Science.gov

Sample records for amides acid-labile temperature-responsive

  1. Poly(ortho ester amides): Acid-labile Temperature-responsive Copolymers for Potential Biomedical Applications

    PubMed Central

    Tang, Rupei; Palumbo, R. Noelle; Ji, Weihang; Wang, Chun

    2009-01-01

    A new, convenient pathway is developed to synthesize highly hydrolytically labile poly(ortho ester amide) (POEA) copolymers that overcomes some of the major weaknesses of the traditional methods of synthesizing poly(ortho esters) and their derivatives. A diamine monomer containing a built-in, stabilized ortho ester group was synthesized and was used for polycondensation with diacid esters, giving rise to a series of POEA copolymers with unique stimuli-responsive properties. The POEA undergoes temperature-responsive, reversible sol-gel phase transition in water. Phase diagrams of the POEA/H2O mixture reveal the concentration-dependent existence of different phases, including hydrogel and opaque or clear solution. Such behavior may be attributed to the temperature-dependent hydrogen-bonding involving the amide groups in the POEA backbone and hydrophobic interactions between POEA chains, and it is tunable by selecting diacid monomers with different chemical structures. The kinetics of POEA mass loss in physiological aqueous buffers and release of a model macromolecular drug, fluorescently labeled dextran, are nearly zero-order, suggesting predominantly surface-restricted polymer erosion. The rates of polymer erosion and drug release are much faster at pH 5.0 than pH 7.4. No cytotoxicity was found for the polymer extracts and the polymer degradation products at concentrations as high as 1 mg/ml. The normal morphology of fibroblasts cultured directly in contact with POEA films was not altered. These novel acid-labile temperature-responsive POEA copolymers may be potentially useful for a wide range of biomedical applications such as minimal invasive delivery of controlled-release drug formulations that respond to biological temperature and acidic-pH environments in cells and tissues. PMID:19281150

  2. Poly(ortho ester amides): acid-labile temperature-responsive copolymers for potential biomedical applications.

    PubMed

    Tang, Rupei; Palumbo, R Noelle; Ji, Weihang; Wang, Chun

    2009-04-13

    A new, convenient pathway is developed to synthesize highly hydrolytically labile poly(ortho ester amide) (POEA) copolymers that overcomes some of the major weaknesses of the traditional methods of synthesizing poly(ortho esters) and their derivatives. A diamine monomer containing a built-in, stabilized ortho ester group was synthesized and was used for polycondensation with diacid esters, giving rise to a series of POEA copolymers with unique stimuli-responsive properties. The POEA undergoes temperature-responsive, reversible sol-gel phase transition in water. Phase diagrams of the POEA/H(2)O mixture reveal the concentration-dependent existence of different phases, including hydrogel and opaque or clear solution. Such behavior may be attributed to the temperature-dependent hydrogen-bonding involving the amide groups in the POEA backbone and hydrophobic interactions between POEA chains, and it is tunable by selecting diacid monomers with different chemical structures. The kinetics of POEA mass loss in physiological aqueous buffers and release of a model macromolecular drug, fluorescently labeled dextran, are nearly zero-order, suggesting predominantly surface-restricted polymer erosion. The rates of polymer erosion and drug release are much faster at pH 5.0 than pH 7.4. No cytotoxicity was found for the polymer extracts and the polymer degradation products at concentrations as high as 1 mg/mL. The normal morphology of fibroblasts cultured directly in contact with POEA films was not altered. These novel acid-labile temperature-responsive POEA copolymers may be potentially useful for a wide range of biomedical applications such as minimal invasive delivery of controlled-release drug formulations that respond to biological temperature and acidic-pH environments in cells and tissues.

  3. Micellar electrokinetic chromatography with acid labile surfactant.

    PubMed

    Stanley, Bob; Lucy, Charles A

    2012-02-24

    We present a study of a degradable surfactant, sodium 4-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propane sulfonate that is also known as an acid-labile surfactant (ALS). The performance of ALS as a pseudostationary phase is assessed and compared with established pseudostationary phases such as sodium dodecyl sulphate (SDS), volatile surfactants and polymeric micelles. ALS achieves separation efficiency of 100,000-145,000 theoretical plates and relative standard deviation (RSD) of electrophoretic mobility (n=5) of less than 3%. Retention factors with ALS are strongly correlated with those with SDS. This is shown by the R2=0.79 for all eleven analytes and an R2=0.992 for specifically the non-hydrogen bonding (NHB) analytes. However, ALS displays different selectivity than SDS for hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) solutes (R2 of 0.74 and 0.88, respectively). ALS is degraded to less surface active compounds in acidic solution. These less surface-active compounds are more compatible with the electrospray ionization mass spectrometry (ESI-MS). ALS has a half-life of 48 min at pH 4. ALS has the potential to couple micellar electrokinetic chromatography (MEKC) with the ESI-MS. ALS can be used as a pseudostationary phase for a high efficiency separation and later acid hydrolyzed to enable an ESI-MS analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Multiple peptide synthesis on acid-labile handle derivatized polyethylene supports.

    PubMed

    Valerio, R M; Bray, A M; Maeji, N J

    1994-08-01

    Using the multipin peptide synthesis approach, a range of peptides with native amide and carboxylate C-termini were generated using an acid-labile approach. Polyethylene crowns grafted with hydroxyethylmethacrylate (HEMA) polymer were functionalized with either 4-hydroxymethylphenoxyacetic acid for the generation of peptide-carboxylate or p-[(R,S)-alpha-[1-(9H-fluoren-9-yl)methoxyformamido]-2,4-dim ethoxy- benzyl]phenoxyacetic acid for peptide-amide. A range of known peptide hormone sequences and other peptides with native C-termini were assembled by sequential incorporation of N alpha-Fmoc protected amino acids. Peptides were sidechain deprotected and cleaved from crowns with TFA/scavengers within 2 mL centrifuge tubes, and isolated by a series of ether/petrol wash and centrifugation steps. In this way it was possible to avoid a cleavage and isolation botteneck, allowing rapid processing of large numbers of peptides.

  5. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  6. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  7. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  8. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release.

    PubMed

    Chen, Wei; Meng, Fenghua; Li, Feng; Ji, Shun-Jun; Zhong, Zhiyuan

    2009-07-13

    pH-responsive biodegradable micelles were prepared from block copolymers comprising of a novel acid-labile polycarbonate hydrophobe and poly(ethylene glycol) (PEG). Two new cyclic aliphatic carbonate monomers, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC, 2a) and mono-4-methoxybenzylidene-pentaerythritol carbonate (MBPEC, 2b) were designed and successfully synthesized via a two-step procedure. The ring-opening polymerization of 2a or 2b in the presence of methoxy PEG in dichloromethane at 50 °C using zinc bis[bis(trimethylsilyl)amide] as a catalyst yielded the corresponding block copolymers PEG-PTMBPEC (3a) or PEG-PMBPEC (3b) with low polydispersities (PDI 1.03-1.04). The copolymerization of D,L-lactide (DLLA) and 2a under otherwise the same conditions could also proceed smoothly to afford PEG-P(TMBPEC-co-DLLA) (3c) block copolymer. These block copolymers readily formed micelles in water with sizes of about 120 nm as determined by dynamic light scattering (DLS). The hydrolysis of the acetals of the polycarbonate was investigated using UV/vis spectroscopy. The results showed that the acetals of micelles 3a, while stable at pH 7.4 are prone to rapid hydrolysis at mildly acidic pH of 4.0 and 5.0, with a half-life of 1 and 6.5 h, respectively. The acetal hydrolysis resulted in significant swelling of micelles, as a result of change of hydrophobic polycarbonate to hydrophilic polycarbonate. In comparison, the acetals of PMBPEC of micelles 3b displayed obviously slower hydrolysis at the same pH. Both paclitaxel and doxorubicin could be efficiently encapsulated into micelles 3a achieving high drug loading content (13.0 and 11.7 wt %, respectively). The in vitro release studies showed clearly a pH dependent release behavior, that is, significantly faster drug release at mildly acidic pH of 4.0 and 5.0 compared to physiological pH. These pH-responsive biodegradable micelles are promising as smart nanovehicles for targeted delivery of anticancer drugs.

  9. Analysis of acid-labile subunit and its usefulness in pediatrics.

    PubMed

    Zaidman, Verónica E

    2017-08-01

    The acid-labile subunit (ALS) is an 85 kDa glycoprotein that belongs to the leucine-rich repeat superfamily. It mainly circulates in serum bound to a high molecular weight ternary complex. The main and most widely studied function of ALS is to prolong the half-life of the binary complex formed by insulin-like growth factors type 1 and 2 and its transport proteins 3 and 5. ALS serum levels are lower in neonates, reach a peak in late puberty, and then slowly decrease throughout adulthood. ALS deficiency has consequences on growth, hydrocarbon and bone metabolism, and, in some cases, it affects pubertal development. To date, 25 patients with complete ALS deficiency due to IGFALS gene mutations have been found. Sociedad Argentina de Pediatría.

  10. Microenvironmental Control of MUC1 Aptamer-Guided Acid-Labile Nanoconjugate within Injectable Microporous Hydrogels.

    PubMed

    Xu, Chenchen; Han, Xiu; Jiang, Yujie; Yuan, Shengxiao; Wu, Ziheng; Wu, Zhenghong; Qi, Xiaole

    2017-10-05

    Although aptamers are well-known as cell-specific membrane biomarkers for tumor-targeted therapy, it is important to avoid their degradation by nucleases in vivo. In this study, we developed a MUC1 aptamer-doxorubicin nanoconjugate (APT-DOX) through an acid-labile linkage and embedded APT-DOX into a thermosensitive hydrogel for antitumor therapy. The hydrogels exhibit a sol-gel transition upon intratumoral injection, resulting in the protection and controlled release control of APT-DOX with the shielding of the gel network. Moreover, the released APT-DOX was prone to be enriched at the tumor cells due to specific intracellular transport by the overexpressing MUC1 protein; however, APT-DOX regained the free DOX form via the rupture of the linkage under tumor cells lysosome acidic conditions and achieved increased concentration in the nucleus for antitumor treatment.

  11. Facile synthesis of acid-labile polymers with pendent ortho esters.

    PubMed

    Cheng, Jing; Ji, Ran; Gao, Shi-Juan; Du, Fu-Sheng; Li, Zi-Chen

    2012-01-09

    This work presents a facile approach for preparation of acid-labile and biocompatible polymers with pendent cyclic ortho esters, which is based on the efficient and mild reactions between cyclic ketene acetal (CKA) and hydroxyl groups. Three CKAs, 2-ethylidene-1,3-dioxane (EDO), 2-ethylidene-1,3-dioxolane (EDL), and 2-ethylidene-4- methyl-1,3-dioxolane (EMD) were prepared from the corresponding cyclic vinyl acetals by catalytic isomerization of the double bond. The reaction of CKAs with different alcohols and diols was examined using trace of p-toluenesulfonic acid as a catalyst. For the monohydroxyl alcohols, cyclic ortho esters were formed by simple addition of the hydroxyl group toward CKAs with ethanol showing a much greater reactivity than iso-propanol. When 1,2- or 1,3-diols were used to react with the CKAs, we observed the isomerized cyclic ortho esters besides the simple addition products. Biocompatible polyols, that is, poly(2-hydroxyethyl acrylate) (PHEA) and poly(vinyl alcohol) (PVA) were then modified with CKAs, and the degree of substitution of the pendent ortho esters can be easily tuned by changing feed ratio. Both the small molecule ortho esters and the CKA-modified polymers demonstrate the pH-dependent hydrolysis profiles, which depend also on the chemical structure of the ortho esters as well as the polymer hydrophobicity.

  12. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    PubMed

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."

  13. Sex-specific Regulation of Body Size and Bone Slenderness by the Acid Labile Subunit

    PubMed Central

    Courtland, Hayden-William; DeMambro, Victoria; Maynard, Jane; Sun, Hui; Elis, Sebastien; Rosen, Clifford; Yakar, Shoshana

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) is a crucial mediator of body size and bone mass during growth and development. In serum, IGF-1 is stabilized by several IGF-1 binding proteins (IGFBPs) and the acid labile subunit (ALS). Previous research using ALS knockout (ALSKO) mice indicated a growth retardation phenotype and clinical reports of humans have indicated short stature and low bone mineral density (BMD) in patients with ALS deficiency. To determine the temporal and sex-specific effects of ALS deficiency on body size and skeletal development during growth we characterized control and ALSKO mice from 4 to 16 weeks of age. We found that female ALSKO mice had an earlier onset reduction in body size (4 weeks), but that both female and male ALSKO mice were consistently smaller than control mice. Interestingly, skeletal analyses at multiple ages showed increased slenderness of ALSKO femora that was more severe in females than in males. Both male and female ALSKO mice appeared to compensate for their more slender bones through increased bone formation on their endosteal surfaces during growth, but ALSKO females had increased endosteal bone formation compared to ALSKO males. This study revealed age and sex-specific dependencies of ALS deficiency on body size and bone size. These findings may explain the heterogeneity in growth and BMD measurements reported in human ALS deficient patients. PMID:20499371

  14. Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications.

    PubMed

    Bachelder, Eric M; Pino, Erica N; Ainslie, Kristy M

    2017-02-08

    Acetalated dextran (Ac-DEX) is a tunable acid-labile biopolymer with facile synthesis, aptly designed for the formulation of microparticles for vaccines and immune modulation. Tunability of degradation is achieved based on the kinetics of reaction and the molecular weight of the parent dextran polymer. This tunability translated to differential rates of activation of CD8+ T cells in an in vitro ovalbumin model and illustrated that acid-labile polymer can activate CD8+ T cells at an increased rate compared to acid-insensitive polymers. In addition, Ac-DEX has been used to encapsulate small molecules, deliver nucleotides, transport inorganic molecules, formulate immune modulating therapies and vaccines, and trigger pH responsive constructs for therapy. Here we highlight the properties and results of Ac-DEX nano-/microparticles as well as the use of the polymer in other constructs and chemistries.

  15. Novel alicyclic polymers having 7,7-dimethyloxepan-2-one acid labile groups for ArF lithography

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Jun; Kim, Jin-Baek; Honda, Kenji

    2002-07-01

    The present paper describes a novel class of norbornene- based copolymers containing 7,7-dimethyloxepan-2-one acid labile groups. Poly(3-(bicyclo[2.2.1]hept-5-en-2- ylhydroxymethyl)-7,7-dimethyloxepan-2-one-co-5-((2- decahydronaphth-yl)oxycarbonyl)-norbornene-co-5-norbornene- 2-carboxxylic acid-co-maleic anhydride) was synthesized and evaluated as a potential chemically amplified resist for ArF lithography. The 7,7-dimethyloxepan-2-one group of the matrix polymer was readily cleaved and the carboxylic acid functionality was formed by acid-catalyzed ring-opening reaction in the exposed region after post-exposure bake. 0.12micrometers line and space patterns were obtained at a dose of 10 mJ cm-2 with a conventional developer, 2.38 wt% tetramethylammonium hydroxide aqueous solution, using an ArF excimer laser stepper.

  16. Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Yu, Jinxing; Xu, Na

    2010-04-01

    Recent years increasing attention has been given to molecular glass resist materials. In this paper, maleopimaric acid, cycloaddition reaction product of rosin with maleic anhydride, was reacted with hydroxylamine and then further esterified with 2-diazo-1-naphthoquinone-4-sulfonyl chloride to give N-hydroxy maleopimarimide sulfonate. The carboxylic acid group of the compound was then protected by the reaction of this compound with vinyl ethyl ether or dihydropyran. Thus obtained compounds were amorphous. When irradiated with i-line light, the 2,1,4-DNQ group undergo photolysis not only to give off nitrogen gas but also generate sulfonic acid which can result in the decomposition of the acid labile group. So, a novel chemically amplified positive i-line molecular glass photoresists can be formed by the compound and other acidolytic molecular glass compounds. The lithographic performance of the resist materials is evaluated.

  17. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    NASA Astrophysics Data System (ADS)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  18. Low Molecular Weight PEI-Based Vectors via Acid-Labile Ortho Ester Linkage for Improved Gene Delivery.

    PubMed

    Zhang, Lei; Yu, Min; Wang, Jun; Tang, Rupei; Yan, Guoqing; Yao, Weijing; Wang, Xin

    2016-08-01

    A series of novel pH-sensitive gene delivery vectors (POEI 1, 2, and 3) are synthesized through Michael addition from low molecular weight PEI (LMW PEI) via acid-labile ortho ester linkage with terminal acrylates (OEAc) by various feed molar ratios. The obtained POEI 1 and POEI 2 can efficiently condense plasmid DNA into nanoparticles with size range of 200-300 nm and zeta-potentials of about +15 mV while protecting DNA from enzymatic digestion compared with POEI 3. Significantly, ortho ester groups of POEI main-chains can make an instantaneous degradation-response to acidic endosomal pH (≈5.0), resulting in accelerated disruption of polyplexes and intracellular DNA release. MTT assay reveals that all POEIs exhibit much lower cytotoxicity in different cells than branched PEI (25 KDa). As expected, POEI 1 and POEI 2 perform improved gene transfection in vitro, suggesting that such polycations might be promising gene vectors based on overcoming toxicity-efficiency contradiction.

  19. Temperature responsive transmitter

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.

  20. Improving the performance of an acid-labile 4-hydroxymethyl phenoxyacetic acid (HMP) linker on resin and SynPhase grafted solid-supports.

    PubMed

    Bui, C T; Ercole, F; Pham, Y; Campbell, R; Rasoul, F A; Maeji, N J; Ede, N J

    2000-10-01

    A replacement of the acetic acid moiety by valeric acid within the 4-hydroxymethylphenoxyacetic acid (HMP) linker (Sheppard RC, Williams BJ. Acid-labile resin linkage agents for use in solid phase peptide synthesis. Int. J. Peptide Protein Res. 1982; 20: 451-454) significantly improved its performance in terms of loading capacity, yield and purity of the final products. The results indicated the spacer-linker combination and type of solid supports are important factors for solid-phase synthesis.

  1. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs.

    PubMed

    Zhao, Tianjing; Maniglio, Devid; Chen, Jie; Chen, Bin; Migliaresi, Claudio

    2016-03-01

    Oral administration is the most convenient way of all the drug delivery routes. Orally administered bioactive compounds must resist the harsh acidic fluids or enzyme digestion in stomach, to reach their absorbed destination in small intestine. This is the case for silibinin, a drug used to protect liver cells against toxins that has also been demonstrated in vitro to possess anti-cancer effects. However, as many other drugs, silibinin can degrade in the stomach due to the action of the gastric fluid. The use of pH-sensitive self-nanoemulsifying drug delivery systems (pH-SNEDDS) could overcome the drawback due to degradation of the drug in the stomach while enhancing its solubility and dissolution rate. In this paper we have investigated pH-sensitive self-nanoemulsifying formulations containing silibinin as model drug. Pseudo-ternary phase diagrams have been constructed in order to identify the self-emulsification regions under different pH. Solubility of silibinin in selected formulations has been assessed and stability of the pure drug and of the silibinin loaded pH-SNEDDS formulations in simulated gastric fluid had been compared. Droplet size of the optimized pH-SNEDDS has been correlated to pH, volume of dilution medium and silibinin loading amount. TEM (transmission electron microscopy) studies have shown that emulsion droplets had spherical shape and narrow size distribution. In vitro drug release studies of the optimal pH-SNEDDS indicated substantial increase of the drug release and release rate in comparison to pure silibinin and to the commercial silibinin tablet. The results indicated that pH-SNEDDS have potential to improve the biopharmaceutics properties of acid-labile lipophilic drugs.

  2. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine*

    PubMed Central

    Miller, Darren S.; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A.; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N.

    2015-01-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose 13C sodium acetate (13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of 13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT®L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps®coated with EUDRAGIT®L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine. PMID:26160716

  3. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

    PubMed

    Miller, Darren S; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N

    2015-07-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose (13)C sodium acetate ((13)C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of (13)CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT(®) L100-55 on gelatin capsules and also on DRcaps(®). Test results demonstrated that DRcaps(®) coated with EUDRAGIT(®) L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

  4. Evaluation of acid-labile S-protecting groups to prevent Cys racemization in Fmoc solid-phase peptide synthesis

    PubMed Central

    Hibino, Hajime; Miki, Yasuyoshi; Nishiuchi, Yuji

    2014-01-01

    Phosphonium and uronium salt-based reagents enable efficient and effective coupling reactions and are indispensable in peptide chemistry, especially in machine-assisted SPPS. However, after the activating and coupling steps with these reagents in the presence of tertiary amines, Fmoc derivatives of Cys are known to be considerably racemized during their incorporation. To avoid this side reaction, a coupling method mediated by phosphonium/uronium reagents with a weaker base, such as 2,4,6-trimethylpyridine, than the ordinarily used DIEA or that by carbodiimide has been recommended. However, these methods are appreciably inferior to the standard protocol applied for SPPS, that is, a 1 min preactivation procedure of coupling with phosphonium or uronium reagents/DIEA in DMF, in terms of coupling efficiency, and also the former method cannot reduce racemization of Cys(Trt) to an acceptable level (<1.0%) even when the preactivation procedure is omitted. Here, the 4,4′-dimethoxydiphenylmethyl and 4-methoxybenzyloxymethyl groups were demonstrated to be acid-labile S-protecting groups that can suppress racemization of Cys to an acceptable level (<1.0%) when the respective Fmoc derivatives are incorporated via the standard SPPS protocol of phosphonium or uronium reagents with the aid of DIEA in DMF. Furthermore, these protecting groups significantly reduced the rate of racemization compared to the Trt group even in the case of microwave-assisted SPPS performed at a high temperature. © 2013 The Authors. European Peptide Society published by John Wiley & Sons, Ltd. PMID:24357151

  5. Endosomal Escape and Transfection Efficiency of PEGylated Cationic Lipid–DNA Complexes Prepared with an Acid-Labile PEG-Lipid

    PubMed Central

    Chan, Chia-Ling; Majzoub, Ramsey N.; Shirazi, Rahau S.; Ewert, Kai K.; Chen, Yen-Ju; Liang, Keng S.

    2012-01-01

    Cationic liposome–DNA (CL–DNA) complexes are being pursued as nonviral gene delivery systems for use in applications that include clinic trials. However, to compete with viral vectors for systemic delivery in vivo, their efficiencies and pharmacokinetics need to be improved. The addition of poly (ethylene glycol)-lipids (PEGylation) prolongs circulation lifetimes of liposomes, but inhibits cellular uptake and endosomal escape of CL–DNA complexes. We show that this limits their transfection efficiency (TE) in a manner dependent on the amount of PEG-lipid, the lipid/DNA charge ratio, and the lipid membrane charge density. To improve endosomal escape of PEGylated CL–DNA complexes, we prepared an acid-labile PEG-lipid (HPEG2K-lipid, PEG MW 2000) which is designed to lose its PEG chains at the pH of late endosomes. The HPEG2K-lipid and a similar but acid-stable PEG-lipid were used to prepare PEGylated CL–DNA complexes. TLC and dynamic light scattering showed that HPEG2K-CL–DNA complexes are stable at pH 7.4 for more than 24 hours, but the PEG chains are cleaved at pH 5 within one hour, leading to complex aggregation. The acid-labile HPEG2K-CL–DNA complexes showed enhanced TE over complexes stabilized with the acid-stable PEG-lipid. Live-cell imaging showed that both types of complexes were internalized to quantitatively similar particle distributions within the first 2 hours of incubation with cells. Thus, we attribute the increased TE of the HPEG2K-CL–DNA complexes to efficient endosomal escape, enabled by the acid-labile HPEG2K-lipid which sheds its PEG chains in the low-pH environment of late endosomes, effectively switching on the electrostatic interactions that promote fusion of the membranes of complex and endosome. PMID:22469293

  6. Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo.

    PubMed

    Beckert, Linda; Kostka, Libor; Kessel, Eva; Krhac Levacic, Ana; Kostkova, Hana; Etrych, Tomas; Lächelt, Ulrich; Wagner, Ernst

    2016-08-01

    We report novel pH-reversibly surface-shielded polyplexes with enhanced gene transfer activity upon systemic administration. A four-arm-structured sequence-defined cationic oligomer KK[HK[(H-Sph-K)3HC]2]2 was designed and synthesized on solid-phase, containing additional lysine residues not only for improved pDNA polyplex stability, but also providing attachment points for subsequent polyplex functionalization with amine-reactive shielding polymers. Herein, the surface of polyplexes was shielded with hydrophilic polymers, monovalent PEG or monovalent and multivalent pHPMA, optionally attached to the polyplex via the acid-labile linker AzMMMan. Overall, surface modification with PEG or pHPMA resulted in a decrease in the zeta potential of polyplexes, consistent with the degree of surface shielding. At pH 6.0, only polyplexes modified via the acid-labile linkage showed an increase in zeta potential, consistent with a "deshielding" in acidic environment, expected as beneficial for endosomal escape. Shielding was more efficient for multivalent pHPMA (20kDa, 30kDa) as compared to monovalent pHPMA (10kDa, 20kDa, 30kDa) or PEG (5kDa). In vitro transfection studies revealed higher gene expression by the polyplexes with the acid-labile shield as compared to their irreversibly shielded counterparts. Intravenous administration of AzMMMan-pHPMA modified polyplexes in an in vivo tumor mouse model mediated enhanced gene expression in the subcutaneous tumor and reduced undesirable expression in the liver.

  7. Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT® nanoparticle formulation against non-small-cell lung cancer brain metastases

    PubMed Central

    Sambade, Maria; Deal, Allison; Schorzman, Allison; Luft, J Christopher; Bowerman, Charles; Chu, Kevin; Karginova, Olga; Swearingen, Amanda Van; Zamboni, William; DeSimone, Joseph; Anders, Carey K

    2016-01-01

    Aim: Particle Replication in Nonwetting Templates (PRINT®) PLGA nanoparticles of docetaxel and acid-labile C2-dimethyl-Si-Docetaxel were evaluated with small molecule docetaxel as treatments for non-small-cell lung cancer brain metastases. Materials & methods: Pharmacokinetics, survival, tumor growth and mice weight change were efficacy measures against intracranial A549 tumors in nude mice. Treatments were administered by intravenous injection. Results: Intracranial tumor concentrations of PRINT-docetaxel and PRINT-C2-docetaxel were 13- and sevenfold greater, respectively, than SM-docetaxel. C2-docetaxel conversion to docetaxel was threefold higher in intracranial tumor as compared with nontumor tissues. PRINT-C2-docetaxel increased median survival by 35% with less toxicity as compared with other treatments. Conclusion: The decreased toxicity of the PRINT-C2-docetaxel improved treatment efficacy against non-small-cell lung cancer brain metastasis. PMID:27456556

  8. Mass spectrometry method to identify aging pathways of Sp- and Rp-tabun adducts on human butyrylcholinesterase based on the acid labile P-N bond.

    PubMed

    Jiang, Wei; Cashman, John R; Nachon, Florian; Masson, Patrick; Schopfer, Lawrence M; Lockridge, Oksana

    2013-04-01

    The phosphoramidate nerve agent tabun inhibits butyrylcholinesterase (BChE) and acetylcholinesterase by making a covalent bond on the active site serine. The adduct loses an alkyl group in a process called aging. The mechanism of aging of the tabun adduct is controversial. Some studies claim that aging proceeds through deamination, whereas crystal structure studies show aging by O-dealkylation. Our goal was to develop a method that clearly distinguishes between deamination and O-dealkylation. We began by studying the tetraisopropyl pyrophosphoramide adduct of BChE because this adduct has two P-N bonds. Mass spectra showed that the P-N bonds were stable during trypsin digestion at pH 8 but were cleaved during pepsin digestion at pH 2. The P-N bond in tabun was also acid labile, whereas the P-O bond was stable. A scheme to distinguish aging by deamination from aging by O-dealkylation was based on the acid labile P-N bond. BChE was inhibited with Sp- and Rp-tabun thiocholine nerve agent model compounds to make adducts identical to those of tabun with known stereochemistry. After aging and digestion with pepsin at pH 2, peptide FGES198AGAAS from Sp-tabun thiocholine had a mass of 902.2 m/z in negative mode, indicating that it had aged by deamination, whereas peptide FGES198AGAAS from Rp-tabun thiocholine had a mass of 874.2 m/z in negative mode, indicating that it had aged by O-dealkylation. BChE inhibited by authentic, racemic tabun yielded both 902.2 and 874.2 m/z peptides, indicating that both stereoisomers reacted with BChE and aged either by deamination or dealkylation.

  9. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.

    PubMed

    Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M

    2014-02-01

    Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol l(-1) CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol l(-1) . Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates. © 2013 Scandinavian Plant Physiology Society.

  10. Mass Spectrometry Method to Identify Aging Pathways of Sp- and Rp-Tabun Adducts on Human Butyrylcholinesterase Based on the Acid Labile P-N Bond

    PubMed Central

    Lockridge, Oksana

    2013-01-01

    The phosphoramidate nerve agent tabun inhibits butyrylcholinesterase (BChE) and acetylcholinesterase by making a covalent bond on the active site serine. The adduct loses an alkyl group in a process called aging. The mechanism of aging of the tabun adduct is controversial. Some studies claim that aging proceeds through deamination, whereas crystal structure studies show aging by O-dealkylation. Our goal was to develop a method that clearly distinguishes between deamination and O-dealkylation. We began by studying the tetraisopropyl pyrophosphoramide adduct of BChE because this adduct has two P-N bonds. Mass spectra showed that the P-N bonds were stable during trypsin digestion at pH 8 but were cleaved during pepsin digestion at pH 2. The P-N bond in tabun was also acid labile, whereas the P-O bond was stable. A scheme to distinguish aging by deamination from aging by O-dealkylation was based on the acid labile P-N bond. BChE was inhibited with Sp- and Rp-tabun thiocholine nerve agent model compounds to make adducts identical to those of tabun with known stereochemistry. After aging and digestion with pepsin at pH 2, peptide FGES198AGAAS from Sp-tabun thiocholine had a mass of 902.2 m/z in negative mode, indicating that it had aged by deamination, whereas peptide FGES198AGAAS from Rp-tabun thiocholine had a mass of 874.2 m/z in negative mode, indicating that it had aged by O-dealkylation. BChE inhibited by authentic, racemic tabun yielded both 902.2 and 874.2 m/z peptides, indicating that both stereoisomers reacted with BChE and aged either by deamination or dealkylation. PMID:23345579

  11. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells.

    PubMed

    Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun

    2011-04-10

    A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results

  12. Serological studies of an acid-labile O-polysaccharide of Proteus vulgaris OX19 lipopolysaccharide using human and rabbit antibodies.

    PubMed

    Kaca, W; Swierzko, A S; Ziolkowski, A; Amano, K; Senchenkova, S N; Knirel, Y A

    1998-01-01

    In a Weil-Felix test, sera from patients infected with Rickettsia sp. agglutinate Proteus OX types of bacteria and Proteus lipopolysaccharide (LPS) are responsible for the cross-reaction. Data on the character of LPS of one of the OX group strains, Proteus vulgaris OX19, are contradictory, and it remained unclear whether it has an O-polysaccharide (OPS) and is thus LPS of the smooth type (S) or not (rough-type LPS). Our studies showed that P. vulgaris OX19 (strain PZH-24) produces a smooth-type LPS that contains a long-chain OPS, but it undergoes depolymerization during mild acid hydrolysis conventionally used for LPS delipidation and loses the serological activity. An elucidation of the complete structure of OPS demonstrated the presence of a glycosyl phosphate linkage responsible for the acid-lability of the polysaccharide chain. In ELISA, both IgM type antibodies in a Weil-Felix test with human anti-Rickettsia typhi sera and rabbit anti-P. vulgaris OX19 antibodies reacted with OPS. Rabbit antibodies did not inhibit the cross-reaction with human antibodies and thus bind to different epitopes.

  13. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations.

    PubMed

    Alai, Milind; Lin, Wen Jen

    2015-01-01

    The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ), for gastric ulcer therapy. LPZ-loaded positively charged Eudragit(®) RS100 nanoparticles (ERSNPs-LPZ) and negatively charged poly(lactic-co-glycolic acid) nanoparticles (PLGANPs-LPZ) were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus -27.3±0.3 mV, respectively) and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm(2)), whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm(2)). Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%-95.7% of gastric ulcers in Wistar rats within 7 days.

  14. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations

    PubMed Central

    Alai, Milind; Lin, Wen Jen

    2015-01-01

    The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ), for gastric ulcer therapy. LPZ-loaded positively charged Eudragit® RS100 nanoparticles (ERSNPs-LPZ) and negatively charged poly(lactic-co-glycolic acid) nanoparticles (PLGANPs-LPZ) were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus −27.3±0.3 mV, respectively) and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm2), whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm2). Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%–95.7% of gastric ulcers in Wistar rats within 7 days. PMID:26124659

  15. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  16. Reliable determination of amidicity in acyclic amides and lactams.

    PubMed

    Glover, Stephen A; Rosser, Adam A

    2012-07-06

    Two independent computational methods have been used for determination of amide resonance stabilization and amidicities relative to N,N-dimethylacetamide for a wide range of acyclic and cyclic amides. The first method utilizes carbonyl substitution nitrogen atom replacement (COSNAR). The second, new approach involves determination of the difference in amide resonance between N,N-dimethylacetamide and the target amide using an isodesmic trans-amidation process and is calibrated relative to 1-aza-2-adamantanone with zero amidicity and N,N-dimethylacetamide with 100% amidicity. Results indicate excellent coherence between the methods, which must be regarded as more reliable than a recently reported approach to amidicities based upon enthalpies of hydrogenation. Data for acyclic planar and twisted amides are predictable on the basis of the degrees of pyramidalization at nitrogen and twisting about the C-N bonds. Monocyclic lactams are predicted to have amidicities at least as high as N,N-dimethylacetamide, and the β-lactam system is planar with greater amide resonance than that of N,N-dimethylacetamide. Bicyclic penam/em and cepham/em scaffolds lose some amidicity in line with the degree of strain-induced pyramidalization at the bridgehead nitrogen and twist about the amide bond, but the most puckered penem system still retains substantial amidicity equivalent to 73% that of N,N-dimethylacetamide.

  17. Acid-labile formylation of amino terminal proline of human immunodeficiency virus type 1 p24(gag) was found by proteomics using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    Fuchigami, Takashi; Misumi, Shogo; Takamune, Nobutoki; Takahashi, Ichiro; Takama, Michiho; Shoji, Shozo

    2002-05-10

    HIV-1(LAV-1) particles were collected by ultracentrifugation, treated with subtilisin, and then purified by Sepharose CL-4B column chromatography to remove microvesicles. The lysate of the purified human immunodeficiency virus type 1 (HIV-1) particles was subjected to two-dimensional (2D) gel electrophoresis and stained, and the stained spots were excised and digested with trypsin. The resulting peptide fragments were characterized by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Twenty-five proteins were identified as the proteins inside the virion and the acid-labile formyl group of an amino terminal proline residue of HIV-1(LAV-1) p24(gag) was determined by MALDI-TOF MS before and after weak-acid treatments (0.6 N hydrochloric acid) and confirmed by post-source decay (PSD) of the N-formylated N-terminal tryptic peptide (N-formylated Pro(1)-Arg(18)). The role of formylation has been unclear so far, but it is surmised that the acid-labile formylation of HIV-1(LAV-1) p24(gag) may play a critical role in the formation of the HIV-1 core for conferring HIV-1 infectivity.

  18. N,N'-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage.

    PubMed

    Modarresi-Saryazdi, Seyedeh Mahnaz; Haddadi-Asl, Vahid; Salami-Kalajahi, Mehdi

    2017-09-18

    N,N'-methylenebis(acrylamide) (MBA)-crosslinked poly(acrylic acid) (PAA) particles with low degree of cross-linking were synthesized using distillation precipitation polymerization. Size and size distribution of particles were obtained using dynamic light scattering and field emission scanning electron microscopy( and results showed that microspheres had a narrow size dispersity. Proton nuclear magnetic resonance results indicated that amount of cross-linker in structure of particles is a little more than the molar percentage of feeded MBA because of greater activity ratio of MBA than AA. pH-responsive behavior of samples was investigated using UV-vis. absorption at 480 nm where each sample showed a sudden deplete in UV absorbance at a peculiar pH. Synthesized particles were used as carriers of anti-cancer drug doxorubicin using two different approaches including physically loading of drug and drug conjugation via an acid-labile hydrazone linkage. Release results showed that in the first case, amount of released drug has an inverse relationship with the amount of cross-linker in the structure and also, by adding an acid-labile linkage, the amount of burst release decreased drastically. Also, the amount of released drug for conjugated systems was much lesser than particles with physically loaded drug. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017. © 2017 Wiley Periodicals, Inc.

  19. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  20. Meth math: modeling temperature responses to methamphetamine.

    PubMed

    Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V

    2014-04-15

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.

  1. Meth math: modeling temperature responses to methamphetamine

    PubMed Central

    Molkov, Yaroslav I.; Zaretskaia, Maria V.

    2014-01-01

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants. PMID:24500434

  2. Temperature responsive hydroxypropyl cellulose for encapsulation

    SciTech Connect

    Heitfeld, Kevin A.; Guo, Tingtai; Yang, George; Schaefer, Dale W.

    2009-08-26

    This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. We have successfully synthesized a cellulose gel that exhibits this volume change and have encapsulated an oil phase inside the gel. The flavor-loaded encapsulated oil exhibited an increased release time when compared to similar gelatin capsules.

  3. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease

    PubMed Central

    Tamura, Atsushi; Nishida, Kei; Yui, Nobuhiko

    2016-01-01

    Abstract Niemann-Pick type C (NPC) disease is characterized by the accumulation of cholesterol in lysosomes. We have previously reported that biocleavable polyrotaxanes (PRXs) composed of β-cyclodextrins (β-CDs) threaded onto a linear polymer capped with bulky stopper molecules via intracellularly cleavable linkers show remarkable cholesterol reducing effects in NPC disease patient-derived fibroblasts owing to the stimuli-responsive intracellular dissociation of PRXs and subsequent β-CD release from the PRXs. Herein, we describe a series of novel acid-labile 2-(2-hydroxyethoxy)ethyl group-modified PRXs (HEE-PRXs) bearing terminal N-triphenylmethyl (N-Trt) groups as a cleavable component for the treatment of NPC disease. The N-Trt end groups of the HEE-PRXs underwent acidic pH-induced cleavage and led to the dissociation of their supramolecular structure. A kinetic study revealed that the number of HEE groups on the PRX did not affect the cleavage kinetics of the N-Trt end groups of the HEE-PRXs. The effect of the number of HEE groups of the HEE-PRXs, which was modified to impart water solubility to the PRXs, on cellular internalization efficiency, lysosomal localization efficiency, and cholesterol reduction ability in NPC disease-derived fibroblasts (NPC1 fibroblasts) was also investigated. The cellular uptake and lysosomal localization efficiency were almost equivalent for HEE-PRXs with different numbers of HEE groups. However, the cholesterol reducing ability of the HEE-PRXs in NPC1 fibroblasts was affected by the number of HEE groups, and HEE-PRXs with a high number of HEE groups were unable to reduce lysosomal cholesterol accumulation. This deficiency is most likely due to the cholesterol-solubilizing ability of HEE-modified β-CDs released from the HEE-PRXs. We conclude that the N-Trt group acts as a cleavable component to induce the lysosomal dissociation of HEE-PRXs, and acid-labile HEE-PRXs with an optimal number of HEE groups (4.1 to 5.4 HEE groups per

  4. Amides in Nature and Biocatalysis.

    PubMed

    Pitzer, Julia; Steiner, Kerstin

    2016-10-10

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Long-term effects of insulin-like growth factor (IGF)-I on serum IGF-I, IGF-binding protein-3 and acid labile subunit in Laron syndrome patients with normal growth hormone binding protein.

    PubMed

    Kanety, H; Silbergeld, A; Klinger, B; Karasik, A; Baxter, R C; Laron, Z

    1997-12-01

    A minority of patients with Laron syndrome have normal serum GH binding protein (GHBP), indicating that the defect is elsewhere than in the extracellular domain of the GH receptor. We have evaluated the effect of long-term IGF-I treatment on serum IGF-binding protein (IGFBP)-3 and the acid-labile subunit (ALS) in three sibling with Laron syndrome caused by a GH post-receptor defect and with normal GHBP. The children (a boy aged 3 years, a girl aged 4 years and a boy aged 10 years) were treated by daily s.c. injection of IGF-I in a dose of 150 micrograms/kg. IGFBP-3 was measured by RIA and Western ligand blotting, ALS by RIA. Based values of IGFBP-3 and ALS were low. During IGF-I treatment, the IGFBP-3 concentrations in the girl gradually increased, whereas in the boys there was a 60% decrease during the first week, followed by gradual increase towards baseline. The ALS concentrations followed a similar pattern. We conclude that IGF-I treatment induces and initial suppression and then an increase in the IGFBP-3 and ALS concentrations, confirming data from animal experiments that IGFBP-3 synthesis is not solely under GH control. The differences in responsiveness between the female and male siblings may reflect genetic differences, or lower circulating concentrations of IGF-I in the boys compared with the girl.

  6. Acid-labile sulfides in shallow marine bottom sediments: A review of the impact on ecosystems in the Azov Sea, the NE Black Sea shelf and NW Adriatic lagoons

    NASA Astrophysics Data System (ADS)

    Sorokin, Yu. I.; Zakuskina, O. Yu

    2012-02-01

    Acid-labile sulfides (LS) increase in bottom sediments at sites in the Azov Sea, at the NE Black Sea shelf and in the coastal lagoons of NW Adriatic Sea experiencing direct impacts of anthropogenic pollution. Fresh anthropogenic organic matter stimulates the bacterial sulfate reduction and here the rate of the LS production overcomes their loss during the oxidation and pyritization. This results in the expansion of reduced sediment layer up to the bottom surface. The LS concentration in the reduced sediments varies between 300 and 2000 mg S l -1 of wet silt depending on the size of pollution loading and on the rate of sedimentation. In the oxidized sediments away from the direct pollution impact, the LS concentration did not exceed 100-150 mg S l -1. Being a strong cytochrome toxin, the LS adversely affect the coastal ecosystems. The concentrations over 600 mg S l -1 result in quasi total benthic mortality whereas >300-400 mg S l -1 depletes the benthic faunal abundance and taxonomic diversity. Accumulation of the LS in sediments also induces nocturnal hypoxia and stimulates domination of toxic cyanobacteria in the pelagic phytocenoses.

  7. The temperature response of fungal enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Curran, M.; Lu, Y.; Taylor, J.; Allison, S. D.

    2013-12-01

    Extracellular enzymes produced and excreted by microbes mediate the decomposition of carbon (C), nitrogen (N), and phosphorus (P) -containing compounds in their environment. Climate change has the potential to alter the rate of decomposition especially in high latitude regions where stocks of recalcitrant, or long-lived, C are abundant. This project compares extracellular enzyme activity (EEA) across ten fungi strains within the model family Neurospora in order to assess the range of variation in temperature sensitivities of fungal enzyme Vmax and Km. Vmax values of most enzymes tested increased exponentially,which was hypothesized and consistant with thermodynamic principles. We also hypothesized that Neurospora strains would exhibit different EEA temperature sensitivities based on their native climate. We observed strain-dependent variation in enzyme temperature responses consistent with strain-specific adaptation to local conditions. Since fungi are the major decomposers of organic carbon in high-latitude ecosystems, an increase in EEA in-situ would result in higher carbon dioxide emissions. These findings suggest a shift in fungal processing of soil organic carbon and nutrients in response to changing climate.

  8. DNA-Catalyzed Amide Hydrolysis

    PubMed Central

    Zhou, Cong; Avins, Joshua L.; Klauser, Paul C.; Brandsen, Benjamin M.; Lee, Yujeong; Silverman, Scott K.

    2016-01-01

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases. PMID:26854515

  9. Diaminopimelic Acid Amidation in Corynebacteriales

    PubMed Central

    Levefaudes, Marjorie; Patin, Delphine; de Sousa-d'Auria, Célia; Chami, Mohamed; Blanot, Didier; Hervé, Mireille; Arthur, Michel; Houssin, Christine; Mengin-Lecreulx, Dominique

    2015-01-01

    A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4+ could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length. PMID:25847251

  10. Temperature response of bundle-sheath conductance in maize leaves

    PubMed Central

    Yin, Xinyou; van der Putten, Peter E.L.; Driever, Steven M.; Struik, Paul C.

    2016-01-01

    A small bundle-sheath conductance (g bs) is essential for the C4 CO2-concentrating mechanism to suppress photorespiration effectively. To predict the productivity of C4 crops accurately under global warming, it is necessary to examine whether and how g bs responds to temperature. We investigated the temperature response of g bs in maize by fitting a C4 photosynthesis model to combined gas exchange and chlorophyll fluorescence measurements of irradiance and CO2 response curves at 21% and 2% O2 within the range of 13.5–39 °C. The analysis was based on reported kinetic constants of C4 Rubisco and phosphoenolpyruvate carboxylase and temperature responses of C3 mesophyll conductance (g m). The estimates of g bs varied greatly with leaf temperature. The temperature response of g bs was well described by the peaked Arrhenius equation, with the optimum temperature being ~34 °C. The assumed temperature responses of g m had only a slight impact on the temperature response of g bs. In contrast, using extreme values of some enzyme kinetic constants changed the shape of the response, from the peaked optimum response to the non-peaked Arrhenius pattern. Further studies are needed to confirm such an Arrhenius response pattern from independent measurement techniques and to assess whether it is common across C4 species. PMID:26969744

  11. Vibrational relaxation pathways of amide I and amide II modes in N-methylacetamide.

    PubMed

    Piatkowski, L; Bakker, H J

    2012-04-28

    We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.

  12. Temperature responses of exercizing dogs to infusion of electrolytes

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.; Nazar, K.; Kaciuba-Uscilko, H.; Brzezinska, Z.

    1974-01-01

    The effect of infusions with solutions of various ionic and osmotic composition on exercise temperature responses was studied in dogs who do not regulate their temperature by sweating. The results suggest an association between plasma Na+ and Ca++ level within the normal physiological range and the control of body temperature during exercise.

  13. Temperature responses of exercizing dogs to infusion of electrolytes

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.; Nazar, K.; Kaciuba-Uscilko, H.; Brzezinska, Z.

    1974-01-01

    The effect of infusions with solutions of various ionic and osmotic composition on exercise temperature responses was studied in dogs who do not regulate their temperature by sweating. The results suggest an association between plasma Na+ and Ca++ level within the normal physiological range and the control of body temperature during exercise.

  14. Preparation of temperature responsive fragrance release membranes by UV curing

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao; Okuda, Jyunya; Kitami, Toshiaki; Matsubara, Yoshio

    2003-06-01

    The authors have studied the preparation and the function of intelligent drug release membranes by UV curing. Temperature responsive fragrance release membranes were prepared by UV curing process and the release functions were investigated as the function of thickness and composition of membrane. Microscopic observations were used to prove the postulated release mechanism.

  15. Direct amidation of esters with nitroarenes

    PubMed Central

    Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile

    2017-01-01

    Esters are one of the most common functional groups in natural and synthetic products, and the one-step conversion of the ester group into other functional groups is an attractive strategy in organic synthesis. Direct amidation of esters is particularly appealing due to the omnipresence of the amide moiety in biomolecules, fine chemicals, and drug candidates. However, efficient methods for direct amidation of unactivated esters are still lacking. Here we report nickel-catalysed reductive coupling of unactivated esters with nitroarenes to furnish in one step a wide range of amides bearing functional groups relevant to the development of drugs and agrochemicals. The method has been used to expedite the syntheses of bio-active molecules and natural products, as well as their post-synthetic modifications. Preliminary mechanistic study indicates a reaction pathway distinct from conventional amidation methods using anilines as nitrogen sources. The work provides a novel and efficient method for amide synthesis. PMID:28345585

  16. Direct amidation of esters with nitroarenes

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile

    2017-03-01

    Esters are one of the most common functional groups in natural and synthetic products, and the one-step conversion of the ester group into other functional groups is an attractive strategy in organic synthesis. Direct amidation of esters is particularly appealing due to the omnipresence of the amide moiety in biomolecules, fine chemicals, and drug candidates. However, efficient methods for direct amidation of unactivated esters are still lacking. Here we report nickel-catalysed reductive coupling of unactivated esters with nitroarenes to furnish in one step a wide range of amides bearing functional groups relevant to the development of drugs and agrochemicals. The method has been used to expedite the syntheses of bio-active molecules and natural products, as well as their post-synthetic modifications. Preliminary mechanistic study indicates a reaction pathway distinct from conventional amidation methods using anilines as nitrogen sources. The work provides a novel and efficient method for amide synthesis.

  17. Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides.

    PubMed

    Starkov, Pavel; Sheppard, Tom D

    2011-03-07

    Simple borates serve as effective promoters for amide bond formation with a variety of carboxylic acids and amines. With trimethyl or tris(2,2,2-trifluoroethyl) borate, amides are obtained in good to excellent yield and high purity after a simple work-up procedure. Tris(2,2,2-trifluoroethyl) borate can also be used for the straightforward conversion of primary amides to secondary amides via transamidation.

  18. Nucleoside phosphorylation in amide solutions

    NASA Technical Reports Server (NTRS)

    Schoffstall, A. M.; Kokko, B.

    1978-01-01

    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.

  19. Steps towards a mechanistic understanding of respiratory temperature responses.

    PubMed

    Kruse, Jörg; Rennenberg, Heinz; Adams, Mark A

    2011-02-01

    Temperature crucially affects the speed of metabolic processes in poikilotherm organisms, including plants. The instantaneous temperature responses of O(2)-reduction and CO(2)-release can be approximated by Arrhenius kinetics, even though respiratory gas exchange of plants is the net effect of many constituent biochemical processes. Nonetheless, the classical Arrhenius equation must be modified to account for a dynamic response to measurement temperatures. We show that this dynamic response is readily explained by combining Arrhenius and Michaelis-Menten kinetics, as part of a fresh appraisal of metabolic interpretations of instantaneous temperature responses. In combination with recent experimental findings, we argue that control of mitochondrial electron flow is shared among cytochrome oxidase and alternative oxidase under in vivo conditions, and is continuously coordinated. In this way, upstream carbohydrate metabolism and downstream electron transport appear to be optimized according to the demand of ATP, TCA-cycle intermediates and anabolic reducing power under differing metabolic states. We provide a link to the 'Growth and Maintenance Paradigm' of respiration and argue that respiratory temperature responses can be used as a tool to probe metabolic states of plant tissue, such that we can learn more about the mechanisms that govern longer-term acclimatization responses of plant metabolism.

  20. Temperature responses of individual soil organic matter components

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Simpson, Myrna J.

    2008-09-01

    Temperature responses of soil organic matter (SOM) remain unclear partly due to its chemical and compositional heterogeneity. In this study, the decomposition of SOM from two grassland soils was investigated in a 1-year laboratory incubation at six different temperatures. SOM was separated into solvent extractable compounds, suberin- and cutin-derived compounds, and lignin-derived monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components have distinct chemical structures and stabilities and their decomposition patterns over the course of the experiment were fitted with a two-pool exponential decay model. The stability of SOM components was also assessed using geochemical parameters and kinetic parameters derived from model fitting. Compared with the solvent extractable compounds, a low percentage of lignin monomers partitioned into the labile SOM pool. Suberin- and cutin-derived compounds were poorly fitted by the decay model, and their recalcitrance was shown by the geochemical degradation parameter (ω - C16/∑C16), which was observed to stabilize during the incubation. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of lignin monomers exhibited higher Q10 values than the decomposition of solvent extractable compounds. Our study shows that Q10 values derived from soil respiration measurements may not be reliable indicators of temperature responses of individual SOM components.

  1. Yttrium (amidate) complexes for catalytic C-N bond formation. Rapid, room temperature amidation of aldehydes.

    PubMed

    Thomson, Jaclyn A; Schafer, Laurel L

    2012-07-14

    Yttrium (amidate) precatalysts are highly active for the mild amidation of aldehydes with amines. Reactions occur at room temperature within 5 min in up to 98% isolated yield. These rare-earth systems are effective for this transformation in the absence of supplementary heat, light, base, or oxidants. The reaction proceeds with functionalized amines and/or aldehydes. A comparison of various amidate precatalysts in combination with reaction monitoring suggests that the targeted amide products formed during the reaction promote the formation of alternative catalytically active amidate species in situ.

  2. Multicomponent Synthesis of α-Branched Amides

    PubMed Central

    DeBenedetto, Mikkel V.; Green, Michael E.; Wan, Shuangyi; Park, Jung-Hyun; Floreancig, Paul E.

    2009-01-01

    α-Branched amides are prepared by multicomponent reactions in which nitriles undergo hydrozirconation to form metalloimines that react with acyl chlorides. The resulting acylimines react with a variety of π-nucleophiles in the presence of Lewis acids to form the desired amides. PMID:19152262

  3. Catalytic synthesis of amides via aldoximes rearrangement.

    PubMed

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  4. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    PubMed

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  5. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    PubMed Central

    Mak, W.C.; Olesen, K.; Sivlér, P.; Lee, C.J.; Moreno-Jimenez, I.; Edin, J.; Courtman, D.; Skog, M.; Griffith, M.

    2015-01-01

    Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation. PMID:26096147

  6. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release.

    PubMed

    Elashnikov, Roman; Slepička, Petr; Rimpelova, Silvie; Ulbrich, Pavel; Švorčík, Vaclav; Lyutakov, Oleksiy

    2017-03-01

    Smart antimicrobial materials with on-demand drug release are highly desired for biomedical applications. Herein, we report about temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) nanospheres doped with crystal violet (CV) and incorporated into the poly-l-lactide (PLLA) nanofibers. The nanofibers were prepared by electrospinning, using different initial polymers ratios. The morphology of the nanofibers and polymers distribution in the nanofibers were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The interaction between PNIPAM and PLLA in the nanofibers was studied by Fourier transform infrared spectroscopy (FTIR) and its effect on the PNIPAM phase transition was also investigated. It was shown that by the changing of the environmental temperature across the lower critical solution temperature (LCST) of PNIPAM, the switchable wettability and controlled CV release can be achieved. The temperature-dependent release kinetics of CV from polymer nanofibers was investigated by ultraviolet-visible spectroscopy (UV-Vis). The temperature-responsive release of antibacterial CV was also tested for triggering of antibacterial activity, which was examined on Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli). Thus, the proposed material is promising value for controllable drug-release. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthesis of temperature-responsive anion exchanger via click reaction.

    PubMed

    Murakami, Kenji; Yu, Xue; Kato, Takahiro; Inoue, Yukihiko; Sugawara, Katsuyasu

    2012-06-15

    The temperature-responsive anion exchanger was synthesized by immobilizing the poly(N-isopropylacrylamide) (PNIPAM), a kind of the temperature-responsive polymer, on the external surface of mesoporous silica via click reaction. The structure of this synthesized composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), elemental analysis, and nitrogen adsorption experiment. The amount of PNIPAM immobilized on the external surface of mesoporous silica, which was calculated from the weight loss measured by thermogravimetry, increased from 5.3 wt.% to 12.9 wt.% (dry) depending on the amount of PNIPAM added in the click reaction. The adsorption-desorption behavior of methyl orange (MO) ions in this synthesized anion exchanger was affected by the temperature of aqueous solution: the MO ions were adsorbed and desorbed reversibly and repeatedly with changing the pH of the solution at 25 °C, while the amount of adsorbed MO ions remained nearly constant at about 0.05 mmol/g independent of the pH of the solution at 40 °C. Also, the amount of PNIPAM immobilized on the mesoporous silica influenced the adsorption rate of MO ions, suggesting that the adsorption rate in this composite is controlled by the diffusion of MO ions through the PNIPAM layer.

  8. Childhood fever: correlation of diagnosis with temperature response to acetaminophen.

    PubMed

    Baker, M D; Fosarelli, P D; Carpenter, R O

    1987-09-01

    Many people believe that temperature response to antipyretics in febrile children varies according to diagnosis. To evaluate the validity of this premise, we prospectively studied the temperature response to acetaminophen of febrile children who came to an urban pediatric emergency and walk-in facility. The study group consisted of 1,559 patients between the ages of 8 weeks and 6 years whose temperatures when seen were greater than 38.4 degrees C and who had not received antipyretic treatment within the previous four hours. Acetaminophen (15 mg/kg) was administered to each child and repeat temperatures were taken one and two hours later. Patient management was unaffected by the study, and physicians were unaware of the repeat temperature measurements. Telephone follow-up was conducted with the parents of each child within five days of the initial visit. Children with cultures positive for bacterial disease or chest x-ray films positive for pneumonia had slightly greater one- and two-hour temperature decreases compared with children with other diagnoses. Although statistically significant, we do not consider these differences in response to be clinically useful. We conclude that fever response to acetaminophen is not a clinically useful indicator by which to differentiate the causes of febrile illnesses in young children.

  9. Humidity and temperature response of photopolymer-based holographic gratings

    NASA Astrophysics Data System (ADS)

    Mikulchyk, Tatsiana; Walshe, James; Cody, Dervil; Martin, Suzanne; Naydenova, Izabela

    2015-05-01

    Holographic sensors have significant potential in various applications ranging from in vitro diagnostics to optical security. They are capable of providing fast, real-time, reversible or irreversible, visual colorimetric or optical readouts. The main challenge in the development of holographic sensors is to improve their selectivity by functionalizing the holographic recording material and achieve a response to a specific analyte. This material should be permeable to the analyte and its properties should change under exposure to the analyte. This work explores the humidity and temperature response of volume phase gratings recorded in photopolymers containing acrylamide and diacetone acrylamide as monomers, and triethanolamine and N-phenylglycine as photoinitiators. Characterization of the humidity response of photopolymer-based gratings in the relative humidity (RH) range of 20-90 % was carried out by measuring the diffraction efficiency of slanted transmission gratings and the position of the maximum intensity in the spectral response of reflection gratings. A strong humidity dependence of the diffraction efficiency of diacetone acrylamide-based transmission gratings was observed at RH=20-90%. The humidity dependence of the spectral response of the reflection gratings showed that photopolymers containing triethanolamine are more hydrophilic than photopolymers containing N-phenylglycine. The temperature response of slanted transmission gratings was investigated in the temperature (T) range of 20-60 °C. Exposure of the photopolymer layers containing triethanolamine to elevated temperature showed that the observed Bragg angle shift was caused by layer shrinkage due to water evaporation. The application of a sealing technique allowed for the observation of the photopolymer layer swelling due to the layer's thermal expansion. The results demonstrate an effective approach to obtaining photopolymer-based gratings with tuneable temperature and humidity sensitivity.

  10. How amide hydrogens exchange in native proteins

    PubMed Central

    Persson, Filip; Halle, Bertil

    2015-01-01

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754

  11. Global temperature responses to current emissions from the transport sectors

    PubMed Central

    Berntsen, Terje; Fuglestvedt, Jan

    2008-01-01

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO2 and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO2 perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century. PMID:19047640

  12. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Global temperature responses to current emissions from the transport sectors.

    PubMed

    Berntsen, Terje; Fuglestvedt, Jan

    2008-12-09

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO(2) and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO(2) perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century.

  14. Temperature-responsive copolymeric hydrogel systems synthetized by ionizing radiation

    NASA Astrophysics Data System (ADS)

    López-Barriguete, Jesús Eduardo; Bucio, Emilio

    2017-06-01

    Eight different systems of hydrogel copolymers with diverse temperature responsiveness were prepared to elaborate membranes for their biomedical application. The hydrogels were synthesized using poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-vinylcaprolactam) (PNVCL), which have a low critical solution temperature (LCST) close to that of the human body temperature. The networks were synthesized using gamma radiation at a dose rate of 11.2 kGy h-1, and dose of 50 kGy. The LCST of each system was measured by differential scanning calorimetry (DSC). The effect of using hydrophilic monomers of acrylic acid (AAc), methacrylic acid (MAAc), dimethyl acrylamide (DMAAm), and hydroxyethyl methacrylate (HEMA) for the copolymerization on the critical point was evaluated. Five viable systems were obtained, with the best hydrogel being that of poly(NIPAAm-co-DMAAm), which an LCST at 39.8 °C. All the samples were characterized by FTIR-ATR, DSC, TGA, X-Ray Diffraction, and SEM. The proportion of monomers during the formation of the copolymers was decisive in the displacement of the LCST.

  15. Rubisco Catalytic Properties and Temperature Response in Crops1

    PubMed Central

    2016-01-01

    Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223

  16. Global Patterns in Leaf Respiration and its Temperature Response

    NASA Astrophysics Data System (ADS)

    Heskel, M.; Atkin, O. K.; O'Sullivan, O. S.; Reich, P. B.; Tjoelker, M. G.; Weerasinghe, L. K.; Penillard, A.; Egerton, J. J. G.; Creek, D.; Bloomfield, K. J.; Xiang, J.; Sinca, F.; Stangl, Z.; Martinez-de la Torre, A.; Griffin, K. L.; Huntingford, C.; Hurry, V.; Meir, P.; Turnbull, M.

    2015-12-01

    Leaf respiration (R) represents a massive flux of carbon to the atmosphere. Currently, neither physiological models nor terrestrial biosphere models are able to disentangle sources of variation in leaf R among different plant species and contrasting environments. Similarly, such models do not adequately describe the short-term temperature (T) response of R, which can lead to inaccurate representation of leaf R in simulation models of regional and global terrestrial carbon cyling. Even minor differences in the underlying basal rate of leaf R and/or shape of the T-response curve can significantly impact estimates of carbon released and stored in ecosystems. Given this, we recently assembled and analyzed two new global databases (arctic-to-tropics) of leaf R and its short-term T-dependence. The results highlight variation in basal leaf R among species and across global gradients in T and aridity, with leaf R at a standard T (e.g. 25°C) being greatest in plants growing in the cold, dry Arctic and lowest in the warm, moist tropics. Arctic plants also exhibit higher rates of leaf R at a given photosynthetic capacity or leaf N concentration than their tropical counterparts. The results also point to convergence in the short-term temperature response of respiration across biomes and plant functional types. The applicability and significance of the short-term T-response of R for simulation models of plant and ecosystem carbon fluxes will be discussed.

  17. Global Surface Temperature Response Explained by Multibox Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Fredriksen, H. B.; Rypdal, M.

    2016-12-01

    We formulate a multibox energy balance model, from which global temperature evolution can be described by convolving a linear response function and a forcing record. We estimate parameters in the response function from instrumental data and historic forcing, such that our model can produce a response to both deterministic forcing and stochastic weather forcing consistent with observations. Furthermore, if we make separate boxes for upper ocean layer and atmosphere over land, we can also make separate response functions for global land and sea surface temperature. By describing internal variability as a linear response to white noise, we demonstrate that the power-law form of the observed temperature spectra can be described by linear dynamics, contrary to a common belief that these power-law spectra must arise from nonlinear processes. In our multibox model, the power-law form can arise due to the multiple response times. While one of our main points is that the climate system responds over a wide range of time scales, we cannot find one set of time scales that can be preferred compared to other choices. Hence we think the temperature response can best be characterized as something that is scale-free, but still possible to approximate by a set of well separated time scales.

  18. Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications.

    PubMed

    Qiao, Yunxiang; Ma, Wenbao; Theyssen, Nils; Chen, Chen; Hou, Zhenshan

    2017-05-24

    Temperature-responsive ionic liquids (ILs), their fundanmental behaviors, and catalytic applications were introduced, especially the concepts of upper critical solution temperature (UCST) and lower critical solution temperature (LCST). It is described that, during a catalytic reaction, they form a homogeneous mixture with the reactants and products at reaction temperature but separate from them afterward at ambient conditions. It is shown that this behavior offers an effective alternative approach to overcome gas/liquid-solid interface mass transfer limitations in many catalytic transformations. It should be noted that IL-based thermomorphic systems are rarely elaborated until now, especially in the field of catalytic applications. The aim of this article is to provide a comprehensive review about thermomorphic mixtures of an IL with H2O and/or organic compounds. Special focus is laid on their temperature dependence concerning UCST and LCST behavior, including systems with conventional ILs, metal-containing ILs, polymerized ILs, as well as the thermomorphic behavior induced via host-guest complexation. A wide range of applications using thermoregulated IL systems in chemical catalytic reactions as well as enzymatic catalysis were also demonstrated in detail. The conclusion is drawn that, due to their highly attractive behavior, thermoregulated ILs have already and will find more applications, not only in catalysis but also in other areas.

  19. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  20. New GABA amides activating GABAA-receptors.

    PubMed

    Raster, Peter; Späth, Andreas; Bultakova, Svetlana; Gorostiza, Pau; König, Burkhard; Bregestovski, Piotr

    2013-01-01

    We have prepared a series of new and some literature-reported GABA-amides and determined their effect on the activation of GABAA-receptors expressed in CHO cells. Special attention was paid to the purification of the target compounds to remove even traces of GABA contaminations, which may arise from deprotection steps in the synthesis. GABA-amides were previously reported to be partial, full or superagonists. In our hands these compounds were not able to activate GABAA-receptor channels in whole-cell patch-clamp recordings. New GABA-amides, however, gave moderate activation responses with a clear structure-activity relationship suggesting some of these compounds as promising molecular tools for the functional analysis of GABAA-receptors.

  1. New GABA amides activating GABAA-receptors

    PubMed Central

    Raster, Peter; Späth, Andreas; Bultakova, Svetlana; Gorostiza, Pau

    2013-01-01

    Summary We have prepared a series of new and some literature-reported GABA-amides and determined their effect on the activation of GABAA-receptors expressed in CHO cells. Special attention was paid to the purification of the target compounds to remove even traces of GABA contaminations, which may arise from deprotection steps in the synthesis. GABA-amides were previously reported to be partial, full or superagonists. In our hands these compounds were not able to activate GABAA-receptor channels in whole-cell patch-clamp recordings. New GABA-amides, however, gave moderate activation responses with a clear structure–activity relationship suggesting some of these compounds as promising molecular tools for the functional analysis of GABAA-receptors. PMID:23503884

  2. Temperature response of soil respiration largely unaltered with experimental warming

    PubMed Central

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming. PMID:27849609

  3. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  4. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  5. Temperature Responses of Mice to Escherichia Coli Endotoxin

    PubMed Central

    Prashker, D.; Wardlaw, A. C.

    1971-01-01

    SJL mice kept in a 23° environment and injected intravenously with Escherichia coli endotoxin developed a marked hypothermia compared with animals given pyrogen-free saline (PFS). In contrast, giving endotoxin to SJL mice which had been “pre-conditioned” for 4 hr at 36° caused relative hyperthermia. Both responses were best observed at 1½ hr after injection. An endotoxin dose of 0·02 μg. was at the threshold of detectability in mice pre-conditioned at 36°, while with 23° animals, the threshold dose was 0·2 μg. Dose-response curves, with an index of precision (λ) of about 0·73, were obtained for mice in both environments, endotoxin doses of about 20 μg. being in the plateau regions of maximum responses. Mouse strains SWR/J and CMRL behaved similarly to SJL, but the temperature responses at both 23° and 36° were smaller. BALB/cJ and AKR/J mice showed a hyperthermic response to endotoxin at 36° but no hypothermia at 23°, while ST/bJ mice showed the converse pattern of hypothermia after endotoxin at 23° but no hyperthermia at 36°. Thus the strain of mouse is an important variable. We suggest that a hypothermia test in SJL mice may provide a simple and convenient bioassay procedure for endotoxin. Although its sensitivity is much less than the rabbit pyrogenicity test, it may be useful for the quantitative measurement of endotoxin activity of such preparations as typhoid, pertussis and cholera vaccines which are rich in endotoxin. PMID:4926536

  6. European temperature responses to blocking and ridge regional patterns

    NASA Astrophysics Data System (ADS)

    Sousa, Pedro M.; Trigo, Ricardo M.; Barriopedro, David; Soares, Pedro M. M.; Santos, João A.

    2017-03-01

    Blocking occurrence and its impacts on European temperature have been studied in the last decade. However, most previous studies on blocking impacts have focused on winter only, disregarding its fingerprint in summer and differences with other synoptic patterns that also trigger temperature extremes. In this work, we provide a clear distinction between high-latitude blocking and sub-tropical ridges occurring in three sectors of the Euro-Atlantic region, describing their climatology and consequent impacts on European temperature during both winter and summer. Winter blocks (ridges) are generally associated to colder (warmer) than average conditions over large regions of Europe, in some areas with anomalies larger than 5 °C, particularly for the patterns occurring in the Atlantic and Central European sectors. During summer, there is a more regional response characterized by above average temperature for both blocking and ridge patterns, especially those occurring in continental areas, although negative temperature anomalies persist in southernmost areas during blocking. An objective analysis of the different forcing mechanisms associated to each considered weather regime has been performed, quantifying the importance of the following processes in causing the temperature anomalies: horizontal advection, vertical advection and diabatic heating. While during winter advection processes tend to be more relevant to explain temperature responses, in summer radiative heating under enhanced insolation plays a crucial role for both blocking and ridges. Finally, the changes in the distributions of seasonal temperature and in the frequencies of extreme temperature indices were also examined for specific areas of Europe. Winter blocking and ridge patterns are key drivers in the occurrence of regional cold and warm extreme temperatures, respectively. In summer, they are associated with substantial changes in the frequency of extremely warm days, but with different signatures in

  7. Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Feng, X.

    2007-12-01

    The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global

  8. Polyimides Containing Amide And Perfluoroisopropyl Links

    NASA Technical Reports Server (NTRS)

    Dezem, James F.

    1993-01-01

    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  9. Synthesis of Amide Functionalized Carbon Nanotubes

    DTIC Science & Technology

    2007-01-01

    amide-linked SWNTs. Through FT-IR spectroscopy, Raman spectroscopy and TGA analysis it was proven that the intermediate compounds were successfully...analysis (TGA). Figure 4 shows the TGA data for SWNT-COOH, SWNT-NH2 and SWNT 4 at a heating rate of 10 oC/min in the presence of argon. The TGA ... analysis shows a major decline in mass for the amide- interconnected nanotubes between the 200 oC to 400 oC region. Weight loss due to functionalization

  10. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is subject...

  11. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN P-03-388...

  12. 40 CFR 721.10691 - Fatty acid amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide (generic). 721.10691... Substances § 721.10691 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-13-267) is...

  13. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  14. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  15. 40 CFR 721.10687 - Fatty acid amide hydrochlorides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide hydrochlorides... Specific Chemical Substances § 721.10687 Fatty acid amide hydrochlorides (generic). (a) Chemical substance... fatty acid amide hydrochlorides (PMNs P-13-201, P-13-203, P-13-204, P-13-205, P-13-206, P-13-207,...

  16. 40 CFR 721.10680 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amides (generic). 721.10680... Substances § 721.10680 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as fatty acid amides (PMNs...

  17. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  18. 76 FR 69636 - Amides, C5

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... repeat dose studies were conducted on amides, C 5 -C 9 , N- (OPPTS 870.3050 and 870.3700). A 28-day range... weights of the liver, spleen, and thymus. A second range finding study administered the test substance to... size, number of pups born, implantation sites, and mean pup body weights were noted in the 600 mg/kg...

  19. Greenland temperature response to climate forcing during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Buizert, C.; Gkinis, V.; Severinghaus, J. P.; He, F.; Lecavalier, B.; Kindler, P.; Leuenberger, M.; Carlson, A. E.; Vinther, B.; White, J. W.; Liu, Z.; Otto-Bliesner, B. L.; Brook, E.

    2013-12-01

    Much of the regional and global climate variability during the last glacial termination (19-11 ka BP) can be explained as the superposition of two distinct modes (1, 2); a spatially uniform increase in global temperature correlated with greenhouse gas forcing, and a redistribution of heat associated with variability in the Atlantic meridional overturning circulation (AMOC) strength. The latter mode is expressed most clearly in the abrupt climate shifts recorded in the precipitation isotopic composition (δ18O) of Greenland ice cores, which are now widely used as a template for abrupt change in the northern hemisphere. Greenland δ18O is influenced by many factors, including source temperature, moisture transport and origin, and precipitation seasonality, complicating reconstruction of past temperatures. Here we use three non-δ18O temperature reconstructions from three ice cores and a general circulation model (GCM) to elucidate the (often abrupt) Greenland surface temperature response to external (insolation) and internal (CO2, AMOC, ice topography) climate forcings during the last termination. Our reconstructions are based on δ15N (NEEM, GISP2) and water isotope diffusion (NGRIP), both of which depend on physical processes in the firn column. The GCM and our reconstructions show excellent agreement on several key features. First, we find that the Younger Dryas (YD) period was 4-6oC warmer than the Oldest Dryas (OD) period in response to increased summer insolation and CO2 forcing. By contrast, δ18O-based reconstrucions from Greenland summit suggest the YD to be the colder of the two periods. Our finding is consistent with non-ice core NH proxy reconstructions, as well as with East Greenland deglacial moraine sequences that suggest only a modest glacial re-advance during the YD. Second, the YD-OD temperature difference shows a polar amplification signal, with warming being greatest at the northernmost NEEM site. By isolating different forcings in the GCM, we

  20. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    PubMed

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled nN → πAr conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  1. SPPS of protected peptidyl aminoalkyl amides.

    PubMed

    Karavoltsos, Manolis; Mourtas, Spyros; Gatos, Dimitrios; Barlos, Kleomenis

    2002-11-01

    Monophthaloyl diamines derived from naturally occurring amino acids were attached through their free amino functions to resins of the trityl type. The phthaloyl groups were removed by hydrazinolysis, and peptide chains were assembled using Fmoc/tBu-amino acids on the liberated amino functions. The peptidyl aminoalkyl amides obtained were cleaved from the resins by mild acidolysis, with the tBu-side chain protection remaining intact.

  2. Vibrational lifetimes of protein amide modes

    SciTech Connect

    Peterson, K.A.; Rella, C.A.

    1995-12-31

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid.

  3. Polyimides containing amide and perfluoroisopropylidene connecting groups

    NASA Technical Reports Server (NTRS)

    Dezern, James F. (Inventor)

    1993-01-01

    New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.

  4. An unusual intramolecular trans-amidation.

    PubMed

    Rivera, Heriberto; Dhar, Sachin; La Clair, James J; Tsai, Shiou-Chuan; Burkart, Michael D

    2016-06-23

    Polyketide biosynthesis engages a series of well-timed biosynthetic operations to generate elaborate natural products from simple building blocks. Mimicry of these processes has offered practical means for total synthesis and provided a foundation for reaction discovery. We now report an unusual intramolecular trans-amidation reaction discovered while preparing stabilized probes for the study of actinorhodin biosynthesis. This rapid cyclization event offers insight into the natural cyclization process inherent to the biosynthesis of type II polyketide antibiotics.

  5. Tandem mass spectrometry of amidated peptides.

    PubMed

    Mouls, Laetitia; Subra, Gilles; Aubagnac, Jean-Louis; Martinez, Jean; Enjalbal, Christine

    2006-11-01

    The behavior of C-terminal amidated and carboxylated peptides upon low-energy collision-induced dissociation (CID) was investigated. Two sets of 76 sequences of variable amino acid compositions and lengths were synthesized as model compounds. In most cases, C-terminal amidated peptides were found to produce, upon CID, an abundant loss of ammonia from the protonated molecules. To validate such MS/MS signatures, the studied peptides contained amino acids that can potentially release ammonia from their side chains, such as asparagine, glutamine, tryptophan, lysine and arginine. Arginine, and to a lesser extent lysine, was shown to induce a competitive fragmentation leading to the loss of ammonia from their side chains, thus interfering with the targeted backbone neutral release. However, when arginine or lysine was located at the C-terminal position mimicking a tryptic digest, losses of ammonia from the arginine side chain and from the peptide backbone were completely suppressed. Such results were discussed in the frame of peptidomic or proteomic studies in an attempt to reveal the presence of C-terminal amidated peptides or proteins.

  6. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

    PubMed Central

    2015-01-01

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870

  7. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds

    NASA Astrophysics Data System (ADS)

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-08-01

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  8. 40 CFR 721.10682 - Fatty acid amide hydrochlorides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide hydrochlorides... Specific Chemical Substances § 721.10682 Fatty acid amide hydrochlorides (generic). (a) Chemical substances... fatty acid amide hydrochlorides (PMNs P-13-63, P-13-64, P-13-65, P-13-69, P-13-70, P-13-71, P-13-72,...

  9. Oxidative activation of dihydropyridine amides to reactive acyl donors.

    PubMed

    Funder, Erik Daa; Trads, Julie B; Gothelf, Kurt V

    2015-01-07

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium intermediate. The activated intermediate reacts with various nucleophiles to give amides, esters, and thio-esters in moderate to high yields.

  10. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    PubMed

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  11. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    PubMed Central

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145

  12. Electrochemical reduction of nitrate in the presence of an amide

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  13. Polymer Amide as an Early Topology

    PubMed Central

    McGeoch, Julie E. M.; McGeoch, Malcolm W.

    2014-01-01

    Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material. PMID:25048204

  14. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  15. Hydrogen storage and ionic mobility in amide-halide systems.

    PubMed

    Anderson, Paul A; Chater, Philip A; Hewett, David R; Slater, Peter R

    2011-01-01

    We report the results of a systematic study of the effect of halides on hydrogen release and uptake in lithium amide and lithium imide, respectively. The reaction of lithium amide and lithium imide with lithium or magnesium chloride, bromide and iodide resulted in a series of amide-halide and imide-halide phases, only two of which have been reported previously. On heating with LiH or MgH2, the amide-halides synthesised all released hydrogen more rapidly than lithium amide itself, accompanied by much reduced, or in some cases undetectable, release of ammonia by-product. The imide-halides produced were found to hydrogenate more rapidly than lithium imide, reforming related amide-halide phases. The work was initiated to test the hypothesis that the incorporation of halide anions might improve the lithium ion conductivity of lithium amide and help maintain high lithium ion mobility at all stages of the de/rehydrogenation process, enhancing the bulk hydrogen storage properties of the system. Preliminary ionic conductivity measurements indicated that the most conducting amide- and imide-halide phases were also the quickest to release hydrogen on heating and to hydrogenate. We conclude that ionic conductivity may be an important parameter in optimising the materials properties of this and other hydrogen storage systems.

  16. Partition of compounds from water and from air into amides

    PubMed Central

    Acree, William E.; Cometto-Muñiz, J. Enrique

    2010-01-01

    Literature data on partitioning of compounds from the gas phase to a number of amides and from water to the amides has been collected and analyzed through the Abraham solvation equations. The resulting equations are statistically good enough to be used for the prediction of further partition coefficients, and allow deductions to be made about the chemical properties of the amides, as solvents. For example, tertiary amides have no hydrogen bond property at all, secondary amides are rather weak hydrogen bond acids, and primary amides are stronger hydrogen bond acids than are alcohols as solvents. Equations for partitioning from the gas phase to amide solvents can also be used to test if the amides are possible models for a number of biological phases and biological processes. It is shown that no organic solvent is a suitable model for phases such as blood, brain, muscle, liver, heart or kidney, but that a number of rather non-polar solvents are models for fat. N-methylformamide is shown to be the best (and excellent) model for eye irritation and nasal pungency in humans, suggesting that the receptor site in these processes is protein-like. PMID:20209022

  17. Fabrication of transplantable corneal epithelial and oral mucosal epithelial cell sheets using a novel temperature-responsive closed culture device.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Kikuchi, Tetsutaro; Kitano, Yuriko; Watanabe, Hiroya; Mizutani, Manabu; Nozaki, Takayuki; Senda, Naoko; Saitoh, Kazuo; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-05-01

    Temperature-responsive culture surfaces make it possible to harvest transplantable carrier-free cell sheets. Here, we applied temperature-responsive polymer for polycarbonate surfaces with previously developed closed culture devices for an automated culture system in order to fabricate transplantable stratified epithelial cell sheets. Histological and immunohistochemical analyses and colony-forming assays revealed that corneal epithelial and oral mucosal epithelial cell sheets could be harvested with the temperature-responsive closed culture devices. The results were similar to those obtained using temperature-responsive culture inserts. These results indicate that the novel temperature-responsive closed culture device is useful for fabricating transplantable stratified epithelial cell sheets.

  18. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    PubMed

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells.

  19. Biosynthesis and function of simple amides in Xenorhabdus doucetiae.

    PubMed

    Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B

    2017-09-11

    Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides were tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. This article is protected by copyright. All rights reserved. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation

    NASA Astrophysics Data System (ADS)

    Yoshimori, Masakazu; Watanabe, Masahiro; Shiogama, Hideo; Oka, Akira; Abe-Ouchi, Ayako; Ohgaito, Rumi; Kamae, Youichi

    2016-12-01

    The correct understanding of the transient response to external radiative perturbation is important for the interpretation of observed climate change, the prediction of near-future climate change, and committed warming under climate stabilization scenarios, as well as the estimation of equilibrium climate sensitivity based on observation data. It has been known for some time that the radiative damping rate per unit of global mean surface temperature increase varies with time, and this inconstancy affects the transient response. Knowledge of the equilibrium response alone is insufficient, but understanding the transient response of the global mean surface temperature has made rapid progress. The recent progress accompanies the relatively new concept of the efficacies of ocean heat uptake and forcing. The ocean heat uptake efficacy associates the temperature response induced by ocean heat uptake with equilibrium temperature response, and the efficacy of forcing compares the temperature response caused by non-CO2 forcing with that by CO2 forcing.

  1. The uncertainty of crop yield projections is reduced by improved temperature response functions.

    PubMed

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold

    2017-07-17

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  2. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    NASA Technical Reports Server (NTRS)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  3. Orexinergic Neurotransmission in Temperature Responses to Methamphetamine and Stress: Mathematical Modeling as a Data Assimilation Approach

    PubMed Central

    Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Molkov, Yaroslav I.; Zaretsky, Dmitry V.

    2015-01-01

    Experimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods. PMID:25993564

  4. Copoly(imide-amides) containing hexafluoroisopropylidene

    NASA Technical Reports Server (NTRS)

    Irvin, David J.; Cassidy, Patrick E.; Cameron, Mitch L.

    1990-01-01

    The incorporation of the hexafluoroisopropylidene (HFIP or 6F) group into polymer backbones brings about important and useful changes in properties. These differences include increased thermal and environmental resistance and solubility and decreased dielectric constant and color. Several types of backbones have been substrates for the inclusion of HFIP and all results have reflected impressive property benefits. This project involved the incorporation of 6F groups into a poly(imide-amide) backbone by the condensation of a 6F-containing dianhydride with 4-aminobenzoic acid to yield a diimide terminated with two carboxylic acid groups. This diacid trimer was then polymerized with various diamines. The polymers were obtained in yields of 86-94 percent and with viscosities of 0.90-2.26 dL/g. They were stable to above 500 C and clear, colorless films could be cast from DMAc.

  5. Hydrogen production from ammonia using sodium amide.

    PubMed

    David, William I F; Makepeace, Joshua W; Callear, Samantha K; Hunter, Hazel M A; Taylor, James D; Wood, Thomas J; Jones, Martin O

    2014-09-24

    This paper presents a new type of process for the cracking of ammonia (NH3) that is an alternative to the use of rare or transition metal catalysts. Effecting the decomposition of NH3 using the concurrent stoichiometric decomposition and regeneration of sodium amide (NaNH2) via sodium metal (Na), this represents a significant departure in reaction mechanism compared with traditional surface catalysts. In variable-temperature NH3 decomposition experiments, using a simple flow reactor, the Na/NaNH2 system shows superior performance to supported nickel and ruthenium catalysts, reaching 99.2% decomposition efficiency with 0.5 g of NaNH2 in a 60 sccm NH3 flow at 530 °C. As an abundant and inexpensive material, the development of NaNH2-based NH3 cracking systems may promote the utilization of NH3 for sustainable energy storage purposes.

  6. Copoly(imide-amides) containing hexafluoroisopropylidene

    NASA Technical Reports Server (NTRS)

    Irvin, David J.; Cassidy, Patrick E.; Cameron, Mitch L.

    1990-01-01

    The incorporation of the hexafluoroisopropylidene (HFIP or 6F) group into polymer backbones brings about important and useful changes in properties. These differences include increased thermal and environmental resistance and solubility and decreased dielectric constant and color. Several types of backbones have been substrates for the inclusion of HFIP and all results have reflected impressive property benefits. This project involved the incorporation of 6F groups into a poly(imide-amide) backbone by the condensation of a 6F-containing dianhydride with 4-aminobenzoic acid to yield a diimide terminated with two carboxylic acid groups. This diacid trimer was then polymerized with various diamines. The polymers were obtained in yields of 86-94 percent and with viscosities of 0.90-2.26 dL/g. They were stable to above 500 C and clear, colorless films could be cast from DMAc.

  7. Temperature-responsive cross-linked poly(epsilon-caprolactone) membrane that functions near body temperature.

    PubMed

    Uto, Koichiro; Yamamoto, Kazuya; Hirase, Shohei; Aoyagi, Takao

    2006-01-10

    The objective of this study is to develop a sensitive temperature-responsive material that would function near body temperature. To achieve this purpose, we compounded 2-branched and 4-branched poly(epsilon-caprolactone) macromonomers to modulate the transition temperatures of the resulting cross-linked materials. The temperature-responsive properties were studied using differential scanning calorimetry and X-ray diffraction measurements. As a result, the mixing ratios of each macromonomer or the total macromonomer concentrations were very dominant in modulating the transition temperatures. The materials could successfully control the permeation of the model drug, prednisolone, near body temperature.

  8. Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme.

    PubMed

    Chufán, Eduardo E; De, Mithu; Eipper, Betty A; Mains, Richard E; Amzel, L Mario

    2009-07-15

    Many neuropeptides and peptide hormones require amidation of their carboxy terminal for full biological activity. The enzyme peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL; EC 4.3.2.5) catalyzes the second and last step of this reaction, N-dealkylation of the peptidyl-alpha-hydroxyglycine to generate the alpha-amidated peptide and glyoxylate. Here we report the X-ray crystal structure of the PAL catalytic core (PALcc) alone and in complex with the nonpeptidic substrate alpha-hydroxyhippuric acid. The structures show that PAL folds as a six-bladed beta-propeller. The active site is formed by a Zn(II) ion coordinated by three histidine residues; the substrate binds to this site with its alpha-hydroxyl group coordinated to the Zn(II) ion. The structures also reveal a tyrosine residue (Tyr(654)) at the active site as the catalytic base for hydroxyl deprotonation, an unusual role for tyrosine. A reaction mechanism is proposed based on this structural data and validated by biochemical analysis of site-directed PALcc mutants.

  9. Amidation of Bioactive Peptides: The Structure of the Lyase Domain of the Amidating Enzyme

    SciTech Connect

    Chufan, E.; De, M; Eipper, B; Mains, R; Amzel, L

    2009-01-01

    Many neuropeptides and peptide hormones require amidation of their carboxy terminal for full biological activity. The enzyme peptidyl-{alpha}-hydroxyglycine {alpha}-amidating lyase (PAL; EC 4.3.2.5) catalyzes the second and last step of this reaction, N-dealkylation of the peptidyl-{alpha}-hydroxyglycine to generate the {alpha}-amidated peptide and glyoxylate. Here we report the X-ray crystal structure of the PAL catalytic core (PALcc) alone and in complex with the nonpeptidic substrate {alpha}-hydroxyhippuric acid. The structures show that PAL folds as a six-bladed {Beta}-propeller. The active site is formed by a Zn(II) ion coordinated by three histidine residues; the substrate binds to this site with its {alpha}-hydroxyl group coordinated to the Zn(II) ion. The structures also reveal a tyrosine residue (Tyr{sup 654}) at the active site as the catalytic base for hydroxyl deprotonation, an unusual role for tyrosine. A reaction mechanism is proposed based on this structural data and validated by biochemical analysis of site-directed PALcc mutants.

  10. Amidation of Bioactive Peptides: The Structure of the Lyase Domain of the Amidating Enzyme

    PubMed Central

    Chufán, Eduardo E.; De, Mithu; Eipper, Betty A.; Mains, Richard E.; Amzel, L. Mario

    2009-01-01

    SUMMARY Many neuropeptides and peptide hormones require amidation of their carboxy terminal for full biological activity. The enzyme Peptidyl-α-hydroxyglycine α-amidating lyase (PAL; EC 4.3.2.5) catalyzes the second and last step of this reaction – N-dealkylation of the peptidyl-α-hydroxyglycine to generate the α-amidated peptide and glyoxylate. Here we report the X-ray crystal structure of the PAL catalytic core (PALcc) alone and in complex with the non-peptidic substrate α-hydroxyhippuric acid. The structures show that PAL folds as a six-bladed β-propeller. The active site is formed by a Zn(II) ion coordinated by three histidine residues; the substrate binds to this site with its α-hydroxyl group coordinated to the Zn(II) ion. The structures also reveal a tyrosine residue (Tyr654) at the active site as the catalytic base for hydroxyl deprotonation, an unusual role for tyrosine. A reaction mechanism is proposed based on this structural data and validated by biochemical analysis of site-directed PALcc mutants. PMID:19604476

  11. Chemical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Simultaneous physical and chemical characteristics of clouds amid and above the trees of a montane forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the chemical characteristics of the cloud droplets amid the trees. The ionic composition and pH of the analyzed amid-canopy cloud water samples are generally consistent with those of previous above-canopy cloud water samples obtained at this site. Magnesium, sodium, and calcium are highly correlated to each other amid the canopy as compared to above the canopy. Above-canopy and amid-canopy cloud-only episodes, with concurrent event-averaged cloud water pH values at or below 3.1, generally contain more magnesium, sodium, and calcium in the amid-canopy cloud water samples compared to concurrent above-canopy cloud water samples. The observed chemical differences between the amid-canopy cloud and the above- canopy cloud suggest an unhealthier environment for the tree canopy when the cloud water traversing this site has a pH value at or below 3.1. The predominant ion deposition fluxes were calculated to provide preliminary data for studies designed to explicitly quantify how the chemical composition of cloud water affects tree health. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering

    PubMed Central

    Nagase, Kenichi; Kobayashi, Jun; Okano, Teruo

    2009-01-01

    Temperature-responsive intelligent surfaces, prepared by the modification of an interface with poly(N-isopropylacrylamide) and its derivatives, have been used for biomedical applications. Such surfaces exhibit temperature-responsive hydrophilic/hydrophobic alterations with external temperature changes, which, in turn, result in thermally modulated interactions with biomolecules and cells. In this review, we focus on the application of these intelligent surfaces to chromatographic separation and cell cultures. Chromatographic separations using several types of intelligent surfaces are mentioned briefly, and various effects related to the separation of bioactive compounds are discussed, including wettability, copolymer composition and graft polymer architecture. Similarly, we also summarize temperature-responsive cell culture substrates that allow the recovery of confluent cell monolayers as contiguous living cell sheets for tissue-engineering applications. The key factors in temperature-dependent cell adhesion/detachment control are discussed from the viewpoint of grafting temperature-responsive polymers, and new methodologies for effective cell sheet culturing and the construction of thick tissues are summarized. PMID:19324682

  13. Seasonal changes in metabolic and temperature responses to cold air in humans.

    PubMed

    van Ooijen, A M J; van Marken Lichtenbelt, W D; van Steenhoven, A A; Westerterp, K R

    2004-09-15

    The metabolic and temperature response to mild cold were investigated in summer and winter in a moderate oceanic climate. Subjects were 10 women and 10 men, aged 19-36 years and BMI 17-32 kg/m2. Metabolic rate (MR) and body temperatures were measured continuously in a climate chamber with an ambient temperature of 22 degrees C for 1 h and subsequently 3 h of 15 degrees C. The average metabolic response during cold exposure, measured as the increase in kJ/min over time, was significantly higher in winter (11.5%) compared to summer (7.0%, P < .05). The temperature response was comparable in both seasons. The metabolic response in winter was significantly related to the response in summer (r2 = .47, P < .001). Total heat production during cold exposure was inversely related to the temperature response in both seasons (summer, r2 = .39, P < .01; winter r2 = .32, P < .05). In conclusion, the observed higher metabolic response in winter compared to summer indicates cold adaptation. The magnitude of the cold response varies, but the relative contribution of metabolic and temperature response was subject specific and consistent throughout the seasons, which can have implications for energy balance and body composition.

  14. New organic semiconductors with imide/amide-containing molecular systems.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    EPA Science Inventory

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  16. Silver-catalyzed synthesis of amides from amines and aldehydes

    DOEpatents

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  17. Synthesis, HPLC measurement and bioavailability of the phenolic amide amkamide

    USDA-ARS?s Scientific Manuscript database

    Amkamide, oretamide, becatamide, enferamide and veskamide are phenolic amides whose analogues are found in plants. Recently, becatamide was reported to have very potent mitochondria protective activity. In this study, becatamide and analogues (amkamide, oretamide, enferamide and veskamide) were chem...

  18. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    EPA Science Inventory

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  19. Alkyl amides and nitriles as novel tracers for biomass burning.

    PubMed

    Rushdi, A I; bin Abas, M R; Didyk, B M

    2003-01-01

    The occurrence of n-alkanoic acids, amides, and nitriles in samples of aerosol particulate matter from Kuala Lumpur and Santiago suggests that emissions from cooking and biomass burning are the primary sources of these organic markers in the atmosphere. It is proposed that fatty acids react with ammonia during biomass burning or combustion to produce amides and nitriles, which can be applied as useful biomarker tracers. To test this hypothesis, nonadecanoic acid and hexadecanamide were used as reactants in hydrous pyrolysis experiments. These experiments produced amides and nitriles and indicated that ammonia is an essential agent in their formation. Thus amides and nitriles are of utility as indicators for input from combustion and biomass burning in the ambient atmosphere.

  20. Recent Developments in Amide Synthesis Using Nonactivated Starting Materials.

    PubMed

    Ojeda-Porras, Andrea; Gamba-Sánchez, Diego

    2016-12-02

    Amides are unquestionably one of the most important functional groups in organic chemistry because of their presence in numerous interesting molecules such as peptides, pharmaceutical agents, naturally occurring molecules, proteins and alkaloids, among others. This synopsis surveys the diverse recent approaches to amide synthesis from nonactivated carboxylic acids and derivatives as well as noncarboxylic compounds, highlighting the most innovative methodologies and those that are more eco-friendly compared to traditional methods while focusing on recent developments during the past two years.

  1. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    PubMed Central

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  2. A novel method for heterocyclic amide-thioamide transformations.

    PubMed

    Fathalla, Walid; Ali, Ibrahim A I; Pazdera, Pavel

    2017-01-01

    In this paper, we introduce a novel and convenient method for the transformation of heterocyclic amides into heteocyclic thioamides. A two-step approach was applied for this transformation: Firstly, we applied a chlorination of the heterocyclic amides to afford the corresponding chloroheterocycles. Secondly, the chloroherocycles and N-cyclohexyl dithiocarbamate cyclohexylammonium salt were heated in chloroform for 12 h at 61 °C to afford heteocyclic thioamides in excellent yields.

  3. Helical peptoid mimics of magainin-2 amide.

    PubMed

    Patch, James A; Barron, Annelise E

    2003-10-08

    A series of peptoid oligomers were designed as helical, cationic, and facially amphipathic mimics of the magainin-2 amide antibacterial peptide. We used circular dichroism spectroscopy to determine the conformation of these peptoids in aqueous buffer and in the presence of bacterial membrane-mimetic lipid vesicles, composed of a 7:3 mol ratio of POPE:POPG. We found that certain peptoids, which displayed characteristically helical CD in buffer and lipid vesicles, exhibit selective (nonhemolytic) and potent antibacterial activity against both Gram-positive and Gram-negative bacteria. In contrast, peptoids that exhibit weak CD, reminiscent of that of a peptide random coil, were ineffective antibiotics. In a manner similar to the natural magainin peptides, we find a correlation between peptoid lipophilicity and hemolytic propensity. We observe that a minimum length of approximately 12 peptoid residues may be required for antibacterial activity. We also see evidence that a helix length between 24 and 34 A may provide optimal antibacterial efficacy. These results provide the first example of a water-soluble, structured, bioactive peptoid.

  4. Predicting protein amidation sites by orchestrating amino acid sequence features

    NASA Astrophysics Data System (ADS)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  5. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  6. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    PubMed Central

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-01-01

    Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825

  7. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    PubMed

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  8. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    PubMed Central

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  9. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure.

  10. Why does the locally induced temperature response to land cover change differ across scenarios?

    NASA Astrophysics Data System (ADS)

    Winckler, J.; Reick, C. H.; Pongratz, J.

    2017-04-01

    Land cover change (LCC) affects temperature locally. The underlying biogeophysical effects are influenced not only by land use (location and extent) but also by natural biogeographic shifts and background climate. We examine the contributions of these three factors to surface temperature changes upon LCC and compare them across Coupled Model Intercomparison Project phase 5 (CMIP5) scenarios. To this end, we perform global deforestation simulations with an Earth system model to deduce locally induced changes in surface temperature for historical and projected forest cover changes. We find that the dominant factors differ between historical and future scenarios: the local temperature response is historically dominated by the factor land use change, but the two other factors become just as important in scenarios of future land use and climate. An additional factor contributing to differences across scenarios is the dependence on the extent of forests before LCC happens: For most locations, the temperature response is strongest when starting deforestation from low forest cover fractions.

  11. A universal approach to predicting temperature response of metallic parts to spray quenching

    NASA Astrophysics Data System (ADS)

    Mudawar, Issam; Deiters, Thomas A.

    1995-02-01

    A new method was developed to predict the temperature response of metallic parts to spray quenching below the film boiling regime. Local heat flux measurements in surfaces subjected to full cone and hollow cone sprays revealed existing correlations based on local values of volumetric spray flux, Sauter mean diameter, and mean drop velocity are both accurate and spatially independent in the transition boiling and nucleate boiling regimes, but less accurate in the single-phase regime due to liquid run-off effects. It is shown how the instantaneous spatial distribution of the heat transfer coefficient can be predicted from a mapping of the spatial distribution of the spray hydrodynamic parameters. The validity of this approach is demonstrated by comparing numerical predictions to the temperature response of a large rectangular aluminum block subjected on one surface to a nonuniform water spray. It is shown that the new method is universally applicable to sprays having drastically different patterns.

  12. Preparation and drug release behavior of temperature-responsive mesoporous carbons

    SciTech Connect

    Wang Xiufang; Liu Ping; Tian Yong

    2011-06-15

    A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery. - Graphical abstract: The bands located at 1650 and 1549 cm{sup -1} could be assigned to C=O stretching and N-H bending vibrations for polymer PNIPAAm (a). The bands at 1388 and 1369 cm{sup -1} were due to isopropyl group, and the band at 1459 cm{sup -1} was related to the bending vibration of C-H (a). For the PNIPAAm/OMCs composite, the characteristic bands of polymer were still observed besides those for carbon materials and the bands at around 1585 cm{sup -1} and a broad band at about 1100 cm{sup -1} were characteristics for the carbon materials(c). In addition, little shifts of C=O and N-H bands compared to the pure PNIPAAm were also observed (b), indicating a weak interaction between the polymer and carbon material. These results could be a proof that the PNIPAAm has been incorporated into the carbon material. Highlights: > A temperature-responsive PNIPAAm/OMCs composite was successfully synthesized by a simple wetness impregnation technique for the first time. > The inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. > In vitro test of IBU release exhibited a temperature-responsive controlled release delivery.

  13. Temperature responses of dark respiration in relation to leaf sugar concentration.

    PubMed

    Hüve, Katja; Bichele, Irina; Ivanova, Hiie; Keerberg, Olav; Pärnik, Tiit; Rasulov, Bahtijor; Tobias, Mari; Niinemets, Ulo

    2012-04-01

    Changes in leaf sugar concentrations are a possible mechanism of short-term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature-response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature-response curves were obtained by increasing the leaf temperature at a rate of 1°C min⁻¹. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break-point at high temperature, where respiration starts to increase with a faster rate. The average break-point temperature (T(RD) ) was 48.6 ± 0.7°C at natural sugar concentration. Pulse-chase experiments with ¹⁴CO₂ demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature-response curve as respiration with a break-point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high-temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature-response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non-specifically protect respiratory membranes or may block the high-temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break-points in temperature curves of respiration in sugar-fed leaves. Copyright © Physiologia Plantarum 2011.

  14. Sensitivity of Regional Radiative Forcing and Temperature Response to Aviation-induced Ozone

    NASA Astrophysics Data System (ADS)

    Lund, M. T.; Fuglestvedt, J. S.; Berntsen, T.

    2015-12-01

    Aviation emissions affect the atmosphere and climate through a number of mechanisms. One important mechanism is the change in ozone budged resulting from emissions of nitrogen oxides (NOx) and other precursor gases. Significant spatial heterogeneity exists in the aviation-induced ozone changes and consequent climate impact, which may have important implications for the design and evaluation of mitigation strategies for the sector. However, further studies are needed to increase the knowledge of regional impacts. This study investigates spatial variability - from emissions to temperature response - of aviation ozone perturbations. Using the AEDT year 2006 and 2050 aviation emission inventory in the chemistry-transport model OsloCTM3, we quantify the radiative forcing (RF) due to regional aviation NOx emissions. In addition to the information provided by RF, there is an increasing need to also quantify the temperature impacts. In order to examine the sensitivity of regional temperature response to aviation-induced ozone perturbations, we perform simulations with the Community Earth System model (CESM). Results are compared to estimates of temperature response calculated using the Regional Temperature change Potential (RTP) metric with aviation RF results from the Aviation Climate Change Research Initiative (ACCRI). Furthermore, we focus in particular on the vertical sensitivity in the ozone forcing-response relationship, especially at higher latitudes where the short-wave component of the ozone RF becomes more important than globally. This also allows for an investigation of potential differences between the temperature response sensitivity to ozone changes caused by aviation emissions and by lower-altitude emissions from other sectors.

  15. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Y.; de Noblet-Ducoudré, N.; Davin, E. L.; Zeng, N.; Motesharrei, S.; Li, S. C.; Kalnay, E.

    2015-10-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extra-tropics. In this study, we use an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends non-linearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decreases in absorbed shortwave radiation due to increased albedo and decreases in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate on modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change, thus warming (cooling) is more likely to occur. Further analysis on the contribution of individual biophysical factors (albedo, roughness, and evapotranspiration efficiency) reveals that the latitudinal signature embodied in the temperature change probably result from the background climate conditions rather than the initial biophysical perturbation.

  16. Convergence in the temperature response of leaf respiration across biomes and plant functional types

    PubMed Central

    Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.

    2016-01-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  17. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Yan; De Noblet-Ducoudré, Nathalie; Davin, Edouard L.; Motesharrei, Safa; Zeng, Ning; Li, Shuangcheng; Kalnay, Eugenia

    2016-03-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extratropics. In this study, we use an earth system model of intermediate complexity to investigate how deforestation on various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends nonlinearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decrease in absorbed shortwave radiation due to increased albedo and decrease in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate in modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change; thus, warming (cooling) is more likely to occur. Our analysis reveals that the latitudinal temperature change largely results from the climate conditions in which deforestation occurs and is less influenced by the magnitude of individual biophysical changes such as albedo, roughness, and evapotranspiration efficiency.

  18. Transportation of transplantable cell sheets fabricated with temperature-responsive culture surfaces for regenerative medicine.

    PubMed

    Nozaki, Takayuki; Yamato, Masayuki; Inuma, Toshiaki; Nishida, Kohji; Okano, Teruo

    2008-06-01

    Here we report transportation of cell sheets fabricated on temperature-responsive culture surfaces for regenerative medicine. On the surfaces cells adhere, spread and proliferate at 37 degrees C, but upon temperature reduction below 32 degrees C all the cells are spontaneously detached. When cells on the surfaces are challenged by long distance transportation, maintaining the temperature is critical. Therefore, we developed a portable homothermal container to keep the inner temperature at 36 degrees C for > 30 h without any need for batteries or energy supply. We transported and compared fibroblast sheets cultured on temperature-responsive surfaces in the container, at room temperature in a car, or on ice. After 8 h transportation by car, all cells at room temperature and on ice were detached from the surfaces and some were folded and broken into tiny pieces. On the other hand, fibroblast sheets transported in the container retained their adhesion to the dish surfaces and intact cell sheets were successfully harvested by temperature reduction. During the transportation, cell viability and histology were not impaired. This unique transportation device would be useful for cell sheet-based regenerative medicine utilizing temperature-responsive culture surfaces. Copyright (c) 2008 John Wiley & Sons, Ltd.

  19. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    PubMed

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  20. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances.

    PubMed

    Karimi, Mahdi; Sahandi Zangabad, Parham; Ghasemi, Alireza; Amiri, Mohammad; Bahrami, Mohsen; Malekzad, Hedieh; Ghahramanzadeh Asl, Hadi; Mahdieh, Zahra; Bozorgomid, Mahnaz; Ghasemi, Amir; Rahmani Taji Boyuk, Mohammad Reza; Hamblin, Michael R

    2016-08-24

    Smart drug delivery systems (DDSs) have attracted the attention of many scientists, as carriers that can be stimulated by changes in environmental parameters such as temperature, pH, light, electromagnetic fields, mechanical forces, etc. These smart nanocarriers can release their cargo on demand when their target is reached and the stimulus is applied. Using the techniques of nanotechnology, these nanocarriers can be tailored to be target-specific, and exhibit delayed or controlled release of drugs. Temperature-responsive nanocarriers are one of most important groups of smart nanoparticles (NPs) that have been investigated during the past decades. Temperature can either act as an external stimulus when heat is applied from the outside, or can be internal when pathological lesions have a naturally elevated termperature. A low critical solution temperature (LCST) is a special feature of some polymeric materials, and most of the temperature-responsive nanocarriers have been designed based on this feature. In this review, we attempt to summarize recent efforts to prepare innovative temperature-responsive nanocarriers and discuss their novel applications.

  1. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    PubMed

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  2. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    PubMed Central

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  3. Phenolic amides are potent inhibitors of De Novo nucleotide biosynthesis

    DOE PAGES

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; ...

    2015-06-12

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposuremore » leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. Furthermore, the results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.« less

  4. Immobilized coupling reagents: synthesis of amides/peptides.

    PubMed

    Cherkupally, Prabhakar; Ramesh, Suhas; de la Torre, Beatriz G; Govender, Thavendran; Kruger, Hendrik G; Albericio, Fernando

    2014-11-10

    The primary idea of using immobilized reagents in organic synthetic chemistry is to simplify the downstream process, product workup and isolation, and therefore avoiding time-consuming and expensive chromatographic separations, which are intrinsic to every synthetic process. Numerous polymer-bounded reagents are commercially available and applicable to almost all kinds of synthetic chemistry conversions. Herein, we have covered all known supported-coupling reagents and bases which have had a great impact in amide/peptide bond formation. These coupling reagents have been used for the activation of a carboxyl moiety; thus generating an active acylating species that is ready to couple with an amine nucleophile liberating the amide/peptide and polymeric support which can be regenerated for reuse. This also addresses a large variety of anchored coupling reagents, additives, and bases that have only been employed in amide/peptide syntheses during the last six decades.

  5. On the unconventional amide I band in acetanilide

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Alexander; Campa, Alessandro; Giansanti, Andrea

    1987-04-01

    We developed a new model to study the molecular dynamics of the acetanilide (ACN) crystal by computer simulation. Low-frequency oscillations of the molecules as a whole were considered with high-frequency vibrations of the amidic degrees of freedom involved in hydrogen bonding. The low-temperature power spectrum has two peaks, shifted by 15 cm -1, in the region of the amide I band: one of them corresponds to the so-called anomalous amide I band in the IR and Raman spectra of ACN. We found that this peak is due to the coupling of the low-frequency motion in the chain of molecules with the motion of the hydrogen-bonded protons, at variance with current suggestions.

  6. Nickel-catalysed Suzuki-Miyaura coupling of amides

    NASA Astrophysics Data System (ADS)

    Weires, Nicholas A.; Baker, Emma L.; Garg, Neil K.

    2016-01-01

    The Suzuki-Miyaura coupling has become one of the most important and prevalent methods for the construction of C-C bonds. Although palladium catalysis has historically dominated the field, the use of nickel catalysis has become increasingly widespread because of its unique ability to cleave carbon-heteroatom bonds that are unreactive towards other transition metals. We report the first nickel-catalysed Suzuki-Miyaura coupling of amides, which proceeds by an uncommon cleavage of the amide C-N bond after N-tert-butoxycarbonyl activation. The methodology is mild, functional-group tolerant and can be strategically employed in sequential transition-metal-catalysed cross-coupling sequences to unite heterocyclic fragments. These studies demonstrate that amides, despite classically considered inert substrates, can be harnessed as synthons for use in reactions that form C-C bonds through cleavage of the C-N bond using non-precious metal catalysis.

  7. Intramolecular amide bonds stabilize pili on the surface of bacilli

    SciTech Connect

    Budzik, Jonathan M.; Poor, Catherine B.; Faull, Kym F.; Whitelegge, Julian P.; He, Chuan; Schneewind, Olaf

    2010-01-12

    Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA{sub 2} and CNA{sub 3}) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA{sub 1}, is formed only after pilin subunits have been incorporated into pili. We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.

  8. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    NASA Astrophysics Data System (ADS)

    Portner, H.; Bugmann, H.; Wolf, A.

    2010-11-01

    Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not well understood. Thus, we performed an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS. We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff). We determined the parameter confidence ranges of the formulations by nonlinear regression analysis based on eight experimental datasets from Northern Hemisphere ecosystems. We sampled over the confidence ranges of the parameters and ran simulations for each pair of temperature response function and calibration site. We analyzed both the long-term and the short-term heterotrophic soil carbon dynamics over a virtual elevation gradient in southern Switzerland. The temperature relationship of Lloyd-Taylor fitted the overall data set best as the other functions either resulted in poor fits (Exponential, Arrhenius) or were not applicable for all datasets (Gaussian, Van't Hoff). There were two main sources of uncertainty for model simulations: (1) the lack of confidence in the parameter estimates of the temperature response, which increased with increasing temperature, and (2) the size of the simulated soil carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. Our results therefore indicate that such projections are more uncertain for higher elevations and hence also higher latitudes, which are of key importance for the global terrestrial carbon budget.

  9. Modeling the Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.; Wen, G.; Pilewskie, P.; Harder, J. W.

    2010-12-01

    Atmospheric temperature responses to decadal solar variations are computed for two scenarios of solar spectral irradiance (SSI), SIM-based out-of-phase and proxy-based in-phase variations, using a time-dependent radiative-convective model (RCM), and also GISS modelE (GCM.) For both scenarios and both models, maximum responses occur in upper stratosphere, decreasing downward to the surface. Upper stratospheric temperature peak-to-peak responses to out-of-phase forcing are ~0.6 K in RCM and ~0.9 K over tropics in GCM, ~5x as large as responses to in-phase forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance). Modeled upper stratospheric temperature responses to SIM-based forcing are similar to 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). For both RCM and GCM, surface responses to the two scenarios are significantly smaller than stratospheric responses. On centennial timescales, SSI variations are poorly known. However, two scenarios of reconstructed TSI, one based on 11-year cycle with background [Lean 2000] and the other on flux transport with much less background [Wang, Lean, and Sheeley, 2005], provide a potential range of TSI variations. We apply phase relations among different SSI bands both from SIM observations and proxy reconstructions to the two scenarios of historical TSI to derive associated historical SSI, which then drives the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provide a first order estimate of temperature responses to SSI variations on centennial time scales. We discuss potential mechanisms for atmosphere-ocean and stratosphere-troposphere couplings responsible for the climate responses to spectral solar variations.

  10. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Y.; De Noblet-Decoudre, N.; Davin, E.; Zeng, N.; Motesharrei, S.; Li, S.; Kalnay, E.; Guo, S.

    2015-12-01

    Previous modeling and observational studies have shown that the biophysical impact of deforestation is warming in the tropics and cooling in extra-tropics. In this study, we performed experiments with an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with emphasis on the latitudinal temperature response and the underlining mechanisms. Results show that the latitudinal pattern of temperature response non-linearly depends on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical region. Incremental forest removal fraction leads to increasingly larger cooling under higher removal fraction in temperate and boreal regions, while the temperature increase saturates in tropical region. The latitudinal and spatial patterns of the temperature response are mainly determined by two processes with competing temperature effects, i.e., decreases in absorbed shortwave radiation and in evapotranspiration (ET). These changes in surface energy balance reflect the important role of background climate on modifying the deforestation impact, because shortwave radiation and precipitation have intrinsic geographical distribution, which constrain the effects of biophysical changes and therefore lead to spatially varying temperature change. For example, wet (dry) climate favors larger (smaller) ET change, thus warming (cooling) is more likely to occur. Further analysis on the contribution of individual biophysical factor (albedo, roughness, and evapotranspiration efficiency) reveals that the latitudinal signature embodied in the temperature change likely arises from background climate conditions rather than from the initial biophysical perturbation.

  11. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  12. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through.

  13. Altitudinal changes in temperature responses of net photosynthesis and dark respiration in tropical bryophytes.

    PubMed

    Wagner, Sebastian; Zotz, Gerhard; Salazar Allen, Noris; Bader, Maaike Y

    2013-03-01

    There is a conspicuous increase of poikilohydric organisms (mosses, liverworts and macrolichens) with altitude in the tropics. This study addresses the hypothesis that the lack of bryophytes in the lowlands is due to high-temperature effects on the carbon balance. In particular, it is tested experimentally whether temperature responses of CO(2)-exchange rates would lead to higher respiratory carbon losses at night, relative to potential daily gains, in lowland compared with lower montane forests. Gas-exchange measurements were used to determine water-, light-, CO(2)- and temperature-response curves of net photosynthesis and dark respiration of 18 tropical bryophyte species from three altitudes (sea level, 500 m and 1200 m) in Panama. Optimum temperatures of net photosynthesis were closely related to mean temperatures in the habitats in which the species grew at the different altitudes. The ratio of dark respiration to net photosynthesis at mean ambient night and day temperatures did not, as expected, decrease with altitude. Water-, light- and CO(2)-responses varied between species but not systematically with altitude. Drivers other than temperature-dependent metabolic rates must be more important in explaining the altitudinal gradient in bryophyte abundance. This does not discard near-zero carbon balances as a major problem for lowland species, but the main effect of temperature probably lies in increasing evaporation rates, thus restricting the time available for photosynthetic carbon gain, rather than in increasing nightly respiration rates. Since optimum temperatures for photosynthesis were so fine tuned to habitat temperatures we analysed published temperature responses of bryophyte species worldwide and found the same pattern on the large scale as we found along the tropical mountain slope we studied.

  14. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  15. Altitudinal changes in temperature responses of net photosynthesis and dark respiration in tropical bryophytes

    PubMed Central

    Wagner, Sebastian; Zotz, Gerhard; Salazar Allen, Noris; Bader, Maaike Y.

    2013-01-01

    Background and Aims There is a conspicuous increase of poikilohydric organisms (mosses, liverworts and macrolichens) with altitude in the tropics. This study addresses the hypothesis that the lack of bryophytes in the lowlands is due to high-temperature effects on the carbon balance. In particular, it is tested experimentally whether temperature responses of CO2-exchange rates would lead to higher respiratory carbon losses at night, relative to potential daily gains, in lowland compared with lower montane forests. Methods Gas-exchange measurements were used to determine water-, light-, CO2- and temperature-response curves of net photosynthesis and dark respiration of 18 tropical bryophyte species from three altitudes (sea level, 500 m and 1200 m) in Panama. Key Results Optimum temperatures of net photosynthesis were closely related to mean temperatures in the habitats in which the species grew at the different altitudes. The ratio of dark respiration to net photosynthesis at mean ambient night and day temperatures did not, as expected, decrease with altitude. Water-, light- and CO2-responses varied between species but not systematically with altitude. Conclusions Drivers other than temperature-dependent metabolic rates must be more important in explaining the altitudinal gradient in bryophyte abundance. This does not discard near-zero carbon balances as a major problem for lowland species, but the main effect of temperature probably lies in increasing evaporation rates, thus restricting the time available for photosynthetic carbon gain, rather than in increasing nightly respiration rates. Since optimum temperatures for photosynthesis were so fine tuned to habitat temperatures we analysed published temperature responses of bryophyte species worldwide and found the same pattern on the large scale as we found along the tropical mountain slope we studied. PMID:23258418

  16. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    PubMed

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems.

  17. One-Pot Reductive 1,3-Dipolar Cycloaddition of Secondary Amides: A Two-Step Transformation of Primary Amides.

    PubMed

    Huang, Pei-Qiang; Lang, Qi-Wei; Hu, Xiu-Ning

    2016-11-04

    The one-pot reductive 1,3-dipolar cycloaddition of secondary aromatic N-(trimethylsilylmethyl)amides with reactive dipolarophiles is reported. The method relies on the in situ generation of nonstabilized NH azomethine ylide dipoles via amide activation with triflic anhydride, partial reduction with 1,1,3,3-tetramethyldisiloxane (TMDS), and desilylation with cesium fluoride (CsF). Running under mild conditions, the reaction tolerated several sensitive functional groups and provided cycloadducts in 71-93% yields. The use of less reactive dipolarophile methyl acrylate led to the cycloadduct in only 40% yield. A (Z) geometric intermediate of NH-azomethine 1,3-dipole was postulated to account for the observed higher yields and higher cis diastereoselectivity for the substrates bearing an electron-withdrawing group. This model features an unconventional cyclic transition state via carbanion-aryl ring interaction. Because the starting secondary amides can be prepared from common primary amides, the current method also constitutes a two-step transformation of primary amides.

  18. Simulation of pressure and temperature responses for the 20 Inch Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    1990-01-01

    A simulation of the pressure and temperature responses of the 20 inch Supersonic Wind Tunnel (SWT) is developed. The simulation models the tunnel system as a set of lumped parameter volumes connected by flow regulating elements such as valves and nozzles. Simulated transient responses of temperature and pressure for the five boundary points of the 20 inch SWT operating map are produced from their respective initial conditions, tunnel operating conditions, heater input power, and valve positions. Upon reaching steady state, a linearized model for each operating point is determined. Both simulated and actual tunnel responses are presented for comparison.

  19. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    PubMed

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  20. Application of the Taylor transformation to the transient temperature response of an annular fin

    SciTech Connect

    Yu, L.T.; Chen, C.K.

    1999-01-01

    This article presents the transient temperature response of a convective-radiative rectangular profile annular fin under a step temperature change occurring in its base. A convection-radiation fin tip is considered. The nonlinear transient heat transfer and boundary conditions are solved by using the hybrid method of Taylor transformation and finite-difference approximation. Also, time domain is controlled by Taylor transformation, and the spatial coordinates are handled by finite-difference approximation. Temperature distribution is implemented by employing natural cubic spline fitting.

  1. Biosynthesis of amidated joining peptide from pro-adrenocorticotropin-endorphin

    SciTech Connect

    Cullen, E.I.; Mains, R.E. )

    1987-09-01

    Joining peptide is the major alpha-amidated product of pro-ACTH/endorphin (PAE) in AtT-20 corticotropic tumor cells. To study intracellular joining peptide synthesis, affinity purified antibodies directed against gamma-MSH, joining peptide, and ACTH were used to immunoprecipitate extracts from biosynthetically labeled AtT-20 cells. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by tryptic peptide mapping on HPLC. In steady labeling experiments, radioactivity in amidated joining peptide (JP) increased roughly linearly with time, in the manner of a final product, whereas radioactivity associated with PAE (1-94)NH2 reached a constant value after 2-4 h, indicating that PAE(1-94)NH2 is an intermediate in the biosynthesis of JP. Radioactivity appeared in ACTH(1-39) well before JP, consistent with a cleavage order in which ACTH is cleaved from PAE(1-95) before JP sequences are cleaved from PAE(1-74). This conclusion was supported by tryptic peptide analyses of immunoprecipitates, which indicated that less than 5% of JP-related material is cleaved from PAE(1-74) before being cleaved from ACTH-related sequences. After a pulse label, radioactivity in PAE(1-94)NH2 reached a peak value after 1 h of chase and declined with a half-life of less than 1 h. Amidated JP increased to a constant level after 2 h of chase. Enough radiolabeled PAE(1-94)NH2 was detected to account for about half of the radioactivity found in amidated JP, indicating that about half of JP-related material is first cleaved from PAE(1-95) before being amidated. This result was corroborated using HPLC purification to determine both amidated and glycine-extended forms of JP.

  2. The temperature dependent amide I band of crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  3. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g(-1) at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  4. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework

    PubMed Central

    2016-01-01

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties. PMID:27665845

  5. Modeling and Experimental Analysis on the Temperature Response of AlN-Film Based SAWRs

    PubMed Central

    Chen, Shuo; You, Zheng

    2016-01-01

    The temperature responses of aluminum nitride (AlN) based surface acoustic wave resonator (SAWR) are modeled and tested. The modeling of the electrical performance is based on a modified equivalent circuit model introduced in this work. For SAWR consisting of piezoelectric film and semiconducting substrate, parasitic parameters from the substrate is taken into consideration for the modeling. By utilizing the modified model, the high temperature electrical performance of the AlN/Si and AlN/6H-SiC based SAWRs can be predicted, indicating that a substrate with a wider band gap will lead to a more stable high temperature behavior, which is further confirmed experimentally by high temperature testing from 300 K to 725 K with SAWRs having a wavelength of 12 μm. Temperature responses of SAWR’s center frequency are also calculated and tested, with experimental temperature coefficient factors (TCF) of center frequency being −29 ppm/K and −26 ppm/K for the AlN/Si and AlN/6H-SiC based SAWRs, which are close to the predicted values. PMID:27483286

  6. Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+.

    PubMed

    Di Giacomo, Raffaele; Daraio, Chiara; Maresca, Bruno

    2015-04-14

    Conventional approaches to create biomaterials rely on reverse engineering of biological structures, on biomimicking, and on bioinspiration. Plant nanobionics is a recent approach to engineer new materials combining plant organelles with synthetic nanoparticles to enhance, for example, photosynthesis. Biological structures often outperform man-made materials. For example, higher plants sense temperature changes with high responsivity. However, these properties do not persist after cell death. Here, we permanently stabilize the temperature response of isolated plant cells adding carbon nanotubes (CNTs). Interconnecting cells, we create materials with an effective temperature coefficient of electrical resistance (TCR) of -1,730% K(-1), ∼2 orders of magnitude higher than the best available sensors. This extreme temperature response is due to metal ions contained in the egg-box structure of the pectin backbone, lodged between cellulose microfibrils. The presence of a network of CNTs stabilizes the response of cells at high temperatures without decreasing the activation energy of the material. CNTs also increase the background conductivity, making these materials suitable elements for thermal and distance sensors.

  7. Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+

    PubMed Central

    Di Giacomo, Raffaele; Daraio, Chiara; Maresca, Bruno

    2015-01-01

    Conventional approaches to create biomaterials rely on reverse engineering of biological structures, on biomimicking, and on bioinspiration. Plant nanobionics is a recent approach to engineer new materials combining plant organelles with synthetic nanoparticles to enhance, for example, photosynthesis. Biological structures often outperform man-made materials. For example, higher plants sense temperature changes with high responsivity. However, these properties do not persist after cell death. Here, we permanently stabilize the temperature response of isolated plant cells adding carbon nanotubes (CNTs). Interconnecting cells, we create materials with an effective temperature coefficient of electrical resistance (TCR) of −1,730% K−1, ∼2 orders of magnitude higher than the best available sensors. This extreme temperature response is due to metal ions contained in the egg-box structure of the pectin backbone, lodged between cellulose microfibrils. The presence of a network of CNTs stabilizes the response of cells at high temperatures without decreasing the activation energy of the material. CNTs also increase the background conductivity, making these materials suitable elements for thermal and distance sensors. PMID:25825744

  8. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response.

    PubMed

    Sidaway-Lee, Kate; Costa, Maria J; Rand, David A; Finkenstadt, Bärbel; Penfield, Steven

    2014-03-03

    Sensing and responding to ambient temperature is important for controlling growth and development of many organisms, in part by regulating mRNA levels. mRNA abundance can change with temperature, but it is unclear whether this results from changes in transcription or decay rates, and whether passive or active temperature regulation is involved. Using a base analog labelling method, we directly measured the temperature coefficient, Q10, of mRNA synthesis and degradation rates of the Arabidopsis transcriptome. We show that for most genes, transcript levels are buffered against passive increases in transcription rates by balancing passive increases in the rate of decay. Strikingly, for temperature-responsive transcripts, increasing temperature raises transcript abundance primarily by promoting faster transcription relative to decay and not vice versa, suggesting a global transcriptional process exists that controls mRNA abundance by temperature. This is partly accounted for by gene body H2A.Z which is associated with low transcription rate Q10, but is also influenced by other marks and transcription factor activities. Our data show that less frequent chromatin states can produce temperature responses simply by virtue of their rarity and the difference between their thermal properties and those of the most common states, and underline the advantages of directly measuring transcription rate changes in dynamic systems, rather than inferring rates from changes in mRNA abundance.

  9. Recent development of temperature-responsive surfaces and their application for cell sheet engineering

    PubMed Central

    Tang, Zhonglan; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which fabricates sheet-like tissues without biodegradable scaffolds, has been proposed as a novel approach for tissue engineering. Cells have been cultured and proliferate to confluence on a temperature-responsive cell culture surface at 37°C. By decreasing temperature to 20°C, an intact cell sheet can be harvested from the culture surface without enzymatic treatment. This new approach enables cells to keep their cell–cell junction, cell surface proteins and extracellular matrix. Therefore, recovered cell sheet can be easily not only transplanted to host tissue, but also constructed a three-dimensional (3D) tissue by layering cell sheets. Moreover, cell sheet manipulation technology and bioreactor have been combined with the cell sheet technology to fabricate a complex and functional 3D tissue in vitro. So far, cell sheet technology has been applied in regenerative medicine for several tissues, and a number of clinical studies have been performed. In this review, recent advances in the preparation of temperature-responsive cell culture surface, the fabrication of organ-like tissue and the clinical application of cell sheet engineering are summarized and discussed. PMID:26816628

  10. Phenotyping carrot (Daucus carota L.) for yield-determining temperature response by calorespirometry.

    PubMed

    Nogales, Amaia; Muñoz-Sanhueza, Luz; Hansen, Lee D; Arnholdt-Schmitt, Birgit

    2015-02-01

    Calorespirometric measurements proved to be useful for phenotyping temperature response in terms of optimum temperatures for growth and low temperature limits for growth respiration in diverse carrot genotypes. High and low-temperature tolerance is an important trait in many breeding programs, but to date, improvement strategies have had limited success. Developing new, cost efficient and reliable screening tools to identify and select the most tolerant crop plant genotypes is necessary to assist plant breeding on cold and heat tolerance, and calorespirometry is proposed for this. Calorespirometry is a technique to simultaneously measure metabolic heat rates and CO2 emission rates of respiring tissues and can be used as a rapid method to determine how changes in the environment (e.g., temperature) influence plant growth. The main aim of this work was, therefore, to test the usefulness of calorespirometry as a phenotyping tool for carrot taproot growth in response to temperature. Calorespirometric measurements in the carrot taproot meristems of plants from eight carrot inbred lines allowed identification of optimum and minimum temperatures for growth of plants and to distinguish between phenotypes based on those characteristics. The technique proved to be useful for predicting yield-determining temperature responses in diverse carrot genotypes. Preliminary screening of new crop plant genotypes with calorespirometry based on their temperature adaptation and acclimation capability could make the screening process much less laborious by allowing selection of genotypes presenting the best growth performance under particular biotic or abiotic conditions before field tests.

  11. Temperature-responsive smart packing materials utilizing multi-functional polymers.

    PubMed

    Ayano, Eri; Kanazawa, Hideko

    2014-01-01

    Polymers that respond to small changes in environmental stimuli with large, sometimes discontinuous changes in their physical state or properties, are often called "smart" polymers. Poly(N-isopropylacrylamide), PNIPAAm, is one of the most representative smart polymer that exhibits a thermally reversible soluble-insoluble change in the vicinity of its lower critical solution temperature (LCST) at 32°C in aqueous solution. Temperature-responsive chromatography for the separation of biomolecules utilizing the poly(N-isopropylacrylamide) (PNIPAAm)-modified stationary phase is performed with an aqueous mobile phase without using an organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. The separation of the biomolecules, such as nucleotides, was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase. Additionally, we also prepared functional copolymers composed of N-isopropylacrylamide (NIPAAm) and amino acid derivative or naphthyl alanine derivative, which have temperature-responsiveness and molecular recognition. These separation systems would have potential applications in the separation of biomolecules.

  12. Quantifying stream temperature response to environmental change in a groundwater-dominated catchment, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Byrne, J. M.; Boon, S.

    2012-12-01

    The ecological significance of steam temperature response to environmental change has been discussed in many recent studies across a range of disciplines. We couple a stream energy and mass balance model with a catchment-scale hydrometeorological model to quantify stream temperature response to environmental change in a groundwater-dominated catchment. Given the importance of surface-subsurface interactions in simulating stream temperature, we propose a baseflow separation technique to parameterize these interactions within the model. This method forms the basis of a catchment-scale modelling approach designed specifically for data sparse regions. Using this approach we applied a sensitivity analysis to examine the effects of forest disturbance (harvest with riparian buffer) and climate change (mean air temperature and precipitation change for the 2040-2069 period) on stream temperature. We find that stream temperature following forest disturbance and climate change is primarily affected by a predicted shift towards earlier snowmelt runoff timing, which advances subsurface recharge early in the spring and subsequently decreases subsurface discharge in the summer, fall and winter. Changes in seasonal stream temperature regime may have important ecological consequences, particularly during the spawning and rearing stages of the salmonid lifecycle.

  13. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale.

  14. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency1[OPEN

    PubMed Central

    Andralojc, P. John

    2016-01-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally “better” compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. PMID:27342312

  15. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    PubMed

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants.

  16. Ultrasound-assisted direct oxidative amidation of benzyl alcohols catalyzed by graphite oxide.

    PubMed

    Mirza-Aghayan, Maryam; Ganjbakhsh, Nahid; Molaee Tavana, Mahdieh; Boukherroub, Rabah

    2016-09-01

    Ultrasound irradiation was successfully applied for the direct oxidative amidation of benzyl alcohols with amines into the corresponding amides using graphite oxide (GO) as an oxidative and reusable solid acid catalyst in acetonitrile as solvent at 50°C under air atmosphere. The direct oxidative amidation of benzyl alcohols takes place under mild conditions yielding the corresponding amides in good to high yields (69-95%) and short reaction times under metal-free conditions.

  17. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    DOEpatents

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  18. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this section...

  19. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this section...

  20. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  1. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  2. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, coco, N- . 721.10191 Section... Substances § 721.10191 Amides, coco, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- (PMN P-06-262; CAS No. 851544-20-2)...

  3. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  4. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  5. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, coco, N- . 721.10191 Section... Substances § 721.10191 Amides, coco, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- (PMN P-06-262; CAS No. 851544-20-2)...

  6. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, coco, N- . 721.10191 Section... Substances § 721.10191 Amides, coco, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- (PMN P-06-262; CAS No. 851544-20-2)...

  7. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, coco, N- . 721.10191 Section... Substances § 721.10191 Amides, coco, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- (PMN P-06-262; CAS No. 851544-20-2)...

  8. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, peanut-oil, N- . 721.10176... Substances § 721.10176 Amides, peanut-oil, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, peanut-oil, N- (PMN P-04-144; CAS No. 691400-76...

  9. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, peanut-oil, N- . 721.10176... Substances § 721.10176 Amides, peanut-oil, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, peanut-oil, N- (PMN P-04-144; CAS No. 691400-76...

  10. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, peanut-oil, N- . 721.10176... Substances § 721.10176 Amides, peanut-oil, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, peanut-oil, N- (PMN P-04-144; CAS No. 691400-76...

  11. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, peanut-oil, N- . 721.10176... Substances § 721.10176 Amides, peanut-oil, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, peanut-oil, N- (PMN P-04-144; CAS No. 691400-76...

  12. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, peanut-oil, N- . 721.10176... Substances § 721.10176 Amides, peanut-oil, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, peanut-oil, N- (PMN P-04-144; CAS No. 691400-76...

  13. 40 CFR 721.10589 - Unsaturated fatty acids, amides with polyethylenepolyamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Unsaturated fatty acids, amides with... Specific Chemical Substances § 721.10589 Unsaturated fatty acids, amides with polyethylenepolyamine... identified generically as unsaturated fatty acids, amides with polyethylenepolyamine (PMN P-11-106)...

  14. 40 CFR 721.10590 - Fatty acids, amides with triethylentetramine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, amides with... Specific Chemical Substances § 721.10590 Fatty acids, amides with triethylentetramine (generic). (a... generically as fatty acids, amides with triethylentetramine (PMN P-11-107) is subject to reporting under...

  15. 40 CFR 721.10589 - Unsaturated fatty acids, amides with polyethylenepolyamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Unsaturated fatty acids, amides with... Specific Chemical Substances § 721.10589 Unsaturated fatty acids, amides with polyethylenepolyamine... identified generically as unsaturated fatty acids, amides with polyethylenepolyamine (PMN P-11-106)...

  16. 40 CFR 721.10590 - Fatty acids, amides with triethylentetramine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, amides with... Specific Chemical Substances § 721.10590 Fatty acids, amides with triethylentetramine (generic). (a... generically as fatty acids, amides with triethylentetramine (PMN P-11-107) is subject to reporting under...

  17. Amides and Hydrazides from Amine and Hydrazine Hydrochlorides.

    ERIC Educational Resources Information Center

    Shama, Sami A.; Tran, Thuan L.

    1978-01-01

    This safe and efficient procedure for the synthesis of N-substituted amides and hydrazides is a modification of the Schotten-Bausmann procedure in which the amine or hydrazide is replaced by the corresponding hydrochloride salt, and the use of alkali is eliminated. (Author/BB)

  18. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    SciTech Connect

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  19. Stereoselective Synthesis of Spirooxindole Amides through Nitrile Hydrozirconation

    PubMed Central

    Lu, Chunliang; Xiao, Qing; Floreancig, Paul E.

    2010-01-01

    Spirooxindole amides can be prepared by the intramolecular addition of functionalized indoles into acyliminium ions that are accessed from nitriles by hydrozirconation and acylation. The stereochemical outcome at the quaternary center was controlled by the steric bulk of the substituent at the 2-position of the indole unit. The products are well-suited for diversification to prepare libraries. PMID:20961073

  20. KNH2-KH: a metal amide-hydride solid solution.

    PubMed

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  1. Preparation and characterization of amidated derivatives of alginic acid.

    PubMed

    Taubner, Tomáš; Marounek, Milan; Synytsya, Andriy

    2017-10-01

    Alginic acid is a suitable material for modification to prepare new derivatives because of presence of its carboxyl groups. The high content of carboxyl groups over the entire length of its chain renders it an easily modifiable material with a possibility of achieving a high degree of substitution in the prepared derivatives. The salt of alginic acid (sodium alginate) is readily commercially available and is widely used in many branches of chemistry. Alginic acid was thus selected as the substrate for amidation. The amidation used two-steps: methyl esterification followed by amino-de-alkoxylation. The aim of this study was to prepare highly substituted derivatives with different polysaccharide chain characteristics. As such, the alginic acid was modified by the two-step amidation based on the esterification of the alginic acid carboxyl groups by reaction with methanol and further amino-de-alkoxylation (aminolysis) of the obtained methyl ester with amidation reagents (n-alkylamines, hydrazine and hydroxylamine). The purity and substitution degree of the prepared derivatives were monitored by vibration spectroscopic methods (FTIR and FT Raman) and organic elemental analysis. These analytical methods confirmed the preparation of highly or moderately substituted N-alkylamides, hydrazide and hydroxamic acid of alginic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides

    USDA-ARS?s Scientific Manuscript database

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, (trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults (trifluoromethyl)phenyl)-...

  3. Amides and Hydrazides from Amine and Hydrazine Hydrochlorides.

    ERIC Educational Resources Information Center

    Shama, Sami A.; Tran, Thuan L.

    1978-01-01

    This safe and efficient procedure for the synthesis of N-substituted amides and hydrazides is a modification of the Schotten-Bausmann procedure in which the amine or hydrazide is replaced by the corresponding hydrochloride salt, and the use of alkali is eliminated. (Author/BB)

  4. Universal mechanism for breaking amide bonds by ionizing radiation.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2011-07-28

    The photodissociation of the amide bond by UV light and soft x-rays is investigated by x-ray absorption spectroscopy at the C, N, and O 1s edges. Irradiation leaves a clear and universal signature for a wide variety of amides, ranging from oligopeptides to large proteins and synthetic polyamides, such as nylon. As the π∗ peak of the amide bond shrinks, two new π∗ peaks appear at the N 1s edge with a characteristic splitting of 1.1 eV. An additional characteristic is the overall intensity reduction of both the π∗ and σ∗ features at the O 1s edge, which indicates loss of oxygen. The spectroscopic results are consistent with the release of the O atom from the amide bond, followed by the migration of the H atom from the N to one of its two C neighbors. Migration to the carbonyl C leads to an imine, and migration to the C(α) of the amino acid residue leads to a nitrile. Imine and nitrile produce the two characteristic π∗ transitions at the N 1s edge. A variety of other models is considered and tested against the N 1s spectra of reference compounds.

  5. Differential induction of redox sensitive extracellular phenolic amides in potato

    USDA-ARS?s Scientific Manuscript database

    This study focuses on the differential induction of extracellular phenolic amides that accumulate in potato cell suspensions during the first few hours of the interaction between these plant cells and bacterial pathogens or pathogen-related elicitors. Using suspension cells of Solanum tuberosum we ...

  6. Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    2010-05-01

    We apply two scenarios of 11-year solar spectral forcing, namely SIM-based out-of-phase variations and proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM. For both scenarios, and both models, we find that the maximum temperature response occurs in the upper stratosphere, and temperature responses decrease downward to the surface. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are ~0.6 K in RCM and ~0.9 K over the tropical region in GCM simulations, a factor of ~5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature response to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing resembles 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two scenarios of reconstructed TSI time series (i.e., one based on 11-year cycles with background [Lean 2000] and the second from flux transport that has much less background change [Wang, Lean, and Sheeley, 2005]) provide a range of variations of TSI on centennial time scales. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI. The spectral solar forcing is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provides a first-order estimate of climate response. We report the different responses of stratosphere, troposphere, and ocean surface to these 4 scenarios of centennial spectral solar forcing. We further discuss the mechanisms for atmosphere-ocean and stratosphere

  7. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  8. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  9. Physical attributes of some clouds amid a forest ecosystem's trees

    NASA Astrophysics Data System (ADS)

    DeFelice, T. P.

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy-cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm 3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m -3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  10. Synthesis, characterization and drug delivery application of the temperature responsive pNIPA hydrogel

    NASA Astrophysics Data System (ADS)

    Craciunescu, I.; Nan, A.; Turcu, R.; Kacso, I.; Bratu, I.; Leostean, C.; Vekas, L.

    2009-08-01

    Temperature - sensitive poly (N-isopropyl acrylamide) pNIPA gels were synthesized with nano size iron oxide ferrofluids (Fe3O4) using N, N'-methylene bis-acrylamide (BIS) as the crosslinking agent, obtaining a new type of material, named ferrogel. The swelling characteristics of these ferrogels at distinct compositions, as a function of temperature were investigated. It was found that the pNIPA ferrogels demonstrated the temperature - responsive nature, and it also showed good reversibility. The FTIR spectra of pNIPA ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA and the Fe3O4 magnetic nanoparticles. The drug release experiments were performed using atenolol (AT) in simulated gastric and intestinal media. The amount of released drug was determined by UV spectroscopy at characteristic wavelength of the drug, using a calibration curve obtained from a series of drug solution with standard concentration.

  11. Temperature response of 129Xe depolarization transfer and its application for ultra-sensitive NMR detection

    SciTech Connect

    Schroeder, Leif; Schroder, Leif; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; Wemmer, David E.; Pines, Alexander

    2008-03-20

    Temporary trapping of atomic xenon in functionalized cryptophane cages makes the high sensitivity of hyperpolarized (hp) 129Xe available for highly specific NMR detection of biomolecules like proteins in solution. Here, we study the signal transfer onto a reservoir of unbound hp xenon by gating the residence time of the nuclei in the cage through the temperature-dependent exchange rate. Temperature changes were detectable immediately as an altered reservoir signal and yielded a sensitivity of 0.6 K. The temperature response is adjustable with lower concentrations of caged xenon providing more sensitivity at higher temperatures and allows ultra-sensitive detection of such molecular cages at 310 K. Functionalized cryptophane could be detected at concentrations as low as 10nM which corresponds to a 4000-fold sensitivity enhancement compared to conventional detection. This sensitivity makes hp-NMR capable of detecting such constructs in concentrations far belowthe detection limit by UV-visible light absorbance.

  12. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    PubMed

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  13. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation.

    PubMed

    Brugmans, M J; Kemper, J; Gijsbers, G H; van der Meulen, F W; van Gemert, M J

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an understanding of heat accumulation and related thermal damage during (super) pulsed CO2 laser irradiation. The experiments show a very slow decay of temperatures in the longer time regime. This behavior is well predicted by a simple model for one-dimensional heat flow that considers the CO2 laser radiation as producing a heat flux on the material surface. The critical pulse repetition frequency for which temperature accumulation is sufficiently low is estimated at about 5 Hz. Although we have not investigated the ablative situation, our results suggest that very low pulse frequencies in microsurgical procedures may be recommended.

  14. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  15. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    NASA Astrophysics Data System (ADS)

    Portner, H.; Bugmann, H.; Wolf, A.

    2009-08-01

    Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not understood. Thus, we made an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS. We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff). We determined the parameter uncertainty ranges of the functions by nonlinear regression analysis based on eight experimental datasets from northern hemisphere ecosystems. We sampled over the uncertainty bounds of the parameters and run simulations for each pair of temperature response function and calibration site. The uncertainty in both long-term and short-term soil carbon dynamics was analyzed over an elevation gradient in southern Switzerland. The function of Lloyd-Taylor turned out to be adequate for modelling the temperature dependency of soil organic matter decomposition, whereas the other functions either resulted in poor fits (Exponential, Arrhenius) or were not applicable for all datasets (Gaussian, Van't Hoff). There were two main sources of uncertainty for model simulations: (1) the uncertainty in the parameter estimates of the response functions, which increased with increasing temperature and (2) the uncertainty in the simulated size of carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. The higher uncertainty in carbon pools with slow turn-over rates has important implications for the uncertainty in the projection of the change of soil carbon stocks driven by climate change, which turned out to be more uncertain for higher elevations and hence higher latitudes, which are of key importance for the global terrestrial carbon budget.

  16. Acute Effects of Normobaric Hypoxia on Hand-Temperature Responses During and After Local Cold Stress

    PubMed Central

    Kölegård, Roger; Mekjavic, Igor B.; Eiken, Ola

    2014-01-01

    Abstract Keramidas, Michail E, Roger Kölegård, Igor B. Mekjavic, and Ola Eiken. Acute effects of normobaric hypoxia on hand-temperature responses during and after local cold stress. High Alt Med Biol. 15:183–191, 2014.—The purpose was to investigate acute effects of normobaric hypoxia on hand-temperature responses during and after a cold-water hand immersion test. Fifteen males performed two right-hand immersion tests in 8°C water, during which they were inspiring either room air (Fio2: 0.21; AIR), or a hypoxic gas mixture (Fio2: 0.14; HYPO). The tests were conducted in a counterbalanced order and separated by a 1-hour interval. Throughout the 30-min cold-water immersion (CWI) and the 15-min spontaneous rewarming (RW) phases, finger-skin temperatures were measured continuously with thermocouple probes; infrared thermography was also employed during the RW phase to map all segments of the hand. During the CWI phase, the average skin temperature (Tavg) of the fingers did not differ between the conditions (AIR: 10.2±0.5°C, HYPO: 10.0±0.5°C; p=0.67). However, Tavg was lower in the HYPO than the AIR RW phase (AIR: 24.5±3.4°C; HYPO: 22.0±3.8°C; p=0.002); a response that was alike in all regions of the immersed hand. Accordingly, present findings suggest that acute exposure to normobaric hypoxia does not aggravate the cold-induced drop in hand temperature of normothermic males. Still, hypoxia markedly impairs the rewarming responses of the hand. PMID:24666109

  17. A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen

    PubMed Central

    Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita

    2013-01-01

    Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and

  18. Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses.

    PubMed

    Alonso, Aitor; Pérez, Pilar; Morcuende, Rosa; Martinez-Carrasco, Rafael

    2008-01-01

    The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.

  19. Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy.

    PubMed

    Araki, Masatake G; Gyokusen, Koichiro; Kajimoto, Takuya

    2017-02-23

    Leaf respiration (R) is a major component of carbon balance in forest ecosystems. Clarifying the variability of leaf R within a canopy is essential for predicting the impact of global warming on forest productivity and the potential future function of the forest ecosystem as a carbon sink. We examined vertical and seasonal variations in short-term temperature responses of leaf R as well as environmental factors (light and mean air temperature) and physiological factors [leaf nitrogen (N), leaf mass per area (LMA), and shoot growth] in the canopy of a 10-year-old stand of hinoki cypress [Chamaecyparis obtusa (Sieb. et Zucc.) Endl.] in Kyushu, Japan. Leaf respiration rate adjusted to 20 °C (R20) exhibited evident vertical gradients in each season and was correlated with light, LMA and leaf N. In contrast, the temperature sensitivity of leaf R (Q10) did not vary vertically throughout the seasons. Seasonally, Q10 was higher in winter than in summer and was strongly negatively correlated to mean air temperature. A negative correlation of R20 with mean air temperature was also observed for each of the three canopy layers. These results clearly indicate that leaf R was able to adjust to seasonal changes in ambient temperature under field conditions and down-regulate during warmer periods. We also found that the degree of thermal acclimation did not vary with canopy position. Overall, our results suggest that vertical and seasonal variations in temperature responses of leaf R within a hinoki cypress canopy could be predicted by relatively simple parameters (light and temperature). There was an exception of extremely high R20 values in April that may have been due to the onset of shoot growth in spring. Understanding thermal acclimation and variations in leaf R within forest canopies will improve global terrestrial carbon cycle models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Temperature response of methane production in liquid manures and co-digestates.

    PubMed

    Elsgaard, Lars; Olsen, Anne B; Petersen, Søren O

    2016-01-01

    Intensification of livestock production makes correct estimation of methanogenesis in liquid manure increasingly important for inventories of CH4 emissions. Such inventories currently rely on fixed methane conversion factors as knowledge gaps remain with respect to detailed temperature responses of CH4 emissions from liquid manure. Here, we describe the temperature response of CH4 production in liquid cattle slurry, pig slurry, and fresh and stored co-digested slurry from a thermophilic biogas plant. Subsamples of slurry were anoxically incubated at 20 temperatures from 5-52°C in a temperature gradient incubator and CH4 production was measured by gas chromatographic analysis of headspace gas after a 17-h incubation period. Methane production potentials at 5-37°C were described by the Arrhenius equation (modelling efficiencies, 79.2-98.1%), and the four materials showed a consistent activation energy (Ea) which averaged 81.0kJmol(-1) (95% confidence interval, 74.9-87.1kJmol(-1)) corresponding to a temperature sensitivity (Q10) of 3.4. In contrast, the frequency factor (A) differed among the slurry materials (30.1

  1. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  2. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  3. Enhanced cellular uptake and gene silencing activity of siRNA using temperature-responsive polymer-modified liposome.

    PubMed

    Wang, Jian; Ayano, Eri; Maitani, Yoshie; Kanazawa, Hideko

    2017-05-15

    Short interfering RNA (siRNA) delivery systems using nanoparticle carriers have been limited by inefficient intracellular delivery. One drawback is the poor cellular uptake of siRNA/particle complexes through the plasma membrane and release of the nucleic acids into the cytosol. In this study, to develop the temperature-responsive liposome as a novel carrier for siRNA delivery, we prepared lipoplexes and assessed cellular uptake of siRNA and gene silencing activity of target genes, compared with those of a commercial transfection reagent, Lipofectamine RNAiMAX, and non-modified or PEGylated liposomes. The temperature-responsive polymer, N-isopropylacrylamide-co-N,N'-dimethylaminopropylacrylamide [P(NIPAAm-co-DMAPAAm)]-modified liposome induced faster intracellular delivery because P(NIPAAm-co-DMAPAAm) exhibits a lower critical solution temperature (LCST) changing its nature from hydrophilic to hydrophobic above the LCST. The temperature-responsive liposomes showed significantly higher gene silencing activity than other carriers with less cytotoxicity. Furthermore, we showed that the temperature-responsive lipoplexes were internalized mainly via microtubule-dependent transport and also by the clathrin-mediated endocytosis pathway. This is the first report that temperature-responsive polymer-modified liposomes thermally enhanced silencing activity of siRNA. The dehydrated polymer on the liposomes, and its aggregation caused around the LCST, can probably be attributed to effective cellular uptake of the lipoplexes for gene silencing activity by interaction with the cell membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An isotopic investigation of the temperature response of young and old soil organic matter respiration

    NASA Astrophysics Data System (ADS)

    Burns, Nancy; Cloy, Joanna; Garnett, Mark; Reay, David; Smith, Keith; Otten, Wilfred

    2010-05-01

    The effect of temperature on rates of soil respiration is critical to our understanding of the terrestrial carbon cycle and potential feedbacks to climate change. The relative temperature sensitivity of labile and recalcitrant soil organic matter (SOM) is still controversial; different studies have produced contrasting results, indicating limited understanding of the underlying relationships between stabilisation processes and temperature. Current global carbon cycle models still rely on the assumption that SOM pools with different decay rates have the same temperature response, yet small differences in temperature response between pools could lead to very different climate feedbacks. This study examined the temperature response of soil respiration and the age of soil carbon respired from radiocarbon dated fractions of SOM (free, intra-aggregate and mineral-bound) and whole soils (organic and mineral layers). Samples were collected from a peaty gley soil from Harwood Forest, Northumberland, UK. SOM fractions were isolated from organic layer (5 - 17 cm) material using high density flotation and ultrasonic disaggregation - designated as free (< 1.8 g cm-3), intra-aggregate (< 1.8 g cm-3 within aggregates > 1.8 g cm-3) and mineral-bound (> 1.8 g cm-3) SOM. Fractions were analysed for chemical composition (FTIR, CHN analysis, ICP-OES), 14C (AMS), δ13C and δ15N (MS) and thermal properties (DSC). SOM fractions and bulk soil from the organic layer and the mineral layer (20 - 30 cm) were incubated in sealed vessels at 30 ° C and 10 ° C for 3 or 9 months to allow accumulation of CO2 sufficient for sampling. Accumulated respired CO2 samples were collected on zeolite molecular sieve cartridges and used for AMS radiocarbon dating. In parallel, material from the same fractions and layers were incubated at 10 ° C, 15 ° C, 25 ° C and 30 ° C for 6 months and sampled weekly for CO2 flux measurements using GC chromatography. Initial data have shown radiocarbon ages ranging

  5. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  6. Neighboring amide participation in thioether oxidation: relevance to biological oxidation.

    PubMed

    Glass, Richard S; Hug, Gordon L; Schöneich, Christian; Wilson, George S; Kuznetsova, Larisa; Lee, Tang-man; Ammam, Malika; Lorance, Edward; Nauser, Thomas; Nichol, Gary S; Yamamoto, Takuhei

    2009-09-30

    To investigate neighboring amide participation in thioether oxidation, which may be relevant to brain oxidative stress accompanying beta-amyloid peptide aggregation, conformationally constrained methylthionorbornyl derivatives with amido moieties were synthesized and characterized, including an X-ray crystallographic study of one of them. Electrochemical oxidation of these compounds, studied by cyclic voltammetry, revealed that their oxidation peak potentials were less positive for those compounds in which neighboring group participation was geometrically possible. Pulse radiolysis studies provided evidence for bond formation between the amide moiety and sulfur on one-electron oxidation in cases where the moieties are juxtaposed. Furthermore, molecular constraints in spiro analogues revealed that S-O bonds are formed on one-electron oxidation. DFT calculations suggest that isomeric sigma*(SO) radicals are formed in these systems.

  7. Enzymatic synthesis of fatty amides from palm olein.

    PubMed

    Al-Mulla, Emad A Jaffar; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa Bt; Rahman, Mohd Zaki A

    2010-01-01

    Fatty amides have been successfully synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The fatty amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (96%) was obtained when the process was carried out for 36 hours using urea to palm oil ratio of 5.2: 1.0 at 40 degrees C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.

  8. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  9. Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction

    PubMed Central

    Váradi, András; Palmer, Travis C.; Haselton, Nathan; Afonin, Daniel; Subrath, Joan J.; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W.; Marrone, Gina F.; Borics, Attila; Majumdar, Susruta

    2015-01-01

    We report a novel approach to synthesize carfentanil amide analogues utilizing the isocyanide-based four-component Ugi multicomponent reaction. A small library of bis-amide analogues of carfentanil was created using N-alkylpiperidones, aniline, propionic acid, and various aliphatic isocyanides. Our lead compound showed high affinity for mu (MOR) and delta opioid receptors (DOR) with no appreciable affinity for kappa (KOR) receptors in radioligand binding assays. The compound was found to be a mixed MOR agonist/partial DOR agonist in [35S]GTPγS functional assays, and it showed moderate analgesic potency in vivo. The compound showed no visible signs of physical dependence or constipation in mice. In addition, it produced less respiratory depression than morphine. Most mixed MOR/DOR opioids reported in the literature are peptides and thereby systemically inactive. Our approach utilizing a multicomponent reaction has the promise to deliver potent and efficacious small-molecule analgesics with potential clinical utility. PMID:26148793

  10. Amino alcohol-based degradable poly(ester amide) elastomers

    PubMed Central

    Bettinger, Christopher J.; Bruggeman, Joost P.; Borenstein, Jeffrey T.; Langer, Robert S.

    2009-01-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young’s modulus on the order of 1 MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo. PMID:18295329

  11. Amino alcohol-based degradable poly(ester amide) elastomers.

    PubMed

    Bettinger, Christopher J; Bruggeman, Joost P; Borenstein, Jeffrey T; Langer, Robert S

    2008-05-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young's modulus on the order of 1MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo.

  12. Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction.

    PubMed

    Váradi, András; Palmer, Travis C; Haselton, Nathan; Afonin, Daniel; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; Marrone, Gina F; Borics, Attila; Majumdar, Susruta

    2015-09-16

    We report a novel approach to synthesize carfentanil amide analogues utilizing the isocyanide-based four-component Ugi multicomponent reaction. A small library of bis-amide analogues of carfentanil was created using N-alkylpiperidones, aniline, propionic acid, and various aliphatic isocyanides. Our lead compound showed high affinity for mu (MOR) and delta opioid receptors (DOR) with no appreciable affinity for kappa (KOR) receptors in radioligand binding assays. The compound was found to be a mixed MOR agonist/partial DOR agonist in [(35)S]GTPγS functional assays, and it showed moderate analgesic potency in vivo. The compound showed no visible signs of physical dependence or constipation in mice. In addition, it produced less respiratory depression than morphine. Most mixed MOR/DOR opioids reported in the literature are peptides and thereby systemically inactive. Our approach utilizing a multicomponent reaction has the promise to deliver potent and efficacious small-molecule analgesics with potential clinical utility.

  13. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  14. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  15. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Hibino, T.; Mehta, S. K.; Gray, L.; Mitchell, D.; Anstey, J.

    2015-12-01

    The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979-2009 (for eight reanalysis data sets) and 1958-2001 (for four reanalysis data sets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2-3 K for 1-year average) in the tropical lower stratosphere and weak cooling signals (down to -1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed geoengineering by stratospheric

  16. Polyelectrolyte multilayers of diblock copolymer micelles with temperature-responsive cores.

    PubMed

    Xu, Li; Zhu, Zhichen; Sukhishvili, Svetlana A

    2011-01-04

    We report on assembly and stimuli-response behavior of layer-by-layer (LbL) films of pH- and temperature-responsive cationic diblock copolymer micelles (BCMs) of poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) and a linear polyanion polystyrene sulfonate (PSS). As a function of solution pH at temperatures above lower critical solution temperature (LCST) of PNIPAM, PDMA-b-PNIPAM micelles have been demonstrated earlier to exhibit an abrupt change in micellar aggregation number and hydrodynamic size between larger and smaller BCMs (LBCMs and SBCMs, respectively). Here, LBCMs or SBCMs were included within LbL films through self-assembly with a polyanion, and film pH and temperature responses were studied using ellipsometry and atomic force microscopy (AFM). Both types of micelle preserved their micellar morphology when adsorbed at the surface of oxidized silicon wafers coated with PSS-terminated precursor layer at a constant pH. Response of adsorbed BCMs to temperature and pH variations was strongly dependent on whether or not BCMs were coated with the PSS layer. While monolayers of LBCMs lost their original dry morphology in response to pH or temperature variations, depositing a PSS layer atop LBCMs inhibited such irreversible restructuring. As a result of wrapping around and strong binding of PSS chains with LBCM micelles, BCM/PSS assemblies preserved their original dry state morphology despite the application of pH and temperature triggers. However, the wet-state film response to pH and temperature stimuli was drastically different. Swelling of BCM/PSS multilayers was strongly affected by temperature but was almost independent of pH due to neutralization of BCM PDMA's coronal charge with PSS. Cycling the temperature below and above PNIPAM's LCST caused PNIPAM chains within BCM cores to swell or collapse, resulting in reversible swelling transitions in the entire BCM/PSS assemblies. Temperature-controlled switching between

  17. Re-visiting our understanding of surface temperature response to climate forcing

    NASA Astrophysics Data System (ADS)

    Outten, S.; Davy, R.; Chen, L.

    2015-12-01

    We know that the surface temperature response, dT, to a perturbation in the climate forcing is determined by (1) the magnitude of the forcing, (2) any feedback effects and (3) the effective heat capacity of the system. These three components can be related through an energy budget model of the form dT = dQ/C, where dQ is the net heat perturbation from the combination of the forcing perturbation and the feedback processes, and C is the effective heat capacity of the system. On long, multi-decadal to centennial timescales, C is defined by the ocean. But on shorter timescales, the effective heat capacity in the atmosphere can determine the pattern of the surface temperature change. It has been demonstrated that the effective heat capacity of the atmosphere is defined by the volume of air through which that heat is distributed i.e. defined by the planetary boundary layer depth, h. The boundary-layer depth can vary from ~100 m to a few km across different locations, and during the seasonal and diurnal cycles. So even under a uniform forcing we can expect a strongly asymmetrical warming (or cooling) based on the climatology of h. We demonstrate this relationship in the recent warming period using a combination of surface observations and reanalysis products and find that it is the climatology of h which is the strongest predictor of the pattern of warming during the satellite era (1979-present). This has important implications for the detection of climate forcing and feedback signals through the surface temperature. In many current detection and attribution studies of climate feedback processes we assume a linear relationship between a perturbation in the forcing, dQ, and the corresponding change in temperature, dT. However, the inverse relationship between h and the strength of dT means that we can get strongly amplified temperature responses in conditions with shallow h, and this linear relationship breaks down. We demonstrate that these conditions where h

  18. Amide and Peptide Bond Formation in Water at Room Temperature.

    PubMed

    Gabriel, Christopher M; Keener, Megan; Gallou, Fabrice; Lipshutz, Bruce H

    2015-08-21

    A general and environmentally responsible method for the formation of amide/peptide bonds in an aqueous micellar medium is described. Use of uronium salt (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate (COMU) as a coupling reagent, 2,6-lutidine, and TPGS-750-M represents mild conditions associated with these valuable types of couplings. The aqueous reaction medium is recyclable leading to low E Factors.

  19. Optimization of amide-based EP3 receptor antagonists.

    PubMed

    Lee, Esther C Y; Futatsugi, Kentaro; Arcari, Joel T; Bahnck, Kevin; Coffey, Steven B; Derksen, David R; Kalgutkar, Amit S; Loria, Paula M; Sharma, Raman

    2016-06-01

    Prostaglandin E receptor subtype 3 (EP3) antagonism may treat a variety of symptoms from inflammation to cardiovascular and metabolic diseases. Previously, most EP3 antagonists were large acidic ligands that mimic the substrate, prostaglandin E2 (PGE2). This manuscript describes the optimization of a neutral small molecule amide series with improved lipophilic efficiency (LipE) also known as lipophilic ligand efficiency (LLE) ((a) Nat. Rev. Drug Disc.2007, 6, 881; (b) Annu. Rep. Med. Chem.2010, 45, 380).

  20. Novel substrates and inhibitors of peptidylglycine alpha-amidating monooxygenase.

    PubMed

    Katopodis, A G; May, S W

    1990-05-15

    Peptidylglycine alpha-amidating monooxygenase (PAM, EC 1.14.17.3) catalyzes the formation of alpha-amidated peptides from their glycine-extended precursors, thus playing a key role in the processing of peptide neurohormones. We now report that PAM readily catalyzes three alternate monooxygenase reactions--sulfoxidation, amine N-dealkylation, and O-dealkylation. Thus, (4-nitrobenzyl)thioacetic acid is converted to the analogous sulfoxide, N-(4-nitrobenzyl)glycine is converted to 4-nitrobenzylamine and glyoxylate, and [(4-nitrobenzyl)oxy]acetic acid is converted to 4-nitrobenzyl alcohol and glyoxylate. All these new activities display the characteristics expected for the normal PAM-catalyzed reductive oxygenation pathway and produce an equimolar amount of glyoxylate together with the heteroatom-containing dealkylation products. The ester [(4-methoxybenzoyl)oxy]acetic acid is not a PAM substrate, but is instead a good competitive inhibitor (KI = 0.48 mM). In addition, we report that the olefinic substrate analogues trans-benzoylacrylic acid and 4-phenyl-3-butenoic acid are potent time-dependent inactivators of PAM, with inactivation exhibiting the characteristics expected for mechanism-based inhibition. Monoethyl fumarate is also a time-dependent inactivator of PAM. Finally, we introduce several small non-peptide substrates for PAM by demonstrating that PAM catalyzes the transformation of hippuric acid and several ring-substituted derivatives to the corresponding benzamides and glyoxylic acid, with the most facile substrate of this class being 4-nitrohippuric acid. These compounds are the smallest amide substrates yet reported for PAM, and it is thus apparent that only the minimal structure of an acylglycine is required for PAM-catalyzed oxygenative amidation.

  1. Potent and orally efficacious benzothiazole amides as TRPV1 antagonists.

    PubMed

    Besidski, Yevgeni; Brown, William; Bylund, Johan; Dabrowski, Michael; Dautrey, Sophie; Harter, Magali; Horoszok, Lucy; Hu, Yin; Johnson, Dean; Johnstone, Shawn; Jones, Paul; Leclerc, Sandrine; Kolmodin, Karin; Kers, Inger; Labarre, Maryse; Labrecque, Denis; Laird, Jennifer; Lundström, Therese; Martino, John; Maudet, Mickaël; Munro, Alexander; Nylöf, Martin; Penwell, Andrea; Rotticci, Didier; Slaitas, Andis; Sundgren-Andersson, Anna; Svensson, Mats; Terp, Gitte; Villanueva, Huascar; Walpole, Christopher; Zemribo, Ronald; Griffin, Andrew M

    2012-10-01

    Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.

  2. Total chemical synthesis of lassomycin and lassomycin-amide.

    PubMed

    Lear, S; Munshi, T; Hudson, A S; Hatton, C; Clardy, J; Mosely, J A; Bull, T J; Sit, C S; Cobb, S L

    2016-05-11

    Herein we report a practical synthetic route to the lasso peptide lassomycin () and C-terminal variant lassomycin-amide (). The biological evaluation of peptides and against Mycobacterium tuberculosis revealed that neither had any activity against this bacterium. This lack of biological activity has led us to propose that naturally occurring lassomycin may actually exhibit a standard lasso peptide threaded conformation rather than the previously reported unthreaded structure.

  3. Rapid Access to 3-Aminoindazoles from Tertiary Amides.

    PubMed

    Cyr, Patrick; Régnier, Sophie; Bechara, William S; Charette, André B

    2015-07-17

    A two-step synthesis of structurally diverse 3-aminoindazoles from readily available starting materials was developed. This sequence includes a one-pot synthesis of aminohydrazones through chemoselective Tf2O-mediated activation of tertiary amides and subsequent addition of nucleophilic hydrazides. These precursors then participate in an intramolecular ligand-free Pd-catalyzed C-H amination reaction. The azaheterocycles synthesized via this approach were further diversified through subsequent deprotection/functionalization reactions.

  4. T. thermophila group I introns that cleave amide bonds

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  5. Microbial degradation of seven amides by suspended bacterial populations.

    PubMed Central

    Steen, W C; Collette, T W

    1989-01-01

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the second-order rate constants for these amides. Second-order rate constants (k2) ranged from a low of 2.0 X 10(-14) to a high of 1.1 X 10(-9) liters organism-1 h-1 for niclosamide (2',5-dichloro-4'-nitrosalicylanilide) and propachlor (2-chloro-N-isopropylacetanilide), respectively. The mechanism of degradation (i.e., microbially mediated hydrolysis) of the amides was consistent with that of other organic chemicals previously studied in a variety of natural waters. Preliminary investigations indicate that temporal variations in measured second-order rate constants are small. A simple linear regression of the infrared carbonyl-stretching frequency with log K2 gave a correlation coefficient (r2) of 0.962. PMID:2604396

  6. Isotope-enriched protein standards for computational amide I spectroscopy

    SciTech Connect

    Reppert, Mike; Roy, Anish R.; Tokmakoff, Andrei

    2015-03-28

    We present a systematic isotope labeling study of the protein G mutant NuG2b as a step toward the production of reliable, structurally stable, experimental standards for amide I infrared spectroscopic simulations. By introducing isotope enriched amino acids into a minimal growth medium during bacterial expression, we induce uniform labeling of the amide bonds following specific amino acids, avoiding the need for chemical peptide synthesis. We use experimental data to test several common amide I frequency maps and explore the influence of various factors on map performance. Comparison of the predicted absorption frequencies for the four maps tested with empirical assignments to our experimental spectra yields a root-mean-square error of 6-12 cm{sup −1}, with outliers of at least 12 cm{sup −1} in all models. This means that the predictions may be useful for predicting general trends such as changes in hydrogen bonding configuration; however, for finer structural constraints or absolute frequency assignments, the models are unreliable. The results indicate the need for careful testing of existing literature maps and shed light on possible next steps for the development of quantitative spectral maps.

  7. A bioactive peptide amidating enzyme is required for ciliogenesis

    PubMed Central

    Kumar, Dhivya; Strenkert, Daniela; Patel-King, Ramila S; Leonard, Michael T; Merchant, Sabeeha S; Mains, Richard E; King, Stephen M; Eipper, Betty A

    2017-01-01

    The pathways controlling cilium biogenesis in different cell types have not been fully elucidated. We recently identified peptidylglycine α-amidating monooxygenase (PAM), an enzyme required for generating amidated bioactive signaling peptides, in Chlamydomonas and mammalian cilia. Here, we show that PAM is required for the normal assembly of motile and primary cilia in Chlamydomonas, planaria and mice. Chlamydomonas PAM knockdown lines failed to assemble cilia beyond the transition zone, had abnormal Golgi architecture and altered levels of cilia assembly components. Decreased PAM gene expression reduced motile ciliary density on the ventral surface of planaria and resulted in the appearance of cytosolic axonemes lacking a ciliary membrane. The architecture of primary cilia on neuroepithelial cells in Pam-/- mouse embryos was also aberrant. Our data suggest that PAM activity and alterations in post-Golgi trafficking contribute to the observed ciliogenesis defects and provide an unanticipated, highly conserved link between PAM, amidation and ciliary assembly. DOI: http://dx.doi.org/10.7554/eLife.25728.001 PMID:28513435

  8. Isotope-enriched protein standards for computational amide I spectroscopy

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Roy, Anish R.; Tokmakoff, Andrei

    2015-03-01

    We present a systematic isotope labeling study of the protein G mutant NuG2b as a step toward the production of reliable, structurally stable, experimental standards for amide I infrared spectroscopic simulations. By introducing isotope enriched amino acids into a minimal growth medium during bacterial expression, we induce uniform labeling of the amide bonds following specific amino acids, avoiding the need for chemical peptide synthesis. We use experimental data to test several common amide I frequency maps and explore the influence of various factors on map performance. Comparison of the predicted absorption frequencies for the four maps tested with empirical assignments to our experimental spectra yields a root-mean-square error of 6-12 cm-1, with outliers of at least 12 cm-1 in all models. This means that the predictions may be useful for predicting general trends such as changes in hydrogen bonding configuration; however, for finer structural constraints or absolute frequency assignments, the models are unreliable. The results indicate the need for careful testing of existing literature maps and shed light on possible next steps for the development of quantitative spectral maps.

  9. Effects of temperature-responsive hydrogel on viscosity of denture adhesives.

    PubMed

    Zhao, Huizi; Akiba, Norihisa; Tanimoto, Hiroyuki; Yoshizaki, Taro; Yalikun, Kaidiliya; Minakuchi, Shunsuke

    2016-01-01

    The cream type of denture adhesives after use cannot be easily removed from oral mucosa and have the potential risk to change the oral flora. The effects of the temperature-responsive hydrogel Pluronic F-127 (PF) on the complex viscosity of denture adhesives were evaluated. Carboxy methylcellulose (CMC) mass fractions (1, 2, 3 and 4%) were added to 20 and 25% PF hydrogels. Complex viscosity was measured over a temperature cycle (40→10→40°C) and fixed temperature points (23 and 37°C). Adhesive strength tests were performed with 2 resin plates at 23 and 37°C. One commercial cream-type denture adhesive, New Poligrip® (NP), was evaluated as a control. Complex viscosity values for PF20% groups at 23°C were lower than those for NP at 37°C. Adhesive strength of PF20% with CMC2%, was higher at 23°C when compared to NP at 37°C, which suggests that PF20%CMC2% is an effective adhesive and is easily removed after mouth rinsing.

  10. Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals.

    PubMed

    Lamprou, Alexandros; Gavriilidou, Agni-Faviola-Mika; Storti, Giuseppe; Soos, Miroslav; Morbidelli, Massimo

    2015-08-14

    A macroporous particulate support prepared previously by reactive gelation under shear and functionalized with poly(N-isopropylacrylamide), PNIPAM, brushes of variable length is applied for temperature-responsive chromatography, whereby temperature modulates hydrophobic interactions. Several different analytes, including small pharmaceuticals, peptides, proteins and monoclonal antibodies are employed. Contrary to the most commonly observed behavior in conventional chromatography, increasing retention is observed at elevated temperatures. Peak broadening is quantified using the peak standard deviation, which depends on both the polymer chain conformation and analyte adsorptivity. The favorable effect of grafted polymer thickness on retention becomes progressively less pronounced for thicker grafted PNIPAM layers. The effect of eluent composition on solute-sorbent interactions was investigated by introducing NaCl, methanol, dioxane and by varying the pH. Salt or organic solvent addition affects apart from the analytes solution properties, the hydrophobicity of the stationary phase itself. Frontal analyses performed at different temperatures to determine dynamic binding capacities, indicate small mass transfer resistances imposed by this novel packing material. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Controllable and switchable drug delivery of ibuprofen from temperature responsive composite nanofibers

    NASA Astrophysics Data System (ADS)

    Tran, Toan; Hernandez, Mariana; Patel, Dhruvil; Burns, Elena; Peterman, Vanessa; Wu, Ji

    2015-08-01

    Composited electrospun nanofibers made of temperature-responsive poly(N-isopropylacrylamide) (pNIPAM) and biodegradable poly (ɛ-caprolactone) (PCL) can be utilized for `on-demand' and controlled drug release of ibuprofen without burst effect for potential pharmaceutical applications. Three types of nanofibers, PCL, pNIPAM and pNIPAM/PCL composite NFs containing ibuprofen were fabricated using electrospinning techniques. Ibuprofen release rates from PCL NFs are not affected by the temperature in the range of 22-34°C (less than 10%). In contrast, the ibuprofen release rates from pNIPAM NFs are very sensitive to the change in temperature, which is five times higher at 22°C compared to 34°C. However, there is a serious burst effect at 22°C. Compared to other two types of NFs, pNIPAM/PCL composite NFs prepared demonstrated a variable and controlled release at both room and higher temperature, due to the extra protection from the hydrophobic poly (ɛ-caprolactone). The rate at 22°C is 75% faster compared to that at 34°C. This kind of composite design can provide a novel approach to suppress the burst effect in drug delivery systems for potential pharmaceutical applications.

  12. Temperature responsive porous silicon nanoparticles for cancer therapy - spatiotemporal triggering through infrared and radiofrequency electromagnetic heating.

    PubMed

    Tamarov, Konstantin; Xu, Wujun; Osminkina, Liubov; Zinovyev, Sergey; Soininen, Pasi; Kudryavtsev, Andrey; Gongalsky, Maxim; Gaydarova, Azha; Närvänen, Ale; Timoshenko, Victor; Lehto, Vesa-Pekka

    2016-11-10

    One critical functionality of the carrier system utilized in targeted drug delivery is its ability to trigger the release of the therapeutic cargo once the carrier has reached its target. External triggering is an alluring approach as it can be applied in a precise spatiotemporal manner. In the present study, we achieved external triggering through the porous silicon (PSi) nanoparticles (NPs) by providing a pulse of infrared or radiofrequency radiation. The NPs were grafted with a temperature responsive polymer whose critical temperature was tailored to be slightly above 37°C. The polymer coating improved the biocompatibility of the NPs significantly in comparison with their uncoated counterparts. Radiation induced a rapid temperature rise, which resulted in the collapse of the polymer chains facilitating the cargo release. Both infrared and radiofrequency radiation were able to efficiently trigger the release of the encapsulated drug in vitro and induce significant cell death in comparison to the control groups. Radiofrequency radiation was found to be more efficient in vitro, and the treatment efficacy was verified in vivo in a lung carcinoma (3LL) mice model. After a single intratumoral administration of the carrier system combined with radiofrequency radiation, there was clear suppression of the growth of the carcinoma and a prolongation of the survival time of the animals.

  13. The use of infrared thermography to detect the skin temperature response to physical activity

    NASA Astrophysics Data System (ADS)

    Tanda, G.

    2015-11-01

    Physical activity has a noticeable effect on skin blood flow and temperature. The thermal regulatory and hemodynamic processes during physical activity are controlled by two conflicting mechanisms: the skin vasoconstriction induced by the blood flow demand to active muscles and the skin vasodilation required by thermoregulation to increase warm blood flow and heat conduction to the skin. The time-evolution of skin temperature during exercise can give useful information about the adaptation of the subject as a function of specific type, intensity and duration of exercise. In this paper, infrared thermography is used to investigate the thermal response of skin temperature during running exercise on treadmill for a group of seven healthy and trained runners. Two different treadmill exercises are considered: a graded load exercise and a constant load exercise; for both exercises the duration was 30 minutes. Within the limits due to the relatively small size of the sample group, results typically indicate a fall in skin temperature during the initial stage of running exercise. As the exercise progresses, the dynamics of the skin temperature response depends on the type of exercise (graded versus constant load) and probably on the level of training of the subject.

  14. Self-Assembly of Temperature-Responsive Protein–Polymer Bioconjugates

    PubMed Central

    2015-01-01

    We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed “click” chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition. PMID:26083370

  15. Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes

    PubMed Central

    Idota, Naokazu; Ebara, Mitsuhiro; Kotsuchibashi, Yohei; Narain, Ravin; Aoyagi, Takao

    2012-01-01

    Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hypatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA120 and HepG2 cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs). RCA120 showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG2 cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG2 cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing ‘on–off’ cell capture/release substrates for various biomedical applications such as selective cell separation. PMID:27877533

  16. Temperature responsive hydrogels enable transient three-dimensional tumor cultures via rapid cell recovery.

    PubMed

    Heffernan, John M; Overstreet, Derek J; Srinivasan, Sanjay; Le, Long D; Vernon, Brent L; Sirianni, Rachael W

    2016-01-01

    Recovery of live cells from three-dimensional (3D) culture would improve analysis of cell behaviors in tissue engineered microenvironments. In this work, we developed a temperature responsive hydrogel to enable transient 3D culture of human glioblastoma (GBM) cells. N-isopropylacrylamide was copolymerized with hydrophilic grafts and functionalized with the cell adhesion peptide RGD to yield the novel copolymer poly(N-isopropylacrylamide-co-Jeffamine(®) M-1000 acrylamide-co-hydroxyethylmethacrylate-RGD), or PNJ-RGD. This copolymer reversibly gels in aqueous solutions when heated under normal cell culture conditions (37°C). Moreover, these gels redissolve within 70 s when cooled to room temperature without the addition of any agents to degrade the synthetic scaffold, thereby enabling rapid recollection of viable cells after 3D culture. We tested the efficiency of cell recovery following extended 3D culture and were able to recover more than 50% of viable GBM cells after up to 7 days in culture. These data demonstrate the utility of physically crosslinked PNJ-RGD hydrogels as a platform for culture and recollection of cells in 3D. © 2015 Wiley Periodicals, Inc.

  17. Seasonal temperature responses to land-use change in the western United States

    USGS Publications Warehouse

    Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, Mary; Du, H.; Weare, B.

    2008-01-01

    In the western United States, more than 79 000??km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to - 3.1????C) and maximum (- 2.9 to - 6.1????C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. ?? 2007 Elsevier B.V. All rights reserved.

  18. Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes

    NASA Astrophysics Data System (ADS)

    Idota, Naokazu; Ebara, Mitsuhiro; Kotsuchibashi, Yohei; Narain, Ravin; Aoyagi, Takao

    2012-12-01

    Temperature-responsive glycopolymer brushes were designed to investigate the effects of grafting architectures of the copolymers on the selective adhesion and collection of hypatocytes. Homo, random and block sequences of N-isopropylacrylamide and 2-lactobionamidoethyl methacrylate were grafted on glass substrates via surface-initiated atom transfer radical polymerization. The galactose/lactose-specific lectin RCA120 and HepG2 cells were used to test for specific recognition of the polymer brushes containing galactose residues over the lower critical solution temperatures (LCSTs). RCA120 showed a specific binding to the brush surfaces at 37 °C. These brush surfaces also facilitated the adhesion of HepG2 cells at 37 °C under nonserum conditions, whereas no adhesion was observed for NIH-3T3 fibroblasts. When the temperature was decreased to 25 °C, almost all the HepG2 cells detached from the block copolymer brush, whereas the random copolymer brush did not release the cells. The difference in releasing kinetics of cells from the surfaces with different grafting architectures can be explained by the correlated effects of significant changes in LCST, mobility, hydrophilicity and mechanical properties of the grafted polymer chains. These findings are important for designing ‘on-off’ cell capture/release substrates for various biomedical applications such as selective cell separation.

  19. Acute effects of normobaric hypoxia on hand-temperature responses during and after local cold stress.

    PubMed

    Keramidas, Michail E; Kölegård, Roger; Mekjavic, Igor B; Eiken, Ola

    2014-06-01

    The purpose was to investigate acute effects of normobaric hypoxia on hand-temperature responses during and after a cold-water hand immersion test. Fifteen males performed two right-hand immersion tests in 8°C water, during which they were inspiring either room air (Fio2: 0.21; AIR), or a hypoxic gas mixture (Fio2: 0.14; HYPO). The tests were conducted in a counterbalanced order and separated by a 1-hour interval. Throughout the 30-min cold-water immersion (CWI) and the 15-min spontaneous rewarming (RW) phases, finger-skin temperatures were measured continuously with thermocouple probes; infrared thermography was also employed during the RW phase to map all segments of the hand. During the CWI phase, the average skin temperature (Tavg) of the fingers did not differ between the conditions (AIR: 10.2 ± 0.5°C, HYPO: 10.0 ± 0.5°C; p = 0.67). However, Tavg was lower in the HYPO than the AIR RW phase (AIR: 24.5 ± 3.4°C; HYPO: 22.0 ± 3.8°C; p = 0.002); a response that was alike in all regions of the immersed hand. Accordingly, present findings suggest that acute exposure to normobaric hypoxia does not aggravate the cold-induced drop in hand temperature of normothermic males. Still, hypoxia markedly impairs the rewarming responses of the hand.

  20. Temperature-responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica.

    PubMed

    Lakhiari, H; Okano, T; Nurdin, N; Luthi, C; Descouts, P; Muller, D; Jozefonvicz, J

    1998-03-02

    Silica-based packing materials induce non-specific interactions with proteins in aqueous media because of the nature of their surface, mainly silanol groups. Therefore, the silica surface has to be modified in order to be used as stationary phase for the High Performance Size-Exclusion Chromatography (HPSEC) of proteins. For this purpose, porous silica beads were coated with hydrophilic polymer gels (dextrans of different molecular weights) carrying a calculated amount of diethyl-aminoethyl groups (DEAE). Actually, as shown by HPSEC, these dextran modified supports minimize non-specific adsorption for proteins and pullulans in aqueous solution. Then, in order to change the pore size in response to temperature, temperature responsive polymer of poly(N-isopropylacrylamide) (PIPAAm) was introduced into the surface of dextran-DEAE on porous silica beads. The structure of these supports before and after modification was alternately studied by Scanning Electronic Microscopy (SEM) and Scanning Force Microscopy (SFM). An adsorption of radiolabelled albumin was performed to complete our study. Silica modifications by dextran-DEAE and PIPAAm improve the neutrality of the support and minimize the non-specific interactions between the solid support and proteins in solution. At low temperature, the support having PIPAAm exhibits a high resolution domain in HPSEC and finally permits a better resolution of proteins and pullulans. At higher temperature, hydrophobic properties of PIPAAm produce interactions with some proteins and trigger off a slight delay of their elution time.

  1. Body temperature responses of Savanna Brown goat to the harmattan and hot-dry season

    NASA Astrophysics Data System (ADS)

    Igono, M. O.; Molokwu, E. C. I.; Aliu, Y. O.

    1982-09-01

    Rectal and vaginal temperature responses of the Savanna Brown goat indigenous to the Nigerian guinea savanna were determined during the harmattan and the hot-dry season. Measurements were made at 06:00h and at 14:00h after 8h exposure to field conditions. At the 06:00h measurements during the harmattan, all animals were observed to shiver. A significant (P<0.01) positive correlation was found between rectal (Tre) and vaginal temperatures. During the harmattan, mean Tre was 38.2‡C at 06:00h and 39.7‡C at 14:00h; the mean difference, δTre was 1.5‡C. During the hot-dry season, Tre at 06:00h was 38.1‡C, and at 14:00h, 38.7; δTre was 0.6‡C. It is concluded that the harmattan is thermally more stressful than the hot-dry season and that passive thermolability may not be an important mechanism in the Savanna Brown goat in adaptation to thermal stress.

  2. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana.

    PubMed

    Tjoelker, M G; Oleksyn, J; Lorenc-Plucinska, G; Reich, P B

    2009-01-01

    Temperature acclimation of respiration may contribute to climatic adaptation and thus differ among populations from contrasting climates. Short-term temperature responses of foliar dark respiration were measured in 33-yr-old trees of jack pine (Pinus banksiana) in eight populations of wide-ranging origin (44-55 degrees N) grown in a common garden at 46.7 degrees N. It was tested whether seasonal adjustments in respiration and population differences in this regard resulted from changes in base respiration rate at 5 degrees C (R(5)) or Q(10) (temperature sensitivity) and covaried with nitrogen and soluble sugars. In all populations, acclimation was manifest primarily through shifts in R(5) rather than altered Q(10). R(5) was higher in cooler periods in late autumn and winter and lower in spring and summer, inversely tracking variation in ambient air temperature. Overall, R(5) covaried with sugars and not with nitrogen. Although acclimation was comparable among all populations, the observed seasonal ranges in R(5) and Q(10) were greater in populations originating from warmer than from colder sites. Population differences in respiratory traits appeared associated with autumnal cold hardening. Common patterns of respiratory temperature acclimation among biogeographically diverse populations provide a basis for predicting respiratory carbon fluxes in a wide-ranging species.

  3. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.

    PubMed

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J

    2016-06-10

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label 'amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides.

  4. The Influence of Varied Amide Bond Positions on Hydraphile Ion Channel Activity

    PubMed Central

    Weber, Michelle E.; Wang, Wei; Steinhardt, Sarah E.; Gokel, Michael R.; Leevy, W. Matthew; Gokel, George W.

    2008-01-01

    Hydraphile compounds have been prepared in which certain of the amine nitrogens have been replaced by amide residues. The amide bonds are present either in the sidearm, the side chain, or the central relay. Sodium cation transport through phospholipid vesicles mediated by each hydraphile was assessed. All of the amide-containing hydraphiles showed increased levels of Na+ transport compared to the parent compound, but the most dramatic rate increase was observed for sidearm amine to amide replacement. We attribute this enhancement to stabilization of the sidearm in the bilayer to achieve a better conformation for ion conduction. Biological studies of the amide hydraphiles with E. coli and B. subtilis showed significant toxicity only with the latter. Further, the consistency between the efficacies of ion transport and toxicity previously observed for non-amidic hydraphiles was not in evidence. PMID:19169369

  5. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes

    PubMed Central

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J.

    2016-01-01

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label ‘amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides. PMID:27282773

  6. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2011-07-01

    The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L.

  7. Voluntary fluid intake and core temperature responses in adolescent tennis players: sports beverage versus water

    PubMed Central

    Bergeron, M F; Waller, J L; Marinik, E L

    2006-01-01

    Objective To examine differences in ad libitum fluid intake, comparing a 6% carbohydrate/electrolyte drink (CHO‐E) and water, and associated differences in core temperature and other selected physiological and perceptual responses in adolescent athletes during tennis training in the heat. Methods Fourteen healthy, fit, young tennis players (nine male; five female; mean (SD) age 15.1 (1.4) years; weight 60.6 (8.3) kg; height 172.8 (8.6) cm) completed two 120 minute tennis specific training sessions on separate days (randomised, crossover design) in a warm environment (wet bulb globe temperature: CHO‐E, 79.3 (2.6) °F; water, 79.9 (2.2) °F; p>0.05). Results There were no significant differences (p>0.05) between the trials with respect to fluid intake, urine volume, fluid retention, sweat loss, perceived exertion, thirst, or gastrointestinal discomfort. However, there was a difference (p<0.05) in the percentage body weight change after training (CHO‐E, −0.5 (0.7)%; water, −0.9 (0.6)%). Urine specific gravity before training (CHO‐E, 1.024 (0.006); water, 1.025 (0.005)) did not correlate significantly (p>0.05) with any of these measurements or with core body temperature. In examining the main effect for trial, the CHO‐E trial showed a significantly lower (p<0.001) mean body temperature (irrespective of measurement time) than the water trial. However, the mean body temperature in each trial was not associated (p>0.05) with fluid intake, fluid retention, sweat loss, or percentage body weight change. Conclusion Ad libitum consumption of a CHO‐E drink may be more effective than water in minimising fluid deficits and mean core temperature responses during tennis and other similar training in adolescent athletes. PMID:16632570

  8. Extemporaneously preparative biodegradable injectable polymer systems exhibiting temperature-responsive irreversible gelation.

    PubMed

    Yoshida, Yasuyuki; Takata, Kazuyuki; Takai, Hiroki; Kawahara, Keisuke; Kuzuya, Akinori; Ohya, Yuichi

    2017-10-01

    On clinical application of biodegradable injectable polymer (IP) systems, quick extemporaneous preparation of IP formulations and longer duration time gel state after injection into the body are the important targets to be developed. Previously, we had reported temperature-responsive covalent gelation systems via bio-orthogonal thiol-ene reaction by 'mixing strategy' of amphiphilic biodegradable tri-block copolymer (tri-PCG) attaching acryloyl groups on both termini (tri-PCG-Acryl) with reactive polythiol. In other previous works, we found 'freeze-dry with PEG/dispersion' method as quick extemporaneous preparation method of biodegradable IP formulations. In this study, we applied this quick preparative method to the temperature-triggered covalent gelation system. The instant formulation (D-sample) could be prepared by 'freeze-dry with PEG/dispersion' just mixing of tri-PCG-Acryl micelle dispersion and tri-PCG/DPMP micelle dispersion with PEG, that can be prepared in 30 s from the dried samples. The obtained D-sample showed irreversible gelation and long duration time of gel state, which was basically the same as the formulations prepared by the usual heating dissolution method (S-sample). Interestingly, the D-sample could maintain its sol state for a longer time (24 h) after preparing the formulation at r.t. compared with the S-sample, which became a gel in 3 h after preparing. The IP system showed good biocompatibility and long duration time of the gel state after subcutaneous implantation. These characteristics of D-samples, quick extemporaneous preparation and high stability in the sol state before injection, would be very convenient in a clinical setting.

  9. Temperature responses of some North Atlantic Cladophora species (Chlorophyceae) in relation to their geographic distribution

    NASA Astrophysics Data System (ADS)

    Cambridge, M.; Breeman, A. M.; van Oosterwijk, R.; van den Hoek, C.

    1984-09-01

    The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genus Cladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1) C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2) C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3) C. dalmatica, as for C. vagabunda. (4) C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data for C. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species, C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.

  10. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.

    PubMed

    Cornelius, C; Estrella, N; Franz, H; Menzel, A

    2013-01-01

    Global climate change influences ecosystems across the world. Alpine plant communities have already experienced serious impacts, and will continue to do so as climate change continues. The aim of our study was to determine the sensitivity of woody and herbaceous species to shifts in temperature along an altitudinal gradient. Since 1994, park rangers have been making phenological observations at 24 sites from 680 to 1425 m a.s.l. Each year 21 plant species were observed once or twice weekly from March to July; with a main focus on flowering and leaf unfolding. Our study showed a very high degree of dependence of phenophases and species on inter-annual temperature variation and altitude. Averaged over all species and phenophases, there was a delay of 3.8 days with every 100 m increase in altitude and, across all elevations, an advance of phenophases of 6 days per 1 °C increase in temperature. Temperature lapse rates assessed indirectly by phenology, as the quotient of altitudinal to temperature response coefficients, were higher than directly calculated from March to July mean temperatures, most likely due to snow effects. Furthermore, a significant difference in sensitivity to temperature change was found between growth forms (herbs versus trees). Sensitivity was less pronounced in events occurring later in the season. Our results show that species reactions will differ in magnitude during global warming. Consequently, impacts of shifts in the timing of phenological events on plant migration and plant-pollinator interactions due to rising temperatures should be considered at the species level. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation.

    PubMed

    Silim, Salim N; Ryan, Natalie; Kubien, David S

    2010-04-01

    To examine the role of acclimation versus adaptation on the temperature responses of CO(2) assimilation, we measured dark respiration (R(n)) and the CO(2) response of net photosynthesis (A) in Populus balsamifera collected from warm and cool habitats and grown at warm and cool temperatures. R(n) and the rate of photosynthetic electron transport (J) are significantly higher in plants grown at 19 versus 27 degrees C; R(n) is not affected by the native thermal habitat. By contrast, both the maximum capacity of rubisco (V(cmax)) and A are relatively insensitive to growth temperature, but both parameters are slightly higher in plants from cool habitats. A is limited by rubisco capacity from 17-37 degrees C regardless of growth temperature, and there is little evidence for an electron-transport limitation. Stomatal conductance (g(s)) is higher in warm-grown plants, but declines with increasing measurement temperature from 17 to 37 degrees C, regardless of growth temperature. The mesophyll conductance (g(m)) is relatively temperature insensitive below 25 degrees C, but g(m) declines at 37 degrees C in cool-grown plants. Plants acclimated to cool temperatures have increased R(n)/A, but this response does not differ between warm- and cool-adapted populations. Primary carbon metabolism clearly acclimates to growth temperature in P. balsamifera, but the ecotypic differences in A suggest that global warming scenarios might affect populations at the northern and southern edges of the boreal forest in different ways.

  12. pH- and temperature-responsive aqueous foams stabilized by hairy latex particles.

    PubMed

    Fujii, Syuji; Akiyama, Ko; Nakayama, Saori; Hamasaki, Sho; Yusa, Shin-ichi; Nakamura, Yoshinobu

    2015-01-21

    Polystyrene (PS) particles carrying pH- and temperature-responsive poly[2-(dimethylamino)ethyl methacrylate] (PDMA) hairs (PDMA-PS particles) were synthesized by dispersion polymerization. The diameter, diameter distribution, morphology, chemical composition and surface chemistry of the particles were characterized using scanning electron microscopy (SEM), elemental microanalysis, dynamic light scattering and zeta potential measurements. The hydrophilicity-hydrophobicity balance of the PDMA could be tuned by varying both pH and temperature and therefore these sterically stabilized particles acted as doubly stimuli-responsive stabilizers for aqueous foams by adsorption and desorption to/from the air-water interface. At and above pH 6.0, in which range the PDMA hairs were either non-protonated or partially protonated, particle-stabilized foams were formed at both 23 and 55 °C. The foam prepared at 55 °C was the more stable of the two, lasting for at least 24 h, whereas the 23 °C foam destabilized within 24 h. SEM studies indicated that the particles adsorbed at the air-water interface as monolayers at 23 °C and as multilayers at 55 °C. At and below pH 5, in which range the hairs were cationic, hydrophilic and water-soluble, no foam was formed irrespective of temperature. Rapid defoaming could be induced by lowering the solution pH at both temperatures, due to rapid in situ protonation of the PDMA hairs, prompting the PDMA-PS particles to desorb from the air-water interface. The foaming and defoaming cycles could be repeated at least five times.

  13. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Schultz, Natalie M.; Lawrence, Peter J.; Lee, Xuhui

    2017-04-01

    Uncertainties remain about the spatial pattern and magnitude of the biophysical effects of deforestation. In particular, a diurnal asymmetry in the magnitude and sign of the surface temperature response to deforestation (ΔTS) has been observed, but the biophysical processes that contribute to day and nighttime ΔTS are not fully understood. In this study, we use a space-for-time approach with satellite and reanalysis data to investigate the biophysical processes that control the day and nighttime ΔTS. Additionally, we incorporate flux-tower data to examine two hypotheses for nighttime forest warming relative to open lands: (1) that forests generate turbulence in the stable nocturnal boundary layer, which brings heat aloft down to the surface, and (2) that forests store more heat during the day and release it at night. Our results confirm a diurnal asymmetry in ΔTS. Over most regions of the world, deforestation results in daytime warming and nighttime cooling. The strongest daytime warming is in the tropics, where the average ΔTS is 4.4 ± 0.07 K. The strongest nighttime cooling is observed in the boreal zone, where open lands are cooler than forests by an average of 1.4 ± 0.04 K. Daytime patterns of ΔTS are explained by differences in the latent heat flux (ΔLE) and absorbed solar radiation (ΔKa). We find that nighttime ΔTS is related to the strength of the nocturnal temperature inversion, with stronger temperature inversions at high latitudes and weak inversions in the tropics. Forest turbulence at night combined with stored heat release drives nighttime ΔTS patterns.

  14. Voluntary fluid intake and core temperature responses in adolescent tennis players: sports beverage versus water.

    PubMed

    Bergeron, M F; Waller, J L; Marinik, E L

    2006-05-01

    To examine differences in ad libitum fluid intake, comparing a 6% carbohydrate/electrolyte drink (CHO-E) and water, and associated differences in core temperature and other selected physiological and perceptual responses in adolescent athletes during tennis training in the heat. Fourteen healthy, fit, young tennis players (nine male; five female; mean (SD) age 15.1 (1.4) years; weight 60.6 (8.3) kg; height 172.8 (8.6) cm) completed two 120 minute tennis specific training sessions on separate days (randomised, crossover design) in a warm environment (wet bulb globe temperature: CHO-E, 79.3 (2.6) degrees F; water, 79.9 (2.2) degrees F; p>0.05). There were no significant differences (p>0.05) between the trials with respect to fluid intake, urine volume, fluid retention, sweat loss, perceived exertion, thirst, or gastrointestinal discomfort. However, there was a difference (p<0.05) in the percentage body weight change after training (CHO-E, -0.5 (0.7)%; water, -0.9 (0.6)%). Urine specific gravity before training (CHO-E, 1.024 (0.006); water, 1.025 (0.005)) did not correlate significantly (p>0.05) with any of these measurements or with core body temperature. In examining the main effect for trial, the CHO-E trial showed a significantly lower (p<0.001) mean body temperature (irrespective of measurement time) than the water trial. However, the mean body temperature in each trial was not associated (p>0.05) with fluid intake, fluid retention, sweat loss, or percentage body weight change. Ad libitum consumption of a CHO-E drink may be more effective than water in minimising fluid deficits and mean core temperature responses during tennis and other similar training in adolescent athletes.

  15. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders

    PubMed Central

    King, Caitlin E; King, Gary M

    2012-01-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H2) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H2 uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H2 uptake was less sensitive than Bare H2 uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H2 uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material. PMID:22258097

  16. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders.

    PubMed

    King, Caitlin E; King, Gary M

    2012-08-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14-25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H(2)) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H(2) uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H(2) uptake was less sensitive than Bare H(2) uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H(2) uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material.

  17. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays.

    PubMed

    Lai, James J; Hoffman, John M; Ebara, Mitsuhiro; Hoffman, Allan S; Estournès, Claude; Wattiaux, Alain; Stayton, Patrick S

    2007-06-19

    A stimuli-responsive magnetic nanoparticle system for diagnostic target capture and concentration has been developed for microfluidic lab card settings. Telechelic poly(N-isopropylacrylamide) (PNIPAAm) polymer chains were synthesized with dodecyl tails at one end and a reactive carboxylate at the opposite end by the reversible addition fragmentation transfer technique. These PNIPAAm chains self-associate into nanoscale micelles that were used as dimensional confinements to synthesize the magnetic nanoparticles. The resulting superparamagnetic nanoparticles exhibit a gamma-Fe2O3 core ( approximately 5 nm) with a layer of carboxylate-terminated PNIPAAm chains as a corona on the surface. The carboxylate group was used to functionalize the magnetic nanoparticles with biotin and subsequently with streptavidin. The functionalized magnetic nanoparticles can be reversibly aggregated in solution as the temperature is cycled through the PNIPAAm lower critical solution temperature (LCST). While the magnetophoretic mobility of the individual nanoparticles below the LCST is negligible, the aggregates formed above the LCST are large enough to respond to an applied magnetic field. The magnetic nanoparticles can associate with biotinylated targets as individual particles, and then subsequent application of a combined temperature increase and magnetic field can be used to magnetically separate the aggregated particles onto the poly(ethylene glycol)-modified polydimethylsiloxane channel walls of a microfluidic device. When the magnetic field is turned off and the temperature is reversed, the captured aggregates redisperse into the channel flow stream for further downstream processing. The dual magnetic- and temperature-responsive nanoparticles can thus be used as soluble reagents to capture diagnostic targets at a controlled time point and channel position. They can then be isolated and released after the nanoparticles have captured target molecules, overcoming the problem of low

  18. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis1[OPEN

    PubMed Central

    Boyd, Ryan A.; Gandin, Anthony; Cousins, Asaph B.

    2015-01-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3−, and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3− limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. PMID:26373659

  19. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.

    PubMed

    Boyd, Ryan A; Gandin, Anthony; Cousins, Asaph B

    2015-11-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3 (-), and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3 (-) limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Recent advances in copper-catalyzed C–H bond amidation

    PubMed Central

    Jing, Yanfeng

    2015-01-01

    Summary Copper catalysis has been known as a powerful tool for its ubiquitous application in organic synthesis. One of the fundamental utilities of copper catalysis is in the C–N bond formation by using carbon sources and nitrogen functional groups such as amides. In this review, the recent progress in the amidation reactions employing copper-catalyzed C–H amidation is summarized. PMID:26664644

  1. Solvent accessibility of protein surfaces by amide H/2H exchange MALDI-TOF mass spectrometry.

    PubMed

    Truhlar, Stephanie M E; Croy, Carrie H; Torpey, Justin W; Koeppe, Julia R; Komives, Elizabeth A

    2006-11-01

    One advantage of detecting amide H/2H exchange by mass spectrometry instead of NMR is that the more rapidly exchanging surface amides are still detectable. In this study, we present quench-flow amide H/2H exchange experiments to probe how rapidly the surfaces of two different proteins exchange. We compared the amide H/2H exchange behavior of thrombin, a globular protein, and IkappaBalpha, a nonglobular protein, to explore any differences in the determinants of amide H/2H exchange rates for each class of protein. The rates of exchange of only a few of the surface amides were as rapid as the "intrinsic" exchange rates measured for amides in unstructured peptides. Most of the surface amides exchanged at a slower rate, despite the fact that they were not seen to be hydrogen bonded to another protein group in the crystal structure. To elucidate the influence of the surface environment on amide H/2H exchange, we compared exchange data with the number of amides participating in hydrogen bonds with other protein groups and with the solvent accessible surface area. The best correlation with amide H/2H exchange was found with the total solvent accessible surface area, including side chains. In the case of the globular protein, the correlation was modest, whereas it was well correlated for the nonglobular protein. The nonglobular protein also showed a correlation between amide exchange and hydrogen bonding. These data suggest that other factors, such as complex dynamic behavior and surface burial, may alter the expected exchange rates in globular proteins more than in nonglobular proteins where all of the residues are near the surface.

  2. Similar temperature responses suggest future climate warming will not alter partitioning between denitrification and anammox in temperate marine sediments.

    PubMed

    Brin, Lindsay D; Giblin, Anne E; Rich, Jeremy J

    2017-01-01

    Removal of biologically available nitrogen (N) by the microbially mediated processes denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. Although few studies have examined temperature responses of denitrification and anammox, previous work suggests that denitrification could become more important than anammox in response to climate warming. To test this hypothesis, we determined whether temperature responses of denitrification and anammox differed in shelf and estuarine sediments from coastal Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was further assessed in a 12-week laboratory microcosm experiment. Temperature responses, as characterized by thermal optima (Topt ) and apparent activation energy (Ea ), were determined by measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging from 3 to 59 °C. With a few exceptions, Topt and Ea of denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments, Ea  was somewhat lower for anammox compared to denitrification across all treatments. However, Topt  did not differ between processes, and neither Ea  nor Topt  changed with warming or carbon addition. Thus, the two processes behaved similarly in terms of temperature responses, and these responses were not influenced by warming. This led us to reject the hypothesis that anammox is more cold-adapted than denitrification in our study system. Overall, our study suggests that temperature responses of both processes can be accurately modeled for temperate regions in the future using a single set of parameters, which are likely not to change over the next century as a result of predicted climate warming. We further conclude that climate warming will not directly alter the partitioning of N flow through anammox and denitrification. © 2016 John Wiley & Sons Ltd.

  3. Hand temperature responses to local cooling after a 10-day confinement to normobaric hypoxia with and without exercise.

    PubMed

    Keramidas, M E; Kölegård, R; Mekjavic, I B; Eiken, O

    2015-10-01

    The study examined the effects of a 10-day normobaric hypoxic confinement (FiO2: 0.14), with [hypoxic exercise training (HT); n = 8)] or without [hypoxic ambulatory (HA; n = 6)] exercise, on the hand temperature responses during and after local cold stress. Before and after the confinement, subjects immersed their right hand for 30 min in 8 °C water [cold water immersion (CWI)], followed by a 15-min spontaneous rewarming (RW), while breathing either room air (AIR), or a hypoxic gas mixture (HYPO). The hand temperature responses were monitored with thermocouples and infrared thermography. The confinement did not influence the hand temperature responses of the HA group during the AIR and HYPO CWI and the HYPO RW phases; but it impaired the AIR RW response (-1.3 °C; P = 0.05). After the confinement, the hand temperature responses were unaltered in the HT group throughout the AIR trial. However, the average hand temperature was increased during the HYPO CWI (+0.5 °C; P ≤ 0.05) and RW (+2.4 °C; P ≤ 0.001) phases. Accordingly, present findings suggest that prolonged exposure to normobaric hypoxia per se does not alter the hand temperature responses to local cooling; yet, it impairs the normoxic RW response. Conversely, the combined stimuli of continuous hypoxia and exercise enhance the finger cold-induced vasodilatation and hand RW responses, specifically, under hypoxic conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis.

    PubMed

    Hu, Long; Xu, Silin; Zhao, Zhenguang; Yang, Yang; Peng, Zhiyuan; Yang, Ming; Wang, Changliu; Zhao, Junfeng

    2016-10-04

    A highly efficient, two-step, one-pot synthetic strategy for amides and peptides was developed by employing ynamides as novel coupling reagents under extremely mild reaction conditions. The ynamides not only are effective for simple amide and dipeptide synthesis but can also be used for peptide segment condensation. Importantly, no racemization was detected during the activation of chiral carboxylic acids. Excellent amidation selectivity toward amino groups in the presence of -OH, -SH, -CONH2, ArNH2, and the NH of indole was observed, making the protection of these functional groups unnecessary in amide and peptide synthesis.

  5. BODIPY catalyzed amide synthesis promoted by BHT and air under visible light.

    PubMed

    Wang, Xiao-Fei; Yu, Shu-Sheng; Wang, Chao; Xue, Dong; Xiao, Jianliang

    2016-08-07

    A novel and efficient protocol for the synthesis of amides is reported which employs a BODIPY catalyzed oxidative amidation reaction between aromatic aldehydes and amines under visible light. Compared with the known Ru or Ir molecular catalysts and other organic dyes, the BODIPY catalyst showed higher reactivity toward this reaction. Mechanistic studies reveal that dioxygen could be activated through an ET and a SET pathway, forming active peroxides in situ, which are vital for the key step of the reaction, i.e. the oxidation of hemiaminal to amide. The broad substrate scope and mild reaction conditions make this reaction practically useful and environmentally friendly for the synthesis of amide compounds.

  6. Borate esters: Simple catalysts for the sustainable synthesis of complex amides

    PubMed Central

    Sabatini, Marco T.; Boulton, Lee T.; Sheppard, Tom D.

    2017-01-01

    Chemical reactions for the formation of amide bonds are among the most commonly used transformations in organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles and even unprotected amino acids. The method was used to access a wide range of functionalized amide derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a natural product. PMID:28948222

  7. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin

    PubMed Central

    Ribeiro, MMB; Pinto, A; Pinto, M; Heras, M; Martins, I; Correia, A; Bardaji, E; Tavares, I; Castanho, M

    2011-01-01

    BACKGROUND AND PURPOSE Kyotorphin (KTP; L-Tyr-L-Arg), an endogenous neuropeptide, is potently analgesic when delivered directly to the central nervous system. Its weak analgesic effects after systemic administration have been explained by inability to cross the blood–brain barrier (BBB) and detract from the possible clinical use of KTP as an analgesic. In this study, we aimed to increase the lipophilicity of KTP by amidation and to evaluate the analgesic efficacy of a new KTP derivative (KTP-amide – KTP-NH2). EXPERIMENTAL APPROACH We synthesized KTP-NH2. This peptide was given systemically to assess its ability to cross the BBB. A wide range of pain models, including acute, sustained and chronic inflammatory and neuropathic pain, were used to characterize analgesic efficacies of KTP-NH2. Binding to opioid receptors and toxicity were also measured. KEY RESULTS KTP-NH2, unlike its precursor KTP, was lipophilic and highly analgesic following systemic administration in several acute and chronic pain models, without inducing toxic effects or affecting motor responses and blood pressure. Binding to opioid receptors was minimal. KTP-NH2 inhibited nociceptive responses of spinal neurons. Its analgesic effects were prevented by intrathecal or i.p. administration of naloxone. CONCLUSIONS AND IMPLICATIONS Amidation allowed KTP to show good analgesic ability after systemic delivery in acute and chronic pain models. The indirect opioid-mediated actions of KTP-NH2 may explain why this compound retained its analgesic effects although the usual side effects of opioids were absent, which is a desired feature in next-generation pain medications. PMID:21366550

  8. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin.

    PubMed

    Ribeiro, M M B; Pinto, A; Pinto, M; Heras, M; Martins, I; Correia, A; Bardaji, E; Tavares, I; Castanho, M

    2011-07-01

    Kyotorphin (KTP; L-Tyr-L-Arg), an endogenous neuropeptide, is potently analgesic when delivered directly to the central nervous system. Its weak analgesic effects after systemic administration have been explained by inability to cross the blood-brain barrier (BBB) and detract from the possible clinical use of KTP as an analgesic. In this study, we aimed to increase the lipophilicity of KTP by amidation and to evaluate the analgesic efficacy of a new KTP derivative (KTP-amide - KTP-NH(2) ). We synthesized KTP-NH(2) . This peptide was given systemically to assess its ability to cross the BBB. A wide range of pain models, including acute, sustained and chronic inflammatory and neuropathic pain, were used to characterize analgesic efficacies of KTP-NH(2) . Binding to opioid receptors and toxicity were also measured. KTP-NH(2) , unlike its precursor KTP, was lipophilic and highly analgesic following systemic administration in several acute and chronic pain models, without inducing toxic effects or affecting motor responses and blood pressure. Binding to opioid receptors was minimal. KTP-NH(2) inhibited nociceptive responses of spinal neurons. Its analgesic effects were prevented by intrathecal or i.p. administration of naloxone. Amidation allowed KTP to show good analgesic ability after systemic delivery in acute and chronic pain models. The indirect opioid-mediated actions of KTP-NH(2) may explain why this compound retained its analgesic effects although the usual side effects of opioids were absent, which is a desired feature in next-generation pain medications. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. N-Hydroxyimide Ugi Reaction toward α-Hydrazino Amides

    PubMed Central

    2017-01-01

    The Ugi four-component reaction (U-4CR) with N-hydroxyimides as a novel carboxylic acid isostere has been reported. This reaction provides straightforward access to α-hydrazino amides. A broad range of aldehydes, amines, isocyanides and N-hydroxyimides were employed to give products in moderate to high yields. This reaction displays N–N bond formation by cyclic imide migration in the Ugi reaction. Thus, N-hydroxyimide is added as a new acid component in the Ugi reaction and broadens the scaffold diversity. PMID:28220702

  11. Iridium(I)-Catalyzed Regio- and Enantioselective Allylic Amidation

    PubMed Central

    Singh, Om V.; Han, Hyunsoo

    2009-01-01

    Ir(I)-catalyzed intermolecular allylic amidation of ethyl allylic carbonates with soft nitrogen nucleophiles under completely “salt-free” conditions is described. A combination of [Ir(COD)Cl]2, a chiral phosphoramidite ligand L*, and DBU as a base in THF effects the reaction. The reaction appears to be quite general, accommodating a wide variety of R-groups and soft nitrogen nucleophiles, and proceeds with excellent regio- and enantioselectivities to afford the branched N-protected allylic amines. The developed reaction was conveniently utilized in the asymmetric synthesis of Boc protected α- and β-amino acids as well as (−)-cytoxazone. PMID:19554202

  12. Isolation and identification of fatty acid amides from Shengli coal

    SciTech Connect

    Ming-Jie Ding; Zhi-Min Zong; Ying Zong; Xiao-Dong Ou-Yang; Yao-Guo Huang; Lei Zhou; Feng Wang; Jiang-Pei Cao; Xian-Yong Wei

    2008-07-15

    Shengli coal, a Chinese brown coal, was extracted with carbon disulfide and the extract was gradiently eluted with n-hexane and ethyl acetate (EA)/n-hexane mixed solvents with different concentrations of EA in a silica gel-filled column. A series of fatty acid amides, including fourteen alkanamides (C{sub 15}-C{sub 28}) and three alkenamides (C{sub 18} and C{sub 22}), were isolated from the coal by this method and analyzed with a gas chromatography/mass spectrometry. 26 refs., 2 figs., 2 tabs.

  13. Borehole temperature response for competing models of Laurentide ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Rath, Volker; Alvarez-Solas, Jorge; Robinson, Alex; Montoya-Redondo, Marisa

    2013-04-01

    borehole data (including the corresponding metadata) still have to be collected and need to undergo strict quality control before being used. In addition, a methodological concept fora regional interpretation is missing. In this contribution we will compare the borehole temperature response for two ice sheet models of the Laurentide glaciation, differing in their dynamics. Both were realized by running the hybrid SIA/SSA code GRISLI in different modes. The subsurface temperature anomalies thus generated are significant. Unfortunately the existing deep boreholes in the area are not placed in areas of high sensitivity (e.g., Northern Quebec, Canadian Archipelago). Notwithstanding these difficulties, we will present results for some of these available boreholes in central and northern Canada and Alaska.

  14. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    PubMed

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced

  15. Nongrafted Skin Area Best Predicts Exercise Core Temperature Responses in Burned Humans

    PubMed Central

    Ganio, Matthew S.; Schlader, Zachary J.; Pearson, James; Lucas, Rebekah A.I.; Gagnon, Daniel; Rivas, Eric; Kowalske, Karen J.; Crandall, Craig G.

    2015-01-01

    Grafted skin impairs heat dissipation, but it is unknown to what extent this impacts body temperature during exercise in the heat. PURPOSE We examined core body temperature responses during exercise in the heat in a group of individuals with a large range of grafts covering their body surface area (BSA; 0-75%). METHODS Forty-three individuals (19 females) were stratified into groups based upon BSA grafted: Control (0% grafted, n=9), 17-40% (n=19), and >40% (n=15). Subjects exercised at a fixed rate of metabolic heat production (339 ± 70 W; 4.3 ± 0.8 W/kg) in an environmental chamber set at 40°C, 30% RH for 90 min or until exhaustion (n=8). Whole-body sweat rate and core temperatures were measured. RESULTS Whole body sweat rates were similar between groups (Control: 14.7±3.4 ml/min, 17-40%: 12.6±4.0 ml/min, and >40%: 11.7±4.4 ml/min, P>0.05), but the increase in core temperature at the end of exercise in the >40% BSA grafted group (1.6±0.5°C) was greater than the 17-40% (1.2±0.3°C) and Control (0.9±0.2°C) groups (P<0.05). Absolute BSA of non-grafted skin (expressed in m2) was the strongest independent predictor of the core temperature increase (r2=0.41). When re-grouping all subjects, individuals with the lowest BSA of non-grafted skin (<1.0 m2) had greater increases in core temperature (1.6±0.5°C) than those with >1.5 m2 non-grafted skin (1.0±0.3°C, P<0.05). CONCLUSIONS These data imply that individuals with grafted skin have greater increases in core temperature when exercising in the heat and that the magnitude of this increase is best explained by the amount of non-grafted skin available for heat dissipation. PMID:26378947

  16. Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation.

    PubMed

    Lundberg, Helena; Tinnis, Fredrik; Zhang, Jiji; Algarra, Andrés G; Himo, Fahmi; Adolfsson, Hans

    2017-02-15

    The mechanism of the zirconium-catalyzed condensation of carboxylic acids and amines for direct formation of amides was studied using kinetics, NMR spectroscopy, and DFT calculations. The reaction is found to be first order with respect to the catalyst and has a positive rate dependence on amine concentration. A negative rate dependence on carboxylic acid concentration is observed along with S-shaped kinetic profiles under certain conditions, which is consistent with the formation of reversible off-cycle species. Kinetic experiments using reaction progress kinetic analysis protocols demonstrate that inhibition of the catalyst by the amide product can be avoided using a high amine concentration. These insights led to the design of a reaction protocol with improved yields and a decrease in catalyst loading. NMR spectroscopy provides important details of the nature of the zirconium catalyst and serves as the starting point for a theoretical study of the catalytic cycle using DFT calculations. These studies indicate that a dinuclear zirconium species can catalyze the reaction with feasible energy barriers. The amine is proposed to perform a nucleophilic attack at a terminal η(2)-carboxylate ligand of the zirconium catalyst, followed by a C-O bond cleavage step, with an intermediate proton transfer from nitrogen to oxygen facilitated by an additional equivalent of amine. In addition, the DFT calculations reproduce experimentally observed effects on reaction rate, induced by electronically different substituents on the carboxylic acid.

  17. Complexation of di-amides of dipicolinic acid with neodymium

    SciTech Connect

    Lapka, J.L.; Paulenova, A.

    2013-07-01

    Di-amides have undergone significant studies as possible ligands for use in the partitioning of trivalent minor actinides and lanthanides. The binding affinities of three isomeric ligands with neodymium in acetonitrile solution have been investigated. The stability constants of the metal-ligand complexes formed between different isomers of N,N'-diethyl-N,N'- ditolyl-di-picolinamide (EtTDPA) and trivalent neodymium in acetonitrile have been determined by spectrophotometric and calorimetric methods. Each isomer of EtTDPA has been found to be capable of forming three complexes with trivalent neodymium, Nd(EtTDPA), Nd(EtTDPA){sub 2}, and Nd(EtTDPA){sub 3}. Values from spectrophotometric and calorimetric titrations are within reasonable agreement with each other. The order of stability constants for each metal:ligand complex decreases in the order Et(m)TDPA > Et(p)TDPA > Et(o)TDPA. The obtained values are comparable to other di-amidic ligands obtained under similar system conditions and mirror previously obtained solvent extraction data for EtTDPA at low ionic strengths. (authors.

  18. Collagen and component polypeptides: Low frequency and amide vibrations

    NASA Astrophysics Data System (ADS)

    Fontaine-Vive, F.; Merzel, F.; Johnson, M. R.; Kearley, G. J.

    2009-01-01

    Collagen is a fibrous protein, which exists widely in the human body. The biomechanical properties of collagen depend on its triple helix structure and the corresponding low frequency vibrations. We use first-principles, density functional theory methods and analytical force fields to investigate the molecular vibrations of a model collagen compound, the results being validated by comparison with published, inelastic neutron scattering data. The results from these atomistic simulations are used at higher frequency to study the Amide I and V vibrations and therefore the vibrational signature of secondary and tertiary structure formation. In addition to collagen, its component homopolymers, poly-glycine and poly-proline are also studied. The Amide V vibration of glycine is strongly modified in going from the single helix of poly-glycine II to the triple helix of collagen. The collagen models are hydrated and this work allows us to discuss the relative merits of density functional theory and force field methods when tackling complex, partially crystalline systems.

  19. Interaction of Thioamides, Selenoamides, and Amides With Diiodine

    PubMed Central

    Hadjikakou, Sotiris K.; Hadjiliadis, Nick

    2006-01-01

    We review the results of our work on the iodine interaction with thioamides, selenoamides, and amides. Complexes with (i) “spoke” or “extended spoke” structures, D · I2 and D · I2 · I2, respectively, (D is the ligand donor) (ii) iodonium salts of {[D2 − I]+[In]−} (n = 3, 7) and {[D2 − I]+[FeCl4]−} formulae and (iii) disulfides of the categories (a) [D − D], (b) {[D − DH]+[I3]−} have been isolated and characterized. A compound of formula {[D2 − I]+[I3]−[D · I2]} containing both types of complexes (i) and (ii) was also isolated. The interaction of diiodine with selenium analogs of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU (6-alkyl-2-Selenouracil) results in the formation of complexes with formulae [(RSeU)I2]. All these results are correlated with the mechanism of action of antithyroid drugs. Finally, we review here our work on the diiodine interaction with the amides (LO). PMID:17497011

  20. Poly(hydroxy amide ethers): New high-barrier thermoplastics

    SciTech Connect

    Brennan, D.J.; White, J.E.; Haag, A.P.; Kram, S.L.; Brown, C.N.; Pikulin, S.

    1993-12-31

    Over the last several years the authors have been involved in a program to prepare thermoplastic resins having high-barrier to oxygen, good processing characteristics, and excellent mechanical properties. One result of these efforts has been the synthesis of poly(hydroxy amide ethers), a new class of high-barrier thermoplastics. These high-molecular-weight polymers are formed by reactions of aromatic diglycidyl ethers with amide-containing bisphenols in high-boiling alcohol solvent. The polymers have good to outstanding barrier to oxygen, with oxygen transmission rates (O{sub 2}TR) of 0.1 - 5.0 cc-mil/100 in{sup 2}-atm-day (barrier units or BU) at high relative humidity (60-80%). Glass transition temperatures (Tg) of the polymers range from 80 to 200{degrees}C. The example shown combines the Tg of an engineering thermoplastic (152{degrees}C) with good barrier (1.5 BU) and mechanical performance. The effect that structure has on O{sub 2}TR and Tg of the polymers will be discussed. Physical properties of selected examples will also be presented.

  1. Amides derived from heteroaromatic amines and selected steryl hemiesters.

    PubMed

    Bildziukevich, Uladzimir; Rárová, Lucie; Saman, David; Havlíček, Libor; Drašar, Pavel; Wimmer, Zdeněk

    2013-12-20

    The current interest of the team has been focused on investigation of novel amides with potential cytotoxicity. The presented series of compounds was synthesized from selected steryl hemiesters and heteroaromatic amines. The synthetic protocol was designed in a simple and economic way, and divided into several general methodologies applicable to the compounds synthesized. The cytotoxicity was tested on cells derived from human T-lymphoblastic leukemia, breast adenocarcinoma and cervical cancer, and compared with tests on normal human fibroblasts. Most of the lanosterol-based compounds (3-5 and 7-10) showed medium to good cytotoxicity, while only two derivatives of cholesterol (18 and 19) showed medium cytotoxicity on human T-lymphoblastic leukemia cell line. The compounds 8 and 9 displayed the reasonable cytotoxicity among this series of amides, tested on the cell lines of T-lymphoblastic leukemia [14.5±0.4 μM (8) and 18.5±3.9 μM (9)], breast adenocarcinoma [19.5±2.1 μM (8) and 23.1±4.0 μM (9)] and cervical cancer [24.8±5.3 μM (8) and 29.1±4.7 μM (9)]. Only the compound 8 was adequately less active on normal human fibroblasts (40.4±11.1 μM).

  2. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.

  3. Construction of Electrochemical Chiral Interfaces with Integrated Polysaccharides via Amidation.

    PubMed

    Bao, Liping; Chen, Xiaohui; Yang, Baozhu; Tao, Yongxin; Kong, Yong

    2016-08-24

    Polysaccharides of sodium carboxymethyl cellulose (CMC) and chitosan (CS) were integrated together via amidation reactions between the carboxyl groups on sodium CMC and the amino groups on CS. Compared with individual sodium CMC and CS, the integrated polysaccharides with a mass ratio of 1:1, CMC-CS (1:1), exhibited a three-dimensional (3D) porous network structure, resulting in a significantly enhanced hydrophility due to the exposed polar functional groups in the CMC-CS (1:1). Chiral interfaces were constructed with the integrated polysaccharides and used for electrochemical enantiorecognition of tryptophan (Trp) isomers. The CMC-CS (1:1) chiral interfaces exhibited excellent selectivity toward the Trp isomers owing to the highly hydrophilic feature of CMC-CS (1:1) and the different steric hindrance during the formation of H bonds between Trp isomers and CMC-CS (1:1). Also, the optimization in the preparation of integrated polysaccharides such as mass ratio and combination mode (amidation or electrostatic interactions) was investigated. The CMC-CS (1:1) presented the ability of determining the percentage of d-Trp in racemic mixtures, and thus, the proposed electrochemical chiral interfaces could be regarded as a potential biosensing platform for enantiorecognition of chiral compounds.

  4. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    PubMed

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  5. Controlling Mechanical Properties of Bis-leucine Oxalyl Amide Gels

    NASA Astrophysics Data System (ADS)

    Chang, William; Carvajal, Daniel; Shull, Kenneth

    2011-03-01

    is-leucine oxalyl amide is a low molecular weight gelator capable of gelling polar and organic solvents. A fundamental understanding of self-assembled systems can lead to new methods in drug delivery and the design of new soft material systems. An important feature of self-assembled systems are the intermolecular forces between solvent and gelator molecule; by changing the environment the gel is in, the mechanical properties also change. In this project two variables were considered: the degree of neutralization present for the gelator molecule from neutral to completely ionized, and the concentration of the gelator molecule, from 1 weight percent to 8 weight percent in 1-butanol. Mechanical properties were studied using displacement controlled indentation techniques and temperature sweep rheometry. It has been found that properties such as the storage modulus, gelation temperature and maximum stress allowed increase with bis-leucine oxalyl amide concentration. The results from this study establish a 3-d contour map between the gelator concentration, the gelator degree of ionization and mechanical properties such as storage modulus and maximum stress allowed. The intermolecular forces between the bis-leucine low molecular weight gelator and 1-butanol govern the mechanical properties of the gel system, and understanding these interactions will be key to rationally designed self-assembled systems.

  6. Amide-pi interactions between formamide and benzene.

    PubMed

    Imai, Yumi N; Inoue, Yoshihisa; Nakanishi, Isao; Kitaura, Kazuo

    2009-11-15

    High-level ab initio calculations have been carried out using a formamide-benzene model system to evaluate amide-pi interactions. The interaction energies were estimated as a sum of the CCSD(T) correlation contribution and the HF energy at the complete basis set limit, for the geometries of the model structures at the energy minimum obtained by potential energy surface (PES) scans. NH/pi geometry in a face-on configuration was found to be the most attractive among the various geometries considered, with interaction energy of -3.75 kcal/mol. An interaction energy of -2.08 kcal/mol was calculated for the stacked N/Center type geometry, where the nitrogen atom of formamide points directly toward the center of the aromatic ring. The weakest C=O/pi geometry, where a carbonyl oxygen atom points toward the plane of the aromatic ring, was found to have energy minimum at an intermolecular distance of 3.67 A from the PES, with a repulsive interaction energy less than 1 kcal/mol. However, if there are simultaneous attractive interactions with other parts of the molecule besides the amide group, the weak repulsion could be easily overcome, to give a C=O/pi geometry interaction. 2009 Wiley Periodicals, Inc.

  7. Stability of caffeic acid phenethyl amide (CAPA) in rat plasma.

    PubMed

    Yang, John; Kerwin, Sean M; Bowman, Phillip D; Stavchansky, Salomon

    2012-05-01

    A validated C₁₈ reverse-phase HPLC method with UV detection at 320 nm was developed and used for the stability evaluation of caffeic acid phenethyl amide (CAPA) and caffeic acid phenethyl ester (CAPE) in rat plasma. CAPA is the amide derivative of CAPE, a naturally occurring polyphenolic compound that has been found to be active in a variety of biological pathways. CAPA has been shown to protect endothelial cells against hydrogen peroxide-induced oxidative stress to a similar degree to CAPE. CAPE has been reported to be rapidly hydrolyzed in rat plasma via esterase enzymes. CAPA is expected to display a longer half-life than CAPE by avoiding hydrolysis via plasma esterases. The stability of CAPA and CAPE in rat plasma was investigated at three temperatures. The half-lives for CAPA were found to be 41.5, 10 and 0.82 h at 25, 37 and 60 °C, respectively. The half-lives for CAPE were found to be 1.95, 0.35 and 0.13 h at 4, 25 and 37 °C, respectively. The energy of activation was found to be 22.1 kcal/mol for CAPA and 14.1 kcal/mol for CAPE. A more stable compound could potentially extend the beneficial effects of CAPE.

  8. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater.

    PubMed

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater.

  9. Temperature-responsiveness and biocompatibility of DEGMA/OEGMA radiation-grafted onto PP and LDPE films

    NASA Astrophysics Data System (ADS)

    Ramírez-Jiménez, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2014-06-01

    Polypropylene (PP) and low density polyethylene (LDPE) were modified by γ-ray grafting of di(ethylene glycol) methyl ether methacrylate (DEGMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA300 or OEGMA475 with Mn 300 and 475 respectively) with different monomer concentrations and mol ratios. The grafting percentage was evaluated as a function of the solvent, irradiation dose, reaction time, temperature, and monomers concentration. The grafted materials were more hydrophilic than the pristine polymers, as observed by contact angle and swelling in water. Temperature-responsive behavior was evaluated using DSC showing transitions between 34 and 48 °C. In vitro hemocompatibility, protein adsorption, cytotoxicity and bacteria adhesion tests were also carried out. Overall, the DEGMA/OEGMA grafting provides hemo and cytocompatible materials that exhibit temperature-responsive hydrophilic features and decreased protein adsorption.

  10. GHTD-amide: a naturally occurring beta cell-derived peptide with hypoglycemic activity.

    PubMed

    Paule, S G; Nikolovski, B; Gray, R E; Ludeman, J P; Freemantle, A; Spark, R A; Kerr, J B; Ng, F M; Zimmet, P Z; Myers, M A

    2009-05-01

    In the early 1970s, a peptide fraction with insulin potentiating activity was purified from human urine but the identity and origins of the active constituent remained unknown. Here we identify the active component and characterize its origins. The active peptide was identified as an alpha amidated tetrapeptide with the sequence GHTD-amide. The peptide was synthesized and tested for stimulation of glycogen synthesis and insulin potentiation by insulin tolerance testing in insulin-deficient rats, which confirmed GHTD-amide as the active peptide. Tissue localization using a peptide-specific anti-serum and epifluorescent and confocal microscopy showed decoration of pancreatic islets but not other tissues. Confocal microscopy revealed co-localization with insulin and immunogold and electron microscopy showed localization to dense core secretory granules. Consistent with these observations GHTD-amide was found in media conditioned by MIN6 islet beta cells. Sequence database searching found no annotated protein in the human proteome encoding a potential precursor for GHTD-amide. We conclude that the insulin potentiating activity originally described in human urine is attributable to the tetrapeptide GHTD-amide. GHTD-amide is a novel peptide produced by pancreatic beta cells and no precursor protein is present in the annotated human proteome. Stimulation of glycogen synthesis and co-localization with insulin in beta cells suggest that GHTD-amide may play a role in glucose homeostasis by enhancing insulin action and glucose storage in tissues.

  11. Palladium-catalyzed highly regioselective hydroaminocarbonylation of aromatic alkenes to branched amides.

    PubMed

    Zhu, Jinping; Gao, Bao; Huang, Hanmin

    2017-03-22

    Pd(t-Bu3P)2 has been successfully identified as an efficient catalyst for the hydroaminocarbonylation of aromatic alkenes to branched amides under relatively mild reaction conditions. With hydroxylamine hydrochloride as an additive, both aliphatic and aromatic amines could be used as coupling partners for the present reaction, leading to production of branched amides in high yields with excellent regioselectivities.

  12. An azole, an amide and a limonoid from Vepris uguenensis (Rutaceae).

    PubMed

    Cheplogoi, Peter K; Mulholland, Dulcie A; Coombes, Philip H; Randrianarivelojosia, Milijaona

    2008-04-01

    The limonoid derivative, methyl uguenenoate, the azole, uguenenazole, and the amide, uguenenonamide, together with the known furoquinoline alkaloids flindersiamine and maculosidine, and syringaldehyde have been isolated from the root of the East African Rutaceae Vepris uguenensis. While methyl uguenenoate and the furoquinoline alkaloids displayed mild antimalarial activity, the azole and amide were completely inactive.

  13. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkylsulfate salt. 721.720 Section 721.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting...

  14. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkylsulfate salt. 721.720 Section 721.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting...

  15. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkylsulfate salt. 721.720 Section 721.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting...

  16. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkylsulfate salt. 721.720 Section 721.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting...

  17. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkylsulfate salt. 721.720 Section 721.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting...

  18. Asymmetric Cyclization of N-Sulfonyl Alkenyl Amides Catalyzed by Iridium/Chiral Diene Complexes.

    PubMed

    Nagamoto, Midori; Yanagi, Tomoyuki; Nishimura, Takahiro; Yorimitsu, Hideki

    2016-09-16

    Iridium/chiral diene complexes efficiently catalyzed the asymmetric cyclization of N-sulfonyl alkenyl amides to give the corresponding 2-pyrrolidone derivatives with high enantioselectivity. A mechanistic study revealed that the reaction proceeds via nucleophilic attack of the amide on the alkene moiety.

  19. N-Acylbenzotriazoles: neutral acylating reagents for the preparation of primary, secondary, and tertiary amides

    PubMed

    Katritzky; He; Suzuki

    2000-12-01

    Readily available N-acylbenzotriazoles 2a-q efficiently acylate aqueous ammonia and primary and secondary amines to give primary, secondary, and tertiary amides in good to excellent yields. The wide applicability of the procedure is illustrated by the preparation of (i) alpha-hydroxyamides from alpha-hydroxy acids and of (ii) perfluoroalkylated amides.

  20. Ruthenium-catalyzed direct C-H amidation of arenes including weakly coordinating aromatic ketones.

    PubMed

    Kim, Jiyu; Kim, Jinwoo; Chang, Sukbok

    2013-06-03

    C-H activation: The ruthenium-catalyzed direct sp(2) C-H amidation of arenes by using sulfonyl azides as the amino source is presented (see scheme). A wide range of substrates were readily amidated including arenes bearing weakly coordinating groups. Synthetic utility of the thus obtained products was demonstrated in the preparation of biologically active heterocycles.

  1. Optimizing production of Fc-amidated peptides by Chinese hamster ovary cells.

    PubMed

    Carlson, Kristina; Pomerantz, Steven C; Vafa, Omid; Naso, Michael; Strohl, William; Mains, Richard E; Eipper, Betty A

    2015-10-16

    Amidation of the carboxyl terminal of many peptides is essential for full biological potency, often increasing receptor binding and stability. The single enzyme responsible for this reaction is peptidylglycine α-amidating monooxygenase (PAM: EC 1.14.17.3), a copper- and ascorbate-dependent Type I membrane protein. To make large amounts of high molecular weight amidated product, Chinese hamster ovary (CHO) cells were engineered to express exogenous PAM. To vary access of the enzyme to its substrate, exogenous PAM was targeted to the endoplasmic reticulum, trans-Golgi network, endosomes and lysosomes or to the lumen of the secretory pathway. PAM was equally active when targeted to each intracellular location and assayed in homogenates. Immunocytochemical analyses of CHO cells and a pituitary cell line demonstrated that targeting of exogenous PAM was partially successful. PAM substrates generated by expressing peptidylglycine substrates (glucagon-like peptide 1-Gly, peptide YY-Gly and neuromedin U-Gly) fused to the C-terminus of immunoglobulin Fc in CHO cell lines producing targeted PAM. The extent of amidation of the Fc-peptides was determined by mass spectrometry and amidation-specific enzyme immunoassays. Amidation was inhibited by copper chelation, but was not enhanced by the addition of additional copper or ascorbate. Peptide amidation was increased over endogenous levels by exogenous PAM, and targeting PAM to the endoplasmic reticulum or trans-Golgi network increased peptide amidation compared to endogenous CHO PAM.

  2. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halo substituted hydroxy nitrophenyl... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...

  3. A case study on the myth of emission from aliphatic amides

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya

    2016-12-01

    For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.

  4. Iridium-catalyzed selective α-alkylation of unactivated amides with primary alcohols.

    PubMed

    Guo, Le; Liu, Yinghua; Yao, Wubing; Leng, Xuebing; Huang, Zheng

    2013-03-01

    The first α-alkylation of unactivated amides with primary alcohols is described. An effective and robust iridium pincer complex has been developed for selective α-alkylation of tertiary and secondary acetamides involving a "borrowing hydrogen" methodology. The method is compatible with alcohols bearing various functional groups. This presents a convenient and environmentally benign protocol for α-alkylation of amides.

  5. XtalFluor-E, an efficient coupling reagent for amidation of carboxylic acids.

    PubMed

    Orliac, Aurélie; Gomez Pardo, Domingo; Bombrun, Agnès; Cossy, Janine

    2013-02-15

    Amides were produced from carboxylic acids and amines by using XtalFluor-E as an activator. Even poorly reactive carboxylic acids can be transformed to amides. In addition, optically active amines and/or carboxylic acids were not epimerized/racemized during the process.

  6. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721.10192 Section 721.10192 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10192 Amides, coco, N-...

  7. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- . 721.10191 Section 721.10191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10191 Amides, coco, N- . (a)...

  8. Peroxide-mediated transition-metal-free direct amidation of alcohols with nitroarenes.

    PubMed

    Xiao, Fuhong; Liu, Yong; Tang, Chenglin; Deng, Guo-Jun

    2012-02-17

    An unusual direct amidation of alcohols with nitroarenes mediated by peroxides has been discovered. The reaction tolerated a wide range of functionalities, and various aromatic amides were obtained in moderate to good yields in the absence of transition-metal catalyst. The peroxides and solvents had a significant impact on the reaction yield.

  9. On the temperature dependence of amide I frequencies of peptides in solution.

    PubMed

    Amunson, Krista E; Kubelka, Jan

    2007-08-23

    The temperature dependence of the amide I vibrational frequencies of peptides in solution was investigated. In D2O, the amide I' bands of both an alpha-helical oligopeptide, the random-coil poly(L-lysine), and the simplest amide, N-methyl acetamide (NMA), exhibit linear frequency shifts of approximately 0.07 cm(-1)/degrees C with increasing temperature. Similar amide I frequency shifts are also observed for NMA in both polar (acetonitrile and DMSO) and nonpolar (1,4-dioxane) organic solvents, thus ruling out hydrogen-bonding strength as the cause of these effects. The experimental NMA amide I frequencies in the organic solvents can be accurately described by a simple theory based on the Onsager reaction field with temperature-dependent solvent dielectric properties and a solute molecular cavity. DFT-level calculations (BPW91/cc-pVDZ) for NMA with an Onsager reaction field confirm the significant contribution of the molecular cavity to the predicted amide I frequencies. Comparison of the computations to experimental data shows that the frequency-dependent response of the reaction field, taken into account by the index of refraction, is crucial for describing the amide I frequencies in polar solvents. The poor predictions of the model for the NMA amide I band in D2O might be due, in part, to the unknown temperature dependence of the refractive index of D2O in the mid-IR range, which was approximated by the available values in the visible region.

  10. Global Average Upper Ocean Temperature Response To Changing Solar Irradiance: Exciting The Internal Decadal Mode

    NASA Astrophysics Data System (ADS)

    White, W. B.; Dettinger, M. D.; Cayan, D. R.; White, Warren B.; Dettinger, Michael D.; Cayan, Daniel R.

    Global average upper ocean temperatures anomalies of +/-0.05°K fluctuate in fixed phase with decadal signals in the Sun's irradiance of +/-0.5 Watts m-2 over the past 100 years (White et al., 1997), but its amplitude is 2 to 3 times that expected from the transient Stefan-Boltzmann radiation balance (White et al., 1988). Examining global patterns of upper ocean temperature and lower troposphere winds, we find the internal interannual mode of variability in Earth's ocean-atmosphere-terrestrial system with global-average upper ocean temperature anomalies of +/-0.05°K occurring naturally, independent of changing solar irradiance (White et al., 2000). Yet coherence and phase statistics indicate that the observed internal decadal mode in Earth's ocean -atmosphere terrestrial system is excited by the decadal signal in the Sun's irradiance. To understand the thermodynamics of this association we conduct a global-average upper ocean heat budget utilizing upper ocean temperatures from the SIO reanalysis and air-sea heat and momentum fluxes from the COADS reanalysis, finding the source of decadal global warming to be the reduction in trade wind intensity across the tropics, decreasing global average latent heat flux out of the ocean. We demonstrate that this reduction in trade wind intensity in the Pacific Ocean is governed by a delayed action oscillator mechanism in the ocean-atmosphere system differing little from that used to explain the El Niño-Southern Oscillation (Graham and White, 1988). We operate an intermediate coupled model of this delayed action oscillator, normally driven by white noise, by superimposing the Stefan-Boltzmann upper ocean temperature response to decadal changes in the Sun's irradiance. We find the latter, with weak amplitude of +/-0.02°K and non-random phase, is able to excite a decadal signal in this delayed action oscillator, yielding a damped resonance response of +/-0.1°K in the equatorial Pacific Ocean, with dissipation provided by

  11. Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake.

    PubMed

    Hiruta, Yuki; Nemoto, Ryo; Kanazawa, Hideko

    2017-02-04

    This study reports the development of temperature-responsive polymer/silica hybrid nanoparticles and their application to temperature-dependent intracellular uptake of hydrophobic encapsulated fluorescence molecules. Amphiphilic diblock copolymer comprising a temperature-responsive segment, poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) [P(NIPAAm-co-DMAAm)] and a trimethyoxysilyl-containing hydrophobic segment was synthesized (PBM-b-ND); this amphiphilic diblock copolymer self-assembled in an aqueous solution, and temperature-responsive polymer/silica hybrid fluorescence nanoparticles were fabricated via a base-catalyzed sol-gel process. The fluorescence probe rhodamine DHPE or boron dipyrromethene derivative was encapsulated into the polymer core with a silica network in a stable manner. Other types of polymer/silica hybrid fluorescence nanoparticles were also developed using either homo-PNIPAAm (PBM-b-N) or homo-PDMAAm (PBM-b-D) segments, instead of P(NIPAAm-co-DMAAm). While PBM-b-D did not exhibit a temperature-dependent phase transition (hydrophilic characteristic), PBM-b-N and PBM-b-ND exhibited temperature-dependent phase transition (hydrophilic/hydrophobic) at 32°C and 38°C, respectively. The cellular uptake of PBM-b-N was clearly observed at both 37°C and 42°C, while the cellular uptake of PBM-b-D was minimal at these temperatures. On the other hand, significant enhancement in the intracellular uptake of PBM-b-ND was observed at 42°C, compared to its uptake at a lower temperature of 37°C. These results indicated that temperature-responsive polymer/silica hybrid nanoparticle, PBM-b-ND demonstrate potential for applications in theranostics with cancer therapy via the combination of local drug delivery and local hyperthermia, as well as for monitoring treatment effectiveness with fluorescence imaging.

  12. Implication of Prostaglandins and Histamine H1 and H2 Receptors in Radiation-Induced Temperature Responses of Rats

    DTIC Science & Technology

    1988-05-01

    1988) S Implication of Prostaglandins and Histamine H1 and H 2 Receptors in Radiation-Induced Temperature Responses of Rats SATHASIVA B. KANDASAMY ... KANDASAMY , S. B., HUNT. W. A., AND MICKLEY, G. A. Implications of Prostaglandins and Histamine H I and H2 Receptors in Radiation-Induced Temperature...lateral ventricle according to coordinates derived from the atlas of Pelligrino et al. (31): 0.8 mm posterior to bregma. 2.5 mm lateral. 44 KANDASAMY , HUNT

  13. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    PubMed

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.

  14. Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China.

    PubMed

    Zhou, Haoran; Xu, Ming; Pan, Hongli; Yu, Xiubo

    2015-11-01

    Temperature responses and sensitivity of photosynthesis (A(n_)T) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration (R(dark)), net assimilation (A(n)), maximal velocity of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A(n_)T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower An due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R(dark) and A(n) changed between OLs and YLs, which was represented by a higher R(dark)/A(n) ratio for OLs.

  15. Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments.

    PubMed

    Canion, Andy; Overholt, Will A; Kostka, Joel E; Huettel, Markus; Lavik, Gaute; Kuypers, Marcel M M

    2014-10-01

    The temperature dependency of denitrification and anaerobic ammonium oxidation (anammox) rates from Arctic fjord sediments was investigated in a temperature gradient block incubator for temperatures ranging from -1 to 40°C. Community structure in intact sediments and slurry incubations was determined using Illumina SSU rRNA gene sequencing. The optimal temperature (Topt ) for denitrification was 25-27°C, whereas anammox rates were optimal at 12-17°C. Both denitrification and anammox exhibited temperature responses consistent with a psychrophilic community, but anammox bacteria may be more specialized for psychrophilic activity. Long-term (1-2 months) warming experiments indicated that temperature increases of 5-10°C above in situ had little effect on the microbial community structure or the temperature response of denitrification and anammox. Increases of 25°C shifted denitrification temperature responses to mesophilic with concurrent community shifts, and anammox activity was eliminated above 25°C. Additions of low molecular weight organic substrates (acetate and lactate) caused increases in denitrification rates, corroborating the hypothesis that the supply of organic substrates is a more dominant control of respiration rates than low temperature. These results suggest that climate-related changes in sinking particulate flux will likely alter rates of N removal more rapidly than warming.

  16. Temperature-Responsive Gelation of Type I Collagen Solutions Involving Fibril Formation and Genipin Crosslinking as a Potential Injectable Hydrogel

    PubMed Central

    Yunoki, Shunji

    2013-01-01

    We investigated the temperature-responsive gelation of collagen/genipin solutions using pepsin-solubilized collagen (PSC) and acid-solubilized collagen (ASC) as substrates. Gelation occurred in the PSC/genipin solutions at genipin concentrations 0–2 mM under moderate change in temperature from 25 to 37°C. The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points. In specific cases PSC would be preferred over ASC as an injectable gel system. The temperature-responsive gelation of PSC/genipin solutions was due to temperature responses to genipin crosslinking and collagen fibril formation. The elastic modulus of the 0.5% PSC/genipin gel system could be adjusted in a range of 2.5 to 50 kPa by the PSC and genipin concentrations, suggesting that a PSC/genipin solution is a potential injectable gel system for drug and cell carriers, with mechanical properties matching those of living tissues. PMID:24222766

  17. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    PubMed

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  18. Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN.

    PubMed

    Werner-Allen, Jon W; Coggins, Brian E; Zhou, Pei

    2010-05-01

    Amide-amide NOESY provides important distance constraints for calculating global folds of large proteins, especially integral membrane proteins with beta-barrel folds. Here, we describe a diagonal-suppressed 4-D NH-NH TROSY-NOESY-TROSY (ds-TNT) experiment for NMR studies of large proteins. The ds-TNT experiment employs a spin state selective transfer scheme that suppresses diagonal signals while providing TROSY optimization in all four dimensions. Active suppression of the strong diagonal peaks greatly reduces the dynamic range of observable signals, making this experiment particularly suitable for use with sparse sampling techniques. To demonstrate the utility of this method, we collected a high resolution 4-D ds-TNT spectrum of a 23kDa protein using randomized concentric shell sampling (RCSS), and we used FFT-CLEAN processing for further reduction of aliasing artifacts - the first application of these techniques to a NOESY experiment. A comparison of peak parameters in the high resolution 4-D dataset with those from a conventionally-sampled 3-D control spectrum shows an accurate reproduction of NOE crosspeaks in addition to a significant reduction in resonance overlap, which largely eliminates assignment ambiguity. Likewise, a comparison of 4-D peak intensities and volumes before and after application of the CLEAN procedure demonstrates that the reduction of aliasing artifacts by CLEAN does not systematically distort NMR signals.

  19. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins

    NASA Astrophysics Data System (ADS)

    Hu, Jiefeng; Wang, Minyan; Pu, Xinghui; Shi, Zhuangzhi

    2017-05-01

    Amide and olefins are important synthetic intermediates with complementary reactivity which play a key role in the construction of natural products, pharmaceuticals and manmade materials. Converting the normally highly stable aliphatic amides into olefins directly is a challenging task. Here we show that a Ni/NHC-catalytic system has been established for decarbonylative elimination of aliphatic amides to generate various olefins via C-N and C-C bond cleavage. This study not only overcomes the acyl C-N bond activation in aliphatic amides, but also encompasses distinct chemical advances on a new type of elimination reaction called retro-hydroamidocarbonylation. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for late-stage olefination of amide groups in complex compounds.

  20. The effects of opioid and FMRF-amide peptides on thermal behavior in the snail.

    PubMed

    Kavaliers, M; Hirst, M; Teskey, G C

    1985-07-01

    Administration of methionine-enkephalin, beta-endorphin or, as previously shown, the opiate agonist, morphine sulfate (0.10-10.0 micrograms per snail), resulted in significant dose-dependent increases in the latency of thermal (40 degrees C hot plate) avoidance behavior of the terrestrial snail, Cepaea nemoralis. The analgesic effects could be blocked by the opiate antagonist, naloxone, as well as by the non-opioid peptides, FMRF-amide and YGG-FMRF-amide. When administered by themselves the FMRF-amide peptides had significant bimodal effects either decreasing (0.10 and 10.0 micrograms) or increasing (1.0 micrograms) the latency of the response to the thermal stimulus. These results indicate that opioid and FMRE-amide peptides may be involved in the determination of thermal behavior in the snail. They also suggest that FMRF-amide peptides may function as endogenous modulators of opioid activity.

  1. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin.

    PubMed

    Huczyński, Adam; Janczak, Jan; Stefańska, Joanna; Antoszczak, Michał; Brzezinski, Bogumil

    2012-07-15

    For the first time a direct and practical approach to the synthesis of eight amide derivatives of polyether antibiotic-salinomycin is described. The structure of allyl amide (3a) has been determined using X-ray diffraction. Salinomycin and its amide derivatives have been screened for their in vitro antimicrobial activity against the typical gram-positive cocci, gram-negative rods and yeast-like organisms, as well as against a series of clinical isolates of methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus. Amides of salinomycin have been found to show a wide range of activities, from inactive at 256 μg/mL to active with MIC of 2 μg/mL, comparable with salinomycin. As a result, phenyl amide (3b) was found to be the most active salinomycin derivative against gram-positive bacteria, MRSA and MSSA.

  2. Collective vibrational effects in hydrogen bonded liquid amides and proteins studied by isotopic substitution

    NASA Astrophysics Data System (ADS)

    Nielsen, O. F.; Johansson, C.; Christensen, D. H.; Hvidt, S.; Flink, J.; Høime Hansen, S.; Poulsen, F.

    2000-09-01

    Raman spectroscopy is used to study the fast dynamics of simple liquid amides and proteins. Raman spectra in the visible region of liquid amides are obtained with a triple additive scanning monochromator, whereas FT-Raman technique is used in the near-IR region in order to avoid fluorescence from impurities in the proteins. Raman spectra are shown in the amide-I region of HCONHCH 3 ( N-methylformamide with all isotopes in their natural abundance), H 13CONHCH 3, HC 18ONHCH 3, human growth hormone, frog tropomyosin and chymotrypsin inhibitor 2 including C-13 and N-15 enriched samples of the latter. Resonance energy transfer (RET) between amide molecules gives rise to a non-coincidence effect of the anisotropic and the isotropic components of the amide-I band. This effect influences the band position in mixtures of liquid amide isotopomers. A further spectral feature caused by collective vibrational modes in the hydrogen bonded liquid amides is named coalescence of bands in mixtures of isotopomers (CBMI). The result of this effect is that only one band is found in mixtures of isotopomers where bands at different frequencies are observed for each of the isotopomers. A similar effect may account for the observation of protein amide-I bands with frequencies dependent only on the secondary structure of the protein and not on the amino acid residues. RET and CBMI are due to a collectivity of vibrational modes in different amide molecules. This collectivity may be related to a cooperativity of hydrogen bonds. A low-frequency band around 100 cm -1 is observed in hydrogen bonded liquid amides and proteins. Isotopic substitution shows that the mode corresponding to this band involves displacements of atoms in hydrogen bonds. This mode may drive a breaking of the hydrogen bond.

  3. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE.

    SciTech Connect

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    Control system studies were performed for the Next Generation Nuclear Plant (NGNP) interfaced to the High Temperature Electrolysis (HTE) plant. Temperature change and associated thermal stresses are important factors in determining plant lifetime. In the NGNP the design objective of a 40 year lifetime for the Intermediate Heat Exchanger (IHX) in particular is seen as a challenge. A control system was designed to minimize temperature changes in the IHX and more generally at all high-temperature locations in the plant for duty-cycle transients. In the NGNP this includes structures at the reactor outlet and at the inlet to the turbine. This problem was approached by identifying those high-level factors that determine temperature rates of change. First are the set of duty cycle transients over which the control engineer has little control but which none-the-less must be addressed. Second is the partitioning of the temperature response into a quasi-static component and a transient component. These two components are largely independent of each other and when addressed as such greater understanding of temperature change mechanisms and how to deal with them is achieved. Third is the manner in which energy and mass flow rates are managed. Generally one aims for a temperature distribution that minimizes spatial non-uniformity of thermal expansion in a component with time. This is can be achieved by maintaining a fixed spatial temperature distribution in a component during transients. A general rule of thumb for heat exchangers is to maintain flow rate proportional to thermal power. Additionally the product of instantaneous flow rate and heat capacity should be maintained the same on both sides of the heat exchanger. Fourth inherent mechanisms for stable behavior should not be compromised by active controllers that can introduce new feedback paths and potentially create under-damped response. Applications of these principles to the development of a plant control strategy for

  4. Lead Optimization Studies of Cinnamic Amide EP2 Antagonists

    PubMed Central

    2015-01-01

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role. PMID:24773616

  5. Sulfonyl Fluoride Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Alapafuja, Shakiru O.; Nikas, Spyros P.; Bharatan, Indu; Shukla, Vidyanand G.; Nasr, Mahmoud L.; Bowman, Anna L.; Zvonok, Nikolai; Li, Jing; Shi, Xiaomeng; Engen, John R.; Makriyannis, Alexandros

    2013-01-01

    Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs. PMID:23083016

  6. pH adjustment schedule for the amide local anesthetics.

    PubMed

    Ikuta, P T; Raza, S M; Durrani, Z; Vasireddy, A R; Winnie, A P; Masters, R W

    1989-01-01

    Several studies have indicated that the addition of sodium bicarbonate to solutions of local anesthetics to raise the pH closer to the pKa shortens the latency, increases the intensity, and prolongs the duration of the resultant neural blockade. However, the addition of too much bicarbonate will cause precipitation, and this may result in the injection of particulate free base along with the solution. The present study was carried out to determine the maximal amount of sodium bicarbonate that can be added to each of the amide local anesthetics without the formation of a precipitate, and, thus, to construct a pH adjustment schedule to simplify the alkalinization of local anesthetics in clinical practice.

  7. Lead optimization studies of cinnamic amide EP2 antagonists.

    PubMed

    Ganesh, Thota; Jiang, Jianxiong; Yang, Myung-Soon; Dingledine, Ray

    2014-05-22

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role.

  8. Polymer amide in the Allende and Murchison meteorites

    NASA Astrophysics Data System (ADS)

    McGeoch, Julie E. M.; McGeoch, Malcolm W.

    2015-12-01

    It has been proposed that exothermic gas phase polymerization of amino acids can occur in the conditions of a warm dense molecular cloud to form hydrophobic polymer amide (HPA) (McGeoch and McGeoch 2014). In a search for evidence of this presolar chemistry Allende and Murchison meteorites and a volcano control were diamond burr-etched and Folch extracted for potential HPA yielding 85 unique peaks in the meteorite samples via matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI TOF/MS). The amino acids after acid hydrolysis in Allende were below the level of detection but many of the Allende peaks via the more sensitive MALDI/TOF analysis could be fitted to a polymer combination of glycine, alanine, and alpha-hydroxyglycine with high statistical significance. A similar significant fit using these three amino acids could not be applied to the Murchison data indicating more complex polymer chemistry.

  9. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    SciTech Connect

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P.

    2010-09-13

    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  10. Two benzoyl coumarin amide fluorescence chemosensors for cyanide anions

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Wu, Qianqian; Li, Jiale; Qiu, Shuang; Cao, Duxia; Xu, Yongxiao; Liu, Zhiqiang; Yu, Xueying; Sun, Yatong

    2017-08-01

    Two new benzoyl coumarin amide derivatives with ortho hydroxyl benzoyl as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions in acetonitrile have also been examined. The influence of electron donating diethylamino group in coumarin ring and hydroxyl in benzoyl group on recognition properties was explored. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectral change and high sensitivity. The import of diethylamine group increases smartly the absorption ability and fluorescence intensity of the compound, which allows the recognition for cyanide anions can be observed by naked eyes. The in situ hydrogen nuclear magnetic resonance spectra combining photophysical properties change and job's plot data confirm that Michael addition between the chemosensors and cyanide anions occurs. Molecular conjugation is interrupted, which leads to fluorescence quenching. At the same time, there is a certain extent hydrogen bond reaction between cyanide and hydroxyl group in the compounds, which is beneficial to the recognition.

  11. Amides and neolignans from the aerial parts of Piper bonii.

    PubMed

    Ding, Duo-Duo; Wang, Yue-Hu; Chen, Ya-Hui; Mei, Ren-Qiang; Yang, Jun; Luo, Ji-Feng; Li, Yan; Long, Chun-Lin; Kong, Yi

    2016-09-01

    Six amides, piperbonamides A-F, three neolignans piperbonins A-C, and 11 known compounds were isolated from the aerial parts of Piper bonii (Piperaceae). The structures of piperbonamides A-F and piperbonins A-C were elucidated based on the analysis of 1D and 2D NMR and MS data. Piperbonin A, (+)-trans-acuminatin, (+)-cis-acuminatin, (+)-kadsurenone, and pipernonaline showed weak activity against platelet aggregation with IC50 values of 118.2, 108.5, 90.02, 107.3, and 116.3 μM, respectively, as compared with the positive control, tirofiban, with an IC50 value of 5.24 μM. Piperbonamides A-F were inactive against five tumor cell lines at concentrations up to 40 μM. Copyright © 2016. Published by Elsevier Ltd.

  12. The alpha-glycosidic bonds of poly(ADP-ribose) are acid-labile.

    PubMed

    Panzeter, P L; Zweifel, B; Althaus, F R

    1992-04-15

    The poly(ADP-ribosyl)ation system of higher eukaryotes produces multiple ADP-ribose polymers of distinct sizes which exhibit different binding affinities for histones. Although precipitation with trichloroacetic acid (TCA) is the standard procedure for isolation of poly(ADP-ribose) from biological material, we show here that poly(ADP-ribose) is not stable under acidic conditions. Storage of poly(ADP-ribose) as TCA pellets results in acid hydrolysis of polymers, the extent of which is dependent on storage time and temperature. The alpha-glycosidic, inter-residue bonds are the preferred sites of attack, thus reducing polymer sizes by integral numbers of ADP-ribose to yield artefactually more and smaller polymers than originally present. Therefore, poly(ADP-ribosyl)ation studies involving TCA precipitation, histone extraction with acids, or acidic incubations of ADP-ribose polymers must account for the impact of acids on resulting polymer populations.

  13. Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp2Zr(H)Cl

    PubMed Central

    Spletstoser, Jared T.; White, Jonathan M.; Tunoori, Ashok Rao; Georg, Gunda I.

    2008-01-01

    An investigation of the use of Cp2Zr(H)Cl (Schwartz’s reagent) to reduce a variety of amides to the corresponding aldehydes under very mild reaction conditions and in high yields is reported. A range of tertiary amides, including Weinreb’s amide, can be converted directly to the corresponding aldehydes with remarkable chemoselectivity. Primary and secondary amides proved to be viable substrates for reduction as well, although the yields were somewhat diminished compared to the corresponding tertiary amides. Results from NMR experiments suggested the presence of a stable, 18-electron zirconacycle intermediate that presumably affords the aldehyde upon water or silica gel workup. A series of competition experiments revealed a preference of the reagent for substrates in which the lone pair of the nitrogen is electron releasing and thus more delocalized across the amide bond by resonance. This trend accounts for the observed excellent selectivity for tertiary amides versus esters. Experiments regarding the solvent dependence of the reaction suggested a kinetic profile similar to that postulated for the hydrozirconation of alkenes and alkynes. Addition of p-anisidine to the reaction intermediate resulted in the formation of the corresponding imine mimicking the addition of water that forms the aldehyde. PMID:17315870

  14. AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis.

    PubMed

    Yang, Dongqin; Yaguchi, Takahiro; Nagata, Tetsu; Gotoh, Akinobu; Dovat, Sinisa; Song, Chunhua; Nishizaki, Tomoyuki

    2011-01-01

    The mechanism underlying extracellular adenosine-induced caspase-independent apoptosis in HuH-7 human hepatoma cells is not fully understood. The present study investigated the role for apoptosis-inducing factor (AIF)-homologous mitochondrion-associated inducer of death (AMID) in the pathway. To see the implication of AMID in adenosine-induced HuH-7 cell apoptosis, real-time reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescent cytochemistry, time-laps GFP monitoring, cell cycle analysis, flow cytometry, Western blotting, cell viability assay, and TUNEL staining were carried out. Adenosine upregulated AMID expression in HuH-7 cells, and translocated AMID from the cytosol into the nucleus. Adenosine induced HuH-7 cell apoptosis, and the effect was further enhanced by overexpressing AMID. Adenosine-induced HuH-7 cell apoptosis, alternatively, was inhibited by knocking-down AMID. The results of the present study provide evidence for AMID as a critical factor for adenosine-induced caspase-independent HuH-7 cell apoptosis. Copyright © 2011 S. Karger AG, Basel.

  15. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay.

  16. Synergistic effects of amides from two piper species on generalist and specialist herbivores.

    PubMed

    Richards, Lora A; Dyer, Lee A; Smilanich, Angela M; Dodson, Craig D

    2010-10-01

    Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which often affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance to parasitoids. In this study, we performed feeding experiments to examine the synergistic effects of imides and amides (hereafter "amides") from Piper cenocladum and P. imperiale on specialist (Eois nympha, Geometridae) and generalist (Spodoptera frugiperda, Noctuidae) lepidopteran larvae. Each Piper species has three unique amides, and in each experiment, larvae were fed diets containing different concentrations of single amides or combinations of the three. The amides from P. imperiale had negative synergistic effects on generalist survival and specialist pupal mass, but had no effect on specialist survival. Piper cenocladum amides also acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility. Our results are consistent with plant defense theory that predicts different effects of plant chemistry on generalist versus adapted specialist herbivores. The toxicity of Piper amide mixtures to generalist herbivores are standard bottom-up effects, while specialists experienced the top-down mediated effect of mixtures causing reduced parasitoid resistance and associated decreases in pupal mass.

  17. New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials.

    PubMed

    Cao, Hujun; Santoru, Antonio; Pistidda, Claudio; Richter, Theresia M M; Chaudhary, Anna-Lisa; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2016-04-14

    K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride systems known to date. This work also shows a strategy for the synthesis of transition metal nitrides by decomposition of the mixtures of M[M'(NH2)n] (where M is an alkali or alkaline earth metal and M' is a transition metal) and metal hydrides.

  18. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24.

    PubMed

    Leprince, Jérôme; Bagnol, Didier; Bureau, Ronan; Fukusumi, Shoji; Granata, Riccarda; Hinuma, Shuji; Larhammar, Dan; Primeaux, Stefany; Sopkova-de Oliveiras Santos, Jana; Tsutsui, Kazuyoshi; Ukena, Kazuyoshi; Vaudry, Hubert

    2017-10-01

    The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications. © 2017 The British Pharmacological Society.

  19. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements.

    PubMed

    Dempsey, C E; Handcock, L J

    1996-04-01

    Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is

  20. Probing the production of amidated peptides following genetic and dietary copper manipulations.

    PubMed

    Yin, Ping; Bousquet-Moore, Danielle; Annangudi, Suresh P; Southey, Bruce R; Mains, Richard E; Eipper, Betty A; Sweedler, Jonathan V

    2011-01-01

    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM(+/-)) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM(+/-) mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM(+/-) mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides.

  1. Electronic circular dichroism of the chiral rigid tricyclic dilactam with nonplanar tertiary amide groups.

    PubMed

    Pazderková, Markéta; Profant, Václav; Seidlerová, Beata; Dlouhá, Helena; Hodačová, Jana; Jávorfi, Tamás; Siligardi, Giuliano; Baumruk, Vladimír; Bednárová, Lucie; Maloň, Petr

    2014-09-25

    Electronic circular dichroism (ECD) of the spirocyclic dilactam 5,8-diazatricyclo[6,3,0,0(1,5)]undecane-4,9-dione has been measured in the extended wavelength range (170-260 nm) utilizing far-UV CD instrumentation including synchrotron radiation light source. The data of this model of two nonplanar tertiary amide groups interacting within the rigid chiral environment provided new information particularly about the shorter wavelength π-π* transition region below 190 nm. The interpretation using TDDFT calculations confirmed that effects of amide nonplanarity follow our previous observations on monolactams as far as amide n-π* transitions are concerned. ECD band in the n-π* transition region of the nonplanar diamide exhibits an identical bathochromic shift and its sign remains tied to the sense of nonplanar deformation in the same way. As far as n-π* transitions are concerned amide nonplanarity acts as a local phenomenon independently reflecting sum properties of single amide groups. On the other hand, CD bands associated with π-π* transitions (found between ∼170 to 210 nm) form an exciton-like couplet with the sign pattern determined by mutual orientation of the associated electric transition moments. This sign pattern follows predictions pertaining to a coupled oscillator. The influence of amide nonplanarity on π-π* transitions is only minor and concentrates into the shorter wavelength lobe of the π-π* couplet. The detailed analysis of experimental ECD with the aid of TDDFT calculations shows that there is only little interaction between effects of inherent chirality caused by nonplanarity of amide groups and amide-amide coupling. Consequently these two effects can be studied nearly independently using ECD. In addition, the calculations indicate that participation of other type of transitions (n-σ*, π-σ* or Rydberg type transitions) is only minor and is concentrated below 180 nm.

  2. Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-04-08

    The hydrophobic interior cavity of a self-assembled supramolecular assembly exploits the hydrophobic effect for the encapsulation of tertiary amides. Variable temperature 1H NMR experiments reveal that the free energy barrier for rotation around the C-N amide bond is lowered by up to 3.6 kcal/mol upon encapsulation. The hydrophobic cavity of the assembly is able to stabilize the less polar transition state of the amide rotation process. Carbon-13 labeling studies showed that the {sup 13}C NMR carbonyl resonance increases with temperature for the encapsulated amides which suggests that the assembly is able to favor a twisted for of the amide.

  3. Structural determinants of miR156a precursor processing in temperature-responsive flowering in Arabidopsis

    PubMed Central

    Kim, Wanhui; Kim, Hee-Eun; Jun, A Rim; Jung, Myeong Gyo; Jin, Suhyun; Lee, Joon-Hwa; Ahn, Ji Hoon

    2016-01-01

    MicroRNAs originate from primary transcripts (pri-miRNAs) containing hairpin structures. Plant pri-miRNAs have highly variable structures and little is known about the information encoded in their secondary structures. Arabidopsis miR156 is an ambient temperature-responsive miRNA and plays an important role in regulating flowering time. To identify the structural determinants for miR156 processing, we analyzed the effects of mutations introduced in the upper stem of pri-miR156a on its temperature-dependent processing and flowering time. The levels of pri-miR156a and mature miR156 were opposite at different temperatures. Mutations in the upper stem, especially the region closer to the miR156a/miR156a* duplex, reduced miR156 processing at 23 °C and 16 °C and caused a less severe phenotype compared with the un-mutated construct. Mutation in the second stem near the first cleavage site of pri-miR156a affected miR156 processing at 23 °C, but not at 16 °C. This was also seen in pri-miR172a, another ambient temperature-responsive miRNA. Replacement of the upper stem of pri-miR156a with that of pri-miR172a severely affected miR156 processing and flowering time. These results suggested that the upper stem of pri-miR156a is important for miR156 processing at different temperatures. In particular, the second stem adjacent to the first cleavage site plays a role in the regulation of ambient temperature-responsive flowering. PMID:27335452

  4. Chemo- and Stereoselective Transition-Metal-Free Amination of Amides with Azides

    PubMed Central

    2016-01-01

    The synthesis of α-amino carbonyl/carboxyl compounds is a contemporary challenge in organic synthesis. Herein, we present a stereoselective α-amination of amides employing simple azides that proceeds under mild conditions with release of nitrogen gas. The amide is used as the limiting reagent, and through simple variation of the azide pattern, various differently substituted aminated products can be obtained. The reaction is fully chemoselective for amides even in the presence of esters or ketones and lends itself to preparation of optically enriched products. PMID:27350334

  5. Chelate effects in sulfate binding by amide/urea-based ligands.

    PubMed

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-07

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  6. Ruthenium(II)-Catalyzed Regioselective Ortho Amidation of Imidazo Heterocycles with Isocyanates.

    PubMed

    Shakoor, S M Abdul; Kumari, Santosh; Khullar, Sadhika; Mandal, Sanjay K; Kumar, Anil; Sakhuja, Rajeev

    2016-12-16

    Direct ortho amidation at the phenyl ring of 2-phenylimidazo heterocycles with aryl isocyanates has been achieved via a chelation-assisted cationic ruthenium(II) complex catalyzed mechanism. The methodology provides a straightforward, high-yielding regioselective approach toward the synthesis of an array of ortho-amidated phenylimidazo heterocycles without prior activation of C(sp(2))-H. This also reports the first method for coupling of aryl isocyanates with the imidazo[1,2-a]pyridine system via a pentacyclometalated intermediate. The methodology is found to be easily scalable and could be applied toward the selective ortho amidation of 2-heteroarylimidazo[1,2-a]pyridine frameworks.

  7. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Axially Chiral Aromatic Amides.

    PubMed

    Fäseke, Vincent C; Sparr, Christof

    2016-06-13

    The increasing awareness of the importance of amide atropisomers prompts the development of novel strategies for their selective preparation. Described herein is a method for the enantioselective synthesis of atropisomeric aromatic amides by an amine-catalyzed arene-forming aldol condensation. The high reactivity of the glyoxylic amide substrates enables a remarkably efficient construction of a new aromatic ring, which proceeds within minutes at ambient temperature to afford products with excellent stereoselectivity. The high rotational barriers of the reduced products highlight the utility of this stable, spatially organized chiral scaffold. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A contrivance for a dynamic porous framework: cooperative guest adsorption based on square grids connected by amide-amide hydrogen bonds.

    PubMed

    Uemura, Kazuhiro; Kitagawa, Susumu; Fukui, Kôichi; Saito, Kazuya

    2004-03-31

    Flexible porous coordination polymers containing amide groups as a function origin have been synthesized and categorized as "Coordination Polymer with Amide Groups". Bispyridyl ligands with a spacer of amide group afford two-dimensional (2-D) motifs with a deformed square grid, resulting in three-dimensional (3-D) frameworks of [Co(NO(3))(2)(3-pna)(2)](n)(1), [Co(Br)(2)(3-pna)(2)](n)(2), and [[Co(NCS)(2)(4-peia)(2)].4Me(2)CO](n)(3 subset 4Me(2)CO) (3-pna = N-3-pyridylnicotinamide, 4-peia = N-(2-pyridin-4-yl-ethyl)-isonicotinamide), where the 2-D motifs are bound by complementary hydrogen bond between the amide groups. In the case of the 3 subset 4Me(2)CO, the amide groups form a contrivance for a dynamic porous framework because of their relevant position and orientation in the mutual nearest neighboring motifs. Consequently, 3 subset 4Me(2)CO shows amorphous (nonporous)-to-crystal (porous) structural rearrangement in the Me(2)CO adsorption and desorption process, where the framework of the 2-D motif is maintained. The adsorption isotherm has threshold pressure (P(th)), a sort of gate pressure. The heat of Me(2)CO adsorption (DeltaH(ad) = -25 kJ/mol) is obtained from the temperature dependence of threshold pressure (P(th)), which is close to acetone vaporization enthalpy (DeltaH(vap) = 30.99 kJ/mol).

  9. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase.

    PubMed

    Bisogno, T; Melck, D; De Petrocellis, L; Bobrov MYu; Gretskaya, N M; Bezuglov, V V; Sitachitta, N; Gerwick, W H; Di Marzo, V

    1998-07-30

    Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5

  10. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  11. Synthesis and self-assembly of temperature-responsive copolymers based on N-vinylpyrrolidone and triethylene glycol methacrylate

    PubMed Central

    Jumeaux, Coline; Chapman, Robert; Chandrawati, Rona; Stevens, Molly M.

    2017-01-01

    Polyvinylpyrrolidone (PVP) is a biocompatible, water-soluble polymer with unique physicochemical properties and attractive biological features that has found widespread use in several industries. Owing to advances in controlled polymerisation techniques, PVP can be easily synthesised with robust control over its architecture. However, the synthesis of PVP copolymers, which can allow tailoring of its properties and expand the scope of this polymeric material, is challenging and rarely reported. Here, we demonstrate the synthesis of well-defined, temperature-responsive polyvinylpyrrolidone-co-poly(triethylene glycol methacrylate) (PVP-co-pTEGMA) block copolymers via successive Reversible Addition-Fragmentation chain Transfer (RAFT) and Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerisation (ARGET-ATRP) techniques. We show that PVP-co-pTEGMA block copolymers display temperature-responsive behaviour and self-assemble above their cloud point temperature (Tcp) to form spherical nanostructures of 100-200 nm in diameter. Finally, we demonstrate stabilisation of these assemblies below their Tcp by cross-linking through the PVP block. PMID:28458725

  12. An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release.

    PubMed

    Lv, Ruichan; Yang, Piaoping; He, Fei; Gai, Shili; Yang, Guixin; Dai, Yunlu; Hou, Zhiyao; Lin, Jun

    2015-09-01

    To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 - (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core-shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Temperature response of soil carbon decomposition depends strongly on forest management practice and soil layer on the eastern Tibetan Plateau.

    PubMed

    Yang, Kaijun; He, Ruoyang; Yang, Wanqin; Li, Zhijie; Zhuang, Liyan; Wu, Fuzhong; Tan, Bo; Liu, Yang; Zhang, Li; Tu, Lihua; Xu, Zhenfeng

    2017-07-06

    How forest management practice impacts the temperature response of soil carbon decomposition remains unclear in Tibetan boreal forests. Here, an experiment was conducted to compare soil carbon decomposition of two layers (organic and mineral) in three Tibetan forests (natural forest, NF; secondary forest, SF; spruce plantation, PF). Soils were incubated at two temperatures (10 °C and 20 °C) for 219 days. Increased temperature often stimulated carbon decomposition rates of organic layer but did not affect them in the mineral soils. Soil carbon decomposition rates in the organic layer followed a pattern of NF > SF > PF over the incubation period. Regardless of forest type, soil carbon decomposition rates and temperature coefficient (Q 10) were higher in the organic layers compared to mineral soils. Moreover, forest type conversion increased Q 10 values in each soil layer. Taken together, our results suggest that forest management practice has much stronger impacts on biochemical properties in the organic layers relative to mineral soils. Moreover, the temperature responses of soil carbon decomposition depend largely on forest management practice and soil layer in this specific area.

  14. Effects of Two Short-Term, Intermittent Hypoxic Training Protocols on the Finger Temperature Response to Local Cold Stress.

    PubMed

    Keramidas, Michail E; Kounalakis, Stylianos N; Eiken, Ola; Mekjavic, Igor B

    2015-09-01

    The study examined the effects of two short-term, intermittent hypoxic training protocols, namely exercising in hypoxia and living in normoxia (LL-TH; n=8), and exercising in normoxia preceded by a series of brief intermittent hypoxic exposures at rest (IHE+NOR; n=8), on the finger temperature response during a sea-level local cold test. In addition, a normoxic group was assigned as a control group (NOR; n=8). All groups trained on a cycle-ergometer 1 h/day, 5 days/week for 4 weeks at 50% of peak power output. Pre, post, and 11 days after the last training session, subjects immersed their right hand for 30 min in 8°C water. In the NOR group, the average finger temperature was higher in the post (+2.1°C) and 11-day after (+2.6°C) tests than in the pre-test (p≤0.001). Conversely, the fingers were significantly colder immediately after both hypoxic protocols (LL-TH: -1.1°C, IHE+NOR: -1.8°C; p=0.01). The temperature responses returned to the pre-training level 11 days after the hypoxic interventions. Ergo, present findings suggest that short-term intermittent hypoxic training impairs sea-level local cold tolerance; yet, the hypoxic-induced adverse responses seem to be reversible within a period of 11 days.

  15. The Temperature Response and Aggressiveness of Peyronellaea pinodes Isolates Originating from Wild and Domesticated Pisum sp. in Israel.

    PubMed

    Golani, M; Abbo, S; Sherman, A; Frenkel, O; Shtienberg, D

    2016-08-01

    Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes.

  16. Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP

    NASA Astrophysics Data System (ADS)

    Pan, Jianming; Hang, Hui; Li, Xiuxiu; Zhu, Wenjing; Meng, Minjia; Dai, Xiaohui; Dai, Jiangdong; Yan, Yongsheng

    2013-12-01

    Temperature responsive molecularly imprinted polymers (T-MIPs) were prepared based on the surface of yeast by electron transfer atom transfer radical polymerization (AGET ATRP). The as-prepared T-MIPs were charcterized by FT-IR, SEM, TGA and elemental analysis, which indicated that T-MIPs exhibited thermal stability and composed of temperature responsive imprinted layer. Then T-MIPs were evaluated as sorbents to selectively recognise and release cefalexin (CFX) molecules. The results suggested binding properties of T-MIPs were related to the testing temperature. The maximum adsorption capacity of T-MIPs at 303 K was 59.4 mg g-1, and the maximum release proportion for T-MIPs at 293 K in water for 24 h was 71.08%. The selective recognition experiments demonstrated high affinity and selectivity of T-MIPs towards CFX over competitive compounds, and the specific recognition of binding sites may be based on the distinct size, structure and functional group to the template molecules.

  17. Copper-mediated amidation of alkenylzirconocenes with acyl azides: formation of enamides.

    PubMed

    Liu, Hailan; Zhou, Yiqing; Yan, Xiaoyu; Chen, Chao; Liu, Qingbin; Xi, Chanjuan

    2013-10-18

    Copper-mediated amidation of alkenylzirconocenes generated in situ from alkynes and zirconocenes with acyl azides is accomplished under mild conditions. The reaction can be used to prepare various enamides.

  18. Four new amide derivatives of pyridinecarboxylic acids. Synthesis, structure and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Kwiatek, Dorota; Kubicki, Maciej; Barczyński, Piotr; Lis, Stefan; Hnatejko, Zbigniew

    2017-10-01

    This study treats about four new pyridine amide derivatives obtained by a simple and inexpensive method of synthesis which consisted in amide coupling of pyridine-2-carboxylic acid and pyridine-4-carboxylic acid chlorides and aromatic amines: methyl 2-amino-3-methylbenzoate (Ea), methyl 3-amino-2-methylbenzoate (Eb), methyl 3-amino-4-methylbenzoate (Ec). All products of synthesis: L1, L2, L3, L4 were analyzed in detail by FT-IR, 1H, 13C, COSY 2D, HSQC, HMBC NMR spectroscopy, elemental, TGA and X-ray analysis. The excitation and emission spectra for obtained amides were also registered. An exact examination of results confirmed receiving four amide compounds with higher potential ability to metal ion coordination than the substrates alone.

  19. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  20. Manipulation of neuropeptide biosynthesis through the expression of antisense RNA for peptidylglycine alpha-amidating monooxygenase.

    PubMed

    Mains, R E; Bloomquist, B T; Eipper, B A

    1991-02-01

    Stable cell lines with significantly elevated or diminished levels of a key neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), were generated by transfection of a mouse pituitary cell line with expression vectors containing PAM cDNA in the sense or antisense orientation. By evaluating the ability of these cell lines to alpha-amidate endogenous neuropeptides, a rate-limiting role for PAM in neuropeptide alpha-amidation was demonstrated. Overexpression of either the full-length PAM precursor with its trans-membrane domain or a soluble protein containing only the monooxygenase domain of PAM led to increased alpha-amidation of endogenous neuropeptides. Overexpression of the full-length PAM led to an unexpected decrease in the endoproteolytic processing of endogenous prohormone; conversely, underexpression of PAM led to significantly enhanced endoproteolytic processing of endogenous prohormone. These data suggest that PAM may have additional functions in peptide processing.

  1. Pd-Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst Development, Scope, and Computational Study

    PubMed Central

    Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.

    2009-01-01

    We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610

  2. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.

  3. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  4. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    PubMed Central

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  5. Transforming a Stable Amide into a Highly Reactive One: Capturing the Essence of Enzymatic Catalysis.

    PubMed

    Souza, Bruno S; Mora, Jose R; Wanderlind, Eduardo H; Clementin, Rosilene M; Gesser, Jose C; Fiedler, Haidi D; Nome, Faruk; Menger, Fredric M

    2017-04-05

    Aspartic proteinases, which include HIV-1 proteinase, function with two aspartate carboxy groups at the active site. This relationship has been modeled in a system possessing an otherwise unactivated amide positioned between two carboxy groups. The model amide is cleaved at an enzyme-like rate that renders the amide nonisolable at 35 °C and pH 4 owing to the joint presence of carboxy and carboxylate groups. A currently advanced theory attributing almost the entire catalytic power of enzymes to electrostatic reorganization is shown to be superfluous when suitable interatomic interactions are present. Our kinetic results are consistent with spatiotemporal concepts where embedding the amide group between two carboxylic moieties in proper geometries, at distances less than the diameter of water, leads to enzyme-like rate enhancements. Space and time are the essence of enzyme catalysis.

  6. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    PubMed Central

    Bolla, Geetha; Nangia, Ashwini

    2016-01-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778

  7. Sodium methoxide: a simple but highly efficient catalyst for the direct amidation of esters.

    PubMed

    Ohshima, Takashi; Hayashi, Yukiko; Agura, Kazushi; Fujii, Yuka; Yoshiyama, Asako; Mashima, Kazushi

    2012-06-04

    A simple NaOMe catalyst provides superior accessibility to a wide variety of functionalized amides including peptides through direct amination of esters in an atom-economical and environmentally benign way.

  8. Crystal structure of the high-energy-density material guanylurea dipicryl-amide.

    PubMed

    Deblitz, Raik; Hrib, Cristian G; Hilfert, Liane; Edelmann, Frank T

    2014-08-01

    The title compound, 1-carbamoylguanidinium bis-(2,4,6-tri-nitro-phen-yl)amide [H2NC(=O)NHC(NH2)2](+)[N{C6H2(NO2)3-2,4,6}2](-) (= guanylurea dipicryl-amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl-amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl-amide anions. The crystal packing is dominated by an extensive network of N-H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m(-3), which makes the title compound a potential secondary explosive.

  9. Copper-catalyzed C(sp2)-H amidation with azides as amino sources.

    PubMed

    Peng, Jiangling; Xie, Zeqiang; Chen, Ming; Wang, Jian; Zhu, Qiang

    2014-09-19

    A copper-catalyzed C-H amidation process, with azides as amino sources under oxidant-free conditions, has been developed. When N-heterocycles were employed as directing groups, sulfonylazide and benzoylazide could be used as amidating reagents to provide corresponding N-arylamides. When amidines or imine were used, tandem C-N/N-N bond formation occurred to afford indazole derivatives in one pot.

  10. Actinide-lanthanide separation with solvents on the base of amides of heterocyclic diacids

    SciTech Connect

    Babain, V.A.; Alyapyshev, M.Y.; Tkachenko, L.I.

    2013-07-01

    The separation of actinides from lanthanides with a particular emphasis on Am(III) from Eu(III) with amides of heterocyclic dicarboxylic diacids was reviewed. It was shown that the di-amides of the 2,2'-dipyridyl-6,6'-dicarboxylic acid are the most promising ligands for the simultaneous selective recovery of actinides from HLLW (high level radioactive liquid waste) within the GANEX concept. (author)

  11. Multicomponent Approach to the Synthesis of Oxidized Amides through Nitrile Hydrozirconation

    PubMed Central

    Wan, Shuangyi; Green, Michael E.; Park, Jung-Hyun; Floreancig, Paul E.

    2008-01-01

    “Oxidized” amides, as represented by acyl aminals and acyl hemiaminals, are integral subunits of several natural products that exhibit useful biological activity. In this manuscript a multicomponent approach to these groups from acylimine intermediates is demonstrated. The acylimines are accessed through a sequence of nitrile hydrozirconation and acylation, making this highly versatile amide synthesis useful for a range of range of applications in target- and diversity-oriented synthesis. PMID:18020344

  12. Fatty Amide Determination in Neutral Molecular Fractions of Green Crude Hydrothermal Liquefaction Oils From Algal Biomass

    DOE PAGES

    Palardy, Oliver; Behnke, Craig; Laurens, Lieve M. L.

    2017-07-05

    Even though hydrothermal liquefaction (HTL) is a promising route to produce crude oils (referred to as 'green crude'), the molecular composition of the nitrogen fraction of such green crude oils is not fully understood. The goal of this work was to identify and quantify the fraction of fatty amides in green crude oils obtained from five different samples derived from Desmodesmus armatus, Tetraselmis sp., and Chlorella sp. biomass treated under different HTL conditions (260 or 340 degrees C as batch or continuous processes). The goal of this work was to elucidate the nature of the high nitrogen content of themore » green crude oils. We identified at least 19 distinct fatty amides present in green crude oils and quantified them based on relevant standards in purified fractions after functional group-based separation and enrichment. It was not known how much these compounds contributed to the oils or which molecular fraction they are associated with. We found that fatty amides exclusively partitioned with the neutral fraction of the oils and belonged mainly to one of five categories, based on their functional group substitution, i.e., fatty amides, monomethyl, dimethyl, monoethanolamide, and diethanolamide. The quantification of fatty amides in the neutral oil fraction was based on respective fatty amide standards, after verification of consistency in response factors between molecules with different substitutions of the amide group. Here, we found that the amount of fatty amides found in each of the five samples varied considerably and ranged between 1.4 and 3.0% of the green crude oils, with the highest levels detected in the sample with the highest oil content, after HTL of biomass derived from a nutrient deprived Chlorella sp. culture.« less

  13. Visible-light-promoted redox neutral C-H amidation of heteroarenes with hydroxylamine derivatives.

    PubMed

    Qin, Qixue; Yu, Shouyun

    2014-07-03

    A room temperature redox neutral direct C-H amidation of heteroarenes has been achieved. Hydroxylamine derivatives, which are easily accessed, have been employed as tunable nitrogen sources. These reactions were enabled by a visible-light-promoted single-electron transfer pathway without a directing group. A variety of heteroarenes, such as indoles, pyrroles, and furans, could go through this amidation with high yields (up to 98%). These reactions are highly regioselective, and all the products were isolated as a single regioisomer.

  14. Preparation and phytotoxicity of novel kaurane diterpene amides with potential use as herbicides.

    PubMed

    Boaventura, Maria Amélia Diamantino; Pereira, Rondinelle Gomes; de Oliveira Freitas, Luiza B; Dos Reis, Leandro Alves; da Silva Vieira, Henriete

    2008-05-14

    Novel kaurane ditepene monoamides were synthesized in good yields directly from kaurenoic ( 1) and grandiflorenic ( 2) acids and unprotected symmetrical diamines, using a modified protocol for monoacylation. Amides from 1 and 2 and monoamines were also obtained and tested against seed germination and growth of radicle and shoot of Lactuca sativa (lettuce), at 10 (-3), 10 (-5), and 10 (-7) M. Amides from symmetrical diamines showed significant inhibitory activity at higher concentrations.

  15. Mapping human brain fatty acid amide hydrolase activity with PET

    PubMed Central

    Rusjan, Pablo M; Wilson, Alan A; Mizrahi, Romina; Boileau, Isabelle; Chavez, Sofia E; Lobaugh, Nancy J; Kish, Stephen J; Houle, Sylvain; Tong, Junchao

    2013-01-01

    Endocannabinoid tone has recently been implicated in a number of prevalent neuropsychiatric conditions. [11C]CURB is the first available positron emission tomography (PET) radiotracer for imaging fatty acid amide hydrolase (FAAH), the enzyme which metabolizes the prominent endocannabinoid anandamide. Here, we sought to determine the most suitable kinetic modeling approach for quantifying [11C]CURB that binds selectively to FAAH. Six healthy volunteers were scanned with arterial blood sampling for 90 minutes. Kinetic parameters were estimated regionally using a one-tissue compartment model (TCM), a 2-TCM with and without irreversible trapping, and an irreversible 3-TCM. The 2-TCM with irreversible trapping provided the best identifiability of PET outcome measures among the approaches studied (coefficient of variation (COV) of the net influx constant Ki and the composite parameter λk3 (λ=K1/k2) <5%, and COV(k3)<10%). Reducing scan time to 60 minutes did not compromise the identifiability of rate constants. Arterial spin labeling measures of regional cerebral blood flow were only slightly correlated with Ki, but not with k3 or λk3. Our data suggest that λk3 is sensitive to changes in FAAH activity, therefore, optimal for PET quantification of FAAH activities with [11C]CURB. Simulations showed that [11C]CURB binding in healthy subjects is far from a flow-limited uptake. PMID:23211960

  16. Effects of three related amides on microecosystem stability

    SciTech Connect

    Flum, T.F.; Shannon, L.J.

    1987-04-01

    Three related amides (diuron, 2-(octyloxy) acetanilide, and salicylanilide) were evaluated for toxicity to aquatic microcosm communities. Effects were measured at the ecosystem level using changes in pH, Eh (redox potential), and dissolved oxygen as indicators of toxicity. These values were used to calculate the resistance, resilience, and relative instability of the microecosystems to each compound at comparable dose levels of approximately 2500 micrograms/liter. Such measures have often been used in a theoretical context, but have not received wide practical application. The systems showed low resistance and no resilience to diuron, high resistance and low resilience to 2-(octyloxy) acetanilide, and no response to salicylanilide. At a higher exposure level (9800 micrograms/liter salicylanilide), the systems showed low resistance and high resilience. Both this approach and more traditional dose-response measures of toxicity indicated that diuron was clearly the most toxic compound, followed by 2-(octyloxy) acetanilide and salicylanilide. While microcosm toxicity tests were slightly less sensitive than some single species tests, they provided important additional information on the extent of perturbations and the rate of ecosystem recovery.

  17. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development.

    PubMed

    Kim, Hee-Yong; Spector, Arthur A; Xiong, Zheng-Mei

    2011-11-01

    Docosahexaenoic acid (DHA), the n-3 essential fatty acid that is highly enriched in the brain, increases neurite growth and synaptogenesis in cultured mouse fetal hippocampal neurons. These cellular effects may underlie the DHA-induced enhancement of hippocampus-dependent learning and memory functions. We found that N-docsahexaenoylethanolamide (DEA), an ethanolamide derivative of DHA, is a potent mediator for these actions. This is supported by the observation that DHA is converted to DEA by fetal mouse hippocampal neuron cultures and a hippocampal homogenate, and DEA is present endogenously in the mouse hippocampus. Furthermore, DEA stimulates neurite growth and synaptogenesis at substantially lower concentrations than DHA, and it enhances glutamatergic synaptic activities with concomitant increases in synapsin and glutamate receptor subunit expression in the hippocampal neurons. These findings suggest that DEA, an ethanolamide derivative of DHA, is a synaptogenic factor, and therefore we suggest utilizing the term 'synaptamide'. This brief review summarizes the neuronal production and actions of synaptamide and describes other N-docosahexaenoyl amides that are present in the brain. Published by Elsevier Inc.

  18. Poly(ester amide) blend microspheres for oral insulin delivery.

    PubMed

    He, Pan; Liu, Huaiyu; Tang, Zhaohui; Deng, Mingxiao; Yang, Yan; Pang, Xuan; Chen, Xuesi

    2013-10-15

    This study developed a novel oral insulin formulation centered on microspheres consisting of a blend of biodegradable poly(ester amide) (PEA). In the formulation, L-lysine-/L-leucine-based PEA with pendant COOH groups (PEA-COOH) was used as a pH-responsive material for the protection of insulin from the harsh environmental conditions of the stomach. Arginine-based PEA (Arg-PEA) was introduced to improve the intestinal absorption of the drug. The influence of both the hydrophobicity of PEA-COOH and the content of Arg-PEA was investigated in detail on microsphere surface morphology, drug loading, and the in vitro release profile of insulin. The PEA-COOH/Arg-PEA blend microspheres protected the loaded insulin in simulated gastric fluid and released insulin in a fast and sustained manner in simulated intestinal fluid. The in vivo test demonstrated that the oral administration of insulin-loaded PEA blend microspheres could effectively suppress the blood glucose level in diabetic rats for 10h, and the oral bioavailability was improved to 5.89+1.84% in healthy rats. These results indicate that the PEA blend microspheres are promising vehicles for the oral delivery of insulin. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Computational study of the effects of steric hindrance on amide bond cleavage.

    PubMed

    Matsubara, Toshiaki; Ueta, Chikako

    2014-09-25

    The reaction mechanism of amide bond cleavages of the 2,2,6,6-tetramethylpiperidine derivatives, which proceeds in methanol solvent under mild conditions, is examined by the density functional method (B3LYP) using a model substrate. We performed the calculations to clarify the reason why the amide bond is readily broken in the present system, on the basis of an experimentally proposed "proton switching pathway" that is different from the generally known mechanisms. As a result, it was found that the stepwise decomposition of the amide bond by the "proton switching pathway" significantly lowers the energy barrier. The delocalization of the π electron in the -C(═O)-N< part is hindered by the steric effect of the four Me groups of the piperidine so that the acetyl group can easily rotate around the C-N axis and then the α-H migrates to the amide N. The subsequent amide bond dissociation, which is thought to be a rate-determining step in the experiment, was very facile. The reaction is completed by the addition of methanol to the formed ketene. Both the energy barriers of the α-H migration to the amide N and the methanol addition to ketene are largely decreased by the mediation of methanol solvent molecules. The rate-determining step of the entire reaction was found to be the α-H migration.

  20. Computational Amide I Spectroscopy for Refinement of Disordered Peptide Ensembles: Maximum Entropy and Related Approaches

    NASA Astrophysics Data System (ADS)

    Reppert, Michael; Tokmakoff, Andrei

    The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.

  1. UV resonance Raman investigation of the aqueous solvation dependence of primary amide vibrations.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Dahlburg, Elizabeth M; Hong, Zhenmin; Myshakina, Nataliya S; Geib, Steven; Asher, Sanford A

    2015-03-12

    We investigated the normal mode composition and the aqueous solvation dependence of the primary amide vibrations of propanamide. Infrared, normal Raman, and UV resonance Raman (UVRR) spectroscopy were applied in conjunction with density functional theory (DFT) to assign the vibrations of crystalline propanamide. We examined the aqueous solvation dependence of the primary amide UVRR bands by measuring spectra in different acetonitrile/water mixtures. As previously observed in the UVRR spectra of N-methylacetamide, all of the resonance enhanced primary amide bands, except for the Amide I (AmI), show increased UVRR cross sections as the solvent becomes water-rich. These spectral trends are rationalized by a model wherein the hydrogen bonding and the high dielectric constant of water stabilizes the ground state dipolar (-)O-C═NH2(+) resonance structure over the neutral O═C-NH2 resonance structure. Thus, vibrations with large C-N stretching show increased UVRR cross sections because the C-N displacement between the electronic ground and excited state increases along the C-N bond. In contrast, vibrations dominated by C═O stretching, such as the AmI, show a decreased displacement between the electronic ground and excited state, which result in a decreased UVRR cross section upon aqueous solvation. The UVRR primary amide vibrations can be used as sensitive spectroscopic markers to study the local dielectric constant and hydrogen bonding environments of the primary amide side chains of glutamine (Gln) and asparagine (Asn).

  2. Effect of amide bonds on the self-assembly of gemini surfactants.

    PubMed

    Hoque, Jiaul; Gonuguntla, Spandhana; Yarlagadda, Venkateswarlu; Aswal, Vinod K; Haldar, Jayanta

    2014-06-21

    This study provides an insight into the micellar aggregation properties in aqueous solutions of various gemini surfactants bearing one or more amide groups at the side chains and/or in the spacer by conductivity and small angle neutron scattering (SANS) studies. The amide functionality was found to enhance the surfactant aggregation properties as compared to the surfactants having no amide bond. Furthermore, the aggregation properties of the gemini surfactants bearing amide groups were found to strongly depend on the position and number of amide bonds. With the increase in the number of amide bonds, the aggregation number (N) and the size of the micelles increased. Additionally, the size and shape of the micelles were also found to depend both on the hydrocarbon chain length and the spacer chain length. It was also found that the aggregation number and the size of the micelles increased with an increase in concentration and decreased with an increase in temperature. The critical micellar concentration (CMC) values of the gemini surfactants obtained by a conductometric method were found to vary greatly with variation in the hydrocarbon chain.

  3. A functionally atypical amidating enzyme from the human parasite Schistosoma mansoni.

    PubMed

    Mair, Gunnar R; Niciu, Mark J; Stewart, Michael T; Brennan, Gerry; Omar, Hanan; Halton, David W; Mains, Richard; Eipper, Betty A; Maule, Aaron G; Day, Tim A

    2004-01-01

    Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.

  4. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    SciTech Connect

    Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava; Svoboda, Jan; Zima, Vítězslav

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparation of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.

  5. Versatile Biodegradable Poly(ester amide)s Derived from α-Amino Acids for Vascular Tissue Engineering

    PubMed Central

    Karimi, Pooneh; Rizkalla, Amin S.; Mequanint, Kibret

    2010-01-01

    Biodegradable poly(ester amide) (PEA) biomaterials derived from α-amino acids, diols, and diacids are promising materials for biomedical applications such as tissue engineering and drug delivery because of their optimized properties and susceptibility for either hydrolytic or enzymatic degradation. The objective of this work was to synthesize and characterize biodegradable PEAs based on the α-amino acids l-phenylalanine and l-methionine. Four different PEAs were prepared using 1,4-butanediol, 1,6-hexanediol, and sebacic acid by interfacial polymerization. High molecular weight PEAs with narrow polydispersity indices and excellent film-forming properties were obtained. The incubation of these PEAs in PBS and chymotrypsin indicated that the polymers are biodegradable. Human coronary artery smooth muscle cells were cultured on PEA films for 48 h and the results showed a well-spread morphology. Porous 3D scaffolds fabricated from these PEAs were found to have excellent porosities indicating the utility of these polymers for vascular tissue engineering.

  6. Impact of amide-amide hydrogen bonding on the stability of two nicotinamide complexes of silver(I)

    NASA Astrophysics Data System (ADS)

    Đaković, Marijana; Popović, Zora

    2013-04-01

    The nicotinamide (pyridine-3-carboxamide, nia) complexes of silver(I), [Ag(nia)2(NO3)]·H2O ( 1), [Ag(nia)2(NO3)] ( 2), and {K[Ag(nia)2](NO3)2} n ( 3), were prepared and characterised by IR spectroscopy and TG/DTA thermal methods. The solid state structures of 2 and 3 were determined by single-crystal X-ray diffraction analysis. In both complexes two nicotinamide ligands are coordinated to silver(I) through the nitrogen atom of the pyridine ring in a near-linear fashion. In 2, additional coordination by two oxygen atoms of one nitrate group leads to the distorted tetrahedral coordination environment of silver(I). In 3, nitrate ions bridge potassium cations giving rise to a 2D coordination network which is further stabilised by cross-bridging of each two potassium atoms in [1 0 0] direction by complex cations, [Ag(nia)2]+. Despite different aggregation of 2 and 3 in the solid state, both complexes demonstrate quite similar thermal stability. The amide self-complementary hydrogen bonds appear to be the main driving force for establishing the crystal structures of both 2 and 3.

  7. Prediction of the effects of thermal stratification on pressure and temperature response of the Apollo supercritical oxygen tank

    NASA Technical Reports Server (NTRS)

    Chen, I. M.; Anderson, R. E.

    1971-01-01

    A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.

  8. Stratospheric ozone and temperature responses to short-term solar ultraviolet variations - Reproducibility of low-latitude response measurements

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Cantrell, S.

    1988-01-01

    Two independent 22-month time intervals of NIMBUS 7 solar backscattered UV (SBUV) ozone and stratospheric and mesospheric sounder (SAMS) temperature measurements for the upper stratosphere at low latitudes are analyzed to calculate mean responses to observed changes in solar ultraviolet spectral irradiance occurring on the time scale of the solar rotation period. Average cross-correlation functions of both SBUV ozone and SAMS temperature versus the solar 205 nm flux are in substantial agreement for these two intervals. Linear regression methods are applied to estimate response amplitudes or sensitivities. The derived sensitivities and phase lags relative to the 205 nm flux are also in approximate agreement for the two separate intervals although the temperature response measurements exhibit larger deviations. These results support the validity of previously reported measurements on the 27-day time scale, and impose firmer constraints on proposed theoretical models for the response of the stratosphere to solar UV forcing on both short and long time scales.

  9. Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness.

    PubMed

    Yim, Taeeun; Park, Min-Sik; Woo, Sang-Gil; Kwon, Hyuk-Kwon; Yoo, Jung-Keun; Jung, Yeon Sik; Kim, Ki Jae; Yu, Ji-Sang; Kim, Young-Jun

    2015-08-12

    User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise is reduced by 74% without compromising electrochemical performances. It is anticipated that on the strengths of excellent scalability, simplicity, and cost-effectiveness, this novel strategy can be extensively applied to various high energy-density devices to ensure human safety.

  10. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    DOE PAGES

    Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; ...

    2015-01-01

    Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range between 18.7-23.7,more » 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m2m-2) compared to Y1&2 cohorts (LAI 0.67 m2m-2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less

  11. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    SciTech Connect

    Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range between 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m2m-2) compared to Y1&2 cohorts (LAI 0.67 m2m-2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.

  12. Guiding Empirical and Theoretical Explorations of Organic Matter Decay By Synthesizing Temperature Responses of Enzyme Kinetics, Microbes, and Isotope Fluxes

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Ballantyne, F.; Lehmeier, C.; Min, K.

    2014-12-01

    Soil organic matter (SOM) transformation rates generally increase with temperature, but whether this is realized depends on soil-specific features. To develop predictive models applicable to all soils, we must understand two key, ubiquitous features of SOM transformation: the temperature sensitivity of myriad enzyme-substrate combinations and temperature responses of microbial physiology and metabolism, in isolation from soil-specific conditions. Predicting temperature responses of production of CO2 vs. biomass is also difficult due to soil-specific features: we cannot know the identity of active microbes nor the substrates they employ. We highlight how recent empirical advances describing SOM decay can help develop theoretical tools relevant across diverse spatial and temporal scales. At a molecular level, temperature effects on purified enzyme kinetics reveal distinct temperature sensitivities of decay of diverse SOM substrates. Such data help quantify the influence of microbial adaptations and edaphic conditions on decay, have permitted computation of the relative availability of carbon (C) and nitrogen (N) liberated upon decay, and can be used with recent theoretical advances to predict changes in mass specific respiration rates as microbes maintain biomass C:N with changing temperature. Enhancing system complexity, we can subject microbes to temperature changes while controlling growth rate and without altering substrate availability or identity of the active population, permitting calculation of variables typically inferred in soils: microbial C use efficiency (CUE) and isotopic discrimination during C transformations. Quantified declines in CUE with rising temperature are critical for constraining model CUE estimates, and known changes in δ13C of respired CO2 with temperature is useful for interpreting δ13C-CO2 at diverse scales. We suggest empirical studies important for advancing knowledge of how microbes respond to temperature, and ideas for theoretical

  13. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling

    PubMed Central

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-01-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis–Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species’ climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species’ growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species’ thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to

  14. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana.

    PubMed

    Lee, Jeong Hwan; Kim, Jae Joon; Kim, Soo Hyun; Cho, Hyun Jung; Kim, Joonki; Ahn, Ji Hoon

    2012-10-01

    Ubiquitin-dependent proteolysis regulates multiple aspects of plant growth and development, but little is known about its role in ambient temperature-responsive flowering. In addition to being regulated by daylength, the onset of flowering in many plants can also be delayed by low ambient temperatures. Here, we show that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which encodes an E3 ubiquitin ligase, controls flowering time in response to ambient temperatures (16 and 23°C) and intermittent cold. hos1 mutants flowered early, and were insensitive to ambient temperature, but responded normally to vernalization and gibberellic acid. Genetic analyses suggested that this ambient temperature-insensitive flowering was independent of FLOWERING LOCUS C (FLC). Also, FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) expression was up-regulated in hos1 mutants at both temperatures. The ft tsf mutation almost completely suppressed the early flowering of hos1 mutants at different temperatures, suggesting that FT and TSF are downstream of HOS1 in the ambient temperature response. A lesion in CONSTANS (CO) did not affect the ambient temperature-insensitive flowering phenotype of hos1-3 mutants. In silico analysis showed that FVE was spatiotemporally co-expressed with HOS1. A HOS1-green fluorescent protein (GFP) fusion co-localized with FVE-GFP in the nucleus at both 16 and 23°C. HOS1 physically interacted with FVE and FLK in yeast two-hybrid and co-immunoprecipitation assays. Moreover, hos1 mutants were insensitive to intermittent cold. Collectively, our results suggest that HOS1 acts as a common regulator in the signaling pathways that control flowering time in response to low ambient temperature.

  15. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.

    PubMed

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-09-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized

  16. N-acetylcysteine amide, a promising antidote for acetaminophen toxicity.

    PubMed

    Khayyat, Ahdab; Tobwala, Shakila; Hart, Marcia; Ercal, Nuran

    2016-01-22

    Acetaminophen (N-acetyl-p-aminophenol, APAP) is one of the most widely used over the counter antipyretic and analgesic medications. It is safe at therapeutic doses, but its overdose can result in severe hepatotoxicity, a leading cause of drug-induced acute liver failure in the USA. Depletion of glutathione (GSH) is one of the initiating steps in APAP-induced hepatotoxicity; therefore, one strategy for restricting organ damage is to restore GSH levels by using GSH prodrugs. N-acetylcysteine (NAC), a GSH precursor, is the only currently approved antidote for an acetaminophen overdose. Unfortunately, fairly high doses and longer treatment times are required due to its poor bioavailability. In addition, oral and I.V. administration of NAC in a hospital setting are laborious and costly. Therefore, we studied the protective effects of N-acetylcysteine amide (NACA), a novel antioxidant with higher bioavailability, and compared it with NAC in APAP-induced hepatotoxicity in C57BL/6 mice. Our results showed that NACA is better than NAC at a low dose (106mg/kg) in preventing oxidative stress and protecting against APAP-induced damage. NACA significantly increased GSH levels and the GSH/GSSG ratio in the liver to 66.5% and 60.5% of the control, respectively; and it reduced the level of ALT by 30%. However, at the dose used, NAC was not effective in combating the oxidative stress induced by APAP. Thus, NACA appears to be better than NAC in reducing the oxidative stress induced by APAP. It would be of great value in the health care field to develop drugs like NACA as more effective and safer options for the prevention and therapeutic intervention in APAP-induced toxicity.

  17. Phenolic amides are potent inhibitors of De Novo nucleotide biosynthesis

    SciTech Connect

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.; Amador-Noguez, Daniel

    2015-06-12

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. Furthermore, the results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.

  18. Cloning of a Novel Arylamidase Gene from Paracoccus sp. Strain FLN-7 That Hydrolyzes Amide Pesticides

    PubMed Central

    Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; Li, Shun-Peng

    2012-01-01

    The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40°C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50°C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with Km and kcat values of 29.5 μM and 49.2 s−1, respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments. PMID:22544249

  19. Direct thionation and selenation of amides using elemental sulfur and selenium and hydrochlorosilanes in the presence of amines.

    PubMed

    Shibahara, Fumitoshi; Sugiura, Rie; Murai, Toshiaki

    2009-07-16

    Reactions of amides with elemental sulfur in the presence of hydrochlorosilanes and amines give the corresponding thioamides in good to high yields. The process takes place via reduction of elemental sulfur by the hydrochlorosilane in the presence of a suitable amine. The methodology can be applied to the selenation of amides by using elemental selenium. Thionation and selenation of an acetyl-protected sialic acid derivative are found to take place selectively at the amide group.

  20. Sterically-controlled intermolecular Friedel-Crafts acylation with twisted amides via selective N-C cleavage under mild conditions.

    PubMed

    Liu, Yongmei; Meng, Guangrong; Liu, Ruzhang; Szostak, Michal

    2016-05-21

    Highly chemoselective Friedel-Crafts acylation with twisted amides under mild conditions is reported for the first time. The reaction shows high functional group tolerance, obviating the need for preformed sensitive organometallic reagents and expensive transition metal catalysts. The high reactivity of amides is switched on by ground-state steric distortion to disrupt the amide bond nN→πCO* resonance as a critical design feature. Conceptually, this new acid-promoted mechanism of twisted amides provides direct access to bench-stable acylating reagents under mild, metal-free conditions.

  1. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  2. Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions

    PubMed Central

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-01-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523

  3. A comparative study of the complexation of uranium(VI) withoxydiacetic acid and its amide derivatives

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2005-05-01

    There has been significant interest in recent years in the studies of alkyl-substituted amides as extractants for actinide separation because the products of radiolytic and hydrolytic degradation of amides are less detrimental to separation processes than those of organophosphorus compounds traditionally used in actinide separations. Stripping of actinides from the amide-containing organic solvents is relatively easy. In addition, the amide ligands are completely incinerable so that the amount of secondary wastes generated in nuclear waste treatment could be significantly reduced. One group of alkyl-substituted oxa-diamides have been shown to be promising in the separation of actinides from nuclear wastes. For example, tetraoctyl-3-oxa-glutaramide and tetraisobutyl-oxa-glutaramide form actinide complexes that can be effectively extracted from nitric acid solutions. To understand the thermodynamic principles governing the complexation of actinides with oxa-diamides, we have studied the complexation of U(VI) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) in aqueous solutions, in comparison with oxydiacetic acid (ODA) (Figure 1). Previous studies have indicated that the complexation of U(VI) with ODA is strong and entropy-driven. Comparing the results for DMOGA and TMOGA with those for ODA could provide insight into the energetics of amide complexation with U(VI) and the relationship between the thermodynamic properties and the ligand structure.

  4. Optimization of Amide-Based Inhibitors of Soluble Epoxide Hydrolase with Improved Water Solubility

    PubMed Central

    Kim, In-Hae; Heirtzler, Fenton R.; Morisseau, Christophe; Nishi, Kosuke; Tsai, Hsing-Ju; Hammock, Bruce D.

    2006-01-01

    Soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. 1,3-Disubstituted ureas with a polar group located on the fifth atom from the carbonyl group of urea function are active inhibitors of sEH both in vitro and in vivo. However, their limited solubility in water and relatively high melting point lead to difficulties in formulating the compounds and poor in vivo efficacy. To improve these physical properties, the effect of structural modification of the urea pharmacophore on the inhibition potencies, water solubilities, octanol/water partition coefficients (log P), and melting points of a series of compounds was evaluated. For murine sEH, no loss of inhibition potency was observed when the urea pharmacophore was modified to an amide function, while for human sEH 2.5-fold decreased inhibition was obtained in the amide compounds. In addition, a NH group on the right side of carbonyl group of the amide pharmacophore substituted with an adamantyl group (such as compound 14) and a methylene carbon present between the adamantyl and amide groups were essential to produce potent inhibition of sEH. The resulting amide inhibitors have 10–30-fold better solubility and lower melting point than the corresponding urea compounds. These findings will facilitate synthesis of sEH inhibitors that are easier to formulate and more bioavailable. PMID:15887969

  5. The amide protonation of (-)-N-benzoylcytisine in its perchlorate salts

    NASA Astrophysics Data System (ADS)

    Przybył, Anna K.; Kubicki, Maciej; Hoffmann, Marcin

    2014-08-01

    The 13C NMR spectrum of (-)-N-benzoylcytisine perchlorate does not show a double set of signals typical of amide compounds, although this effect has been observed for the other diamine derivatives of cytisine. This observation means that in solution there must be the state of equilibrium between two forms of the cation with the protonated amide groups. DFT calculations have indeed indicated two preferred tautomeric forms with protonated oxygen atoms of amide groups. In the solid state however, according to X-ray analysis of perchlorate and perchlorate hydrate of N-benzoylcytisine the oxygen atom of the amide group in the six-membered ring A is preferred protonation site as compared with the oxygen in benzoic moiety. (-)-N-benzoylcytisine salt is the first compound from among the known derivatives of quinolizidine alkaloids that are not N-oxides, in which in solid state only the oxygen atom at cyclic amide is protonated instead of nitrogen atom or oxygen in benzoic moiety.

  6. Chain-length and mode-delocalization dependent amide-I anharmonicity in peptide oligomers.

    PubMed

    Zhao, Juan; Wang, Jianping

    2012-06-07

    The diagonal anharmonicities of the amide-I mode in the alanine oligomers are examined in the normal-mode basis by ab initio calculations. The selected oligomers range from dimer to heptamer, in either the α-helical or β-sheet conformations. It is found that the anharmonicity varies from mode to mode within the same oligomer. For a given amide-I mode, the anharmonicity is closely related to the delocalization extent of the mode: the less it delocalizes, the larger the anharmonicity it has. Thus, the single-mode potential energy distribution (PED(max)) can be used as an indicator of the magnitude of the anharmonicity. It is found that as the peptide chain length increases, the averaged diagonal anharmonicity generally decreases; however, the sum of the averaged diagonal and off-diagonal anharmonicities within a peptide roughly remains a constant for all the oligomers examined, indicating the excitonic characteristics of the amide-I modes. Excitonic coupling tends to decrease the diagonal anharmonicities in a coupled system with multiple chromophores, which explains the observed behavior of the anharmonicities. The excitonic nature of the amide-I band in peptide oligomers is thus verified by the anharmonic computations. Isotopic substitution effect on the anharmonicities and mode localizations of the amide-I modes in peptides is also discussed.

  7. Electrostatic frequency shifts in amide I vibrational spectra: Direct parameterization against experiment

    PubMed Central

    Reppert, Mike; Tokmakoff, Andrei

    2013-01-01

    The interpretation of protein amide I infrared spectra has been greatly assisted by the observation that the vibrational frequency of a peptide unit reports on its local electrostatic environment. However, the interpretation of spectra remains largely qualitative due to a lack of direct quantitative connections between computational models and experimental data. Here, we present an empirical parameterization of an electrostatic amide I frequency map derived from the infrared absorption spectra of 28 dipeptides. The observed frequency shifts are analyzed in terms of the local electrostatic potential, field, and field gradient, evaluated at sites near the amide bond in molecular dynamics simulations. We find that the frequency shifts observed in experiment correlate very well with the electric field in the direction of the C=O bond evaluated at the position of the amide oxygen atom. A linear best-fit mapping between observed frequencies and electric field yield sample standard deviations of 2.8 and 3.7 cm−1 for the CHARMM27 and OPLS-AA force fields, respectively, and maximum deviations (within our data set) of 9 cm−1. These results are discussed in the broader context of amide I vibrational models and the effort to produce quantitative agreement between simulated and experimental absorption spectra. PMID:23574217

  8. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  9. Acid-catalyzed reactions of twisted amides in water solution: competition between hydration and hydrolysis.

    PubMed

    Wang, Binju; Cao, Zexing

    2011-10-10

    The acid-catalyzed reactions of twisted amides in water solution were investigated by using cluster-continuum model calculations. In contrast to the previous widely suggested concerted hydration of the C=O group, our calculations show that the reaction proceeds in a practically stepwise manner, and that the hydration and hydrolysis channels of the C-N bond compete. The Eigen ion (H(3)O(+)) is the key species involved in the reaction, and it modulates the hydration and hydrolysis reaction pathways. The phenyl substitution in the twisted amide not only activates the N-CO bond, but also stabilizes the hydrolysis product through n(N)→π(phenyl) delocalization, leading exclusively to the hydrolysis product of the ring-opened carboxylic acid. Generally, the twisted amides are more active than the planar amides, and such a rate acceleration results mainly from the increase in exothermicity in the first N-protonation step; the second step of the nucleophilic attack is less affected by the twisting of the amide bond. The present results show good agreement with the available experimental observations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrostatic frequency shifts in amide I vibrational spectra: Direct parameterization against experiment

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2013-04-01

    The interpretation of protein amide I infrared spectra has been greatly assisted by the observation that the vibrational frequency of a peptide unit reports on its local electrostatic environment. However, the interpretation of spectra remains largely qualitative due to a lack of direct quantitative connections between computational models and experimental data. Here, we present an empirical parameterization of an electrostatic amide I frequency map derived from the infrared absorption spectra of 28 dipeptides. The observed frequency shifts are analyzed in terms of the local electrostatic potential, field, and field gradient, evaluated at sites near the amide bond in molecular dynamics simulations. We find that the frequency shifts observed in experiment correlate very well with the electric field in the direction of the C=O bond evaluated at the position of the amide oxygen atom. A linear best-fit mapping between observed frequencies and electric field yield sample standard deviations of 2.8 and 3.7 cm-1 for the CHARMM27 and OPLS-AA force fields, respectively, and maximum deviations (within our data set) of 9 cm-1. These results are discussed in the broader context of amide I vibrational models and the effort to produce quantitative agreement between simulated and experimental absorption spectra.

  11. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas

    PubMed Central

    Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-01

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas. PMID:27992380

  12. Synthesis of biodegradable and electroactive tetraaniline grafted poly(ester amide) copolymers for bone tissue engineering.

    PubMed

    Cui, Haitao; Liu, Yadong; Deng, Mingxiao; Pang, Xuan; Zhang, Peibiao; Wang, Xianhong; Chen, Xuesi; Wei, Yen

    2012-09-10

    Biodegradable poly(ester amide)s have recently been used as biomaterials due to their desirable chemical and biological characteristics as well as their mechanical properties, which are amendable for material processing. In this study, electroactive tetraaniline (TA) grafted poly(ester amide)s were successfully synthesized and characterized. The poly(ester amide)s-graft-tetraaniline copolymers (PEA-g-TA) exhibited good electroactivity, mechanical properties, and biodegradability. The biocompatibility of the PEA-g-TA copolymers in vitro was systematically studied, which demonstrated that they were nontoxic and led to favorable adhesion and proliferation of mouse preosteoblastic MC3T3-E1 cells. Moreover, the PEA-g-TA copolymers stimulated by pulsed electrical signal could serve to promote the differentiation of MC3T3-E1 cells compared with TCPs. Hence, the biodegradable and electroactive PEA-g-TA copolymers possessed the properties in favor of the long-time potential application in vivo (electrical stimulation directly to the desired area) as bone repair scaffold materials in tissue engineering.

  13. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice

    PubMed Central

    Giles, Kurt; Berry, David B.; Condello, Carlo; Dugger, Brittany N.; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B. Michael; Olson, Steven H.

    2016-01-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure–activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. PMID:27317802

  14. Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2004-01-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300 degrees C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  15. Efficacy of articaine: a new amide local anesthetic.

    PubMed

    Malamed, S F; Gagnon, S; Leblanc, D

    2000-05-01

    The authors compared the safety and efficacy of 4 percent articaine with epinephrine 1:100,000 with 2 percent lidocaine with epinephrine 1:100,000. In three identical randomized, double-blind, multicenter trials, subjects 4 to 80 years of age received either 4 percent articaine with epinephrine 1:100,000 or 2 percent lidocaine with epinephrine 1:100,000 for simple or complex dental procedures. In each trial, the authors randomized the subjects in a 2:1 ratio to receive articaine or lidocaine. Efficacy was determined by both subject and investigator using a visual analog scale, or VAS. The authors used the Kruskal-Wallis test to analyze the data. A total of 882 subjects received articaine, and 443 received lidocaine. The authors found no statistical differences between the groups (P = .05). They also compared drug volumes for both articaine and lidocaine groups (2.5 milliliters +/- 0.07 standard error of mean, or SEM, vs. 2.6 mL +/- 0.09 SEM for simple procedures and 4.2 mL +/- 0.15 SEM vs. 4.5 mL +/- 0.21 SEM for complex procedures). The procedures' durations were comparable for both the articaine and lidocaine groups. The authors found no statistical difference between the two treatment groups (P = .05) with respect to subject or investigator pain ratings using the VAS; the mean pain scores determined by both patients and investigators for all groups tested were less than 1.0. The authors found that 4 percent articaine with epinephrine 1:100,000 was well-tolerated in 882 subjects. It also provided clinically effective pain relief during most dental procedures and had a time to onset and duration of anesthesia appropriate for clinical use and comparable to those observed for other commercially available local anesthetics. Pain control is a major component of patient comfort and safety. Local anesthetics form the backbone of pain control techniques in dentistry. Four percent articaine with epinephrine is an amide local anesthetic that will meet the clinical

  16. Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity

    PubMed Central

    Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz

    2016-01-01

    Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei. Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments

  17. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating.

    PubMed

    McInnes, Steven J P; Szili, Endre J; Al-Bataineh, Sameer A; Vasani, Roshan B; Xu, Jingjing; Alf, Mahriah E; Gleason, Karen K; Short, Robert D; Voelcker, Nicolas H

    2016-01-12

    This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.

  18. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    PubMed Central

    Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and

  19. Middle-aged and elderly outpatients show lower body temperature responses than the young, even with the same C-reactive protein levels.

    PubMed

    Hoshino, A; Tamura, J; Nakazawa, M; Koyama, H

    2007-01-01

    The variation of body temperature response and C-reactive protein (CRP) levels with age was investigated. A cross-sectional study on new outpatients between January 2004 and June 2005 was carried out. Body temperature and serum CRP levels were examined for screening purposes in 1081 patients. Mean axillary body temperature was maintained at around 36.7 degrees C in early adulthood, and gradually declined in middle age. Middle-aged and elderly outpatients tended to show a lower body temperature response than the young, even with the same CRP levels. The critical age (boundary age) was assumed to be when the relationship between body temperature response and CRP level changed. This study suggests that the boundary age is about 40 years old.

  20. Catalytic asymmetric direct-type 1,4-addition reactions of simple amides.

    PubMed

    Suzuki, Hirotsugu; Sato, Io; Yamashita, Yasuhiro; Kobayashi, Shū

    2015-04-08

    The development of catalytic asymmetric direct-type reactions of less acidic carbonyl compounds such as amides and esters has been a challenging theme in organic chemistry for decades. Here we describe the asymmetric direct 1,4-addition reactions of simple amides with α,β-unsaturated carbonyl compounds using a catalytic amount of a novel chiral catalyst consisting of a potassium base and a macrocyclic chiral crown ether. The desired 1,5-dicarbonyl compounds were obtained in high yields with excellent diastereo- and enantioselectivities. This is the first example of a highly enantioselective catalytic direct-type reaction of simple amides. In addition, the structure of the chiral potassium catalyst has been investigated by X-ray crystallographic, dynamic (1)H NMR, and MALDI-TOF MS analyses.

  1. Novel C-terminally amidated opioid peptide in human phaeochromocytoma tumour.

    PubMed

    Matsuo, H; Miyata, A; Mizuno, K

    As has often been observed in hypothalamic releasing factors and gastrointestinal hormones, the carboxy-terminal amide structure is a unique feature of peptides exhibiting hormonal or physiological activities. Although a variety of opioid peptides have hitherto been identified, such a C-terminal amidated species has never before been discovered in mammals. Here we present the first identification of a novel opioid octapeptide with a C-terminal amide structure, henceforth designated as 'adrenorphin', in human phaeochromocytoma tumour derived from adrenal medulla. The complete amino acid sequence of adrenorphin was determined by microsequencing and corresponds to the sequence of the first eight amino acids of peptide E which is derived from proenkephalin A. Adrenorphin has also been identified chromatographically in normal human and bovine adrenal medulla. Adrenorphin exhibits potent opioid activity in guinea pig ileum assay, suggesting a specialized physiological function.

  2. Metal-Free C–H Alkyliminylation and Acylation of Alkenes with Secondary Amides

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Qiang; Huang, Ying-Hong; Geng, Hui; Ye, Jian-Liang

    2016-06-01

    Carbon–carbon bond formation by metal-free cross-coupling of two reactants with low reactivity represents a challenge in organic synthesis. Secondary amides and alkenes are two classes of bench-stable compounds. The low electrophilicity of the former and low nucleophilicity of the latter make the direct coupling of these two partners challenging yet highly desirable. We report herein an unprecedented intermolecular reaction of secondary amides with alkenes to afford α,β-unsaturated ketimines or enones, which are versatile intermediates for organic synthesis and are prevalent in bioactive compounds and functional materials. Our strategy relies on the chemoselective activation of the secondary amide with trifluoromethanesulfonic anhydride (Tf2O)/2-fluoropyridine to generate a highly reactive nitrilium intermediate, which reacts efficiently with alkenes. This metal-free synthesis is characterized by its mild reaction conditions, excellent functional group tolerance and chemoselectivity, allowing the preparation of multi-functionalized compounds without using protecting groups.

  3. General Applicable Frequency Map for the Amide-I Mode in β-Peptides.

    PubMed

    Cai, Kaicong; Du, Fenfen; Zheng, Xuan; Liu, Jia; Zheng, Renhui; Zhao, Juan; Wang, Jianping

    2016-02-18

    In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.

  4. How Sensitive Is the Amide I Vibration of the Polypeptide Backbone to Electric Field?

    PubMed Central

    Oh, Kwang-Im; Fiorin, Giacomo

    2015-01-01

    Site-selective isotopic labelling of amide carbonyls offers a non-perturbative means to introduce a localized infrared probe into proteins. While this strategy has been widely used to investigate various biological questions, the dependence of the underlying amide I vibrational frequency on electric field (or Stark tuning rate) has not been fully determined, which prevents it from being used in a quantitative manner in certain applications. Herein, through the use of experiments and molecular dynamics simulations, the Stark tuning rate of the amide I vibration of an isotopically labeled backbone carbonyl in a transmembrane α-helix is determined to be approximately 1.4 cm−1/(MV/cm). This result provides a quantitative basis for using this vibrational model to assess local electric fields in proteins, among other applications. For instance, using this value, we are able to show that the backbone region of a dipeptide has a surprisingly low dielectric constant. PMID:26419214

  5. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.

    PubMed

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C

    2011-12-21

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.

  6. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  7. [Observation of molluscicidal effect of black plastic film combined with carbon amide].

    PubMed

    Wang, Song-bo; Ye, Xiao-dong; Zheng, Shou-gui; Jiang, Neng-ming; Huang, Li-lan

    2015-02-01

    To evaluate the molluscicidal effect of black plastic film combined with carbon amide. In Jiangdong Town, Jinhua City, the field with Oncomelania hupensis in the history was selected as experimental area and divided into 3 groups: Group One was administered with black plastic film combined with carbon amide; Group Two was administered with simple black plastic film; and Group Three was a control group. On the 3rd, 7th, 15th, 20th and 30th day after the experiment, the mortality rates of 0. hupensis of Group One were 86.0%, 88.0%, 100%, 100% and 100% respectively, which were significantly higher than those of the control group (all P < 0.05). The differences of mortality rates between Group One and Group Two were statistically significant on the 3rd and 7th day after the experiment (Group One was superior to Group Two). The bladk plastic film combined with carbon amide can improve the molluscicidal effect.

  8. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    PubMed

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere.

  9. A general and efficient copper catalyst for the amidation of aryl halides.

    PubMed

    Klapars, Artis; Huang, Xiaohua; Buchwald, Stephen L

    2002-06-26

    An experimentally simple and inexpensive catalyst system was developed for the amidation of aryl halides by using 0.2-10 mol % of CuI, 5-20 mol % of a 1,2-diamine ligand, and K(3)PO(4), K(2)CO(3), or Cs(2)CO(3) as base. Catalyst systems based on N,N'-dimethylethylenediamine or trans-N,N'-dimethyl-1,2-cyclohexanediamine were found to be the most active even though several other 1,2-diamine ligands could be used in the easiest cases. Aryl iodides, bromides, and in some cases even aryl chlorides can be efficiently amidated. A variety of functional groups are tolerated in the reaction, including many that are not compatible with Pd-catalyzed amidation or amination methodology.

  10. Molecular Dynamics Simulations of Amide Functionalized Imidazolium Bis(trifluoromethanesulfonyl)imide Dicationic Ionic Liquids.

    PubMed

    Khakan, Hassan; Yeganegi, Saeid

    2017-08-10

    In the present study, the structure and dynamics of three dicationic ionic liquids (DILs) with a functional amide group in the imidazolium ring with bis(trifluoromethanesulfonyl)imide, [TFSI](-) anion has been studied by molecular dynamics (MD) simulations. Densities, radial distribution functions (RDFs), combined distribution functions (CDFs), spatial distribution functions, mean-square displacements (MSD), and self-diffusivities for the ions have been calculated from the MD simulations. The calculated densities for [C4(amim)2][TFSI]2 at different temperatures agreed well with the experimental values. The calculated RDFs and CDFs show that the anions are well organized around the amide group and imidazolium rings and the favorite sites of interaction of the [TFSI](-) ion are the hydrogen atoms of the amide group and hydrogen atoms of the imidazolium ring of the cation. The calculated MSDs indicated that the diffusion coefficients of the studied DILs are 1 order of magnitude smaller than those of DILs with a comparable molar mass.

  11. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification and Quantification of Potential Anti-inflammatory Hydroxycinnamic Acid Amides from Wolfberry.

    PubMed

    Wang, Siyu; Suh, Joon Hyuk; Zheng, Xi; Wang, Yu; Ho, Chi-Tang

    2017-01-18

    Wolfberry or Goji berry, the fruit of Lycium barbarum, exhibits health-promoting properties that leads to an extensive study of their active components. We synthesized a set of hydroxycinnamic acid amide (HCCA) compounds, including trans-caffeic acid, trans-ferulic acid, and 3,4-dihydroxyhydrocinnamic acid, with extended phenolic amine components as standards to identify and quantify the corresponding compounds from wolfberry and to investigate anti-inflammatory properties of these compounds using in vitro model. With optimized LC-MS/MS and NMR analysis, nine amide compounds were identified from the fruits. Seven of these compounds were identified in this plant for the first time. The amide compounds with a tyramine moiety were the most abundant. In vitro studies indicated that five HCCA compounds showed inhibitory effect on NO production inuded by lipopolysaccharides with IC50 less than 15.08 μM (trans-N-feruloyl dopamine). These findings suggested that wolfberries demonstrated anti-inflammatory properties.

  13. Metal-Free C–H Alkyliminylation and Acylation of Alkenes with Secondary Amides

    PubMed Central

    Huang, Pei-Qiang; Huang, Ying-Hong; Geng, Hui; Ye, Jian-Liang

    2016-01-01

    Carbon–carbon bond formation by metal-free cross-coupling of two reactants with low reactivity represents a challenge in organic synthesis. Secondary amides and alkenes are two classes of bench-stable compounds. The low electrophilicity of the former and low nucleophilicity of the latter make the direct coupling of these two partners challenging yet highly desirable. We report herein an unprecedented intermolecular reaction of secondary amides with alkenes to afford α,β-unsaturated ketimines or enones, which are versatile intermediates for organic synthesis and are prevalent in bioactive compounds and functional materials. Our strategy relies on the chemoselective activation of the secondary amide with trifluoromethanesulfonic anhydride (Tf2O)/2-fluoropyridine to generate a highly reactive nitrilium intermediate, which reacts efficiently with alkenes. This metal-free synthesis is characterized by its mild reaction conditions, excellent functional group tolerance and chemoselectivity, allowing the preparation of multi-functionalized compounds without using protecting groups. PMID:27356173

  14. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    PubMed

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  15. Development and Validation of Transferable Amide I Vibrational Frequency Maps for Peptides

    PubMed Central

    Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L.

    2012-01-01

    Infrared (IR) spectroscopy of the amide I band has been widely utilized for the analysis of peptides and proteins. Theoretical modeling of IR spectra of proteins requires an accurate and efficient description of the amide I frequencies. In this paper, amide I frequency maps for protein backbone and side chain groups are developed from experimental spectra and vibrational lifetimes of N-methylacetamide and acetamide in different solvents. The frequency maps, along with established nearest-neighbor frequency shift and coupling schemes, are then applied to a variety of peptides in aqueous solution and reproduce experimental spectra well. The frequency maps are designed to be transferable to different environments; therefore, they can be used for heterogeneous systems, such as membrane proteins. PMID:21405034

  16. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    PubMed

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2017-09-12

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH4 emission. The results show that the CH4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH4 emission in India in 2012 were 1030 Tg CO2e (GTP20) and 62 Tg CO2e (GTP100) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    SciTech Connect

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; Pispas, Stergios

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so even when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.

  18. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE PAGES

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; ...

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  19. Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering

    NASA Astrophysics Data System (ADS)

    Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej

    2017-06-01

    The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.

  20. Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI

    PubMed Central

    Liu, Guanshu; Qin, Qin; Chan, Kannie W.Y.; Li, Yuguo; Bulte, Jeff W.M.; McMahon, Michael T.; van Zijl, Peter C.M.; Gilad, Assaf A.

    2014-01-01

    We present a non-invasive MRI approach for assessing the water proton resonance frequency (PRF) shifts associated with changes in temperature. This method is based on Water Saturation Shift Referencing (WASSR), a method first developed for assessing B0 field inhomogeneity. Temperature-induced water PRF shifts were determined by estimating the frequency of the minimum intensity of the water direct saturation spectrum at each temperature using Lorentzian line-shape fitting. The change in temperature was then calculated from the difference in water PRF shifts between temperatures. Optimal acquisition parameters were first estimated using simulations and later confirmed experimentally. Results in vitro and in vivo showed that the temperature changes measured using the temperature-responsive WASSR (T-WASSR) were in good agreement with those obtained with MR spectroscopy or phase mapping-based water PRF measurement methods,. In addition, the feasibility of temperature mapping in fat-containing tissue is demonstrated in vitro. In conclusion, the T-WASSR approach provides an alternative for non-invasive temperature mapping by MRI, especially suitable for temperature measurements in fat-containing tissues. PMID:24395616

  1. Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants.

    PubMed

    Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping

    2015-12-01

    Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)

  2. "Giant surfactants" created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer.

    PubMed

    Wilks, Thomas R; Bath, Jonathan; de Vries, Jan Willem; Raymond, Jeffery E; Herrmann, Andreas; Turberfield, Andrew J; O'Reilly, Rachel K

    2013-10-22

    Copper catalyzed azide-alkyne cycloaddition (CuAAC) was employed to synthesize DNA block copolymers (DBCs) with a range of polymer blocks including temperature-responsive poly(N-isoproylacrylamide) (poly(NIPAM)) and highly hydrophobic poly(styrene). Exceptionally high yields were achieved at low DNA concentrations, in organic solvents, and in the absence of any solid support. The DNA segment of the DBC remained capable of sequence-specific hybridization: it was used to assemble a precisely defined nanostructure, a DNA tetrahedron, with pendant poly(NIPAM) segments. In the presence of an excess of poly(NIPAM) homopolymer, the tetrahedron-poly(NIPAM) conjugate nucleated the formation of large, well-defined nanoparticles at 40 °C, a temperature at which the homopolymer precipitated from solution. These composite nanoparticles were observed by dynamic light scattering and cryoTEM, and their hybrid nature was confirmed by AFM imaging. As a result of the large effective surface area of the tetrahedron, only very low concentrations of the conjugate were required in order for this surfactant-like behavior to be observed.

  3. Predicting Long-term Temperature Increase for Time-Dependent SAR Levels with a Single Short-term Temperature Response

    PubMed Central

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M.

    2015-01-01

    Purpose Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). Methods After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and Impulse-Response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes’ bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. Results The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time, and can be adjusted to be more or less conservative than the corresponding finite difference simulation. Conclusion With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. (200/200 words) PMID:26096947

  4. Construction of a temperature-responsive terpolymer coating with recyclable bactericidal and self-cleaning antimicrobial properties.

    PubMed

    Wang, Bailiang; Ye, Zi; Xu, Qingwen; Liu, Huihua; Lin, Quankui; Chen, Hao; Nan, Kaihui

    2016-11-15

    Once a biomedical implant is implanted into a human body, proteins and bacteria can easily colonize the implant, and subsequently, a biofilm can grow on the surface. A biofilm can protect the inhabiting bacteria against macrophages and neutrophil cell attack from the host immune system. The most important issue for artificial antibacterial surfaces is the accumulation of the bacteria corpse after they are killed by contact, which promotes further adhesion of bacteria and biofilm formation. Therefore, we constructed a novel multifunctional bactericidal and fouling release antibacterial surface through the combination of temperature-responsive N-vinylcaprolactam (VCL), hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) and a bactericidal quaternary ammonium salt (2-(dimethylamino)-ethyl methacrylate (DMAEMA(+))). The terpolymer coating was prepared through surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization and characterized using water contact angle measurements, atomic force microscopy and spectroscopic ellipsometry. At a temperature above the lower critical solution temperature (LCST), the P(VCL-co-DMAEMA(+)-co-MPC) terpolymer coating was in a compressed and hydrophobic state with low moisture content, which displayed bactericidal efficiency against Gram-positive Staphylococcus aureus. The coating could be switched into a relatively hydrophilic surface at a temperature below the LCST, which showed self-cleaning properties against both bacteria and bovine serum albumin. The functionalized surface showed good biocompatibility against human lens epithelial cells as evaluated by morphology studies and activity measurements.

  5. A 10-day confinement to normobaric hypoxia impairs toe, but not finger temperature response during local cold stress.

    PubMed

    Kounalakis, Stylianos N; Keramidas, Michail E; Amon, Mojca; Eiken, Ola; Mekjavic, Igor B

    2017-02-01

    The study examined the effects of a 10-day normobaric hypoxic confinement on the finger and toe temperature responses to local cooling. Eight male lowlanders underwent a normoxic (NC) and, in a separate occasion, a normobaric hypoxic confinement (HC; FO2: 0.154; simulated altitude ~3400m). Before and after each confinement, subjects immersed for 30min their right hand and, in a different session, their right foot in 8°C water, while breathing either room air (AIR) or a hypoxic gas mixture (HYPO). Throughout the cold-water immersion tests, thermal responses were monitored with thermocouples on fingers and toes. Neither confinement influenced thermal responses in the fingers during the AIR or HYPO test. In the foot, by contrast, HC, but not NC, reduced the average toe temperature by ~1.5°C (p=0.03), both during the AIR and HYPO test. We therefore conclude that a 10-day confinement to normobaric hypoxia per se augments cold-induced vasoconstriction in the toes, but not in the fingers. The mechanism underlying this dissimilarity remains to be established.

  6. Solute- and temperature-responsive "smart" grafts and supported membranes formed by covalent layer-by-layer assembly.

    PubMed

    Allen, Ainsley L; Tan, Kristine J; Fu, Hui; Batteas, James D; Bergbreiter, David E

    2012-03-20

    Polymers like poly(N-isopropylacrylamide) (PNIPAM) exhibit lower critical solution temperature (LCST) behavior. A variety of reports have shown that brush grafts of PNIPAM on surfaces exhibit similar temperature responsiveness. We recently described an alternative synthetic approach to such surfaces that affords surfaces with similar LCST-like behavior. We also noted how such surfaces' wettability can change in response to the identity and concentration of solutes. Here we show that this synthetic procedure can be extended to glass surfaces and to more complex surfaces present in porous glass frits. Functionalized glass surfaces exhibit solute-dependent wetting behavior analogous to that previously reported. We further show that the resulting responsive nanocomposite grafts on such frits exhibit "smart" responsive permeability with a greater than 1000-fold difference in permeability to water versus aqueous solutions of sodium sulfate. This "smart" permeability is ascribed to the solute-dependent wettability behavior of the responsive PNIPAM component of the nanocomposite graft, which is sensitive both to the identity and concentration of the solute anion and to temperature.

  7. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    PubMed

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  8. The apparent temperature response of leaf respiration depends on the timescale of measurements: a study of two cold climate species.

    PubMed

    Bruhn, D; Schortemeyer, M; Edwards, E J; Egerton, J J G; Hocart, C H; Evans, J R; Ball, M C

    2008-03-01

    Productivity and climate models often use a constant Q10 for plant respiration, assuming tight control of respiration by temperature. We studied the temperature response of leaf respiration of two cold climate species (the Australian tree Eucalyptus pauciflora and the subantarctic megaherb Pringlea antiscorbutica, both measured in a field setting) on a short timescale (minutes) during different times within a diel course, and on a longer timescale, using diel variations in ambient temperature. There were great variations in Q10 depending on measuring day, measuring time and measuring method. When Q10 was calculated from short-term (15 min) manipulations of leaf temperature, the resulting values were usually markedly smaller than when Q10 was calculated from measurements at ambient leaf temperatures spread over a day. While for E. pauciflora, Q10 estimates decreased with rising temperature (corroborating the concept of a temperature-dependent Q10), the opposite was the case for P. antiscorbutica. Clearly, factors other than temperature co-regulate both leaf respiration rates and temperature sensitivity and contribute to diel and seasonal variation of respiration.

  9. Temperature response in the pulpal chamber during ultrahigh-speed tooth preparation with diamond burs of different grit.

    PubMed

    Ottl, P; Lauer, H C

    1998-07-01

    Ultrahigh-speed tooth preparation can traumatize the hard dental tissues and the dental pulp. This in vitro study examined the relationship between different grits of diamond burs on the temperature response within a pulpal chamber during tooth preparation with a turbine. Newly extracted, undamaged third molars were secured by a rapid-tensioning device mounted on an air-supported slide. NiCrNi thermocouples were inserted apically and used to determine the temperature within a pulpal chamber. The grinding tests used cylindrical fine, coarse, and ultracoarse diamond burs. The maximal temperature elevation within the pulp was 3.2 degrees C, and the most pronounced rise in temperature occurred with ultracoarse burs. Temperature increases in the pulpal chambers and grinding times or temperatures of the cooling water were approximately proportional. Residual dentinal thickness was inversely proportional to temperature elevation within the pulpal chamber. This study demonstrated that coarse diamond burs resulted in more pronounced temperature increases within the pulpal chamber during tooth preparation. In addition, the benefit of short intervals between grinding steps and a cooling water temperature between 30 degrees C and 32 degrees C was confirmed. A cooling temperature of 38 degrees C to 43 degrees C did not afford actual cooling.

  10. Durability of amide N-chloramine biocides to ethylene oxide sterilization.

    PubMed

    Zhao, Nan; Logsetty, Sarvesh; Liu, Song

    2012-01-01

    The objective of this work is to study the stability of three novel topical antimicrobial dressings consisting of amide N-chloramine structures against ethylene oxide sterilization. Cotton gauze samples bonded with one of three amide N-chloramine structures were subjected to standard ethylene oxide (EtO) sterilization. The amounts of amide N-chloramine structures before and after the sterilization were quantified to indicate the stabilities of these amide N-chloramine structures to the sterilization. The samples after sterilization were challenged with a clinical isolate of healthcare-associated multidrug-resistant Escherichia coli. N-Chloramine structure converted from polymethacrylamide (dressing 2) had the highest durability (89.7% retained active chlorine) toward EtO sterilization; that from hydantoin (dressing 3; 86.3% retained active chlorine) followed; and poly(N-chloroacrylamide) (dressing 1) had the lowest (64.0% retained active chlorine). After EtO sterilization, all the samples still reduced E. coli presence at 5 minutes of contact, with dressing 2 retaining a log 6 reduction. The three tested amide N-chloramine structures could all survive EtO sterilization while retaining percentages of active chlorine ranging from 64.0 to 89.7%. Dressing 2 showed the best durability, whereas dressing 1 had the poorest durability. With the remaining amounts of amide N-chloramine structures after EtO sterilization, all the dressings could still reduce E. coli numbers within 5 minutes of contact, and dressing 2 resulted in a log 6 reduction in colony count.

  11. Oxytocin analogues with amide groups substituted by tetrazole groups in position 4, 5 or 9.

    PubMed

    Manturewicz, Michał; Grzonka, Zbigniew; Borovicková, Lenka; Slaninová, Jirina

    2007-01-01

    Eleven oxytocin analogues substituted in position 4, 5 or 9 by tetrazole analogues of amino acids were prepared using solid-phase peptide synthesis method and tested for rat uterotonic in vitro and pressor activities, as well as for their affinity to human oxytocin receptor. The tetrazolic group has been used as a bioisosteric substitution of carboxylic, ester or amide groups in structure-activity relationship studies of biologically active compounds. Replacement of the amide groups of Gln(4) and Asn(5) in oxytocin by tetrazole analogues of aspartic, glutamic and alpha-aminoadipic acids containing the tetrazole moiety in the side chains leads to analogues with decreased biological activities. Oxytocin analogues in which the glycine amide residue in position 9 was substituted by tetrazole analogues of glycine had diminished activities as well. The analysis of differences in rat uterotonic activity and in the affinity to human oxytocin receptors of analogues containing either an acidic 5-substituted tetrazolic group or a neutral 1,5- or 2,5-tetrazole nucleus makes it possible to draw some new conclusions concerning the role of the amide group of amino acids in positions 4, 5 and 9 of oxytocin for its activity. The data suggest that the interaction of the side chain of Gln(4) with the oxytocin receptor is influenced mainly by electronic effects and the hydrogen bonding capacity of the amide group. Steric effects of the side chain are minor. Substitution of Asn(5) by its tetrazole derivative gave an analogue of very low activity. The result suggests that in the interaction between the amide group of Asn(5) and the binding sites of oxytocic receptor hydrogen bonds are of less importance than the spatial requirements for this group.

  12. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    PubMed

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  13. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  14. Amide functionalized MWNT/SPEEK composite membrane for better electrochemical performance

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Sharma, Prem P.; Kulshrestha, Vaibhav

    2016-05-01

    Nanocomposite membranes based on multiwalled carbon nanotube /SPEEK (sulfonated poly ether ether ketone) have been synthesized via simple solution casting. Prior to use CNT have been purified and grafted with carboxylic acid groups onto its walls by means of sulfuric and nitric acid. Afterwards, amidation of carboxylated CNTs (c-CNT) has been done. Amidated CNT (a-CNT) is then incorporated in SPEEK polymer matrix to synthesize nanocomposite membranes. Physicochemical, structural, thermal and mechanical characterizations are done through the respective techniques. Electric and ionic conductivities have also been evaluated. Composites membranes show the enhanced electrochemical performance with higher electric conductivity.

  15. Synthesis of β-Glycosyl Amides from N-Glycosyl Dinitrobenzenesulfonamides.

    PubMed

    Gaitonde, Vishwanath; Sucheck, Steven J

    2012-01-01

    The N-glycosyl-2,4-dinitrobenzenesulfonamides were accessed via benzoyl-protected β-glycosyl azides. The azides were reduced with Adams' catalyst to the corresponding amines. The glycosylamines were sulfonated with 2,4-dinitrobenzenesulfonyl chloride to form N-glycosyl-2,4-dinitrobenzenesulfonamides in moderate yields. β-Glycosyl amides were then prepared in 67 - 81 % yields by treatment of the sulfonamides with thioacetic acid and cesium carbonate. The conversion of the glycosylsulfonamide to the glycosyl amide proceeded with high stereoselectivity.

  16. Synthesis of β-Glycosyl Amides from N-Glycosyl Dinitrobenzenesulfonamides

    PubMed Central

    Gaitonde, Vishwanath; Sucheck, Steven J.

    2013-01-01

    The N-glycosyl-2,4-dinitrobenzenesulfonamides were accessed via benzoyl-protected β-glycosyl azides. The azides were reduced with Adams’ catalyst to the corresponding amines. The glycosylamines were sulfonated with 2,4-dinitrobenzenesulfonyl chloride to form N-glycosyl-2,4-dinitrobenzenesulfonamides in moderate yields. β-Glycosyl amides were then prepared in 67 – 81 % yields by treatment of the sulfonamides with thioacetic acid and cesium carbonate. The conversion of the glycosylsulfonamide to the glycosyl amide proceeded with high stereoselectivity. PMID:23349564

  17. Catalytic Ester–Amide Exchange Using Group (IV) Metal Alkoxide–Activator Complexes

    PubMed Central

    Han, Chong; Lee, Jonathan P.; Lobkovsky, Emil; Porco, John A.

    2005-01-01

    A process for preparation of amides from unactivated esters and amines has been developed using a catalytic system comprised of group (IV) metal alkoxides in conjunction with additives including 1-hydroxy-7-azabenzotriazole (HOAt). In general, ester–amide exchange proceeds using a variety of structurally diverse esters and amines without azeotropic reflux to remove the alcohol byproduct. Initial mechanistic studies on the Zr(Ot-Bu)4–HOAt system revealed that the active catalyst is a novel, dimeric zirconium complex as determined by X-ray crystallography. PMID:16011366

  18. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

    PubMed

    Byrd, Katherine M

    2015-01-01

    The conjugate addition reaction has been a useful tool in the formation of carbon-carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  19. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  20. Aryl Piperazinyl Ureas as Inhibitors of Fatty Acid Amide Hydrolase (FAAH) in Rat, Dog, and Primate.

    PubMed

    Keith, John M; Apodaca, Rich; Tichenor, Mark; Xiao, Wei; Jones, William; Pierce, Joan; Seierstad, Mark; Palmer, James; Webb, Michael; Karbarz, Mark; Scott, Brian; Wilson, Sandy; Luo, Lin; Wennerholm, Michelle; Chang, Leon; Brown, Sean; Rizzolio, Michele; Rynberg, Raymond; Chaplan, Sandra; Breitenbucher, J Guy

    2012-10-11

    A series of aryl piperazinyl ureas that act as covalent inhibitors of fatty acid amide hydrolase (FAAH) is described. A potent and selective (does not inhibit FAAH-2) member of this class, JNJ-40355003, was found to elevate the plasma levels of three fatty acid amides: anandamide, oleoyl ethanolamide, and palmitoyl ethanolamide, in the rat, dog, and cynomolgous monkey. The elevation of the levels of these lipids in the plasma of monkeys suggests that FAAH-2 may not play a significant role in regulating plasma levels of fatty acid ethanolamides in primates.