reflecting the diversity of these fungi in the field roots because fungal succession in such artificial systems may bias the results. However, the field bait plant approach might be a convenient way to study the influence of different environmental factors on AMF community composition directly under the field conditions. For a better understanding of the dynamics of AMF communities, it will be necessary to classify AMF phylotypes and species according to their life history strategies.

  15. Diversity of the small subunit ribosomal RNA gene of the arbuscular mycorrhizal fungi colonizing Clintonia borealis from a mixed-wood boreal forest.

    PubMed

    DeBellis, Tonia; Widden, Paul

    2006-11-01

    Arbuscular mycorrhizal fungi (AMF) communities in Clintonia borealis roots from a boreal mixed forests in northwestern Québec were investigated. Roots were sampled from 100 m2 plots whose overstory was dominated by either trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), or mixed white spruce (Picea glauca (Moench) Voss) and balsam fir (Abies balsamea (L.) Mill.). Part of the 18S ribosomal gene of the AMF was amplified and the resulting PCR products were cloned. Restriction analysis of the 576 resulting clones yielded 92 different restriction patterns which were then sequenced. Fifty-two sequences closely matched other Glomus sequences from Genbank. Phylogenetic analysis revealed 10 different AMF sequence types, most of which clustered with other uncultured AM sequences from plant roots from various field sites. Compared with other AMF communities from comparable studies, richness and diversity were higher than observed in an arable field, but lower than seen in a tropical forest and a temperate wetland. The AMF communities from Clintonia roots under the different canopy types did not differ significantly and the dominant sequence type, which clustered with AM sequences from a variety of environments and hosts at distant geographical locations, represented 66.9% of all the clones analyzed.

  16. The effects of arbuscular mycorrhizal fungi and root interaction on the competition between Trifolium repens and Lolium perenne.

    PubMed

    Ren, Haiyan; Gao, Tao; Hu, Jian; Yang, Gaowen

    2017-01-01

    Understanding the factors that alter competitive interactions and coexistence between plants is a key issue in ecological research. A pot experiment was conducted to test the effects of root interaction and arbuscular mycorrhizal fungi (AMF) inoculation on the interspecies competition between Trifolium repens and Lolium perenne under different proportions of mixed sowing by the combination treatment of two levels of AMF inoculation (inoculation and non-inoculation) and two levels of root interaction (root interaction and non-root interaction). Overall, the aboveground and belowground biomass of T. repens and L. perenne were not altered by AMF inoculation across planting ratios, probably because the fertile soil reduced the positive effect of AMF on plant growth. Both inter- and intraspecies root interaction significantly decreased the aboveground biomass of T. repens , but tended to increase the aboveground biomass of L. perenne across planting ratios, and thus peaked at the 4:4 polyculture. These results showed that T. repens competed poorly with L. perenne because of inter and intraspecies root interaction. Our results indicate that interspecies root interaction regulates the competitive ability of grass L. perenne and legume T. repens in mixtures and further makes great contribution for overyielding. Furthermore, AMF may not be involved in plant-plant interaction in fertile condition.

  17. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi.

    PubMed

    Cozzolino, V; De Martino, A; Nebbioso, A; Di Meo, V; Salluzzo, A; Piccolo, A

    2016-06-01

    In a greenhouse pot experiment, lettuce plants (Lactuca sativa L.) were grown in a Hg-contaminated sandy soil with and without inoculation with arbuscular mycorrhizal fungi (AMF) (a commercial inoculum containing infective propagules of Rhizophagus irregularis and Funneliformis mosseae) amended with different rates of a humic acid (0, 1, and 2 g kg(-1) of soil), with the objective of verifying the synergistic effects of the two soil treatments on the Hg tolerance of lettuce plants. Our results indicated that the plant biomass was significantly increased by the combined effect of AMF and humic acid treatments. Addition of humic matter to soil boosted the AMF effect on improving the nutritional plant status, enhancing the pigment content in plant leaves, and inhibiting both Hg uptake and Hg translocation from the roots to the shoots. This was attributed not only to the Hg immobilization by stable complexes with HA and with extraradical mycorrhizal mycelium in soil and root surfaces but also to an improved mineral nutrition promoted by AMF. This work indicates that the combined use of AMF and humic acids may become a useful practice in Hg-contaminated soils to reduce Hg toxicity to crops.

  18. [Physical and chemical methods for eliminating propagules of indigenous mycorrhizal fungi from soil samples].

    PubMed

    Covacevich, Fernanda; Castellari, Claudia C; Echeverría, Hernán E

    2014-01-01

    The objective of this work was to evaluate methods to eliminate or reduce the number of indigenous arbuscular mycorrhizal fungi (AMF) from soil samples without affecting their edaphic or microbiological properties. At an early trial we evaluated moist heat (autoclaving), dry heat (oven), sodium hypochlorite (NaClO) and formaldehyde at a range of 100.0-3.3μl/g and 16.7-3.3μl/g respectively. There was no germination in plants of ryegrass (Lolium multiflorum Lam.) sown on substrates receiving NaClO (100.0-33.3μl/g), whereas autoclaving significantly increased the available soil phosphorous content. Both treatments failed to eradicate AMF colonization at 9 weeks; therefore, they were discarded. In a second trial, oven and formaldehyde (10.0μl/g) treatments were analyzed to assess the effects of seed decontamination and AMF reinoculation. Both procedures were effective in reducing or eliminating indigenous AMF at a range of soil P availability of 12-29mg/kg. However, the time between soil treatment and AMF multiplication and safety requirements were greater in the case of formaldehyde application. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  19. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  20. Surface design with self-heating smart polymers for on-off switchable traps

    NASA Astrophysics Data System (ADS)

    Techawanitchai, Prapatsorn; Yamamoto, Kazuya; Ebara, Mitsuhiro; Aoyagi, Takao

    2011-08-01

    We have developed a novel self-heating, temperature-responsive chromatography system for the effective separation of biomolecules. Temperature-responsive poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide), poly(NIPAAm-co-HMAAm), was covalently grafted onto the surface of magnetite/silica composites as 'on-off' switchable surface traps. The lower critical solution temperature (LCST) of the poly(NIPAAm-co-HMAAm)s was controlled from 35 to 55 °C by varying the HMAAm content. Using the heat generated by magnetic particles in an alternating magnetic field (AMF) we were able to induce the hydrophilic to hydrophobic phase separation of the grafted temperature-responsive polymers. To assess the feasibility of the poly(NIPAAm-co-HMAAm)-grafted magnetite/silica particles as the stationary phase for chromatography, we packed the particles into the glass column of a liquid chromatography system and analyzed the elusion profiles for steroids. The retention time for hydrophobic steroids markedly increased in the AMF, because the hydrophobic interaction was enhanced via self-heating of the grafted magnetite/silica particles, and this effect could be controlled by changing the AMF irradiation time. Turning off the AMF shortened the total analysis time for steroids. The proposed system is useful for separating bioactive compounds because their elution profiles can be easily controlled by an AMF.

  1. Isolation of Inositol Hexaphosphate (IHP)-Degrading Bacteria from Arbuscular Mycorrhizal Fungal Hyphal Compartments Using a Modified Baiting Method Involving Alginate Beads Containing IHP

    PubMed Central

    Hara, Shintaro; Saito, Masanori

    2016-01-01

    Phytate (inositol hexaphosphate; IHP)-degrading microbes have been suggested to contribute to arbuscular mycorrhizal fungi (AMF)-mediated P transfer from IHP to plants; however, no IHP degrader involved in AMF-mediated P transfer has been isolated to date. We herein report the isolation of IHP-degrading bacteria using a modified baiting method. We applied alginate beads as carriers of IHP powder, and used them as recoverable IHP in the AM fungal compartment of plant cultivation experiments. P transfer from IHP in alginate beads via AMF was confirmed, and extracted DNA from alginate beads was analyzed by denaturing gradient gel electrophoresis targeting the 16S rRNA gene and a clone library method for the beta-propeller phytase (BPP) gene. The diversities of the 16S rRNA and BPP genes of microbes growing on IHP beads were simple and those of Sphingomonas spp. and Caulobacter spp. dominated. A total of 187 IHP-utilizing bacteria were isolated and identified, and they were consistent with the results of DNA analysis. Furthermore, some isolated Sphingomonas spp. and Caulobacter sp. showed IHP-degrading activity. Therefore, we successfully isolated dominant IHP-degrading bacteria from IHP in an AMF hyphal compartment. These strains may contribute to P transfer from IHP via AMF. PMID:27383681

  2. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers.

    PubMed

    Dutech, Cyril; Labbé, Frédéric; Capdevielle, Xavier; Lung-Escarmant, Brigitte

    Armillaria ostoyae (sometimes named Armillaria solidipes) is a fungal species causing root diseases in numerous coniferous forests of the northern hemisphere. The importance of sexual spores for the establishment of new disease centres remains unclear, particularly in the large maritime pine plantations of southwestern France. An analysis of the genetic diversity of a local fungal population distributed over 500 ha in this French forest showed genetic recombination between genotypes to be frequent, consistent with regular sexual reproduction within the population. The estimated spatial genetic structure displayed a significant pattern of isolation by distance, consistent with the dispersal of sexual spores mostly at the spatial scale studied. Using these genetic data, we inferred an effective density of reproductive individuals of 0.1-0.3 individuals/ha, and a second moment of parent-progeny dispersal distance of 130-800 m, compatible with the main models of fungal spore dispersal. These results contrast with those obtained for studies of A. ostoyae over larger spatial scales, suggesting that inferences about mean spore dispersal may be best performed at fine spatial scales (i.e. a few kilometres) for most fungal species. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Microbial imprinted polypyrrole/poly(3-methylthiophene) composite films for the detection of Bacillus endospores.

    PubMed

    Namvar, Azadeh; Warriner, Keith

    2007-04-15

    The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y'' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y'' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers.

  4. Autocrine motility factor (neuroleukin, phosphohexose isomerase) induces cell movement through 12-lipoxygenase-dependent tyrosine phosphorylation and serine dephosphorylation events.

    PubMed

    Timár, J; Tóth, S; Tóvári, J; Paku, S; Raz, A

    1999-01-01

    Autocrine motility factor (AMF) is one of the motility cytokines regulating tumor cell migration, therefore identification of the signaling pathway coupled with it has critical importance. Previous studies revealed several elements of this pathway predominated by lipoxygenase-PKC activations but the role for tyrosine kinases remained questionable. Motility cytokines frequently have mitogenic effect as well, producing activation of overlapping signaling pathways therefore we have used B16a melanoma cells as models where AMF has exclusive motility effect. Our studies revealed that in B16a cells AMF initiated rapid (1-5 min) activation of the protein tyrosine kinase (PTK) cascade inducing phosphorylation of 179, 125, 95 and 40/37 kD proteins which was mediated by upstream cyclo- and lipoxygenases. The phosphorylated proteins were localized to the cortical actin-stress fiber attachment zones in situ by confocal microscopy. On the other hand, AMF receptor activation induced significant decrease in overall serine-phosphorylation level of cellular proteins accompanied by serine phosphorylation of 200, 90, 78 and 65 kd proteins. The decrease in serine phosphorylation was independent of PTKs, PKC as well as cyclo- and lipoxygenases. However, AMF induced robust translocation of PKCalpha to the stress fibers and cortical actin suggesting a critical role for this kinase in the generation of the motility signal. Based on the significant decrease in serine phosphorylation after AMF stimulus in B16a cells we postulated the involvement of putative serine/threonine phosphatase(s) upstream lipoxygenase and activation of the protein tyrosine kinase cascade downstream cyclo- and lipoxygenase(s) in the previously identified autocrine motility signal.

  5. Allocation of Nitrogen and Carbon Is Regulated by Nodulation and Mycorrhizal Networks in Soybean/Maize Intercropping System

    PubMed Central

    Wang, Guihua; Sheng, Lichao; Zhao, Dan; Sheng, Jiandong; Wang, Xiurong; Liao, Hong

    2016-01-01

    Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15N and 13C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13C labeling showed that 13C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions. PMID:28018420

  6. Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele.

    PubMed

    van der Leij, F R; Visser, R G; Ponstein, A S; Jacobsen, E; Feenstra, W J

    1991-08-01

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type sequence with a cDNA sequence from the literature and a newly isolated cDNA revealed the presence of 13 introns, the first of which is located in the untranslated leader. The promoter contains a G-box-like sequence. The deduced amino acid sequence of the precursor of GBSS shows a high degree of identity with monocot waxy protein sequences in the region corresponding to the mature form of the enzyme. The transit peptide of 77 amino acids, required for routing of the precursor to the plastids, shows much less identity with the transit peptides of the other waxy preproteins, but resembles the hydropathic distributions of these peptides. Alignment of the amino acid sequences of the four mature starch synthases with the Escherichia coli glgA gene product revealed the presence of at least three conserved boxes; there is no homology with previously proposed starch-binding domains of other enzymes involved in starch metabolism. We report the use of chimeric constructs with wild-type and amf sequences to localize, via complementation experiments, the region of the amf allele in which the mutation resides. Direct sequencing of polymerase chain reaction products confirmed that the amf mutation is a deletion of a single AT basepair in the region coding for the transit peptide.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus

    PubMed Central

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance. PMID:26442091

  8. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    PubMed

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance.

  9. Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil.

    PubMed

    Berthelot, Charlotte; Blaudez, Damien; Beguiristain, Thierry; Chalot, Michel; Leyval, Corinne

    2018-04-01

    The presence of dark septate endophytes (DSEs) or arbuscular mycorrhizal fungi (AMF) in plant roots and their effects on plant fitness have been extensively described. However, little is known about their interactions when they are simultaneously colonizing a plant root, especially in trace element (TE)-polluted soils. We therefore investigated the effects of Cadophora sp. and Funneliformis mosseae on ryegrass (Lolium perenne) growth and element uptake in a Cd/Zn/Pb-polluted soil. The experiment included four treatments, i.e., inoculation with Cadophora sp., inoculation with F. mosseae, co-inoculation with Cadophora sp. and F. mosseae, and no inoculation. Ryegrass biomass and shoot Na, P, K, and Mg concentrations significantly increased following AMF inoculation as compared to non-inoculated controls. Similarly, DSE inoculation increased shoot Na concentration, whereas dual inoculation significantly decreased shoot Cd concentration. Moreover, oxidative stress determined by ryegrass leaf malondialdehyde concentration was alleviated both in the AMF and dual inoculation treatments. We used quantitative PCR and microscope observations to quantify colonization rates. They demonstrated that DSEs had no effect on AMF colonization, while AMF colonization slightly decreased DSE frequency. We also monitored fluorescein diacetate (FDA) hydrolysis and alkaline phosphatase (AP) activity in the rhizosphere soils. FDA hydrolysis remained unchanged in the three inoculated treatments, but AMF colonization increased AP activity and P mobility in the soil whereas DSE colonization did not alter AP activity. In this experiment, we unveiled the interactions between two ecologically important fungal groups likely to occur in roots which involved a decrease of oxidative stress and Cd accumulation in shoots. These results open promising perspectives on the fungal-based phytomanagement of TE-contaminated sites by the production of uncontaminated and marketable plant biomass.

  10. Allocation of Nitrogen and Carbon Is Regulated by Nodulation and Mycorrhizal Networks in Soybean/Maize Intercropping System.

    PubMed

    Wang, Guihua; Sheng, Lichao; Zhao, Dan; Sheng, Jiandong; Wang, Xiurong; Liao, Hong

    2016-01-01

    Soybean/maize intercropping has remarkable advantages in increasing crop yield and nitrogen (N) efficiency. However, little is known about the contributions of rhizobia or arbuscular mycorrhizal fungi (AMF) to yield increases and N acquisition in the intercropping system. Plus, the mechanisms controlling carbon (C) and N allocation in intercropping systems remain unsettled. In the present study, a greenhouse experiment combined with 15 N and 13 C labeling was conducted using various inoculation and nutrient treatments. The results showed that co-inoculation with AMF and rhizobia dramatically increased biomass and N content of soybean and maize, and moderate application of N and phosphorus largely amplified the effect of co-inoculation. Maize had a competitive advantage over soybean only under co-inoculation and moderate nutrient availability conditions, indicating that the effects of AMF and rhizobia in intercropping systems are closely related to nutrient status. Results from 15 N labeling showed that the amount of N transferred from soybean to maize in co-inoculations was 54% higher than that with AMF inoculation alone, with this increased N transfer partly resulting from symbiotic N fixation. The results from 13 C labeling showed that 13 C content increased in maize shoots and decreased in soybean roots with AMF inoculation compared to uninoculated controls. Yet, with co-inoculation, 13 C content increased in soybean. These results indicate that photosynthate assimilation is stimulated by AM symbiosis in maize and rhizobial symbiosis in soybean, but AMF inoculation leads to soybean investing more carbon than maize into common mycorrhizal networks (CMNs). Overall, the results herein demonstrate that the growth advantage of maize when intercropped with soybean is due to acquisition of N by maize via CMNs while this crop contributes less C into CMNs than soybean under co-inoculation conditions.

  11. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    PubMed

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

    PubMed

    Marcos-Campos, I; Asín, L; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH(2)(+)) or negative (COOH(-)) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  13. Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime.

    PubMed

    Füzy, Anna; Bothe, Hermann; Molnár, Edit; Biró, Borbála

    2014-03-01

    AMF (arbuscular mycorrhizal fungi) colonization of the grass chalk false-brome (Brachypodium pinnatum (L.) P. B.) was studied in selected habitats under spatially different light regimes: (a) shade condition under oak trees, (b) half shade in a shrubby area and (c) full-sun conditions on unshaded grassland. This study assessed the variations in AMF colonization of the grass dependent on the light supply in field habitats. Soil, root and shoot samples were collected four times during the vegetation period (in June, July, September and October). Root colonization, root and shoot biomass as well as soil water content were determined. The highest rate of AMF colonization was detected in June under half-sun and full-sun conditions, where about 50% of the roots were colonized. The average amount of arbuscules was less than 20% in the roots at the three sites, with the highest number of arbuscules in June, under half-sun and full-sun conditions, however, not under the trees. Overall, best mycorrhizal colonization occurred during summer, and its rate decreased in autumn. This tendency inversely correlated with the amount of precipitation, and thus with the water content of soils. The high colonization rate of the examined root samples, and also its seasonal fluctuation, might reflect the importance of the symbiosis where inorganic nutrients and water are the growth-limiting factors. The marginal AMF colonization of chalk false-brome under shade conditions indicates that plants do not use AMF under all stress conditions. When low light limits photosynthesis and thus growth of the plants, they dispense with the colonization of AMF in order to save the expenditure of organic carbon. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon

    PubMed Central

    Ray, R. Adam; Hurst, Charlene N.; Holt, Richard A.; Buckles, Gerri R.; Atkinson, Stephen D.

    2012-01-01

    The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter−1 for Chinook but only 5 spores liter−1 for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts. PMID:22407689

  15. Killing of Bacillus Megaterium Spores by X-rays at the Phosphorus K-edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10(exp 18) photons/sec/sq mm. The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140 eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  16. Killing of Bacillus Megaterium Spores by X-Rays at the Phosphorus K-Edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10 photons/sec/mm . The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  17. Development of Spore Protein of Myxobolus koi as an Immunostimulant for Prevent of Myxobolusis on Gold Fish (Cyprinus carpio Linn) by Oral Immunisation

    NASA Astrophysics Data System (ADS)

    Mahasri, Gunanti

    2017-02-01

    Production of Gold fish (Cyprinus carpio Linn) in Indonesia has always increased from 2013 to 2015 year by year with increasing average 2% per year. The amount of production was respectively 571.892 tonnes, 1129.273 tonnes, and 1186.674 tonnes. There were almost no problems to sale of gold fish because it had a good enough prospect. The aims of this research were Isolation of spore protein of Myxobolus koi by using SDS-PAGE to analyze immun respons and survival rate gold fish that immunized with spore protein of Myxobolus koi. The method of this research used experimental method, and belonged to 4 treatments that are: Controle = the group of gold fish not immunized with protein spore of Myxobolus koi neither infected by Myxobolus koi (T1). The group immunized and infested by spore of Myxobolus koi (T2), The group which immunized and not infested by Myxobolus koi (T3), and The group only infested by Myxobolus koi (T4). The dose of immunostimulant was 5 ml in 1 kg of food. The result showed that there were two bands of whole spore protein with molecule weight (MW) 150 kDa and 72 kDa and one band of crude protein Myxobolus koi with molecule weight 73 kD and the optical density point was 0.132 on the first day and increased to 0.769 on the 56 th day. The result also showed that the immun respons and survival rate increased from 27% to 86% in chellence test. The protein spore of Myxobolus koi can used to develops material for immunostimulant and to prevent the myxobolusis.

  18. More closely related plants have more distinct mycorrhizal communities

    USDA-ARS?s Scientific Manuscript database

    1. Neighboring plants are known to vary from having similar to dissimilar arbuscular mycorrhizal fungal (AMF) communities. One possibility is that closely related plants have more similar AMF communities than more distantly related plants, an indication of phylogenetic signal in host use. Here, we...

  19. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress

    PubMed Central

    Abd_Allah, Elsayed Fathi; Hashem, Abeer; Alqarawi, Abdulaziz Abdullah; Bahkali, Ali Hassan; Alwhibi, Mona S.

    2015-01-01

    Pot experiments were conducted to evaluate the damaging effects of salinity on Sesbania sesban plants in the presence and absence of arbuscular mycorrhizal fungi (AMF). The selected morphological, physiological and biochemical parameters of S. sesban were measured. Salinity reduced growth and chlorophyll content drastically while as AMF inoculated plants improved growth. A decrease in the number of nodules, nodule weight and nitrogenase activity was also evident due to salinity stress causing reduction in nitrogen fixation and assimilation potential. AMF inoculation increased these parameters and also ameliorated the salinity stress to some extent. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as non enzymatic antioxidants (ascorbic acid and glutathione) also exhibited great variation with salinity treatment. Salinity caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of salinity. PMID:25972748

  20. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    PubMed

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  1. AMF3 ARM's Research Facility at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.

    2015-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.

  2. Preliminary study of injury from heating systemically delivered, nontargeted dextran–superparamagnetic iron oxide nanoparticles in mice

    PubMed Central

    Kut, Carmen; Zhang, Yonggang; Hedayati, Mohammad; Zhou, Haoming; Cornejo, Christine; Bordelon, David; Mihalic, Jana; Wabler, Michele; Burghardt, Elizabeth; Gruettner, Cordula; Geyh, Alison; Brayton, Cory; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Aim To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). Materials & methods Twenty three male nude mice received intravenous injections of dextran–superparamagnetic iron oxide nanoparticles on days 1–3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. Results Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. Conclusion Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran–superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. PMID:22830502

  3. Development of antibody directed nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Ivkov, R.; DeNardo, S. J.; Meirs, L. A.; Natarajan, A.; DeNardo, G. L.; Gruettner, C.; Foreman, A. R.

    2007-02-01

    The pharmacokinetics, tumor uptake, and biologic effects of inductively heating 111In-chimeric L6 (ChL6) monoclonal antibody (mAb)-linked iron oxide nanoparticle (bioprobes) by externally applied alternating magnetic fields (AMF) were studied in athymic mice bearing human breast cancer HBT 3477 xenografts. In addition, response was correlated with calculated total deposited heat dose. Methods: Using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide HCl, 111In-7,10-tetraazacyclododecane-N, N',N'',N'''-tetraacetic acid-ChL6 was conjugated to the carboxylated polyethylene glycol on dextran-coated iron oxide 20-nm particles, one to two mAbs per nanoparticle. After magnetic purification and sterile filtration, pharmacokinetics, histopathology, and AMF/bioprobe therapy were done using 111In-ChL6 bioprobe doses (20 mcg/2.2 mg ChL6/ bioprobe), i.v. with 50 mcg ChL6 in athymic mice bearing HBT 3477; a 153 kHz AMF was given 72 hours postinjection for therapy with amplitudes of 1,300, 1,000, or 700 Oe. Weights, blood counts, and tumor size were monitored and compared with control mice receiving nothing, or AMF, or bioprobes alone. Results: 111In-ChL6 bioprobe binding in vitro to HBT 3477 cells was 50% to 70% of that of 111In-ChL6. At 48 hours, tumor, lung, kidney, and marrow uptakes of the 111In-ChL6 bioprobes were not different from that observed in prior studies of 111In-ChL6. Significant therapeutic responses from AMF/bioprobe therapy were shown compared with no treatment. In addition, greatest therapeutic benefit was observed for the 700 Oe treatment cohort. Toxicity was only seen in the 1,300 Oe AMF cohort, with 4 of 12 immediate deaths associated with skin erythema and petechiae. Conclusion: This study shows that mAb-conjugated nanoparticles (bioprobes), when given i.v., escape into the extravascular space and bind to cancer cell membrane antigen.Thus, bioprobes can be used in concert with externally applied AMF to deliver thermoablative cancer therapy. Therapeutic benefit was observed with increasing calculated heat dose deposited in tumors.

  4. Improving satellite retrievals of NO2 in biomass burning regions

    NASA Astrophysics Data System (ADS)

    Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.

    2010-12-01

    The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the shape factor correction alone (without the aerosol correction), indicating that a shape factor-only correction is a good approximation of the total AMF correction associated with fire emissions. We use this result to define a measurement-based correction of the AMF based on the relationship between the slant column variability and the variability of the shape factor in the lower troposphere. This method may be generalized to other types of emission sources.

  5. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    PubMed Central

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M.; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC < 4 ds/m) and high (>8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na) uptake in both C3 and C4 plants. This influence, owing to mycorrhizal inoculation, was significantly higher in K uptake in C4 plants. For our analysis, we concluded that AMF-inoculated C4 plants showed more competitive K+ ions uptake than C3 plants. Therefore, maintenance of high cytosolic K+/Na+ ratio is a key feature of plant salt tolerance. Studies on the detailed mechanism for the selective transport of K in C3 and C4 mycorrhizal plants under salt stress is lacking, and this needs to be explored. PMID:27563299

  6. Targeting CD44 with nanoparticles in head and neck squamous cell carcinoma: A novel therapeutic strategy against cancer stem cells

    NASA Astrophysics Data System (ADS)

    Thapa, Ranjeeta

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide and is associated with significant morbidity and mortality. Advances in multi-modality treatments have only minimally improved survival rates in the past several years. Recent attention has been focused on the hypothesis that cancer stem cells (CSCs) may be responsible for the failure of current treatments. In HNSCC, a CSC population is contained within the cell fraction that expresses high levels of CD44. CD44 is a cell surface glycoprotein and was the first CSC marker to be described in solid malignancies. in this study, hyaluronan conjugated, dextran-coated super paramagnetic iron-oxide nanoparticles (HA-DESPIONs) were used to target the CD44 population in CD44-overexpressed HNSCC cell lines for treatment by establishing the interaction of HA-DESPIONs with radiation and hyperthermia therapy. The first part of this dissertation studied the cytotoxic, radiosensitizing, and hyperthermic properties of the HA-DESPIONs using cell proliferation and clonogenic survival assays. Cells were grown, plated, treated with HA-DESPIONs, irradiated/exposed to local hyperthermia, and then analyzed for apoptosis. HA-DESPIONs proved to be relatively non-toxic and nonradiosensitizing. However, temperature-dependent cell survival reduction upon incubation with HA-DESPIONs was observed with evidence of apoptotic cell death. These results supported further development of an alternating magnetic field (AMF) approach to activate the HADESPIONs attached to CSCs. In the second part of the dissertation, an AMF generator was constructed and its heat generating effect was tested via kinetic and dose-dependent bulk heating experiments by exposing magnetic nanoparticles to AMF. For elimination of the CD44 population, cells were treated with HA-DESPIONs/DESPIONs, exposed to AMF, and processed for flow cytometrybased apoptosis analysis. Magnetic nanoparticles caused concentration-dependent bulk heating in response to AMF resulting in a significant temperature rise. Following exposure to AMF, DESPIONs were unable to induce targeted hyperthermia and hence had no effect on CD44 cell death in HNSCC cells. However, there was significant cell death in the CD44 population treated with HA-DESPIONs and exposed to AMF. This effect was observed only when the AMF was turned on. These results demonstrated that HA-DESPIONs caused targeted cell-death in CD44overexpressing cells. This may be a promising strategy to specifically target CSCs for the treatment of HNSCC.

  7. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.

    PubMed

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC < 4 ds/m) and high (>8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na) uptake in both C3 and C4 plants. This influence, owing to mycorrhizal inoculation, was significantly higher in K uptake in C4 plants. For our analysis, we concluded that AMF-inoculated C4 plants showed more competitive K(+) ions uptake than C3 plants. Therefore, maintenance of high cytosolic K(+)/Na(+) ratio is a key feature of plant salt tolerance. Studies on the detailed mechanism for the selective transport of K in C3 and C4 mycorrhizal plants under salt stress is lacking, and this needs to be explored.

  8. The Effect of SnCl2/AmF Pretreatment on Short- and Long-Term Bond Strength to Eroded Dentin

    PubMed Central

    Zumstein, Katrin; Peutzfeldt, Anne; Lussi, Adrian

    2018-01-01

    This study investigated the effect of SnCl2/AmF pretreatment on short- and long-term bond strength of resin composite to eroded dentin mediated by two self-etch, MDP-containing adhesive systems. 184 dentin specimens were produced from extracted human molars. Half the specimens (n = 92) were artificially eroded, and half were left untreated. For both substrates, half the specimens were pretreated with SnCl2/AmF, and half were left untreated. The specimens were treated with Clearfil SE Bond or Scotchbond Universal prior to application of resin composite. Microtensile bond strength (μTBS) was measured after 24 h or 1 year. Failure mode was detected and EDX was performed. μTBS results were statistically analyzed (α = 0.05). μTBS was significantly influenced by the dentin substrate (eroded < noneroded dentin) and storage time (24 h > 1 year; p < 0.0001) but not by pretreatment with SnCl2/AmF or adhesive system. The predominant failure mode was adhesive failure at the dentin-adhesive interface. The content of Sn was generally below detection limit. Pretreatment with SnCl2/AmF did not influence short- and long-term bond strength to eroded dentin. Bond strength was reduced after storage for one year, was lower to eroded dentin than to noneroded dentin, and was similar for the two adhesive systems.

  9. Extreme diversification of the mating type-high-mobility group (MATA-HMG) gene family in a plant-associated arbuscular mycorrhizal fungus.

    PubMed

    Riley, Rohan; Charron, Philippe; Idnurm, Alexander; Farinelli, Laurent; Dalpé, Yolande; Martin, Francis; Corradi, Nicolas

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) are important plant symbionts that have long been considered evolutionary anomalies because of their apparent long-term lack of sexuality, but recent explorations of available DNA sequence have challenged this notion by revealing the presence of homologues of fungal mating type-high-mobility group (MATA-HMG) and core meiotic genes in these organisms. To obtain more insights into the sexual potential of AMF, homologues of MATA-HMGs were sought in the transcriptome of three AMF isolates, and their functional and evolutionary trajectories were studied in genetically divergent strains of Rhizophagus irregularis using conventional and quantitative PCR procedures. Our analyses revealed the presence of at least 76 homologues of MATA-HMGs in R. irregularis isolates. None of these was found to be surrounded by genes generally found near other known fungal mating type loci, but here we report the presence of a 9-kb-long region in the AMF R. irregularis harbouring a total of four tandem-repeated MATA-HMGs; a feature that highlights a potentially elevated intragenomic diversity in this AMF species. The present study provides intriguing insights into the genome evolution of R. irregularis, and represents a stepping stone for understanding the potential of these fungi to undergo cryptic sex. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices.

    PubMed

    Li, Tao; Hu, Ya-Jun; Hao, Zhi-Peng; Li, Hong; Wang, You-Shan; Chen, Bao-Dong

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the molecular basis for the direct involvement of AM fungi (AMF) in plant water relations has not been established. Two full-length aquaporin genes, namely GintAQPF1 and GintAQPF2, were cloned by rapid amplification of cDNA 5'- and 3'-ends from an AMF, Glomus intraradices. Aquaporin localization, activities and water permeability were examined by heterologous expression in yeast. Gene expression during symbiosis was also analyzed by quantitative real-time polymerase chain reaction. GintAQPF1 was localized to the plasma membrane of yeast, whereas GintAQPF2 was localized to both plasma and intracellular membranes. Transformed yeast cells exhibited a significant decrease in cell volume on hyperosmotic shock and faster protoplast bursting on hypo-osmotic shock. Polyethylene glycol (PEG) stimulated, but glycerol inhibited, the aquaporin activities. Furthermore, the expression of the two genes in arbuscule-enriched cortical cells and extraradical mycelia of maize roots was also enhanced significantly under drought stress. GintAQPF1 and GintAQPF2 are the first two functional aquaporin genes from AMF reported to date. Our data strongly support potential water transport via AMF to host plants, which leads to a better understanding of the important role of AMF in plant drought tolerance. © 2012 Research Centre for Eco-Environmental Sciences, CAS New Phytologist © 2012 New Phytologist Trust.

  11. Effect of Different Amendments on Growing of Canna indica L. Inoculated with AMF on Mining Substrate.

    PubMed

    El Faiz, Abdelouahed; Duponnois, Robin; Winterton, Peter; Ouhammou, Ahmed; Meddich, Abdelillah; Boularbah, Ali; Hafidi, Mohamed

    2015-01-01

    Canna indica L. (CiL) was used here in phytoremediation of mining soils. Our work evaluated the effect of AMF (i) on the growth and (ii) on the uptake of heavy metals (HM). The tests were conducted in the greenhouse on mining substrates collected from the Kettara mine (Morocco). The mine soil was amended by different proportions of agricultural soil and compost and then inoculated with two isolates of AMF (IN1) and (IN2) of different origins. After six months of culture, the results show that on mining soils (100%) only AMF (IN2) was able to colonize the roots of CiL with a frequency of 40±7% and an intensity of 6.5±1.5%. Also, the lowest values of shoot and root dry biomass are obtained on these mining soils with respectively 0.30 g and 0.27 g. In contrast, the accumulation of HM was higher and reached more than 50% of that contained in the mining soils, the highest values with 138 mg kg(-1) Cu2+, Zn2+ 270 mg kg(-1) and 1.38 mg kg(-1) Cd was recorded. These results indicate that the colonization of CiL roots by AMF (IN2) could significantly improve its potential to be used in phytoremediation of polluted soil.

  12. Foliar Spray with Vermiwash Modifies the Arbuscular Mycorrhizal Dependency and Nutrient Stoichiometry of Bhut Jolokia (Capsicum assamicum)

    PubMed Central

    Gupta, Rajeev; Veer, Vijay; Singh, Lokendra; Kalita, Mohan C.

    2014-01-01

    Vermiwash (VW), a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum) exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM) in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth. PMID:24651577

  13. Arbuscular mycorrhizal fungi diversity influenced by different agricultural management practices in a semi-arid Mediterranean agro-ecosystem

    NASA Astrophysics Data System (ADS)

    de Mar Alguacil, Maria; Torrecillas, Emma; Garcia-Orenes, Fuensanta; Torres, Maria Pilar; Roldan, Antonio

    2013-04-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study a field experiment was performed at the El Teularet-Sierra de Enguera Experimental Station (eastern Spain) to assess the influence during a 6-yr period of different agricultural practices on the diversity of arbuscular mycorrhizal fungi (AMF). The management practices included residual herbicide use, ploughing, ploughing + oats, addition of oat straw mulch and a control (land abandonment). Adjacent soil under natural vegetation was used as a reference for local, high-quality soil and as a control for comparison with the agricultural soils under different management practices. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Thirty-six different phylotypes were identified, which were grouped in four families: Glomeraceae, Paraglomeraceae, Ambisporaceae and Claroideoglomeraceae. The first results showed significant differences in the distribution of the AMF phylotypes as consequence of the difference between agricultural management practices. Thus, the lowest diversity was observed for the plot that was treated with herbicide. The management practices including ploughing and ploughing + oats had similar AMF diversity. Oat straw mulching yielded the highest number of different AMF sequence types and showed the highest diversity index. Thus, this treatment could be more suitable in sustainable soil use and therefore protection of biodiversity.

  14. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles.

    PubMed

    Sato, Itaru; Umemura, Masanari; Mitsudo, Kenji; Fukumura, Hidenobu; Kim, Jeong-Hwan; Hoshino, Yujiro; Nakashima, Hideyuki; Kioi, Mitomu; Nakakaji, Rina; Sato, Motohiko; Fujita, Takayuki; Yokoyama, Utako; Okumura, Satoshi; Oshiro, Hisashi; Eguchi, Haruki; Tohnai, Iwai; Ishikawa, Yoshihiro

    2016-04-22

    We previously investigated the utility of μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)) nanoparticles as a new anti-cancer agent for magnet-guided delivery with anti-cancer activity. Fe(Salen) nanoparticles should rapidly heat up in an alternating magnetic field (AMF), and we hypothesized that these single-drug nanoparticles would be effective for combined hyperthermia-chemotherapy. Conventional hyperthermic particles are usually made of iron oxide, and thus cannot exhibit anti-cancer activity in the absence of an AMF. We found that Fe(Salen) nanoparticles induced apoptosis in cultured cancer cells, and that AMF exposure enhanced the apoptotic effect. Therefore, we evaluated the combined three-fold strategy, i.e., chemotherapy with Fe(Salen) nanoparticles, magnetically guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles to induce local hyperthermia, in a rabbit model of tongue cancer. Intravenous administration of Fe(Salen) nanoparticles per se inhibited tumor growth before the other two modalities were applied. This inhibition was enhanced when a magnet was used to accumulate Fe(Salen) nanoparticles at the tongue. When an AMF was further applied (magnet-guided chemotherapy plus hyperthermia), the tumor masses were dramatically reduced. These results indicate that our strategy of combined hyperthermia-chemotherapy using Fe(Salen) nanoparticles specifically delivered with magnetic guidance represents a powerful new approach for cancer treatment.

  15. Decrease of motor cortex excitability following exposure to a 20 Hz magnetic field as generated by a rotating permanent magnet.

    PubMed

    Gallasch, Eugen; Rafolt, Dietmar; Postruznik, Magdalena; Fresnoza, Shane; Christova, Monica

    2018-04-19

    Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products.

    PubMed

    Boldt-Burisch, Katja; Naeth, M Anne; Schneider, Uwe; Schneider, Beate; Hüttl, Reinhard F

    2018-04-15

    Soil pollutants such as hydrocarbons can induce toxic effects in plants and associated arbuscular mycorrhizal fungi (AMF). This study was conducted to evaluate if the legume Lotus corniculatus and the grass Elymus trachycaulus and arbuscular mycorrhizal fungi could grow in two oil sands processing by-products after bitumen extraction from the oil sands in northern Alberta, Canada. Substrate treatments were coarse tailings sand (CTS), a mix of dry mature fine tailings (MFT) with CTS (1:1) and Pleistocene sandy soil (hydrocarbon free); microbial treatments were without AMF, with AMF and AMF plus soil bacteria isolated from oil sands reclamation sites. Plant biomass, root morphology, leaf water content, shoot tissue phosphorus content and mycorrhizal colonization were evaluated. Both plant species had reduced growth in CTS and tailings mix relative to sandy soil. AMF frequency and intensity in roots of E. trachycaulus was not influenced by soil hydrocarbons; however, it decreased significantly over time in roots of L. corniculatus without bacteria in CTS. Mycorrhizal inoculation alone did not significantly improve plant growth in CTS and tailings mix; however, inoculation with mycorrhizae plus bacteria led to a significantly positive response of both plant species in CTS. Thus, combined inoculation with selected mycorrhizae and bacteria led to synergistic effects. Such combinations may be used in future to improve plant growth in reclamation of CTS and tailings mix. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study

    NASA Astrophysics Data System (ADS)

    Golovin, Yuri I.; Gribanovsky, Sergey L.; Golovin, Dmitry Y.; Zhigachev, Alexander O.; Klyachko, Natalia L.; Majouga, Alexander G.; Sokolsky, Marina; Kabanov, Alexander V.

    2017-02-01

    In the past decade, magneto-nanomechanical approach to biochemical systems stimulation has been studied intensively. This method involves macromolecule structure local deformation via mechanical actuation of functionalized magnetic nanoparticles (f-MNPs) by non-heating low frequency (LF) alternating magnetic field (AMF). Specificity at cellular or molecular level and spatial locality in nanometer scale are its key advantages as compared to magnetic fluid hyperthermia. However, current experimental studies have weak theoretical basis. Several models of magneto-nanomechanical actuation of macromolecules and cells in non-heating uniform LF AMF are presented in the article. Single core-shell spherical, rod-like, and Janus MNPs, as well as dimers consisting of two f-MNPs with macromolecules immobilized on their surfaces are considered. AMF-induced rotational oscillations of MNPs can affect properties and functioning of macromolecules or cellular membranes attached to them via periodic deformations in nanometer scale. This could be widely used in therapy, in particular for targeted drug delivery, controlled drug release, and cancer cell killing. An aggregate composed of MNPs can affect associated macromolecules by force up to several hundreds of piconewton in the case of MNPs of tens of nanometers in diameter and LF AMF below 1 T. AMF parameters and MNP design requirements for effective in vitro and in vivo magneto-nanomechanical treatment are presented.

  18. Influence of mycorhization and soil organic matters on lead and antimony transfers to vegetables cultivated in urban gardens: environmental and sanitary consequences

    NASA Astrophysics Data System (ADS)

    Pierart, Antoine; Braud, Armelle; Lebeau, Thierry; Séjalon-Delmas, Nathalie; Dumat, Camille

    2014-05-01

    The European Environment Agency estimates that c.a. 250 000 sites required clean up and that about 100 000 ha could have been contaminated by metals in Europe. Numerous remediation techniques have been therefore tested and phytoremediation appears as a sustainable and low cost in situ technique particularly for large-scale remediation of polluted arable soils. Arbuscular Mycorrhizal Fungi (AMF) are already used in phytoextraction or phytostabilisation of many metal(loid)s (GU ET AL., 2013, SHARMA AND SHARMA, 2013). However, while plant inoculation with AMF will mostly result of an increase of the plant biomass, the response for lead accumulation in shoots is contrasted (LEBEAU ET AL., 2008). Furthermore, nothing is actually known for Sb transfer to plants phytoremediation-assisted AMF. Yet recently, many researches concern the accumulation of Sb in the environment, its (eco)toxicity and the risk of bioaccumulation in vegetables (FENG ET AL., 2013), especially in some China areas where Sb mining activities have widely contaminated arable lands (WU ET AL., 2011). Our research project, which is part of a national program for urban gardens (JASSUR, http://www.agence-nationale-recherche.fr), focused on polluted soils in associative urban gardens with both geogenic and anthropogenic origins for Pb and Sb. The impact of Pb and Sb on AMF density and diversity was studied using morphological and biomolecular approaches. The role of AMF symbiosis with Lettuce (Lactuca sativa L.) on Pb and Sb compartmentalization, speciation and phytoavailability was investigated. The influence of soil organic matters on these processes was examined. Eventually, the part of metal(loid)s available for humans in case of ingestion of lettuces unfit for human consumption (FOUCAULT ET AL., 2013; XIONG ET AL., 2013) will be assessed in relation with the influence of AMF symbiosis and organic matter. Key Words: Mycorrhiza, Antimony, Compartmentation, Speciation, Edible Plants, Urban Agriculture. References: Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., Guo, J., 2013. The uptake and detoxification of antimony by plants: a review. Environ. Exp. Bot. 96, 28-34. Foucault, Y., Lévêque, T., Xiong, T., Schreck, E., Austruy, A., Shahid, M., Dumat, C., 2013. Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93, 1430-1435. Gu, H.H., Li, F.P., Yu, Q., Gao, Y.Q., Yuan, X.T., 2013. The Roles of Arbuscular Mycorrhizal Fungus Glomus mosseae and Festuca arundinacea in Phytostabilization of Lead/Zinc Tailings. Adv. Mater. Res. 699, 245-250. Lebeau, T., Braud, A., Jézéquel, K., 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 153, 497-522. Sharma, A., Sharma, H., 2013. Role of Vesicular Arbuscular Mycorrhiza in the Mycoremediation of Heavy Toxic Metals From Soil. Int J LifeSc Bt Pharm Res 2, 2418-2431. Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., Liao, H., 2011. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area. Sci. Total Environ. 409, 3344-3351. Xiong, T., Austruy, A., Dappe, V., Leveque, T., Sobanska, S., Foucault, Y., Dumat, C., 2013. Phytotoxicity and bioaccessibility of metals for vegetables exposed to atmosphere fine particles in polluted urban areas". Urban Environmental Pollution, Asian Edition, 17-20, Beijing, China.

  19. Physical-biological coupling in spore dispersal of kelp forest macroalgae

    NASA Astrophysics Data System (ADS)

    Gaylord, Brian; Reed, Daniel C.; Washburn, Libe; Raimondi, Peter T.

    2004-08-01

    The physical-biological linkages controlling the dispersal of spores produced by macroalgae that reside in kelp forests are complicated and laced with feedbacks. Here we discuss the fundamental elements of these interactions. Biological considerations include spore swimming and sinking speeds, their periods of viability in the plankton, and the height of spore release above the seafloor, which together determine the durations over which spores can be swept by horizontal currents before they contact the seafloor. Morphologies and material properties of canopy forming kelps may also influence the drag exerted on passing waters by the kelps, the plants' ability to persist in the face of rapid flows, and thereby the degree to which impinging currents are redirected around, or slowed within, kelp forests. Macroalgal life histories, and the size of spore sources as controlled by the dimensions of kelp forests and the density and fecundity of individuals within them, influence effective dispersal distances as well. Physical considerations encompass the mean speed, direction, and timescales of variability of currents relative to spore suspension times, the interaction of surface gravity waves with currents in producing turbulence in the benthic boundary layer, wind-driven surface mixing, water stratification, and shoreline bathymetry and substratum roughness, all of which can affect the interplay of vertical and horizontal transport of macroalgal spores. Intricate within-forest processes may induce attenuation of current speeds and consequent reductions in seabed shear, along with simultaneous production of small-scale turbulence in kelp wakes. Slower mean currents and smaller eddy scales in turn may attenuate vertical mixing within forests, thus extending spore suspension times. Further complexities likely arise due to changes in the relative rates of horizontal and vertical dispersion, modifications to the overall profiles of vertical mixing, and the creation of fine-scale secondary flows around kelp individuals and substratum features. Under conditions of more rapid currents, submergence of the surface canopy and the establishment of skimming flows at the canopy-fluid interface may introduce additional coherent flow structures that alter rates of fluid exchange to and from the forest. Many of these coupled physical-biological processes are just beginning to be examined in a rigorous fashion in kelp forests, but their potential importance is clear.

  20. Impact of fertilizer, corn residue, and cover crops on mycorrhizal inoculum potential and arbuscular mycorrhizal fungi associations

    USDA-ARS?s Scientific Manuscript database

    Arbuscular Mycorrhizal Fungi (AMF) increase nutrient and water acquisition for mycorrhizal-susceptible plants, which may lead to higher yields. However, intensive agricultural practices such as tilling, fallow treatments, and inorganic nutrient application reduce soil AMF. The purpose of the three e...

  1. Meta-analysis of crop and weed growth responses to arbuscular-mycorrhizal fungi

    USDA-ARS?s Scientific Manuscript database

    Arbuscular mycorrhizal fungi (AMF) have long been regarded as beneficial soil microorganisms, but have been reported to have detrimental effects on several non-mycorrhizal agricultural weed species. If AMF have negative effects on weeds but neutral or positive effects on crops under certain cropping...

  2. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs

    USGS Publications Warehouse

    Hornbostel, V.L.; Zhioua, Elyes; Benjamin, Michael A.; Ginsberg, Howard S.; Ostfeld, Richard S.

    2005-01-01

    Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.

  3. Mycorrhizal diversity in the rhizosphere of sugarcane and grass on different soil types

    NASA Astrophysics Data System (ADS)

    Ratri Cahyani, Vita; Rastikawati, Dewi; Yuniardi, Nestri; Syamsiyah, Jauhari; Suntoro

    2017-11-01

    Mycorrhiza has been known well as beneficial microbiota for supporting plant growth and production. Understanding of the variability and the consistency of the mycorrhizal diversity on various habitats is important for developing mycorrhizal utilization. Mycorrhizal diversity in the rhizosphere of sugarcane from 4 (four) soil types and the rhizosphere of grass from 3 (three) soil types were investigated in the present study. The results showed that Glomus indicated as a versatile genus because it was found as a common and dominant genus in the sugarcane rhizosphere on all of four soil types (Alfisol, Andisol, Inceptisol, Vertisol) and in the grass rhizosphere on all of three soil types (Ultisol, Oxisol, Histosol). In addition, Acaulospora was found as a common genus in grass rhizosphere. Statistical analysis indicated that P availability in the rhizosphere of sugarcane had a significantly negative correlation with mycorrhizal spore density, in which decreasing P availability significantly related with increasing spore density.

  4. Magnetically multiplexed heating of single domain nanoparticles

    NASA Astrophysics Data System (ADS)

    Christiansen, M. G.; Senko, A. W.; Chen, R.; Romero, G.; Anikeeva, P.

    2014-05-01

    Selective hysteretic heating of multiple collocated types of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of "magnetothermal multiplexing" has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Dynamic hysteresis modeling suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multiplexing could effectively offer multiple channels for minimally invasive biological signaling applications.

  5. Eddy Correlation Flux Measurement System Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less

  6. Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition.

    PubMed

    Baslam, Marouane; Pascual, Inmaculada; Sánchez-Díaz, Manuel; Erro, Javier; García-Mina, José María; Goicoechea, Nieves

    2011-10-26

    The improvement of the nutritional quality of lettuce by its association with arbuscular mycorrhizal fungi (AMF) has been recently reported in a previous study. The aim of this research was to evaluate if the fertilization with three P sources differing in water solubility affects the effectiveness of AMF for improving lettuce growth and nutritional quality. The application of either water-soluble P sources (Hewitt's solution and single superphosphate) or the water-insoluble (WI) fraction of a "rhizosphere-controlled fertilizer" did not exert negative effects on the establishment of the mycorrhizal symbiosis. AMF improved lettuce growth and nutritional quality. Nevertheless, the effect was dependent on the source of P and cultivar. Batavia Rubia Munguía (green cultivar) benefited more than Maravilla de Verano (red cultivar) in terms of mineral nutrients, total soluble sugars, and ascorbate contents. The association of lettuce with AMF resulted in greater quantities of anthocyanins in plants fertilized with WI, carotenoids when plants received either Hewitt's solution or WI, and phenolics regardless of the P fertilizer applied.

  7. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success.

    PubMed

    Verbruggen, Erik; van der Heijden, Marcel G A; Rillig, Matthias C; Kiers, E Toby

    2013-03-01

    Soil biota provide a number of key ecological services to natural and agricultural ecosystems. Increasingly, inoculation of soils with beneficial soil biota is being considered as a tool to enhance plant productivity and sustainability of agricultural ecosystems. However, one important bottleneck is the establishment of viable microbial populations that can persist over multiple seasons. Here, we explore the factors responsible for establishment of the beneficial soil fungi, arbuscular mycorrhizal fungi (AMF), which can enhance the yield of a wide range of agricultural crops. We evaluate field application potential and discuss ecological and evolutionary factors responsible for application success. We identify three factors that determine inoculation success and AM fungal persistence in soils: species compatibility (can the introduced species thrive under the imposed circumstances?); field carrying capacity (the habitat niche available to AMF); and priority effects (the influence of timing and competition on the establishment of alternative stable communities). We explore how these factors can be employed for establishment and persistence of AMF. We address the importance of inoculum choice, plant choice, management practices and timing of inoculation for the successful manipulation of the resulting AMF community.

  8. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways.

    PubMed

    Zhang, Rui-Qin; Zhu, Hong-Hui; Zhao, Hai-Quan; Yao, Qing

    2013-01-01

    Arbuscular mycorrhizal fungi can increase the host resistance to pathogens via promoted phenolic synthesis, however, the signaling pathway responsible for it still remains unclear. In this study, in order to reveal the signaling molecules involved in this process, we inoculated Trifolium repense L. with an arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and monitored the contents of phenolics and signaling molecules (hydrogen peroxide (H(2)O(2)), salicylic acid (SA), and nitric oxide (NO)) in roots, measured the activities of l-phenylalanine ammonia-lyase (PAL) and nitric oxide synthase (NOS), and the expression of pal and chs genes. Results demonstrated that AMF colonization promoted the phenolic synthesis, in parallel with the increase in related enzyme activity and gene expression. Meanwhile, the accumulation of all three signaling molecules was also up-regulated by AMF. This study suggested that AMF increased the phenolic synthesis in roots probably via signaling pathways of H(2)O(2), SA and NO in a signaling cascade. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Practical methods for generating alternating magnetic fields for biomedical research

    NASA Astrophysics Data System (ADS)

    Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina

    2017-08-01

    Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.

  10. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization.

    PubMed

    Li, Jinglong; Sun, Yuqing; Zhang, Xin; Hu, Yajun; Li, Tao; Zhang, Xuemeng; Wang, Zhi; Wu, Songlin; Wu, Zhaoxiang; Chen, Baodong

    2018-06-20

    Arbuscular mycorrhizal fungi (AMF), ubiquitous symbiotic fungi associated with the majority of terrestrial plants, were demonstrated to play important roles in arsenic (As) translocation and transformation in the plant-soil continuum, and substantially influence plant As tolerance. However, the direct involvement of AMF in As methylation and volatilization and their molecular mechanisms remain unsolved. Here, an arsenite methyltransferase gene RiMT-11 was identified and characterized from AM fungus Rhizophagus irregularis. Heterologous expression of RiMT-11 enhanced arsenite resistance of E. coli (Δars) through methylating As into monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and ultimately volatile trimethyl arsine (TMAs). In a two-compartment in vitro monoxenic cultivation system, methylated and volatile As were also detected from AM symbioses with arsenate addition, accompanied by strong up-regulation of RiMT-11 expression in extraradical hyphae. The present study provided direct evidence and illustrated an underlying mechanism of As methylation and volatilization by AMF, leading to a deeper insight into the role of AMF in As biogeochemical cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Outlines a variety of laboratory procedures, discussions, and demonstrations including in vitro contraction of muscle fibres and muscle proteins, sucrose density-gradient centrifugation, fern spore development, digestion of starch, construction of a small mammal trap, microscope selection, and occurrence and toxicity of mycotoxins. (GS)

  12. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    PubMed

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  13. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil.

    PubMed

    Chaturvedi, Ritu; Favas, Paulo; Pratas, João; Varun, Mayank; Paul, Manoj S

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) aids in plant establishment at heavy metal(loid) (HM) contaminated soils, strengthening plant defense system along with promoting growth. A pot experiment was carried out to evaluate the effect of AMF on eggplants grown under HM stress. Further, the potential health risks of HM exposure to the humans via dietary intake of eggplant were also estimated. Results showed that AMF application improved growth, biomass and antioxidative defense response of plants against HM stress. Significant difference (p ≤ 0.001) in parameters under study was found on increasing metal dose and on application of AMF. Among metal(loid)s maximum uptake was recorded for Pb (29.64mgkg - 1 in roots; 23.08mgkg - 1 in shoot) followed by As (3.84mgkg - 1 in roots; 8.20mgkg - 1 in shoot) and, Cd (0.96mgkg - 1 in roots; 2.12mgkg - 1 in shoot). Based on the accumulation of HM in edible part, Hazard Quotient (HQ) was calculated. HQ was found to be > 1 for Pb, which highlights the risks associated with consumption of Eggplants grown on Pb contaminated soil. However this potential, which was further enhanced by application of AMF, can be harnessed for on-site remediation of Pb contaminated soils. The content of Cd and As in the edible part was found to be within safe limits (HQ < 1) when compared to chronic reference dose stated by USEPA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    PubMed

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants.

    PubMed

    Egerton-Warburton, Louise M; Querejeta, José Ignacio; Allen, Michael F

    2007-01-01

    Plant roots may be linked by shared or common mycorrhizal networks (CMNs) that constitute pathways for the transfer of resources among plants. The potential for water transfer by such networks was examined by manipulating CMNs independently of plant roots in order to isolate the role(s) of ectomycorrhizal (EM) and arbuscular mycorrhizal fungal (AMF) networks in the plant water balance during drought (soil water potential -5.9 MPa). Fluorescent tracer dyes and deuterium-enriched water were used to follow the pathways of water transfer from coastal live oak seedlings (Quercus agrifolia Nee; colonized by EM and AMF) conducting hydraulic lift (HL) into the roots of water-stressed seedlings connected only by EM (Q. agrifolia) or AMF networks (Q. agrifolia, Eriogonum fasciculatum Benth., Salvia mellifera Greene, Keckiella antirrhinoides Benth). When connected to donor plants by hyphal linkages, deuterium was detected in the transpiration flux of receiver oak plants, and dye-labelled extraradical hyphae, rhizomorphs, mantles, and Hartig nets were observed in receiver EM oak roots, and in AMF hyphae of Salvia. Hyphal labelling was scarce in Eriogonum and Keckiella since these species are less dependent on AMF. The observed patterns of dye distribution also indicated that only a small percentage of mycorrhizal roots and extraradical hyphae were involved with water transfer among plants. Our results suggest that the movement of water by CMNs is potentially important to plant survival during drought, and that the functional ecophysiological traits of individual mycorrhizal fungi may be a component of this mechanism.

  16. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling

    PubMed Central

    Aliferis, Konstantinos A.; Chamoun, Rony; Jabaji, Suha

    2015-01-01

    The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. PMID:26042135

  17. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course, for a desired value of uncertainty, one must invert the calculation. However, this probability of finding exactly the number of spores in the poured part is correct only in the case where all values of the true number of spores greater than or equal to the adjusted count are equally probable. This is not realistic, of course, but the result can only overestimate the uncertainty. So it is useful. In probability speak, one has the conditional probability given any true total number of spores. Therefore one must multiply it by the probability of each possible true count, before the summation. If the counts for a sample set (of which this is one sample) are available, one may use the calculated variance and the normal probability distribution. In this approach, one assumes a normal distribution and neglects the contribution from spatial variation. The former is a common assumption. The latter can only add to the conservatism (over estimate the number of spores at some level of confidence). A more straightforward approach is to assume a Poisson probability distribution for the measured total sample set counts, and use the product of the number of samples and the mean number of counts per sample as the mean of the Poisson distribution. It is necessary to set the total count to 1 in the Poisson distribution when actual total count is zero. Finally, even when the planetary protection requirements for spore burden refer only to the mean values, they require an adjustment for pour fraction and method efficiency (a PP specification based on independent data). The adjusted mean values are a 50/50 proposition (e.g., the probability of the true total counts in the sample set exceeding the estimate is 0.50). However, this is highly unconservative when the total counts are zero. No adjustment to the mean values occurs for either pour fraction or efficiency. The recommended approach is once again to set the total counts to 1, but now applied to the mean values. Then one may apply the corrections to the revised counts. It can be shown by the methods developed in this work that this change is usually conservative enough to increase the level of confidence in the estimate to 0.5. 1. NASA. (2005) Planetary protection provisions for robotic extraterrestrial missions. NPR 8020.12C, April 2005, National Aeronautics and Space Administration, Washington, DC. 2. NASA. (2010) Handbook for the Microbiological Examination of Space Hardware, NASA-HDBK-6022, National Aeronautics and Space Administration, Washington, DC.

  18. Effect of maternal metabolism on fetal supply: Glucose, non-esterified fatty acids and beta-hydroxybutyrate concentrations in canine maternal serum and fetal fluids at term pregnancy.

    PubMed

    Balogh, Orsolya; Bruckmaier, Rupert; Keller, Stefanie; Reichler, Iris Margaret

    2018-06-01

    The progressive adaptations in carbohydrate and lipid metabolism during canine pregnancy are reflected in the concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). The levels of these metabolites in the bitch likely affect fetal concentrations and the composition of amniotic and allantoic fluids (AMF and ALF, respectively). We studied 31 canine parturitions (Cesarean sections) and found that glucose, NEFA and BHB concentrations were significantly higher in maternal serum than in AMF or ALF. Glucose levels in maternal serum, AMF and ALF were closely related (R 2  ≥ 0.821, P < 0.0001) as well as serum and AMF BHB levels (R 2  = 0.661, P < 0.0001). In maternal serum, increases in NEFA were associated with increased BHB, and both were negatively related to glucose (P ≤ 0.010). To estimate the effect of the metabolic burden of pregnancy, we evaluated these variables in relation to the dam's body weight and to the ratio of litter weight to the dam's body weight (LW/BW). Maternal serum glucose was not influenced by LW/BW, but it was lower in small than in large/giant bitches. Small breed dogs and those with >10% LW/BW had significantly higher serum NEFA and BHB concentrations. Glucose in AMF and ALF was independent of LW/BW (P ≥ 0.399). AMF NEFA was lower and BHB higher, if LW/BW was >10% (P ≤ 0.048). In conclusion, the extent of the metabolic load of pregnancy in bitches depends on breed size and on the ratio of litter weight to dam's body weight. Maternal concentrations of glucose, BHB and NEFA determine the concentrations of these metabolites in fetal fluids. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota.

    PubMed

    Lee, Soon-Jae; Kong, Mengxuan; Harrison, Paul; Hijri, Mohamed

    2018-01-01

    Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota

    PubMed Central

    Lee, Soon-Jae; Kong, Mengxuan; Harrison, Paul

    2018-01-01

    Abstract Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales. PMID:29329439

Top